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Abstract

The present study analyses meridional atmospheric heat transport, due to transient eddies,

in the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data.

Probability density functions of the transport highlight the dominant role played by extreme

events. In both hemispheres, events in the top 5 percentiles typically account for over half of

the net poleward transport. As a result of this sensitivity to extremes, a large fraction of the

heat transport by transient eddies, at a given location and season, is realised through randomly

spaced bursts (a few per season), rather than through a continuum of events.

Fast growing atmospheric modes are associated with a large heat transport, suggesting a link

between these bursts and growing baroclinic systems (de�ned here as motions in the 2.5�6 day

band). However, wavelet power spectra of the transport extremes suggest that they are driven

by very precise phase and coherence relationships, between meridional velocity and moist static

energy anomalies, acting over a broad range of frequencies (2-32 days). Motions with periods

beyond 6 days play a key role in this framework. Moreover, these longer periods are found to

be mainly driven by planetary-scale motions. Notwithstanding this, the heat transport bursts

can be matched to speci�c synoptic-scale patterns. The bursts are therefore interpreted as the

signatures of travelling synoptic systems superimposed on larger scale motions.

The dominant role of extreme events can be reproduced in highly idealised simulations. Both a

statistical model, where atmospheric motions are assumed to be linear superpositions of sinusoidal

curves, and a two-layer model, representing heat transport as a quantised process e�ected by

point vorticity anomalies, are successful in simulating the transport bursts. The fact that two

very di�erent idealised models both reproduce the transport's sporadic nature suggests that this

must be an intrinsic property of waves in the atmosphere.
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Part I

Aims of the Thesis

The primary driver of the global climate system is solar energy input. At the top of the atmosphere

(TOA), the low latitudes experience a net energy surplus, while the high ones a corresponding net

de�cit. A direct consequence of this imbalance is a very large meridional heat transport, e�ected

by both the atmosphere and oceans. Figure 1 shows an estimate of the yearly mean transports.

Figure 1: Annual mean meridional heat transport (in PW ) by the atmosphere and ocean. The 2σ
contours are also shown [from Fasullo and Trenberth, 2008].

From the earliest studies of climate dynamics, these have been acknowledged as the key to predicting

the time-mean structure of the Earth's climate [e.g. Budyko, 1969; Sellers, 1969; Stone, 1978], and

its variability [e.g. Bjerknes, 1964]. More recent studies have emphasised the role atmospheric heat

transport plays in the response of our climate to anthropogenic forcing, especially at high latitudes

[e.g. Alexeev et al., 2005; Langen and Alexeev , 2007]. For example, there is evidence that anomalies

in atmospheric poleward heat transport might explain the 2007 polar sea-ice minimum [Graversen

et al., 2011].

The present thesis focuses on the contribution of time dependent motions to atmospheric poleward

heat transport. In mid-to-high latitudes, these motions account for the bulk of the transport. This is

especially true in the Southern Hemisphere (SH), where the contribution of stationary waves is small;

in the wintertime Northern Hemisphere (NH) stationary and transient eddies provide comparable

transports [Peixoto and Oort , 1992]. Lau and Wallace [1979] have produced a comprehensive analysis

of meridional transient-eddy heat transport in terms of rotational and irrotational, and divergent
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Figure 2: PDFs of potential temperature anomalies (in K, top left), meridional velocity (in ms−1,
top right) and meridional heat transport (in Kms−1, bottom left). The data covers the 850 mb �elds
for November�March 1972�1986. The three locations taken into consideration are 40◦ N; 140◦ E,
180◦, and 140◦ W [from Swanson and Pierrehumbert , 1997].

and nondivergent, components. This topic has also been the focus of many other studies based on

observational Lau [e.g. 1978] and theoretical [e.g. Branscome, 1983] considerations.

A new perspective on the subject was introduced by Swanson and Pierrehumbert [1997], who

analysed November�March heat �ux probability density functions (PDFs) at three locations in the

Paci�c storm track. These are shown in �gure 2, which also includes the meridional velocity (top

left) and potential temperature anomaly (top right) PDFs. The authors noticed that the transport

distributions displayed an extended positive tail and found that, surprisingly, the top two percentiles

of the distributions typically account for 20% of the heat transport.

This thesis builds on the study by Swanson and Pierrehumbert [1997], by extending their results

to the Northern and Southern Hemispheres, and to the cold and warm seasons. The key aims can be

summarised as follows:

i. De�ne extreme events in meridional atmospheric heat transport [Messori and Czaja, 2013b] (Chap-
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ter III);

ii. Demonstrate their key role in setting the net seasonal transport magnitude [Messori and Czaja,

2013b] (Chapter III);

iii. Characterise them by looking at their temporal, spatial and spectral structure [Messori and

Czaja, 2013c] (Chapter IV);

iv. Link them to idealised statistical and minimal physics models (Chapter V).

The extreme events are de�ned in terms of percentiles of a probability density function (PDF). After

robustly establishing the sensitivity of the heat transport to extremes, we demonstrate its sporadic

and irregular temporal distribution by showing that a large contribution to the transport arises from

a few isolated bursts every season. Next, a detailed analysis of the physical and spectral structure of

the extremes, and the associated atmospheric circulations, is performed. The physical interpretation,

existence of synoptic analogues and role of large scale motions are discussed in this context. Finally,

idealised analogues are used to test and support the �ndings from points ii) and iii).
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Part II

Introduction

1 The Earth's Climate System

This chapter will introduce the basic physical and mathematical framework necessary to understand

meridional heat transport in the atmosphere, and will contextualise its role within the global climate

system.

1.1 The Global Energy Budget

The basic driver of the Earth's climate system is solar energy input. From the point of view of the

energy exchange at the TOA, the equilibrium of the global climate is quite delicate. Indeed, simple

energy balance calculations show that a few percent decrease in incoming radiation could initiate a

new ice age (e.g. Sellers, 1969). Similarly idealised calculations suggest that, if Earth were a perfect

black-body, it would be much colder than it currently is. The di�erence between the measured

and theoretical black-body temperatures is due to the greenhouse e�ect, whereby the constituents

of the atmosphere, water vapour in primis, absorb and re-emit the outgoing radiation originally

emitted at the planetary surface. Another important di�erence from a black-body is that both the

energy input and output are very non-uniform across the globe. This is primarily due to Earth's

geometry (which a�ects incoming TOA radiation) and the surface and atmospheric characteristics

(which a�ect outgoing TOA radiation). The latter generate a complex variability pattern, while the

planet's near-spherical geometry gives rise to the underlying trend of decreasing solar input with

increasing latitudes. The result is a very inhomogeneous net TOA radiation picture, as shown in

�gure 3.

As is evident from the �gure, the low latitudes experience a net energy gain, while the high

latitudes experience a net energy loss; only the mid-latitudes are in approximate balance. A very

large meridional heat transport is needed to maintain this apparently imbalanced state. In fact,

if both the atmosphere and oceans were to be solid bodies transporting no heat, the temperature
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Figure 3: Net TOA radiation during September 2008 (in Wm−2) [by R. Simmons, NASA Earth
Observatory].

gradient between the equator and the poles would be much larger than what is witnessed [Salby ,

1996]. The heat transport by the �uid atmosphere and oceans is therefore crucial in maintaining the

present day climate.

1.2 The Earth's Atmosphere

The Earth's atmosphere is a very complex and diverse system. Vertically, it is very extended, but

approximately 80% of its mass is concentrated within the bottom 10 km. Compared to the radius

of the planet, which is roughly 6370 km, the bulk of the atmosphere is a very thin �lm. This �lm

is made up of permanent gases, notably Nitrogen (78%) and Oxygen (21%), and minor constituents

[Marshall and Plumb, 1997]. Some of these, even though in very small concentrations, are crucial to

the energy balance of the climate system. Water vapour, for example, accounts for approximately

0.5% of the whole atmosphere (and less than 3% of the bottom layer), yet it is at the basis of the

greenhouse e�ect which makes our planet habitable. Similarly, Carbon dioxide (CO2), at the centre

of many Climate Change projections, is present in a concentration so small that it is commonly

expressed in parts per million (ppm) rather than a percentage. The current level, which is steadily

increasing, is around 400 ppm [Jones, 2013].

In the atmospheric sciences, the atmosphere is commonly subdivided into di�erent vertical layers.

Here, the interest is in the bottom layer, called the troposphere. This roughly coincides with the 10

km discussed above, and its upper limit is typically de�ned in terms of the temperature inversion.
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Figure 4: Typical vertical pro�les of temperature (in ◦C) and water vapor mixing ratio (in gkg−1) in
the lower atmosphere [by D. Ga�en, Air Resources Laboratory, Maryland].

That is, the height at which the slope of the vertical temperature pro�le changes abruptly from

strongly negative to near-zero [World Meteorological Organisation, 1992]. While this point, called

the tropopause, is typically at a height of around 10 km, large local variations are possible. Within the

troposphere, the mean vertical temperature and water vapour pro�les are reasonably homogeneous,

as shown in �gure 4.

These two variables are closely interlinked, and are both crucial for atmospheric energetics and

dynamics. It is therefore important to de�ne two quantities of interest relating to water vapour:

relative and speci�c humidity. Speci�c humidity, q, is the ratio of the mass of water vapour to the

mass of air per unit volume. It is de�ned as:

q =
ρv
ρ
, (1)

where ρ is the total mass of air per unit volume and ρv is the mass of water vapour per unit volume.

Relative humidity, Q, is then de�ned as the ratio of speci�c humidity to saturation speci�c humidity.

The latter is simply the level of speci�c humidity beyond which condensation occurs. Q is often

de�ned as a percentage:
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Q =
q

qsat
· 100, (2)

where qsat is saturation speci�c humidity [Marshall and Plumb, 1997]. The temperature dependence

mentioned above is contained within qsat.

Another essential quantity needed to describe the atmosphere is potential temperature, θ. Its

de�nition stems from the need for a variable which is conserved under adiabatic displacement, namely

a displacement process where there is no heat exchange. Potential temperature is commonly de�ned

as:

θ = T

(
po
p

) R
cp

, (3)

where T is temperature, p is pressure, p0 is a reference pressure relative to which θ is de�ned (typically

chosen as 1000 mb), R is the gas constant and cp is the speci�c heat capacity of air at constant

pressure. The ratio R
cp

has a value of approximately 2
7 . The vertical gradient of θ is an important

measure of atmospheric stability (to dry adiabatic processes), where a positive gradient implies a

stable atmosphere. Unlike normal temperature, potential temperature therefore increases with height

for a stable atmosphere [Marshall and Plumb, 1997]. A typical vertical pro�le of potential temperature

is shown in �gure 5.

Thus far, the focus has been on the vertical distribution of the atmosphere. However, the merid-

ional one is equally important. The geometrical e�ects discussed above (see Section 1.1) play a crucial

role in setting this. Figure 6, shows the zonally averaged annual mean temperature distribution, and

�gure 7 the corresponding potential temperature one. As seen before, T decreases with height and,

as expected, also with latitude. The annual mean surface temperature goes below zero beyond ap-

proximately 60◦ N and S. Potential temperature, on the other hand, increases with height, but also

decreases with latitude.

As a direct consequence of these temperature gradients, there are also strong meridional pressure

gradients. One can de�ne the geopotential height, zg, of a pressure surface, p, as:
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Figure 5: Absolute temperature (blue line) and potential temperature (red line) pro�les for a stable
atmosphere (in K) [from Todaro, 2003].

Figure 6: The zonal and annual mean temperature (in ◦C) [from Marshall and Plumb, 1997].
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Figure 7: The zonal and annual mean potential temperature (in K) [fromMarshall and Plumb, 1997].

zg(p) = R

∫ ps

p

T

g

dp

p
, (4)

where g is gravitational accelleration at mean sea level and ps is surface pressure. This de�nition

is based on the hydrostatic approximation, which will be discussed in Section 1.3. The temperature

dependence in the equation explains the direct link between pressure and temperature gradients.

Figure 8 shows the mean 500 mb height in January for the Northern Hemisphere (NH). In the cold

polar regions the 500 mb level is signi�cantly lower than in the warm tropics. There are, obviously,

other factors a�ecting the meridional pressure gradient, but the temperature-driven pattern provides

a reasonable approximation to what is measured in the real atmosphere. The marked meridional

pressure gradient is also a basic driver of atmospheric winds. These will be discussed in the context

of large scale circulation patterns in Section 1.3.

1.3 Atmospheric Dynamics

1.3.1 The Equations of Motion

The Earth's atmosphere displays a very rich range of dynamical behaviours. Here, we brie�y explore

some of the fundamental equations describing them. The starting point is to consider a rotating �uid

on a sphere. The equation of motion can be written as:
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Figure 8: Mean 500mb height (inm) for NH January 1975-2006 [from NOAA/ESRL Physical Sciences
Division].

D~u

Dt
+ 2~Ω× ~u+

1

ρ
∇p+∇φ = F, (5)

where:

φ = gz +
Ω2a2

2g
cos2(ϕ) (6)

In the above, ~u is the velocity vector, ~Ω is the rotation vector of the Earth, φ is the modi�ed

gravitational potential, F is a lump term representing frictional forces, a is the planetary radius

and ϕ is latitude. Equation 5 can be simpli�ed by making a very simple assumption based on scale

analysis, known as hydrostatic balance. This balance describes the variation of pressure with height

as a function of density:

∂p

∂zh
= −gρ, (7)

where zh is geometrical height. Re-writing equation 5 in local Cartesian coordinates, applying the

hydrostatic approximation, and neglecting vertical motions, one obtains:
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Du

Dt
+

1

ρ

∂p

∂x
− fv = Fx,

Dv

Dt
+

1

ρ

∂p

∂y
+ fu = Fy, (8)

1

ρ

∂p

∂z
+ g = 0,

where f , the Coriolis parameter, is given by:

f = 2Ωsin(ϕ) (9)

This set of equations provides the basic framework to describe the motion of a thin shell of �uid on

a rotating sphere [e.g.Marshall and Plumb, 1997].

In fact, these equations account for an incredible diversity of dynamical behaviours, not all of

which are relevant to the present work. In terms of the large scale motions, what is crucial is the

balance between the di�erent forces acting on the �uid. For the typical large scale atmospheric �ow,

the Coriolis and pressure gradient terms dominate the left hand side of equation 5, implying that:

fẑ × ~u+
1

ρ
∇p = 0 (10)

becomes a good approximation. ẑ is simply a unit vector in the vertical direction. This balance be-

tween the Coriolis and pressure gradient terms is called geostrophic balance. The resulting horizontal

velocity �eld, called geostrophic wind, is given by:

~ug =
1

fρ
ẑ ×∇p (11)
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Figure 9: The three circulation cells and the associated surface winds [from NASA Jet Propulsion
Laboratories].

1.3.2 The Observed Circulation

The observed large-scale circulation displays three main circulation cells: the Hadley cell (thermally

driven circulation), the mid-latitude, or Ferrel, cell (thermally indirect circulation) and the Polar

cell (a direct cell). These are schematised in �gure 9. The existence of circulation cells is due to

the equator-to-pole gradient in net radiation; their number, however, is closely linked to the rate of

rotation of the Earth. A very slowly rotating planet would sustain a single equator-to-pole cell, while

a very fast rotator, such as Jupiter, will display a higher number of cells [e.g. Peixoto and Oort ,

1992; Salby , 1996].

The main surface and high-level winds (again illustrated in �gure 9) can be associated with

this general circulation structure. In mid-latitudes, the common surface winds are West to East

(westerlies) and, in the schematic presented here, would correspond to the bottom branch of the

Ferrel cell. The boundary between the Ferrel and Polar cells is called the polar front. Here, cold

polar and warm tropical air masses meet, and there is an associated strong zonal wind called the Polar

Jet, or often simply the Jet Stream. This jet is found at high levels, typically just below tropopause,
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and can attain very high speeds (with winter mean zonal winds at speci�c locations exceeding 55

ms−1) [Holton, 1979]. In the context of the basic equations governing atmospheric dynamics, the

Polar Jet is mainly a geostrophic wind. Clearly, this summary is a highly simpli�ed picture of the real

circulation, which has a much richer range of features, but correctly reproduces the main observed

large scale patterns.

1.3.3 Instabilities in the Atmosphere

The atmospheric dynamics described above all stem from the fact that the atmosphere is subject

to instabilities. One of the most fundamental instabilities of geophysical interest is gravitational

instability, which is at the base of atmospheric convection. Consider two �uids with the same homo-

geneous density ρ2, but di�erent surface heights, separated by a partition. The pressure di�erence,

∆p between two points p1 and p2, at equal heights within the �uids, will be given by:

∆p = ρ2gh, (12)

where h is the di�erence in surface heights. Add now a third �uid, ρ1, placed in equilibrium above

the original �uids. The pressure di�erence between the same two points is now given by:

∆p = (ρ2 − ρ1)gh (13)

This can also be expressed as:

∆p = ρ2g
′h, (14)

where g′ is a quantity termed reduced gravity, given by:

g′ = g
ρ2 − ρ1
ρ2

(15)

Figure 10 illustrates this set up. If the partition between the �uids is removed, there will be an

adjustment process under gravity. It follows from equation 14 that the driving force behind this

adjustement is proportional to b = ρ2g
′. b is termed buoyancy force per unit volume [Gill , 1982]. If

ρ1 > ρ2, b < 0 and the heavier liquid will sink. V ice−versa, a lighter liquid on top (i.e. ρ1 < ρ2) will
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Figure 10: Initial state of the setup illustrating adjustement under gravity. The vertical dashed line
is a removable partition between two �uids with density ρ2, whose upper surfaces are marked by the
thick turquoise lines. p1 and p2 are two points at equal heights within this �uid. h is the di�erence
in surface heights. Above this there is a third �uid, with density ρ1.

imply a stable con�guration, except for the re-adjustement of the lower �uid to eliminate the height

di�erence h. This basic adjustment process is commonly seen in the atmosphere under the form of

convection: if an air parcel becomes lighter (more buoyant) than its surroundings, it will begin to

ascend. For an incompressible �uid, and assuming density is only dependent on temperature, an

alternative formulation of the stability condition based on temperature in place of density, is:

unstable if
dT

dz
< 0

neutral if
dT

dz
= 0 (16)

stable if
dT

dz
> 0

These conditions do not hold for the real atmosphere, which is a compressible �uid. In order to

account for compressibility, potential temperature is usually adopted in place of absolute temperature.

It should be noted that humidity and heat exchanges with the environment (diabatic processes)

are not considered here. From the point of view of energetics, the air parcel's rising motion will
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increase the kinetic energy of the atmosphere but will, at the same time, decrease its potential

energy. Returning to the setup illustrated in �gure 10, it is clear that, for b < 0, the two liquids will

re-adjust, with the lighter one on top. Compared to the initial state, the centre of mass of the system

has been lowered and its potential energy has decreased. The amount of potential energy which can

be converted through this re-adjustement is referred to as available potential energy (APE). A more

formal de�nition describes the re-adjustment as an �adiabatic redistribution of mass without phase

changes to a statically stable state of rest� [Gill , 1982, p.81].

Ignoring the small height di�erence between the bottom-layer �uids, the mechanism described

above is a 1-D process. In the real atmosphere, the conversion of APE can occur through three

dimensional mechanisms, and is the energy source for another crucial form of instability, namely

baroclinic instability. This is of great interest here, since it can e�ect heat transport. The crucial

component for a baroclinic instability to grow is a horizontal temperature gradient (or, equivalently,

a density gradient along an isobar). A baroclinic atmosphere is therefore one where ρ = ρ(p, T ).

The simplest model of a growing baroclinic instability was developed by Eady [1949]. This idealised

setup provides an expression for the growth rate and heat transport of the fastest growing mode,

and is described in detail in Section 3. In the absence of an isobaric density gradient, there can still

be instabilities arising from horizontal variations in the mean velocity. These are called barotropic

instabilities, and do not result in a net transport of heat [Gill , 1982].

1.3.4 Notable Dynamical Features

One of the main drivers of atmospheric heat transport in the mid to high latitudes are transient

eddies [e.g. Blackmon et al., 1977]. These are travelling disturbances resulting from instabilities of

the mean �ow, and are a direct product of baroclinic instabilities [Lindzen, 1990]. Transient eddies

are a crucial part of atmospheric dynamics: they are found to drive a range of large-scale patterns,

including wave number 6 geopotential anomalies [Blackmon et al., 1984], and are also instrumental

in driving synoptic scales.

The term synoptic describes a horizontal length scale, typically taken to be around 1000 km,

meant to capture the size of mid-latitude low pressure systems. The most notable synoptic systems

are extra-tropical cyclones. It is through these systems that baroclinic instabilities, and the associated

eddies, account for a large poleward heat transport [Eckhardt et al., 2004].
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Figure 11: Conveyor belt model schematic [from Catto et al., 2010, adapted from Browning , 1997].

If one focuses on heat transport, it is interesting to take a Lagrangian perspective of the mid-

latitude dynamics described above, and track air �ows. This view is usually applied to cyclones, and

has a long history going back to Bjerknes [1910]. It was then developed into a quasi-Lagrangian

picture, called �conveyor belt� model, by Harrold [1973], Browning et al. [1973], and Carlson [1980].

The basic conveyor belt picture has three air streams: a dry intrusion, a cold belt and a warm

belt (WCB). As the name suggests, the WCB is the one driving the largest heat transport, and is

characterised by the rapid ascent of warm, moist air. In de�ning it in precise physical terms, one can

impose further constraints in terms of horizontal distance travelled over a given period of time [e.g.

Eckhardt et al., 2004]. The conveyor belt model is schematised in �gure 11.

The WCBs are largely con�ned to areas of intense baroclinic activity, such as the storm tracks.

These are de�ned as areas of large synoptic-scale baroclinic wave activity [Blackmon et al., 1977],

and are associated with large values of poleward heat transport. One can identify two distinct tracks

in the NH (in the Atlantic and Paci�c oceans) and a single, continuous band in the SH. Figures 12

and 13 show the geographical position of the NH and SH storm tracks, based on track density of low

pressure anomalies. Note that this is only one of several measures that can be used to identify the

storm tracks [e.g. Hoskins and Hodges, 2002]. It is worth mentioning, in a brief digression, that the

oceans also have areas of very intense dynamics, referred to as western boundary currents (WBCs)

[Stommel , 1948]. These are strong, warm currents found on the western boundaries of ocean basins;

the two most important NH ones are the Gulf Stream in the Atlantic and the Kuroshio current in the

Paci�c. They play important roles in the oceans' meridional heat transport and in ocean-atmosphere
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Figure 12: NH storm tracks based on track density of negative mean sea level pressure (MSLP)
features [from Hoskins and Hodges, 2002].

Figure 13: SH storm track based on track density of negative MSLP features [from Hoskins and

Hodges, 2005].

interaction processes. It is by no means a coincidence that, in the NH, these currents partly match

the position of the atmospheric storm tracks [e.g. Sampe and Xie, 2007; Booth et al., 2010].

Even though they are traditionally associated with a large portion of the meridional heat trans-

port, synoptic systems are by no means the only scale relevant to the dynamics of the mid-latitude

atmosphere. At scales larger than those of individual pressure lows, one can identify �uctuations

commonly called planetary waves. These are often in�uenced by topographical features of the plane-

tary surface, such as mountain ranges, and by the location of the continents and oceans. When they

become locked onto these features, they are called stationary waves [McIlveen, 1998]. Figure 14 shows
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Figure 14: 700 mb geopotential height composite anomalies (in m) for NH JJA 1968-1996, showing a
clear wavenumber 4 planetary pattern [from NOAA Physical Science Division, in Wahl et al., 2012].

an example of planetary-scale spatial variability, namely 700 mb geopotential height anomaly for the

NH during June, July and August. These low wave number modes provide the main contribution

to long period variability [e.g. Blackmon and Lau, 1980] and, crucially, also have an impact on the

amplitude and development of the smaller baroclinic waves [McIlveen, 1998].

When discussing the role of planetary scales for long periods, Blackmon and Lau [1980] de�ne

these as 10 < T < 90 days. There are, however, modes of variability that act on even longer time

scales. One of particular interest for the NH mid-latitudes in the North Atlantic Oscillation (NAO).

This oscillation is generally de�ned in terms of the pressure di�erence between the semi-permanent

Icelandic Low and the Azorres High [Walker and Bliss, 1932]. The strength of the NAO is quanti�ed

by a normalised index based on this pressure di�erence. For a positive phase of the NAO, the high

pressure is higher than usual, and the low pressure lower. A negative phase of the NAO describes the

opposite pattern. The sign of the NAO varies with an erratic periodicity, and can remain the same

for over a decade [e.g. Hurrell , 1995]. The winter average NAO index for the period 1864-1994 is

shown in panel a) of �gure 15. The sea level pressure di�erence between strong positive and negative

phases of the NAO (NAO > 1 and NAO < −1 respectively), is shown in panel b) of the same �gure.

The two pressure cores over the Azorres and Iceland are very evident.
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The NAO has major large-scale climatic impacts. Positive phases are usually associated with

cold weather in Greenland and mild winters in Europe. Negative ones drive the opposite pattern

[Peixoto and Oort , 1992]. Figure 16 presents a schematic of the two NAO phases and the associated

climatic impacts. As could be expected from its wide-ranging climatic in�uences, the NAO sign can

also a�ect heat transport by altering moisture transports and the intensity, frequency and path of

storms [Hurrell et al., 2003].

1.3.5 The Energy View

As noted in Section 1.3.3, energy conversion is a crucial aspect of atmospheric instabilities. More

generally, the circulation features described in the previous sections can be understood as a series of

physical processes acting to convert energy; this view was �rst proposed by Lorenz [1955].

The uneven solar energy input received by the planet leads to a net heating in the tropical regions

and a net cooling at the poles (see Section 1.1). This uneven radiative heating, and the resulting

slope of the isentropes, is the primary source of zonal-mean APE, PM . To obtain the overall APE in

the atmosphere, the terms relating to the temporal and zonal variations in temperature must also be

considered. These are commonly referred to as transient eddy APE (PTE) and stationary eddy APE

(PSE). Here, we will refer to these two terms collectively as eddy APE (PE). The overall APE, P is

then given by:

P = PM + PTE + PSE (17)

Similar considerations can be applied to the kinetic energy terms, such that:

K = KM +KTE +KSE (18)

These six di�erent forms of energy are then converted and dissipated by the rich range of dynamical

behaviours displayed by the atmosphere. The generation of APE, as already mentioned, is largely

due to the di�erential radiative heating between the equator and the poles. In terms of dissipation, a

major contribution is provided by the decrease in kinetic energy via frictional and turbulent e�ects.

The conversion processes are extremely varied, and only a brief overview is provided here.

The large-scale circulations cells, such as the Hadley and Ferrel cells, mainly act on the zonal
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Figure 15: a) December-March NAO index based on the di�erence of normalized pressures between
Lisbon, Portugal, and Stykkisholmur, Iceland, for the period 1864-1994. The heavy solid line rep-
resents the meridional pressure gradient smoothed with a low-pass �lter which removes �uctuations
with periods less than 4 years. b) Di�erence in SLP between years with an NAO index > 1.0 and
those with an index < −1.0 (high index minus low index) since 1899. The contour increment is 2 mb;
negative values are dashed [from Hurrell , 1995].
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Figure 16: Pressure anomalies and associated climatic impacts for the two phases of the NAO [from
Johnston et al., 2012].

mean terms, converting PM to KM and vice-versa. In the case of the Hadley cell, rising warm air

and subsiding cold air lead to a net conversion of APE to kinetic energy, while the opposite occurs in

the Ferrel cell. Other motions convert the potential energy between its di�erent forms: eddy motions

can distort the isotherms, leading to a loss of zonal symmetry, and hence a decrease in PM and and

increase in PE . The eddy APE can then be converted to eddy kinetic energy by baroclinic instabilities

which, as discussed in Section 1.3.4, are a key driver of the meridional energy transport. Finally, one

can consider the conversion of kinetic energy between its di�erent forms. An example of this would

be eddies increasing the angular momentum of the high-level jets, and hence converting eddy kinetic

energy to zonal-mean one.

This highly simpli�ed overview of the Lorenz energy cycle is summarised graphically in �gure 17.

1.4 Meridional Heat Transport in the Atmosphere

As already mentioned in Section 1.1, meridional heat transport is a key component of the Earth's

climate system and there is an extensive literature on the topic. The transport is the result of the

imbalance in solar energy input at the TOA, and has both an atmospheric and an oceanic component.

The ocean dominates in the low latitudes, while the atmosphere dominates in the mid and high
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Figure 17: The Lorenz energy cycle in the atmosphere. G stands for generation, D for dissipation
and C for conversion. The dashed arrows represent the terms not considered in the text [adapted
from Kim and Kim, 2012].

latitudes. Figure 18 shows a recent estimate of meridional heat transport by the atmosphere and

ocean, as a function of latitude. As can be seen, atmospheric transport peaks in the mid-latitudes at

approximately 5 PW , while the corresponding contribution by the ocean is less than 1 PW .

There are indications that, at a very fundamental level, this partitioning of the transport is

constrained. The most famous hypothesis in this respect is the Bjerknes compensation concept

[Bjerknes, 1964], according to which changes in atmospheric and oceanic heat transports balance

each other over long timescales. Simple dynamical arguments, however, can provide more detailed

indications of the role of the atmosphere relative to the ocean, and suggest that the e�ect of these

compensated changes on the partitioning of the transport is unlikely to be large [Czaja and Marshall ,

2005].

1.4.1 The Di�erent Components

Meridional atmospheric heat transport can be broken down into three di�erent components. Part of

it is e�ected by the mean background motions, part by the stationary features discussed in Section

1.3.4 and part by the transient eddies. The present thesis is concerned with the temporal variability
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Figure 18: Annual mean meridional heat transport (in PW ) by the atmosphere and ocean. The 2σ
contours are also shown [from Fasullo and Trenberth, 2008].

of heat transport, and will focus on the time-dependent (transient) component. This component is

generally associated with the growth and decay of mid-latitude weather disturbances, and is therefore

directly linked to baroclinic instability [e.g. Lau, 1978]. Typically, the transport driven by the mean

circulation dominates in the tropical regions (Hadley Cell), while the baroclinic instabilities dominante

in the mid to high latitudes [Peixoto and Oort , 1992].

The transient component, τ , is computed as follows:

τ = v′H ′, (19)

where:

H = Lvq + cpT + gzg (20)

H is a thermodynamic variable called moist static energy (MSE), Lv is the latent heat of vaporization

of water and cp is the speci�c heat capacity of air at constant pressure. The primes denote deviations

from the long term average, and will be referred to hereafter as temporal anomalies. To understand

where the de�nition of H originates from, it is instructive to consider dry static energy, s:

s = cpT + gzg (21)
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The term static is adopted because the above equation does not include a kinetic energy term. One

can then describe the energetics of a large volume of air, in pressure coordinates, as:

∂s

∂t
+∇ · s~u+

∂sω

∂p
= g

∂(FR + F s)

∂p
+QLH (22)

Here ω is vertical velocity, p is pressure, FR and FS are the upward vertical �uxes of radiative

energy and sensible heat and QLH is latent heating per unit mass [Neelin and Held , 1987]. Similarly,

moisture conservation can be expressed as:

∂Lvq

∂t
+∇ · Lq~u+

∂ωLvq

∂p
= −QLH + g

∂FL

∂p
, (23)

where FL is the vertical �ux of latent heat due to moisture di�usion. QLH now has a negative sign,

to re�ect the phase change of water vapour and its subsequent precipitation. Combining equations

22 and 23, one obtains:

∂H

∂t
+∇ ·H~u+

∂Hω

∂p
= g

∂F

∂p
, (24)

where F is the total energy �ux. The large QLH term has cancelled with itself, and now the total

energy �ux is entirely in terms of the moist static energy and velocity �elds. MSE is only a�ected by

radiation and sensible heat exchanges at the boundaries [Neelin and Held , 1987].

1.4.2 Historical Overview

Some of the �rst works on meridional heat transport in the atmosphere were conducted by Houghton

[1954]. Early estimates of its magnitude were based on simple parametrisations in energy balance

models (EBMs) [Budyko, 1969; Sellers, 1969]. In addition to numerical estimates, there was also work

on in situ measurements and variability [e.g. Oort , 1971]. This allowed testing the parametrisations

commonly used in the models [e.g. Stone and Miller , 1980], and to perform detailed analyses on the

individual components of the transport. Peixoto and Oort [1992], for example, looked at the potential

energy, kinetic energy and sensible heat components, while Lau and Wallace [1979] separated the

divergent, non-divergent, rotational and irrotational �uxes. Often, data and models were combined

to obtain optimal estimates, such as in Trenberth and Caron [2001]. More recent estimates are

based on satellite measurements, which provide a comprehensive global coverage [e.g. Fasullo and
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Figure 19: Diagram of the polar energy budget [from Nakamura and Oort , 1988].

Trenberth, 2008; Porter et al., 2010].

Most of the above studies focussed on numerical estimates of the transport; others have focussed

on its structure and future forecasts [e.g. Hwang and Frierson, 2010]. Yet others, such as Nakamura

and Oort [1988], have focussed on its e�ect on the polar energy budget. In their 1988 paper, the

authors combined GCM output with in situ and satellite observations to obtain a full energy budget

for the polar caps. The simple schematic used was to consider the polar caps as being delimited by

imaginary walls circling the globe at 70° N and 70° S (see �gure 19). The energy balance was then

de�ned according to the following equation:

4E
4t

= Frad + Fwall + Fsfc, (25)

where the left hand side represents the change in stored energy in the atmosphere, Frad is the net

incoming TOA radiation, Fwall is meridional atmospheric heat transport into the polar cap and Fsfc

is the energy �ux from the surface into the polar cap. It should be noted that this schematic is

centered on the atmosphere: both caps extend from the surface to the 25 mb pressure level. The

ocean is not considered to be part of the polar caps, and ocean to atmosphere �uxes are incorporated

into Fsfc. This simple approach is still very relevant, since the very delicate balance of Arctic sea-ice

has changed in recent years, and atmospheric heat transport is a crucial energy input for the polar

regions [e.g. L'Heveder and Houssais, 2001; Alexeev et al., 2005].
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Figure 20: Annual and zonal mean cross section of northward transport of sensible heat by transient
motions (in ◦Cms−1) [from Oort and Peixoto, 1983].

1.4.3 Main Results

As discussed above, simple geometrical constraints can provide powerful insights into the structure of

heat transport. Stone [1978], for example, assumes that each hemisphere is in radiative equilibrium

and that the atmosphere and ocean are dominated by the planetary scale. Applying these two

assumptions to one-dimensional EBMs, the author �nds that the net meridional energy transport

must peak near 35◦ latitude. Furthermore, the Earth-Sun geometry and the Earth's albedo constraint

the peak magnitude of the �ux to be around 5 PW . A comparison of these results with �gure 18,

from a recent work by Fasullo and Trenberth [2008], reveals a very good agreement both in terms of

position of the maximum �ux and peak magnitude. Surprisingly, a one-dimensional EBM and very

simple considerations on the geometry of our planet are therefore able to reproduce some key features

of the meridional heat �ux structure computed with the aid of modern satellite data.

These idealised setups, however, cannot provide physical details of the individual components of

the transport in the real atmosphere. The transport by transient eddies is typically found to peak at

850 mb, with a secondary maximum around 200-300 mb [Lau, 1978;Peixoto and Oort , 1992]. Figure

20 shows the annual and zonal mean cross section of northward heat transport by transient motions.

The two peaks discussed above are clearly visible in both hemispheres. It should, however, be noted

that the �gure only includes the sensible heat component of the transport.

