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Abstract 

FtsH proteases are found throughout nature and contain a conserved ATPase domain, 

flanked by an N-terminal transmembrane domain and a Zn
2+

-binding protease domain. 

They play diverse roles in maintaining cellular activity. In the case of oxygenic 

photosynthetic organisms, FtsH-mediated degradation of damaged D1 protein is 

crucial for the operation of the photosystem II repair cycle needed to prevent 

photoinhibition. Four FtsH homologues are present in the model cyanobacterium 

Synechocystis sp. PCC 6803. One of these, FtsH2 (Slr0228), is known to be important 

for D1 degradation. However the structure of the FtsH2 complex is unknown and little 

is known about the structure and function of the other FtsH homologues. In this work, 

all four FtsH homologues were isolated via C-terminal GST tagging in tandem with 

affinity chromatography. Analysis of the purified FtsH complexes revealed the 

presence of FtsH1(Slr1390)/FtsH3(Slr1604) and FtsH2/FtsH3 heterocomplexes, 

whereas FtsH4 (Sll1463) appeared to form homocomplexes. Single particle analysis 

using electron microscopy revealed that the FtsH2-GST/FtsH3 complex was a 

hexameric particle of diameter ~120 Å with the two types of protomer alternately 

arranged around the central pore. Inactivation of the protease activity of FtsH2 did not 

abolish the function of the FtsH2/FtsH3 complex. FtsH2 and FtsH4 are mainly 

localised in the thylakoid membranes, whereas FtsH3 is dual targeted to both 

thylakoid and cytoplasmic membranes. FtsH1 is likely to be present in the 

cytoplasmic membrane. In vitro studies of E. coli over-expressed cytosolic domains of 

FtsH from Thermosynechococcus elongatus confirmed that the FtsH2, FtsH3 and 

FtsH4 homologues exhibited both ATPase and CTPase activity but that only FtsH4 

could degrade casein. Homologues of E.coli YccA (Sll1150) and Arabidopsis EGY2 

(Sll0862) were co-purified with the FtsH2-GST/FtsH3 complex. However, 

preliminary studies suggest neither is critical for FtsH-mediated D1 degradation. 

Strikingly, Psb29 (Sll1414) was found to be important for accumulation of 

FtsH2/FtsH3 complex, but further work is required to determine the mechanism. 
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Chapter 1: General introduction 

1.1 The evolutionary and global impact of photosynthesis 

Photosynthesis is the process that converts light energy into chemical energy; it 

captures light energy and stores it in chemical bonds by converting carbon dioxide 

from the atmosphere into organic compounds such as sugar (Arnon 1971). This 

process provides food, fuel and materials that are essential to daily life (Barber and 

Tran 2013). The release of dioxygen through oxygenic photosynthesis has had a great 

evolutionary impact on directing the evolution of life forms on earth (Kerr 2005). Free 

oxygen did not exist in the earth atmosphere until ~2 billion years ago, at which point 

oxygen produced by photosynthesis gradually accumulated and shifted the reducing 

atmosphere of earth to an oxidizing form; oxygen-breathing life forms did not appear 

until the oxygen level stabilized at ~20 % of atmospheric composition (Brimblecombe 

and Davies, 1981).  

 

Nowadays, mankind is facing great challenges from food shortages, 

over-consumption of fossil fuels and climate change caused by excessive emission of 

CO2 (Harries et al. 2001). Understanding photosynthesis could potentially help to 

tackle these problems by improving crop yields, producing renewable energy and 

more efficiently capturing CO2 from the atmosphere. 

 

According to figures released in the “Global Environment Outlook environment for 

development (GEO-4)”, released by the end of 2007 by United Nations, the world 

population in 2007 was 6.7 billion, three times larger since the beginning of the 20
th

 

century. Moreover, the increase between 1987 and 2007 was 1.7 billion, a 34 % rise 

of population within the past 20 years; in other words, the growth of population has 

accelerated. The UN predicted the world population will hit 8 billion in the year 2025, 

which is another 20 % increase; the consequent demand for food and energy has been 
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listed as one of the top priorities by officials. Meanwhile, the land suitable for 

agriculture is limited and so to prevent environmental degradation and loss of 

biodiversity, therefore, it is crucial to increase yields on existing cropland (Cassman 

1999; Tilman et al. 2002).  

 

How to power 8 billion people through the 21
st
 century is another problem. Certainly 

the reliance on fossil fuel is unsustainable and catastrophic, not only because the fossil 

fuel sources are depleting rapidly, but also the release of CO2 into the atmosphere 

directly promotes global warming (Harries et al. 2001). The global surface 

temperature has increased 0.74 ± 0.18 
o
C between the start and the end of the 20

th
 

century (IPCC); further climate warming may reduce the stability of marine dissolved 

methane hydrate, and hence increase the methane seepage rate from 30 Tg to 90 Tg 

per year (Hill et al. 2006). Methane is a greenhouse gas which has a global warming 

potential (GWP) value of 25, whereas for carbon dioxide it is 1. The large emission of 

methane is likely to worsen the current climate change issues. Therefore, exploring 

alternative, carbon-neutral energy sources is essential and urgent for mankind before 

ecosystems get irreversibly damaged. 

 

To generate the 20 TW of power that mankind requires per year, solar energy with a 

theoretical annual availability of 100,000 TW (Barber 2007) out competes others like 

water hydroelectric (~ 4.6 TW) and wind (50 TW) (de Winter and Swenson, 2006). 

On the other hand, the conversion of solar energy into biomass by photosynthesis is 

rather inefficient, currently between 0.1 and 1 % (Barber 2007). Storing 20 TW of 

power into biomass would mean that 30 % of the entire land area on Earth needs to be 

cultivated (Barber 2007). Therefore, there is a necessity and a huge potential to 

increase the efficiency of solar energy conversion. One possible route is to reduce the 

impact of photoinhibition on photoautotrophs when exposed to excessive light 

illumination, so as to help keep the photosynthetic system operating under stressful 
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conditions. As part of this goal, this thesis aims to characterise the FtsH family of 

proteases which play a major role in protecting photosynthetic organisms against light 

damage. 

 

1.2 The molecular mechanisms of photosynthesis 

Photosynthesis has been investigated over centuries so that the major chemical 

reactions and many of the molecular machineries participating in photosynthesis are 

now known in detail. To review the progress towards understanding photosynthesis, 

important milestones achieved in the history of photosynthesis research are described 

in the following paragraphs. 

 

The foundation of photosynthesis research was established by Jan Ingenhousz in 1779, 

when he discovered that light plays an important physiological role in plants. Since 

then, it took almost a century to formulate the first minimal balanced chemical 

equation of photosynthesis (See Equation 1.1). 

CO2 + H2O → (CH2O) + O2     (Equation 1.1) 

However, the equation was formulated based on oxygenic photosynthesis, which is 

performed by cyanobacteria, algae and plants, and cannot apply to anoxygenic 

photosynthetic organisms, e.g. green sulphur and purple bacteria. With a deeper 

understanding of both oxygenic and anoxygenic pathways, in 1931, Cornelis van Niel 

formulated a refined photosynthesis equation that is adaptable to both pathways (See 

Equation 1.2). 

2H2A + CO2 → (CH2O) + 2A + H2O   (Equation 1.2) 

van Niel’s equation was proposed based on the hypothesis that both oxygenic and 

anoxygenic photosynthesis share similar metabolic pathways in which a hydrogen 

donor (H2A) was photodissociated and the released proton is used in the 

light-independent reaction to catalyse the reduction of CO2 to form carbohydrates. 

 

In general, photosynthesis is a two-step process that begins with the light-dependent 
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reaction, where light energy is used to initiate electron flow across photosynthetic 

complexes, which subsequently drives the light-independent reactions, also known as 

Calvin-Benson cycle, by supplying ATP to aid the fixation of CO2 into carbohydrates 

(Arnon 1971). The key feature that differentiates oxygenic photosynthesis from the 

anoxygenic pathway lies in the light-dependent reaction, where H2O is split inside 

photosystem II to produce electrons, protons and O2 molecules. Notably, unlike 

electrons and protons, which immediately participate in subsequent reactions, the 

molecular oxygen released from water splitting is a by-product of oxygenic 

photosynthesis which does not contribute to downstream reactions (Figure 1.1). In 

contrast, organisms performing anoxygenic photosynthesis are lacking photosystem II, 

hence unable to catalyse H2O as the electron donor.  

 

 

Figure 1.1: Schematic representation of oxygenic photosynthesis. 

The key reactants involved in the light-dependent and light-independent reactions of 

oxygenic photosynthesis are represented in this cartoon. For further details refer to 

text. 

  

Over the past centuries, photosynthesis has always been considered an important topic 

and has been studied extensively. Benefiting from recent technologies, a number of 

breakthroughs, especially in the field of structural biology, have been made in the last 
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decade. The major events in photosynthesis are now mostly understood, including the 

structures of many photosynthetic complexes (see section 1.2.2 and 1.2.3), the nature 

of the linear electron transport chain (LET) and the CO2 fixation pathway (see section 

1.2.1). On the other hand, there are still important gaps in knowledge that need to be 

filled, including the regulatory mechanisms underpinning the assembly and turnover 

of photosynthetic protein complexes, and the control and mechanisms of cyclic 

electron flow (CET). 

 

1.2.1 Linear electron transport chain of oxygenic photosynthesis 

Unlike the anoxygenic pathway that is only adopted by a limited number of 

photosynthetic bacteria, oxygenic photosynthesis is a highly conserved process 

performed by the majority of photosynthetic organisms, including cyanobacteria, 

algae and plants. Four protein complexes, photosystem II (PSII), cytochrome b6f (Cyt 

b6f), photosystem I (PSI) and ATP synthase, participate in the light-dependent reaction 

of oxygenic photosynthesis (Figure 1.2). Notably, PSII is unique to oxygenic 

photosynthesis, and also it is where the linear electron transport chain (LET) begins. 

When light energy is captured by the light-harvesting antenna of PSII, excitation 

energy is passed to the primary electron donor P680 (P for pigment, 680 for maximum 

absorption at 680nm) which triggers electron flow. The oxidising potential of 

P680
+
/P680 is sufficient to drive the splitting of water at the oxygen-evolving 

complex (OEC), a Mn4Ca cluster located on the lumenal side of PSII. The generated 

electrons are transferred to Cyt b6f, a plastoquinol:plastocyanin oxidoreductase, via 

the plastoquinone pool, and then passed to PSI via plastocyanin. Notably, the passage 

of electrons within Cyt b6f further increases the proton concentration in the lumen. 

The pH gradient (ΔpH) across the thylakoid membrane drives the ATP synthase and 

ATP is produced when protons in the lumen pass through the transmembrane channel 

of the ATP synthase. Similar to PSII, PSI uses photons to elevate the energy of 

electrons on the electron donor P700, with the released electron ultimately passed to 
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ferredoxin, which subsequently produces NADPH via the ferredoxin-NADP
+
 

reductase (FNR). NADPH is the main reducing molecule used in the Calvin-Benson 

cycle to produce carbohydrates. Oxidised P700
+
 is subsequently reduced by an 

electron donated by reduced plastocyanin. Therefore, electrons from the oxidation of 

water are passed between PSII, Cyt b6f and PSI in series, where the product of one 

becomes the substrate of the other (Hill and Bendall, 1960; Hill and Rich, 1983). The 

electron energy is elevated in PSII and PSI to enable electron flow through the LET, 

which is plotted as the Z-scheme of oxygenic photosynthesis (Figure 1.2 A). 
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Figure 1.2: Higher plant photosynthetic electron transport. 

(A) Schematic representation of the electron transport chain of oxygenic 

photosynthesis (Z-scheme). P680 and P700, primary electron donors of photosystem 

II and photosystem I respectively; e-, electron; PQ, plastoquinone; PC, plastocyanin. 

(B) The thylakoid membrane in chloroplasts. PSII, Cyt b6f, PSI and ATP synthase 

protein complexes are depicted and labelled with subunit name (for example, Q is 

PsbQ in PSII and B is PsaB in PSI). Annotation: photons (hv) are absorbed by the 

PSII and PSI antenna (Lhcb and Lhca, respectively) which feed the PSII and PSI 

reaction centre chlorophylls (P680 and P700, respectively). PSII: P680, primary 

electron donor; Phe, pheophytin; YZ and YD, tyrosine Z and D; QA and QB, quinone 

electron acceptors; PQ, plastoquinone. Cyt b6f: Feci, iron-sulphur centre; CytbH/CytbL, 

cytochrome b high/low potential, Q, quinone molecule. PSI: PC, plastocyanin; P700, 

primary electron donor; A0, chlorophyll 0; A1, phyloquinone molecule; FX/FA/FB 

iron-sulphur centres, Fd; ferredoxin, ATP synthase: CF1, chloroplast coupling factor 1; 

CFO, chloroplast coupling factor O. Figure adapted and updated from Nield (1997) by 

Dr. J. Nield (Imperial College, London).  
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1.2.2 Major differences between cyanobacterial and chloroplastic systems 

Both cyanobacteria and chloroplasts perform oxygenic photosynthesis. Although there 

are many features exclusively adapted to each system, the major photosynthetic 

machineries inside cyanobacteria and chloroplasts share significant similarities that 

have been retained through evolution. The light-dependent reactions in both systems 

occur within the thylakoid membrane via LET through PSII, Cyt b6f, and PSI with 

ATP made at the ATP synthase. Overall the structure and function of the four protein 

complexes are highly conserved. The major differences that distinguish the two 

systems are the dynamic arrangement of the thylakoid membrane (Andersson and 

Anderson 1980; Mullineaux 1999) in chloroplasts and the different light-harvesting 

antenna complexes attached to the photosystems (Grossman et al. 1995; Grossman et 

al. 1993). 

 

In chloroplasts, the shape of thylakoid membranes can switch between stacked 

disk-shape cylinders (grana or appressed lamellae) and interconnecting membranes 

sheets (stroma or non-appressed lamellae), depending on the light intensity 

(Andersson and Anderson 1980). The dynamic membrane system is believed to be a 

regulatory mechanism that controls the reception of light-energy into the system. PSII 

and the respective light-harvesting antenna complexes are mainly located in the grana 

lamellae, whereas PSI and its antenna, along with ATP synthase are only located in 

the stroma lamellae (Dekker and Boekema 2005). Moreover, the Cyt b6f protein 

complex is evenly distributed across thylakoid membranes (Allred and Staehelin 

1986). On the other hand, thylakoid membranes in the cyanobacterium Synechocystis 

sp. PCC 6803 (hereafter Synechocystis) are present as three to ten concentric circular 

sheets near the cytoplasmic membrane (Figure 1.5), and the protein distribution is 

rather homogeneous, although more PSI complexes have been found in the outermost 

layers (Sherman et al. 1994). 
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Light-harvesting antennae are membrane protein complexes that interact with the 

photosystems. Their role is to capture additional light-energy and feed it to the 

photosynthetic electron transport chain (Grossman et al. 1995). The antennae in 

chloroplasts are termed light-harvesting complexes (LHCI for PSI and LHCII for 

PSII), containing both chlorophyll a and b. The antennae in cyanobacteria on the other 

hand, are phycobilisomes, in which biliprotein-rods are arranged in a fanlike-fashion 

around a biliprotein-core. Unlike light-harvesting complexes in chloroplasts, 

phycobilisomes are peripheral membrane proteins (Grossman et al. 1993; Hankamer 

et al. 2001). 

 

It is also worth noting that the composition of PSII in chloroplasts is very similar, but 

not identical, to that in cyanobacteria. The major difference occurs in the identity of 

the peripheral subunits: PSII in chloroplasts contains PsbP and PsbQ, instead of PsbU 

and PsbV in cyanobacterial PSII, bound to the lumenal side of the complex. However, 

distant homologues of PsbP and PsbQ are found in cyanobacteria but their role 

remains unresolved (Nixon et al. 2010). In addition, PsbR and PsbTn, which have no 

cyanobacterial counterpart, also appear to be extrinsically attached to the OEC of 

chloroplast PSII (Barber et al. 1997). Nevertheless, the core structure of PSII from 

both eukaryotic and prokaryotic organisms, which includes D1, D2, CP43, CP47 and 

the oxygen-evolving complex, is highly conserved (Fig 1.3). 
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Figure 1.3: Schematic representation of subunit composition of PSII..  

Homologous proteins from cyanobacteria (A) and chloroplasts (B) are labelled in 

identical colours. PSII subunits represented in gray boxes are proteins designated as 

Psb*, where * is the letter labelled in the box (e.g. “I” for PsbI). The dark yellow 

boxes labelled E and F represent cytochrome b559 (Cyt b559), and the extrinsic subunits 

are plotted as pink circles. The large, fan-shape structure in blue represents the 

light-harvesting antenna complex on top of the cyanobacterial PSII, whereas, its 

counterpart in chloroplast is labelled LHCII and presented as a dark-green box 

flanking the subunits. This figure is adapted from (Nickelsen and Rengstl 2013). 

 

1.2.3 Insight into the structure and function of cyanobacterial PS II 

PSII is a light-driven water:plastoquinone oxidoreductase, which catalyses oxygen 

evolution at the OEC (Nixon et al. 2010b). In the past 10 years there has been 

dramatic progress in understanding the structure of PSII from cyanobacteria (Ferreira 

et al. 2004; Liu et al. 2004; Umena et al. 2011; Zouni et al. 2001).  

 

Overall, PSII is a large protein-pigment complex that resides in the thylakoid 

membrane. The latest crystal structure revealed that each monomer in dimeric 

cyanobacterial PSII consists of 17 transmembrane subunits and 3 peripheral subunits, 

35 chlorophylls, two pheophytins, 11 β-carotenes, more than 20 lipids, two 

plastoquinones, two haem irons, one non-haem iron, four manganese atoms, three or 

four calcium atoms, three Cl
-
 ions and one bicarbonate ion, with a total molecular 

mass of 350 kDa (Umena et al. 2011).  
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Figure 1.4: Structural details of cyanobacterial PSII.  