These features are subject to signi�cant temporal and spatial variability. The net atmospheric

transport peaks in December in the NH and June in the SH, at values of approximately 6 PW and

5 PW respectively. The summer transport in the SH at 30◦ S is larger than the corresponding NH

one by about 1 PW . These patterns are shown in �gure 21, which displays the zonally averaged
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Meridional Heat Transport in the Atmosphere

Figure 21: Meridional atmospheric heat transport as a function of latitude and month (in PW ) [from
Fasullo and Trenberth, 2008].

meridional atmospheric heat transport as a function of latitude and month. Notwithstanding the

pronounced annual cycle, poleward of about 30◦ N and S the transient eddies play an important role

year round, and their variability matches reasonably closely the one of the net transport [Peixoto and

Oort , 1992]. Figure 22 shows a comparison of the zonal and vertical mean pro�les of meridional heat

transport for the three di�erent components and the overall atmosphere. The contribution due to

transient motions is displayed in panel b). Again, like in �gure 20, only the sensible heat component

of the transport is included.

The spatial variability of the transport is as pronounced as the temporal one. Figure 23 shows the

global distribution of the vertical and yearly mean northward transport of sensible heat by transient

motions. In the SH, there is a uniform band of maxima across the Southern Ocean, with a local peak.

In the NH, a more complex pattern emerges. There are maxima over North America, the Gulf Stream

and Eastern Asia, associated with the polar front. Other maxima are present over Fennoscandia and

the Norwegian sea [Peixoto and Oort , 1992].

It should be noted that the estimates for atmospheric heat transport are by no means faultless.

Older studies su�er from a severe lack of data [e.g. Oort , 1971; Nakamura and Oort , 1988], and

even the most recent estimates are a�ected by instrument calibration issues [Porter et al., 2010] and

the limitations of reanalysis data [Fasullo and Trenberth, 2008]. Porter et al. [2010] highlight that
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Figure 22: Zonal and vertical mean pro�les of meridional transport of sensible heat due to a) all
motions; b) transient eddies; c) stationary eddies; d) mean background circulation (in ◦Cms−1)
[from Oort and Peixoto, 1983].

Figure 23: Global distribution of the vertical and yearly mean northward transport of sensible heat
by transient motions (in ◦Cms−1) [from Oort and Peixoto, 1983].
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CERES satellite data has shortcomings, mainly arising from instrument calibration, which yield an

estimated 6.5 Wm−2 global mean net TOA radiative imbalance. This is a surprisingly large value

when compared, for example, to the TOA forcing ascribed to anthropogenic in�uence, which is quan-

ti�ed in 0.6Wm−2 to 2.4Wm−2 [Forster et al., 2000]. Porter et al. also �nd signi�cant discrepancies

between reanalysis products from the National Centre for Environmental Prediction/National Centre

for Atmospheric Research and from the Japan Metereological Agency. In particular, a large source of

error seems to derive from applying a mass correction to these datasets which, in their original form,

are not mass-conserving. This translates into di�erences in estimates of atmospheric meridional heat

transport at 70◦ N of up to 32Wm−2. Climate models also encounter problems. Hwang and Frierson

[2010] �nd that surface albedo and cloud radiative e�ects, all contribute signi�cantly to model spread

in forecasted meridional atmospheric heat transport at 40◦ N.

The above discussion suggests that, while signi�cant improvements in available data have occurred,

this is still far from perfect. There is also ample scope for further research in terms of data analysis

and modelling. Hwang and Frierson [2010] maintain that a key contribution to better heat �ux

modelling will come from constraining uncertainties in surface albedo and cloud e�ects. The problems

encountered by Porter et al. [2010] in their analysis indicate that better methods for correcting mass

imbalance in reanalysis products are needed, since the current ones encounter problems when applied

to the high latitudes.

2 Conceptual Models of Heat Transport

2.1 The Eady Model of Baroclinic Instability

The following discussion is largely based on Gill [1982], to which the reader is referred for a more

detailed illustration of the Eady model.

The Eady model [Eady , 1949], is the simplest model of baroclinic instability. It deals only with the

development of the initial disturbance, and is not concerned with its full life cycle. The starting point

is a free wave in a horizontal temperature gradient. It is assumed that there are no topographical or

frictional e�ects, that the atmosphere is incompressible and that the Coriolis force is constant across

the domain (f -plane approximation). Eady's great intuition was to apply the rigid lid approximation

to this setup. This approximation, as the name suggests, assumes that the tropopause acts as a
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Figure 24: The structure of the most unstable Eady wave in the x − z plane. Panel a) displays
geopotential height anomaly contours; "H" and "L" indicate the positions of the ridge and trough,
respectively. Panel b) displays contours of vertical velocity; the arrows indicate the positions of
strongest ascending and descending motions. Panel c) displays temperature anomaly contours; "W"
and "C" indicate the positions of the warmest and coldest temperatures, respectively [from Holton

and Hakim, 2012].

rigid upper boundary for wave development. Its main physical limitation is that it implies that

spatial scales are set by the tropopause height. Nonetheless, it provides a very clear wave picture of

phase-driven heat transport by baroclinic instabilities. Figure 24 shows the properties of the most

unstable Eady wave. Panel a) displays geopotential height anomaly contours; "H" and "L" indicate

the positions of the ridge and trough, respectively. Panel b) displays contours of vertical velocity;

the arrows indicate the positions of strongest ascending and descending motions. Panel c) displays

temperature anomaly contours; "W" and "C" indicate the positions of the warmest and coldest

temperatures, respectively [Holton and Hakim, 2012].

The velocity and geopotential contours tilt westward with height, implying that there is a phase

shift between the top and bottom boundary waves. The temperature anomaly, on the opposite,

tilts eastward. A mathematical analysis of the most unstable (or fastest growing) Eady solution

�nds that the phase di�erence between the isobar and isotherm contours at the two boundaries

is approximately 21◦. Moving westward, temperature leads pressure at the top boundary and lags
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pressure at the bottom one. This implies that, at mid-levels, there must be a point where the warmest

air is also the fastest moving one, meaning that v and θ′ are perfectly in phase. It is further found

that the phase shift of the high and low pressure centres between the top and bottom boundaries

is of 90◦, and that for temperature contours the same shift is of 48◦. It is because of the phase

di�erence between temperature and pressure that the Eady wave e�ects a net heat transport. If the

pressure and temperature anomalies were perfectly in phase, there would be no poleward �ow where

the air is warmest and there would be the strongest �ow where the temperature anomaly is zero.

For the Eady wave, on the opposite, the poleward air �ow corresponds to a warm anomaly and the

equatorward �ow to a cold one. Indeed, at all levels the poleward motion corresponds to warmer air

than the equatorward one. Mass balance is therefore maintained, but the net e�ect is of a positive

poleward heat transport. The importance of the Eady model lies in the fact that it can be easily

solved analytically. Further mathematical details are provided in the Appendix.

2.2 The Charney and the Phillips Models

While Eady was developing his idealised framework, another model describing baroclinic instability

was being studied by Charney [1947]. In this model, compressibility e�ects in the atmosphere are

considered, and the rigid lid approximation is discarded in favour of more realistic boundary condi-

tions. The β-e�ect, namely the linear variation of the Coriolis parameter with latitude, is also taken

into account. The �nal result is surprisingly similar to the one from the Eady model. Figure 25 shows

the properties of the most unstable Charney wave. Panel a) displays contours of vertical velocity.

Panel b) displays contours of meridional velocity (solid lines) and potential temperature anomalies

(dashed lines). �H� and �L� indicate the positions of the geopotential ridge and trough, respectively.

They also mark the zero contours of velocity. "W" and "C" indicate the positions of the warmest

and coldest air�ows at the two boundaries. The small panel on the bottom right hand side displays

the variation of poleward heat �ux with height. Notwithstanding the many analogies, comparing this

result to Eady's one, shown in �gure 24, highlights important di�erences in the phase of the waves.

The phase di�erence bewteen the isobars and isotherms at the surface is now 41◦. This then decays

to zero at in�nity, implying that the meridional heat transport also falls o� to zero. It should also

be noted that this model is free from the arti�cal constraint seen in Eady's case, where the spatial

scales were set by the tropopause height.
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Figure 25: The structure of the most unstable Charney wave in the x − z plane. Panel a) displays
contours of vertical velocity. Panel b) displays contours of meridional velocity (solid lines) and
potential temperature anomalies (dashed lines). �H� and �L� indicate the positions of the geopotential
ridge and trough, respectively. They also mark the zero contours of velocity. "W" and "C" indicate
the positions of the warmest and coldest air�ows at the two boundaries. The small panel on the
bottom right hand side displays the variation of poleward heat �ux with height. Note that, unlike in
the Eady case, the �ow does not end at the upper boundary shown in the �gure [from Gill , 1982].

An instructive depiction of the baroclinic instability process can also be obtained by considering

a simple two layer model. Here, the initial setup consists of two homogeneous �uids, with di�erent

densities and mean velocities. The original formulation, illustrated in �gure 26, adopts Eady's rigid

lid approximation. The baroclinicity, namely the density gradient mentioned in Section 1.3.3, is

provided by the deformation of the interface between the two �uids. This model was �rst studied in

detail by Phillips [1951], and later extended by other authors to include additional e�ects, such as

the β-e�ect and bottom slope [e.g. Gill et al., 1974]

2.3 Baroclinic Growth on a Sphere and Life Cycle of a Baroclinic Distur-

bance

Both the Eady and the Charney models consider approximations to the full spherical geometry,

namely the f -plane and the β-plane. Moreover, in these idealised models, the zonal �ow is assumed

to be independent of latitude. Studies considering a full spherical geometry and a meridionally varying

zonal �ow lose the mathematical simplicity of Eady 's setup, but have a much closer link to the real

dynamics of the atmosphere. Simmons and Hoskins [1976], for example, consider the properties of
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Figure 26: Vertical cross-section of the two-layer Phillips model. The densities of the top and bottom
layers are ρ and ρ′, respectively. h(x, y, t) is the thickness of the lower layer; H is the constant
separation between the top and bottom rigid boundaries [from Phillips, 1951].

unstable modes in three zonal �ows on a sphere. The jets have the same vertical structure, but di�er

in their latitudinal pro�les. The growth rates of the most unstable modes are found to be similar

to those yielded by the more idealised models described above, highlighting the lack of sensitivity

of the instability mechanism to the meridional pro�le of the �ow. However, such pro�le is found to

in�uence the location, meridional scale and horizontal phase characteristics of the disturbance. In

order to evaluate the physical signi�cance of the instabilities for the real atmosphere, the additional

complexity of the Simmons and Hoskins model is therefore crucial1.

A key limitation of the models described in Sections 2.1 and 2.2 is that they are only concerned

with the characteristics of the most unstable mode, but do not consider its temporal evolution.

Clearly, an instability cannot grow inde�nitely and the details of its growth, interaction with other

atmospheric �ows, and decay are crucial for understanding its role in the circulation. An instructive

example of the life cycle of baroclinic disturbances is discussed in Simmons and Hoskins [1978],

which considers the evolution of a zonal jet centred at 45◦ N and 200 mb. The zonal �ow is initially

balanced, and is then perturbed by small-amplitude (maximum 1 mb) anomalies. For the case of

a disturbance corresponding to the fastest-growing mode of wavenumber 6, the instability develops

rapidly by drawing on the mean-�ow APE. By the seventh day of the simulation, the disturbance has

grown to an amplitude of 32 mb, and displays realistic synoptic frontal structures, as shown in �gure

27. The upper-level streamfunction displays a growth of the disturbance up to the tenth day of the

1The same study also evaluates the accuracy of the quasi-geostrophic approximation for the study of baroclinic
disturbances. Although this will not be discussed here, it has important implications for the linear theory of baroclinic
instability.
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Figure 27: Surface pressure (solid) and low-level temperature (dashed) pro�les for a wavenumber 6
perturbation on a zonal jet at 45◦ N. The picture refers to the perturbation seven days after the
initial anomaly was seeded [from Simmons and Hoskins, 1978].

simulation, after which there is a rapid decay in wave amplitude and a barotropic strenghtening of

the jet. Near the surface, the wave suppresses the meridional temperature gradient between 40◦ and

60◦ N, while it enhances it further North and South. In the upper troposphere, on the opposite, very

little alteration to the gradient occurs because the e�ect of the wave is balanced by the strengthening

of the upper level jet by momentum �uxes. From the energetics perspective, the maximum baroclinic

growth and eddy heat �ux occur at upper levels, where the amplitudes are signi�cantly larger than

at the surface. The relative di�erence between upper level and near-surface �uxes is larger than

what seen in linear stability analyses. While this might seem like a small di�erence, it is crucial for

a correct parametrization of baroclinic disturbances. The wealth of new information the life cycle

provides when compared to Eady-type approaches is also evident.

2.4 The Swanson and Pierrehumbert Stochastic Model

In their analysis of lower tropospheric heat transport in the Paci�c storm track, Swanson and Pier-

rehumbert [1997] studied the PDFs of meridional atmospheric heat �ux at three points in the track.

The distributions are shown in �gure 2 on page 19. It should be noted that, for these distributions,

heat transport τ is computed using a slightly di�erent method to the one adopted here:
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τ = vθ′ (26)

The prime denotes the anomaly relative to a 30-day running mean. The authors noticed that the

distributions displayed an extended positive tail associated with a large skewness, and developed a

simple model aimed at reproducing this feature.

As initial step, they constructed a Lagrangian mixing climatology for the 40◦ N latitude band

within the Paci�c storm track. This consists of the passive advection of parcels, originating in the

track, by the 850 mb horizontal wind �elds. Such climatology clearly provides no insight into role of

thermal interactions with the surface. The purely Lagrangian heat transport, while capturing some

of the features of the observed transport, was unable to reproduce the �ner structure of the measured

values. The authors therefore developed a simple stochastic model, combining both Lagrangian pas-

sive advection and thermal interactions, to investigate the role of non-conservative thermal processes.

The model framework is as follows. Velocity is expressed by:

v(t+ ∆t) = v(t)− v(t)∆t

T
+ (2V ′2

∆t

T
)1/2ξ, (27)

where ∆t is the model timestep, T is a characteristic timescale, and ξ is a white noise stochastic

forcing. To model the thermal e�ects, the authors include a temperature equation:

θ(t+ ∆t) = θ(t)−∆t
[θ − y(t)∂yΘ]

Γ
, (28)

where y(t) is the particle position, and Γ and ∂yΘ are two free parameters chosen such that the

stochastic model correctly reproduces the standard deviation of θ and the mean of τ , as observed

within the storm track domain. Γ is interpreted as a damping time for temperature �uctuations.

The model described above successfully reproduces the distributions found in the data (shown

in �gure 2 on page 19). This implies that both the thermal and dynamical processes are correctly

captured, and highlights the important role of thermal damping, which was not included in the initial

Lagrangian climatology [Swanson and Pierrehumbert , 1997].
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2.5 The Heton Model

So far, the traditional wave picture of atmospheric dynamics has beeen presented. However, drawing

inspiration from other �elds of Physics, where wave phenomena are also prevalent, it is clear that this

is not the only paradigm that can be adopted. For example, following the concept of quantisation

commonly adopted in Quantum Mechanics, it is very stimulating to think of heat transport as a

discrete process e�ected by particle-like carriers. The Heton model, �rst developed by Hogg and

Stommel [1985a], is based on this concept. The model is a two-layer system, seeded with point

geostrophic vortices. These give rise to a deformation of the interface between the two layers, whose

nature depends on the sign of the vortices. The two layers have di�erent potential temperatures; for

a mock atmosphere or ocean, the upper layer would have a higher temperature than the lower one.

Deformations in the interface can therefore be likened to thermal anomalies. Figure 28 shows the

deformations resulting from having one vortex in each layer. If the two vortices have the same sign

(right hand panel), they will correspond to opposite layer deformations. The one in the upper layer

(labelled H) will drive a warm anomaly; the one in the bottom layer (labelled C) will drive a cold one.

This will lead to a barotropic structure which, as discussed in Section 1.3.3, results in no net heat

transport. If, on the contrary, the two vortices have opposite signs (left hand panel), they will drive

matching temperature anomalies. For the case shown in the �gure this is a warm anomaly (downward

deformation), but it could equally well be a cold anomaly, if the signs of the two vortices were to be

inverted. This structure is now baroclinic, and can therefore result in a net transport of heat. Such

a pair is termed Heton, and is described by Hogg and Stommel [1985a] as �two discrete baroclinic

geostrophic vortices in a two-layer system�. If numerous hetons are seeded with su�ciently small

separations, the di�erent vortices will interact and displace one another. The outcomes of simple

cases with few vortices can be easily predicted and interpreted. When larger numbers of vortices are

considered, however, the behaviour becomes more chaotic and discontinuous. Several vortices can

coalesce to form composites, which then propel themselves away from the other hetons. Hogg and

Stommel [1985b] witnessed this behaviour while performing experiments with clouds of hetons, and

termed it hetonic explosion. An example of a hetonic explosion is illustrated in �gure 29. The hetons

are initially seeded in a regular array (top panel). Instabilities start to develop (second panel), and

the individual pairs coalesce into larger groups (third panel). These then propel themselves away

from the other vortices (fourth panel). The Heton Model will be described in greater detail in

53



Figure 28: Interface deformations resulting from point geostrophic vortices in a two-layer model. The
left hand panel depicts a heat-transporting pair. The right hand one depicts a pair which e�ects no
net transport of heat [from Hogg and Stommel , 1985a]

chapter V.

3 Data Overview

3.1 ERA-Interim Reanalysis

ERA-Interim is a reanalysis product developed by the European Centre for Medium-Range Weather

Forecasts (ECMWF). The data series starts from 1989 and is currently ongoing. By the term reanal-

ysis, what is intended is a model simulation of the global atmosphere (or ocean, depending on the

product), constrained by selected observations. The resulting data set aims to be the best possible

estimate of the state of the atmosphere (ocean) at any given time. For ERA-Interim, the observations

are assimilated on a 12-hourly basis, and also include satellite data.

The data set used in the present study has a horizontal resolution of approximately 0.75◦×0.75◦

(more precisely, T255), and 37 vertical levels ranging from 1000 mb to 0 mb. The data is a daily

snapshot at 1200 UTC. It should be noted that di�erent spatial and temporal resolutions of the

same data set are available. It should also be pointed out that reanalysis data presents important

limitations. Firstly, mass is not conserved [e.g. Graversen et al., 2011]. Furthermore, ERA-Interim

assumes a perennial ice cover beyond 82◦ N; this is a potentially serious problem for more recent

years. For a more in-depth discussion of the ERA-Interim data set, the reader is referred to Simmons

et al. [2007].
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Figure 29: The evolution of a cloud of 37 hetons. The pairs are initially seeded in a regular hexagonal
lattice. The lines show the trajectories of the individual vortices. The values in the top right corner
of each panel indicate the timesteps depicted therein [from Hogg and Stommel , 1985b].
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3.2 FORTE Model

FORTE (Fast Ocean Rapid Troposphere Experiment) is a coupled ocean-atmosphere model (Sinha

and Smith, 2002; Smith and Gregory , 2009). It was developed in order to have a coarse resolution,

computationally inexpensive model which retains all the critical physical processes. Its key compo-

nents are the MOMA ocean model (Webb, 1996; Pacanowski et al., 1991) and a modi�ed version of the

IGCM3 atmosphere model (Hoskins and Simmons, 1975; Forster et al., 2000). The two modules are

fully coupled on a daily basis. The atmospheric component includes a multi-band radiation scheme,

a convective adjustment scheme and a dedicated cloud scheme. The latter, based on a simpli�ed

version of Slingo [1987], has three cloud levels and can simulate deep convective clouds.

The data set used in the present study is from a simulation with a horizontal resolution of ap-

proximately 2.8◦×2.8◦ (more precisely, T42), and 15 vertical levels. The geographical setup is highly

idealised, and is an aquaplanet con�guration with a �at ocean bottom and polar islands beyond 78◦

N and S. These are needed to relax the timestep constraints deriving from grid convergence at the

poles. Except for the degraded vertical and enhanced horizontal resolution, the simulation described

here matches the one in Smith et al. [2006].

In terms of the heat transport, it is interesting to verify whether FORTE can reproduce the

observed meridional transport pro�le. The model pro�le is shown in �gure 30 on the next page. As

can be seen, the atmosphere curve is reasonably close the the real world in the mid and high latitudes,

while it is unrealistic in the equatorial region. Since the present study will focus on domains beyond

30◦ N and S, this is not considered to be a limiting factor. From the point of view of dynamics,

in an aquaplanet con�guration the statistics are only a function of latitude and height, and large-

scale waves driven by mid-latitude westerlies dominate the circulation. Mesoscale motions, stationary

waves and boundary features of the atmosphere are not captured by the simulation.

3.3 Minobe et al. Model

As discussed in section 1.3.4, WBCs are crucial areas for oceanic heat transport and for ocean-

atmosphere interactions. In the NH, the Paci�c and Atlantic WBCs, namely the Gulf Stream and

the Kuroshio, match quite closely the location of the storm tracks, and are also areas of strong

meridional atmospheric heat transport. In these regions, it is therefore important to understand to

what degree, and by what mechanisms, the ocean can a�ect the atmosphere. In order to investigate
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Figure 30: Yearly and zonal mean meridional heat transport by the atmosphere and ocean (in PW )
in the FORTE aquaplanet simulation. The blue, green and red curves represent atmospheric, oceanic
and total heat transport respectively [by J. Cheung, Imperial College, London].

this open question, Minobe et al. [2008] developed a model with both realistic and smoothed sea

surface temperatures (SSTs). WBCs, in fact, are typically characterised by strong SST gradients.

The starting point is the output from an atmospheric general circulation model (AGCM), with a

horizontal resolution of approximately 50×50 km (more precisely, T239) and 48 vertical levels. The

period considered is 1989-2001, and 6-hourly data is provided. Two domains are de�ned: one over

Gulf Stream and the other covering the Kuroshio current (30◦-50◦ N and 280◦-340◦ E; 30◦-50◦ N

and 130◦-200◦ E respectively). Smoothing is then applied to the SST �eld in the regions bounded by

280◦-330◦ E and 130◦-180◦ E respectively. The smoothing is performed by applying a running-mean

low-pass �lter. Further discussions on �lters are presented in Chapter IV and in the Appendix.
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Part III

Extreme Events in Atmospheric Heat

Transport: De�nition and Role

1 Aims of the Chapter

The present chapter is largely based on Messori and Czaja [2013b]. It aims to:

i) De�ne extreme events in meridional atmospheric heat transport;

ii) Establish their importance;

iii) Outline their salient features.

A statistical analysis of such events is presented, in order to investigate possible dynamical drivers. A

detailed physical interpretation of the heat transport extremes, dealing with atmospheric analogues

and placing the events in the context of atmospheric dynamics, will instead be discussed in Chapter

IV.

2 Outline

As discussed in Chapter II, meridional heat transport is a crucial component of the climate system.

Although there is a vast literature on the transport's temporal variability, very little attention has

been dedicated to its statistical distribution. A notable exception is the study by Swanson and

Pierrehumbert [1997], whose idealised heat transport model was discussed in Chapter II, Section 2.4

on page 51. The latter paper, however, was very limited in scope � both geographically and temporally.

The authors considered distributions of data at three individual points in the Paci�c storm track,

over the November-March season.

In the present chapter similar distributions are presented for broad domains in both the Northern

Hemisphere (NH) and the Southern Hemisphere (SH), and for both DJF (December, January and

February) and JJA (June, July and August) periods (Section 4.1). After robustly establishing the
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sensitivity of the heat transport to extreme events, its sporadic and irregular nature is con�rmed

by showing that a large contribution to the transport arises from a few isolated bursts every season

(Sections 4.2 and 4.3). The focus will be on low levels, at which the heat transport by transient

motions is strongest [Peixoto and Oort , 1992]. These �ndings are then tested across a broad range

of models, including idealised simulations and fully coupled atmosphere-ocean general circulation

models (AOGCMs) (Section 4.4). Having ascertained the importance of the extremes, they are then

characterised in terms of their temporal and spatial extents and geographical distribution (Section 5).

An idealised framework, based on a wave picture, is also discussed in order to interpret the physical

origin of the sporadic nature of heat transport (Section 6). Finally, Sections 7 and 8 present the

physical insights and general conclusions that can be gained from the above analysis.

3 Methodology

The analysis in the present chapter is performed on ERA-Interim data, already discussed in Chapter

II, Section 3.1 on page 54. Daily outputs (1200 UTC) are considered over a period spanning from

December 1993 to August 2005, thereby providing twelve DJF and twelve JJA time series. The

latitude and longitude resolution is approximately 0.75◦, and the analysis focuses on the 850 mb

pressure level. This is the level of peak transport by transient eddies, often used as reference level in

the literature [e.g. Lau, 1978]. Results for all vertical levels in the data set are also shown, in order to

demonstrate that the 850 mb analysis does indeed provide a good indication of the statistics of the

full vertical transport. Part of the analysis is also repeated on FORTE output and on the Minobe et

al. model. Further details of these are provided in Chapter II, Sections 3.2 on page 56 and 3.3 on

page 56, respectively.

Transient eddy heat transports are computed as a product of meridional velocity (v) and MSE (H)

temporal anomalies. These are de�ned as departures from the linearly detrended seasonal mean, and

are denoted by a prime. They are computed at every grid point for 172 latitude bands between 30◦

N and 89◦ N, and 30◦ S and 89◦ S. No other time �ltering is applied to the data. Part of the analysis

was also repeated on non-detrended data, and no signi�cative qualitative di�erences were found. In

the �gures described below, H is always given in Kelvin, after division by the speci�c heat capacity

of dry air (taken to be 1005.7 JK−1kg−1), and velocity is positive polewards in both hemispheres.
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It should be noted that, except where explicitly mentioned in the text, no area or gridbox width

weighting is performed in computing the transport, meaning that the relative importance of events

at high latitudes might be exaggerated.

The PDF of a continuous random variable is a function describing the relative likelihood that

the aforementioned variable has a value within a given interval, termed a bin. The values of v′, H ′

and v′H ′ are binned and the resulting distribution is normalised, so that one can relate the number

of events in each bin to a percentage of the overall events. Taking the product v′H ′ for all data

points and repeating the binning process yields the desired PDFs for transient-eddy heat transport.

A key element in the analysis of the PDFs is skewness: a measure of the asymmetry of a distribution

or, more formally, the distribution's third standardised moment. For a random variable, X, this is

de�ned mathematically as:

ς = E

[(
X − µ
σ

)3
]
, (29)

where E denotes an expectation value, σ is the variable's standard deviation and µ is the mean.

As an example, �gure 31 shows the PDFs of four random samples from Pearson distributions with

skewnesses of 0, 1, 2 and 4 respectively; all other parameters are held constant. The skewnesses of the

samples are -0.09, 0.96, 1.91 and 4.01 respectively. Note that a skewness of zero does not necessarily

imply symmetry about the mean. Another oft-used statistical indicator is the most likely value

(MLV), which is taken to be the central value of the bin with the highest frequency of events.

4 Transient-Eddy Heat Transport PDFs

4.1 General Features of the PDFs

To investigate the statistical distribution of transient eddy heat transport, we begin by computing

composite PDFs, taking into consideration all available NH and SH latitude bands (30◦=89◦ N and

30◦=89◦ S) over twelve DJF and JJA time series (1993/1994-2004/2005), at 850 mb. This yields

PDFs of almost 5 × 107 data points for each season, which ensures a smooth and representative

distribution. The three panels in �gures 32, 33, 34 and 35 show the results for v′, H ′ and transport

corresponding to NH DJF, NH JJA, SH DJF and SH JJA respectively. The key features of the
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Figure 31: PDFs with skewnesses of a) -0.09, b) 0.96, c) 1.91 and d) 4.01. The data are random
samples from Pearson distributions with skewnesses of 0, 1, 2 and 4 respectively. All other parameters
are held constant.

Figure 32: PDFs of a) meridional velocity anomalies, b) moist static energy anomalies and c) at-
mospheric heat transport due to transient eddies. The data cover the 850 mb �elds for NH DJFs
from December 1993 to February 2005. All latitude circles between 30◦ N and 89◦ N are taken into
account. The skewnesses of the PDFs are respectively a) 0.24, b) 0.21 and c) 3.00. The corresponding
most likely values are a) 0.1 ms−1, b) -0.87 K and c) 6.8 Ö 103 Wmkg−1. The vertical lines show
the bins corresponding to the most likely values [from Messori and Czaja, 2013b].
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Figure 33: Same as �gure 32, but for NH JJAs. The data now cover the period from the period from
June 1994 to August 2005. The skewnesses of the PDFs are respectively a) 0.17, b) 0.04 and c) 2.1.
The corresponding most likely values are a) 0.82 ms−1, b) -0.16 K and c) -1.2 Ö 103 Wmkg−1.

velocity and MSE PDFs, common to all four �gures, are:

i) A very low skewness and a near-symmetrical structure;

ii) Signi�cant positive and negative tails;

iii) A near zero most likely value when compared to the magnitude of the extreme events.

The transport PDFs, on the opposite, have:

i) A very high skewness, associated with a highly asymmetric distribution;

ii) Positive tails which are signi�cantly more extended than the negative ones.

The most likely values of the distributions are typically two orders of magnitude smaller than the

extremes, and can therefore be considered near-zero in terms of heat transport.

The symmetry found in velocity and MSE distributions corresponds to comparable realisations

of positive and negative anomalies. Since the mean value of the distributions needs, by de�nition, to
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Figure 34: Same as �gure 32, but for SH DJFs. The data now cover all latitude circles between 30◦ S
and 89◦ S. The skewnesses of the PDFs are respectively a) 0.3, b) 0.33 and c) 3.7. The corresponding
most likely values are a) -0.92 ms−1, b) -0.09 K and c) -5.5 Ö 103 Wmkg−1.
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Figure 35: Same as �gure 34, but for SH JJAs. The skewnesses of the PDFs are respectively a) 0.31,
b) 0.2 and c) 2.7. The corresponding most likely values are a) -0.41 ms−1, b) -0.68 K and c) -5.0 Ö
103 Wmkg−1.
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Figure 36: CDFs of atmospheric heat transport due to transient eddies for a) NH DJF, b) NH JJA,
c) SH DJF, d) SH JJA. The data range are the same as those in �gures 32-35 respectively.

be zero, there is no a priori reason to expect one of the two tails to have a radically di�erent pro�le

to the other. The large extreme values appear compatible with strong perturbations, considering

that the vast domain analysed here includes the Paci�c, Atlantic and Southern Ocean storm tracks.

The strong asymmetry found in the transport PDFs, on the other hand, is related to the imbalance

inherent to meridional heat transport whereby, as emphasized in Chapter II, there must be a net

transport from low to high latitudes. Hence, some measure of asymmetry in a transport PDF is to be

expected. What is not obvious is that the asymmetry should be related to very pronounced extreme

events and near-zero most likely values.

This feature is illustrated further in �gure 36, which shows the cumulative density functions

(CDFs) of the transport for the four season and hemisphere combinations. The most likely values

correspond to the bulk of the events, and the distribution is almost �at in correspondence with the

long positive tail of the PDF which, on the opposite, corresponds to very few events. However, these

very few events have a considerable importance. Repeating the analysis on magnitude-weighted CDFs

highlights how they account for a signi�cant part of the asymmetry of the transport distribution. A

PDF of the modulus of negative transport days is computed, and this is subtracted from the PDF of

the positive transport days. The bins are then weighted by the magnitude of the events they represent,

and a CDF is computed. Figure 37 shows the resulting distributions for the four season-hemisphere

combinations. Where the curve's slope is positive, this indicates that the positive transport events
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Figure 37: Magnitude-weighted CDFs of atmospheric heat transport due to transient eddies for a)
NH DJF, b) NH JJA, c) SH DJF, d) SH JJA. The data range are the same as those in �gures 32-35
respectively. A PDF of the modulus of negative transport days is computed, and this is subtracted
from the PDF of the positive transport days. The bins are then weighted by the magnitude of the
events they represent, and a CDF is computed.

for that given bin outweigh the negative transport ones. The small positive events, clustered around

the MLVs, signi�cantly exceed their negative counterparts, owing to their very high frequency. The

intermediate events occur with comparable frequencies in both the negative and positive domains,

leading to an almost zero slope in the central section of the curves. Finally, the steep section at the

end of all plots shows that the very few large events, which make up the long positive tails of the

PDFs, outbalance any comparable equatorward transport events. These events therefore account for

a signi�cant portion of the skewness seen in the transport PDFs.

Similar results are found for the PDFs comprising all vertical levels of the ERA-Interim data set.

Figure 38 shows the vertically integrated transport distribution for NH DJF, where the integral has

been performed by weighting each transport value by the corresponding layer thickness and grid box

width. Note that the transport is now expressed in W , and that the peak events are of order 0.5

PW . The distribution reproduces all of the features discussed for the 850 mb data.

4.2 The Role of Extreme Events in Transient Eddy Heat Transport

A visual assessment of the heat transport PDFs (�gures 32-38) suggests that poleward transport is

heavily a�ected by a small number of very large events. Table 1 displays the contribution of the
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Figure 38: PDF of atmospheric heat transport due to transient eddies. The data cover all ERA-
Interim pressure levels for NH DJFs from December 1993 to February 2005. All latitude circles
between 30◦ N and 89◦ N are taken into account. The skewness of the PDF is 2.7. The corresponding
most likely value is 6.7 Ö 1012 W . The vertical line shows the bin corresponding to the most likely
value.

top 2%, 5% and 10% of events to i) the overall and to ii) the poleward-only transports. The values

displayed are simply i) the percentage contribution of the selected events to the overall integral of the

distribution and ii) the percentage contribution of the selected events to the integral of the positive

portion of the distribution. It is immediately clear that, regardless of the percentile used to de�ne

extreme events, the higher end of the distribution accounts for a disproportionately large portion

of the meridional heat transport. As is shown in table 1, events in the top 5 percentiles typically

account for over half of the net transient eddy heat transport, with the exception of SH JJA where

the percentage falls just short of this value. The contribution of the top 10 percentiles during NH

JJA even approaches 100%, indicating that the transport due to those events is almost as large as

the overall net transport. Indeed, the percent contributions systematically peak during the summer

months in each hemisphere. These features are found to be independent of the fact that a single

pressure level is being analysed. Vertical integrals of v′H ′ over 1000 mb � 1 mb, whose PDF for

NH DJF is shown in �gure 38, show even higher contributions to the net transport from the upper

percentiles. As is shown in table 2, the extreme events are so preponderant that the contribution of

the top 10% during NH JJA even exceeds 100%!

Looking at the numerical values of the 850 mb PDF integrals (not shown), the expected seasonal

trend emerges, with the net transport peaking during the winter months of each hemisphere. Although

the same cycle is found in the extreme event-only integrals, the variability is attenuated. This explains

why the percentage contributions actually peak in the summer months, when the transport is at
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a) Hemisphere Percentile Overall % weight Poleward-only weight

N 2 31.8 21.9
5 56.8 39.2
10 83.7 57.8

S 2 29.9 23.3
5 53.3 41.6
10 77.6 60.6

b) Hemisphere Percentile Overall % weight Poleward-only weight

N 2 33.4 20.8
5 61.5 38.4
10 92.2 57.6

S 2 23.2 19.2
5 43.5 36.1
10 66.1 54.8

Table 1: Percentage contribution of extreme v′H ′ events in a) DJF and b) JJA to net and poleward-
only meridional atmospheric heat transport due to transient eddies. The data cover all longitudes
and latitudes, from 30◦ N to 89◦ N and from 30◦ S to 89◦ S, over the 24 seasons considered (December
1993�August 2005). The percentile column indicates which percentiles of v′H ′ events are classed as
extreme [from Messori and Czaja, 2013b].

a) Hemisphere Percentile Overall % weight Poleward-only % weight

N 2 37.6 23.2
5 66.5 41.1
10 96.3 59.5

S 2 37.9 24.7
5 68.1 44.5
10 98.8 64.5

b) Hemisphere Percentile Overall % weight Poleward-only % weight

N 2 40.1 23.5
5 71.0 41.6
10 102.9 60.3

S 2 27.7 20.0
5 52.2 37.7
10 79.2 57.2

Table 2: Same as table 1, but for vertically integrated transport values.
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its weakest. The anomalous percentage found for NH JJA, at 850 mb, is therefore due to the very

pronounced seasonal cycle in net NH transient eddy transport, whose magnitude is not as pronounced

in the extreme event-only integral. The same pattern is also witnessed for the vertical integration

case.

The amount of heat carried poleward by transient eddies appears to be largely based on very

few, very large events. Obviously, the extremely high contributions found could be due to the overall

integral of the distribution being close to zero. The poleward-only contributions, however, show that

this is not the case: the same 5 percentiles still account for approximately 35% to 45% of the poleward-

only transport (see tables 1 and 2). It is interesting to note that the increase in contributions in the

vertically integrated transport, compared to the 850 mb case, is mainly seen for the overall weight

rather than for the poleward-only one. This suggests that the e�ect is largely due to the integral

of the full vertical distribution being even closer to zero, relative to the magnitude of the extreme

events, than was the case for the 850 mb level. It is important to note that the weight of extreme

events is very high regardless of latitude. To make this point, �gure 39 displays the contribution of

the top 5% of events to overall (blue asterisks) and poleward-only (green crosses) heat transport at

selected latitudes, rather than averaged over an ensemble of latitudes, as was done in tables 1 and

2. Panel a) displays the data for NH DJF, panel b) for NH JJA, panel c) for SH DJF and panel d)

for SH JJA. The values found are in line with those shown in table 1, and there is no evidence to

suggest that the contribution of extreme events is largest at 45◦ of latitude, where the transient eddy

poleward heat transport is almost at its peak [e.g. Fasullo and Trenberth, 2008]. Indeed, the highest

contributions are found at other latitudes, where the net transient eddy transport is smaller. As was

seen in table 1, there is an anomalous contribution approaching 100% for NH JJA (in this case at

30◦ N). Again, this is due to the full integral of that speci�c PDF having a smaller value than those

of the other distributions. In fact, while the net contribution at 30◦ N exceeds the second highest

data point in the �gure by a factor of one and a half, the corresponding poleward-only contribution

is not even 20% larger than the next highest value. A similar pattern is seen in panel c) for the high

contribution at 75◦ S.

As seen in �gures 32-38, while the magnitude of extreme events and the skewness of the transport

PDFs show some seasonality, the key features of the distributions, identi�ed above, are robust char-

acteristics of the data analysed. Distributions for individual latitude bands, individual seasons and
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Figure 39: Percentage contribution of the top �ve percentiles of v′H ′ events in a) NH DJF, b) NH
JJA, c) SH DJF and d) SH JJA to net (blue asterisks) and poleward-only (green crosses) meridional
atmospheric heat transport due to transient eddies. The data cover the 850 mb �elds for 30◦, 45◦,
60◦ and 75◦ N and 30◦, 45◦, 60◦ and 75◦ S over the 24 seasons considered (December 1993�August
2005).
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Figure 40: PDFs of a) meridional velocity anomalies, b) moist static energy anomalies and c) atmo-
spheric heat transport due to transient eddies. The data cover the 850 mb �elds for 45◦ N DJFs from
December 1993 to February 2005. The skewnesses of the PDFs are respectively a) 0.45, b) 0.27 and c)
4.10. The corresponding most likely values are a) 0.9 ms−1, b) =1.7 K and c) -4.3 Ö 103 Wmkg−1.
The vertical lines show the bins corresponding to the most likely values.

di�erent pressure levels were also computed (not shown); signi�cant variability in the magnitudes of

skewness and extreme events was found but, again, the aforementioned features of the PDFs were

found to be robust. As example, �gure 40 shows the v′, H ′ and transport distributions for 45◦ N,

DJF. Regardless of the exact de�nition of extreme event in terms of percentiles, and regardless of

the temporal and spatial domains seletced, very few events each season therefore seem to account for

over half of the poleward heat transport by transient eddies. This, and the near zero most likely value

seen in the PDFs, are inherent properties of the transport distribution and need to be satisfactorily

explained.

4.3 The Zonal Mean View

The analysis presented so far has been performed on heat transport computed at single grid boxes.

The possibility of strong return �ows balancing the extreme poleward events, and the characteristics

of the heat transport from a zonally integrated perspective, have not been addressed. By zonally
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Figure 41: PDF of zonally integrated atmospheric heat transport due to transient eddies. The data
cover the same range as in �gure 32. The skewness of the PDF is 0.84. The corresponding most
likely value is -2.4 Ö 109 Wm2kg−1. The vertical line shows the bin corresponding to the most likely
value.

integrated transport, what is intended here is simply the sum of all single grid box transport values

across a given latitude circle, weighted by grid box width. First, we investigate whether the top

percentiles of the zonally integrated transport PDF play any relevant role relative to the distribution's

integral. In constructing the PDF, the integrals of heat transport across a latitude circle, on a given

day, are treated as single data points. In the interest of conciseness, the resulting distributions are

shown only for NH DJF and SH JJA (�gures 41 and 42 respectively). The PDFs are signi�cantly

di�erent from the single-point ones, both in terms of skewness and of overall shape of the distribution.

The PDF for SH JJA even appears to be bi-modal. As would be expected by the strong positive

year-round atmospheric heat transport, negative values become almost non-existent. It should be

noted, in this respect, that the negative MLV of the PDF for NH DJF lies in the bin containing

zero. The value is negative simply because of the convention, adopted here, of expressing the MLV

as the central value of the bin with the highest frequency of events. Concerning the bi-modal SH

PDF, by splitting the distribution into two latitude bands (30◦-60◦ S and 60◦-89◦ S), it becomes

clear that the right-hand side peak is due to the lower latitudes and the left-hand side one to the

higher latitudes. This is partly due to the higher frequency of extremes at lower latitudes. As
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Figure 42: Same as �gure 41 but for SH JJA. The data cover the same range as in �gure 35. The
skewness of the PDF is 0.33. The corresponding most likely value is 2.4 Ö 1010 Wm2kg−1. The
vertical line shows the bin corresponding to the most likely value.

illustrated in �gure 51 on page 87, the very high latitudes in the SH display virtually no extremes;

when analysing the 60◦-89◦ S domain, the relative frequency of extremes is therefore signi�cantly

lower than for the 30◦-60◦ S band. This leads to a pronounced near-zero MLV. The geographical

distribution of extremes is discussed in further detail in Section 5.2. In addition to this, in the zonal

integration procedure events at lower latitudes are integrated over wider grid boxes than the ones

at higher latitudes. Indeed, reproducing �gure 42 without integrating the transport values across

grid box width still yields a bimodal distribution, but the two peaks are not as well separated. Care

should be taken in comparing these results with the smooth zonally and vertically integrated yearly

mean transport curve, shown in �gure 18, since here we are looking at the temporal variability of a

single pressure level. The PDFs for SH DJF and NH JJA share the same qualitative features as their

wintertime counterparts, albeit with some quantitative di�erences.

As is immediately evident from a visual assessement of the PDFs, the contributions of the top

5 percentiles to the overall integrals of the distributions are signi�cantly lower than those found

in Section 4.2. They are presented in table 3. These values can be compared to the weight of

the events above the same threshold value in a Gaussian distribution, with the same mean and

standard deviation as the zonal transport distributions, shown in the third column of the table. Even

though the percentage values for the latitudinal sum are signi�cantly smaller than those found for

the single-point events, they are still typically three to �ve times larger than those found for the
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Hemisphere Season Overall % weight Poleward-only % weight Gaussian % weight

N DJF 16.1 16.0 2.97
JJA 15.1 15.0 3.05

S DJF 16.5 16.4 3.25
JJA 13.3 13.2 4.70

Table 3: Percentage contribution of the top �ve percentiles of zonally integrated v′H ′ events to net
and poleward-only meridional atmospheric heat transport due to transient eddies. The �fth column
displays the contributions of events above the same threshold in a Gaussian distribution, with the
same mean and standard deviation as the zonal transport one. The data cover all latitudes and
longitudes, from 30◦ N to 89◦ N and from 30◦ S to 89◦ S, over the 24 seasons considered (December
1993�August 2005).

corresponding Gaussian distributions. There is therefore some basis for talking about extreme events

in heat transport also in the context of zonally integrated values.

Having established this, the next pertinent question to address is how these zonal events might

relate to the local extremes discussed previously. We consider the following hypotheses concerning

the origin of large values of zonally integrated heat transport:

i) They are due to synchronised local extremes at several gridpoints around a given latitude. Namely,

several extreme events occurring on the same day, along the same latitude.

ii) They are due to a larger than average transport across all longitudes, with no signi�cant contribu-

tion from the local extremes. That is, to a generalised increase in the transport across large stretches

of the latitude circle, without necessarily implying a higher than normal frequency of extreme events.

This would result in an increased mean value of single grid box transport around the latitude circle.

iii) A combination of points i) and ii) above.

To test hypothesis i), one can produce PDFs of the number of local extremes on days corresponding

to zonal extremes versus normal days. If the PDF for the extreme zonal days is peaked at larger

values than the one for all other days, then zonal extremes come about because of local extremes.

Figures 43 and 44 show the resulting PDFs for NH DJF and SH JJA respectively. White bars

correspond to data for zonal extremes, while grey bars correspond to data for all other days. For NH

DJF, the zonal extremes PDF's MLV and mean are both larger than the non-extreme PDF's ones

by a factor of approximately four and two respectively. A very similar pattern is seen for NH JJA
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Figure 43: PDFs of the number of local extreme events around a given latitude circle for days which
are in the top 5% (white) and days which are in the bottom 95% (grey) of the distribution of the
zonally integrated atmospheric heat transport due to transient eddies. The most likely values are
respectively a) 88 and b) 22. The corresponding means are a) 69 and b) 39. The data range is the
same as in �gure 32. The vertical lines show the bins corresponding to the most likely value.

Figure 44: Same as �gure 43, but for SH JJA. The data range is the same as in �gure 35. The most
likely values are respectively 4 (extremes, in white) and 4 (non-extremes, in grey). The corresponding
means are 90 and 54.
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(not shown). The distributions for SH JJA are again bimodal, as was the case for the magnitude of

the zonal extremes. The two PDFs suggest that there are two distinct patterns in SH JJA, both in

terms of magnitude of the zonally integrated transport and in terms of the number of local extremes

contributing to zonal maxima. One pattern holds for the lower latitudes, where there are larger values

of zonally integrated transport resulting from the contribution of a large number of local extremes.

The other holds for the higher latitudes, where both the number of local extremes and the magnitude

of the zonal transport are smaller. This trend is emphasised by the choice to weight the transport by

grid box width in computing the zonal integral. The near-zero MLV of both PDFs is driven by the

very high latitudes, where no 850 mb extremes are seen on account of large portions of the Antarctic

continent being at a high elevation. As was the case for the NH, the mean of the extreme distribution

is larger than its non-extreme counterpart by a factor of approximately two. The shape of the SH

DJF distribution (not shown) is very similar to the SH JJA one.

There are two caveats to the methodology adopted here. The �rst is that the validity of the three

hypotheses made above depends on the exact de�nition of local extremes. This is partly balanced

by the fact that, if the quantile de�ning local extremes changes, so does the one de�ning the zonal

ones. For example, if local extremes were de�ned as events within the top ten percentiles of the v′H ′

distribution, the same de�nition would be applied to the zonally integrated distribution in order to

select extreme zonal days. In terms of the distributions shown in �gures 43 and 44, a looser de�nition

of local extremes would lead to more overlap between the PDFs for extreme and non-extreme zonal

days. At the same time, the e�ect of applying the same, looser de�nition to the zonal values would

have the opposite e�ect. This was con�rmed by repeating the above analysis for extremes de�ned as

events in the top ten percentiles of the transport distributions. The second caveat is that the zonal

integration arti�cially alters the shape of the distributions, by weighting the transport by grid box

width. At the same time, it a�ects both extreme and non-extreme zonal days in the same fashion,

and there is a clear indication that larger zonally integrated values do correspond to larger numbers

of local extremes.

To put numbers on this statement, in �gures 43 and 44 the overlap between the extreme and non-

extreme distributions is 60% and 65% respectively. These are simply the percentages of data points in

the distributions which lie in the overlapping portions of the di�erent bins. The percentages provide an

indirect measure of how likely it is for an extreme zonal day to have the same number of local extreme
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events as a non-extreme zonal day. Hypothesis i) above would imply that the two PDFs have almost

no overlap, since local extremes would be the only drivers of zonal ones. On the opposite, hypothesis

ii) would correspond to approximately equal PDFs for both extreme and non-extreme zonal days. In

physical terms, we therefore interpret the above results as corresponding to a background �ow-driven

scenario with a contribution from the increased number of extreme events (hypothesis iii) above).

The zonal heat transport is therefore characterised by a �weak synchronisation� e�ect, whereby zonal

extremes do, in part, result from synchronised local extremes, but they have a much weaker impact on

the overall transport distribution than their single-point counterparts. The extreme zonal days which

have the same number of local extremes as non-extreme zonal days display, on average, an enhanced

contribution from the transport at non-extreme locations. A very good graphical illustration of this

concept comes by producing a barplot of occurrence of extreme events on a given latitude circle

over a season. On a given day, the value of the vertical bar is set to the number of local extremes

occurring around the latitude circle. The local extremes are selected using a threshold computed

relative to events in the whole hemisphere (limited to the 30◦=89◦ N band being analysed in the

present manuscript). In such a plot, it is found that the vast majority of days have at least one

extreme event occurring around the latitude circle. As can be seen in �gure 45, computed for 50◦

N JJA, the extreme events tend to happen in �bursts� lasting for a few days, during which very

signi�cant numbers of events occur. These are preceded and followed by periods with very little

activity. In certain years, more extended periods of activity are present. At the same time, it is

clear that there is a continuous background of extremes throughout the season. This visual appraisal

of the temporal variability of meridional heat transport is consistent with the previously discussed

interpretation of the PDFs in �gures 43 and 44.

4.4 Extreme Events in Climate Models

4.4.1 FORTE Model

The above results show that, regardless of the exact de�nition of extreme events, and regardless of

the exact spatial and temporal domains chosen, extreme events play a key role in meridional heat

transport in the atmosphere. In order to further test the robustness of these results, it is of interest

to verify whether they are reproduced by idealised climate simulations. To this end, the analysis

described in Section 4.1 was repeated for the output of a coupled ocean-atmosphere model (FORTE:
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Figure 45: Bar plot of v′H ′ extreme events along the 50◦ N latitude circle. Extreme events are
de�ned as events in the top 5 percentiles of the v′H ′ distribution for the 30◦=89◦ N latitude band.
The twelve panels correspond to JJA seasons from JJA 1994 to JJA 2005. The height of the bars
corresponds to the number of longitude gridboxes displaying an extreme event on a given day; the
abscissa indicate the day of the season.

Sinha and Smith, 2002; Smith and Gregory , 2009) run in an aquaplanet geometry (water-covered

world, as described in Smith et al., 2006). Analogously to the ERA-Interim data, 12 years of model

run were analysed. Further details concerning both the model in general, and the speci�c run analysed

here, are provided in Chapter II, Section 3.2 on page 56.

In an aquaplanet geometry, the statistics are only functions of latitude and height, and the cir-

culation is dominated by large scale waves developing on the mid-latitude westerlies. The results of

the PDF analysis at 850 mb for FORTE were found to be very similar to the ones for the ERA-

Interim data, even though the model's extremes are approximately one order of magnitude smaller.

The distribution for NH DJF is shown in �gure 46. Even though the skewness of the PDF is

smaller than the one of the corresponding ERA-Interim PDF (see �gure 32), the near-zero MLV and

extended positive tail, identi�ed as the key statistical signatures of the heat transport distribution,

are correctly reproduced. It should also be noted that the above distribution is, among the four

hemisphere-season combinations in FORTE, the one with the smallest skewness. As reference, the

PDF displaying the largest skewness is the one for SH DJF (not shown), which has a value of 2.9.

This is further con�rmation of the robustness of the results presented above, and will be discussed
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Figure 46: PDF of atmospheric heat transport due to transient eddies. The data cover the 850 mb
�elds for 12 NH DJFs in the FORTE model. All latitude circles between 30◦ and 89◦ N are taken
into account. The skewness of the PDF is 1.6. The corresponding most likely value is -2.3 Ö 103

Wmkg−1. The vertical line shows the bin corresponding to the most likely value.

further in Section 7.

4.4.2 Minobe et al. Model

To glean additional insights into the nature of the heat transport statistics, the PDF analysis is

also performed on another idealised model [Minobe et al., 2008]. To be consistent with the previous

analysis, we again focus on twelve DJF and JJA time series. The model, described in detail in

Chapter II, Section 3.3 on page 56, is based on a fully coupled AOGCM (control simulation) and

applies a smoothing to ocean SSTs over the NH western boundary currents, namely the Gulf Stream

and the Kuroshio (smoothed simulation). Minobe et al. focus their analysis on the Gulf Stream,

and conclude that the SSTs in the region in�uence the entire troposphere, with important e�ects on

air temperature and pressure �elds. In the control simulation, large low pressure systems develop in

areas of sharp SST gradients, leading to a band of high precipitation anchored to the SST contours.

In the smoothed simulation, the narrow rain band disappears altogether. The annual rainfall rate

climatology is shown in �gure 47.

As discussed in Chapter II, Section 1.3 on page 26, a large part of the meridional heat transport in

the atmosphere is associated with cyclonic activity. If SSTs have a major in�uence on the atmosphere

in a very active region such as the Atlantic storm track, it is natural to expect some in�uence on

the heat transport distribution. The maps shown in �gure 47 not only correspond to very di�erent
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Figure 47: Rainfall rate (in mmd−1) as a) observed by satellites, and as modelled with b) observed
and c) smoothed SSTs. The black contours are for SST, with a 2 ◦C interval and dashed contours
for 10 ◦C and 20 ◦C [from Minobe et al., 2008].

geographical distributions of rainfall, but also highlight important changes in peak intensity. If the

e�ect on heat transport were to be analogous, the long tails of the PDFs, corresponding to the extreme

occurrences, would be signi�cantly shortened by a smoothed SST �eld. Comparing the results for

the smoothed and control cases can therefore:

i) Con�rm that fully coupled AOGCMs, in a realistic con�guration, reproduce the extremes found

both in the ERA-Interim data and in the highly idealised FORTE simulation;

ii) Provide valuable insights into the possible role of ocean-atmosphere interactions in driving the

extremes.

In the control dataset, the heat transport PDFs are very similar to those seen for the ERA-Interim

data. Since the data only cover a Gulf Stream and a Kuroshio domain (30◦=50◦ N and 280◦=330◦

E; 30◦=50◦ N and 130◦=180◦ E respectively), the skew is more pronounced than for the hemispheric

ERA-Interim data2. In fact, these are areas of high extreme event activity (see Section 5.2), and the

extreme events would therefore be expected to yield a more extended positive tail than seen for the

whole hemispheric domain. The distributions for the smoothed data are very similar to the control

ones, and display all the major statistical features already discussed. In all of the season-domain

combinations, however, a small reduction in the magnitude of extreme events is seen. As example,

2Note that the present analysis is limited to the domains where SST smoothing is performed. These are slightly
smaller than the whole control domains (see Chapter II, Section 3.3 on page 56).
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Figure 48: PDFs of atmospheric heat transport due to transient eddies in a) the control and b)
the smoothed data from the the Minobe et al. simulation. The data cover the 850 mb �elds for
NH DJFs from December 1989 to February 2001. Only the Gulf Stream domain (30◦=50◦ N and
280◦=340◦ E) is taken into account. The skewnesses of the PDFs are respectively a) 3.5 and b) 3.5.
The corresponding most likely values are a) 1.3 Ö 104 Wmkg−1and b) -9.2 Ö 103 Wmkg−1. The
vertical lines show the bins corresponding to the most likely values.

�gure 48 shows the PDFs for DJF in the Gulf Stream domain, for both control and smoothed data.

In terms of extreme event weights, table 4 shows the contribution of the top 5 percentiles in the

control and smoothed cases, and the ratio of the two. The values, although slightly smaller, are of the

same order as those found in the ERA-Interim analysis (see table 1 on page 68). The contributions

for the control and smoothed data are seen to be extremely similar, and the ratio of the contributions

is always close to 1.

The only signi�cant di�erence between the two model runs arises in the geographical distribution

of the extreme events. The smoothed data displays, in general, a broader geographical distribution

of events for Atlantic DJF and, to a lesser degree, JJA. This results in areas of high extreme event

frequency having less extremes and areas of low frequency having more. For the Paci�c, the di�erences

between the controlled and smoothed data are mainly related to a shift in the location of the extremes.

Figure 49 shows the map of v′H ′ events in the top �ve percentiles of the v′H ′ distribution, for the

Atlantic domain during DJF. Panel a) presents the control data, panel b) the smoothed data and panel

c) the di�erence between the control and the smoothed values. As discussed above, upon smoothing

the SSTs there is a decrease in frequency in the region of highest extreme event occurrence, and there
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Domain Season Control Overall % weight Smoothed Overall % weight Control to Smoothed ratio

Gulf Stream DJF 37.1 38.1 0.97
JJA 46.7 46.5 1.00

Kuroshio DJF 41.7 43.6 0.96
JJA 49.3 47.4 1.04

Table 4: Percentage contribution of the top �ve percentiles of v′H ′ events to the net meridional
atmospheric heat transport due to transient eddies in the control and smoothed Minobe et al. model.
The �fth column shows the ratio of the contributions displayed in the previous two. The data cover
the 850 mb �elds for both DJF and JJA from December 1989 to August 2001. The Gulf Stream and
Kuroshio domains cover 30◦=50◦ N, 280◦=330◦ E and 30◦=50◦ N, 130◦=180◦ E respectively.

Figure 49: Map of v′H ′ events in the top �ve percentiles of the v′H ′ distribution, for the DJF Atlantic
domain in the Minobe et al. model. The panels correspond to a) control data, b) smoothed data and
c) the di�erence between the two (control - smoothed). All 12 seasons are taken into consideration.
The scale of the colour bar corresponds to the number of data points per season per model grid box.
The black contour in panel c) corresponds to zero di�erence.
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is a corresponding increase in regions of lower occurrence. Since, by de�nition, both the smoothed

and control cases include the same number of extreme events, the two e�ects balance.

The more di�use distribution resulting from the lack of a sharp SST gradient mirrors the broader

spatial distribution of rainfall discussed in Minobe et al. [2008]. However, unlike in the latter case,

while the geographical location of the heat transport extremes changes, their intensity is almost

una�ected by the model's SST con�guration. This is mirrored in the contribution of extremes to the

net seasonal transport, which is almost identical between the two runs. The implications of these

�ndings will be discussed further in Section 7.

5 Spatial and Temporal Measures of Extremes

5.1 Duration and Spatial Extent

Having ascertained the importance of extreme events in setting the seasonal mean heat transport by

transient motions, it is now necessary to investigate their physical structure in the atmosphere. To

do so, we use a measure of temporal and spatial scales, whose principle is schematized in �gure 50.

To investigate the spatial scales, the v′H ′ signal on a given day is plotted as a function of longitude

over a full latitude circle. Next, extreme events which ful�l given aspect ratio speci�cations are

selected. In particular, the di�erence between the maximum of an event and the corresponding local

minima is required to be larger than the typical magnitude of the near-zero �uctuations in the heat

transport distribution. A lower limit of 104 Wmkg−1 is chosen to represent this constraint. The

same value is set as an upper limit for the di�erence between the two minima of an event. A width

(ω) is then measured as the di�erence in degrees longitude between the points where v′H ′ reaches

half its maximum (dash-dotted line in �gure 50). Note that the half maximum point is computed

relative to the smaller of the two local minima on either side of the local maximum. From this width,

a pseudo-wave number κ is computed as:

κ =
360

ω
(30)

Conversely, by plotting the v′H ′ signal at a given geographical co-ordinate over a season and enforcing

the same aspect ratio constraints, the measured width at half maximum is interpreted as a pseudo-
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Figure 50: a) Schematic of how the full width/duration at half maximum of the v′H ′ signal is
computed. The three arrows indicate the local maximum corresponding to an extreme event and
the two local minima on either side. The double arrow indicates the height of the extreme event
relative to the smaller of the two minima. The dash-dot line indicates the measured half-maximum
width/duration (ω/τ). In this case, the peak is well de�ned relative to the local minima and the two
minima are close to one another, meaning that the event passes all the aspect ratio tests (see text
for details). The two bottom panels are PDFs of b) the wave number K and c) the full duration at
half-maximum T of extreme v′H ′ events. The latter are de�ned as events in the top �ve percentiles
of the v′H ′ distribution. The data range is the same as in �gure 32. The vertical lines show the bins
corresponding to the most likely values [from Messori and Czaja, 2013b].
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period τ . Repeating the above processes for all latitudes, longitudes and days allows one to obtain

PDFs of κ and τ associated with extreme v′H ′ events. Note that cut-o� values for duration and

spatial extent are enforced to account for the cases where the half-maximum value is smaller than

one of the two minima. In the latter scenario, in fact, the width/duration would be measured as

extending all the way to the next point where the v′H ′ signal went below the half maximum value,

hence not yielding the actual extreme event width. The de�nition of extreme event wavelength in the

v′H ′ signal is equivocal, since the pattern is not necessarily sinusoidal, and extracting the �shape�

of the extreme event from the background is nigh on impossible. This is why pseudo-wave number

κ and corresponding pseudo-period τ are chosen as measures. However, care should be taken when

interpreting them: κ and τ are not the wave number and period corresponding to the wavelength of

the extreme event. In fact, in a sinusoidal wave, ω would be half of the wavelength; this 1:2 scaling

does not translate perfectly to a non-sinusoidal signal but gives a rough idea of the wave number

of the extreme events described here. A similar reasoning applies to τ which, in a sinusoidal wave,

would be half of the period of a full wavelength. We therefore de�ne the following:

K =
κ

2
; T = 2 · τ (31)

where K and T are, respectively, the wave number and period corresponding to a full wavelength of

an extreme event. Figure 50 shows the probability distribution functions for b) K and c) T for the

Northern Hemisphere. The PDFs were computed using all latitude circles between 30◦ and 89◦ N and

all DJFs and JJAs from December 1993 to August 2005. Events generally have a wave number lying

between 4 and 13, with a most likely value in the bin centred on 8. Hence, the distribution in �gure 50

compares favourably with the typical Eady wave number of 6 [Gill , 1982]. As a point of comparison,

Randel and Held [1991] �nd that wintertime heat transport by transients, at 700 mb and 47◦ N, is

dominated by wave numbers 4=7. Concerning duration, the �gure suggests that most extreme events

have a period of 2 to 7 days, with a most likely value in the bin including timescales between 3 and 4

days. Taking into account the factor of 2, this means that few extreme events persist for longer than

3 days (this will be better illustrated in �gure 56 on page 94). At 60◦ latitude, the midpoint of the

domain, wave number 8 corresponds to a wavelength of roughly 2500 km. Taking the period to be

3.0x105 s (approximately 3.5 days), an order of magnitude calculation yields a phase speed of 8.35
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ms−1, which is compatible with a baroclinic system. The result is in good agreement with Randel

and Held [1991] who, using ECMWF analyses, �nd phase speeds for 700 mb transient eddies to be of

order 5-15 ms−1. The duration, spatial extent and phase speed of extreme events therefore seem to

be within the range expected of Eady-type growing systems, as will be further discussed in Section

7. PDFs analogous to those in the �gure were also computed for the SH (not shown). Although the

spatial extent of the events is slightly larger, the above conclusions are found to hold.

5.2 Geographical Distribution

In order to identify the locations where the extreme events occur most frequently, we compute next

the number of v′H ′ events per season per data grid box that fall in the top 5 percentiles of the

distribution of v′H ′. Figure 51 displays the resulting geographical distribution of extreme events.

As expected from the dominant contribution of these events to the seasonal mean heat transport,

there are similarities with more traditional measures of storm activity (e.g., maps of time mean

transient eddy heat �ux, or track density of cyclones � see �gures 12 and 13 on page 34). There are

also regions of agreement with climatologies of warm conveyor belts, although signi�cant di�erences

exist (e.g. �gures 3b and 3f in Eckhardt et al. 2004, reproduced in �gure 52).

In the DJF season, there is an almost uninterrupted band of very high extreme event occurrence

spanning the Southern Ocean between 35◦ S and 55◦ S, with signi�cant activity over land in the

lee of the Andes. This is broadly coherent with SH storm track maps, such as that in Hoskins and

Hodges [2005] shown in �gure 13 on page 34. Similar considerations apply to Eckhardt et al.'s WCB

climatology. A more discontinuous pattern emerges in the NH, where three areas of high activity

can be identi�ed. The �rst spans from the lee of the Rocky Mountains across continental USA and

Canada to the Gulf Stream sector of the North Atlantic. A second one is found over the Greenland

and Norwegian Seas. The third area roughly corresponds to the Paci�c storm track, with a second

local maximum over the Bering Strait. The latter feature, as well as that seen o� the North-East

coast of Greenland, is distinct from the patterns seen in more traditional storm track diagnostics [e.g.

Blackmon, 1976]. Since the Bering Strait is at the boundary between cold, dry polar air masses and

warmer, moist maritime ones, out�ows of cold air over the ocean could explain the local maximum

[e.g. Businger , 1987; Overland and Stabeno, 2004]. An alternative explanation could be to associate

these extreme with the low pressure systems often found in the area [Pfahl and Wernli , 2012]. In
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Figure 51: Map of v′H ′ events in the top �ve percentiles of the v′H ′ distribution for a) DJF and
b) JJA. All 24 seasons (December 1993�August 2005) are taken into consideration. The scale of the
colour bar corresponds to the number of data points per season per 0.75◦Ö0.75◦ box. The calculation
is not applied equatorward of 30◦ latitude. The white lines are regularly spaced 5 ms−1 contours of
300 mb time-averaged zonal winds. The contours range from 0 to 25 ms−1, with positive wind speeds
being eastbound [from Messori and Czaja, 2013b].
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Figure 52: Seasonal mean spatial distribution of WCB trajectory positions 24 h after the beginning
of the ascent during b) JJA and f) DJF. Depicted is the fraction (in percent) of all trajectories that
ful�ll the WCB criteria, averaged over 15 years. For details on the WCB criteria used, the reader is
referred to Eckhardt et al. [from 2004], from which this �gure is taken.

the latter paper, the authors de�ne cyclones as closed 0.5 hPa pressure contours, and �nd that there

is extensive cyclone activity over the Gulf of Alaska/Bering strait area, with a relative frequency of

almost 50% during DJF. This is illustrated in �gure 53 (originally �gure 5 in Pfahl and Wernli , 2012).

The very high values found o� the North-Eastern coast of Greenland, on the other hand, could

be related to mesocyclone genesis occurring in the area (Hoskins and Hodges, 2002, see �gure 12 on

page 34), and match the area of polar low occurrences (see �gure 54, originally �gure 1 in Kolstad ,

2011) 3. Concerning the WCB climatology shown in �gure 52, only two of these maxima, namely the

storm tracks, are also regions of high WCB activity.

In the JJA season, the picture in the SH remains similar, although the high activity band is

shifted poleward, with a well de�ned maximum over the Ross Sea. This implies that the band of

high extreme event frequency occurs slightly further South than the WCBs. In the NH, the main

change is that a high activity area appears over the Barents, Kara and Laptev Seas and over parts of

Northern Siberia. A weakening of the Greenland and Gulf Stream maxima and the disappearance of

the Bering Strait one are also witnessed. The latter feature is reproduced in the measure of cyclonic

activity in the ERA-Interim dataset discussed above (see �gure 53). The poleward shift of events

during the JJA season could be explained by the seasonal shifts in the Jet Stream's position. The

3Polar lows are �intense mesoscale low-pressure systems, usually generated by outbreaks of cold, dry polar air over
warm water masses� [Kolstad , 2006]
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Figure 53: Relative cyclone frequency (%) in a) DJF and c) JJA. The data is 6-hourly ERA-Interim
reanalysis and covers the period 1989-2009 [from Pfahl and Wernli , 2012].
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Figure 54: The locations of the polar lows. The data covers the November-March period during
1999-2009. The black curve marks the approximate boundary between the grid points that had open
water one-third of the time during the analysis period and the ones that did not. For details of the
data and techniques used in diagnosing the lows, the reader is referred to Kolstad [2011], from which
this �gure is taken.

white contours overlaid onto the colour map in �gure 51 show mean zonal wind speeds at 300 mb.

In the DJF season there is good correspondence between areas of high zonal winds and the Gulf

Stream and Paci�c maxima. There is also agreement in the SH. During the JJA season, two local

wind speed maxima appear in correspondence with the Siberian frequency maximum, and there is

very good agreement over the Paci�c, Gulf Stream and Ross Sea areas.

6 Extreme Events in Transient-Eddy Heat Transport: Phase

vs. Magnitude

As highlighted in table 1 on page 68, extreme events in the v′H ′ distribution are key contributors to

the net poleward heat transport by transient eddies. To identify the origin of these events, it is useful

to picture the v′ and H ′ signals as travelling waves, and to reason in terms of phase relationship and

magnitude. An anomalously large v′H ′ event might occur as a result of:

i) Extremely large velocity and MSE anomalies which, regardless of their phase relationship, yield a
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very large transport value (magnitude-driven transport).

ii) Non-extreme v′ and H ′ events which occur perfectly in phase (phase-driven transport).

Both mechanisms are possible candidates, since the product of peak v′ and H ′ values typically yields

transport values which are almost a factor of two greater than the extreme event threshold in the v′H ′

distributions. Obviously, a combination of the two, such as near in-phase, large v′ and H ′ events, is

entirely possible. To investigate the phase relationship, a valuable tool is a scatter plot of v′ versus

H ′. To obtain a clear picture, it is useful to remove all velocity and MSE anomaly data points which

do not correspond to extreme v′H ′ events. Note that this does not equate to removing all v′ and

H ′ data points which are not in the top percentiles of velocity and MSE anomaly distributions, as

the selection is performed purely in terms of v′H ′ percentiles. One can then bin the data points

in the scatter plot along the two axes, analogously to a bivariate PDF. Colour coding the resulting

distribution yields a discrete colour map, shown in �gure 55. In this �gure, the top two quadrants

show the results averaging over the latitude band 30◦=89◦ N in JJA and DJF, while the bottom

two show the plots for 30◦=89◦ S in the same seasons. The continuous lines in each quadrant show

the values of the 5th and 95th percentiles of v′ and H ′. The squares labelled S contain all extreme

v′H ′ occurrences where neither v′ nor H ′ are in the top/ bottom �ve percentiles of their respective

distributions. The most striking feature of the map is the lack of near-zero v′ and H ′ data points even

though, according to �gure 32 on page 61, near-zero values are the most likely realisations of the two

variables. In a magnitude-dominated scene, extreme events in heat transport would mostly be due

to the sheer magnitude of either v′ or H ′', regardless of their phase relationship. This would imply

the presence of events where one of the two anomalies is small while the other one is extremely large.