(A) View from the cytoplasmic side of the membrane. The two monomers are 

separated by a black dashed line and the α-helical elements of each subunit are 

represented as cylinders. D1 (yellow), D2 (orange), CP43 (green), CP47 (red), 

cytochrome b-559 ( purple) and the remaining 11 small sub-units (grey) are indicated 

in the monomer on the left side as well as the D1–D2–Cyt b-559 subcomplex 

(elliptical black dashed circle). The same colour coding system applies to the 

monomer on the right side where are also represented the co-factors of PSII: 

chlorophylls (green), carotenoids (orange), pheophytins (yellow), plastoquinones (red) 

and haem (blue). The co-factors are shown in stick form. (B) Two side views, 

differing by a rotation of 90˚, showing the lumenal subunits PsbO (dark blue), PsbV 

(light blue), PsbU ( purple) and the large lumenal loop of CP43 interconnecting 

transmembrane helices e and f (green) that lies close to the Mn4Ca cluster. Panel A 

and B are adapted from (Nixon et al. 2010a). (C) Schematic representation of charge 

separation within PSII reaction centre (Cardona et al. 2012). (D) The Mn4Ca cluster 

and surrounding protein environment, purple; calcium, yellow; oxygen, red; D1, green; 

CP43, pink (Umena et al. 2011). 

 

D1, D2, CP43 and CP47 are intrinsic transmembrane subunits of PSII located in the 

centre of the complex (Figure 1.4 A), which play essential roles in coordinating the 

OEC, positioning pigments and docking the plastoquinones that participate in 
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light-induced electron transport within the complex (Figure 1.4 B). The initial 

light-induced charge-separation is driven by P680, which is a cluster of pigments 

composed of four chlorophyll a (PD1/PD2 and ChlD1/ChlD2) and two pheophytin a 

molecules (PhD1/PhD2) that absorb around 680 nm (Figure 1.4 C). Shortly after 

excitation, the excited state of P680 is stabilised by initiating electron transfer among 

the co-factors. Firstly, P680 donates an electron to pheophytin, PhD1, thence to the 

first quinone, QA, which acts as a one electron redox couple linking PhD1 to the 

second quinone, QB. After electron donation, P680
+
 is subsequently reduced by 

electron transfer from OEC via a tyrosine residue on D1, called Tyrz or Yz. 

 

The detailed structure of OEC, the catalytic centre where water is split to produce 

electrons and molecular oxygen, from T. vulcanus was solved via X-ray 

crystallography (Umena et al. 2011). It is a cubic Mn4CaO5 cluster that is 

progressively oxidised by Yz to enable substrate water molecules to be oxidised 

(Figure1.4 D). The detailed water oxidation process is still not fully understood, 

however, the model proposed by Kok et al. in 1970 (Kok et al. 1970), also known as 

the Kok cycle, is largely consistent with the available experimental evidence. 

According to the Kok cycle model, the OEC exists in 5 different S-states or oxidation 

states. Stepwise oxidation of the S-states occurs upon each turnover of the PSII 

reaction centre with oxidation of water triggered by formation of the S4 state. Even 

though the structure of the OEC has been solved, and artificial oxygen-evolving 

catalysts inspired by and sharing structural similarities with the OEC have been 

successfully developed (Rivalta et al. 2012; Symes et al. 2013), the mechanism of 

water splitting is unknown. The X-ray crystal structure of PSII identified 4 water 

molecules within hydrogen bonding distance of the Mn4CaO5 cluster, of which two 

(W2 and W3) (Figure 1.4 D) may be possible substrates of the reaction. However, it 

still cannot be excluded that one of the oxo-bridges in the OEC, at O5, is involved in 

forming molecular oxygen (Umena et al. 2011). Furthermore, protons released from 
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water oxidation are likely to be channelled out of the complex via a hydrogen-bond 

network (Umena et al. 2011). 

 

1.3 Cyanobacteria as model organisms in photosynthesis research 

Cyanobacteria are related to the most ancient prokaryotes that able to perform 

oxygenic photosynthesis, and are closely related to the organisms that gave rise to 

chloroplasts in plants and eukaryotic algae via endosymbiosis (Gould et al. 2008). 

Like chloroplasts, cyanobacteria perform photosynthesis via protein complexes 

embedded in a thylakoid membrane system (Figure 1.3). Because of the strong 

structural and genetic similarities between photosynthetic systems in cyanobacteria 

and chloroplasts, cyanobacteria are often used as model organisms to study 

photosynthesis. 

 

 

Figure 1.5: Membrane systems in a Synechocystis cell.  

(A) Transmission electron micrograph of a dividing Synechocystis cell illustrating 

thylakoid membranes (arrowheads) that occur along the periphery of the cytoplasm. 

Scale bar = 400 nm. (B) Schematic overview of a cyanobacterial cell. Indicated are: 

thylakoid membranes (green) that contain photosynthetic and respiratory complexes 

and that separate the cytoplasm from the lumen; the cytoplasmic membrane (yellow) 

that separates the cytoplasm from the periplasm; and the outer membrane and cell 

wall. (Adapted from Vermaas 2001). 

 

The cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) is one of 

the model strains used in photosynthetic research. It can grow both 
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photoautotrophically and photoheterophically (Okamoto et al. 1999; Williams 1988a); 

it is naturally transformable (Adami et al. 2005; Williams 1988a) and its genome has 

been fully sequenced.  

 

Synechocystis is a great tool to study the function of genes in vivo, as it is very easy to 

transform and fast growing, which means obtaining a mutant is usually possible 

within a time-frame of 1-2 months. More importantly, a natural mutant of 

Synechocystis, namely the glucose-tolerant wild-type strain (hereafter WT-G), is 

capable of using glucose as an alternative carbon source in the absence of PSII 

activity, hence inactivation of photosynthesis in this strain does not result in lethality 

in the presence of low concentrations of glucose (Williams 1988b). Furthermore, 

Synechocystis cells can be easily stored under cryo-conditions to reduce the chance of 

incurring spontaneous mutations during long periods of maintenance. 

 

On the other hand, for protein structural studies, another cyanobacterium, namely 

Thermosynechococcus elongatus, has proven more advantageous. T. elongatus is a 

thermophilic strain, originally found in a hot spring, which has an optimal growth rate 

at 55
o
C, hence the proteins in this strain are more thermo-stable which offers a better 

chance to yield structural data. Structures of many cyanobacterial proteins, including 

PSII (Ferreira et al. 2004), were solved using native or E. coli over-expressed 

recombinant protein of T. elongatus, e.g. Psb27 (Michoux et al. 2012). Although many 

mutants have been made in this organism in the past decade, transformation of T. 

elongatus is still a great challenge. Although T. elongatus has been shown to be 

naturally transformable in some labs (Onai et al. 2004), most transformation protocols 

require a combination of electroporation and a delicate recovery growth period (Iwai 

et al. 2004), which is difficult to reproduce under different laboratory environments. 

Also, unlike strain WT-G of Synechocystis, none of the T. elongatus strains has been 

found capable of using an alternative carbon source, therefore, it is difficult to study 
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genes encoding essential photosynthetic proteins via mutagenesis. Overall, 

Synechocystis is a preferred strain to study the physiological functions of proteins in 

vivo, whereas proteins of T. elongatus are more desirable for in vitro applications. 

  

1.4 The current model of PSII de novo assembly 

PSII is a large protein-pigment complex consisting of at least 20 subunits and 

localised in the thylakoid membrane (see section 1.2.2 and 1.2.3). The assembly of 

PSII is a highly organised event involving auxiliary proteins (see section 1.4.1). In 

both cyanobacteria and chloroplasts, the de novo assembly of PSII is spatially 

organised (see section 1.4.2). 

 

1.4.1 The assembly of PSII 

Currently, the assembly of PSII is considered to occur by two distinctive pathways 

(reviewed by (Nickelsen and Rengstl 2013)): (1) the de novo assembly of PSII and (2) 

the PSII repair cycle (see section 1.5.4). The investigation of PSII assembly has been 

mostly based on analysing the subunit composition of intermediate complexes that are 

blocked at different stages of assembly either in mutants lacking essential PSII 

subunits or lacking auxiliary proteins assisting the assembly process (Nickelsen and 

Rengstl 2013). PSII is a massive complex consisting of at least 20 subunits and there 

are still many gaps in the model to be filled. Nevertheless, a few key stages of PSII 

assembly have now been elucidated. It is thought that assembly of PSII requires 

coordination of protein synthesis, translocation, post-translational modification and 

the biosynthesis of co-factors and the lipid bilayer membrane. In the case of 

eukaryotic cells, in which many photosynthesis-related proteins are encoded by the 

nuclear genome, gene expression is also regulated between the nuclear and 

chloroplast genomes (Zhang et al. 2009). As would be expected from their close 

evolutionary relationship, many aspects of PSII assembly are rather conserved in 

cyanobacteria, green algae and higher plants. 
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The assembly of PSII begins with the formation of reaction-centre complex (RC), 

where the D1 and D2 subunits form a hetero-dimeric complex. The integration of D1 

requires assistance from several auxiliary protein assembly factors. The precursor D1 

subunit (pD1) requires Alb3/Oxa1/YidC family insertases (Slr1471, Alb3) to aid 

folding and integration into the thylakoid membrane (Ossenbuhl et al. 2004; 

Ossenbuhl et al. 2006), CtpA (C-terminal processing protease) is also required to 

cleave the C-terminal extension of pD1 leaving space to dock the OEC and extrinsic 

proteins (Roose and Pakrasi 2004). Interestingly, unlike in plants, where the 9 residues 

at the C-terminal extension is removed by CtpA in a single step, the 16 residues at the 

C-terminus of cyanobacterial D1 is cleaved in two steps, giving rise to an intermediate 

form of D1 (iD1) which is mainly detected in the RC (Komenda et al. 2007a). 

Although the C-terminal extension is not essential for the assembly of PSII, mutants 

lacking the extension region exhibit decreased fitness (Ivleva et al. 2000; Kuvikova et 

al. 2005), indicating the D1 processing step contributes towards correct assembly. 

PratA, a periplasmic, tetratricopeptide repeat (TPR) protein, is another assembly 

factor found associated with formation of the RC complex in cyanobacteria. PratA is 

thought to act as a molecular scaffold for the assembly process and is potentially 

involved in the C-terminal processing of pD1. More importantly, it has been shown to 

deliver Mn
2+

 to D1, providing hints that the formation of OEC begins at very early 

stage of PSII de novo assembly (Klinkert et al. 2004; Schottkowski et al. 2009a; 

Stengel et al. 2012). D2 plays a dominant role in accumulation of chlorophyll a 

(Komenda et al. 2004), which raises the possibility that the D2 sub-complex might act 

as an anchor for enzymes involved in chlorophyll biosynthesis and subsequent loading 

of the pigments into the RC (Komenda et al. 2012b). An early integration of 

co-factors is generally believed to be beneficial as the co-factors would no longer 

require carriers to translocate through membrane interfaces and also potential toxicity 

is minimised. From the protein point of view, efficient integration of co-factors can 

also stabilise the apoproteins and avoid unnecessary degradation (Eichacker et al. 
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1996; Komenda et al. 2012b). 

 

Formation of the RCII complex is thought to be aided by the Ycf48 assembly factor 

(HCF136 in Arabidopsis thaliana). Ycf48 is a seven-bladed beta-propeller that is 

believed to play a scaffolding role to stabilise the complex (Nixon et al. 2010b). 

Notably, although evidence of direct interaction between Ycf48 and D1 is still lacking, 

data from yeast two-hybrid analysis showed that Ycf48 interacts with pD1 but not 

with mature D1 (Komenda et al. 2008). The RC complex is then attached to one of the 

two inner antenna-proteins CP47 to form the RC47 complex (Boehm et al. 2011). The 

PAM68 auxiliary protein appears to play an important role in assembly of larger PSII 

complexes derived from the RC, and is currently thought to play a bridging role 

between PSII core proteins in the assembly process. Psb28 is another assembly 

protein identified at this stage (Kashino et al. 2002; Shi et al. 2012). Although the 

structure of Psb28 has been solved, little is known about its function (Yang et al. 

2011). Physiological analysis showed that Psb28 might play a role in chlorophyll 

biosynthesis and/or be associated with the biosynthesis of the inner-antenna protein 

CP47, and the PSI subunits PsaA and PsaB (Dobakova et al. 2009). 

 

Some PSII assembly factors display more diverse cellular functions, in particular, 

exhibiting interactions with multiple proteins and even PSI subunits, e.g. Psb28. 

Assembly factor Psb27 is a lumenal lipoprotein that binds transiently to CP43, 

monomeric PSII and even dimeric PSII and PSI (Komenda et al. 2012a; Nowaczyk et 

al. 2006; Roose and Pakrasi 2008). The major function of Psb27 might be to prevent 

premature binding of extrinsic subunits to enable post-translational processing at the 

lumenal side of the complexes (Roose and Pakrasi 2008). Strikingly, deletion of 

LPA19, the homologue of Psb27 in A. thaliana, results in impaired C-terminal 

processing of pD1, and disruption of the second homologue Psb27-H1 leads to 

decreased PSII repair efficiency (Chen et al. 2006). Therefore, in plants, the functions 
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of the two homologues of Psb27 seem to have diverged (Nickelsen and Rengstl 2013). 

Available data suggest Sll0606 (in Synechocystis), LPA2 and LPA3 (in A. thaliana) 

are auxiliary proteins involved in assembly of CP43, the second inner-antenna. 

Surprisingly, the three proteins share no homology, suggesting that PSII assembly at 

this stage diverged between prokaryotes and eukaryotes. 

 

Upon attachment of the CP43 sub-complex, the extrinsic subunits dock onto the 

lumenal side of PSII. Two assembly factors from A. thaliana have been implicated to 

assist the process, CYP38 and LTO1. CYP38 is a member of the immunophilin family 

that mediates immune suppression (Nickelsen and Rengstl 2013), and is believed to 

bind to the E-loop of CP47 and assist D1 folding (Vasudevan et al. 2012), whereas, 

LTO1 is a lumenal thiol oxidoreductase that catalyzes the formation of disulphide 

bonds in PsbO (Karamoko et al. 2011). Several proteins have been suggested to 

involve in the dimerization of PSII, including Alb3 insertase and FKBP20-2 in A. 

thaliana. 

 



 

Figure 1.6: De novo assembly of PSII in (a) cyanobacteria and (b) chloroplasts.  

The PSII assembly process between cyanobacterial and chloroplast are comparatively similar and defined into three stages: early, late and final. 

Homologous proteins are labelled in identical colours. The auxiliary proteins assisting the assembly process at each stage are shaped in ovals. 

PSII subunits represented in gray boxes are proteins designated as Psb*, where * is the letter labelled in the box (e.g. “I” for PsbI). The dark 

yellow boxes labelled E and F represent Cyt b559. This figure is adapted from (Nickelsen and Rengstl 2013).



1.4.2 The localisation of PSII assembly  

Assembly of PSII appears to be a highly organised event occurring at distinctive 

regions of the membrane (Stengel et al. 2012). In the case of the cyanobacterium 

Synechocystis, the de novo assembly of the D1/D2 reaction centre is located in 

specific membrane regions termed the PratA-defined membrane (PDM) due to the 

enriched accumulation of membrane-associated PratA (Schottkowski et al. 2009a). 

PratA is an auxiliary protein of PSII assembly involved in the maturation of pD1 (see 

section 1.4.1). Localisation studies showed PratA is also required for correct 

localisation of some PSII assembly factors such as Ycf48 and Slr1471, indicating 

PratA is not only a resident, but also involved in the development of the PDM region 

(Rengstl et al. 2011). Interestingly, PratA is a periplasmic protein, which does not 

have direct contact with the internal thylakoid membrane system. Therefore, PDM is 

believed to be localised at the junctions where thylakoid and cytoplasmic membranes 

make contact (Figure 1.5), so that assembled RC can be transported to thylakoid 

membranes for the subsequent assembly steps. It is worth noting that the composition 

of PDM has been experimentally confirmed to have both cytoplasmic and thylakoid 

membranes (Schottkowski et al. 2009a), and a recent structural study suggested PDMs 

are attached to the thylakoid centre, a rod-like structure connecting both membranes 

(Nickelsen and Rengstl 2013). Moreover, enzymes and precursor products associated 

with chlorophyll biosynthesis have also been identified in PDMs (Rengstl et al. 2011; 

Schottkowski et al. 2009b), indicating that a pipeline of biosynthesis and integration 

of co-factors might spatially be organised in the same region to coordinate the 

assembly process.  

 

Chloroplasts in plants are considered to have originated from cyanobacteria via 

endosymbiosis, and have outer and inner chloroplast envelope membranes instead of 

outer and cytoplasmic membranes. The thylakoid system in higher plant chloroplasts 

is more complex than that of cyanobacteria, the localisation of photosynthetic 
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complexes is stringently partitioned in grana and stroma lamellae (see section 1.2.2). 

The highly organised and dynamic membrane system enables efficient energy 

harvesting and stress protection. However, the compact granal stacks restrict the 

access of ribosomes, hence it has been proposed that protein synthesis in chloroplasts 

occurs exclusively on the stroma lamellae (Yamamoto et al. 1981). This model is 

further backed by protein analysis, which showed the distribution of PSII 

subcomplexes is directly correlated to the height of the grana stacks (Danielsson et al. 

2006). 

 

1.5 Photoinhibition and PSII repair 

The chemistry involved in light-driven water oxidation process eventually leads to 

damage to the PSII protein complex (Mattoo et al. 1984). In both chloroplasts and 

cyanobacteria, an effective mechanism is available to repair inactivated PSII (see 

section 1.5.4). Under illumination at moderate and low light intensities, the repair rate 

of PSII is able to match the rate of photodamage to maintain photosynthetic activity. 

However, when the repair rate fails to keep up with that of the damage, the overall 

photosynthesis rate will decline in a phenomenon termed chronic photoinhibition 

(Ohad et al. 1984). Although the molecular mechanism of photoinhibition is still 

under intense debate (see section 1.5.1), the consequent result of photoinhibition is the 

irreversible damage to PSII proteins and mainly the reaction centre protein D1.  

 

1.5.1 Molecular mechanisms for photoinhibition of PSII 

Beyond the phenomenon of photoinhibition, it is widely agreed that photoinhibition 

occurs at the reaction centre of PSII, especially the D1 subunit, which undergo rapid 

turnover under strong light illumination (Aro et al. 1993b; Ohad et al. 1994; Prasil et 

al. 1992). However, the details regarding the mechanisms of photodamage are still 

under intense debate (Murata et al. 2012). Two distinctive routes of photoinhibition 

have been proposed on the basis of the available data from both in vitro and in vivo 

studies.  
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The classic acceptor-side model (Aro et al. 1993a; Barber and Andersson 1992; Long 

et al. 1994; Vass et al. 1992), established on the basis that reactive oxygen species 

(ROS) are responsible for photoinhibition, suggests that under continuous strong 

illumination, the constant electron flow from PSII can lead to an over-reduced 

plastoquinone-pool, which might lead to a double reduction of QA and consequently 

causing its dissociation from D2 (Styring et al. 1990; Vass et al. 1992). As an essential 

element for electron transfer, dissociation of QA blocks electron flow within PSII, 

leading to enhanced accumulation of P680 triplet states (
3
P680) which will then react 

with triplet oxygen (
3
O2), eventually resulting in the production of reactive oxygen 

species (ROS) (Vass et al. 1992). Other than dissociation of QA under strong 

illumination, ROS might also be produced via charge-recombination between QB
-
 and 

the S-states under low-light conditions (Keren et al. 2005a; Mattoo et al. 1984). 