Such events are not seen in any of the panels in �gure 55. This therefore immediately excludes the

magnitude-driven transport picture. At the same time, a large number of the v′H ′ events are seen to

correspond to at least one of the two variables being in the top 5 percentiles of its distribution. In the

�gure, this corresponds to all data points not within the squares labelled S. Most extreme transport

events therefore seem to be due to (near) in-phase velocity and MSE anomalies where at least one of

the two variables quali�es as an extreme event. To put a number on this statement, it is found that

only 3% to 8% of the v′H ′ extreme events correspond to both velocity and MSE anomalies which

are not in the top 5 percentiles of their respective distributions. Further proof of the in-phase view
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Figure 55: Map of v′ and H ′ data points corresponding to the top �ve percentiles of v′H ′ events for
a) NH JJA, b) NH DJF, c) SH JJA and d) SH DJF. All 24 seasons (December 1993�August 2005)
are taken into consideration. The scale of the colour bar corresponds to the number of data points
per discrete bin. The continuous lines correspond to the values of the 5th and 95th percentiles of the
v′ and H ′ distributions. The squares labelled S contain all extreme v′H ′ occurrences where neither
v′ nor H ′ are in the top/bottom �ve percentiles of their respective distributions [from Messori and

Czaja, 2013b].
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can be obtained by normalising velocity and MSE anomalies by their respective standard deviations.

Covariance and correlation are related by the following expression:

cov(x, y) = corr(x, y)σxσy (32)

where the correlation component is a measure of phase and the standard deviation one a measure

of magnitude. If one normalises both anomalies by their respective standard deviations, and then

computes the v′H ′ PDF as in �gure 32 on page 61, only the phase information will be conserved.

The results (not shown) still show large skewness, even though it is smaller than that of their un-

normalised counterparts. This con�rms that the phase relationship between v′ and H ′ is the key

mechanism for generating extreme transport events. The simple wave picture suggested here will be

discussed further and related to idealised models in Chapter V.

7 Discussion

The present study robustly demonstrates a new feature of meridional heat transport: namely that the

majority of the transport is carried out by only a few occurrences every season, in easily identi�able

bursts. This property can be clearly seen in �gure 56 which illustrates, in a binary format, the sporadic

nature of the heat transport process at a single point (50◦ N 0◦ E). Similar plots are obtained for

other grid points (not shown). On a given day, a value of unity (vertical bar) is set to the curve if

v′H ′ falls in the top 5 percentiles of the distribution for the 50◦ N latitude circle, and a value of zero

is used otherwise (no vertical bar). By de�nition, there are only a few extreme events every season,

yet these account for a very large portion of the overall poleward heat transport at this location,

sometimes exceeding 50% (the numbers for each winter are indicated in the top right corner of each

panel)! Repeating this analysis for the number of extreme events per day along a full latitude circle,

as shown in �gure 45 on page 78, yields a similar picture, with bursts of extreme events lasting for

a few days and typically involving less than 20% of the gridpoints at that latitude. This further

illustrates the sensitivity of the atmosphere to very few, temporally and spatially localised features.

The analysis of the FORTE data, described in Section 4.4, implies that the sporadic nature of heat

transport is not explained by the detailed features of the atmosphere's lower boundary (coastline,
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Figure 56: Bar plot of v′H ′ extreme events at 50◦ N 0◦ E. Extreme events are de�ned as events in the
top �ve percentiles of the v′H ′ distribution for the 50◦ N latitude circle. The 12 panels correspond to
DJF seasons from DJF 1993/1994 to DJF 2004/2005. Bars correspond to an extreme event occurring
on a given day; the abscissa indicate the day of the season. The percentages in each panel indicate
the contribution of the selected events to the net seasonal meridional transient-eddy heat transport.
See text for further details [from Messori and Czaja, 2013b].
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ocean fronts, sea ice, orography etc.), stationary waves and mesoscale features. Indeed, these are

excluded by the coarse resolution of FORTE, but present in the reanalysis through data assimilation.

Rather, this must be an intrinsic property of waves in the atmosphere.

Concerning the physical drivers of the extremes, the results found in this study are compatible

with the traditional picture of growing systems having the minimal phase shift between v′ and H ′,

and accounting for the bulk of the heat transport [Eady , 1949]. At the same time, there is no attempt

to discuss the speci�c motions in the v′ and H ′ signals contributing to the extreme transport events.

Furthermore, the considerations made above are based on a very idealised wave picture of heat

transport. These results do not exclude that extreme events are simply growing baroclinic systems

linked to local mesoscale phenomena, but it is not claimed that they demonstrate this either. This

seems to con�ict with the previous considerations deriving from the FORTE analysis. However, the

fact that the statistical distribution of the transport can be reproduced without mesoscale features

does not exclude that, in the real atmosphere, these might play some role in setting the location and

initial development of large heat transport events. For example, the output from the the Minobe et

al. model suggests that, while ocean fronts are not important in setting the magnitude of extreme

events in heat transport, they might have an in�uence on their location. The strength of the extreme

events was found to be almost una�ected when oceanic SSTs were smoothed, but the location of

the extremes appears to be linked to oceanic fronts, analogously to what Minobe et al. found for

rainfall. This consideration leads to possible speculations concerning the role of larger spatial scales,

in addition to shorter baroclinic-scale motions, in driving the extremes. In fact, one would expect

events entirely driven by atmospheric mesoscales to be more closely linked to the local state of the

ocean, especially in the domains analysed by the Minobe et al. model, where the SST patterns have

been shown to have a signi�cant impact throughout the troposphere [Minobe et al., 2008].

While no systematic tests were conducted, no clear link to a single physical scale or phenomenon

emerges from the statistical analysis performed here. The only possible picture coherent with the

speculations made seems to be one where local e�ects combine with the larger scales to drive large

heat transport events. This idea is further analysed and discussed in Chapter IV.

A �nal note should be made on the di�erent components of the meridional heat transport by

transient motions. The moist static energy anomalies, H ′, are the sum of a humidity, a temperature

and a geopotential term. These are taken collectively when computing the transport, but their
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Figure 57: Time series of the humidity (blue), temperature (green) and geopotential (red) components
of H ′. The data considers �elds at 40◦ N, 65◦ E during DJF 2000.

respective magnitudes di�er signi�cantly. Taking as reference anomalies4 q′ = 5 gkg−1, T ′ = 10 K

and z′g = 100 m, an order of magnitude calculation yields:

H ′ = Lvq
′ + cpT

′ + gz′g ∼ 104Jkg−1 + 104Jkg−1 + 103Jkg−1 (33)

The magnitudes of the humidity and temperature terms are comparable, while the geopotential term

is smaller. An example of anomalies from the ERA-Interim data is shown in �gure 57. The plot

presents the time series of the humidity (blue), temperature (green) and geopotential (red) terms,

at 40◦ N, 65◦ E during DJF 2000. The location was chosen to match an area of high extreme event

occurrence, while the year was chosen randomly. The peak magnitudes of the anomalies match very

well the order of magnitude calculation in equation 33, and clearly show the relative importance of

the three terms. It should be noted that some days are dominated by temperature �uctuations, while

others are dominated by humidity ones. The strongest H ′ values, which presumably correspond to

large heat transports, will occur when peaks in the two anomalies are perfectly in phase. Figure 33

displays several instances of this behaviour. The �gure focusses on a single point and is for illustrative

purposes only - the magnitudes of the anomalies will change signi�cantly across the seasons and the

broad spatial domains considered in the present thesis. It should also be noted that, in a low-pressure

4The speci�c humidity value is taken from Ahrens [2007], the temperature and height are taken from reference plots
in Marshall and Plumb [1997].
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system, the geopotential term has a very di�erent phase to the temperature and humidity ones, being

π/2 out of phase. There is therefore an argument to exclude it all together from the calculations.

While not performed here, an analysis separating the temperature and humidity terms would be

very interesting for investigating potential links between extreme heat transport events and moisture

transport to the polar regions. Moisture is not a passive tracer; however, the Swanson and Pierre-

humbert [1997] model discussed in Section 2.4 suggests that a large part of the remarkable statistical

features of the heat transport PDFs ( e.g. �gures 32-35) might be expected to emerge also in tracer

transports, as long as a damping term is present. In fact, the authors �nd that a damped advective

model manages to reproduce most of the salient features of the observed heat transport distribution.

This analogy will obviously not apply to undamped passive tracers, for which the considerations made

in this chapter are largely unapplicable.

8 Conclusions

The present chapter studies meridional atmospheric heat transport due to transient eddies, focussing

on low levels in the mid-latitudes. The analysis is in terms of the probability distribution functions

of meridional velocity anomalies v′, moist static energy anomalies H ′ and their product v′H ′. Two

outstanding features of the distribution of v′H ′ are the near-zero most likely value and the very

pronounced positive skewness. These appear to be robust features of the distribution and are only

marginally a�ected by season, hemisphere or latitude. Outputs from an intermediate complexity

climate model, run in an aquaplanet con�guration, present similar characteristics. The magnitude of

the extremes of the distribution also seems to be independent of oceanic SST gradients. These �nd-

ings suggests that the shape of the v′H ′ PDF is not solely due to mesoscale phenomena, stationary

waves and complexities associated with surface boundary conditions. As a direct consequence of the

distribution's skewness, the top 5% of v′H ′ events accounts for over half of the net poleward heat

transport by transient eddies. This large sensitivity to extremes was noted by Swanson and Pierre-

humbert [1997] at three locations in the Northwest Paci�c during winter. Here, it is being established

robustly for all extra-tropical regions as well as winter and summer seasons. A zonal perspective is

also proposed, and it is shown that there are extremes in zonally integrated heat transport. These

are partly due to synchronised local extremes occurring around a given latitude circle, but also have
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a signi�cant contribution from increased mean transport at non-extreme locations.

The results presented suggests that the extreme events result from a near in-phase relationship

between v′ andH ′ anomalies of sizeable amplitude, as is typically expected of growing Eady waves. In-

deed, further analysis shows that extreme events in heat transport have wave numbers and timescales

compatible with Eady-type systems, although this �nding is by no means conclusive. Regions where

extreme events occur most frequently partly coincide with the storm track and WCB regions singled

out in previous studies via Eady growth rate diagnostics [e.g. Hoskins and Valdes, 1990], or tracking

algorithms [e.g. Hoskins and Hodges, 2002; Hoskins and Hodges, 2005; Eckhardt et al., 2004; Pfahl

and Wernli , 2012], although important di�erences emerge. It should further be noticed that this

partial agreement does not exclude the role of broader spatial scales. An important consequence of

the sensitivity of heat transport to extreme events is that a very large fraction of the transport occurs

in a few discrete bursts, each lasting for only a couple of days. The transient heat transport process

in mid-latitudes is therefore fundamentally sporadic in the temporal domain.
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Part IV

Extreme Events in Atmospheric Heat

Transport: Physical and Spectral Features

1 Aims of the Chapter

In the previous chapter we have established the importance of extreme events for setting the mean

seasonal transport, and described the basic statistical features that characterise them. This allowed

making a number of speculations about the physical drivers of the extremes, but few �rm conclusions.

The present chapter aims to extend the analysis of the physical origin of extremes by:

i) Providing insights into their relationship to local atmospheric dynamics and synoptic-scale ana-

logues;

ii) Discussing the role of baroclinic time scales (here de�ned as 2.5-6 days) versus motions with longer

periods.

In the spirit of the statistical analysis presented in Chapter III, the analysis of the local atmospheric

dynamics will not be performed on individual case studies, but will be kept as general as possible.

Points i) and ii) above, combined, will provide an answer to the very fundamental question of: what

are the heat transport extremes?

2 Outline

Messori and Czaja [2013b] robustly established the sporadic nature of atmospheric heat transport

by transient motions, and described the role of extremes in setting the mean seasonal transport.

Furthermore, the authors found that the extreme occurrences displayed temporal and spatial scales

compatible with phase-driven, baroclinic growing systems [Eady , 1949]. The exact role of baroclinic

time scales in driving these extremes, however, was not quanti�ed. Here, the term baroclinic will be

applied to periods between 2.5 and 6 days, following the terminology introduced by Blackmon et al.
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[1977].

The present chapter will analyse in more detail the atmospheric motions driving extreme event

occurrences. Synoptic analogues will be proposed, and it will be shown that the v and H anomalies5

leading to extreme events are not predominantly linked to baroclinic time scales. Moreover, the

fractional contribution of these timescales to the heat transport occurring on extreme days is found

to be essentially indistinguishable from that seen on other days. After robustly establishing the role

of longer time scales, we will con�rm that the key drivers of extreme heat transport are the phase

and coherence relationships between the v and H anomalies.

First, an analysis of the circulation associated with extreme events is presented, for both ex-

treme (Section 3.2) and median (Section 3.3) events, and for both global and regional (Section 3.4)

composites. This includes an analysis of the di�erent components of the heat transport and of the

underlying wind �elds. A physical interpretation is provided in Section 5. Next, the spectral features

of the transport are analysed, using wavelet transforms (Section 4). A wave number decomposition

is presented in Section 5, so as to relate the temporal scales to the spatial ones. The implications of

the inferences made by analysing both local dynamics and the spectral decomposition are discussed

in the same section. Last, the main conclusions reached in the present chapter will be summarised

in Section 6.

3 Vertical and Zonal Structure of Heat Transport Extremes

3.1 Methodology

The data range and the computation of the heat transport by transient motions are analogous to

those described in Chapter III, Section 3 on page 59 and in Messori and Czaja [2013b]. The ex-

treme events are also de�ned as before, namely as the top 5 percentiles of the distribution of heat

transport at 850 mb, for a given season and hemisphere. Messori and Czaja [2013b] have shown that

the exact percentile chosen as threshold does not a�ect the characteristics of the extremes. Here,

however, only the extremes corresponding to local maxima are selected, so that only a single point

per event is retained. In fact, in choosing a percentile threshold to de�ne extreme events, an extensive

region of strong heat transport could contribute with multiple data points to the statistics. This is

5Details of how these anomalies are computed are provided in Section 3.
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desirable when computing, for example, a climatology of heat transport bursts. However, it becomes

problematic when analysing atmospheric circulation, since it would imply replicating several times

the same circulation system associated with a single extreme event peak. Using the wave number

values found in Messori and Czaja [2013b], 50 model grid boxes (corresponding to approximately

35◦ longitude), are retained on either side of the selected local maxima. This ensures that the full

extent of the extreme events, including the surrounding circulation features, is captured. To avoid

double-counting data points, if two successive extremes on the same day and latitude are less than 100

grid boxes apart, half of the data points in the interval are assigned to one of the extremes and half

to the other. The heat transport is then computed across all the selected longitude data points, at all

pressure levels present in the ERA-Interim dataset, namely 37 levels ranging from 1000 mb to 0 mb.

Masking is applied where given pressure levels are below the topographical surface. This provides a

pressure-longitude transport cross-section of each extreme. All the extremes thus analysed are then

composited, and the values found are normalised by the number of data points being composited.

Note that, since some extremes are less than 100 grid boxes apart, the normalisation factor will not

be a constant across the composite. A similar procedure is applied in order to obtain cross-sectional

plots of MSE anomalies, meridional velocity anomalies, and net values of the wind �elds correspond-

ing to extreme events. Analogous plots are also produced for the temporal dimension. Here, the two

days before and after each local extreme are selected, and only the single latitude-longitude coordi-

nate corresponding to the maximum is retained. The transport values of all local extremes are then

composited and normalised, yielding the corresponding pressure-time composite colour maps.

Note that no vertical integration is performed over the quantities analysed here. This means that

heat transport cannot be expressed in W , but at the same time avoids problems associated with

mass non-conservation in the ERA-Interim data set. Even though the mass imbalance should not

a�ect a calculation based on anomalies, the reanalysis estimates might not be accurate for the whole

vertical extent between two adjacent pressure levels. Indeed, as noted by Trenberth [1991], the values

archived in the ECMWF reanalyses should be interpreted as �the most accurate values available at

those levels, but ... not representative of layers�. Such issue has vastly improved in the passage from

ERA-40 to ERA-Interim, but is still present in the latter data set and should not be ignored [e.g.

Graversen et al., 2011].

Since the atmospheric circulation is analysed in composite plots, one needs to ensure that the
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Domain Name Abbreviation Boundaries Seasons

Gulf Stream GS 30◦ N=55◦ N; 265◦ E=335◦ E; DJF, JJA
Paci�c Storm Track PS 30◦ N=50◦ N; 150◦ E=230◦ E; DJF, JJA

Bering Strait/Gulf of Alaska BS 55◦ N=70◦ N; 180◦ E=200◦ E; DJF
Nordic Seas NS 55◦ N=80◦ N; 335◦ E=15◦ E; DJF

Siberian Plateau SP 60◦ N=75◦ N; 40◦ E=90◦ E; JJA
Southern Ocean DJF SO 35◦ S=55◦ S; 295◦ E=275◦ E; DJF
Souther Ocean JJA SO 40◦ S=70◦ S; 295◦ E=275◦ E; JJA

Table 5: Names, abbreviations and boundaries of the domains used in the analysis of extreme event
regional composites. Where a domain is only considered for one season, this is speci�ed in the fourth
column of the table.

mean picture represents individual events well. Standard deviation maps have been computed to

verify that this is indeed the case. The transport standard deviation is very similar in all four

season/hemisphere combinations, and is more than an order of magnitude smaller than the transport

values (not shown). The variability peaks at high levels (∼300 mb), which correspond to the typical

location of the Jet Stream. The standard deviations of the velocity �elds, though larger in proportion,

are also signi�cantly smaller than the �elds themselves. The meridional velocity anomaly standard

deviation is, instead, comparable in magnitude to the velocity anomalies themselves, indicating a

very large variability from one event to the next. Again, the peak variability is at altitude. The MSE

standard deviation is also of the same order of magnitude as the MSE anomalies, but peaks at lower

levels. We therefore have a very large variability in the individual components of the transport, while

the overall variability in the transport itself is very small when compared to the latter's magnitude.

This suggests that, while the transport and velocity composites can be interpreted con�dently, care

should be taken when looking at the velocity and MSE anomalies. It further implies that extreme

events occurring in di�erent parts of the globe might be similar in terms of heat transport values, but

might be driven by very di�erent local wind, temperature and moisture anomalies. This motivates

performing a regional analysis, so as to identify the circulation associated with extreme events in

di�erent areas of the globe.

The regional domains are chosen based on the areas of high extreme event occurrence identi�ed

in the climatology of extremes, shown in �gure 51 on page 87. Seven domains are selected; their

names, abbreviations and geographical boundaries are listed in table 5. Note that, due to seasonal

di�erences in the distribution of extreme events, three of the domains (BS, NS and SP), are only

examined during one season (DJF, DJF and JJA respectively). Even though there are seasonal
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Figure 58: Composite pressure vs. longitude meridional heat transport colour map for extreme events
during NH DJFs, in Wmb−1 . The data cover the period from December 1993 to February 2005. All
latitude circles between 30◦ N and 89◦ N are taken into account. The white contours correspond to
zero meridional heat transport. Note that the colourbar is not symmetric about zero.

variations in the distribution of extremes across all domains, the boundaries are de�ned so as to be

kept constant for both seasons. The only case for which this isn't possible is the SO domain, where

the marked poleward shift of the high frequency belt during the austral winter implies that a shift in

the domain boundaries is also needed. At the same time, it should be noted that the exact position

of domain boundaries is not so important. Indeed, the data analysed only includes extreme events,

so if a domain also includes areas with a low event frequency, these will count very little towards

the regional composites. The standard deviations of the velocity and MSE anomalies were generally

found to be smaller than for the hemispheric composites, although some domains present signi�cant

variability in speci�c variables. Where this is the case, it is highlighted in the analysis.

3.2 Zonal Cross-Sections of Extreme Events

To investigate the vertical and zonal structure of transient-eddy heat transport extremes, we begin

by computing composite transport colour maps for all season/hemisphere combinations. These take

into account all available latitude bands (30°�89°) and time series (1993/1994�2004/2005). Figure 58

shows the composite maps for events in NH DJF. The other season/hemisphere combinations (not

shown) yield almost identical maps. As would be expected from the de�nition of extreme events used
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Figure 59: Composite pressure vs. time transport colour map for extreme events during NH DJFs.
The data cover the same range as in �gure 58. The white contours correspond to zero meridional
heat transport. Note that the colourbar is not symmetric about zero.

here, the peak transport is found around 850 mb. The general spatial structure of the extreme events

seems to be that of a deep vertical column of poleward transport �anked by weaker equatorward

transport regions to the east and at high levels. The whole pattern displays a small westward tilt.

Even though the area of poleward heat transport is very extensive, the core of the extreme event is

quite narrow, covering on average only a few degrees longitude. The spatial scales of the transport

are generally consistent with the conclusions drawn in Section 5, Chapter III, which found that the

full extent of an extreme event, including the possible recirculation features, typically corresponds to

wavenumber 8 (or, equivalently, 45 degrees longitude).

Looking at the corresponding pressure-time plots, no striking features emerge. All four sea-

son/hemisphere combinations display a similar pattern, with an increase in transport during the day

before the extreme event, followed by a rapid decrease thereafter. The structure is roughly symmetric

about the maximum, and the peak at t = 0 dominates strongly over the other days. While there is

no evidence of a return transport in time, the upper level return seen in the zonal cross-sections is

instead captured, and is found to be limited to the day at which the poleward transport peaks. As

example, the NH DJF temporal composite is shown in �gure 59.

Due to the large standard deviations in v′ and H ′, discussed in Section 3.1, the composites for

these variables are not analysed on a hemispheric scale. Rather, their discussion is deferred to Section
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Figure 60: Composite pressure vs. longitude wind �eld map for extreme events during NH DJFs. u
and v are in ms−1; w is in Pas−1. The data cover the same range as in �gure 58. The top panel
depicts meridional velocity, the middle one zonal velocity and the bottom one vertical velocity. Merid-
ional, zonal and vertical velocities are positive in the polewards, eastwards and upwards directions,
respectively. The white lines in all panels are zero velocity contours. Note that the zonal velocity
colourbar is not symmetric about zero.

3.4, dealing with regional domains, where their implications can be better assessed.

Next, maps analogous to that in �gure 58 are produced for individual velocity components, in

order to reconstruct the circulation corresponding to the extreme events. Figures 60, 61, 62 and 63

show the u, v and w wind �elds in the longitude-pressure plane, for events in NH DJF and JJA, and

SH DJF and JJA, respectively. The top panels represent meridional velocity, the middle ones zonal

velocity and the bottom ones vertical velocity. Meridional, zonal and vertical velocities are positive

in the polewards, eastwards and upwards directions, respectively. The white lines in all panels are

zero velocity contours.

Looking at the �gures, it is immediately clear that, regardless of hemisphere and season, extreme

events are characterised by a strongly ascending air stream corresponding to the core of the event,

�anked by two regions of subsiding air. As for what concerns the zonal wind, extremes system-

atically correspond to eastward �ow, in agreement with the prevailing mid-latitude westerlies. The

meridional velocity pattern is very consistent throughout all seasons and hemispheres, and is charac-

terised by a core of strong poleward velocity, corresponding to the location of the extreme, surrounded

by a strong equatorward �ow on the eastern �ank and a weaker one on the western �ank. There are,
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Figure 61: Same as �gure 60 but for NH JJAs. The data now cover the period from June 1994 to
August 2005.

Figure 62: Same as �gure 60 but for SH DJFs. The data now cover all latitude circles between 30◦

S and 89◦ S.
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Figure 63: Same as �gure 62, but for SH JJAs.

obviously, seasonal and hemispheric variations in the strength and positions of the patterns described

above. It is interesting to note that a persistent feature of the maps is a high-altitude meridional jet

at ∼200 mb, which is slightly higher than the typical position of the Jet Stream. It should further be

noted that not all features of ERA-Interim's stratospheric circulation are realistic [Dee et al., 2011].

It is immediately evident that there are a number of shared features between the v and transport

colour map shown in �gure 58. In particular, the poleward transport seems to be associated with

strong poleward velocities, and the opposite for the equatorward one. However, these similarities

should be interpreted with care because the transport is driven by velocity anomalies, as opposed

to absolute values. Indeed, a poleward velocity does not automatically translate into a positive v′,

just as an equatorward �ow should not be equated with a negative velocity anomaly. In addition to

this, the equatorward heat transport seen at upper levels is not matched by a corresponding negative

meridional velocity.

Further information concerning the role of the velocity and MSE anomalies, and their relation to

the circulation features described above, can be obtained by analysing composite covariance colour

maps. The composite covariance (which should not be confused with the temporal covariance) at

every grid box of the zonal cross-section is computed as:

cov(v′, H ′) = v′H ′ − v′H ′, (34)
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Figure 64: Composite pressure vs. longitude composite covariance map for extreme events during NH
DJFs. The data cover the same range as in �gure 58. The white lines correspond to zero composite
covariance contours. Note that the colourbar is not symmetric about zero.

where the overbars denote an average over all extreme events. When large values of one variable

correspond to large values of the other variable, and the same holds for the smaller values (i.e. the

variables tend to show a related behavior), the composite covariance is positive. In the opposite

case, when large values of one variable mainly correspond to small values of the other, the composite

covariance is negative. The sign of the composite covariance therefore provides information on the

linear relationship between the variables. The extreme event composite covariance maps are very

similar for all four season/hemisphere combinations. As an example, �gure 64 shows the one for NH

DJF. The white lines mark contours of zero composite covariance. Positive composite covariance

corresponds to poleward transport and negative composite covariance (albeit much smaller than the

positive one) corresponds to equatorward transport. This indicates that extreme events in poleward

transport come about as a phase-driven e�ect, because the composite covariance is highest (most

positive) where the poleward transport peaks and vice-versa for the equatorward transport. Note

that, since composite covariance is not necessarily related to the sign of each variable, this result is not

obvious a priori. Indeed, it is very easy to construct an arti�cial dataset where poleward transport

is generated by v′ and H ′ arrays displaying negative composite covariance. This result also suggests
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Value v' H'

1 + +
2 + -
3 - +
4 - -

Table 6: The four combinations of v′ and H ′ signs and the corresponding values, as assigned in �gure
65.

Figure 65: Composite v′ and H ′ sign combination colour map for extreme events during NH DJFs.
The data cover the same range as in �gure 58. The black contours correspond to 30% and 50% of
extreme events sharing the same sign combination. The white contours correspond to zero meridional
heat transport.

that the return equatorward transport associated with extreme events does not follow a phase-driven

(in this case anti-phase) mechanism as closely as the poleward one, otherwise the negative composite

covariance would be as large as the positive one.

To further investigate the v′H ′ combinations driving poleward and equatorward transports, one

can plot a sign covariance matrix. Here, the sign of v′ and H ′ at each grid box of the cross section is

recorded. A value between 1 and 4 is then assigned to each grid box depending on the sign combination

of the two variables. The sign combinations, and the corresponding values, are summarised in table

6. The value which occurs most frequently at a given grid box, for all extreme events in a given season

and hemisphere, is assigned to that grid box. In all seasons and hemispheres, the poleward transport

corresponds to a ++ case, with the core corresponding to more than 50% of occurrences having this

sign combination. The - - combination, on the other hand, accounts for the weaker background �ow
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areas, but with a lower frequency of occurrence. An equally consistent pattern is seen for the two

areas of equatorward �ow (the one aloft and the one to the east of the main transport maximum),

which are due to di�erent sign combinations. The upper level �ow is due to a +- case, with cold,

dry air being advected polewards, while the eastern �ow is due to a -+ case, where warm, moist

air is being advected equatorward. Except for the ++ combination, these patterns are typically

indicative of no more than half of the extremes, as could be guessed from the high standard deviation

of the velocity and MSE anomalies, discussed in Section 3.1. As example, �gure 65 shows the sign

combinations for NH DJF. The black contours show areas where the most frequent values correspond

to more than 30% and 50% of extreme days. We attempt to give a physical interpretation of these

results in Section 5, but it should be kept in mind that they only represent a limited number of

extremes.

Due to the signi�cant contribution of both ++ and - - cases to the extremes, it is of interest to

investigate whether the two sign combinations correspond to radically di�erent transport pro�les.

Figures 66 and 67 show the composite transport maps for ++ and - - extreme events respectively,

during NH DJFs. Compared to the overall composite, shown in �gure 58, there are some immediate

di�erences. The ++ combinations display a stronger transport at the core of the event, and do

not have any equatorward transport regions. The - - events, on the opposite, have a much weaker

poleward transport maximum and display signi�cant regions of equatorward transport. In terms of

the structure of the poleward maximum, namely a well de�ned central core and a westward tilt with

height, no major variations emerge between the three plots. The only di�erence worth noting is that

the - - core is slightly broader than its ++ counterpart, which is consistent with an extended region

of equatorward �ow of cold air.

The single-sign analysis can also be repeated for the individual velocity components associated

with the extremes. Figures 68 and 69 show the composite velocity maps for ++ and - - extreme events

respectively, during NH DJFs. Panels a), b) and c) show the u, v and w wind �elds in the longitude-

pressure plane, analogously to �gure 60. As was the case for the transport, the single-sign plots

display some immediate di�erences when compared to the overall composite. The ++ events have a

purely positive meridional velocity �eld, suggesting that positive v anomalies generally correspond to

poleward absolute velocities. The vertical velocity �eld is also almost entirely positive, unlike what

seen in the overall composite. The features of the velocity �elds at the core of the poleward heat
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Figure 66: Same as �gure 58, but for ++ extreme events only. Note that the colourbar is positive
only.

Figure 67: Same as �gure 58, but for - - extreme events only. The white contours correspond to zero
meridional heat transport. Note that the colourbar is not symmetric about zero.
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Figure 68: Same as �gure 60, but for ++ extreme events only during NH DJFs. The white contours
correspond to zero velocity. Note that the meridional and zonal velocity colourbars are not symmetric
about zero.

transport are, however, very similar to those seen in �gure 60. Overall, the picture is consistent

with warm, rising air parcels being advected polewards and eastwards, much like in the conveyor belt

schematic discussed in Section 1.3.4, Chapter II.

The - - composites display weaker �elds than their ++ counterparts, and also di�er more from the

overall composites. Again, the meridional velocity sign matches that of the corresponding anomalies.

Instead of having a central core of strong velocity, the peak velocities are found on the two �anks of

the transport extreme. The same applies to the zonal wind, which has two peaks in correspondence

with the meridional velocity ones. The vertical velocity corresponds to a subsiding air mass, again in

stark contrast to the overall composite seen in �gure 60. This is consistent with cold, dry, subsiding

air parcels being advected equatorwards, as could be expected in the lee of a low pressure system.

In this picture, the strong upper-level jet would correspond to the back side of a large trough in

the jet stream. What is more surprising is that a second equatorward jet is seen to the east of the

location of extreme heat transport. This could perhaps correspond to the circulation induced by the

low pressure system preceding the one associated with the large heat transport. A second unexpected

feature is the lack of poleward velocities inbetween the two equatorward jets. Even though the events

have speci�cally been selected to have negative v′, a weak positive v associated with the low pressure

circulation would still be expected. A possible explanation could be that the process of compositing

di�erent events smears the weak positive velocities, which do not show up in the �nal average.
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Figure 69: Same as �gure 68, but for - - extreme events only during NH DJFs.

The other season-hemisphere combinations, although they di�er in the �ne features, present a

similar overall picture. The single-sign composites highlight how the structure of the transport

extremes is very similar, regardless of the underlying anomaly combination driving them. The overall

transport composite therefore gives a very good representation of the typical extreme event. The

velocity �elds, on the opposite, present signi�cantly di�erent pro�les. In part, this is to be expected

because meridional velocity has a direct link to the velocity anomalies driving the extremes. However,

it also suggests that the full composite plots give a good representation of the ++ events, which are

stronger and more frequent, while they largely overlook the - - ones. The analysis in the following

sections will focus on the overall composites, except for speci�c domains where the - - events are

particularly frequent.

3.3 Zonal Cross-Sections of Median Events

The extreme event composites, discussed above, can be compared to the corresponding plots computed

for median events. These are de�ned as events within 5 percentiles of the median of the poleward-only

transport distribution. This will enable to verify the extent to which the patterns discussed above

are speci�c to the extremes. The composite for median events during NH DJF is shown in �gure 70,

as indication of the typical aspect of these events. Due to the nature of the transport PDFs (see

�gures 32 - 38 on page 67) , it is clear that median events will be associated with a very small heat

transport. In fact, �gure 70 displays low transport values at the selected median events, �anked by
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Figure 70: Same as �gure 58, but for median events during NH DJFs.

two narrow bands of near-zero transport. These, in turn, are �anked by higher transport values. In

all seasons and hemispheres, except for NH JJA, a weak equatorward transport nucleus is seen above

the median event, at around 350 mb. The weak transport zones that �ank the median events are

simply due to the fact that, just as was done for the extremes, the median events are also selected as

local maxima in the v′H ′ signal. It is therefore inbuilt in their de�nition that the transport values

immediately adjacent will be smaller than the local maximum. However, moving further away from

the selected events the transport will, on average, return to its mean value. This is clearly of a similar

magnitude to the median events.

Next, wind �elds corresponding to the median events are analysed. Again, these are computed

using exactly the same procedure adopted for the extremes. In contrast to the extended column

of ascending air which characterised the latter, the median events correspond to weak, positive w

near the surface and near-zero velocities further aloft. The meridional velocity �elds display a dipole

structure, with weak equatorward motion matching the central area of poleward heat transport.

Figure 71 shows the wind composite for NH DJF, as indication of the typical �ow pattern associated

with median events.

Having found that the structure of the extremes is very di�erent from that of the median days,

it is interesting to verify whether the extremes are unique even relative to below-threshold strong

poleward transport events. To test this, the transport and wind �eld composites shown above are
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Figure 71: Same as �gure 60, but for median events during NH DJFs.

replicated for events corresponding to di�erent percentiles of the poleward transport distribution.

Intervals of 5 percentiles are again selected, so as to compare composites representing equal numbers

of events. The 60th-65th percentile events look very similar to the median events, both in terms of

structure of the transport and of wind �elds (not shown). The 80th-85th percentile events for NH

DJF start looking more similar to the transport extremes, with a clear poleward transport core and

an ascending airstream roughly matching the position of the largest heat transport (not shown).

For the other season/hemisphere composites, no strong ascent is seen in correspondence with the

transport. Moreover, there is no evidence of equatorward transport regions, and the meridional

velocity sign patterns look extremely di�erent to those seen in �gure 65. The 85th-90th percentiles

look similar to the extreme events for all seasons and hemispheres, but still miss key features such as

the equatorward transport and the negative v′ anomaly on the transport's eastern �ank, seen in �gure

65. As illustration, the heat transport composite for NH DJF is shown in �gure 72. The 90th-95th

percentiles, although displaying some minor di�erences (especially in terms of v′), �nally match most

of the features of the extreme event maps. The structure of the extreme events, discussed in Section

3.2, is therefore speci�c to only the highest percentiles of the heat transport distribution.
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Figure 72: Same as �gure 58, but for events in the 85th-90th percentiles of the heat transport distri-
bution, during NH DJFs.

3.4 Regional Domains

In the interest of conciseness, we do not present the cross-sectional plots for all domains, but only

highlight the features that will be later relevant to the physical interpretation of the events, discussed

in Section 5.