 

In contrast to the acceptor-side model which requires the presence of ROS, the 

donor-side model for photoinhibition is oxygen independent. It has been shown that 

the action spectrum of photodamage to PSII resembled the absorption spectra of 

manganese compounds (Hakala et al. 2005; Ohnishi et al. 2005; Sarvikas et al. 2006). 

Indeed various manganese compounds are also susceptible to light-induced damage 

(Antal et al. 2009; Hakala et al. 2006; Wei et al. 2011). Hence it is possible that the 

inactivation of PSII begins with damage and dissociation of the OEC. Consequently, 

without the supply of electrons from OEC, the cofactors at the reaction centre of PSII 

might form highly oxidizing radicals that are capable of extracting electrons from the 

surrounding protein moiety or PSII as a whole (Chen et al. 1992; Klimov et al. 1990). 

 

The key evidence supporting the donor-side inhibition theory is based on in vivo 

studies showing manganese ions from OEC are the primary target of photodamage 

(Hakala et al. 2005; Ohnishi et al. 2005), hence electrons from donor-side are the 

limiting factors in photoinhibition. Although recent evidence suggests that ROS are 
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not directly causing damage to PSII, but rather inhibiting the repairing process (see 

section 1.5.3.1), it does not rule out the possibility that QA dissociation and charge 

recombination might contribute to photoinhibition. 

 

1.5.2 Photodamage and repair 

The phenomenon of photoinhibition as a whole is the result of imbalance in the rates 

of damage and repair. Hence studies on photoinhibition require consideration of both 

photodamage and PSII repair. With well-established experimental procedures in both 

plants (Moon et al. 1995) and cyanobacteria (Gombos et al. 1994; Murata et al. 2012; 

Wada et al. 1994), photodamage can be analysed separately from PSII repair by 

blocking the biosynthesis of D1 using antibiotics that inhibit protein synthesis, e.g. 

lincomycin. The separate analysis of photodamage and repair has shown that the rate 

of photodamage to PSII has a clear linear correlation with light intensity, whereas the 

repair rate reaches its maximum at a light intensity of 200 to 400 µE.m
-2

.s
-1

 white 

light (Allakhverdiev and Murata 2004). Hence repair of PSII is indeed the rate 

limiting step that leads to photoinhibition. Several mechanisms have been found to 

participate in the protection of PSII against photoinhibition, including the expression 

of various genes associated with ROS scavenging enzymes (Asada 1999; Di Mascio 

et al. 1990; Neely et al. 1988), non-photochemical quenching (NPQ) (Bugos and 

Yamamoto 1996; Lindahl et al. 2000) and dissipation of energy into other electron 

transport pathways (Murata et al. 2012). 

 

1.5.3 Putative protective mechanisms against photoinhibition 

Photosynthetic organisms have evolved a range of protective mechanisms to prevent 

photoinhibition. In this section, a few putative protective mechanisms used by 

cyanobacteria and higher plants are described, including the mediation of reactive 

oxygen species (see section 1.5.3.1), non-photochemical quenching (see section 

1.5.3.2) and energy dissipation though alternative pathways (see section 1.5.3.3). 
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1.5.3.1 Protection against reactive oxygen species (ROS) 

In general, ROS present in cells are the by-product of aberrant energy transfer from 

the photosystems to molecular oxygen (
3
O2). It could be singlet oxygen (

1
O2), which 

might be the result of energy transfer from chlorophyll molecules to 
3
O2 (Knox and 

Dodge 1985; Zolla and Rinalducci 2002), or superoxide radicals (O2·
- 
) formed when 

electrons at the acceptor-side of PSI are transferred to 
3
O2, which could further be 

converted to hydrogen peroxide (H2O2) and into hydroxyl radicals (·OH) (Asada 

1999). In the initial acceptor-side model of photoinhibition, ROS was proposed to 

have a direct role in photodamage to PSII reaction centre, however, by separately 

assessing photodamage when PSII repair process is blocked, it seems that the rate of 

photodamage to PSII is not accelerated drastically by the presence of ROS 

(Allakhverdiev and Murata 2004; Nishiyama et al. 2004; Nishiyama et al. 2001). 

Rather the main effect of ROS is to reduce global protein translation by primarily 

targeting the redox-controlled elongation factor G (EF-G), which leads to insufficient 

D1 synthesis (Ejima et al. 2012; Nishiyama et al. 2004; Nishiyama et al. 2001).  

 

Several genes involved in the production of ROS-scavenging enzymes and 

antioxidants protect cells from oxidative stress. Bacterial catalase which is a 

scavenger of H2O2 has been shown to improve tolerance to photoinhibition 

(Miyagawa et al. 2000; Nishiyama et al. 2001; Shikanai et al. 1998). Interestingly, 

ascorbate peroxidase (APX) is the predominant scavenger of H2O2 in the chloroplasts 

of higher plants, however, it is rather unstable comparing to catalase (Asada 1999), 

which might contribute to the fact that higher plants have lower tolerance to H2O2 

comparing to cyanobacteria and algae (Badger et al. 2000; Takeda et al. 1995; Tamoi 

et al. 1998). Antioxidants such as α-tocopherol, which is an effective scavenger of 

intracellular 
1
O2 (Di Mascio et al. 1990; Neely et al. 1988), also aids to reduce the 

oxidative suppression on PSII repair (Hakala-Yatkin et al. 2011; Havaux et al. 2005).  
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1.5.3.2 Non-photochemical quenching 

Non-photochemical quenching (NPQ) refers to the preventative mechanisms that 

restrict excessive light energy from passing through to the photochemical reactions. 

This process has been assessed by monitoring the reduction of chlorophyll 

fluorescence yields, and categorised into three groups according to the relaxation 

kinetics, namely energy-dependent quenching (qE), state-transition quenching (qT) 

and photoinhibitory quenching (qI) (Muller et al. 2001). 

 

Among the three types of NPQ, qE is the major contributor as it respond to light stress 

on a timescale of seconds (Demmig-Adams and Adams III 1996; Horton and Ruban 

1992; Kanervo et al. 2005; Long et al. 1994; Muller et al. 2001), and results in the 

relatively harmless thermal dissipation of absorbed light energy (Niyogi and Truong 

2013). The molecular details of qE quenching are still largely unclear, and the 

quenching mechanisms vary among cyanobacteria, algae and plants, however, a few 

proteins and cofactors involved in qE-mediated heat dissipation have been identified. 

In principle, qE quenching occurs in the light-harvesting antenna protein complexes, 

which is believed to redirect energy transfer from chlorophyll to carotenoid, and 

consequently, carotenoid will dissipate energy in the form of heat (Demmig-Adams 

and Adams III 1996). The basis of qE quenching among cyanobacteria, algae and 

plants are similar, however, the quenching mechanisms between them are quite 

different. As cyanobacteria harvest light via phycobilisome antenna (see section 1.2.2), 

qE quenching is reliant on the orange carotenoid protein (OCP), which binds a single 

xanthophyll molecule (Kerfeld et al. 2003). Upon absorption of blue-green light via a 

xanthophyll pigment, OCP is switched from an inactive orange form (OCP
o
) into an 

active red form (OCP
r
), which is able to bind to the phycobilisome (Gwizdala et al. 

2011). The structural details of binding and energy transfer are still unclear. The 

current hypothesis is that energy from excited bilin pigment at the core of 

phycobilisome is passed to the xanthophyll in OCP
r
 (Niyogi and Truong 2013). 

Moreover, qE quenching can be switched off via up-regulation of the Fluorescence 
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Recovery Protein (FRP), which promotes both dissociation of OCP
r
 from 

phycobilisome and reversion of OCP
r
 to OCP

o
 (Gwizdala et al. 2011). 

 

Unlike cyanobacteria, qE quenching in green algae is performed via production of a 

specific type of LHC complex, namely LHCSR (or LI818 or LHCX1) (Bailleul et al. 

2010; Niyogi and Truong 2013; Peers et al. 2009). Unlike regular LHC, chlorophylls 

inside LHCSR have an unusually short fluorescence lifetime that is even shorter at 

low pH conditions in vitro (Bonente et al. 2011). Beside up-regulation of LHCSR 

genes, LHC genes are typically down-regulated under high light, which shifts the 

equilibrium between the two types of light harvesting complexes towards enhanced 

qE quenching. Furthermore, LHCSR might also induce quenching in other LHC 

proteins in PSII (Elrad et al. 2002; Ferrante et al. 2012), and it is also implied to play a 

protective role for detached LHC proteins migrating between photosystems 

(Amarnath et al. 2012). It is worth mentioning that qE quenching in both green algae 

and plants is triggered via increased ΔpH across the thylakoid membrane, which 

initiates the xanthophyll cycle by activation of violaxanthin de-epoxidase which 

converts violaxanthin to zeaxanthin (Demmig-Adams and Adams III 1996).  

 

Although both algae and plants harvest light energy via LHC complexes and qE 

quenching in both organisms is ΔpH-dependent and xanthophyll-dependent, the 

quenching mechanisms in plants seem to have evolved separately (Niyogi and Truong 

2013). It has been shown that LHC complexes in plants have an intrinsic ability to 

switch between an efficient light-harvesting state to a photoprotective state in which 

excitation energy is dissipated (Kruger et al. 2012). The precise regulation mechanism 

is still to be unveiled, however, mutagenesis analysis have shown that the PsbS 

protein plays an essential role in this process (Lindahl et al. 2000). Protonation of 

PsbS promotes a rearrangement of the PSII complexes in the grana lamellae (Betterle 

et al. 2009; Goral et al. 2012) and has been implied to cause conformational changes 
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in the LHC complexes (Li et al. 2000; Ruban et al. 1993). PsbS is an integral 

membrane protein that belongs to the chlorophyll a/b binding (cab) protein 

superfamily, however, PsbS does not appear to bind pigments (Bonente et al. 2008). 

Surprisingly, although conserved genes encoding PsbS are also found in the green 

alga Chlamydomonas reinhardtii, the expression of which is also induced by light 

stress, there is presently no evidence that PsbS is translated or involved in NPQ in C. 

reinhardtii (Niyogi and Truong 2013). However, it remains a possibility that green 

algae might have both LHCSR and PsbS quenching mechanisms. Moreover, despite 

being essential to qE quenching in plants, thylakoid membranes isolated from the 

psbS mutant was able to perform qE quenching in the presence of high ΔpH (Johnson 

and Ruban 2011), which provides a hint that there might be other sensors to drive the 

conformational change of LHC. 

 

When oxygenic photoautotrophs are under continuous strong illumination over a 

period of minutes, state transition quenching (qT) is initiated (Anderson 1986; 

Kanervo et al. 2005; Melis 1999; Reuter and Muller 1993). Unlike qE quenching, 

which mediates the energy flow from the light-harvesting antenna to photosystems, 

qT quenching adjusts the size and positioning of the antennae to acclimate the 

environment by fine-tuning the energy reception and the electron flow between 

photosystems (Escoubas et al. 1995; Lindahl et al. 1995; Reuter and Muller 1993). 

The size of the light-harvesting antennae is modified to cope with long-term 

illumination via regulation of both biosynthesis (Escoubas et al. 1995) and 

degradation (Lindahl et al. 1995) of the antenna proteins. Antenna proteins also 

migrate between photosystem I and photosystem II, during so-called state transitions, 

to regulate electron flow chain on thylakoid membrane as a short-term acclimation 

response (Murata and Sugahara 1969). In plant and green algae, the state transition 

response is regulated by the redox state of the plastoquinone pool, coupled with 

phosphorylation of the antenna. Under reducing conditions, this leads to the migration 
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of antenna complexes from PSII to PSI (Allen 2003; Bellafiore et al. 2005; Bonardi et 

al. 2005; Rochaix 2007; Tikkanen et al. 2006). The transfer of antenna from PSII to 

PSI is termed state 2, whereas the reverse process, regulated by phosphatase (Pribil et 

al. 2010; Shapiguzov et al. 2010), is termed state 1 (Allen and Forsberg 2001; Gal et 

al. 1997; Kanervo et al. 2005; Mullineaux and Emlyn-Jones 2005). Interestingly, the 

movement of phycobilisomes in cyanobacteria does not seem to involve 

phosphorylation, and the control mechanism is yet to be unveiled (Mullineaux and 

Emlyn-Jones 2005). qT quenching is associated with photoprotection, however, its 

impact is still debatable. In plants, only 15 to 20 % of the LHC complexes are 

involved in state transitions, whereas, up to 80 % of the LHC antenna in C. reinhardtti 

participate in state transitions (Kanervo et al. 2005). In the case of cyanobacteria, 

NPQ is closely correlated with state 2 transition (Campbell and Öquist 1996), 

however, there is no direct evidence that qT mediates photoprotection (Mullineaux 

and Emlyn-Jones 2005). 

 

Photoinhibitory quenching (qI) is the slowest forming and relaxing NPQ among the 

three, with sustained quenching able to persist for several hours in the dark following 

illumination (Ruban et al. 2012). PSII undergoes rapid turnover under strong light 

illumination and it is suggested that qI quenching might be achieved by using inactive 

PSII complexes as energy sinks to reduce energy flux towards their functional 

neighbours (Aro et al. 1993a; Kanervo et al. 2005; Kettunen et al. 1997; Lee et al. 

2001; Matsubara and Chow 2004). Typically, the repair rate of damaged PSII 

complexes is restricted by the de novo synthesis rate of D1 protein subunit encoded by 

the psbA gene (Figure 1.4).  Interestingly, unlike most plants and algae which only 

have one copy of psbA (Zurawski et al. 1982), most cyanobacteria contain three 

copies of psbA (Golden et al. 1986). The expression level of each psbA gene is 

associated with both the quantity and quality of light (Campbell et al. 1998; Clarke et 

al. 1995; Clarke et al. 1993; Golden et al. 1986). Further studies on D1 homologues 
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suggest that the turnover rate of each homologue varies under strong illumination, 

hence qI quenching could be enhanced in cyanobacteria via altering the proportion of 

each D1 homologue (Campbell et al. 1998; Komenda et al. 2000; Sippola and Aro 

2000). 

 

The physiological role of NPQ in photoprotection was originally thought to be mainly 

at the level of reducing the rate of photodamage to PSII. However, using methods to 

monitor photodamage and repair separately has since revealed that defects in NPQ 

largely lead to impaired repair of PSII, rather than enhanced rates of photodamage 

(Murata et al. 2012; Sarvikas et al. 2006; Sarvikas et al. 2010; Takahashi et al. 2009). 

As described before (see section 1.5.3.1), the de novo synthesis of D1 in the PSII 

repair cycle is strongly inhibited by the level of ROS, which provides a hint that NPQ 

might aid the repair process by preventing generation of ROS. 

 

1.5.3.3 Dissipation of energy via alternative electron transport pathways 

Beside the primary electron transfer route within PSII (see section 1.2.3), secondary 

electron transfer pathways are proposed to protect PSII from oxidative damage in 

situations where electron transfer to P680
+
 from the OEC is either absent or impaired 

(Stewart and Brudvig 1998). Under such circumstances, oxidation of the redox-active 

tyrosine in D2 (YD), β-carotene, Chlorophyll and Cyt b559 has been observed 

(Shinopoulos and Brudvig 2012). Further analysis on the secondary electron flow in 

PSII suggests that the β-carotene (CarD2), coordinated by the D2 subunit, is likely to 

be the initial electron donor to P680 when electron transfer from OEC is restricted 

(Shinopoulos et al. 2013). Subsequently, the oxidised CarD2 is reduced by electron 

transfer from the terminal electron donor Cyt b559, via a network of cofactors 

(Shinopoulos and Brudvig 2012). Moreover, Cyt b559 may be reduced by the 

plastoquinone pool which is ultimately reduced by the acceptor-side of PSII, thereby 

forming a cyclic electron pathway connecting the donor and acceptor side of PSII 

(Shinopoulos and Brudvig 2012). 
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In plants, cyclic electron transport around PSI (CET) is accelerated under various 

stress conditions, including strong illumination (Clarke and Johnson 2001; DalCorso 

et al. 2008; Miyake et al. 2004). It has been shown that CET plays an important role 

in counteracting photoinhibition in plants (Munekage et al. 2004; Takahashi et al. 

2009). CET enables PSI to pass electrons back to the plastoquinone pool via reduced 

ferredoxin or NADPH, which consequently contributes to formation of ΔpH across 

thylakoid membrane (Figure 1.2 lower panel) and down-regulation of PSII activity by 

the qE mechanism (Kanervo et al. 2005; Munekage et al. 2004; Shikanai et al. 2002). 

Further studies on A. thaliana mutants with impaired CET suggest that CET 

contribute largely to the generation of ΔpH, which seems not only to enhance repair 

via protonation of PsbS and consequent NPQ, but also reduce the sensitivity of PSII 

to photodamage (Takahashi et al. 2009). 

 

Photorespiration is another metabolic pathway that can be used to dissipate excess 

energy from LET (Badger et al. 2000; Niyogi 1999; Wingler et al. 2000). In general, 

photorespiration is a process which fixes O2, instead of CO2, at the level of 

ribulose-bisphosphate carboxylase/oxygenase (rubisco), to then form 

2-phosphoglycolate and 3-phosphoglyceric acid (Wingler et al. 2000). This process is 

generally considered wasteful, however, blocking it leads to greater sensitivity to 

photoinhibition and oxidative damage (Niyogi 1999; Wingler et al. 2000). 

Interestingly, photorespiration in plants is partly due to the fact that rubisco is 

relatively unspecific for CO2 and there might be a limitation of CO2 supply to the cell. 

Hence it is probably less relevant to photoprotection in cyanobacteria due to the 

different kinetic properties of rubisco and the efficient carbon concentrating systems 

that most cyanobacteria possess (Badger et al. 2000). 

 

The water-water cycle (also known as the Mehler-ascorbate peroxidase reaction or 

pseudocyclic electron transport) is another alternative electron pathway that is used in 
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plants under high light stress (Asada 1999; 2000; Badger et al. 2000; Kanervo et al. 

2005). In this pathway, excess electrons from PSI are directly transferred to dioxygen, 

and the resulting superoxide radicals are ultimately converted into water and ascorbic 

acid by superoxide dismutase and ascorbate peroxidase. This process maintains LET 

between photosynthetic complexes, and is also thought to contribute to qE quenching. 

  

1.5.4 PSII repair cycle 

Photodamage to PSII is an inevitable process that occurs under all light intensities 

(see section 1.5). In both chloroplasts and cyanobacteria, photosynthetic activities are 

maintained by both de novo protein synthesis and efficient PSII repair mechanisms. 

Among the subunits in PSII, D1 is the main target of photodamage and is rapidly 

turned over with a half-life as short as 30 min (Tyysjärvi et al. 1994) Therefore a key 

aspect of PSII repair is the replacement of the inactive D1 from the reaction centre via 

partial disassembly and reassembly of the PSII complex. Due to the complexity of the 

repair process, and also the fact that the PSII de novo assembly and repair might 

spatially overlap and generate identical intermediate sub-complexes, there are still a 

few knowledge gaps to be filled. 

 

A current model of the PSII repair cycle in cyanobacteria is shown in Figure 1.7. 

Following photoinactivation, there is partial disassembly of the damaged PSII 

complex to form the RC47 complex, which enables damaged D1 to be exposed for 

degradation. The replacement of D1 consists of two synchronised steps: the 

degradation of the inactive D1 and the de novo synthesis of D1. Once a new copy of 

D1 is integrated into the RC47 complex, possibly with the assistance of auxiliary 

proteins, PSII is re-assembled (see section 1.4.1). 
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Figure 1.7: Model for the PSII repair cycle of cyanobacteria.  

The various steps of the cyanobacterial PSII repair cycle are depicted in this 

hypothetical model for which the description can be found in the text. O, V and U 

symbolise the extrinsic subunits of the oxygen -evolving complex (OEC) PsbO, PsbV 

and PsbU respectively. RC47 signifies a PSII core complex lacking CP43. In this 

model, only the FtsH protease is suggested to mediate D1 protein removal and 

degradation. The figure was kindly donated by Dr. J. Nield and Dr. P. Silva; adapted 

from (Nixon et al. 2005). 

 

Whilst the repair processes of PSII in plants and cyanobacteria have been proposed to 

be similar, there are clear signalling and spatial differences between the two systems. 

The signalling system in eukaryotes is largely dependent on phosphorylation, hence in 

contrast to the cyanobacterial system, the detachment of antenna and disassembly of 

PSII complexes in chloroplasts are under the regulation of kinases (Tikkanen et al. 

2008). Also, the repair process of PSII in chloroplasts is restricted to the stroma 

lamellae as photosynthetic proteins localised in grana lamellae are not accessible to 

repair (Goral et al. 2010). The formation of thylakoid membranes in cyanobacteria is 

not as structured as their chloroplastic counterpart; therefore, the location where repair 

process takes place is still unclear. One of the models proposed according to the 

heterogeneous distribution of FtsH, the major protease responsible for D1 degradation, 
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suggests that D1 replacement might take place in defined “repair zones” where FtsH 

is available (Komenda et al. 2006a; Komenda et al. 2012b). Moreover, pD1 is found 

not only in PDM but also in thylakoid membranes, which raises the speculation that 

the sub-fraction of pD1 in the thylakoid membrane might be associated with PSII 

repair rather than de-novo assembly (Schottkowski et al. 2009a). 

 

1.5.5 FtsH-mediated D1 degradation 

Early studies based on in vitro experiments suggested that degradation of D1 in higher 

plant thylakoids required the involvement of members of both the DegP and FtsH 

family of proteases (Spetea et al. 1999). A two-protease model was proposed in which 

damaged D1 was initially cleaved by Deg2 in a GTP-dependent manner, and then the 

remaining 23-kDa N-terminal D1 fragment was degraded by FtsH, an ATP-dependent, 

Zn
2+

-binding metalloprotease (Adam and Clarke 2002; Haussuhl et al. 2001; Lindahl 

et al. 2000). However, later studies using Deg2 protease-deficient mutants showed 

that D1 turnover was not affected in vivo. In contrast inactivation of FtsH resulted in 

impaired D1 degradation. Furthermore, the accumulation of the 23-kDa D1 cleavage 

product observed previously in vitro was not detected in the in vivo experiments 

(Bailey et al. 2002). Instead, full-length D1 was found stably accumulated in the FtsH 

null mutant, suggesting that the previously described degradation of D1 by Deg2 is 

not a physiologically relevant event, or only contributes under stress conditions 

(Barker et al. 2006; Huesgen et al. 2006). 

 

Studies in Synechocystis provided the first evidence that FtsH played a major role in 

the initial steps of D1 degradation (Silva et al. 2003). FtsH is an important class of 

protease involved in diverse cellular activities, with interestingly, multiple FtsH 

homologues present in chloroplasts and cyanobacteria. In the plant A. thaliana, 4 FtsH 

homologues present in the thylakoid membranes can be divided into two groups based 

on functional and structural similarities: Type A (FtsH1 and FtsH5) and Type B 
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(FtsH2 and FtsH8) (Wagner et al. 2012). Both Type A and Type B proteases are 

involved in PSII repair, and interestingly, the two types of proteases were always 

co-purified in the immunoprecipitation experiments, which raised the speculation that 

the proteases might function as complexes (Garcia-Lorenzo et al. 2006; Zaltsman et al. 

2005). Four FtsH homologues are present in the cyanobacterium Synechocystis. 

Among the 4 members, FtsH2 is associated with D1 degradation (Silva et al. 2003). 

Further work on understanding the molecular interaction between FtsH2 and D1 

demonstrated that the N-terminal tail of D1 is essential for the degradation process 

(Komenda et al. 2007b). Therefore, upon photoinactivation, conformation changes in 

this N-terminal tail of D1 might contribute to the disassembly of PSII and allow 

docking with the FtsH protease to initiate degradation. Given that the Synechocystis 

mutant lacking FtsH2 is still able to grow photoautotrophically under low-light 

conditions, it is plausible that an alternative D1 degradation pathway exists which is 

capable of low level PSII repair. 

 

 

Figure 1.8: Schematic maps of the FtsH complex-mediated photosystem II repair 

cycle model.  

The figure represents the three states during the repair cycle, details are described in 

text. D1, D2, CP43 and CP47 are four subunits of PS II (Umena et al. 2011). RCCII 

means dimeric PS II complex. SCPs means small CAB-like proteins. For clarity, 

assembly factors are not included. This figure is adapted from (Nixon et al. 2010b). 

 

1.6 General introduction to the FtsH family of proteases 

FtsH is a member of the AAA+ protease superfamily and plays an important role in 
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the PSII repair cycle (see section 1.5.4), and also it is to be the main focus of this 

thesis. FtsH is universally conserved in eubacteria, chloroplasts and mitochondria, 

with bacterial FtsH the one studied to greatest depth. In this section, a brief 

introduction to bacterial FtsH will be described, covering the basic features of the 

AAA+ superfamily (see section 1.6.1) and the proposed structure (see section 1.6.2) 

and mechanism (see section 1.6.3) of bacterial FtsH complexes. Moreover, some of 

the cellular functions involving bacterial FtsH are also described (see section 1.6.4). 

 

1.6.1 The AAA+ superfamily of proteases 

All members of the AAA+ superfamily of proteases contain at least one subunit that 

belongs to ATPase associated with diverse cellular activities (Neuwald et al. 1999), 

which utilises the energy released from ATP hydrolysis to drive degradation of 

substrate proteins. Five distinctive families of AAA+ proteases have been defined 

based upon the topology of the ATPase and auxiliary domains, namely FtsH, Lon, 

ClpXP, ClpAP/ClpCP and PAN (Neuwald et al. 1999; Schirmer et al. 1996). The 

common feature of the AAA+ family is the presence of the AAA+ domain, which 

interacts with, unfolds and translocates the substrates towards the peptidase domain. 

The translocation process requires either ATP binding or hydrolysis to initiate the 

conformational change of the AAA+ domain. The crystal structure of several AAA+ 

rings have been resolved to atomic resolution, a conserved large and a small domain 

are observed in all structures, where ATP or ADP is coordinated between the large 

domain of one protomer and the small domain of the neighbouring protomer 

(Erzberger and Berger 2006). On the other hand, information on the native FtsH 

protease complex is sparse, the relationship between subunits can also vary between 

families or even between homologous proteins in different species. For example, 

HslU and FtsH have been crystallised with C6, C3 and C2 symmetry, therefore, it is 

still not clear how the AAA+ domain functions in vivo (Sauer and Baker 2011). Other 

than FtsH and Lon, which have both AAA+ and protease domain on the same 
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polypeptide chain, HslU, ClpX/ClpA/ClpC and PAN form complexes with a separate 

auxiliary peptidase HslV, ClpP and 20S. Despite the differences in the proteolytic sites, 

a common architectural feature of the protease domain in AAA+ proteases is the 

barrel-shape chamber that only allows entry of unfolded peptides (Sauer and Baker 

2011). 

 

1.6.2 Structure of FtsH proteases 

FtsH proteases are universally conserved in eubacteria and endosymbiosis-derived 

organelles of eukaryotes, namely chloroplasts and mitochondria (Arnold and Langer 

2002; Wagner et al. 2012). Among all five classes of AAA+ proteases in Escherichia 

coli, FtsH is the only one that is anchored on the cytoplasmic membrane and is 

essential for cell viability (Gottesman 2003). Most FtsH proteases identified to date 

carry two N-terminal transmembrane (TM) helices, yet, variants carrying only one or 

lacking TM also appear to exist (Langklotz et al. 2012). The highly conserved AAA+ 

domain, which defines FtsH as a member of AAA+ family, is located behind the TM 

region. The AAA+ domain is composed of three motifs, Walker A, Walker B and 

second region of homology (SRH), where Walker A and B motifs form a structural 

pocket docking ATP and the SRH is proposed to catalyse the hydrolysis of the 

nucleotide (Suno et al. 2006). The protease domain (PD), which features a Zn
2+

 

binding motif HEXXH (X represents mostly uncharged residues), is located towards 

the C-terminus of the peptide chain, and is connected to the AAA+ module via a short 

linker region (see section 4.1). Besides the common “zincin” motif, the protease 

domains between FtsH proteases are less conserved and vary in length, which might 

reflect differences in substrate recognition (Graef et al. 2007). Interestingly, FtsH in E. 

coli exhibits self-cleavage property, which leads to the removal of seven residues from 

the C-terminus (Akiyama 1999). The self-cleavage process is reproducible in vitro in 

an ATP-hydrolysis dependent manner, however, its physiological influence is obscure 

as both full-length and cleaved proteases are active (Ito and Akiyama 2005). 
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A few crystal structures of the soluble domains of bacterial FtsH have been solved, 

with subsequent modelling suggesting the protease forms hexameric oligomers. 

Although structural information of native FtsH complexes is still sparse, in vitro data 

and comparative bioinformatics studies on other AAA+ proteases support the 

proposed hexameric-oligomer model, and it is widely accepted that the 

membrane-anchored protease degrades substrate proteins via translocation of the 

substrate through the central pore of the proteolytic chamber (Figure 1.9).  

 

Further to the oligomerisation of FtsH, early studies on m-AAA protease, a yeast 

mitochondrial FtsH, discovered a possible regulatory interaction with prohibitins 

(Steglich et al. 1999). This discovery suggesting the proteolytic activity of FtsH 

proteases could be regulated via auxiliary proteins, which raised speculations that 

FtsH might form super-complex with adaptor modules in vivo. In support of this, E. 

coli FtsH extracted via non-ionic detergent forms a supercomplex with HflKC, which 

are homologues of prohibitin (Saikawa et al. 2004). 

 

 
Figure 1.9: Schematic representation of bacterial FtsH proteases.  

The topology of individual FtsH is consist of two transmembrane helices, a AAA+ 

domain and a Zn
2+

 binding protease domain (left panel). FtsH proteases are proposed 

to form hexameric complexes degrading substrates via the central pore (right panel). 

Figure adapted from Nixon et al. (2005) and Akiyama et al. (1996). 
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1.6.3 Structure of the cytosolic domains of FtsH and proposed mechanism 

of action 

The high-resolution structure of an intact FtsH complex isolated from its native 

environment has still not been achieved. However, several X-ray crystal structures of 

bacterial FtsH proteases lacking the trans-membrane region have been determined 

(Bieniossek et al. 2009; Suno et al. 2006). Overall, the structures indicate a hexameric 

assembly of FtsH complexes in all cases. The dimensions of the FtsH complex from 

Thermus thermophilus are ~120 Å in diameter and 65 Å in height. The structures of 

the protease domains between species are highly similar, and all exhibit 6-fold 

symmetry. However, the arrangement of AAA+ module between structures is largely 

different between species. Although both structures of T. thermophilus and 

Thermotoga maritima support a conformational change of the AAA+ domain during 

ATP hydrolysis, with the “knick” motion driving substrates through the central pore to 

the proteolytic site. However, the structure of the AAA+ domain from T. maritima 

displays two-fold symmetry, whereas T. thermophilus FtsH shows three-fold 

symmetry. It is unclear whether the variation is naturally present, or due to an 

intentionally designed mutation in the flexible linker region of the T. thermophilus 

sequence that was aimed to improve crystal quality (Bieniossek et al. 2009; Langklotz 

et al. 2012). Other than FtsH, structures of other AAA+ proteases display 6-fold, 

3-fold and 2-fold symmetries in the nucleotide-bound state. Consequently, it is still 

puzzling how the protomers within the hexameric complex coordinate during ATP 

hydrolysis. 

 

One model proposed by (Suno et al. 2006), based on 3-fold symmetric structure of T. 

thermophilus, is that ATP hydrolysis is a synchronised process between neighbouring 

protomers. After three ATP molecules are docked in the pocket of “open” protomers, 

the three ATP-bound AAA+ domains close, enabling the “arginine finger” from the 

neighboring protomers to interact with the γ-phosphate of ATP molecules. Then the 

hydrolysis of ATP drives the adjacent protomer “open”, and sequentially, ATP 
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molecules dock into the open pocket and drive the subsequent reactions. 

 

1.6.4 General functions of FtsH proteases in bacteria 

FtsH family proteases play diverse house-keeping roles in bacteria, including quality 

control of membrane proteins by removing damaged/unassembled proteins and 

degradation of short-lived soluble proteins that often associate with the stress response 

(Ito and Akiyama 2005). As the only AAA+ protease essential to cell viability in E. 

coli, the vital role that FtsH plays is maintaining the balance between 

lipopolysaccharide (LPS) and phospholipids. R-3-hydroxymyristoyl-ACP is a 

common precursor to the biosynthesis of LPS and phospholipids, supply of which is 

the rate limiting factor to the two competing pathways (Ogura et al. 1999). FtsH is 

responsible for the efficient degradation of LpxC deacetylase, a short-lived (half-life, 

~ 4 min) enzyme involved in the synthesis of lipid A in the LPS pathway. Disruption 

of FtsH leads to the lethal over-accumulation of LPS, which can be rescued by 

up-regulating the fatty acid biosynthetic pathway (Ogura et al. 1999). 

 

E. coli FtsH was also found to interact with YccA, a distant homologue of Bax 

Inhibitor-1 (BI-1) in the organelles of eukaryotes (Huckelhoven 2004), however, little 

is known about its function in prokaryotes (Ito and Akiyama 2005). YccA is subject to 

FtsH-mediated degradation (Kihara et al. 1998), however, its abundance and stability 

also negatively inhibit the activity of FtsH (van Stelten et al. 2009). As a membrane 

protein containing 7 transmembrane helices, the N-terminal cytosolic region of YccA 

is crucial to FtsH mediated degradation (Ito and Akiyama 2005), however, the 

N-terminal truncated protein can still bind to the FtsH complex and inhibit its function 

(Kihara et al. 1998). In summary, YccA displays both substrate and inhibitor roles for 

the FtsH complex. 

 

Another important cellular function of FtsH in E. coli is the removal of the inactive 
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SecY translocon (van Stelten et al. 2009). SecY and secDF form a stable membrane 

complex which regulates the translocation of proteins cross the cytoplasmic 

membranes in an ATP-dependent manner (Nouwen et al. 2005; Tsukazaki et al. 2011). 

Aberrant Sec translocons disturb the permeability of the cytoplasmic membranes and 

hence compromise cellular activities. FtsH is the only protease known to degrade 

SecY, as unassembled SecY stably accumulates in the ftsH null mutant. In contrast, 

unassembled SecY is efficiently removed from the membrane, with a half-life of ~2 

min in normal cells.  

 

Another well characterised function of FtsH in E. coli is its role in stress responses, 

including rapid degradation of the heat shock sigma factor in the absence of heat 

shock (Herman et al. 1995; Tomoyasu et al. 1995) and bacteriophage encoded CII, 

CIII  and Xis (Herman et al. 1997; Leffers and Gottesman 1998; Shotland et al. 

2000). Noteworthy, other members of AAA+ family may also be involved in the 

degradation process (Kanemori et al. 1997; Leffers and Gottesman 1998), suggesting 

functional overlap between AAA+ proteases. In summary, FtsH is a universal protease 

involved in various cellular activities, which balances the lipid ratio, maintains the 

activity of membrane proteins, regulates gene expressions to cope the changing 

environment and prohibits pathogenic invasions. 

 

1.7 Evolutionary conservation and diversity of FtsH proteases in 

plastids and mitochondria 

In eukaryotic cells, FtsH are exclusively localised to chloroplasts and mitochondria. In 

contrast to most bacteria which only contain one ftsH gene, multiple genes encoding 

FtsH homologues are found in eukaryotes and cyanobacteria. In yeast and human, 3 

FtsH homologues were identified in the mitochondria (Arlt et al. 1996), 4 FtsH 

homologues were found in most cyanobacteria, and 12 genes encoding FtsH and 

another 5 encoding iFtsH, a sub-family of variant FtsH homologues lacking the Zn
2+

 

binding motif, were identified in plant A. thaliana (Wagner et al. 2012). Noteworthy, 
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all FtsH proteases in eukaryotic cells are localised in organelles and are encoded by 

nuclear genes. The translocation of the proteins to a particular membrane is directed 

by a signal peptide sequence at the N-terminus (Atorino et al. 2003; Rodrigues et al. 

2011).  

 

FtsH proteases play important and diverse roles in eukaryotic cells. One of the best 

characterised functions of mitochondrial FtsH is its involvement in maintaining the 

respiratory pathway. MrpL32 is a small protein subunit that activates the ribosomal 

large subunit to enable the consequent docking of the 37S small subunit (Nolden et al. 

2005). A sub-group of mitochondrial FtsH, namely m-AAA, is responsible for the 

maturation of MrpL32 by removing the N-terminal tail from the precursor protein. 