As expected from the low standard deviation of the hemispheric transport composites, discussed

in section 3.1, all regional domains display a very similar heat transport picture. There are, however,

signi�cant variations in the strength of the extremes, with the ones in the storm tracks being more

intense than the ones at higher latitudes. Another minor di�erence between regions is that three

display, in addition to the eastward �ank return �ow, a small return �ow area on the western �ank

(BS and NS DJF, PS JJA). This feature is not seen in any of the hemispheric composites. As an

example, the transport colour map for NS DJF is shown in �gure 73.

Concerning the winds, in all the domains the extremes correspond to a rapidly ascending airstream.

The GS and PS domains display similar circulations during DJF, although the PS one has a more

extended poleward velocity �eld; the composite plots for the latter domain are shown in �gure

74. This is very similar to the full NH composite. The same pattern, albeit noisier and with

smaller velocities, is seen for PS JJA. In the GS domain, on the other hand, the summer months are

116



Figure 73: Same as �gure 58, but for extreme events during DJFs in the the Nordic Seas (NS) domain.

Figure 74: Same as �gure 60 but for extreme events during DJFs in the Paci�c storm track (PS)
domain.
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Figure 75: Same as �gure 60 but for extreme events during JJAs in the Gulf Stream (GS) domain.

characterised by a large area of north-westerly �ow. The u, v and w �elds for GS JJA are shown

in �gure 75. The meridional velocity pattern is strongly reminiscent of the median event composite

shown in �gure 71, although here the location of the event corresponds to a poleward velocity. It

should be noticed that the standard deviation of the latter map is large relative to the magnitude

of the velocities. The SO domain is very similar to the PS one, although the JJA zonal velocity

picture is less uniform due to the poleward shift of the extreme event band, which places it beyond

the latitudes at which the low-level westerlies peak [Risien and Chelton, 2008]. NS DJF displays

a very longitudinally extended high level poleward �ow west of the location of the extremes, but

otherwise again presents a picture similar to the wintertime storm track domains, as does SP JJA.

The third seasonal domain, BS DJF, displays a low-level north-easterly wind associated with extended

upwelling.

Next, the regional v′ and H ′ composites are presented. Theses were not analysed for the hemi-

spheric domains due to the high standard deviations found. The v′ composites are found to match

closely the v maps discussed above, and will not be analysed in detail. Figure 76 shows the v′ com-

posite for PS DJF, which can be compared to the v map shown in �gure 74a. The v′ values may

seem very small compared to those in the tails of the PDFs shown in �gures 32 - 35 on page 64.
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Figure 76: Composite pressure vs. longitude v′ colour map for extreme events during DJFs in the
Paci�c storm track (PS) domain. The white contours correspond to zero v′.

However, it should be kept in mind that the typical v′s associated with heat transport extremes do

not necessarily correspond to the extremes of the v′ PDFs. Taking as example NH DJF, the bulk

of the extreme heat transport events corresponds to v anomalies of order 10 ms−1, as illustrated in

�gure 55 on page 92. The anomalies found in the composite are therefore seen to be compatible with

the results discussed in Chapter III.

Concerning the MSE anomalies, during DJF both GS and PS show a clear structure, with a high

H ′ core at the location of the extremes and a negative anomaly intruding at altitude from the east.

The western �ank is characterised by an area of signi�cant negative anomaly. The composite for PS

DJF is shown in �gure 77. The JJA composites display, in both domains, a greater prevalence of

negative anomalies, especially for GS where the low-level H ′ is negative even at the extreme event

location. This composite, however, is characterised by a high standard deviation. For the SO domain,

the pattern in both seasons is very similar to the one shown in �gure 77. The same applies to the

NS and SP maps. The BS map shows a very weak but di�use positive MSE anomaly, and a large

standard deviation.

The sign combination maps (analogous to that shown in �gure 65 on page 109) for the GS and

PS regions, during DJF, show an almost identical pattern to the full NH hemisphere one. The

same applies, during both seasons, to the SO domain and the full SH composites. The GS summer
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Figure 77: Composite pressure vs. longitude H ′ colour map for extreme events during DJFs in the
Paci�c storm track (PS) domain. The units are Jkg−1mb−1. The white contours correspond to zero
H ′.

pattern, on the opposite, shows a large contribution from the negative v′, negative H ′ combination.

The core of the extreme event is still dominated by the ++ combination, but the con�dence level

is low and the - - one has a comparable frequency of occurrence. None of the other domains show

any signi�cant di�erences in sign combinations. The percentage of events sharing the same sign

combination is generally higher than seen for the full hemispheric composites, although all domains

are still below 70% at the core of the extreme events. It should be noted that the BS domain displays

lower percentages at the extreme event location than the other domains, except for GS JJA.

4 Wavelet Spectra

4.1 Inferences from Basic Principles

As discussed in Chapter III and in Messori and Czaja [2013b, hereafter MC13 ], extreme heat trans-

port occurrences display temporal and spatial scales compatible with phase-driven, baroclinic growing

systems. In terms of the spatial scales, the cross-sectional composites described above support this

conclusion. However, they do not provide a precise indication of the time scales involved, and there-

fore motivate a more systematic analysis of the latter.

While baroclinic motions might not be the single dominant component when considering the whole
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of the transport [e.g. Blackmon et al., 1977], they would be expected to be the main drivers of the

extreme occurrences, both in view of what found in Messori and Czaja, and of the intuitive link

between large heat transport and growing systems. A priori, there is therefore no reason to doubt

that the traditional view of growing systems as developing baroclinic disturbances should not apply

to these extreme events. Considering the transport as a product of anomalies in meridional velocity

(v) and moist static energy (H), one can apply the bandwidth theorem to test the plausibility of the

argument. The theorem applies to any wave phenomenon, and is commonly applied to wave packets.

It relates the spread in frequencies (∆ω) of said phenomenon to its duration (∆t) via the following

inequality:

∆t∆ω ≥ π

2
(35)

This relation then suggests that baroclinic timescales in v and H would constrain the transport signal

duration according to:

∆t ≥ π

2∆ω
, (36)

∆ω =
2π

2.5
− 2π

6
, (37)

where the denominators in equation 37 come from the de�nition of baroclinic time scales as having

periods between 2.5 and 6 days (see Section 2). This corresponds to ∆t ≥ 1 day. MC13 have shown

that heat transport extremes typically last for a few days. This lower bound therefore does not

exclude baroclinic timescales from driving extremes, but it is clearly inconclusive and implies that

further analysis is needed.

4.2 Methodology

The present analysis utilises the ECMWF ERA-Interim reanalysis data, previously described in

Chapter II, Section 3.1 on page 54. Due to a more restrictive selection of events when compared to

the previous sections of the present thesis, the number of seasons considered has been extended in
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order to obtain a su�cient number of data points. The analysis now includes 22 DJF and 22 JJA

time series, from June 1989 to February 2011. Part of the analysis presented in Chapter III has been

replicated over this longer period in Messori and Czaja [2013a], and the qualitative conclusions were

found to remain essentially unaltered. The transient-eddy heat transport is computed following the

procedure described in Section 3, Chapter III. The extreme events are also de�ned as before (namely

as the top 5 percentiles of the distribution of heat transport at 850 mb, for a given season/hemisphere

combination). In order to avoid double counting, in the case of several consecutive days at a given

location exceeding the threshold, only the local maximum of the v′H ′ signal is retained. A Morlet

wavelet transform is then applied to the selected v′H ′ and the corresponding v′ and H ′. Note that

the transform of the transport is computed as the transform of a single variable v′H ′, not as the

product of the transforms of v′ and H ′.

Wavelet transforms are a technique whereby a two dimensional spectral picture (here in period-

time space) is obtained from a one-dimensional time series [Daubechies, 1990]. Wavelets are therefore

the optimal tool to analyse the velocity, MSE and heat transport data in the time-frequency do-

main, allowing a detailed analysis of the signals' power throughout each extreme event. The wavelet

transforms of two signals can also be combined into a single picture providing an indication of the

frequencies and times at which the two signals share the most power. This is termed cross-wavelet

transform. Furthermore, wavelets can provide a time-frequency picture of phase and coherence of

separate signals. These two features provide a complete overview of the frequency and phase re-

lationships driving the extreme events, making wavelet transforms perfectly suited to the present

spectral analysis. For further details on the Morlet wavelet and on the wavelet formalism, the reader

is referred to Goupillaud et al. [1984], Torrence and Compo [1998] and Grinsted et al. [2004]. An

overview of the technical aspects of the transform is also provided in the Appendix.

Similarly to more traditional Fourier transforms, wavelets do not yield signi�cant results if applied

to time series which are short compared to the time scales considered. In order to minimise this

problem while avoiding adding data external to the seasons being considered, only the extreme

events on the central day of every season are retained (i.e. 15th January and 16th July). While this

criterion might seem excessively restrictive, thanks to the extended time period now being considered

it still provides around 4× 104 events per season/hemisphere combination. As discussed below, this

number is found to be su�cient to provide signi�cant results. The wavelet power spectra for the
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selected events are then composited, so that a single spectrum for each signal is obtained for every

season/hemisphere combination. Torrence and Compo [1998] have suggested that it is not good

practice to composite wavelet spectra because the power maxima will be smeared out. Here, we feel

justi�ed in adopting this approach because we are co-locating the extremes, where we expect the

power to peak.

Part of the analysis is also performed on time-�ltered data. The �lter used is a 21-point high pass

Finite Impulse Response (FIR) �lter, with a half-power cut-o� at 8 days, and is designed to capture

the full breadth of baroclinic timescales. Even though our de�nition of these timescales considers a

more restrictive interval, Chang [1993] suggested that �lters with a 6 day cut-o� loose a key part of

the baroclinic variance. Here, we therefore follow Nakamura et al. [2002] in choosing an 8 day cut-o�

so as to retain the full variability of the 2.5�6 day band. The �lter can be tested by computing the

spectral power of the �ltered and un�ltered v′ and H ′ signals in the 2�6 day range. It is found that

typically less than 5% of the power is lost when the �lter is applied. Further details concerning the

�lter are provided in the Appendix.

The present chapter also analyses wave number power spectra. To obtain them, the v′, H ′ and

v′H ′ signals around a given latitude circle, for all days of a given season, are decomposed into single

wave number contributions using a Fourier Transform algorithm. This yields one coe�cient per day

per wave number. A Fourier amplitude spectrum is then computed in the time domain for each

wave number, yielding spectral power versus period (or frequency). This procedure is repeated for all

latitudes and years considered. Finally, the spectra thus obtained are composited, yielding a single

spectrum for every season/hemisphere combination.

To verify that none of the results presented below depend on artefacts of the statistical analysis

performed, a number of veri�cations were carried out. First, the wavelet analysis was repeated in

logarithmic space, as described in detail in the Appendix. This robustly establishes that variations in

the composite's power, in correspondence with the extreme events, are representative of the individual

events. It also indicates that a su�cient number of extremes have been selected. The whole analysis

was also repeated using non-detrended data. Next, the wavelet transforms were repeated using a

Paul wavelet. To further test the robustness of the wavelet analysis, the period-averaged wavelet

spectra were compared to the traditional Fourier spectra. Finally, the �ltering was repeated using

the band-pass �lter from Blackmon and Lau [1980]. None of these changes a�ected the qualitative
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Figure 78: Composite wavelet power spectra of a) meridional velocity anomalies (in m2s−2), c)
moist static energy anomalies (in K2) and e) atmospheric heat transport due to transient eddies (in
W 2m2kg−2). The spectra are centred on local maxima of transport extreme events. Darker colours
indicate higher values. The white contours represent the cones of in�uence. Panels b), d), and f)
display the corresponding time-averaged spectra, for the �ve days centred on the extreme, on a log-log
scale. The dashed lines in panels b) and d) are positive unit slopes. Those in panel f) have slopes
0 and -1 respectively. The data cover NH DJFs from December 1989 to February 2011. All latitude
circles between 30◦ N and 89◦ N are taken into account [from Messori and Czaja, 2013c].

aspects of the results presented in this study. Further technical details on the signi�cance of the

results presented here can be found in the Appendix.

4.3 General Features of the Power Spectra

To investigate the spectra of transient-eddy heat transport extremes, we begin by computing com-

posite power spectra, taking into consideration all available NH and SH latitude bands (30◦�89◦ N

and 30◦�89◦ S) over twenty-two DJF and JJA time series (1989/1990-2010/2011). Panels a, c and

e in �gures 78, 79, 80 and 81 show the results for v′, H ′ and transport for NH DJF, NH JJA, SH

DJF and SH JJA respectively. It should be noted that the latter spectrum was computed by

treating the transport as a single variable, as described in Section 4.2. The white contours indicate

the cones of in�uence, which represent the limits beyond which edge e�ects become important. Only

the data above these lines should therefore be considered. Darker shades indicate higher spectral

power. Also displayed are the time averaged spectra for the 5 days centred on the extreme event, and
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Figure 79: Same as �gure 78, but for NH JJAs. The data now cover the period from June 1989 to
August 2010.

Figure 80: Same as �gure 78, but for SH DJFs. The data now cover all latitude circles between 30◦

S and 89◦ S.
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Figure 81: Same as �gure 80, but for SH JJAs [from Messori and Czaja, 2013c].

reference slopes (panels b, d and f respectively). The 5 day window was chosen to ensure that the

full breadth of the extremes was captured, following the durations found by MC13. The key features

of the NH spectra are: i) a clear increase in power with increasing period in v′ and H ′ and, ii) an

approximately �at power spectrum in v′H ′, with a modest peak at periods around 3-5 days. The

latter feature is consistent with the typical extreme event duration of 2-7 days reported in MC13.

The di�erences between the spectra are illustrated very clearly in panels b, d and f of �gures 78 and

79. The dashed lines in panels b and d both have positive unit slope, while the ones in panels f have

zero and negative unit slopes respectively, highlighting the relative �atness of the transport spectra.

Similar observations apply to the corresponding SH time series, although here the v′H ′ spectra tend

to be more tilted than their NH counterparts. Two of the v′H ′ spectra, namely NH and SH DJF,

also display a marked asymmetry in the power before and after the event. While a large part of said

asymmetry occurs within the cone of in�uence of the wavelet, the shorter periods also clearly display

it. This could be linked to the spatial structure of the extreme events, and will be discussed further

in Section 5.

The discrepancy between the v′H ′ power spectra and those of v′ and H ′, suggests that there

must be a systematic interaction pattern between v′ and H ′ driving the ��attening� of the transport

spectrum. Furthermore, since transport is the result of a product of two signals, and the wavelet

transform is computed on the product, a scaling factor must be taken into account. So, for example,
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Event Hemisphere Season Ratio

a) Extreme N DJF 0.31
JJA 0.22

S DJF 0.35
JJA 0.31

b) Median N DJF 0.24
JJA 0.18

S DJF 0.36
JJA 0.33

Table 7: Fractional contribution of baroclinic v′ and H ′ �uctuations to the period-integrated v′H ′

power spectrum over a 5 day window centred on events in a) the top 5 percentiles of the v′H ′

distribution and b) within 5 percentiles of the median value of the poleward-only distribution. The
data cover all the 44 seasons considered (June 1989-February 2011) [from Messori and Czaja, 2013c].

periods of 10 days in v′ and H ′ could potentially contribute to the 5 day band in v′H ′. This suggests

that a broad range of frequencies, beyond the 2.5-6 day range, might be contributing to this e�ect.

To investigate these contributions in greater detail, the v′ andH ′ data is high-pass �ltered (periods

< 8 days) using the �lter described in Section 4.2. The �lter cut-o� period is well beyond that of

our range of interest (2.5-6 days), to ensure that power loss due to �lter design is minimised. A

composite power spectrum is produced following the same procedure as for the un�ltered data (see

Section 4.2). Next, the power in the wavelet spectrum in the 5 days centred on the extreme event is

summed over all periods within the cone of in�uence. Last, a ratio between the summed power of the

�ltered and un�ltered data is computed. In taking the ratio, the same range of periods is included in

both the �ltered and un�ltered integrals, even where these fall well outside the baroclinic range. This

ensures that the full breadth of contributions by the baroclinic-scale v′ and H ′ motions is captured.

Depending on the hemisphere/season combination, it is found that the power spectrum resulting

from the �ltered data captures between 22% and 35% of the power found in the original spectrum

(see table 7). If one replicates the analysis selecting events within 5 percentiles of the median of

poleward heat transport, rather than for extreme events, the ratios are very similar, with only a

modest di�erence emerging during the NH winter (see table 7). The contribution from baroclinic

periods in v′ and H ′ is therefore comparable for extreme and median events. In both cases, these

timescales do not drive the bulk of the transport, which must therefore come from longer periods.
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Figure 82: Wavelet cross-spectral power for v′ and H ′ during NH DJFs. Darker colours (red) indicate
higher values. The black contour represents the cone of in�uence. The data cover the same range as
in �gure 78.

4.4 The Role of Phase and Coherence

The velocity and MSE �uctuations do not display a clear peak at baroclinic scales, as seen in the

spectra in �gures 78-81, and cross-wavelet spectra of v′ and H ′ con�rm that most of the power the

two signals share resides at long periods, well above baroclinic timescales. As illustration, �gure 82

shows the v′ versus H ′ cross-wavelet power for NH DJF. The other seasons and hemisphere display

comparable characteristics (not shown).

The shift towards higher frequencies seen in the v′H ′ spectra can only be explained by systematic

phase and coherence relationships between v′ and H ′ perturbations. Figures 83 and 84 show the

composite coherence-phase plots for NH DJF and SH JJA transport extremes, respectively. Panel

a) in both �gures depicts coherence as colours and phase as arrows. The black contour indicates the

cone of in�uence, which represents the limit beyond which edge e�ects become important. Again,

only the data above this line should be considered. Since phase for incoherent signals has no meaning,

phase arrows are only retained in regions where coherence is greater than 0.5. When the arrows point

right, the v′ and H ′ signals are perfectly in phase; when they point upwards, the two signals are in

quadrature with v′ leading H ′. The converse holds for leftwards and downwards pointing arrows.

Panel b) depicts phase angle in colours for the 10 days centred on the extreme events. Again, positive

values indicate that velocity leads MSE; the black contours bound the regions where coherence exceeds
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Figure 83: a) Composite wavelet coherence/phase spectrum for meridional velocity and moist static
energy anomalies. The spectra are centred on local maxima of extreme transport events. The colour
map represents coherence values, the arrows the phase relationship. When the arrows point right, the
v′ and H ′ signals are perfectly in phase; when they point upwards, the two signals are in quadrature
with v′ leading H ′. The converse holds for leftwards and downwards pointing arrows. The black
contour represents the cone of in�uence. b) Depicts phase angle in colours for the 10 days centred on
the extreme events. The scale is in radians. Again, positive values indicate that velocity leads MSE;
the black contours bound the regions where coherence exceeds 0.5. The data range covers NH DJFs
and is the same as in �gure 78 [from Messori and Czaja, 2013c].

Figure 84: Same as �gure 83 but for SH JJAs [from Messori and Czaja, 2013c].
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0.5.

For the NH, three features emerge, which explain the patterns seen in �gure 78: i) the coherence

is highest at periods of approximately 2-8 days, ii) the phase angle is smallest at approximately 3

and 7 days, and iii) at longer periods v′ and H ′ approach either quadrature or anti-phase. Similar

considerations, albeit with slightly di�erent numbers, can be made for SH DJF (not shown), and SH

JJA (�gure 84). In the case of NH JJA, the coherence values are, perhaps, too small to allow us to

make de�nitive statements using phase. For SH JJA, at all but the lowest frequencies the phase angle

stays relatively small, while the coherence values are systematically higher than those seen in the NH.

Nonetheless, there is still a clear peak in coherence, now shifted more towards the 6-12 day range,

and the phase angle is smallest at 2-3 and 7-8 days. The �attening in the v′H ′ spectrum is therefore

driven by coherent, in phase v′ and H ′ disturbances, while the unfavourable phase relationship at

higher periods masks the high power of the two signals there. Note that, since heat transport results

from the product of v′ and H ′, a scaling factor in frequency (and therefore in period) must be taken

into account here. If not for this �braking� role of phase, there would therefore be signi�cantly more

power at long periods in the v′H ′ spectrum. This e�ect is evident in both hemispheres, while the

di�erences in coherence between the SH and NH lead to more subtle considerations, and will be

discussed below.

It is interesting to note that, in both �gures, the data seems to display phase angles smaller than

the Eady angle (21◦). The latter is the theoretical lower bound on the phase angle between the

velocity and temperature components of baroclinic disturbances near the surface. The Eady model,

however, considers a highly idealised setup of monochromatic, coherent waves, so it is not obvious that

the numerical limits it sets should be exactly obeyed by real-world instabilities. To further illustrate

the importance of phase and coherence, composite wavelet spectra for a set of random events were

computed. These are data selected at random locations, on the same days and over the same range

of latitudes and longitudes as the extreme events. A number of data points similar to the number

of extreme events were chosen and the spectra were then composited, exactly as for the extremes.

These composites are shown in �gure 85 for NH DJF. The v′ and H ′ spectra are comparable to

those seen in �gures 78a and 78c , while the v′H ′ spectrum is extremely di�erent from �gure 78e

and is, in fact, very similar to the velocity and MSE ones. The distinctive feature of extreme events

therefore does not lie in the power spectra of the v′ and H ′ �uctuations but, rather, in their phase
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Figure 85: Same as �gure 78 but for heat transport events selected at random locations, on the same
days and over the same range of latitudes and longitudes as the extreme events. The data cover NH
DJFs. Unlike in �gure 78, the dashed line in panel f) also has positive unit slope [from Messori and

Czaja, 2013c].

and coherence relationship. As might be intuitively expected, both aspects are essential. Indeed, an

arti�cial v′H ′ spectrum was reconstructed using the actual coherence of the v′ and H ′ signals, but

applying a random phase at all periods, and none of the patterns discussed above were reproduced.

Therefore neither coherence nor, obviously, phase alone can explain the v′H ′ spectra.

The spectra of the di�erent seasons and hemispheres present a coherent picture and share the

same qualitative results. As noted above, however, the coherence values in NH JJA are, perhaps,

too small to allow us to make de�nitive statements using phase, while coherence values in the SH are

generally larger. This is evident by comparing �gures 83 and 84, and a similar pattern emerges when

comparing NH JJA to SH DJF. A possible explanation could be related to the di�erent storm track

con�gurations in the two hemispheres, with the SH storm track being more extensive than its NH

counterpart. Since a high coherence can be expected in these areas of strong growth, this di�erence

could drive the higher coherence values found in the SH. To the author's knowledge, however, no

references or conclusive explanations for this di�erence exist in the literature.

The di�erences in coherence between the two hemispheres drive some interesting mechanisms.

Systematically higher coherence values mean that phase angles at all periods have a strong impact
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on the resulting v′H ′ spectrum. In the SH, coherence therefore has a comparatively less important

role than in the NH. As thought experiment or gedankenexperiment, consider the situation in which

velocity and MSE have, throughout their full range of frequencies, the same phase angle. Assume

further that this angle happens to be the optimal one for transporting heat; in the spirit of this

idealised setup, this is taken to be the angle found in the Eady model of baroclinic instability (21◦).

If this is imposed on the actual coherence found, it will result in a �attening of the v′H ′ spectrum

in the NH, but not in the SH. In the NH, where coherence is generally low, the phase angle only has

an e�ect at periods where coherence is su�ciently higher than average. These happen to be within

the baroclinic range, as discussed above. In the SH, where coherence is high at all periods, phase

becomes instrumental in directing the power in the v′H ′ spectra, meaning that imposing an Eady

phase at all periods leads to the loss of the �attening e�ect seen in the real data.

5 Physical Interpretation

The cross-sections discussed in Section 3 and the spectral features analysed in Section 4 present a

comprehensive overview of the space-time structure of extreme events in heat transport. At the same

time, the two analyses do not necessarily blend into a single, coherent picture. The cross-sectional

composites emphasise synoptic-scale features of the circulation, but do not a�ord any insight into

the interaction of local dynamics with larger scale variability. The wavelet plots, on the other hand,

provide a wealth of information regarding the timescales driving the atmospheric motions, but no

direct link to the spatial scales these correspond to. In order to o�er a physical interpretation of both

the spatial and temporal analyses, while at the same time reconciling some apparently contrasting

aspects of the two, the following points will be discussed:

i) Wave number spectra, which link the temporal wavelet information to precise spatial scales;

ii) The vertical and zonal structure of the heat transport in relation to the idealised Eady model, and

possible signatures of this structure in the wavelet spectra;

iii) The local circulation and synoptic analogues;

iv) Alternative interpretations to the wave picture adopted here.
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Points i) and ii) suggest that, to some degree, a joint interpretation of the spatial and temporal scales

is indeed possible.

Wave number Spectra

According to both physical [Messori and Czaja, 2013b] and purely mathematical considerations (e.g.

the bandwidth theorem, discussed in Section 4.1), the observed extremes in v′H ′ could plausibly be

solely due to baroclinic disturbances. Here, the latter are de�ned as motions with periods between

2.5 and 6 days. Traditional measures �nd that these timescales and motions with periods longer than

10 days typically account for comparable portions of the 850 mb NH transient-eddy heat transport

[Blackmon et al., 1977]. Intuitively, extremes must correspond to growing systems, which are asso-

ciated with baroclinic perturbations. Therefore, when focusing speci�cally on extremes, one would

expect the contribution of baroclinic scales to be signi�cantly higher than normal. Here, it is found

that this is not the case: the v′ and H ′ power spectra are found to peak at long periods and, as

discussed above, these long periods provide the greatest contribution to the power in the v′H ′ spec-

trum. Even though the coherence and phase characteristics of the v′ and H ′ signals favour short

period �uctuations, this is not enough for the latter to account for the majority of the power in the

v′H ′ spectrum (see table 7 on page 127). It should also be noted that, as mentioned in Section 4.3,

periods beyond the baroclinic range in v′ and H ′ can contribute to baroclinic motions in the v′H ′

spectrum. Regardless of hemisphere and season, v′ and H ′ �uctuations therefore combine to produce

phase and coherence-driven extreme events in heat transport which, as discussed in detail in Chapter

III, account for over half of the poleward heat transport by transient eddies.

The secondary contribution of baroclinic timescales to the v′H ′ power spectrum, highlights the

key role played by the longer periods. These can be related to physical analogues in the atmosphere

by investigating the spatial scales driving the transport. In order to do this, the power in the v′, H ′

and v′H ′ signals is decomposed into single wave number contributions (hereafter also referred to as

k), following the procedure described in Section 4.2. A caveat of this technique is that, since it takes

into account full latitude circles, it is not limited to the locations of extreme events. Figures 86, 87,

88 and 89 show the composite power spectra for wave number as a function of period for NH DJF,

NH JJA, SH DJF and SH JJA, respectively. Panels a, c and e correspond to v′, H ′ and v′H ′ spectra.

Darker shades indicate higher powers. Also displayed are the period-averaged spectra for the 10-32
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Figure 86: Composite Fourier power spectra of a) meridional velocity anomalies, c) moist static energy
anomalies and e) atmospheric heat transport due to transient eddies. The spectra are a function of
wave number versus period. Darker colours indicate higher values. Panels b), d), and f) display the
corresponding spectra averaged over the range 10-32 days. The data range covers NH DJFs and is
the same as in �gure 78 [from Messori and Czaja, 2013c].

day range (panels b, d and f respectively). These are normalised relative to the spectral peak, so that

the contribution of each wave number is expressed as a dimensionless fraction of the contribution

from the dominating wave number. The lower bound of the integration range was set to 10 days

to ensure that it was well beyond the range of the �lter used in Section 4.3, which has its half-power

cut-o� at 8 days. The upper bound was chosen to coincide with the longest periods resolved by

the wavelet spectra discussed above. From the �gures, it is immediately clear that planetary-scale

waves (k ≤ 4) dominate the spectra. During NH DJF, the peak contributions in the v′, H ′ and v′H ′

spectra come from k = 3− 4, k = 0 and k = 1 respectively. Similar considerations apply to the NH

JJA season. The corresponding plot for SH JJA, again shows similar results, with the peaks for the

v′, H ′ and v′H ′ spectra now being respectively at k = 4, k = 0, 3 and k = 0. The SH DJF season

di�ers slightly from the above, in that the transport spectrum peaks at k = 1 and k = 4. The latter

spectrum reproduces quite closely the corresponding v′ spectrum, and could be related to the typical

k = 4− 7 patterns seen in the SH summertime circulation [e.g. Hamilton, 1983].

As already mentioned, the results discussed above refer to an analysis of full latitude circles, and

are not limited to the locations of extreme events. Nevertheless, they can provide important insights
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Figure 87: Same as �gure 86, but for NH JJAs. The data cover the same range as in �gure 79.

Figure 88: Same as �gure 86, but for SH DJFs. The data cover the same range as in �gure 80.
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Figure 89: Same as �gure 88, but for SH JJAs [from Messori and Czaja, 2013c].

into the origin of the low frequencies in the extremes' power spectra. Indeed, there is no reason to

suspect that the motions accounting for low frequencies in the extreme events are distinct from those

driving the same frequencies in the full latitudinal data. The power lost in applying the baroclinic

�lter to v′ and H ′, namely that due to motions with periods beyond 8 days, therefore comes primarily

from very low wave numbers, in the range 0 ≤ k ≤ 4. Similarly low wave numbers account for the

majority of the transport's spectral power at long periods. Allowing for the signi�cant seasonal and

inter-hemispheric di�erences found, we interpret these results as indicating that the power seen in

the v′H ′ wavelet transforms at long periods is driven by planetary-scale waves.

At the same time, the long periods do not account for the entirety of the power of the extreme

events. It is di�cult to relate directly percentiles of the heat transport distribution, used to de�ne

the extremes, to percentiles of the time-integrated power spectrum6. However, keeping in mind that

periods below 6 days typically account for just under one-third of the total power of an extreme, it is

reasonable to assume that these timescales will play an instrumental role in determining whether an

event is extreme or not. That is, if a given day is in the top percentiles in terms of power at periods

beyond 6 days, it might not necessarily be in the top percentiles in terms of power over all periods.

Imagine, as example, two events with identical, very high power, at long periods. Since we single out

6Remember that the baroclinic contribution to the power of extreme events was computed by integrating the power
spectrum over a �ve-day window centred on the extremes themselves.
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events in the top 5 percentiles of the heat transport distribution, a factor of two variation in power

at periods below 6 days might well imply that only one of the two classi�es as an extreme.

The above suggests two considerations:

i) Extreme events in meridional heat transport by transient eddies are not merely the signatures of

passing synoptic systems, but are driven by larger scale modes of atmospheric variability.

ii) Even though the long periods account for the majority of the extreme events' spectral power, they

are not necessarily su�cient, alone, to determine whether an event classi�es as extreme or not.

Point i) is a novel result in the context of extreme events, and is consistent with the known in�uence

of large scale modes, such as the North Atlantic Oscillation, on meridional eddy heat transport [e.g.

Carleton, 1988; Hurrell et al., 2003]. The second consideration suggests that extremes might be

associated with precise atmospheric features at short periods. One might therefore expect to see

clear synoptic patterns, when studying the local atmospheric circulation corresponding to extreme

events.

The Vertical and Zonal Structure

The extreme event cross-sectional composites, presented in this chapter, do indeed display some

common features across both hemispheric domains. The most striking one is the systematic westward

tilt of the narrow poleward heat transport core and its associated return �ow. This is very similar

to the tilt expected of an idealised Eady wave (see Chapter II, Section 2.1 on page 46). Figure 90

shows the meridional heat transport associated with such a wave, here computed as v′T ′. Since the

magnitude of the transport is entirely arbitrary, and depends on the ambient parameters chosen for

the simulation, the transport has been normalised such that the poleward maximum has unit value.

The continuous contours correspond to values of 0.25, 0.5 and 0.75 respectively. The dashed contours

correspond to values of 0 and −0.25 respectively. The periodicity of the �gure is simply due to the

periodic nature of the Eady wave itself, and should not be taken into account when comparing the

plot to the ERA-Interim data.

The vertical tilt of the heat transport is very similar to the one seen in �gure 58 on page 103. In

the Eady model, such tilt is given by the small phase di�erence between velocity and temperature

anomalies. Indeed, for perfectly in-phase perturbations, there is no zonal asymmetry in the system.
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Figure 90: Composite pressure vs. time transport colour map for an idealised Eady wave. The trans-
port values have been normalised such that the poleward maximum has unit value. The continuous
contours correspond to values of 0.25, 0.5 and 0.75 respectively. The dashed contours correspond to
values of 0 and −0.25 respectively.
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In view of the discussion on phase presented in Chapter III, a similar tilt is also expected in the

real atmosphere. A second similarity between the Eady model and reanalysis is the breadth of the

poleward heat transport core, although in the model the horizontal scale is somewhat arbitrarily set

by the tropopause height. Furthermore, in both data and model, the return �ow on the eastern �ank

of the poleward transport is separated into two distinct areas. Due to the periodic pattern, however,

in the Eady wave the same return �ow is also witnessed on the western �ank, unlike what is seen in

the data. Another di�erence is given by the boundary intensi�cation of the transport seen in �gure

90 which, in the case of the upper bound, is a direct consequence of the rigid lid approximation.

Nonetheless, considering the extreme idealisation of the model, the similarities with �gure 58 are

striking.

Concerning the vertical tilt, it is interesting to note the e�ect it might have on the transport's

wavelet spectra. In the context of large scale eastward advection during the NH winter months (DJF)

and in the SH, one would expect to see this zonal asymmetry mirrored in the wavelet spectrum, as

is indeed the case in �gures 78 and 80 on page 125. The asymmetry in the power spectrum is almost

absent during SH JJA (see �gure 81 on page 126), possibly because of the poleward shift in the

location of the extreme events, which places them beyond the latitudes of peak zonal winds [e.g.

Risien and Chelton, 2008].

The vertical asymmetry of the heat transport is mirrored in the v′ and H ′ sign combinations

driving it (see �gure 65 on page 109). The area of largest poleward transport is seen to correspond to

the combination of positive anomalies in both variables. This points towards the traditional WCB-

type view of poleward heat transport corresponding to the advection of warm, moist air towards the

high latitudes. As for what concerns the equatorward transport, the top and bottom parts of the tilted

column correspond to di�erent sign combinations. The positive v′, negative H ′ pattern characterising

the higher levels could be linked to a tropopause bending, driven by high-level eastward jets. These

were found to match the locations of extreme occurrences quite closely (see �gure 51 on page 87), and

would imply a strong negative MSE anomaly. The opposite sign combination, seen at lower levels,

is likely to be a temperature-driven e�ect, related to re-circulating air parcels which have come from

the low latitudes and have not lost all of their heat at the time of the equatorward return. This is

consistent with the southward �ow east of the extremes, seen in the meridional velocity composites

(see �gures 60- 63 on page 107) . Ultimately, it should be noted that these sign combinations are not
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Figure 91: Composite v′ and H ′ sign combination colour map for the meridional heat transport
associated with an Eady wave. The white contours correspond to zero meridional heat transport.
The sign convention is analogous to the one adopted in �gure 65.

very robust, since at most grid points they represent between 30% and 50% of the extremes forming

the composite. They are therefore a good basis on which to formulate hypotheses, but should not be

taken as the motivation for a detailed investigation.