Unprocessed MrpL32 is unable to bind with the 54S large subunit which consequently 

compromises protein biosynthesis in mitochondria, eventually leading to respiratory 

defects.  

 

Chloroplastic FtsH proteases are located either in the thylakoid membrane or in the 

chloroplast envelope. In A. thaliana, several FtsH homologues localised in the 

thylakoid membranes are involved in D1 degradation in the PSII repair cycle (see 

section 1.5.4), whereas, the FtsH proteases residing in the chloroplast envelope are 

essential for embryogenesis (Wagner et al. 2012). 

 

Interestingly, some FtsH homologues are found to interact with each other and 

possibly form complexes (Garcia-Lorenzo et al. 2006; Zaltsman et al. 2005), which 

leads to the speculation that apart from possible auxiliary proteins, the diverse 

functions of FtsH proteases in eukaryotes might also be related to the composition of 

FtsH isomers in the FtsH protease complex. 

 

1.8 FtsH homologues in cyanobacteria Synechocystis sp. PCC6803 

Cyanobacteria are photosynthetic bacteria that perform photosynthesis using a similar, 
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but more primitive system than that of chloroplasts (see section 1.2.2). With all the 

benefits described (see section 1.3), they have been used extensively as model 

organisms to study photosynthesis, photoinhibition and PSII repair process (see 

section 1.5). Early bioinformatic studies identified four putative FtsH homologues in 

the cyanobacterium Synechocystis sp. PCC 6803: FtsH1 (Cyanobase designation 

Slr1390), FtsH2 (Slr0228), FtsH3 (Slr1604) and FtsH4 (Sll1463) (Mann et al. 2000) 

(Sokolenko et al. 2002). FtsH1 and 3 are essential for cell viability whereas cells 

lacking FtsH4 display a wild-type like phenotype (Mann et al. 2000). Similar to the 

var2 mutant of A. thaliana, FtsH2 in Synechocystis is involved in the degradation of 

damaged D1 protein, as well as the removal of unassembled and misassembled PSII 

sub-units in vivo (Komenda et al. 2006a; Silva et al. 2003). More extended studies 

also showed that FtsH2 is involved in the resistance to various abiotic stresses, 

including low level of inorganic carbon (Zhang et al. 2007), heat stress (Kamata et al. 

2005) ultraviolet light (UV-B) stress (Cheregi et al. 2007) and osmotic stress 

(Stirnberg et al. 2007). Therefore, like the FtsH protease in E. coli, FtsH2 in 

Synechocystis appears to play diverse physiological roles in degrading both soluble 

and membrane-anchored substrates. The functions of the other 3 homologues remain 

unclear as mutagenesis on these proteases either resulted in lethality or lack of a 

distinguishable phenotype under the tested conditions. 

 

1.9 Project aims 

The background theme of this study was to investigate the molecular mechanisms of 

FtsH-mediated D1 degradation, hence the key focus of this work was to elucidate the 

structure, localisation and physiological functions of the FtsH proteases. Given that 

none of the four members of FtsH protease family in Synechocystis had been 

subjected to in-depth analysis, and more importantly, that the cyanobacterial FtsH 

isomers might be structurally and/or functionally related, the aim of this work was to 

characterise all four FtsH homologues in Synechocystis. The work presented in this 

thesis focused on three areas: (1) the structural characterisation of FtsH complexes in 
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Synechocystis (see Chapter 3), (2) the functional characterisation of FtsH proteases 

both in vivo and in vitro (see Chapter 4) and (3) the physiological characterisation of 

the substrates and the potential regulatory mechanisms of FtsH proteases in 

Synechocystis (see Chapter 5).  

In order to achieve these aims, the following objectives were defined: 

 C-terminal glutathione-S-transferase (GST) tagging to each FtsH homologue 

in Synechocystis to enable isolation of FtsH proteases for: 

 composition analysis via antibodies specific to each FtsH homologue. 

 structural analysis via transmission electron microscopy (TEM). 

 identification of substrate/auxiliary proteins via mass spectrometry. 

 C-terminal green fluorescent protein (GFP) tagging to each FtsH homologue 

in Synechocystis to determine the localisation of each FtsH isomer via 

fluorescence microscopy. 

 Generation of FtsH null and domain-inactive mutants to: 

 examine functional overlaps among FtsH complexes . 

 examine dispensability of domains within FtsH hetero-complexes. 

 enable further mutagenesis to analyse the functional interference of the 

C-terminal GST/GFP tag under reduced overall FtsH activity in vivo. 

 Expression of the cytosolic region of FtsH isomers in E. coli to elucidate the 

NTPase and protease activities in vitro. 

 Generation of Synechocystis mutants deficient of potential auxiliary proteins 

of FtsH complexes to explore the regulation mechanisms of FtsH proteases in 

vivo. 
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Chapter 2: Materials and Methods 

2.1 Bioinformatic tools 

The programs, internet-based servers and databases that were used for the 

bioinformatics analyses of the FtsH homologues in this study are listed below.  

 

Protein and gene databases: 

BLAST (Release 2.2.14; Altschul et al. 1990) (http://www.ncbi.nlm.nih.gov/BLAST/) 

 

CyanoBase (Version 2006.9.12; Nakamura et al. 1998) 

(http://www.kazusa.or.jp/cyanobase/) 

 

NCBI database (http://www.ncbi.nlm.nih.gov/) 

 

Protein properties prediction servers: 

EXPASY (Wilkins et al. 1999) (http://us.expasy.org/tools/) 

 

SOSUI engine (http://bp.nuap.nagoya-u.ac.jp/sosui/sosui_submit.html) 

 

Multiple sequence alignment and phylogenetic tree generation: 

CLUSTALW (WorkBench 3.2 environment) (Thompson et al. 1994; Gonnet et al. 

1992) 

Montpellier (Guindon et al. 2010) (http://www.atgc-montpellier.fr/phyml/) 

 

DNA sequence restriction mapping: 

NEB cutter V2.0 (http://tools.neb.com/NEBcutter2/index.php)  

ApE V2.0.45 (http://biologylabs.utah.edu/jorgensen/wayned/ape/) 

 

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.kazusa.or.jp/cyanobase/
http://www.ncbi.nlm.nih.gov/
http://us.expasy.org/tools/
http://bp.nuap.nagoya-u.ac.jp/sosui/sosui_submit.html
http://tools.neb.com/NEBcutter2/index.php
http://biologylabs.utah.edu/jorgensen/wayned/ape/
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2.2 Standard solutions and buffers 

Buffers and standard solutions were prepared according to Sambrook et al. (1989) 

unless otherwise stated. Reverse Osmosis (RO) filtered water (Neptune model 

L993162, Purite Limited, UK) was used to prepare all buffers and solutions. 

Chemicals and organic solvents were analytical grade reagents and purchased from 

Bioline UK Limited; Fisher Scientific Limited, UK; Melford UK Limited; Merck 

Chemicals Limited, UK; Sigma-Aldrich Limited, UK and VWR International Limited, 

UK. Necessary solutions, media and other materials were sterilised by autoclaving at 

121 
o
C (130 kPa) for ≥ 25 min. Thermo labile reagents were sterilized by filtration 

through 0.2-μm syringe tip or bottle top filters (Schleicher & Schuell MicroScience 

GmbH, Germany). 

 

2.3 E. coli strains and growth conditions 

2.3.1 E. coli strains 

The E. coli 10-beta strain was used for cloning and plasmid DNA propagation, the 

DCM- strain was used to produce un-methylated plasmid vectors and The KRX strain 

was used to over-express recombinant protein (see table 2.1).  

 

Table 2.1: List of E. coli strains 

Strain Description Reference/Supplier 

10-beta High efficiency cloning strain NEB 

DCM- Dam/Dcm methyltransferase free NEB 

KRX Expression strain Promega 

 

2.3.2 E. coli growth conditions 

E. coli cells were grown in liquid Luria-Bertani (LB) medium (1 % (w/v) 

bacto-tryptone, 0.5 % (w/v) yeast extract and 0.5 % (w/v) NaCl) (Sambrook et al. 

1989) on an orbital shaker (Innova 4400 incubator-shaker, New Brunswick Scientific, 

UK) at 37 
o
C, 225 rpm. Cells grown on solid LB 1.5 % (w/v) agar plates were 
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incubated on the static shelf of the incubator at 37 
o
C overnight. For selective growth 

of the transformants, antibiotics were used at the following concentration: ampicillin 

(100 μg ml
-1

), chloramphenicol (30 μg ml
-1

), erythromycin (200 μg ml
-1

) and 

kanamycin (50 μg ml
-1

). 

 

2.4 Cyanobacterial strains and growth conditions 

2.4.1 Cyanobacterial strains 

All cyanobacterial mutants created in this work were derived from the wild-type 

glucose-tolerant Synechocystis sp. PCC 6803 (WT-G and hereafter) strain, which was 

a gift from Dr. J. K. Williams (Dupont, Delaware, USA). The genomic DNA template 

of Thermosynechococcus elongatus, used to construct FtsH over-expression vectors in 

E. coli, were extracted from a cell culture provided by Prof. James Barber’s group 

(Imperial College London, London, UK). 

 

2.4.2 Cyanobacterial growth conditions 

2.4.2.1 Routine growth conditions 

WT-G strain was cultivated on BG-11 plates (BG-11 basic mineral medium (Stanier 

et al. 1971), with 0.3 % (w/v) sodium thiosulphate, 10 mM N-tris 

[hydroxymenthyl]methyl-2-aminoethanesulfonic acid (TES-KOH) pH = 8.2 (Hihara 

and Ikeuchi 1997) and 1.5 % (w/v) bacto agar (Becton Dickinson Biosciences Limited, 

UK), added separately after autoclaving; 5 mM of glucose and 10 µM 

3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) were added where applicable 

(Williams 1988a). Plates were restreaked every one to two weeks. Liquid BG-11 

cultures (5 mM N-tris[hydroxymenthyl]methyl-2-aminoethanesulfonic acid 

(TES-KOH) pH = 8.2; 5 mM of glucose was added where applicable) were grown in 

sterile, air-filter capped tissue culture flasks on an orbital shaker incubator (Innova 

2100 shaker, New Brunswick Scientific, UK) at 100 rpm. Large volume cultures were 



58 
 

grown in glass vessels on a magnetic stirrer constantly bubbled with sterile air filtered 

through 0.2-µm pore filter (Midisart 2000, Sartorius Limitied, UK). The strains were 

incubated in the growth room set at 30 
o
C and illuminated with an incident fluorescent 

white light intensity of ~10 µE m
-2

 S
-1

 ( on plates) and 20 to 70 µE m
-2

 S
-1

 (in liquid). 

Antibiotics were used for selective growth at the following concentration: 

chloramphenicol (30 μg ml
-1

), erythromycin (15 μg ml
-1

) and kanamycin (25 μg ml
-1

). 

For long term storage, cells harvested from 30 to 50 ml cultures were resuspended in 

1 ml BG-11, supplemented with 5 mM glucose and 15 % (v/v) glycerol, flash frozen 

in liquid nitrogen and kept at -80 
o
C. 

 

2.4.2.2 Growth experiment under light stress 

Synechocystis cells on plates were incubated in a temperature-controlled room set at 

29 
o
C and illuminated with an incident fluorescent white light. The illumination 

intensities used in this work are listed in Table 2.2. 

 

Table 2.2: Illumination intensities in growth experiments 

Conditions Intensity 

High light ~132 µmol m
-2

 s
-1

 

Medium light ~24 µmol m
-2

 s
-1

 

Low light ~5 µmol m
-2

 s
-1

 

 

The experiments were performed with freshly restreaked cells on BG-11 plates and 

BG-11 plus 5mM glucose plates. After a 7-10 day growing period, plates were 

photographed (Canon Power Shot Pro 1, Canon, UK). 

 

2.5 Estimation of cell concentration of liquid E. coli and 

cyanobacterial cultures 

The optical density of E. coli cultures was determined by measuring the absorbance at 
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600 nm (OD600nm), whereas the optical density of cyanobacterial cultures was 

measured at 730 nm (OD730nm). In both cases, cell cultures were transferred into a 1 

ml disposable cuvette and read under a Shimadzu spectrophotometer (UV-1601, 

Shimadzu, Japan). 

 

2.6 DNA associated techniques 

2.6.1Vectors and recombinant plasmids 

Parental plasmid vector systems that formed the basis of this work were listed in Table 

2.3. The origins of the antibiotic-resistance markers that were used to enable selective 

growth of the transformants were listed in Table 2.4. 

 

Table 2.3: Commercial plasmid vectors used in this study. 

Vector Purpose Supplier Reference 

pGEM-T Easy Cloning Promega Corporation Marcus et al. (1996) 

pRSET A Expression Gift from Dr E. Cota Douse et al. (2012) 

 

Table 2.4: Antibiotic resistance cassettes used to construct mutants. 

Vector Antibiotic-resistance cassette Accession # Reference 

pDC039 Chloramphenicol (catI) from pACYC184 X06403 Rose (1988) 

pRL425 Erythromycin (ermC) from pE194 NC_005908 Elhai and Wolk (1988) 

pDC057 Kanamycin (aphI) from pUC4K X06404 Taylor and Rose (1988) 

 

2.6.2 Agarose gel electrophoresis 

Agarose gel electrophoresis is a method to separate DNA fragments according to their 

length. The method was applied to identify the molecular weight of linear DNA and 

purify certain DNA fragments from a mixture. An agarose gel was prepared with 

molecular grade agarose (Bioline, UK; final [0.5-1 % (w/v)]) dissolved in 

Tris-acetate-EDTA buffer (TAE; 40 mM Tris-acetate, 1 mM EDTA pH = 8.0) and 

SYBR® safe stain (Life technologies, USA; final [1μg ml
-1

]). A DNA sample was 

mixed with 6x DNA loading buffer (40 % (w/v) sucrose, 0.25 % (w/v) Orange G), 
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and then loaded in a well. The molecular marker that used to determine the DNA 

fragments size is 2-log DNA marker ladder (New England BioLabs Limited, UK) 

which contained fragments of the following sizes (in Kb) : 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 

2.0, 1.5, 1.2, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1. The DNA marker was 

diluted 25 times in RO water and mixed with 6x DNA loading buffer before use. 

Approximately 0.2 μg DNA marker was used to label the gel. The gel electrophoresis 

was carried out in TAE buffer at 100-130 V in a horizontal mini gel system 

(PerfectBlue
TM

 Mini Gel system; Peqlab Limited, Germany). DNA was visualised by 

using a UV illuminator and photos were taken (BioDoc-IT
TM

 System, UVP; CA, 

USA). 

 

2.6.3 DNA purification from agarose gels 

Purification of DNA fragments from agarose gels was performed using the Qiagen gel 

extraction kit (Qiagen Limited, UK) according to the manufacturer’s protocol hand 

book. In the final DNA elution step, DNA bound to the column was eluted with 30 μl 

EB buffer and stored at -20 
o
C.  

 

2.6.4 DNA amplification by polymerase chain reaction (PCR)  

2.6.4.1 DNA polymerase enzymes 

There were two types of DNA polymerase enzymes used in this project: Taq 

polymerase (New England BioLabs Limited, UK) and Phusion polymerase (New 

England BioLabs Limited, UK). The Taq polymerase was very economical and robust 

to amplify DNA samples prepared from phenol-chloroform extraction procedure, 

which makes it a good tool for detection of mutant segregation in cyanobacteria. 

Beside, Taq polymerase was also used to add an A-overhang to the 3’ end of 

blunt-end DNA fragments to enable T-A cloning with pGEM-T Easy vector system. 

The Phusion polymerase is fast and accurate, with the error rate 50-fold lower than 
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that of Taq, which makes it ideal to produce DNA fragments for cloning or production 

of samples for sequencing. However, due to the 3’-5’ proofreading function, DNA 

products amplified by Phusion polymerase were blunt ended. Therefore, Taq 

polymerase was required to aid T-A cloning after Phusion PCR.  

 

2.6.4.2 Phusion polymerase reaction conditions 

A standard 20 μl Phusion PCR reaction mix contained 0.4 units of polymerase, 4 μl of 

5x Phusion HF buffer (as supplied by New England BioLabs Limited, UK; no 

information about its composition available), 0.8 μl of 20 mM dNTP mixture 

(ABgene, UK; final [0.2 mM] for each nucleotide: dATP, dCTP, dGTP, dTTP), 1 μl 

of 10 μM (Sigma-Aldrich Limited, UK; final [0.5 μM]) of each forward and reverse 

primer and ~100 ng template DNA.  The reaction mixture was made up to 20 μl with 

sterile RO water and well mixed. A 50 μl reaction mix contained the same 

concentration of each component was used to produce large quantity of PCR 

fragments for downstream cloning purpose. The PCR reaction mix can also be 

prepared with Failsafe
TM

 PCR buffer (Cam-bio Limited, UK) to enhance 

amplification with difficult-to-amplify DNA templates. The reaction mix contained 

50 % (v/v) 2x Failsafe buffer, 1 unit polymerase, 5 μM of each primer and ~250 ng 

DNA template. The PCR reaction was performed in a thermocycler (PeqSTAR, 

Peqlab Limited, Germany). The PCR program consisted of an initial denaturation step 

at 98 
o
C for 30 s and 25-30 subsequent cycles of 98 

o
C for 7 s (denaturation), 55-60 

o
C 

for 15 s (primer annealing) and 72 
o
C for 30 s to 2 min (primer extension; 15-30 s per 

1 kb). The final extension step was performed at 72 
o
C for 7 min.  

 

2.6.4.3 Taq polymerase reaction conditions 

Taq DNA polymerase produced sticky-ended PCR fragments and relatively 

economical to use when high fidelity is not required. By using Failsafe
TM

 PCR buffer 



62 
 

(Cam-bio Limited, UK), the reaction mix contained the same concentration of each 

component as the Phusion PCR mix, except the difference in polymerase type. The 

PCR program consisted of an initial denaturation step at 94 
o
C for 2 min and 30-35 

cycles of 94 
o
C for 10 s (denaturation), 55-60 

o
C for 30 s (primer annealing) and 68 

o
C 

for 1.5 min s to 3.5 min (primer extension; 60 s per 1kb). The final extension step was 

performed at 68 
o
C for 10 min.  

 

Table 2.5: List of PCR primers used in this project. 