As was done for the transport, these sign combinations can be compared to the ones in the Eady

model. Figure 91 shows the sign combinations driving the Eady transport, using the same convention

as �gure 65 on page 109. Unit values correspond to a positive v′, positive H ′ pattern, values of 2 to

the +- case, 3 to the -+ case and 4 to the - - one. Again, the pattern is periodic. The �rst striking

aspect is that the transport maxima alternate between ++ and - - sign combinations. This could

partially explain why the con�dence levels in �gure 65 are so low. Since all extreme events have a

positive transport at their core, if just over 50% of events correspond to a ++ combination, it means

that just under 50% of events must correspond to a - - sign pattern. It should also be noted that,

if one takes a ++ maximum as reference, the sign combination of the equatorward transport is the

opposite of what seen in the ERA-Interim data. What is, however, consistent with the data, is that

the two areas of equatorward transport always display di�erent sign combinations. As was the case

for �gure 90, there are therefore both important di�erences and striking similarities between the Eady
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model and the reanalysis.

Synoptic Analogues

The large domains taken into consideration for the hemispheric composites make it di�cult to as-

sociate precise synoptic analogues to the extremes. By looking at the regional composites, however,

a number of common elements and robust features emerge. Here, we present possible synoptic ana-

logues for the composites discussed in Section 3.4, although the suggested matches are by no means

conclusive. It should be noted that only a brief analysis was performed regarding the di�erences

between ++ and - - sign combinations in extreme events. As seen in �gures 65 and 66, the ++ events

tend to be stronger and more frequent than the - - cases, and therefore dominate the composites.

The synoptic analogues discussed below are therefore mostly relevant to ++ combinations. The - -

cases are only considered for the domains in which they play a major role, namely: GS JJA and BS

DJF.

The three storm tracks domains (GS, PS and SO) present similar pictures, suggestive of a direct

correspondence with WCBs. Referring back to the schematic shown in �gure 11 on page 33, the

rapid ascent at the location of the extremes matches the warm conveyor itself (see �gure 74 on

page 117). The descending motions seen in the velocity composites and the negative H ′ seen in the

MSE ones would correspond to the dry air from the upper atmosphere on the western �ank of the

WCB. Similarly, the high level negative MSE intrusion coincides with the cold conveyor (see �gure 77

on page 120). What the WCB schematic does not necessarily explain is the fact that the return heat

transport is generally seen only on the eastern �ank of the extremes (with the exception of the PS

JJA case). In fact, idealised simulations of midlatitude cyclones predict two re-circulating branches

of the WCB, one to the east and one to the west of the location of rapid ascent [e.g. Boutle et al.,

2010].

The good match between WCBs and extreme heat transport events over the storm track domains

does not come as a surprise since, as observed in Chapter III, Section 5.2 on page 86 these are,

broadly speaking, the areas where the extreme event distribution matches the WCB climatology.

The latter is shown in �gure 52 on page 88. The values shown in the �gure, which refer to the

percentage frequency of WCB occurrence, are systematically lower than 5% except for NH DJF. The

extreme transport events, however, are identi�ed as being the top 5 percentiles of the heat transport
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distribution. Moreover, extreme events are computed relative to the full hemispheric distribution,

meaning that they can correspond to more than 5% of events in very active regions such as the

WBCs. However, the WCB climatology shown in �gure 52, considers very restrictive criteria for

identifying the conveyors. Other studies �nd similar geographical distributions, but slightly higher

percentage occurrences. Moreover, the WCB algorithms are usually designed to avoid counting

multiple trajectories associated with the same rising air mass, while no such �lter is applied when

selecting extreme events [Madonna et al., Submitted].

The picture described above does not �t the GS JJA data (see �gure 75 on page 118). In the

latter composites, there is a strong signature of northerly cold, dry air �ows, which is mirrored in the

domain's sign combination map. This could be due to the fact that, especially during JJA, a large

number of the extremes within the domain occur over the eastern portion of the North American

continent. This interpretation agrees very well with the cold air outbreaks often witnessed in the

region [e.g. Konrad and Colucci , 1989].

The NS domain, analysed here only during the winter season, presents a picture similar to the

storm track domains discussed above. Even though the WCB frequency in the area is signi�cantly

lower than in the storm tracks, it is nonetheless a region of high cyclonic activity (see �gure 53 on

page 89). Moreover, the area of strong negative H ′ just east of the extreme event location, which

is associated with an equatorward �ow, matches very well the typical precursor conditions for polar

lows, as discussed in Chapter III, Section 5.2 on page 86. The general distribution of extremes within

the domain also matches polar lows very well (see �gure 54 on page 90). It should be noted that the

polar lows have warm cores and typically travel in a southward direction. In most cases, this will

correspond to a positive MSE anomaly and a negative velocity one. The integrated heat transport

e�ect would therefore be negative. However, the composites discussed here look at zonal snapshots

at �xed times, and therefore tend to suppress the e�ect of the polar low drift, since the typical drift

velocity would be dominated, in calculating v′, by the vigorous circulation associated with the low.

Suitable phase di�erences between the velocity and MSE �elds, such as those highlighted in Section

4.4, can then drive a strong poleward heat transport. This is subject to the caveat of how well the

reanalysis data captures polar lows, which is a problem which will not be discussed here. For further

information on this topic, the reader is referred to Condron et al. [2006].

The SP domain presents an overall picture similar to the NS one, and its composites are consistent
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with a cyclonic circulation. Even though it is not an area of polar low development, the domain

corresponds to an area of signi�cant cyclonic activity in the ERA-Interim data (see �gure 53 on

page 89). These local low pressure systems are therefore the most �tting synoptic analogues for this

domain. It should be noted that the de�nition of cyclonic activity (see section 5.2) is based on much

less stringent criteria than those adopted to de�ne WCBs. This is re�ected in the di�erent schematic

chosen in �gure 92 to represent the SP domain.

The BS domain has a very weak, positive MSE signal. This excludes cold air outbreaks from the

Arctic basin from being the only drivers of the poleward heat transport, as hypothesised in Section

5.2, Chapter III. As for the SP domain during JJA, the Bering Strait and Gulf of Alaska region

during DJF is associated with signi�cant cyclonic activity in the ERA-Interim data. Indeed, the

Gulf of Alaska is a region of polar low genesis [Businger , 1987]. However, compared to the former

domain, there is the additional complication of the presence of sea-ice. Studies have found evidence

for ice-cyclone feedback mechanisms [Carleton, 1984], and the presence of sea-ice also heavily a�ects

ocean-atmosphere �uxes. Upon closer analysis, the sign of the MSE at the extreme event location

is seen to vary frequently between individual events, which is consistent with the low con�dence of

the sign combination map. There are, indeed, a number of events displaying southward air�ows with

negative MSE anomalies at the extreme event location, consistent with the prevailing northeasterly

winds blowing across the frozen ocean [Overland and Pease, 1982]. Part of the events therefore

correspond to cold air out�ows from the Arctic basin, while the rest match the more traditional

interpretation of cyclonic activity driving poleward heat transport.

The above synoptic analogues are summarised in �gure 92.

The combined space-time picture

The cross-sectional plots of extreme events in heat transport suggest that the events across both

hemispheres are localised in space and time, and share a number of common features, such as ascend-

ing air�ows in correspondence with the core of the extreme and a clear westward tilt in the transport

column. As could be expected by characteristics applying to such a broad domain, these can be

matched to fundamental characteristics of baroclinc disturbances, which are reproduced in idealised

simulations such as the Eady model. If one focusses on regional domains, it is also possible to suggest

potential synoptic analogues for the extreme events. At the same time, the wave number and wavelet
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Figure 92: Synoptic analogues for extreme events in heat transport. See text for further details.

spectra shown above (see both the present section and Section 4.3) suggest that a large portion of

the power of extreme heat transport events comes from low wave numbers and long periods. These

considerations pose two questions:

i) Are the long temporal and spatial scales compatible with a direct correspondence between extreme

events and atmospheric synoptic and mesoscale features?

ii) Why are the long spatial and temporal scales evident in the spectral analysis but not in the

cross-sectional composites?

Concerning the �rst question, the wavelet and wavenumber spectra do not preclude a direct
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correspondence between the extremes and synoptic systems. In fact, large variations in power at

periods below 6 days and at high wavenumbers could still be su�cient to determine whether events

with high power at longer periods and broader spatial scales classify as extremes or not. One can

therefore reconcile the spectral and synoptic analyses, and interpret the extreme events as regionally

coherent synoptic features superimposed on planetary-scale variability. Physically, the extremes are

therefore linked to synoptic systems, but these are slaves to the larger scales. Adopting this view,

the atmosphere will e�ect a heat transport �burst� only when a vigorous local circulation is in phase

with a larger-scale anomaly.

The above interpretation is based on a synoptic and planetary wave view of the atmosphere. It

should be noted that there are alternatives to this framework, such as that suggested by Larichev

and Held [1995]. In the latter model, heat �ux (or, more precisely, potential vorticity �ux in the two-

layer model framework) is dominated by the largest eddies excited by the inverse barotropic energy

cascade, rather than by the deformation-scale ones. In this perspective, the low wave number systems

discussed in this section would be interpreted as equivalent barotropic patterns, such as the annular

modes. Note that, while in the net equivalent barotropic modes account for no heat transport, they

can drive strong local �uxes. A caveat of this interpretation is that it is unlikely to apply to the

SH, where the high coherence values discussed in Section 4.4 are more reminiscent of a linear wave

regime.

Regarding the second question, there are two distinct aspects which require an answer: a �rst

pertaining to the temporal domain and a second to the spatial one. For what concerns the temporal

scales, there are indeed extremes whose duration is beyond baroclinic timescales. This is clearly

illustrated in �gure 50, where a signi�cant number of extremes has periods beyond 6 days. In addition

to this, the importance of the longer periods is possibly over-emphasised by the localised nature of

the extremes. As discussed in Section 4.1, a local phenomenon requires a minimum spread in the

frequencies (or spatial scales) generating it. Very localised events will therefore yield low-frequency

components in a spectral analysis. Because of these two factors, it is not entirely surprising that a

broad range of temporal scales play a role in the spectra of the extreme events.

These longer periods are not so evident in the cross-sectional composites, such as �gure 59. The

�gure clearly shows a peak in transport, lasting for approximately 1 day and then rapidly dying

away. However, two days before and after the event, the transport is still greater than 1 × 1010
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Wmb−1, which places it around the 90th percentile of the transport distribution for NH DJFs. These

values are around seven times smaller than the central peak, but are still in the top percentiles of

their distribution, and indicate that the strong transport associated with the extreme has all but

died away. The impression that the long timescales are not shown by the cross-sectional composite

is therefore due to the predominance of the central peak of the extreme which, in the colourmaps,

misleadingly suggests that the extreme events e�ectively last for a single day.

For what concerns the spatial dimension, the integrated spectra (panels b, d and f of �gures

86-89) only refer to the long time periods (10-32 days). It is not necessarily unexpected that these

longer periods should correspond to large spatial scales. For example, this would be the case for non-

dispersive Rossby waves. For periods below six days, the low wavenumbers are much less prominent

(see panels a, c and e of the same �gures). The cross-sectional composites of the transport (e.g. �gure

58) obviously include motions at all periods, and this explains why the long spatial scales are more

evident in the integrated spectra than in the colourmaps. Moreover, as was the case for the temporal

composites, the central peak of the extremes is very prominent, masking transport values which are

nevertheless in the top percentiles of their respective distributions. Finally, the localised nature of the

extremes might arti�cially enhance the importance of the long spatial scales in the spectral analysis.

6 Conclusions

The present chapter focuses on the physical interpretation of the extreme events. A detailed anal-

ysis of the circulation characterising the extremes suggests that there are features common to both

hemispheres. These include a westward tilt of the heat transport column and ascending air�ows in

correspondence with the core of the extreme. Many details of the local circulation, however, vary

on a regional scale. Seven geographical domains, corresponding to areas of high extreme event oc-

currence, were selected and analysed. The storm track ones (Atlantic, Paci�c and Southern Ocean),

were found to have WCB-type extremes, characterised by rapidly ascending warm, moist air�ows

and cold intrusions (akin to cold conveyors). The North Seas domain was seen to be characterised

by cold air outbreaks and warmer air return �ows, which recall the precursors to the development of

polar lows. The Siberian Plateau and Bering Strait domains, �nally, display features consistent with

the local low-pressure, warm-core systems commonly found in those regions. These are not captured
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by the WCB maps, which adopt very stringent selection criteria. However, they can still e�ect large

heat transports, either by poleward advection of the warm core or by small phase di�erences between

the velocity and MSE �elds. It should also be noted that the Bering Strait domain is characterised

by a signi�cant variability, and some of the events correspond to cold air outbursts from the Arctic

basin.

A detailed investigation of the timescales involved in driving the extreme events was also per-

formed, based on wavelet spectra. The analysis is in terms of v′, H ′ and v′H ′ power spectra and v′

and H ′ cross-power and coherence-phase plots. The outstanding feature of the v′ and H ′ spectra is

the increase in power with increasing period, which is not reproduced in the v′H ′ spectra. As a result

of this feature, baroclinic timescales in v′ and H ′ �uctuations account for a limited part of the power

in the extreme v′H ′ days, comparable to that seen for average transport days. It is also found that

power at periods beyond baroclinic timescales is mainly driven by planetary scale waves, con�rming

that the extreme events are not simply signatures of passing synoptic systems.

As discussed in Section 4.1, the importance of the longer periods is not obvious from a simple

evaluation of the bandwidth theorem. However, the theorem only sets a lower bound on the required

range of frequencies. Indeed, in quantum mechanics, wave packets are commonly expressed as an

integral over an in�nite spread of wave numbers (and hence of angular frequencies). Analogously to

the quantum wave packet, the present study therefore �nds that the localised extreme occurrences in

v′H ′ require a much broader range of frequencies than the lower limit set by the bandwidth theorem.

This, combined with the conclusions drawn from the regional domains, motivates the interpretation

of the extremes as being characterised by the synoptic features discussed above, superimposed on

larger-scale motions. It also highlights the roles of phase and coherence, across a broad range of

frequencies, in generating extreme v′H ′ occurrences.

The importance of phase in generating extremes had already been hypothesised in Messori and

Czaja [2013b], in the context of baroclinic timescales. Here, the result is established robustly and

placed in the context of the time-frequency characteristics of the spectra. Furthermore, the role of

coherence is added to the picture. Indeed, it is shown that the key to generating an extreme lies in the

coincidence of ideal coherence and phase relationships, and that only one of the two is a necessary but

not su�cient condition. An important consequence of this �nding is that extreme event days might

not be immediately distinguishable from random days in terms of v′ and H ′ spectral characteristics,
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meaning that, potentially, moderate v′ and H ′ anomalies at periods beyond baroclinic timescales

could drive very large meridional heat transport events.

148



Part V

Extreme Events in Atmospheric Heat

Transport: Idealised Physical and Statistical

Analogues

1 Aims of the Chapter

The previous chapters have established the importance of extreme events in heat transport, in both

reanalysis and model data. Furthermore, idealised GCM simulations suggest that the sporadic nature

of heat transport might be a basic property of the atmosphere. The physical interpretation of the

extremes has also been discussed. The present chapter aims to:

i) Relate these extremes and their interpretation to minimal physics models;

ii) Con�rm that they are a fundamental component of the dynamics of the atmosphere.

In order to satisfy both points, we will present the simplest possible setups which still capture the

salient features of heat transport extremes.

2 Outline

Messori and Czaja [2013, hereafter MC13] robustly established the sporadic nature of heat transport

in the atmosphere. The present thesis has shown that this feature is reproduced in both idealised

experiments in intermediate complexity, coarse-resolution AOGCMs, and realistic simulations with

smoothed SSTs (Chapter III). This suggests that the transport's sporadicity has nothing to do with

mesoscale signals and characteristics of the atmosphere's lower boundary but, rather, must be an

intrinsic property of waves in the atmosphere. Here, we bring this reasoning a step further, and try

to relate the presence and nature of heat transport extremes to basic statistical considerations and

minimal physics models.
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First, the classic wave framework of atmospheric dynamics is adopted. A sinusoidal picture of

v and H anomalies is presented, and it is shown that such simpli�ed statistical view succesfully

reproduces the skewed transport distribution seen in the reanalysis data (Section 3). Next a radically

di�erent viewpoint is taken, and a quantised picture of heat transport is adopted, basing the approach

on the heton model developed by Hogg and Stommel [1985a; 1985b] (Section 4). The implication of

the model results for the considerations made in the previous chapters will be discussed in Section 5.

The main inferences and conclusions reached in this chapter will then be summarised in Section 6.

3 An Idealised Statistical Model

Messori and Czaja [2013b; 2013c] have shown that phase relationships between v′ and H ′ play a

key role in driving meridional heat transport extremes. The simplest test of this picture is to adopt

a wave view of atmospheric motions, and liken v and H perturbations to plain sinusoidal curves.

Figure 93 shows the PDFs resulting from the product of two sine curves of equal amplitude (here unit

amplitude) and frequency (here unit angular frequency). Panel a) considers the case where the two

waves are in quadrature; panel b) where they are in phase. For the quadrature case, the PDF of the

product is symmetric about its median value, namely zero. As can be easily veri�ed, the minimum

of the distribution is then found at the median, the most likely value coincides with the two extreme

values, and the skewness is null. When the same waves are in phase, the PDF simply shifts towards

positive values of v′H ′, with one of the two most likely values now being at zero, but the shape of

the distribution remains unchanged. Both distributions are therefore far from resembling that shown

in panel c of �gure 32 on page 61.

Next, consider v′ and H ′ being represented by a superposition of sine waves over a broad spectrum

of frequencies and amplitudes. The product of a high (say for v′) and a low frequency (say for H ′)

wave yields a wave packet-like pattern, with frequent oscillations around zero. This is shown in

�gure 93c. Hence, this interaction is able to reproduce the near-zero most likely value of the v′H ′

distribution. The extended positive tail of the PDF, on the other hand, originates from the range

of amplitudes considered. As discussed above, the product of two sinusoidal curves will yield most

likely values at the two extremes of the distribution. For near in-phase waves, such a distribution

will mostly cover positive values, and the magnitude of the extremes will depend on the amplitude
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Figure 93: The left hand side panels display the PDFs resulting from the product of two sine curves
of unit amplitude and angular frequency. The relative phase is a) π/2 and b) 0. Panel c) shows
the product of two sine curves with unit amplitude and angular frequencies of ω = 1 and ω = 10
respectively.

of the two waves. The e�ect of having a distribution of random amplitudes for near in-phase waves

is, therefore, to spread out these most likely values. Those corresponding to the maxima of the

individual distributions will yield a long positive tail. The result is a PDF with a near-zero most

likely value and a long positive tail, analogously to that shown in �gure 32c. A simple example is

given in �gure 94. In order to produce the PDF shown in the �gure, the following equations were

adopted:

v′ =
∑
i

Aisin(ix+ ϕi)

H ′ =
∑
i

Bisin(ix+ ϕi + ∆ϕ) (38)

v′H ′ =
∑
i

∑
j

AiBjsin(ix+ ϕi)sin(jx+ ϕj + ∆ϕ)

Here i and j represent summation over a range of frequencies (corresponding to periods ranging from
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Figure 94: PDF resulting from the product of two linear sums of sinusoidal waves, taken as simple
models for v′ and H ′. The distribution reproduces both the long positive tail and the near-zero most
likely value of the v′H ′ PDF seen in �gure 32c [from Messori and Czaja, 2013b].

seasonal to daily scales), each with corresponding amplitudes Ai and Bj and random phases ϕi and

ϕj . ∆ϕ is a �xed phase relationship between all v′ and H ′ waves, here set to π/10 as an indicative

near in-phase scenario. This reinforces our interpretation of the distributions of v′, H ′ and their

product as resulting from a broad spectrum of travelling waves.

4 The Heton Model

4.1 Model Description

The description of the heton model provided in this section is largely based on Hogg and Stommel

[1985a; 1985b].

We now adopt a very di�erent picture, abandoning altogether the wave view of the atmosphere.

Since the key conclusion of the present thesis is that heat transport is sporadic, as illustrated graph-

ically by the bar plots shown in �gure 45 on page 78 and �gure 56 on page 94, we try to relate the

extremes to a quantised view of heat transport. Indeed, by drawing on ideas from other �elds of

Physics (e.g. Quantum Mechanics) one can think of heat as a discrete, particle-like process. This
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idea is not entirely new, and has been applied to the atmospheric and oceanic sciences by Hogg and

Stommel in their heton model [Hogg and Stommel , 1985a; 1985b]. Such model was outlined in Chap-

ter II, Section 2.5 on page 53, and is described here in greater detail. It will be used to help interpret

the results presented in this thesis from a very di�erent viewpoint compared to that adopted thus

far.

The heton model is a two-layer system, seeded with point geostrophic vortices. These are expressed

as local potential vorticity anomalies, and give rise to deviations in the interface between the two

layers, hence inducing �ow anomalies. The nature of the interface deviations depends on the sign

of the vortices, and on the layer in which these are placed. The two layers have di�erent potential

temperatures; for a mock atmosphere or ocean, the upper layer would have a higher temperature

than the lower one. Deformations in the interface can therefore be likened to thermal anomalies. The

terminology adopted here will call positive vortex one that drives a cyclonic circulation, and negative

vortex one associated with an anti-cyclonic one. A positive vortex will draw the interface towards

itself, regardless of whether it is in the top or bottom layer of the model. Conversely, a negative one

will repel it. Depending on the interface deviation associated with it, a vortex may be further termed

hot or cold. Any vortex leading to a downward displacement of the interface (namely a negative

vortex in the upper layer or a positive vortex in the lower one) will be hot. Conversely, any vortex

leading to an upward displacement of the interface (namely a positive vortex in the upper layer or a

negative vortex in the lower one) will be cold. One can further consider combinations of two vortices.

Where both share the same sign, they will form a barotropic pair. Where their signs di�er, they

form a baroclinic pair. If in di�erent layers, the two vortices in a baroclinic pair will both displace

the interface in the same direction; one can therefore have hot or cold baroclinic pairs. Because they

have a well de�ned �temperature�, when such pairs move they will transport heat in the direction of

movement. The heat-transporting baroclinic pairs are termed hetons. Figure 95 provides a graphical

summary of the terminology described here, relating the di�erent vortices to the associated interface

deformations. The top four panels show examples of hot and cold positive and negative vortices,

while the bottom panels show vortex pairs. The left hand side one depicts a hot heton, while the

right hand side one illustrates an example of barotropic pair e�ecting no net heat transport.

An example of a two-layer model and the anomalies associated with a single cold heton are

illustrated in �gure 96. Panel a) shows the two layers of the model. LH is the total thickness of the
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Figure 95: Interface deformations resulting from point geostrophic vortices in a two-layer model. The
top four panels show examples of hot and cold positive and negative vortices, while the bottom panels
show vortex pairs. The bottom left hand panel depicts a heat-transporting pair. The bottom right
hand one depicts a pair which e�ects no net transport of heat [adapted from Hogg and Stommel ,
1985a].
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layers, while h is the thickness of a single one. Each layer has a potential vorticity anomaly q associated

with the vortex, and a corresponding streamfunction ψ. Here, we limit ourselves to a qualitative

description of the setup; the mathematical relations governing the model are discussed below. Panel

b) illustrates the upper-layer potential vorticity pro�le of the heton. Panels c) and d) show the

induced interface deviation and upper-layer azimuthal velocity. r is simply the radial distance from

the heton core. Note that, since the vortex is a point anomaly, mathematically represented by a

delta-function, the velocity at the location of the vortex tends to in�nity (or, more precisely, varies

as 1/r). The heton in the example has a cold core, and the interface domes upwards (compare this

to the hot heton depicted in �gure 95). This induces a cold temperature anomaly in correspondence

with the doming interface, and a cyclonic circulation in the top layer of the model. The azimuthal

velocity of the bottom layer (not shown) would be anti-cyclonic. A more complex example of hetons

in a two-layer model is illustrated in �gure 97. This shows the upper-layer temperature anomalies

associated with a cluster of randomly seeded hetons (marked by the red dots). In this speci�c example

the hetons are again cold, meaning that they cause an upward deformation of the layer interface.

The red points therefore correspond to the largest negative temperature anomalies. The large-scale

cyclonic circulation around the heton cluster is evident but, as can be seen, the hetons also give rise

to �ner anomaly patterns in the interior of the cluster.

The mathematical formulation of the heton model is reasonably simple, and is based on the

quasi -geostrophic formulation of potential vorticity. Here quasi -geostrophy refers to a �ow where

the advection terms in the momentum equation are too large to be ignored but still one order of

magnitude smaller than the Coriolis and pressure gradient terms. The latter are the terms which

de�ne geostrophic balance, as discussed in Chapter II, Section 1.3 on page 26. Vorticity is simply the

curl, or rotational part, of the velocity �eld. The vorticity of an air parcel can be decomposed into

a planetary component, due to the Earth's rotation, and a relative component, due to the parcel's

motion relative to the planetary frame. The sum of the two gives the absolute vorticity, namely the

vorticity for an inertial frame. Quasi -geostrophic potential vorticity is then the sum of the absolute

vorticity and a stretching term related to the vertical displacement of isentropes. It is a useful quantity

because it is conserved in adiabatic, frictionless �ows.

In a two-layer model seeded with point potential vorticity anomalies, the streamfunctions7 ψ1 and

7The streamfunction ψ of a two-dimensional �ow ~u is commonly de�ned as: ~u = −∇× ψ.
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Figure 96: Panel a) shows the two-layer model cross-section. LH is the total thickness of the model, h
is the thickness of a single layer, and q and ψ are the potential vorticity anomalies and streamfunctions
associated with each layer. Panel b) shows the upper-layer vorticity pro�le of a single, cold heton.
Panels c) and d) show the induced interface deviation and upper-layer azimuthal velocity. r is simply
the radial distance from the heton core [adapted from Legg and Marshall , 1993].
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Figure 97: Temperature anomalies associated with a cluster of randomly seeded hetons (marked by
the red dots). The hetons are cold, meaning that the red points correspond to the largest negative
temperature anomalies. The contour interval is 0.005 K [adapted from Legg and Marshall , 1993].

ψ2 in the two layers must satisfy the following equations:

∇2ψ1 −
1

2
λ−2(ψ1 − ψ2) = δ1(r) (39)

∇2ψ2︸ ︷︷ ︸
A

+
1

2
λ−2 (ψ1 − ψ2)︸ ︷︷ ︸

B

= δ2(r) (40)

Here, the subscripts identify the layer and δ(r) is a delta function. λ is the Rossby radius of defor-

mation8, commonly expressed as:

λ =
NBV LH

f
, (41)

where NBV is the Brunt-Väisälä frequency, LH is a vertical length scale and f is the Coriolis pa-

rameter. Here, λ can be interpreted as an interaction length scale for baroclinic pairs, as discussed

below. A is a relative vorticity term, while B is a stretching term accounting for deformations in the

interface between the two layers, as discussed above. There is no planetary vorticity factor because

the heton model adopts an f -plane formulation, meaning that the Coriolis parameter is set to a

constant. Equations 39 and 40 are the standard expressions for the streamfunctions of a two-layer

8The Rossby radius of deformation is the length scale at which rotational and buoyancy e�ects become comparable.
Consequently, it sets the scale for atmospheric cyclonic and anti-cyclonic motions.
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baroclinic model. Detailed derivations can be found, among others, in Holton [1979] and in Legg and

Marshall [1993]. The barotropic and baroclinic streamfunctions, ψ = ψ1 + ψ2 and ψ′ = ψ1 − ψ2

respectively, are then given by:

∇2ψ = δ1 + δ2 (42)

∇2ψ′ − λ−2ψ′ = δ1 − δ2 (43)

From the streamfunctions ψ1 and ψ2, one can determine the motion of any given vortex as a result

of its interactions with the other vortices in the domain. By the de�nition of the streamfunction, the

horizontal velocity components are given by: ui = −∂ψi

∂y and vi = ∂ψi

∂x , i = 1, 2. The streamfunctions

for each layer can then be re-written in terms of their barotropic and baroclinic counterparts:

ψ1 =
1

2
(ψ + ψ′) =

1

2
[(s1 + s2)log(r)− (s1 − s2)K0(r/λ)] (44)

ψ2 =
1

2
(ψ − ψ′) =

1

2
[(s1 + s2)log(r) + (s1 − s2)K0(r/λ)], (45)

where si are the nondimensional strengths of the point vortices, r is the radial distance from the

vortex and K0 is a modi�ed Bessel function of the second kind, namely a type of exponentially

decaying function. It is the K0(r/λ) term which motivates the interpretation of λ as an interaction

scale for baroclinic vortices.

In a cloud of vortices, each vortex will be a�ected by the presence of all the others. Using the

above framework, the equations of motion for a cloud of N vortices can then be expressed, for each

vortex νi, in terms of the e�ect of all other vortices νj , j 6= i:

ui = −
j=1...N∑
j 6=1

1

2
sj

(
yi − yj
r2ij

)[
1 + βij

rij
λ
K1

(rij
λ

)]
(46)
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vi = −
j=1...N∑
j 6=1

1

2
sj

(
xi − xj
r2ij

)[
1 + βij

rij
λ
K1

(rij
λ

)]
, (47)

where (xi,yi) is the position of vortex νi, rij is the separation between vortex νi and vortex νj and

βij is a binary quantity, with positive unit value if νi and νj are in the same layer and negative

unit value otherwise. K1 is a di�erent modi�ed Bessel function of the second kind. If, in the same

model domain, one seeds a number of di�erent pairs, these will therefore interact. The sign of βij in

equations 46 and 47, implies that vortices in same layer will have a stronger interaction than those

in di�erent layers. When discussing vortex pairs, the pairing is based on interaction strength, which

is therefore not inversely correlated to spatial distance.

Baroclinic pairs are seen to have a limited interaction range, given by λ; within this range,

they act to produce a shear between the two layers, and therefore split neighbouring pairs. It is

instructive, in this regard, to consider a very simple interaction between two hetons, one hot and one

cold. This example, discussed in detail in Hogg and Stommel [1985a], can be interpreted physically

as representing thermal processes in a two-layer ocean. The vortices are initially perfectly aligned

with their companions, and are therefore only a�ected by the other pair. As soon as the vertical

alignment is altered, and the heton has split, companion vortices also interact among themselves.

What is seen to happen is that both hetons initially move towards each other, while the split between

the individual vortices increases. During this phase, a meridional heat transport occurs, which can

be shown mathematically to correspond to a decrease in the system's APE. As the four vortices

approach, new pairings are formed between vortices in the same levels. These two new pairs interact

very strongly, and rapidly move in opposite directions. This motion e�ects no heat transport because

the new pairs are in same layer. The trajectories of the vortices in this simple setup are shown in

�gure 98. Numerous experiments of a similar type can be performed, involving more hetons or

adding barotropic pairs to the picture. The key point of these simple setups is that hetons with the

same temperature (i.e. both hot or cold), tend to repel if further away than one deformation radius,

and split if closer. On the other hand, hetons with opposite temperatures will attract at far range

and split when closer.

Due to the easily tractable mathematical framework of the model, it is possible to go beyond the
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Figure 98: The trajectories of individual vortices in a two-heton experiment. The hetons are unit
strength, initially aligned, and of opposite temperatures [from Hogg and Stommel , 1985a].

simple case presented above and consider the interactions of large groups of hetons. In a uniformly

dense array of same temperature hetons, the baroclinic �elds of the individual vortices cancel out. At

the edges of the array, however, the �eld is non-zero and a rim of baroclinic velocity forms. Individual

vortex pairs which attempt to leave the array are split by this rim current and cannot escape. Since, in

the near �eld, hetons with same temperature do not repel, clusters of these vortices can form. These

e�ectively behave like a composite heton. Figure 99 shows how the boundaries of the initial heton

cloud deform, and how composite hetons can form at the rim. If a su�ciently large composite forms,

this can then �break� the rim current. This behaviour is termed hetonic explosion, an example of

which is shown in �gure 29 on page 55. The composites, however, often do not have the same number

of top and bottom vortices, and therefore do not explode outwards until interactions with other pairs

balance the numbers. The spatial details of the composite hetons depend on the deformation radii of

the individual vortices. From a physical standpoint, composite hetons can be likened to the varying

amplitudes of atmospheric waves. In the context of heat transport, hetonic explosions can be taken as

analogues for extreme transport events, since they correspond to very large, rapidly moving thermal

anomalies.

4.2 Heat Transport Calculation

A key part of the framework described above is that it allows to compute the heat transport as a

result of heton motions. The technique applied here is an extension of Legg and Marshall [1993], and
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Figure 99: Schematic of the deformation of a heton cloud and formation of composite hetons at the
rim. The continuous line corresponds to the top layer, the dashed line to the bottom one [from Hogg

and Stommel , 1985b].

was originally applied to an ocean model. It considers hetons of strength e0 seeded at a rate Nr per

unit time, within a given domain. The hetons are free to exit and re-enter the domain. Here, we try

to relate this framework to an atmospheric domain. If seeding cold hetons, this setup would mimic

atmospheric radiative heat loss at high latitudes.

For N in being the number of hetons within the domain, and Nout being the number without, the

following will be true at all times:

∂

∂t

Nin∑
i=1

eini +

Nout∑
i=1

eouti

 =
∂

∂t
(Qr +Qd) (48)

Here, e is the strength of the vortices, expressed as an energy (thermal) anomaly in J . In order to

make our computation widely applicable, this is left as a variable. ∂
∂tQr = e0Nr is the energy change

due to the new hetons being seeded (for Nr expressed in per unit time). Provided the new seeds

are cold hetons, in atmospheric terms this would correspond to the radiative cooling term mentioned

above. ∂
∂tQd is the energy change due to changes in heton strength over time. If heton strength

decays, this term could be interpreted as a damping factor for thermal anomalies in the atmosphere.
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Figure 100: Schematic showing a seeding (black circle) and a heat transport (red circle) domain. The
heat transport described by equation 50 is the integrated heat �ux across the red domain's boundary.
Nin are the hetons within the red circle and Nout those without.

Note that, in the above discussion, the seeding domain and the domain relative to which the heat

transport is computed are taken to be the same. It is, however, entirely possible to adopt the same

formulation while computing the transport across a domain boundary that does not coincide with the

seeding domain. This setup is illustrated in �gure 100. The black contour shows the seeding domain,

and the red contour a hypothetical, larger domain relative to which the heat transport is computed.

N in and Nout are then the numbers of hetons within and without the red curve.

For the case where the hetons decay over time at a rate αd, the corresponding energy change

satis�es:

∂

∂t
Qd = −αd

Nin∑
i=1

eini +

Nout∑
i=1

eouti

 (49)

Combining the above with equation 48, the following can be derived:

∂

∂t

Nin∑
i=1

eini −Qr

 =
∂

∂t

Qd − Nout∑
i=1

eouti
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⇒ ∂

∂t

Nin∑
i=1

eini


︸ ︷︷ ︸

A

+αd

Nin∑
i=1

eini

− ∂

∂t
Qr︸ ︷︷ ︸

B

= − ∂

∂t

Nout∑
i=1

eouti (1 + αd)

 = HT , (50)

whereHT is the heat �ux across the domain boundaries. The two terms on the left hand side represent

(A) the local change in heat content and (B) the diabatic processes within the domain. The heat

transport therefore depends on the number of vortices within and without the domain. Composite

hetons crossing the domain boundary will clearly have a large e�ect on it.

4.3 Experiment Design

Two di�erent experiment setups are designed. Both consider a circular domain, meant to represent an

idealised polar region. The domain size is chosen to roughly coincide with a spherical cap bounded by

the 60◦ N latitude circle. The hope is to reproduce the sporadic nature of heat transport witnessed in

the real atmosphere in terms of hetonic heat transport into the cap. Because of this, all atmospheric

parameters, listed in table 9 a), were chosen to match realistic values measured in the atmosphere

and, where possible, were set to round values in the spirit of the idealised simulation performed here.