# Name Primers 

1 TGS-F 
GATATCGATATCCTCGTTCCCCGCGGGTCCCCTAGGATGTCCCCTATACTAGGTTA

TTGGAAAATTAAGGGCCT 

2 TGS-R 
TCTAGATCTAGAGTTAACGGCGCCTTATTTTTCAAATTGGGGATGGGACCAATTGG

ATCCATCCGATTTTGGAGGATGGTCGCCACCA 

3 GFP-F GGGTCCCCTAGGATGGCTAGCAAAGGAGAAGAACTTTTCACTGGAGT 

4 GFP-R AGATCTAGATCTTTTGTAGAGCTCATCCATGCCATGTGTAATCCCAGCAGCAGTT 

5 FtsH1-F TTGGGGATGGGTTTACTGGTAGCTGGCA 

6 FtsH1-OE-R 
TCGGACATTGCACAGATAGGGGGCTATCTAGAGATATCCTTACCGGCTAGAGCAG

GCTGTT 

7 FtsH1-OE-F 
AACAGCCTGCTCTAGCCGGTAAGGATATCTCTAGATAGCCCCCTATCTGTGCAATG

TCCGA 

8 FtsH1-R TCACTTACCATTGATTAAATTCCATGCAACCTATGGAAAAGTCCT 

9 FtsH1-Seq 1 AAATCCAAGGCCCGGTTCCAAATGGAAGCAA 

10 FtsH1-Seq 2 TTGCACGAAGAGGTGCAGTTAGCGGCGA 

11 FtsH1-Seq 3 GTCTAGTGGCCTTGGAAGAGGAAGGCGA 

12 FtsH2-F TAACATATGAAATTTTCCTGGAGAACTGCCCTACTTTGGT 

13 FtsH2-OE-R 
TGACCATACTAAATTGGTTGGAGAAGGGAATTTTTATCTAGAGATATCTAGTTGGG

GAATTAACTGTTCCTTGACGGGA 

14 FtsH2-OE-F 
TCCCGTCAAGGAACAGTTAATTCCCCAACTAGATATCTCTAGATAAAAATTCCCTTC

TCCAACCAATTTAGTATGGTCA 

15 FtsH2-R TGGGCGACCCCTGCCCTTGCACATTTTCGAGT 

16 FtsH2-Seq 1 GATGTGGCCGGTATTGACGAAGCCAAGGA 

17 FtsH2-Seq 2 ACCGGAAGTTTCCATCGACTCCATTGCCCGCCGT 

18 FtsH2-Seq 3 AACCGTTCTGAATACTCCGAAGAAGTAGCCA 

19 FtsH3-F TCTAGCGTGAGCAAAAATAATAAAAAATGGCGTAACGCGGGCCT 

20 FtsH3-OE-R 
ACTCTAGGAATTCCAATGCTTGGATTCTTATCTAGAGATATCAACTAGAAGTGCCA

ATTTGGCATTGTTGTTAGCCA 

21 FtsH3-OE-F 
TGGCTAACAACAATGCCAAATTGGCACTTCTAGTTGATATCTCTAGATAAGAATCC

AAGCATTGGAATTCCTAGAGT 
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22 FtsH3-R GAGCAAACCAAGTACCGAGTAGAGTAAGACCT 

23 FtsH3-Seq 1 CTCACCGAAGTGGTGGACTTCCTGAAAAA 

24 FtsH3-Seq 2 CCCCTGGATTTACCGGTGCTGACCTGTCCA 

25 FtsH3-Seq 3 GATGAAACCGCTGCGGCGATCGATGAGGA 

26 FtsH4-F CAACCCATGGCCATCAAACCCCAACCCCAA 

27 FtsH4-OE-R 
TTTTTAAAGGGAGCAAAAAAGCAAGTTCCTTATCTAGAGATATCTACCACTAGGGT

GCCAGGAGCTTGA 

28 FtsH4-OE-F 
TCAAGCTCCTGGCACCCTAGTGGTAGATATCTCTAGATAAGGAACTTGCTTTTTTG

CTCCCTTTAAAAA 

29 FtsH4-R TTTTACCCCCAAACGATGCAACGCCTCAGCGGCCA 

30 FtsH4-Seq 1 AGTGGTGGATTTTCTCAAATTTCCCCAACGTTACA 

31 FtsH4-Seq 2 CCCTGGTTTTGCCGGGGCTGACTTGGCTAACT 

32 FtsH4-Seq 3 CTGCCAAAGAAATTGACCTAGAGGTCAAAGAAATCGT 

33 FtsH2-F1 GGGGGATCCGATGAAATTTTCCTGGAG 

34 FtsH2-R1 GGGCTCGAGTAGTTGGGGAATTAACTG 

35 FtsH4-F1 ATGGCCATCAAACCCCAACCCCAATGGC 

36 FtsH4-R1 TTATACCACTAGGGTGCCAGGAGCTTG 

37 FtsH2-K218A-F AGTGGGCCCTCCCGGTACCGGTGCAACTCTCCTCGCCAAGGCGATCGCCGGGGA 

38 FtsH2-K218A-R TCCCCGGCGATCGCCTTGGCGAGGAGAGTTGCACCGGTACCGGGAGGGCCCACT 

39 FtsH2-E272Q-F 
AGCCAAAGAGAATGCCCCCTGTTTGATCTTCATTGATCAGATTGATGCCGTGGGTC

GTCAACGG 

40 FtsH2-E272Q-R 
CCGTTGACGACCCACGGCATCAATCTGATCAATGAAGATCAAACAGGGGGCATTCT

CTTTGGCT 

41 FtsH2-R329A-F 
ACCGCCCTGACGTGCTAGATTCTGCCTTGATGGCTCCCGGTCGTTTCGATCGCCAA

GTGA 

42 FtsH2-R329A-R 
TCACTTGGCGATCGAAACGACCGGGAGCCATCAAGGCAGAATCTAGCACGTCAGG

GCGGT 

43 FtsH2-H433L-F 
TGGTGGACAGCAAAAGTAAGCGGCTAATTGCTTATCTCGAAGTAGGCCACGCCATT

GTGGGCACAT 

44 FtsH2-H433L-R 
ATGTGCCCACAATGGCGTGGCCTACTTCGAGATAAGCAATTAGCCGCTTACTTTTG

CTGTCCACCA 

45 FtsH2-E434Q-F 
TGGTGGACAGCAAAAGTAAGCGGCTAATTGCTTATCACCAAGTAGGCCACGCCATT

GTGGGCACAT 

46 FtsH2-E434Q-R 
ATGTGCCCACAATGGCGTGGCCTACTTGGTGATAAGCAATTAGCCGCTTACTTTTG

CTGTCCACCA 

47 FtsH2-D511N-F 
TGACGAAGTAACCACTGGGGCTGGTGGTAACCTACAACAGGTAACTGAGATGGCT

CGCCAGA 

48 FtsH2-D511N-R 
TCTGGCGAGCCATCTCAGTTACCTGTTGTAGGTTACCACCAGCCCCAGTGGTTACT

TCGTCA 

49 FtsH2-C266S-F 
TGTTTAAAAAAGCCAAAGAGAATGCCCCCTCTTTGATCTTCATTGATGAGATTGAT

GCCGTGGGTCGTCA 
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50 FtsH2-C266S-R 
TGACGACCCACGGCATCAATCTCATCAATGAAGATCAAAGAGGGGGCATTCTCTTT

GGCTTTTTTAAACA 

51 FtsH3-K207A-F AGGCCCCCCCGGAACCGGTGCAACCCTGTTGGCCAAAGCCGTGGC 

52 FtsH3-K207A-R GCCACGGCTTTGGCCAACAGGGTTGCACCGGTTCCGGGGGGGCCT 

53 FtsH3-E261Q-F 
AGCCAATGCTCCCTGTATCGTCTTCATCGATCAAATTGATGCCGTTGGTCGTCAAC

GGGGCGC 

54 FtsH3-E261Q-R 
GCGCCCCGTTGACGACCAACGGCATCAATTTGATCGATGAAGACGATACAGGGAG

CATTGGCT 

55 FtsH3-R318A-F 
ACCGTCCCGATGTATTGGATTCTGCCTTGATGGCTCCCGGTCGTTTCGATCGCCAA

GTGGT 

56 FtsH3-R318A-R 
ACCACTTGGCGATCGAAACGACCGGGAGCCATCAAGGCAGAATCCAATACATCGG

GACGGT 

57 FtsH3-H423L-F 
TGAGCGAAAAACGCAAAACCCTAGTGGCTTACCTTGAAGCTGGCCACGCCTTGGT

GGGTGCT 

58 FtsH3-H423L-R 
AGCACCCACCAAGGCGTGGCCAGCTTCAAGGTAAGCCACTAGGGTTTTGCGTTTTT

CGCTCA 

59 FtsH3-E424Q-F 
TGAGCGAAAAACGCAAAACCCTAGTGGCTTACCATCAAGCTGGCCACGCCTTGGT

GGGTGCT 

60 FtsH3-E424Q-R 
AGCACCCACCAAGGCGTGGCCAGCTTGATGGTAAGCCACTAGGGTTTTGCGTTTTT

CGCTCA 

61 FtsH3-D504N-F 
AGAGGAAGTCACCACCGGTGCTTCCAACAACCTCCAACAGGTAGCCCGGGTCGCC

CGCCA 

62 FtsH3-D504N-R 
TGGCGGGCGACCCGGGCTACCTGTTGGAGGTTGTTGGAAGCACCGGTGGTGACTT

CCTCT 

63 FtsH3-C255S-F 
TGAGCAGGCTAAAGCCAATGCTCCCTCTATCGTCTTCATCGATGAAATTGATGCCG

TTGGTCGTCA 

64 FtsH3-C255S-R 
TGACGACCAACGGCATCAATTTCATCGATGAAGACGATAGAGGGAGCATTGGCTTT

AGCCTGCTCA 

65 FtsH4-K220A-F AGTCGGGCCTCCCGGCACAGGCGCAACCCTACTGGCTAAAGCGGCGGC 

66 FtsH4-K220A-R GCCGCCGCTTTAGCCAGTAGGGTTGCGCCTGTGCCGGGAGGCCCGACT 

67 FtsH4-E274Q-F 
AACAAGCCCCTTGCATTGTCTTCATTGACCAATTGGATGCCATTGGTAAATCCCGG

GCC 

68 FtsH4-E274Q-R 
GGCCCGGGATTTACCAATGGCATCCAATTGGTCAATGAAGACAATGCAAGGGGCT

TGTT 

69 FtsH4-R333A-F 
ACCGCCCGGAAACCTTGGATCCAGCTTTACTGGCTCCTGGCCGTTTCGATCGCCAG

GTA 

70 FtsH4-R333A-R 
TACCTGGCGATCGAAACGGCCAGGAGCCAGTAAAGCTGGATCCAAGGTTTCCGGG

CGGT 

71 FtsH4-H438L-F 
GTCGGATAAGGAGAAAAAAATTGTTGCCTACCTTGAAGTGGGCCACGCACTAGTG

GGAGCAGTGA 

72 FtsH4-H438L-R 
TCACTGCTCCCACTAGTGCGTGGCCCACTTCAAGGTAGGCAACAATTTTTTTCTCC

TTATCCGAC 
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73 FtsH4-E439Q-F 
GTCGGATAAGGAGAAAAAAATTGTTGCCTACCATCAAGTGGGCCACGCACTAGTG

GGAGCAGTGA 

74 FtsH4-E439Q-R 
TCACTGCTCCCACTAGTGCGTGGCCCACTTGATGGTAGGCAACAATTTTTTTCTCC

TTATCCGAC 

75 FtsH4-D515N-F 
TTGACAGCATCACCACTGGCGCGGCCAATAATTTACAACGGGCCACGGACTTAGCA

GA 

76 FtsH4-D515N-R 
TCTGCTAAGTCCGTGGCCCGTTGTAAATTATTGGCCGCGCCAGTGGTGATGCTGTC

AA 

77 FtsH4-C268S-F 
TTATTTGAGCAAGCCAAAAAACAAGCCCCTTCCATTGTCTTCATTGACGAATTGGA

TGCCATTGGTA 

78 FtsH4-C268S-R 
TACCAATGGCATCCAATTCGTCAATGAAGACAATGGAAGGGGCTTGTTTTTTGGCT

TGCTCAAATAA 

79 TheFtsH2-F GGATCCCGCTCCAGCAATGTACCAGGGGGACCGGGCCAA 

80 TheFtsH2-R 
CTCGAGCTATTTTTCAAATTGGGGATGGGACCACAGTTGGGGCACAAATCGCTCTT

TATCGGGAA 

81 TheFtsH3-F GGATCCCGTGCCCAAGCGGGTCCTGGCAA 

82 TheFtsH3-R CTCGAGCTAGGGAATCGTTGCCATCTTGACGTCGTT 

83 TheFtsH4-F GGATCCGGATCCGCGAAGGTCTATGTGGAGGGAGCAA 

84 TheFtsH4-R CTCGAGCTCGAGTTAGGCAGCGGCGGGAGTTTTCACCTGAGCCAGT 

85 Sll0862-1F GCCAAGCTCCTTGCCAAGCAGACGTGAA 

86 Sll0862-2R 
AACGATGGGGCATGGATGTTGAAATTTTCACTATTGGAAGTCCAGATATCGGGTAA

AACAAGTGTGGAAATTAGAATTATTTCTCAGCTGGGGTT 

87 Sll0862-3F 
AACCCCAGCTGAGAAATAATTCTAATTTCCACACTTGTTTTACCCGATATCTGGACT

TCCAATAGTGAAAATTTCAACATCCATGCCCCATCGTT 

88 Sll0862-4R GATTCCGCCCCTAAATTACTCCGGTAATACTGA 

89 Sll1150-1F CTTCTTCAGTTTCCGCTTTCTCCATGGCT 

90 Sll1150-2R 
TACAGCTAAAATTCTGAGCAACGAGATCTTACTAAAAATGATATCAGGGGGGAAAT

TATTTTTCCCTTACCTTTAATATACTATCGACA 

91 Sll1150-3F 
TGTCGATAGTATATTAAAGGTAAGGGAAAAATAATTTCCCCCCTGATATCATTTTTA

GTAAGATCTCGTTGCTCAGAATTTTAGCTGTA 

92 Sll1150-4R AGGGGGGGATGGGATTAATCGTCTCCAT 

93 Sll1414-1F AGTTTCTCGTTCTGCCGCCTCAGCTCTT 

94 Sll1414-2R 
AATGGGGCCTCATAGTGGGGCATGGATTGAAGATATCAGGGCCGATTACAAAGGG

GGGGATAGT 

95 Sll1414-3F 
ACTATCCCCCCCTTTGTAATCGGCCCTGATATCTTCAATCCATGCCCCACTATGAG

GCCCCATT 

96 Sll1414-4R ATTAACTCCCCATCCACTTCCACTTCGATGAT 

 

2.6.4.4 Overlap extension PCR  

Overlap extension PCR (Lan et al. 2005) is an effective tool to manipulate DNA 
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sequences. In this project, it was used to insert/remove DNA sequences to/from the 

original templates, to enable addition of affinity-tag coding sequences, insertion of an 

antibiotic resistance marker or deletion of an entire ORF to create knockout mutants. 

The initial reactions (PCR 1 and PCR 2) were performed using the wild-type DNA 

templates, 50 μl Phusion PCR reactions were performed according to the standard 

settings. PCR 1 contained a forward primer that carrying identical sequence as the 5’ 

end of the target sequence. The reverse primer in PCR 1 was designed to anneal to the 

3’ end of the target region but with the EcoRV and XbaI restriction sites inserted right 

at the upstream position of the STOP codon, and ~ 30 bp downstream sequences was 

also contained in the reverse primer. PCR 2 contained the forward primer that was 

complimentary to the reverse primer in PCR1. The reverse primer was 

complementary to the sequence 650 bp downstream the FtsH gene. PCR program 

setting is described in previous paragraphs. The resulting PCR fragments were 

separated by agarose gel electrophoresis and gel extracted to be used as DNA 

templates in a final PCR (PCR 3). PCR 3 was prepared as for a 50 μl standard 

reaction, but with a few alterations as listed below. The forward primer in PCR 3 is 

the forward primer used in PCR 1 and the other one is the reverse primer used in PCR 

2. Approximately 2 μl of each PCR fragment from PCR 1and 2 were used as the 

template DNA, the amount of each template in the reaction mix is estimated equal.  

 

2.6.5 Restriction endonuclease digestion 

Restriction endonuclease digestions were performed under suitable conditions as 

recommended by the enzyme manufacturer’s instructions (New England BioLabs 

Limited, UK). Approximately 1 μg of DNA was digested in 10 μl reaction mix, with 

10 to 20 units of restriction endonuclease in the recommended buffer. Acetylated 

bovine serum albumin (BSA; supplied with enzymes by New England BioLabs 

Limited, UK; final [100 μg ml
-1

]) was applied when necessary. Digestion took 40 min 

to 1 h to complete.  
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2.6.6 DNA ligation 

DNA fragments were inserted into various recipient vectors using T4 DNA ligase 

according to the manufacturer’s instruction (New England BioLabs Limited, UK). 

The molar ratio between the insert and vector was 3:1. The reaction mixtures were 

incubated at room temperature for 30 min. 

 

2.6.7 DNA transformation of cells 

2.6.7.1 Preparation of chemically competent E. coli cells 

A single E. coli colony or 50 μl of the stock culture was inoculated into 10 ml LB 

medium and incubated at 37 
o
C under consistent sharking. After overnight incubation, 

the optical cell density was determined at 600 nm (OD600nm), and then the culture was 

used to inoculate 500 ml LB medium supplemented with 20 mM [final] MgSO4 to a 

starting concentration of OD600nm = 0.1. The culture was incubated on an orbital 

shaker at 225 rpm, 37 
o
C until the optical density reach OD600nm of 0.4-0.6. The cells 

were then harvested via centrifugation in a rotor (JA-14) pre-chilled to 4 
o
C, for 10 

min at 4,500 g. The cell pellets were then gently resuspended by shaking in 200 ml 

ice-cold TFB1 buffer (100 mM RbCl, 50 ml MnCl2, 10 mM CaCl2, 15 % (v/v) 

glycerol, 30 mM potassium acetate, pH = 5.8, filter sterile). The cell suspension was 

kept on ice for 5 min and pelleted again via centrifugation (JA-14; 4,500 g, 10 min, 4 

o
C). The cell pellets were then carefully resuspended in ice-cold TFB2 buffer (10 mM 

RbCl, 75 mM CaCl2, 15 % (v/v) glycerol, 10 mM MOPS pH = 6.5, filter sterile) and 

incubated on ice for 60 min. The cells were then aliquotted at 4 
o
C and flash frozen in 

liquid nitrogen and stored at -80 
o
C. 