We term the �rst experiment initial value experiment. Cold hetons are initialised at random

locations within the domain, and are then left to evolve freely over time. Their strength at time t, et

varies according to:

det
dt

= −αdet (51)

No additional vortices are seeded at later timesteps. The heat transport is computed across the

domain boundary and at a number of larger radii. While this setup does not relate directly to the

type of continuous radiative cooling one might envisage in the atmosphere, it has the advantage of

being very computationally inexpensive. It is adopted mainly to study the heton dynamics and verify

the existence of composite hetons. To get meaningful statistics, the experiment is replicated 50 times.

The second experiment, termed continuous seeding experiment, considers the same initial domain.

Now, however, cold hetons are seeded within the domain at every timestep, always at random loca-

tions. There is an initial spin-up phase, where the number of hetons grows with time. Equilibrium
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is reached once the initial seeds decay to zero, and the new seeds balance the decay but do not

increase heton numbers further. This setup mimics a constant radiative cooling, and presents a more

immediate physical link to the real atmosphere than the initial value setup. Again, heat transport is

computed at the domain boundary and at various other radii. In order to get meaningful outputs,

each setup is run at equilibrium for 160 model timesteps, corresponding to just under one month.

This number is heavily limited by the computational facilities available.

Both the above experiments present a large number of parameters which need to be set. The two

main ones are heton strength, e, and number density, n. The latter quantity is closely related to

Nr, and is simply the spatial density of hetons within the model domain. Obviously, once e is set

so is n, and vice-versa. For the initial value experiment, heton strength can be related to an initial

heat content anomaly in the domain. In the real atmosphere, such anomaly is a volume integral of a

temperature perturbation, given by:

E =

∫∫∫
dxdydp

(
cpT

′

g

)
≈ cpT ′

∆p

g
LxLy, (52)

where E is the heat content anomaly, cp is the speci�c heat capacity of dry air at constant pressure

and Lx and Ly are typical horizontal length scales. If we take E to represent the heat content

anomaly of the whole domain (which will henceforth be called Ed), these represent the size of the

domain itself. For the anomaly associated with an individual heton, e, these would be related to the

latter's interaction length scale, λ. Using the domain parameters speci�ed in table 9, and setting

∆p = 7.75 × 104 Pa, the approximate thickness of the troposphere, and T ′ = 5 K, we obtain

Ed ≈ 1.18 × 1021 J . There is certainly some degree of arbitrariness in selecting the exact values for

these quantities, but they are generally chosen to be within realistic ranges for the real atmosphere

in the mid-to-high latitudes.

Since there is no continuous seeding, Nr = 0, except for the �rst time step, where Nr = Ntot = N0,

the initial number of hetons within the domain. The strength of an individual heton can then be

expressed as:

e =
Ed
N0

(53)
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For the continuous seeding experiment, heton strength can be related to the rate of radiative

cooling in the atmosphere in the mid-to-high latitudes, which is of order H = 200 Wm−2 [Campbell

and Vonder Haar , 1980]. This value refers to the net radiative cooling of an air column; a rough

conversion to a rate in K/day can be performed by assuming a constant cooling throughout the

column. By taking the values for speci�c heat capacity (cp), density (ρ) and vertical length scale

(LH) provided in table 9 a), H can be expressed as:

H{K/day} =
H{Wm−2} × 3600× 24

cpρLH
≈ 2.87K/day

Such value, together with the optional heton decay rate, e�ectively sets the mean heat transport in

the model's steady state.

For N tot = N in +Nout, ignoring decay, we have:

∂N tot

∂t
=
HA

e
, (54)

where A is the area of the seeding domain. For a seeding timestep ts, this provides an equation for e:

e =
HAts
N tot

(55)

The next step is to relate the heton strength, e, to its nondimensional counterpart, s, in terms of

which the model is formulated (see equations 44 and 45). Starting from equation 52, the temperature

anomaly can be re-formulated in terms of heton strength according to:

e ≈ cpT ′
∆p

g
λ2 =

1

4

ρcpf

gα
λ2qss, (56)

where α is the coe�cient of thermal expansion for dry air and qs is a dimensionalisation factor for s

in m2s−1 [Legg and Marshall , 1993].

In the idealised setups presented here, it is di�cult to relate e to a physical quantity that could

suggest the most appropriate value. Combinations of e and n, however, can be readily related to either

a heat content anomaly or a radiative cooling rate (see equations 53 and 55). The approach adopted

here is therefore to test a range of combinations of these two parameters, such that their product is

always constant and corresponds to physical values of Ed and H. The di�erent combinations adopted
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a) s N0 b) s Nr

100 10 50 2
50 21 25 4
25 41

Table 8: The di�erent heton strength-heton number combinations for a) initial value and b) contin-
uous seeding experiments. N0 is the initial number of hetons within the domain; Nr is the number
of hetons seeded at every timestep.

are shown in table 8. The number of hetons is presented in terms of N0 and Nr, rather than n, to

provide values that can be more readily related to the dynamics of the experimental setups described

above. Since only whole numbers of hetons can be seeded, the Ed and H values corresponding to

the combinations shown below vary slightly from experiment to experiment. For the initial seeding

case, the number of hetons was simply rounded to the closest integer. For the continuous seeding

case, however, since the number of hetons is much smaller, it was chosen to keep the same linear

relationship between s and Nr for both experiments. The number of combinations for the continuous

seeding experiment is severely limited by the computational cost of running the simulation.

Table 9 provides a summary of the quantities relevant to the two experiments. All atmospheric

parameters, described in table a), were chosen to match realistic values measured in the atmosphere

and, where possible, were set to round values in the spirit of the idealised simulation performed here.

The chosen values for the atmospheric parameters are then used to compute a domain-integrated heat

content anomaly, Ed, for the initial value experiment, according to equation 52. The corresponding

radiative cooling rate for the initial value experiment is set to a realistic atmospheric value. The

atmospheric parameters can also be used to compute the value of the Rossby radius of deformation

λ:

λ =
NBV LH

f
∼ 770 km

The domain size is selected so as to mimic a polar cap bounded by the 60◦ latitude circle, and its

radius is set to 4λ. The heton lifetime, from time of seeding to time of disappearance, is set to

approximately 1 week, to match a realistic thermal relaxation timescale in the atmosphere. Since the

model is formulated in terms of non-dimensional variables, the dimensional parameters listed in the

table are simply used to rescale model output to SI units.
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a)
Parameter Name Value Notes

Combined layer height (LH) 10 km Approximate height of tropopause
Combined layer pressure thickness (∆p) p = 7.75× 104 Pa Approximate thickness of troposphere

Reference velocity (vref ) 5 ms−1

Reference tempertaure anomaly (T ′) 5 K
Brunt-Vaisala frequency (NBV ) 10−2 S−1 e.g. Peixoto and Oort [1992]

Coriolis parameter (f) 1.3× 10−4 Value at 65◦ N
Coe�cient of thermal expansion for dry air (α) 3.9× 10−3 K−1 From Dixon [2007]

Air density at mid-levels (ρ) 0.6 kgm−3 From ICAO [1952]
Speci�c heat capacity for dry air (cp) 1005 Jkg−1K−1 e.g. Peixoto and Oort [1992]

b)

Parameter Name Initial Value Continuous Seeding Notes

Heat content anomaly (Ed) 1.22× 1021 J - See equation 52
Radiative cooling rate (H) - 200 Wm−2 From Campbell and

Vonder Haar [1980]
Domain radius 3080 km 3080 km ∼ 60◦ latitude circle
Domain area (A) 2.97× 107 km2 2.97× 107 km2

Model timestep 1.54× 104 s 1.54× 104 s
Seeding timestep (ts) 1.54× 104 s 1.54× 104 s Same as model timestep

Dimensional heton strength (qs) 3.85× 106 m2s−1 3.85× 106 m2s−1

Dimensional length scale (λ) 770 km 770 km Rossby radius of deformation
Dimensional time scale 1.54× 105 s 1.54× 105 s
Heton lifetime (TH) 4× 1.54× 105 s 4× 1.54× 105 s

Table 9: a) Atmospheric and b) model parameters for both initial value and continuous seeding
experiments.
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Figure 101: Snapshots of vortex positions during the �rst three timesteps of the initial value exper-
iment with N0 = 10 and s = 100. The black dots are vortices in the upper layer; the red dots ones
in the lower layer. The red rectangles in panels b) and c) highlight a rotational trajectory. The blue
rectangle in panel c) highlights a linear trajectory. The black contours mark the seeding domain with
radius of 4λ.

4.4 Initial Value Experiments

We begin the analysis of the heton model by focussing on the output of the three initial value

simulations, whose reference parameters are given in table 8. As discussed above, this experiment

considers an expanding heton cloud and is mainly aimed at investigating heton dynamics. Because

there is no heton seeding after the initial timestep, the experiment has a limited physical signi�cance

in relation to the real atmosphere. As could be naively guessed from the dynamics described in Hogg

and Stommel [1985a; 1985b], for low number densities no composite hetons form, and the individual

vortices simply propel outwards from the seeding domain. This is the case of the setup with 10 hetons

of non-dimensional strength 100. There are, obviously, numerous interactions between the hetons,

but these do not generally involve large numbers of vortices. Similarly to what seen in the Hogg

and Stommel experiments, the top and bottom vortices forming a heton often detach themselves

from their original partners. When two detached vortices in the same level meet, they are seen to

exhibit circular trajectories around a common centre. The typical evolution of the heton cloud for

this experiment is shown in �gure 101. Panels a), b) and c) show the three initial time steps of one

of the iterations of the experiment. The red rectangles in panels b) and c) highlight an example of

the rotational behaviour described above. The blue rectangle in panel c) highlights a pair which is

tightly coupled and proceeds on a linear trajectory away from the seeding domain. The latter domain

is marked by the circular contours, and has a radius of 4λ.

For higher number densities, some of the vortices get close enough to form clusters, which then
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propel outwards at greater speed than the individual hetons. These events are comparable to the

hetonic explosions described in Hogg and Stommel [1985b], where groups of vortices detach themselves

from the areas of denser population. Due to the fact that many vortices lose their original partners,

these vortex clusters are often imbalanced, with more vortices in one layer than in the other. Figure

102, taken from the experiment with N0 = 21 and s = 50, displays such composite behaviour.

Panels a) - f) represent the �rst six timesteps of a speci�c run of the experiment. The black and red

dots are top and bottom layer vortices respectively. The circular contours mark the seeding domain

with radius of 4λ. Starting from panel c), three clusters of vortices (marked by the black rectangles)

are clearly visible across the domain. Two of the clusters in the �gure contain similar numbers of

upper and lower level vortices, and propel quickly outwards (panel d)). The third contains mostly

bottom level vortices, and this initially hinders its radial accelleration. The fastest moving of the three

clusters leaves the domain, crossing the bottom right hand boundary (panels d) - e)). The remaining

two clusters interact, and one of them sheds top-layer vortices which go to balance numbers in the

other one. It should be noted that, while the cluster formation begins within the seeding domain, the

clusters tend to become well formed only beyond the latter domain's boundary. If, as hypothesised

here, hetonic explosions correspond to large heat transport events, these will be measured only if the

heat transport is computed across a domain with radius larger than the seeding domain's one.

Since the hetons are not continuously seeded, and their strength decays over time (see equation

51 on page 163), the heat transport across the domain boundary falls o� very rapidly. Figure 103

presents the heat transport time series for the three initial value simulations. The transport is

computed across the boundary of the seeding domain (r = 4λ). The continuous curves are the values

averaged across all 50 iterations performed for each setup. The blue curve coresponds to the N0 = 10,

s = 100 case, the red curve to the N0 = 21, s = 50 case and the black curve to the N0 = 41, s = 25

case. The dashed lines are the 1σ limits for the red curve. The transport values during the initial

timesteps are extremely large, approximately two to three times larger than what one would expect

in the real atmosphere. This is mostly due to the very quick expansion of the heton cloud, leading to

term A in equation 50 on page 163, becoming very large. The decrease in transport is very rapid, and

after approximately 2 days nearly all the vortices have left the seeding domain. In the experiments

with more numerous, weaker hetons, the transport decays more slowly. This is consistent with the

fact that weaker hetons interact less strongly with one another, and therefore take longer to cross
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Figure 102: Snapshots of vortex positions during the �rst six timesteps of the initial value experiment
with N0 = 21 and s = 50. The black dots are vortices in the upper layer; the red dots ones in the
lower layer. The three rectangles in panel c) mark three vortex clusters. The blue contours mark the
seeding domain with radius of 4λ.
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Figure 103: Heat transport time-series, in PW , for the three initial value setups. The transport is
computed across the boundary of the seeding domain (r = 4λ). The continuous curves are the values
averaged across all 50 iterations performed for each setup. The blue curve coresponds to the N0 = 10,
s = 100 case, the red curve to the N0 = 21, s = 50 case and the black curve to the N0 = 41, s = 25
case. The dashed lines are the 1σ limits for the red curve.

the domain boundary when they experience a repulsive interaction. The lower dashed line suggests

that some runs display negative transport values. This occurs because of the circular trajectories

characteristic of same-level vortex interactions. When two vortices start to gyrate around a common

point and their trajectories straddle the domain boundary, they provide a negative contribution to

term A in equation 50 whenever they re-enter the domain. Since the looping trajectories can persist

for several timesteps, this behaviour can lead to prolongued negative transport values.

Heat transport PDFs for the initial value experiment are not necessarily indicative of the char-

acteristics of the hetons' transport. Indeed, one could argue that the PDFs of such experiment are

skewed, and with a near-zero MLV, almost by design. The large heat transport values resulting from

the bulk of the vortices leaving the seeding domain would provide the PDF's long tail, while the

near-zero MLV would result from the timetseps when the hetons are beyond the domain's boundary

and have already decayed signi�cantly in strength. These could be likened to neutral days in the

ERA-Interim data, when the atmosphere does not carry much heat. Figure 104 presents the com-

posite heat transport distribution for all 50 iterations of the N0 = 10, s = 100 experiment. The

transport is computed across the boundary of the seeding domain. In order to limit the in�uence
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Figure 104: PDF of heat transport, in PW , across the boundary of the seeding domain (r = 4λ) for
the initial value experiment with N0 = 10, s = 100. The skewness is 2.4, the MLV is −2.4× 1012 W .
The vertical line shows the bin corresponding to the most likely value.

of the timesteps where all the hetons are very weak and well outside the seeding domain, only the

�rst �ve timesteps of every iteration are included. Notwithstanding this, the PDF reproduces the

predicted features, and looks very similar to the distributions found for the ERA-Interim data (see

�gure 41 on page 72). The main caveat is that the heat transport extremes are not related to hetonic

explosions, but are a direct consequence of the experiment's set-up. The MLV is negative simply

because it is de�ned as the central value of the bin with the highest frequency of events. The bin it

corresponds to is the bin containing zero.

4.5 Continuous Seeding Experiment

We now analyse the output of the continuous seeding experiments. Compared to the initial value case,

a more limited range of parameters is explored; however, the continuous seeding setup has a more

immediate link to the real atmosphere. The simulation, as outlined in Section 4.3, aims to represent

atmospheric heat transport into the polar cap. As was the case for the initial value experiment,

the number density of hetons across the domain is very uneven. Occasionally, vortices coalesce in

dense clusters and hetonic explosions occur. Figure 105, taken from the experiment with Nr = 2 and

s = 50, displays such composite behaviour. Three dense clusters of vortices, rapidly moving away

from the domain, are marked by black rectangles. As was seen in the initial seeding experiment, the

clusters tend to form well outside the seeding domain (marked by the circular contour), suggesting

that heat transport extremes might be best captured at large radii.

The very complex dynamics which govern large numbers of hetons lead to a highly variable

heat transport, very di�erent from the monotonic decay witnessed in the initial value setups. As

example, Figure 106 shows the time series of heat transport for the two continuous seeding simulations.
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Figure 105: Snapshot of vortex positions during the continuous seeding experiment with Nr = 2 and
s = 50. The black dots are vortices in the upper layer; the red dots ones in the lower layer. The
three rectangles mark three vortex clusters rapidly moving away from the bulk of the hetons. The
blue contour marks the seeding domain with radius of 4λ.

The transport is computed across the boundary of the seeding domain (r = 4λ). The blue curve

corresponds to the Nr = 2 and s = 50 case; the red curve corresponds to the Nr = 4 and s = 25 case.

The horizontal dashed lines mark the 95th percentiles of the two curves. Following the de�nition

adopted throughout the present thesis, the values above such threshold are termed extreme events. As

expected from the experiment's design, the mean transport of the two simulations is the same (∼ 3.5

PW ). There is a very small di�erence between the two due to computational rounding errors. The

blue curve has larger peaks, but its baseline value, which would correspond to the MLV of its PDF,

appears to be slightly lower than that of the red curve. This is consistent with the more quantised

nature of the Nr = 2 experiment, where there are fewer, stronger hetons. To understand this better

imagine the most extreme quantisation possible: a binary system where a single heton is either inside

or outside the domain. When the heton crosses the boundary, it will e�ect the whole transport of the

simulation. The MLV, or mode, of the time-series, on the opposite, will be zero. Now assume that

there are 100 hetons within the domain. Unless they cross the boundary all together, the peaks in

transport will be smaller than in the binary case. However, the MLV will be larger since, on average,

a few hetons will cross the boundary at every timestep.

The di�erences between the two continuous seeding simulations are re�ected in the variability

of the two model runs, illustrated by the box and whiskers plots shown in �gure 107. Plot a)

corresponds to the Nr = 2 and s = 50 case; plot b) corresponds to the Nr = 4 and s = 25 case.
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Figure 106: Heat transport time series, in PW , for the two continuous seeding setups. The transport
is computed across the boundary of the seeding domain (r = 4λ). The blue curve corresponds to the
Nr = 2 and s = 50 case; the red curve corresponds to the Nr = 4 and s = 25 case. The horizontal
dashed lines mark the 95th percentiles of the two curves.

Figure 107: Box and whiskers plots for heat transport, in PW , in the continuous seeding experiments.
The transport is computed across the boundary of the seeding domain (r = 4λ). Plot a) corresponds
to the Nr = 2 and s = 50 case; plot b) corresponds to the Nr = 4 and s = 25 case. The horizontal
red lines mark the 50th percentiles of the two heat transport distributions. The horizontal blue lines
mark the 25th and 75th percentiles. The whiskers' length corresponds to 1.5 times the interquartile
range. Values beyond these limits are marked by the red crosses.
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Figure 108: Heat transport time-series, in PW , for a) the continuous seeding experiment with Nr = 2
and s = 50; b) the continuous seeding experiment with Nr = 4 and s = 25; c) ERA-Interim data at
60◦ N, during DJF. The continuous seeding transport is computed across the boundary of the seeding
domain (r = 4λ), and has been downsampled to one point per day to match the sampling frequency
of the reanalysis.

The horizontal red lines mark the 50th percentiles (medians) of the two heat transport distributions.

The horizontal blue lines mark the 25th and 75th percentiles. The whiskers' lengths corresponds to

1.5 times the interquartile ranges. Values beyond these limits are marked by the red crosses. The

simulation with fewer hetons (plot a)) is indeed seen to have a larger variability; the medians are

almost identical and the lower mode of a) results in a broader inter-quartile range. As expected, the

higher variability of a) corresponds to longer whiskers and more numerous outliers.

The magnitude and variability of the heton transport can be compared to the values seen in

the daily ERA-Interim reanalysis. Figure 108 displays both datasets. The reanalysis data covers a

randomly selected 28-day interval at 60◦ N, during DJF. The transport was zonally integrated over

the full latitude circle and weighed by pressure level thickness in the vertical to obtain a value in W .

The heton model data has been downsampled to one point per day to match the sampling frequency

of the reanalysis. Panel a) presents data from the continuous seeding experiment with Nr = 2 and

s = 50; panel b) from the experiment with Nr = 4 and s = 25; and panel c) from the ERA-Interim

reanalysis. The continuous seeding transport is computed across the boundary of the seeding domain
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Nr s r = 4 5 6 7 8

2 50 11.1 11.6 13.5 13.4 14.1
4 25 8.95 10.1 10.5 10.8 10.0

Table 10: Percentage contribution of extreme heat transport events to the net meridional atmospheric
heat transport in the continuous seeding heton experiment.

(r = 4λ). Unlike for the initial seeding experiment, the heton transport values are comparable to the

ones seen in the real atmosphere. As reference, the mean value of plotted the ERA-Interim curve is

∼ 3.05 PW . It should be noted that this value refers to the component of heat transport e�ected by

transient motions only, over a random 28 day interval during an NH winter. It is therefore a purely

indicative value, but con�rms that the heton simulation captures the correct scale. Concerning the

variability of the signal, a visual estimate shows that this is highest in the Nr = 2 heton experiment,

while the Nr = 4 one looks very similar to the reanalysis curve. The standard deviations of the three

curves are found to be 1.64× 1015 W , 1.16× 1015 W and 1.49× 1015 W , respectively.

Concerning the extreme events in heat transport in the heton model, there are two questions

which need to be answered:

i) Do the extremes account for very high portions of the overall integral of the heat transport distri-

bution, as seen for the ERA-Interim data?

ii) If so, do these extremes correspond to hetonic explosions?

An important note to make is that the heton model should be compared to the zonal integrals in the

ERA-Interim data. Indeed, the method adopted here for computing the heton's heat transport does

not provide single-point values, but only a value integrated across the whole domain boundary. In

the model's idealised setup, this corresponds to integrals around latitude circles.

In order to answer the �rst question, table 10 displays the percentage contribution of the top 5

percentiles of the distribution to the net heat transport. The di�erent rows and columns display

the contributions for di�erent experimental parameters and radii. These values can be compared

to those for the latitudinal composites of the ERA-Interim data, shown in table 3 on page 74. For

r = 4, the percentages found for the heton experiments are signi�cantly lower than the corresponding

values seen in the reanalysis. At larger radii, however, the two become comparable, especially for

the Nr = 2 experiment. The fact that the percentage contributions are systematically lower for the
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Figure 109: PDF of heat transport, in PW , across the boundary of the domain with r = 7λ, for the
continuous seeding experiments with a) Nr = 2, s = 50, and b) Nr = 4, s = 25. The skewnesses are
a) 2.2 and b) 1.8 respectively. The corresponding MLVs are a) 1.4 × 1015W and b) 1.5 × 1015 W .
The vertical lines show the bins corresponding to the most likely values.

simulation with more hetons is in agreement with the time series shown in �gure 106. Additionally,

the transport accounted for by the extremes is generally seen to increase with increasing radius. This

supports the link between hetonic bursts and transport extremes since, as was noted above, vortex

clusters often form beyond the seeding domain's bounds.

Next, it is interesting to verify whether the distributions associated with the heton transport

are similar to the ERA-Interim ones. We focus on the r = 7 case, where both continuous seeding

simulations present large contributions from extremes. The heat transport PDFs are shown in �gure

109. Comparing these distributions to those for the ERA-Interim zonal integrals, shown in �gures

41 and 42 on page 73, it is immediately clear that there are some similarities with the NH ones,

while the SH ones look extremely di�erent. The general shapes of the NH and hetonic distributions

are comparable: both display a clear peak, a long positive tail and a very short tail to the left of

the maximum. There are, however, some di�erences in the shape of the positive tail. In the heton

case the frequencies decrease gradually, while in the ERA-Interim case the initial bins of the tail

have approximately constant frequencies. Concerning the SH distribution, there is no evidence of

bimodality in the hetonic case and the two distributions are, visually, extremely di�erent. Last, it

should be noted that the skewnesses of the heton distributions are higher than those of the ERA-

Interim ones.

Having ascertained that, at least for the Nr = 2 experiment, there are extreme heat transport
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events comparable to those seen in the real atmosphere, the next question that needs to be answered

concerns the role of hetonic explosions in driving these extremes. The heton model provides a visual

overview of the heat transport process, and allows for an easy break-down of its di�erent components.

It can be immediately veri�ed that the local change in heat content (term A in equation 50 on

page 163) drives the extremes. Indeed, the Qr factor in term B of the same equation is a constant

for the constant seeding rate adopted in the current experiment. Therefore, only term A and the

αd factor in term B can a�ect the transport's variability. Of the two, the former term accounts for

the largest variability, and has a correlation with the total transport of R2 = 0.95 for Nr = 2 and

R2 = 0.94 for Nr = 4. The variability of the heat transport is therefore largely determined by the

number of vortices crossing the domain boundary; this further strengthens the link between hetonic

explosions and heat transport extremes.

To demonstrate conclusively that hetonic explosions correspond to heat transport extremes, it

is possible to look at snapshots of the model domain at the timesteps in which the heat transport

peaks. Results for the transport at r = 7λ are presented for both simulations. For the Nr = 2 case,

there are �ve distinct peaks, for a total of 8 data points. The transport time series is shown in �gure

110. The horizontal dash-dotted line marks the 95th percentile threshold. The numbers mark the

locations of the �ve extreme peaks. The locations of the individual vortices in correspondence with

these peaks are shown in �gure 111. Rows a)-e) correspond, respectively, to the maxima labelled

1-5 in �gure 110. The panels along each row display consecutive timesteps centred on the maxima.

The blue ellipsoids mark vortex clusters crossing the domain boundary. The outer circular contours

marks the domain with radius of 7λ. All maxima, and especially the strongest one (row e)), clearly

show clusters of hetons crossing the domain boundary. Maximum number 3, in row c), is perhaps the

least clear one, with two separate locations which appear to be displaying weak clustering behaviour.

For the Nr = 4 case, there are again �ve distinct maxima. Three of these show very clear clustering

behaviour, while the other two are comparable to panel c) in �gure 111. As illustration, one of the

three clustered cases is shown in �gure 112. The blue ellipsoids again mark a vortex cluster crossing

the domain boundary. The panels display consecutive timesteps centred on the extreme. In this case,

since the density of hetons is higher than for the Nr = 2 experiment, it is obviously harder to visually

identify the heton clusters.

As a �nal piece of evidence on the role of heton clusters in driving extremes, it is possible to
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Figure 110: Heat transport time series, in PW , for the Nr = 2 continuous seeding setup. The
transport is computed across the boundary of the domain with r = 7λ. The horizontal dash-dotted
line marks the 95th percentile of the curve. The numbers mark the locations of the �ve extreme
peaks.

compute the heat transport directly associated with one of these explosions. One can then estimate

the percentage of the extreme transport accounted for by the heton cluster crossing the domain

boundary. As case study, we select extreme event number 5 for the Nr = 2 simulation (see �gure

110). Row e), in �gure 111, allows estimating the number of vortices crossing the border as part of

the hetonic explosion. Focussing on the transition from the �rst to the second timestep in the plot,

such number is seen to be around 15. Each vortex initially corresponds to a set heat anomaly, but

decays with time. For this speci�c case, the mean dimensionless vortex strength s of the cluster is

∼ 10.9. Converting this value to W , the hetonic explosion is found to drive a transport of roughly 6.0

PW , while the local maximum of the heat transport extreme is ∼ 7.5 PW . The hetonic explosion

therefore accounts for approximately 86% of the extreme event's heat transport!

5 Discussion

In their study of the North Paci�c storm track, Swanson and Pierrehumbert [1997] noted the large

sensitivity of heat transport to extreme events. They were able to reproduce the salient features

of the resulting PDFs using a model in which temperature anomalies (akin to the H ′ discussed in
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Figure 111: Snapshots of vortex positions during extreme heat transport events for the continuous
seeding experiment with Nr = 2 and s = 50. The panels along each row display consecutive timesteps
centred on the extreme. The transport is computed across the boundary of the domain with r = 7λ.
The black dots are vortices in the upper layer; the red dots ones in the lower layer. Rows a)-e)
correspond, respectively, to the maxima labelled 1-5 in �gure 110. The blue ellipsoids mark vortex
clusters crossing the domain boundary. The purple and black contours mark domains with radii of
4λ (seeding domain) and 7λ, respectively.
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Figure 112: Snapshots of vortex positions during an extreme heat transport event for the continuous
seeding experiment with Nr = 4 and s = 25. The panels display consecutive timesteps centred on
the extremes. The transport is computed across the boundary of the domain with r = 7λ. The black
dots are vortices in the upper layer; the red dots ones in the lower layer. The blue ellipsoids mark
a vortex cluster crossing the domain boundary. The purple and black contours mark domains with
radii of 4λ (seeding domain) and 7λ, respectively.

the present thesis) were created by anomalous meridional advection (v′), and damped through heat

exchange with the underlying ocean (see Chapter II, Section 2.4 on page 51 for further details). This

picture is somewhat di�erent from the wave model introduced in Section 3, in that Swanson and

Pierrehumbert treated temperature as a passive scalar, rather than as coupled to the velocity �eld

like in a growing Eady wave. In addition, the authors provided a mechanism limiting the temper-

ature variance (thermal damping), while the mechanisms leading to the equilibrium distribution of

baroclinic waves were not addressed in the present chapter. Nevertheless, and more importantly, the

simplicity of both views suggests that:

i) One should not be surprised by the large in�uence of extreme events on the mean poleward heat

transport by transient eddies;

ii) One should expect to see this statistical signature in very idealized models of the atmosphere and

not solely in nature.

The results from the aquaplanet experiment run in an intermediate complexity AOGCM, described

in Chapter III, Section 4.4 on page 77, only strengthen this theory.

The heton model brings these considerations to the extreme, since it provides an atmospheric

model essentially based on a single variable � potential vorticity � from which a heat transport can

be inferred. Notwithstanding its simplicity, it can still reproduce important aspects of the sporadic
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Figure 113: Hetonic heat transport as a function of vortex separation. R is the separation of the two
vortices in units of deformation radii. H is the corresponding meridional heat transport [from Hogg

and Stommel , 1985a].

nature of the heat transport seen in the ERA-Interim data. The percentage contributions of extreme

events to the net transport are slightly lower than for the reanalysis but, at least at large radii, of

comparable magnitude. As for what concerns the heat transport distributions, these are reasonably

similar for the NH, while the two data sets present some major di�erences for the SH. Most im-

portantly, however, the heton model enables to associate the extreme events to a precise physical

mechanism, namely hetonic explosions. These are large clusters of hetons which, e�ectively, behave

like a composite vortex, and propel themselves away from the bulk of the other vortices.

The synchronised displacement of a large number of hetons corresponds to the advection of a large

thermal anomaly. This interpretation is the most physically immediate if one views a single vortex

as a local temperature anomaly. However, it overlooks the essential role played by the the tilt, or

separation, of vortex pairs. A baroclinic pair, such as the heton, will act to shear the �uid between

the two layers, and will e�ect a larger heat transport than the one solely due to the advection of

the vortices themselves. Indeed, a single heton will drive a larger heat transport if the separation

between the two vortices is small, even though this implies that the pair moves more slowly. Figure

113 illustrates this behaviour. R is the separation of the two vortices in units of deformation radii,

and H is the corresponding meridional heat transport. For R approaching zero, the vortex pair will

be almost stationary, but the heat transport reaches a maximum.
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The overall transport e�ected by a heton is therefore a combination of the transport due to the

displacement of the vortices and the transport due to the heton's tilt. The displacement component

vanishes for vanishing vortex separation, because vortices which are perfectly aligned in the vertical

are stationary. It also vanishes when R tends to in�nity, and the two vortices decouple. It reaches

a maximum for intermediate separations, when the vortices are far apart enough to move rapidly

but not so far that the distance weakens their interaction. On the opposite, the tilt, or phase,

component peaks at vanishing separation. It rapidly decays with increasing distance, and becomes

negligible for separations beyond the radius of deformation. This decay is more rapid than the one of

the advective component, which therefore dominates for well separated vortices [A. Czaja, personal

communication].

The heat transport calculation performed in Section 4.2 focusses on the advective component of

the transport. It is deemed to be a suitable approximation because the heton clusters analysed in the

present chapter, generally display well separated top and bottom layer vortices (e.g. �gures 111 and

112). The term well separated is used here to indicate vortex pairs which have separations comparable

to or larger than one deformation radius. Note that this refers heton-type pairings between vortices

in di�erent levels, and does not apply to same-level pairs.

The tilt of the hetonic pairs has a direct link to more classical models, such as the Eady wave. A

tilted heton will drive tilted anomaly �elds, and a westward tilt against the shear of the background

�ow is common in perturbations leading to a large transient growth. The heton simulation obviously

has no constant background shear but, rather, each heton feels the in�uence of all other vortices (see

equations 46 and 47). Badger and Hoskins [2001] studied the role of the vertical tilt in Eady-type

states, in a PV framework. They found that perturbations with an initial against-shear tilt display

an augmented growth when compared to vertically aligned cases. Such growth exceeds the one of

the fastest growing Eady-type normal mode. The essential prerequisite for rapid growth, however, is

not the vertical tilt but, rather, a varied vertical PV structure. This is certainly present in the heton

model, where the two layers have opposite PV signs. Dense clusters of hetons can be approximated

as uniform PV patches, implying that the vertical structure of a heton cluster is that of a PV dipole.

The typical size of the clusters involved in hetonic explosions is a few deformation radii (for e.g.

see �gure 111). In the atmosphere, these would be analogous to large thermal anomalies with very

high advection speeds, that is large v′T ′ values. However, because their size is a multiple of the
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deformation radius, they cannot be equated to single low pressure systems. In physical terms, the

initial state of the experiments described above corresponds to a cyclonic circulation in the upper

layer of the model, much like the polar vortex seen in the real atmosphere. This would drive a

westerly �ow, which then breaks up once the vortices are left free to evolve, cluster and then abandon

the seeding domain. This is reminiscent of standing wave patterns developing in the jet stream. This

behaviour is illustrated in �gure 114, which shows the streamfunction of the top layer of the model

for the continuous seeding experiment with Nr = 2 and s = 50. The six panels display consecutive

model timesteps, preceeding and following extreme event number 5 in �gure 110 on page 179. Blue

shades correspond to low values, and red shades to high values. The continuous black contours

are streamlines. In the �rst panel the streamfunction corrresponds to a cyclonic circulation with

a pronounced wavenumber 3 disturbance. One of the troughs begins to grow, extends and �nally

detaches itself from the main circulation pattern and exits the domain.

The wavenumber of the instability can be compared to the results of a linear stability analysis of

a circular baroclinic piecewise constant vortex [Pedlosky , 1985]. Following the example of Legg and

Marshall [1993], and approximating the heton cluster to such a vortex, the rim current should be

unstable to perturbations with wavenumber k if:

k ≤ r0
λ
, (57)

where r0 is the radius of the domain. For the radius chosen in the experiments discussed here, we

therefore have that k ≤ 4, in agreement with the wavenumber 3 instability seen in �gure 114. Such

wavenumber implies a wavelength of approximately 6500 km; long but still consistent with the scale

of planetary waves.

The heton setup could therefore be likened to a very pronounced planetary wave pattern, where

the composite heton would play the role of a strong trough. Adopting the PV view, the initial heton

patch sets up a meridional PV gradient. In Badger and Hoskins [2001], an Eady-type initial state

was found to support the propagation of Rossby waves once such a gradient was imposed, even in

the absence of a β-e�ect. This provides an alternative interpretation of the instabilities developing

on the edge of the hetonic polar vortex.

An important caveat of the model is that the hetonic troughs are seen to propagate at a much faster
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Figure 114: Top layer streamfunction for the continuous seeding experiment with Nr = 2 and s = 50.
Blue shades correspond to low values, and red shades to high values. The continuous black contours
are streamlines. The six panels display consecutive model timesteps, preceeding and following extreme
event number 5 in �gure 110. One of the troughs in the original wavenumber 3 disturbance begins
to grow, extends and �nally detaches itself from the main circulation pattern and exits the domain.

185



rate than what would be expected in the real atmosphere. Keeping in mind that a model timestep

corresponds to roughly 4.5 hours, and that a cluster moves a distance of order λ over one timestep,

a very rough calculation suggests that the velocities attained follow: v ∼ λ
1.5×104 ≈ 50ms−1. This

unrealistic velocity is an inborn characteristic of the model. In fact, the strength of the interactions

between the vortices, and hence the resulting velocities, are largely governed by the strength of

the vortices themselves. Large clusters behave as composite vortices, where the strength of the

individual members is summed, enabling them to attain a much swifter displacement than what

would otherwise be seen. A second caveat is that the large v′T ′ anomalies associated with hetonic

explosions correspond, in physical terms, to equatorward advection of cold air. In fact, the heton

simulations described in this chapter are all based on cold hetons, namely vortices corresponding to

a negative thermal anomaly. Since the circular domains considered are meant to reproduce a polar

cap, the hetons abandoning the domain would be �owing equatorwards. The large, positive transport

values associated with hetonic explosions would therefore correspond to a combination of negative

thermal and velocity anomalies. This is the opposite of the WCB concept discussed in Chapter IV,

Section 5 on page 132, which corresponds to combinations of positive thermal and velocity anomalies.

The very simple heton model adopted here is only able to reproduce cold thermal anomalies, since

hot hetons would be needed for warm ones. The sign combination driving the heat transport is there-

fore the direct result of a design feature of the model, and should not be viewed as a shortcoming of

the heton dynamics. Indeed, the main aim of the model setup was to reproduce the real atmosphere's

heat transport variability, rather than match speci�c features of the circulation.

The fact both an aquaplanet AOGCM and the heton model present heat transport extremes

suggests that they must be a very basic physical property of atmospheric dynamics. The fact that

something as simple as the statistical wave model discussed in the present chapter can also reproduce

them highlights that they are also a very basic statistical property. It is evident that the high level

of abstraction of the latter two models makes them amenable to arbitrary choices. For example,

the heton model was seen to display di�erent dynamics depending on vortex strength and heton

number density, and these in turn were found to a�ect the importance of heat transport extremes.

Nonetheless, the immediate links that can be drawn between highly idealised models and complex

analyses of real-world data are very stimulating.

186



6 Conclusions

The role of extreme events in setting the mean seasonal value of meridional heat transport has been

found, throughout the present thesis, to a be very robust characteristics of the atmosphere. This

chapter proposes two highly idealised models which successfully reproduce some salient features of

the extreme events in heat transport. The �rst model is based on a wave view of atmospheric motions,

and simulates meridional velocity and MSE anomalies as superpositions of sinusoidal waves. These

superpositions result in a heat transport distribution which is very similar to the one seen in the

ERA-Interim data. The model succesfully reproduces, among other features, the long positive tail of

the distribution, which is the statistical signature of the predominant role played by extreme events.

The second model discussed in this chapter, the heton model, abandons altogether the traditional

wave view of atmospheric dynamics, and adopts a quantised view of heat transport. The model's

atmosphere is a simple two-layer system seeded with point baroclinic vortices. The complex dynamics

driving vortex displacement imply that this toy atmosphere displays large heat transport events,

much like the real one. The value of the model lies in its ability to provide a direct analogue for these

events, namely hetonic explosions. The explosions are clusters of vortices which act as a composite

vortex, and have the potential to rapidly advect large thermal anomalies across the model domain.

In physical terms, they can be likened to vigorous out�ows of cold air from the polar domain to the

lower latitudes.

The two models presented in this chapter are simple examples of the wide range of possible min-

imal physics simulations which can be used to mimic the variability of atmospheric heat transport.

Other authors have proposed di�erent, but equally valid, idealised approaches. For example Am-

baum and Novak [2013] discuss an oscillator model for storm-track variability, where a temperature

gradient gradually builds up and is then rapidly relaxed by transient eddy activity. Unlike the wave

model presented here, this mechanism explicitly accounts for the non-linear growth of the instability,

albeit in a very simpli�ed fashion. More interestingly, however, the non-linearity results in a very

discontinuous heat transport, with well-de�ned peaks occurring at regular intervals. These could be a

direct analogue for the heat transport extremes, much like the hetonic explosions in the heton model.

Yet a di�erent idealised model reproducing heat transport extremes is discussed in Swanson and
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Pierrehumbert [1997]. In the latter study, the variability is driven by a combination of Lagrangian

passive advection and thermal interactions (see Chapter II, Section 2.4 on page 51).

All these idealised models, including the two presented in this chapter, succesfully reproduce

extreme events in heat transport, notwithstanding their radically di�erent conceptual approaches.

This con�rms the extremes' fundamental nature, which had already been hypothesised in the previous

chapters. The ease in establishing links between basic physical and statistical concepts and the

outcome of much more complex analyses performed on reanalysis data suggest that, perhaps, one

should not be surprised by the sporadic nature of meridional heat transport in the atmosphere.
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Part VI

Conclusions

The present thesis focusses on atmospheric meridional heat transport by transient eddies. The three

main research Chapters are parts III, IV and V. The analysis is structured as follows:

i. Chapter III is concerned with the temporal and spatial variability of meridional heat transport, and

the role played by the upper percentiles of the transport distribution. It is demonstrated that these

percentiles, termed extreme events, are instrumental in setting the magnitude of the net seasonal

transport [Messori and Czaja, 2013b].

iii. Chapter IV characterises the extreme events by looking at their temporal, spatial and spectral

structures. Synoptic analogues are proposed and the role of the di�erent timescales is investigated

[Messori and Czaja, 2013c].

iv. Chapter V links the extremes to idealised simulations. It is shown that both a statistical model

and a non-conventional approach, based on Hogg and Stommel 's heton model, succesfully capture

the sporadic nature of the transport.

Data from ECMWF's ERA-Interim reanalysis is used throughout the thesis. Speci�c sections use

output from the FORTE model [Sinha and Smith, 2002; Smith and Gregory , 2009] andMinobe et al.'s

GCM [Minobe et al., 2008]. The domains considered include the entire extra-tropical regions of the

Northern and Southern hemispheres.

1 Summary

Meridional heat transport, e�ected by both the atmosphere and oceans, is a key component of the

climate system. Outside the tropics, the atmosphere accounts for the majority of this transport. The

present thesis focuses on a speci�c component of atmospheric heat transport, namely that driven

by transient motions. This is computed as the product of meridional velocity (v′) and moist static

energy (H ′) anomalies. The analysis aims to explore the transport's temporal variability, focussing

on the role of the highest percentiles of the transport distribution.
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Figure 115: Bar plot of v′H ′ extreme events at 50◦ N 0◦ E. Extreme events are de�ned as events in the
top �ve percentiles of the v′H ′ distribution for the 50◦ N latitude circle. The 12 panels correspond to
DJF seasons from DJF 1993/1994 to DJF 2004/2005. Bars correspond to an extreme event occurring
on a given day; the abscissa indicate the day of the season. The percentages in each panel indicate
the contribution of the selected events to the net seasonal meridional transient-eddy heat transport.
See page 94 for further details [from Messori and Czaja, 2013b].

Messori and Czaja [2013b] found that, at any given location beyond the tropics, very few large

events e�ectively set the mean seasonal transport value. These events, termed extremes, have been

de�ned throughout the present thesis as the top �ve percentiles of the heat transport PDF. The role

of extremes is clearly illustrated in �gure 115 which presents, in a binary format, the variability of the

heat transport process at a single point (50◦ N 0◦ E). Similar plots are obtained for other grid points

(not shown). On a given day, a value of unity (vertical bar) is set to the curve if v′H ′ falls in the top

5 percentiles of the distribution for the 50◦ N latitude circle, and a value of zero is used otherwise

(no vertical bar). By de�nition, there are only a few extreme events every season, yet these account

for a very large portion of the overall poleward heat transport at this location, sometimes exceeding

50% (the numbers for each winter are indicated in the top right corner of each panel)! Extending

the analysis to the whole of the extra-tropical regions it is found that, on average, the top �ve days
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per season contribute to over half of the transport at any given point. The atmosphere is therefore

very sensitive to a few, temporally and spatially localised features, implying that meridional heat

transport by transient motions has a fundamentally sporadic nature.

These extreme events in meridional heat transport are found to be compatible with the traditional

picture of growing systems having the minimal phase shift between v′ and H ′, and accounting for the

bulk of the heat transport [Eady , 1949]. An idealised aquaplanet GCM simulation also reproduces

the transport extremes, implying that the sporadic nature of heat transport is not explained by the

detailed features of the atmosphere's lower boundary (coastline, ocean fronts, sea ice, orography etc.),

stationary waves and mesoscale features. This suggests that it might be a fundamental property of

atmospheric waves.

A more detailed analysis, focussing on the local atmospheric dynamics, �nds that the synoptic

scale motions associated with heat transport extremes depend on the region of the globe considered.

In some regions, the extremes are associated with rapidly ascending warm, moist air streams, called

warm conveyor belts. This is the case in the Paci�c, Atlantic and Southern Ocean storm tracks.

At higher latitudes, some events are linked to cold air out�ows from the polar basin (e.g. in the

Bering Strait). Other events are associated with local low-pressure systems, which do not necessarily

�t the criteria used to de�ne warm conveyors (e.g. over the Nordic Seas and the Siberian Plateau).

However, they can still e�ect signi�cant heat transports, either by poleward advection of warm core

lows or by small phase di�erences between the velocity and MSE �elds.

A study of the spectral features of the v′, H ′ and v′H ′ signals con�rms that phase plays an

important role in explaining extreme events. However, it also suggests that the baroclinic timescales

(here de�ned as motions with periods between 2.5 and 6 days) can only explain part of the story

[Messori and Czaja, 2013c]. Indeed, it is found that the extreme events correspond to very precise

phase relationships between v′ and H ′ over a broad range of periods (2-32 days), and that low

wavenumbers (k ≤ 4) play an important role in shaping the transport's power spectrum at long

timescales. Panels a), b) and c) in �gure 116 show the wavenumber spectra for v′, H ′ and v′H ′ during

NH DJF. The spectra are averaged over the 10-32 day range, taken as representative of atmospheric

motions with long periods. They are then normalised relative to the spectral peak, so that the

contribution of each wave number is expressed as a dimensionless fraction of the contribution from

the leading wave number. The dominance of low wavenumbers in panel c) is immediately evident.
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Figure 116: Composite Fourier power spectra of a) meridional velocity anomalies, b) moist static
energy anomalies and c) atmospheric heat transport due to transient eddies. The spectra are averaged
over the range 10-32 days, and are normalised relative to the spectral peak, so that the contribution
of each wave number is expressed as a dimensionless fraction of the contribution from the dominating
wave number. The data cover NH DJFs from December 1989 to February 2011. All latitude circles
between 30◦ N and 89◦ N are taken into account [from Messori and Czaja, 2013c].

The fact that planetary-scale perturbations play a signi�cant role in the heat transport's power

spectrum might seem at odds with the clear synoptic-scale structures found to be associated with

the extremes. The two results can be succesfully reconciled by interpreting the extremes as synoptic

features superimposed on larger-scale modes of variability.

Notwithstanding their complex physical analogues in the real atmosphere, extreme events in heat

transport can be succesfully reproduced by highly idealised models. A good example is provided

by a statistical model, which simulates the v′ and H ′ signals as linear superpositions of sinusoidal

waves. Starting from this simple assumption it is possible to capture the salient features of the heat

transport PDF. The model and reanalysis distributions are illustrated in panels a) and b) of �gure

117. While there is an evident discrepancy in terms of orders of magnitude, the two PDFs share some

key elements. Just like the PDF obtained from the reanalysis data, the model distribution displays

a highly asymmetric structure with a clear near-zero peak and a very extended positive tail. The

latter is the statistical signature of the extreme events, which constitute the upper end of the tail.

A second idealised model of the atmosphere, the heton model, is also discussed. The heton model is

a two-layer model, which represents heat transport as a quantised process e�ected by point vorticity
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Figure 117: PDFs of atmospheric heat transport due to transient eddies (in Wmkg−1) for a) the
statistical model and b) reanalysis data. The data cover the 850mb �elds for NH DJFs from December
1993 to February 2005. All latitude circles between 30◦ N and 89◦ N are taken into account. The
vertical lines show the bins corresponding to the most likely values [from Messori and Czaja, 2013b].

anomalies [Hogg and Stommel , 1985a]. Its quantised nature naturally lends itself to reproducing

the sporadic aspect of the transport. Most importantly, the model provides a precise mechanism

generating the heat transport extremes, namely hetonic explosions. These occur when a number of

individual point vortices cluster together, acting as a single, stronger vortex. By virtue of its increased

strength, such vortex moves very rapidly, separating itself from the bulk of the other vortices and

exploding outwards. In physical terms, these explosions could be likened to large v′T ′ values, much

like the real-world extremes. The scale of these explosions is typically well in excess of the deformation

radius, making them reminiscent of a very pronounced planetary wave pattern. The composite heton

would then play the role of a strong trough. An example of hetonic explosion is illustrated in �gure

118. The three panels display snapshots of vortex positions during three consecutive model timesteps,

centred on the extreme heat transport occurrence. The scale of the plot is in units of deformation

radii (λ), where λ ≈ 770 km. The transport is computed across the boundary of the domain with

r = 7λ, marked by the outer circular contour. The blue ellipsoids mark the vortex cluster crossing

the domain boundary.

Two other idealised models relating to heat transport extremes have also been described in the

present thesis: Swanson and Pierrehumbert 's mixing model (Section 2.4, Chapter II) and Ambaum

and Novak 's oscillator model (Section 7, Chapter V). The four models seem to contain radically

di�erent mechanisms for explaining the nature of meridional heat transport. These are, respectively:
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Figure 118: Snapshots of vortex positions during an extreme heat transport event in the heton model.
The panels display consecutive timesteps centred on the extreme. The transport is computed across
the boundary of the domain with r = 7λ. The dots are vortices in the model layers. The blue
ellipsoids mark a vortex cluster crossing the domain boundary. The outer circular contour marks the
domain with radius of 7λ.

i) Lagrangian passive advection and non-conservative thermal processes for the Swanson and Pierre-

humbert model;

ii) A non-linear oscillator for the Ambaum and Novak model;

iii) Phase di�erences between sinusoidal anomalies in the wave model;

iv) Vortex movements and interactions in the Heton model.

All these approaches are aimed at representing a rapidly growing instability. Diverse as the math-

ematical and conceptual formulations may be, they are all designed to allow for a rapid growth of

the heat transport. In the case of Lagrangian advection, the model is based on the statistics of the

observed wind �eld. In the case of the Ambaum and Novak oscillator, the transport bursts occur at

regular intervals, determined by the oscillator's frequency. Physically, this frequency corresponds to

a build up of baroclinicity which is then released by the eddies. For the wave model, peak transport

is attained at points where the di�erent components of the meridional velocity and MSE anomalies

are closest to all being in phase. For the heton model, peak transport occurs when di�erent vortices

coalesce into a single cluster and then move very rapidly. The Swanson and Pierrehumbert model is

the one with the closest link to observations in the real atmosphere, and aims to provide a statistically

accurate representation of low-level heat transport. The relationship between baroclinicity and eddy

heat transport proposed by the oscillator model is seen in real data, but the regular periodicity of the
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phenomenon is not realistic. The heton model, and even more so the wave model, have very abstract

formulations. Due care should therefore be taken when linking results from these two models with

speci�c features of the real atmosphere. However, all four models successfully reproduce the sporadic

nature of heat transport. This is because they highlight the same, fundamental aspect of baroclinic

instabilities, namely their rapid growth. The di�erent approaches should not be seen as competing

e�ects but, rather, as di�erent interpretations of a same mechanism observed in the real atmosphere.

The fact that idealised GCM simulations reproduce extreme events in heat transport suggests

that the transport's sporadicity has nothing to do with mesoscale signals and characteristics of the

atmosphere's lower boundary but, rather, must be an intrinsic property of waves in the atmosphere.

The fact that four highly idealised, yet extremely di�erent, models both succesfully capture the

transport's sporadic essence con�rms this.

2 Future Work

The main consequence of the sensitivity of the heat transport to extreme events is that a very large

fraction of the transport occurs in a few discrete bursts, each lasting for only a couple of days. This

new perspective has an intriguing application to the climate change debate. Polar ampli�cation

describes the phenomenon by which the two polar regions, and especially the Arctic, are warming

at a signi�cantly faster pace than the rest of the globe. This has traditionally been ascribed to

surface-albedo feedback [e.g. Hall , 2004], but a number of studies have also highlighted the important

contribution of atmospheric heat transport to the phenomenon [e.g. Alexeev et al., 2005; Graversen,

2006; Lee et al., 2011]. This suggests that there could be a strong link between extreme transport

events and the climate of the Arctic. The fact that the dominance of extremes in the transient eddy

heat transport is present throughout the summer months, which form a consistent part of the polar

cap's melt season, also suggests a connection to sea-ice coverage. Even more strikingly, the fraction of

the NH poleward heat transport due to extremes is actually higher during the summer months than

during the winter ones, as illustrated in tables 1 on page 68, and 2 on page 68. While it is beyond the

scope of the present thesis, an analysis relating extreme heat transport events to summertime NH sea-

ice extent, along the lines of that performed by Graversen et al. [2011, hereafter G11], might uncover

interesting connections. G11 suggest that the 2007 sea-ice minimum in the Arctic could be linked
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to atmospheric heat transport. In particular, the study �nds anomalous atmospheric poleward heat

transport and anomalous atmospheric transport convergence during that year in the region interested

by the greatest areal loss of sea-ice. G11 then conclude that the additional downwelling long-wave

radiation forcing generated by these atmospheric features had a signi�cant role in initiating the melt

process. A natural extension of this work would involve looking for anomalies in the frequency of

extreme meridional transient eddy heat transport events in areas of the Arctic subject to enhanced

sea-ice melting. Analysing in detail the area of high extreme event frequency found in JJA over

Siberia and part of the Arctic Ocean would o�er the perfect starting point.

In more general terms, the sporadic nature of heat transport in the atmosphere was seen to be

driven by a large range of spatial scales, with planetary waves playing an important role. This suggests

that speci�c global regimes, namely quasi-stationary states of the atmosphere [for e.g. see Cheng and

Wallace, 1993], could be associated with an enhancement of extreme transport features. Such a

link can be investigated very e�ectively by using extreme value theory (EVT). EVT is a statistical

technique aimed at describing the tails of the distributions of random variables, by characterising

them in terms of a small number of key parameters [Gumbel , 1958]. These parameters can then be

related to a relevant external variable, which in this case could be, for example, geopotential height.

Such technique has been succesfully applied to weather extremes over France by Yiou et al. [2008],

and could provide a robust physical interpretation of the larger scales driving extreme heat transport

events.

On the modelling side, the idealised heton setup described in Chapter V could be developed

further, by designing a model domain where both the low and high latitudes are represented. One of

the main caveats of the model presented here is that the exclusive presence of cold hetons only enables

heat transport to be e�ected as a result of cold anomalies being advected outside the model domain.

In the real atmosphere, the majority of the extreme heat transport events were actually found to

correspond to poleward advection of warm anomalies. Including the lower latitudes in the model

domain would allow both hot and cold hetons to be seeded, overcoming this limitation. Moreover,

a greater range of model parameters needs to be tested in order to fully understand their e�ects on

heton dynamics and the resulting heat transport. The results discussed here suggest that the strength

and number density of the vortices are extremely important in determining the temporal variability

of the heat transport, but the limited computational facilities available did not allow for a systematic
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exploration of the model's parameter space.

3 Implications and Learnings

Identifying and describing speci�c atmospheric features and their driving mechanisms is a never-

ending undertaking. The analysis of the features themselves can always be re�ned, and the links

to speci�c drivers can always be veri�ed with new, more robust techniques. In the speci�c case of

the extreme events described in the present thesis, a more rigorous statistical approach, such as the

EVT analysis suggested above, would perhaps have been appropriate. With hindsight, this would

have prepared the ground for a more insightful and systematic physical interpretation of the extreme

events, which in turn would have made the modelling e�orts more e�ective.

Nonetheless, the analysis described in the present work does result in some important �ndings

and implications, which can be summarised in three main points:

i. Meridional atmospheric heat transport by transient motions is fundamentally sporadic in nature.

Very few days every season, termed extremes, e�ectively set the mean seasonal transport.

ii. These very few days come about because of a complex interplay between synoptic and planetary

scale motions. They are further characterised by very precise phase relationships between temporal

anomalies in the meridional velocity and moist static energy �elds, over a broad range of periods.

iii. The existence of these events is a basic property of the atmosphere. Simple statistical consid-

erations, idealised experiments with realistic atmospheric dynamics, and minimal physics two-layer

setups all successfully reproduce the main features of the heat transport distribution.

These points suggest that the present thesis has explored and characterised a largely unknown, yet

fundamental, aspect of the variability of heat transport in our atmosphere. Ultimately, very few days

every season could hold the key to explaining some large scale features of our climate system.
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Appendix

1 The Eady Model

Here, we present the mathematical framework of the Eady Model, which complements the discussion

presented in Chapter II, Section 2.1 on page 46. The intention is not to provide a step-by-step

derivation but, rather, to highlight the key formulae describing Eady's idealised heat-carrying wave.

The analysis is mostly based on Gill [1982].

The Eady model will be treated in log-pressure co-ordinates, namely a co-ordinate system which

uses the logarithm of pressure as third dimension. The vertical co-ordinate, zlp, is de�ned as:

zlp = −Hsln

(
p

pr

)
, (58)

where ln is the natural logarithm, pr is a reference pressure level and Hs is a reference scale height
9.

The initial setup considers an incompressible �uid on an f -plane, with a uniform temperature gradient

in y and zlp. The presence of this gradient implies that the sytem has APE. Using a relation termed

thermal wind, it is possible to infer the vertical gradient of the zonal velocity from the horizontal

temperature gradient:

f
du

dzlp
= −αg∂T

∂y
, (59)

where α is the thermal expansion coe�cient for dry air. Small perturbations to this system satisfy

simple wave-like equations of the form:

Φ′ = Φ0sin(ly)sin(k(x− ct))e−zlp/HR (60)

Here Φ is geopotential, namely geopotential height multiplied by gravitational acceleration, the prime

denotes anomalies, and the subscript 0 denotes a constant amplitude. k and l are the horizontal wave

9The term scale height indicates the vertical length scale over which a given quantity decreases by a factor of e.
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numbers, and c is the zonal phase speed of the disturbance. Hr is a vertical scale for the decay of

the perturbation. The potential temperature perturbation corresponding to equation 60 is given by:

θ′ =
1

αg

∂Φ′

∂zlp
=
−Φ′

HR
(61)

Negative temperature anomalies are therefore associated with positive geopotential ones, and vice-

versa.

Next, a surface boundary condition is imposed, namely that at zlp = 0, w = 0. Applying this

to solutions of the form shown in equation 60, one can then obtain an expression for the meridional

heat transport in terms of the geopotential anomaly. The mathematical details of the intermediate

steps will not be presented here, but the �nal result is:

vθ =
1

f

∂Φ′

∂x
θ′ ∝ Φ′

∂Φ′

∂x
= 0, (62)

where equations 60 and 61 have been used to obtain the �nal result. The overbar denotes the zonal

mean over a full wavelength. The net heat transport of the perturbations is therefore zero.

Eady , in his seminal 1949 paper, considered this same system, but applied a rigid upper boundary

to the setup. If one takes a frame of reference where the vertical mid point of the system is at zlp = 0,

the two boundaries at zlp = ±H and the horizontal �ow is zero at this mid point, the velocity can

then be expressed as:

~u = zlp
d~u

dz
, (63)

where ~u is the horizontal velocity vector. Equation 60 can now be re-written in terms of the hyperbolic

functions as:

Φ′ = A(x, y, t)sinh

(
zlp
HR

)
+B(x, y, t)cosh

(
zlp
HR

)
, (64)

where the boundary condition of no vertical velocity applies to both zlp = ±H . Amplitudes of the

type:

A,B ∝ cos(ly)eik(x−ct) (65)
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satisfy this new wave solution. There will be a range of possible wave numbers yielding valid solutions

to this problem, but only one will correspond to the fastest growing instability. This will soon

dominate because of the exponential term in the amplitudes. The growth rate can be expressed as

σ = kci, where ci is the imaginary component of the zonal phase speed. Its maximum value is given

by:

σmax = 0.3098
f

(k2 + l2)1/2HR

d~u

dzlp
(66)

The numerical pre-factor results from maximising a hyperbolic function of scale height. The corre-

sponding solution for the fastest growing mode is:

Φ′ =

[
cos(kx)

sinh(zlp/HR)

sinh(H/HR)
+ sin(kx)

cosh(zlp/HR)

cosh(H/HR)

]
eσt, (67)

which can be also expressed as a potential temperature perturbation:

θ′ =
1

αgHR

[
cos(kx)

cosh(zlp/HR)

sinh(H/HR)
+ sin(kx)

sinh(zlp/HR)

cosh(H/HR)

]
eσt, (68)

and results in a heat transport given by:

vθ =
1

αfgHR
A
∂B

∂x
(69)

This solution is positive and independent of height. It can be shown that it remains positive for all

growing waves.
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2 Wavelet Transforms

2.1 Mathematical Formulation, Cross-Wavelet Transforms and Coherence-

Phase Spectra

The discussion of wavelets and continuous wavelet transforms in this section is largely based on

Torrence and Compo [1998]. The one of cross-wavelet and coherence-phase spectra is based on

Grinsted et al. [2004].

Wavelets transforms have been discussed in Chapter IV of the present thesis. They are a technique

whereby a two dimensional spectral picture (here period-time) is obtained from a one-dimensional

time series (here v′, H ′ and v′H ′) [Daubechies, 1990]. The key component of the transform is the

wavelet itself, ψ. There are a number of such wavelets available; in the present thesis, we have adopted

the Morlet wavelet, de�ned by:

ψM (η) = π−1/4eiω0ηe−η
2/2 (70)

This is the product of a Gaussian and a plane wave, where ω0 is a non-dimensional frequency and η

is a non-dimensional time parameter. A di�erent type of wavelet, the Paul wavelet, was used to test

the robustness of the analysis performed. These two types of wavelets are depicted in �gure 119.

Wavelets can be applied to a data sequence, xn, via the continuous wavelet transform. This is

de�ned as:

Wn(s) =

N−1∑
n′=0

xn′ψ∗
[

(n′ − n)δt

s

]
, (71)

where the asterisk indicates a complex conjugate, s is a scale factor and n is a time index. Wn is

essentially the convolution of the original time series with the wavelet, mediated by a scaling and a

shifting factor. It is by varying these factors that one can obtain a two-dimensional spectral view

of the original signal. The convolution process should be repeated N times for each scale, N being

the length of the time series analysed. The wavelet power is then the modulus squared of the above

expression.

A number of arbitrary choices need to be made when performing a wavelet transform. The �rst

is the choice of wavelet type, and is based on an inspection of the original signal. The wavelet is
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Figure 119: Real (solid lines) and imaginary (dashed lines) parts of the Morlet and Paul wavelets.
The panels on the left hand side depict the wavelets in the time domain. Those on the right hand
side in the frequency domain [from Torrence and Compo, 1998].
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chosen so as to match the general �shape� and features of the signal. Next, a set of scales s needs to

be selected. These are commonly expressed as an exponential series:

s = s02jδs, j = 0, 1, 2... J, (72)

where s0 is the smallest resolvable scale and J corresponds to the largest scale. The smallest scale

should clearly be chosen in relation to the sampling frequency of the original time series. Here,

following Torrence and Compo [1998], it is chosen such that the corresponding Fourier frequency is

2dt, where dt is the sampling period. The algorithm relating Fourier frequency to scale will not be

discussed here; a full description can be found in Meyers et al. [1993]. Conveniently, for the Morlet

wavelet the Fourier frequency is almost equal to the wavelet scale. A suitable incremental step for

scale must also be selected. Here, again following Torrence and Compo [1998], a step δs = 0.25 was

chosen. The scale used in the present analysis is therefore given by:

s = 2δt 20.25j , j = 0, 1, 2... J (73)

In interpreting the wavelet spectrum, one must be careful of edge e�ects, since the v′, H ′ and v′H ′

time series analysed here are not periodic. In fact, similarly to more traditional Fourier transforms,

wavelets do not yield signi�cant results if applied to time series which are short compared to the

time scales considered. The cone of in�uence, namely the limit beyond which edge e�ects become

important, is de�ned at each scale as the point where the wavelet power for a discontinuity at the

edge of the time series is attenuated by a factor of 1/e2.

If two di�erent signals are analysed (such as v′ and H ′), continuous wavelet transforms can be

used to construct cross-wavelet and coherence-phase spectra. The �rst show the times and periods at

which the two signals have the highest common power. The second show the coherence and relative

phase of the two signals. The cross-wavelet transform of two time series, x and y, is de�ned as:

W xy = W xW y∗, (74)

where W x and W y are the individual continuous wavelet transforms, as de�ned in equation 71.
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The complex argument arg(W xy) can be interpreted as the local relative phase between x and y

in time-frequency space. It is further possible to compute a measure of wavelet coherence, always

in the time-frequency domain. For the mathematical details of this procedure the reader is referred

to Torrence and Webster [1999]. Combining the phase and coherence information, one can produce

plots such as those shown in Chapter IV, Section 4.4 on page 128, termed coherence-phase spectra.

2.2 Statistical Tests

The analysis in Chapter IV was largely based on composites of wavelet spectra. It is important to

verify that these composite spectra provide a good representation of the typical individual spectrum,

particularly at the location of the extreme events. As test, the mean of the logarithm of wavelet power

is computed. If the mean in logarithmic space (assuming power follows a log-normal distribution)

increases in coincidence with the extreme events, then this suggests that the increase in power is due

to a shift in the distribution, rather than a change in its shape. Next, the mean's standard error is

computed, in order to verify that the increase is statistically signi�cant. Last, the power's standard

deviation, always in logarithmic space, is calculated. An increase in standard deviation in correspon-

dence with the spectral peak would indicate that few extremes are increasing the mean power. If the

standard deviation is constant, but the mean increases, this implies that the whole distribution shifts

to higher values, and that the bulk of the events contributes to the spectral peak. This procedure

needs to be repeated for each scale over which the wavelet transform has been performed. Here, we

show as an example the plots for the v′H ′ signal during NH DJF (see �gure 120). For clarity only

three scales are presented, all beyond the cone of in�uence for the times included in the plot, and

selected such that they correspond to periods at which the extremes show high power. Panel a) shows

that there is a clear increase in the mean in correspondence with the extreme events. Such increase

is large compared to the standard error (dashed red lines). The standard deviations (panel b)) show

no increase but, on the opposite, decrease at the extreme event location. The two panels therefore

indicate that the wavelet composites gives a good representation of the typical extreme event. Similar

plots for all scales, hemispheres and seasons were analysed in order to verify the robustness of the

results presented here.

Some authors, such as Torrence and Compo [1998], suggest techniques to compute signi�cance

levels for the wavelet spectra. These techniques are by no means universally agreed upon, and there
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Figure 120: Panel a) illustrates the mean of the logarithm of wavelet power for v′H ′. The three scales
presented are beyond the cone of in�uence over the time period considered. The dashed red lines
indicate the standard errors. Panel b) illustrates the standard deviation of the logarithm of wavelet
power for the same three scales. Both panels are centred on the location of extreme events (0 days).
The data cover the 850 mb �elds for NH DJFs from December 1989 to February 2011. All latitude
circles between 30◦ N and 89◦ N are taken into account.

are di�erent view points concerning whether stationary statistical tests are suitable to evaluate wavelet

con�dence intervals [e.g. Lau and Weng , 1995; Torrence and Compo, 1998]. As stated in Lau and

Weng : �...one of the shortcomings of the wavelet transform analysis is the lack of a proper statistical

signi�cance test... Almost all traditional signi�cance tests are derived from the assumption of identical

repeated cycles for nonstationary processes and are therefore inappropriate for wavelet transfroms....

Monte Carlo methods are also unsatisfactory in the context.� Furthermore, the signi�cance levels

presented in Torrence and Compo [1998] are suitable for an underlying Gaussian distribution, while

the present analysis is based on a distribution that is distinctly non-Gaussian. Even though far from

ideal, the only possible test is therefore a Monte Carlo type approach. A loose Monte Carlo test is

indeed discussed in Chapter IV, when the composite spectra for random days are compared to those

for the extreme days.
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3 Filters

The �lter used as part of the wavelet analysis was brie�y described in Chapter IV, Section 4.2 on

page 121. This is a 21-point high pass FIR �lter, with a half-power cut-o� at 8 days. FIR �lters

are �lters whose response to any input of �nite length is itself �nite, meaning that it decays to zero

at t < T , where T is �nite. The �lter used here was designed using a MatLab algorithm based

on McClellan et al. [1973]. Figure 121 shows the �lter's amplitude response as a function of the

fractional Nyquist frequency (green curve). The Nyquist frequency is simply half the sampling

Figure 121: The amplitude response of the �lter used in Chapter IV, as a function of fractional
Nyquist frequency (green curve). This is a 21-point high pass FIR �lter, with a half-power cut-o� at
8 days. The response of the ideal �lter is shown in blue.

frequency; here it is normalised to the interval [0, 1]. The 8-day cut-o� corresponds to 0.25 in terms

of this dimensionless scale. The 21 �lter coe�cients are:

[-0,0276636710903229; -0,0126869494554124; 0,00255569651900081; 0,0267124072125839;

0,0456647784637818; 0,0415326955178977; 0,00236913784968678; -0,0691491262509086;

-0,153644545402426; -0,221977864735121; 0,751809257520219; -0,221977864735121;

-0,153644545402426; -0,0691491262509086; 0,00236913784968678; 0,0415326955178977;

0,0456647784637818; 0,0267124072125839; 0,00255569651900081; -0,0126869494554124;

-0,0276636710903229].

The e�ect of the �lter on the v′ and H ′ signals, analysed in the present thesis, is illustrated

206



Figure 122: Global (time-averaged) wavelet spectra for v′ (inm2s−2) and H ′ (inK2) during NH DJFs
(panels a and c respectively) and SH JJAs (panels b and d). The time span considered covers the
�ve days centred on the extremes. The continuous lines are the spectra of the �ltered v′ and H ′. The
dashed lines are the spectra of the un�ltered signals. The dotted lines mark the limit of baroclinic
timescales, de�ned here as motions with periods of 2-6 days. The numbers in the top left hand corner
of the panels are the ratios between the period-integrated powers of the �ltered and un�ltered signals
in the baroclinic range only. The data cover NH DJFs from December 1989 to February 2011 and
SH JJAs from June 1989 to August 2010 [from Messori and Czaja, 2013c].

in �gure 122. The �gure displays the time averaged wavelet spectra for the 5 days centred on the

extreme event, for both the �ltered (continuous line) and the un�ltered (dashed line) signals. Panels

a and c display the spectra for v′ and H ′ respectively, during NH DJF. Panels b and d display the

corresponding spectra for SH JJA. The plots for NH JJA and SH DJF (not shown) present a very

similar picture. The dotted lines mark the limit of baroclinic timescales, de�ned here as motions with

periods of 2-6 days. The numbers in the top right hand corner of the panels are the ratios between

the period-integrated powers of the �ltered and un�ltered signals in the 2�6 day range only. The

key feature of the �gure is the very small loss in power of the v′ and H ′ signals at periods below 6

days. This, combined with the ratios shown in the panels, demonstrates that the �lter's design has

a reduced impact on the v′ and H ′ signals at baroclinic timescales.
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