 

2.6.7.2 Transformation of chemically competent E. coli cells 

In each transformation reaction, 50 μl of chemically competent E. coli cells was 

thawed on ice for ~10 min and then, approximately 0.2 μg of plasmid DNA or ligation 
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mixture was mixed with cells by gently pipetting up and down with an ice-cold 

pipette tip. After 30 min incubation on ice, cells were heat shocked at 37 
o
C for 2 min 

and incubated for 10 min on ice. 450 μl of liquid LB medium were added and cells 

incubated for 1 hour under vigorous shaking at 37 
o
C. Then 250 μl of the mix were 

directly plated onto LB 1.5 % (w/v) agar plates contains a suitable antibiotic selection 

and if applicable 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG) and 80 μg ml
-1

 

5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-Gal). The plates were incubated at 37
 

o
C overnight. 

 

2.6.7.3 Transformation of Synechocystis sp. PCC 6803 

Synechocystis cells were transformed with recombinant plasmid DNA according to 

the protocol described by Williams (1988) and Nixon et al. (1992). Recipient cells 

that were grown in liquid BG-11 medium with 5 mM glucose were harvested in 

exponential growth phase (OD730nm < 1) by centrifugation (centrifuge model Allegra 

6R, Beckman Coulter Limited, UK; GH-3.8 rotor; 2,000 g, 15 min, 29 °C) and 

resuspended in fresh BG-11 medium yielding a cell suspension with a final OD730nm 

of ~5.0. For each transformation reaction, 100 μl of the concentrated cell suspension 

were mixed with 1 to 10 μg of recombinant plasmid DNA. The mixture was incubated 

at 30 °C, supplied with continuous white light illumination at ~ 5 μmol m
-2

 s
-1

 for 4 to 

6 h and occasional agitation. The transformation mixture was plated onto 4-μm 

cellulose nitrate membrane filters (Schleicher & Schuell MicroScience GmbH, 

Germany) placed on a BG-11 1.5 % (w/v) agar plate (5 mM glucose where 

applicable). After 24 h under continuous white light illumination at ~10 μmol m
-2

 s
-1

 

the filter was transferred to a new plate containing suitable antibiotic(s). Resistant 

colonies appeared after seven to ten days. Transformants were restreaked at least three 

times, until PCR analyses were performed to test for segregation. 
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2.6.8 DNA extraction and purification 

2.6.8.1 Mini plasmid DNA preparation from E. coli 

The mini plasmid DNA preparation procedure is described in Birnoim and Doly 

(1979). A single colony was picked up from a plate and inoculated 3 ml LB liquid 

medium containing the appropriate antibiotic(s). The E. coli culture was incubated 

overnight on the shaker at 37 
o
C, 225 rpm. Cells were harvested from 1.5 ml culture 

by centrifugation in a microfuge (model 5410, Eppendorf AG, Germany) at 1,300 rpm 

for 1min. The cell pellet was resuspended in 50 μl P1 buffer (Plasmid-Midi-Kit, 

Qiagen Limited, UK). After 50 μl P2 buffer (Plasmid-Midi-Kit, Qiagen Limited, UK) 

was added, the sample was gently inverted 6 times immediately to lyse the cells 

efficiently without disturbing the genomic DNA. The mixture was then left at room 

temperature for 5 min and 50 μl ice-cold P3 buffer (Plasmid-Midi-Kit, Qiagen 

Limited, UK) was added. After 6 time gentle inversion, it was left on ice for 5 min. 

Then the precipitate was spun down in the microfuge at 1,300 rpm for 5 min. 

Supernatant was transferred to a new tube and 1 ml 100 % ethanol was added to 

precipitate plasmid DNA. The sample was incubated at room temperature for 5 min 

and then, DNA was pelleted in the microfuge at 1,300 rpm for 10 min. The 

supernatant was removed and 200 μl of 70 % ethanol was added to wash the DNA. 

1min later, the ethanol was removed and the DNA sample was air dried until all the 

ethanol had evaporated. Finally, 50 μl autoclaved RO water was added to dissolve the 

plasmid DNA. The sample was stored at -20 
o
C. 

 

2.6.8.2 Midi plasmid DNA preparation from E. coli 

Midi plasmid DNA preparations were performed using Plasmid–Midi-Kit (Qiagen 

Limited, UK) according to the manufacturer’s protocol (see Qiagen Plasmid 

purification Handbook. 11/1998, p. 13ff). The air-dried plasmid DNA pellet was 

resuspended in 400 μl elution buffer (EB) which is from Qiagen gel extraction kit 

(Qiagen Limited, UK). 
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2.6.8.3 Total cellular DNA extraction from Synechocystis sp. PCC6803 

Total cellular DNA extractions from Synechocystis were performed according to the 

phenol-chloroform extraction method devised by Dr. Josef Komenda (Institute of 

Microbiology, Trebon, Czech Republic). A loopful Synechocystis cells from a BG-11 

agar plate were resuspended in 200 μl of TE buffer (10 mM Tris/HCl pH = 8.0, 1 mM 

EDTA) and 200 μl of phenol (saturated with 10 mM Tris/HCl pH = 8.0, 1 mM EDTA) 

were added. The suspension was hand-extracted twice for 20 s and centrifuged in a 

microfuge (Denville 2600, Denville Scientific Inc. USA) at maximum speed for 5 min 

at 4 
o
C. The aqueous phase was transferred to a new tube and one volume of 

chloroform was added. The mix was hand extracted for 30 s and centrifuged in a 

microfuge at maximum speed for 5 min. The aqueous phase was transferred to a new 

tube and a tenth sample volume of 3 M sodium acetate (pH = 4.8) together with two 

volumes of 100 % (v/v) ethanol were added and mixed by gentle inversions. To allow 

DNA precipitation the sample was incubated at RT for 10 min, and then the DNA was 

pelleted in a microfuge at maximum speed for 30 min and the obtained pellet was 

washed with 70 % (v/v) ethanol, resuspended in 100 μl nuclease-free RO water and 

stored at –20 °C. 

 

To extract high quality genomic DNA free of phenol contamination and suitable to be 

used as template DNA in Phusion PCR reactions, ZR Fungal/Bacterial DNA MiniPrep 

(Zymo Research Co. USA) Kit was used according to the manufacturer’s protocol. 

 

2.6.9 Estimation of DNA concentration and quality  

The DNA concentrations were measured with a Shimadzu spectrophotometer 

(UV-1601, Shimadzu, Japan) at a wavelength of 260 nm. An absorbance value of 1 at 

260 nm wavelength is equivalent to a concentration of ~50 μg ml
-1

 of double strand 

DNA (Sambrook et al. 1989). The quality of plasmid DNA was estimated visually 
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after agrose gel electrophoresis and UV illumination (BioDoc-IT
TM

 System, UVP; CA, 

USA) (Video Graphic Printer UP-890CE; Sony, Japan) 

 

2.6.10 DNA sequencing 

The sequencing of plasmid and PCR fragment DNA was performed by Beckman 

Coulter Genomics Limited, UK. Samples were prepared according to the instruction 

from the service provider. 

 

2.6.11 Construction of the C-terminal tagging cassettes 

Isolation and in situ localisation of FtsH complexes was based on C-terminal tagging 

approach, which has either a GST tag that enable affinity purification, or a GFP tag 

that is fluorescent in confocal microscopy, fused to the C-terminus of each 

Synechocystis FtsH protease. In this section, the construction of the FtsH gst/gfp 

tagging system was described. 

 

2.6.11.1 Outline of the C-terminal gst/gfp tagging strategy 

As multiple proteins were to be fused with a GST tag, we decided to create a universal 

tagging cassette (Figure 2.1) that starts with a thrombin cleavage site (to enable tag 

removal after purification), following by the cDNA sequence of 

glutathione-S-transferase (GST) from Schistosoma japonicum, and then a strep II tag 

before the STOP codon. Three endonuclease restriction sites, KasI, HpaI and XbaI 

were designed 3’ to the STOP codon; the HpaI site will be used as the insertion site 

for selectable markers. The whole tagging cassette was designed to be released by 

EcoRV and XbaI digestion; the AvrII, BamHI and KasI sites enable further 

modifications such as addition, removal or replacement of each module in the cassette, 

e.g. replacing the gst with the coding sequence of green fluorescent protein (GFP). 

Once the desirable selectable marker was integrated into the cassette (erythromycin in 
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this case), the GST tagging vector was completed. Though the whole cassette was 

designed to be released by digesting with enzyme EcoRV + XbaI; it can also be 

released via EcoRV + any downstream restriction site, that locates in the multiple 

cloning sites (MCS) region of the vector backbone and doesn’t appear in the cassette 

sequence.  

 

Working in parallel, each ftsH gene and 655 bp of downstream sequence was 

amplified by PCR using the genomic DNA template from WT Synechocystis and 

cloned into the pGEM-T Easy vector. EcoRV and XbaI sites were inserted 

immediately before the STOP codon of ftsH to enable the insertion of the GST 

tagging cassette. The ftsH gene and the downstream sequence act as flanking 

sequences for homologous recombination, via double crossover, when the plasmid 

vector is transformed into Synechocystis sp. PCC 6803. 

 

 

 

Figure 2.1: Cloning strategy and construct scheme.  

A DNA tagging cassette which contains a thrombin cleavage site, GST/GFP and Strep 

II tag coding sequences as well as the erythromycin resistance cassette was ligated at 

the 3’ end of each FtsH coding sequence. 

 

2.6.11.2 Construction of backbone vectors carrying ftsH flanking sequences 

Plasmid vectors carrying ftsH flanking sequences were constructed via overlap 
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extension PCR (Figure 2.2 A). Primer pairs FtsH(x)-F and FtsH(x)-OE-R, 

FtsH(x)-OE-F and FtsH(x)-R, where (x) represents the respective number 1-4, were 

used to setup the initial reactions, then the resulting PCR fragments were gel extracted 

and used as the DNA templates in the final PCR reaction (PCR3) along with primer 

pair FtsH(x)-F and FtsH(x)-R. The final PCR fragment carrying restriction sites 

EcoRV and XbaI in front of the STOP codon was then added with a 3’ Adenine-tail 

and cloned into pGEM-T Easy vector. The resulting plasmid, namely pGEMFtsHx, 

where x represents the respective homologue (Figure 2.2 B), was checked via 

diagnostic digestion with NdeI and XbaI to examine the orientation of the insertion 

(Figure 2.2 C), and according to the digestion pattern on the gel, all FtsH inserts were 

successfully inserted into the plasmids and placed against the transcription direction 

of the lacZ operon. The sequence of each insert was then confirmed via sequencing. 

 

 

Figure 2.2: Construction of the backbone vector carrying ftsH flanking 

sequences.   

(A) Schematic representation of the flanking sequence and how the restriction sites 

were introduced via overlap extension PCR. (B) Plasmid map of pGEMFtsH2 vector, 

which carries an additional NdeI site at the 5’ end of the ftsH2 ORF. (C) Restriction 

digests of each of the pGEMFtsHx vectors using NdeI and XbaI, where FtsHx 

represent the particular homologue. 
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2.6.11.3 Construction of the GST tagging vectors 

PCR was used to amplify the gst gene from pGEX-6P-3 vector (Amersham, USA) 

using Phusion polymerase. The forward primer (Table 2.5) contained an EcoRV 

restriction site at the beginning of the 5’ end followed by thrombin cleavage site 

sequences, then an AvrII site at just before the gst sequence. The reverse primer 

carried an XbaI site at the 5’ end, followed by HpaI and KasI sites, then the 

complementary sequences for the STOP codon, strepII tag sequence and the gst 

sequence without its own STOP codon. 

 

The gst::strepII fragment was then ligated into the pGEM-T Easy vector backbone to 

obtain the first parental vector pGST (Figure 2.3 A). An antibiotic resistance cassette, 

in this case, a cassette conferring erythromycin resistance, was inserted into the pGST 

plasmid via HpaI site to create the GST-Erm tagging cassette (Figure 2.3 B). 
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Figure 2.3: Construction of GST tagging vectors.   

Schematic representations of the inserts found in (A) pGST, (B) pGST-ErmA and (C) 

the plasmid map of pGST-ErmA. A detailed description of the cloning strategy can be 

found in Materials and Methods. In panels (A) and (B), blue arrows represent lacZ’ on 

the pGEM-T Easy vector backbone. Purple boxes represent the coding sequence of 

the thrombin cleavage site. Blue and green boxes indicate the gst:strep II tagging 

sequence. The yellow box indicates the erythromycin-resistance cassette; the black 

arrows show the direction of transcription. 

 

Tagging cassettes that provide resistance to various antibiotics could be beneficial to 

tag mutants that already confer resistance to antibiotics. Therefore, to increase the 

availability of the tagging cassettes conferring different antibiotic resistance, three 

types of resistance markers that enable resistance to chloramphenicol, erythromycin 

and kanamycin were introduced into pGST vectors, and each resistance cassette was 
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inserted in two orientations (Figure 2.4 A1, B1 and C1). The orientation of the 

resistance cassettes were confirmed via endonuclease digestion (Figure 2.4 A2, B2, 

C2). 

 

 

Figure 2.4: Schematic representation of GST tagging cassettes.  

(A1, B1 and C1) show the schematic layout of each GST cassette, including the 

orientation of each antibiotic resistance cassette. The undrawn pGEM-T Easy vector 

backbone is ~3 kbp. (A2, B2 and C2) show the digestion pattern of each cassette on 

agarose gel. Cam
R
: chloramphenicol resistance cassette; Erm

R
: erythromycin 

resistance cassette; Kan
R
: kanamycin resistance cassette. 

 

2.6.11.4 Construction of the GFP tagging vectors 

One of the objectives is to localise the FtsH homologues via fluorescence microscopy. 
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A GFP tag was to be fused to the C-terminus of each FtsH homologue to enable in situ 

localisation. The coding sequence of GFP+  was amplified from plasmid vector 

pMutin (Scholz et al. 2000), using primer pair GFP-F and GFP-R (Table 2.5) and then 

digested with AvrII and BglII to create compatible ends for ligation. pGST vector was 

digested with AvrII and BamHI to excise the gst insert, the vector backbone was gel 

purified and ligated with the gfp sequence. The resulting plasmid pGFP contains the 

same layout to pGST, except that the gst region was replaced with gfp and the BamHI 

site between gst and strepII is gone after BglII-BamHI ligation (Figure 2.5 A). The 

vector pGFP was then sequenced to confirm no mutation was generated during the 

cloning process, however, an additional BglII site was found between the gfp and 

strepII sequences due to incomplete digestion before ligation. The redundant BglII 

sequence introduced an additional Arg-Ser sequence to the GFP-StrepII linker region. 

An antibiotic resistance cassette was consequently inserted into the pGFP to yield the 

final GFP tagging vector (Figure 2.5 B and C). 
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Figure 2.5: Construction of GFP tagging vectors.   

Schematic representations of the inserts found in (A) pGFP, (B) pGFP-CamA and (C) 

the plasmid map of pGFP-CamA. A detailed description of the cloning strategy can be 

found in Materials and Methods. In panels (A) and (B), blue arrows represent lacZ’ on 

the pGEM-T Easy vector backbone. Purple boxes represent the coding sequence of 

the thrombin cleavage site. Orange and green boxes indicate the gst:strep II tagging 

sequence. The yellow box indicates the chloramphenicol-resistance cassette; the black 

arrows show the direction of transcription. 

 

Similar to the construction of GST tagging cassette, multiple antibiotic resistance 

cassettes which confer resistance to chloramphenicol, erythromycin and kanamycin 

were used to create a range of selections for the GFP tagging cassette (Figure 2.6).  
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Figure 2.6: Construction of GFP tagging cassettes.  

(A1, B1 and C1) show the layout of each GFP cassette, including the orientation of 

each antibiotic resistance cassette. The undrawn pGEM-T Easy vector backbone is ~3 

kbp. (A2, B2 and C2) show the digest pattern on agarose gel. Cam
R
: chloramphenicol 

resistance cassette; Erm
R
: erythromycin resistance cassette; Kan

R
: kanamycin 

resistance cassette. 

 

2.7 Protein biochemistry techniques 

2.7.1 Small-scale crude membrane preparation 

Approximately 50 ml of cell culture (~75 µg of Chl in total) was harvested via 

centrifugation (centrifuge model J2-21; Beckman Coulter Limited, UK; JA-14 rotor; 

2,450 g, 15 min, 4 °C). The supernatant was then carefully removed and the 



80 
 

remaining pellet was resuspended in 500 µl KPN buffer (40 mM K-phosphate, pH = 

8.0, 100 mM NaCl), appropriate amount of EDTA-free protease inhibitor cocktail 

tablets (Roche, UK) was also supplemented to the KPN buffer prior to application. 

The resulting cell suspension was then transferred to a 2 ml centrifugation tube 

(Eppendorf, Germany) containing ~200 µl glass beads, the size of which was 212 to 

300 µm (Sigma Aldrich, UK). The mixture was then pre-chilled on ice and then 

vortexed (Vortex-Genie 2, Scientific Industries, Inc. USA) under green light at the 

maximum speed for 1 minute. The mixture was then chilled on ice for 1 minute to 

reduce the heat generated in the vortexing step. Depending on the breakage efficiency, 

the cells were disrupted multiple times via the vortex-chill cycle, typically the 

breakage was performed 3 times per sample. After breakage, the supernatant was 

carefully transferred into a new 1.5 ml centrifuge tube and membrane fragments stuck 

in glass beads was rinsed with 800 µl KPN buffer containing protease inhibitor, and 

combined with the previously retrieved fraction. Unbroken cells in the lysate were 

span down in the microcentrifuge (Denville 2600, Denville Scientific Inc. USA) at 

6,600 g for 1 min at 4 
o
C. The supernatant containing membrane fragments were 

carefully transferred to a new 1.5 ml centrifuge tube and further spun twice to remove 

as much unbroken cells as possible. Noteworthy, the colour of the supernatant should 

be dark-green and transparent at this stage. The supernatant was then span at 16,000 g 

for 40 min to harvest the membrane fraction. After the centrifugation, the blue 

supernatant containing soluble proteins was removed, and the membrane pellet was 

resuspended in 50 µl KPN buffer without protease inhibitor. The chlorophyll a 

concentration of the membrane sample was then measured and adjusted to desirable 

level, typically 0.4 µg µl
-1

. 

 

2.7.2 Protein purification techniques 

2.7.2.1 Purification of FtsH-GST from Synechocystis sp. PCC6803 

Approximately 10 litre of Synechocystis sp. PCC 6803 cell culture was initially 



81 
 

concentrated to ~2 litres using a tangential flow filtration system (Millipore Limited, 

UK) and then pelleted via centrifugation (centrifuge model J2-21; Beckman Coulter 

Limited, UK; JA-14 rotor; 9,600 g, 10 min, 4 °C). Then the pellet was washed with 

~500 ml ice-cold KPN buffer (40 mM K-phosphate, pH = 8.0, 100 mM NaCl). Cells 

were pelleted again by centrifugation, and then resuspended with KPN buffer and a 

protease inhibitor cocktail tablet (Roche, UK) to a final volume of 50 ml. The cell 

suspension was then fractionated in a cell disruptor (Constant System Limited, UK) at 

25 kPsi, 4 
o
C. After breakage, the suspension was centrifuged (centrifuge model 

Allegra 6R, Beckman Coulter Limited, UK; GH-3.8; 2,000 g, 15 min, 4 °C) to pellet 

unbroken cells. The supernatant was transferred into two type Ti45 ultracentrifugation 

tubes and centrifuged (ultracentrifuge model L-70; Beckman Coulter Limited, UK; 

Ti45 rotor; 100,000 g, 60 min, 4 °C). The pellet containing the thylakoid membrane 

was resuspended in 45 ml of Buffer A (50 mM HEPES, pH=7.2, 1.2 M Betaine, 10 % 

(v/v) Glycerol, 100 mM NaCl, 5 mM MgCl2, 10 µM ZnCl2). 5 ml of 10 % (w/v) 

n-dodecyl-β-maltoside (β-DM) was added to the thylakoid suspension to solubilise the 

membrane proteins. The Mixture was then kept on a rotating wheel in the dark for 30 

min at 4
 o

C. Insoluble components were then pelleted by centrifugation 

(ultracentrifuge model L-70; Beckman Coulter Limited, UK; Ti70 rotor; 100,000 g, 

30 min, 4 °C), and the soluble fraction was applied to 5 ml pre-equilibrated 

GST-Agarose resin. After 2 h incubation in the dark, on a rotating wheel at 4 °C, the 

resin was washed by ~200 ml of washing buffer (50 mM HEPES, pH=7.2, 5 % (v/v) 

Glycerol,100 mM NaCl, 5 mM MgCl2, 10 µM ZnCl2, 0.03 % (w/v) β-DM). Then the 

FtsH sample was either eluted with 10 ml of elution buffer (50 mM Tris/HCl, pH=8.0, 

80 mM NaCl, 5 mM MgCl2, 12.5 µM ZnCl2, 0.005 % (w/v) β-DM, 1.4 mM 

2-mercaptoethanol, 25 mM Reduced Glutathione ), or a thrombin on column cleavage 

was performed by applying 5 ml cleavage buffer (50 mM Tris/HCl, pH=8.0, 80 mM 

NaCl, 5 mM MgCl2, 12.5 µM ZnCl2, 0.005 % (w/v) β-DM, 1.4 mM 

2-mercaptoethanol, 50 unit thrombin). For on column cleavage, the resin was 
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incubated with cleavage buffer on a rotating wheel for 1.5 h at room temperature. 

Then the resin was pelleted by centrifugation (centrifuge model Allegra 6R, Beckman 

Coulter Limited, UK; GH-3.8; 2,000 g, 1 min, 4 °C). The supernatant contains 

GST-free FtsH sample, and the undigested samples were eluted with elution buffer. 

 

2.7.2.2 Purification of recombinant protein from E. coli 

The expression E. coli strain KRX (Promega) was firstly transformed with the 

targeting expression vector, then the transformants were grown overnight in advance. 

A 10 ml starting culture was prepared by inoculating a single colony from the 

transformation plate into 10 ml LB medium containing 100 µg ml
-1

 ampicillin, and 

then incubated at 37 
o
C overnight, 200 rpm. On the following day, the cell culture was 

then used to inoculate 1 L LB medium to a starting OD600nm of 0.1. The scaled up 

culture was then grown at 37 
o
C, 200 rpm until the OD600nm reach 0.4-0.5. The 

culture was then chilled to room temperature and induced with 0.1 % (w/v) 

L-rhamnose. The culture was then incubated at 18
 o
C overnight. On the following day, 

cells were harvested via centrifugation (JA-14 rotor; 4,000 g, 10 min, 4 °C) The 

resulting cell pellet was resuspended in 25 ml lysis buffer (50 mM Tris-HCl buffer pH 

= 7.9, 500 mM NaCl and 10 mM Imidazole) containing appropriate amount of 

EDTA-free protease inhibitor cOmplete (Roche) and disrupted via ultrasonication 

(Sonic Vibra-Cell VCX 130). The disruption was performed on ice bath with the cycle 

and strength setting of 5 sec on, 5 sec off, 75% amplitude. The insoluble fraction was 

then removed from the disrupted cell lysate via centrifugation (JA-14 rotor; 4,000 g, 

40 min, 4 °C), and the resulting soluble fraction was further filtered with a 0.45 µm 

filter Minisart (Sartorius Stedim Biotech) and used for consequent purifications. 

 

The consequent purification steps were conducted at 4 °C. The soluble fraction of cell 

lysate was applied to ~ 10 ml of Ni-NTA resin (Thermo Scientific), which was 

pre-equilibrated with lysis buffer. The mixture was then transferred to a rotating wheel 
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and incubated for 30 min. The supernatant was then removed and the resin was 

washed 3 times with 1 column volume of washing buffers (50 mM Tris-HCl pH=7.9 

and 500 mM NaCl) containing a gradient of imidazole concentration (10 mM, 30 mM 

and 60 mM). After washing, the resin-bound protein was eluted with elution buffer 

(50 mM Tris-HCl pH=7.9, 500 mM NaCl and 500 mM imidazole). 

 

2.7.3 Polyacrylamide gel electrophoresis (PAGE) 

2.7.3.1 Sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) 

The SDS-PAGE gels were self-cast, 0.75 mm thick and run in the Bio-Rad 

Mini-PROTEAN III vertical gel system (Bio-Rad Laboratories Limited, UK). The 

separation gel was typically a 12.5 % (w/v) continuous polyacrylamide (PAA; from a 

40 % acylamide/bisacrylamide = 37.5g l
-1

 stock solution), 6 M urea, 0.375 M 

Tris/HCl pH = 8.9, 0.01 % (v/v) N,N,N’,N’ tetramethylenediamine (TEMED); 0.1 % 

(w/v) ammonium persulphate (APS) SDS-PAGE gel. A 5 % (w/v) PAA (from a 40 % 

arylamide/bisacrylamide = 37.5/l stock solution) stacking gel containing 0.125 M 

Tris/HCl pH = 6.8, 0.01% (v/v) TEMED and 0.1% (w/v) APS was poured on top of 

the separation gel. Samples for SDS-PAGE analyses were mixed with 2x SDS sample 

buffer (2x concentrate: 125 mM Tris/HCl pH 6.8, 4 % (w/v) SDS, 20 % (v/v) glycerol, 

0.1 % (w/v) bromophenol blue and 10% 2-mercaptoethanol added freshly before each 

use; final [1x]) and then incubated for 5 min at 95 
o
C to achieve quick solubilisation. 

Importantly, membrane proteins prepared from crude membrane preparation (see 

section 2.7.1) are not suitable for heat denaturation as extensive aggregation has been 

observed before. The alternative approach is to solubilise protein with SDS sample 

buffer at room temperature for 40 min. After solubilisation, insoluble materials were 

pelleted in a microcentrifuge at maximum speed for 10 min at room temperature. 10 

μl samples were loaded in each well. The gels were run at room temperature with 

constant voltage of 125 V for 2-3 hours using a Bio-Rad PowerPac Basic (Bio-Rad 

Laboratories Limited, UK) in the Tris-glycine running buffer (25 mM Tris, 190 mM 
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glycine, 0.1 % (w/v) SDS, pH = 8.3).  

 

2.7.3.2 Coomassie staining 

The obtained gels were either stained with Coomassie (40 % (v/v) methanol, 10 % 

(v/v) acetic acid and 0.25 % (w/v) Coomassie-brilliant-blue-R-250) overnight a 

rocking shaker and destained with destain buffer (40 % (v/v) methanol, 10 % (v/v) 

acetic acid) for ~2 hours at room temperature to remove background strain; or used 

for immunoblotting (see 4.9.3) 

 

2.7.3.3 Silver staining 

After electrophoresis, the SDS-PAGE gel was incubated with fixation buffer (40 % 

(v/v) ethanol and 10 % (v/v) acetic acid) for 15 min, and then transferred into fresh 

fixation buffer for another 15 min. The gel was then washed with ddH2O 3x 5 min, 

then transferred into sensitisation buffer (30 % (v/v) ethanol, 0.2 % (w/v) sodium 

thiosulfate and 6.8 % (w/v) sodium acetate) for 30 min. Then again, the gel was 

washed with ddH2O 3x 5 min, prior to staining ( 0.25 % (w/v) silver nitrate) for 20 

min. Excessive stains were washed away with ddH2O 2x 1 min, and then the gel was 

incubated with development buffer (2.5 % (w/v) sodium carbonate and 0.04 % (v/v) 

formaldehyde (freshly added)). The gentle agitation was applied during the 

development period until the intensity of protein bands was satisfactory. Stop buffer 

(1.46 % (w/v) EDTA) was applied to mediated the reaction, and after 10 min 

incubation, the gel was washed with ddH2O 3x 5 min. 

 

2.7.4 Detection of the FtsH homologues, immunoblotting analysis 

2.7.4.1 Design of FtsH-specific antibodies 

Immunoblotting is a versatile tool to detect the presence/absence of the targeting 

antigen in the samples, and it was used in many experiments in this study to detect the 

protein level, to elucidate the association between FtsH homologues, to clarify the 
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location of FtsH complexes and so on. Hence the main focus of this study was to 

characterise the four FtsH homologues in Synechocystis, short-peptide antibodies 

specific to each homologue was needed. To ensure the specificity of each antibody, a 

short-peptide sequence, approximately 15-20 amino acid in length, from 

less-conserved regions and unique to each homologue was synthesised and used as the 

antigen to raise antibodies in rabbits (Table 2.6). In addition, another FtsH antibody 

(αFtsH global) that specific to a conserved sequence presents in all cyanobacterial 

FtsH homologues, and therefore detects all four homologues with equal sensitivity, 

was also raised to quantify the ratio of abundance among homologues.  

 

There are three major domains present in FtsH: the transmembrane domain (TM), the 

AAA+ domain and the protease domain (PD), of which, only the AAA+ domain is 

highly conserved. Therefore, the sequence region for αFtsH global antibody was 

selected from the AAA+ domain according to the alignment. The PD domain is less 

conserved due to its functional variations (Lee et al. 2011), moreover, it is a soluble 

domain, which is an ideal location to search for soluble peptide sequences. The 

antigen sequences for FtsH1 and FtsH4 antibodies were selected from the PD region. 

Finally, although the TM is among the least conserved domain in FtsH, most of its 

sequences form hydrophobic helices spanning across lipid bilayer of membranes. The 

only soluble region in TM is the loop connecting the two helices, thus the sequences 

in the loop region of FtsH2 and FtsH3 were the targeting region for the respective 

antibodies.  
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Table 2.6: Design of the short-peptide FtsH antibodies. 

Antibody Peptide antigen Targeting region 

αFtsH (global) 
C-GGNDEREQTLNQLLT

EMDG 

Conserved region in AAA+ 

domain 

αFtsH1 C-EGDRNFSGGDWGKRS Unique region in PD domain 

αFtsH2 
RLRDSNIRLDSHPVRNN

G 

Loop region between the two TM 

helices 

αFtsH3 SADRTQAQVPNPSGGPP 
Loop region between the two TM 

helices 

αFtsH4 
C-NPRRMVSDDTAKEID

LEVK 
Unique region in PD domain 

The sequence of each peptide antigen synthesised to raise antibodies was listed in the 

table, following by a brief description of the antibody targeting region. 

 

Peptide antigens were then ordered and used to raise antibodies in rabbits (Seqlab 

sequence laboratories Limited, Germany). Blood sera containing antibodies were 

tested on membrane-protein extractions prepared from Synechocystis mutants to check 

specificity (data not shown). Satisfactory antibodies were consequently 

affinity-purified with the respective peptide-antigens to enhance specificity and 

sensitivity (Seqlab sequence laboratories Limited, Germany). According to the 

screening tests, αFtsH (global) and αFtsH4 were specific and highly sensitive to the 

targeting proteins, αFtsH2 and αFtsH3 were specific, however, less sensitive. αFtsH1 

was specific, however, contaminated with αFtsH4 in the affinity purification process, 

and the remaining crude sera were not as sensitive as the purified version.  

 

Overall, we have successfully obtained all antibodies highly specific to the targeting 

proteins, however, the sensitivity of αFtsH1, αFtsH2 and αFtsH3 was relatively poor. 

 

2.7.4.2 Immunoblotting detection 

1-D SDS-PAGE gels were used for immunoblotting analyses. Protein transfer was 

performed for at least 90 min in transfer buffer (3 mM Na2CO3, 10 mM NaHCO3 and 

20 % (v/v) methanol) onto nitrocellulose membrane (Trans Blot, Transfer medium 

nitrocellulose membrane, 0.2 μm; Bio-Rad Laboratories Limited, UK). The current 
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was set up constantly at 400mA. After the proteins were blotted, the nitrocellulose 

membrane was blocked for 1 hour with 1x PBS-T (150mM NaCl. 7.5 mM Na2HPO4, 

2.5 mM NaH2PO4 and 0.1% (v/v) Tween 20) supplemented with 5 % (w/v) milk 

powder. The membrane was then briefly washed with 1x PBS-T and incubated 

overnight at 4 
o
C on a rocking shaker with a primary antibody of choice. On the next 

day the membrane was washed three times for 20 min with 1x PBS-T and 

subsequently incubated for 1 hour at room temperature with the appropriate secondary 

antibody (anti-rabbit IgG, horseradish peroxidase conjugate or anti-mouse IgG, 

horseradish peroxidase conjugate, 1:10,000 dilution in 1x PBS-T; Amersham 

Pharmacia, UK). Unbound secondary antibody was removed by washing the 

membrane three times for 10 min with 1x PBS-T and two times for 10 min with 1x 

PBS. The secondary antibody was detected by the enhanced chemiluminescence 

procedure. The membrane was incubated for 1 min in a 1:1 mixture of ECL reagent A 

(100 mM Tris/HCl pH = 8.3, 0.4 mM p-coumaric acid (90 mM stock solution in 

DMSO), 2.5 mM luminol (250 mM stock solution in DMSO)) and ECL reagent B 

(100 mM Tris/HCl pH = 8.3, 100 mM H2O2). The membrane was then enveloped into 

an A4 reinforced pocket and exposed to an X-Ray film (SuperRX, X-Ray film, 100 

NIF, 18x24 cm; Fuji medical, UK) for 1 sec to 10 min. The film was developed 

according to the manufacturer’s instructions. 

 

2.7.5 Assay for nucleoside triphosphatase activity  

The nucleoside triphosphatase activity was measured according to the liberation of 

phosphate from nucleoside triphosphates ATP, GTP, CTP and UTP (NTP). 

Appropriate amount of the testing protein was preloaded to the reaction buffer (50 

mM Tris-Acetate, 5 mM magnesium chloride, 1.5 mM β-mercaptoethanol), and the 

mixture was heated to 55 °C (the optimal temperature for FtsH). Then, the reaction 

was initiated by adding 0.5 mM NTP, and was terminated by adding 6 % perchloric 

acid. Upon termination, malachite green solution (0.1 % (w/v) malachite green, 1.1 % 
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(w/v) ammonium molybdate, 1.5 % (w/v) Bismuth (III) citrate and 8.4 % (v/v) 

concentrated HCl) was added to the reaction mixture at 1:1 ratio. After 3 to 15 min of 

incubation, absorbance at 650 nm was measured. Four measurements were taken at 20, 

40, 60 and 80 min. Serial diluted phosphate standards (0, 0.1, 0.4, 1.2, 3.7, 11.1, 33.3 

and 100 µM of KH2PO4) were prepared and parallel treated for calibration. 

 

2.7.6 Assay for proteolytic activity 

The proteolytic activity of protease was examined using a fluorescence-based 

quantitative casein degradation assay (EnzChek Protease Assay Kits (Invitrogen)). 

Prior to the assay, the protease was firstly normalised to a concentration of 10 µg µl
-1

, 

and then diluted to a concentration of 40 µg ml
-1

 with the reaction buffer supplied in 

the kit. To start the reaction, 100 µl
 
of the reaction buffer containing protease was 

mixed with equal volume of the casein substrate according to the manufacturer’s 

instruction menu. 1 µl of 100 mM ATP was added to the reaction mixture, and plate 

was immediately incubated at 55°C. Protease activity was determined by measuring 

the fluorescence with the filter excitation/emission = 485/530. Fluorescence reading 

was performed at 5 min, 30 min and 45 min.  

 

2.7.7 Protein N-terminal sequencing 

Purified protein samples (see section 2.7) were loaded on an SDS gel which was 

prepared one day in advance, and run with the Tris-glycine running buffer (see section 

2.7.3.1), which is supplemented with 2mM-mercaptoacetic acid in addition to prevent 

N-terminal blockage. Consequently, separated proteins were transferred to PVDF 

membrane via blotting (see section 2.7.4.2), with a specific transfer buffer (10mM 

CAPS, 5mM DTT, 10 % Methanol, pH = 11). After blotting, the membrane was then 

stained (0.1 % Coomassie Blue R in 50 % MeOH, 1 % acetic acid) for 5min and 

destained in 50 % MeOH with several changes of 2-5min until the protein bands were 

clearly visible. The membrane was then air-dried and stored at 4 
o
C. To determine the 
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N-terminal sequence, Edman degradation was performed on the protein band of 

interest, and its sequence was analysed via ABI procise 494HT protein sequencer, this 

service was provided by PNAC facility (Cambridge). 

 

2.7.8 Confocal fluorescence microscopy 

The cells to be investigated were immobilised by drying a droplet of cell culture on 

the surface of a BG11 agar plate. A block of agar carrying cells was excised and 

covered with a microscopic coverslip, with the cells reside between agar and glass. 

Laser scanning confocal microscope (Leica TCS-S5) with a 63x immersion oil 

objective (NA 1.4) was used to examine the localisation of the GFP tagged fusion 

proteins. Samples were excited by 488nm argon laser (30% power) with confocal 

pinhole set to give resolution in the z-direction of 1μm. Fluorescent emission of GFP 

was selected with interference band pass filter at 502-512 nm. The fluorescence from 

the chlorophyll a was detected by long pass filter in range 670-720 nm. All images 

were recorded in 12-bit, with 512 x 512 pixels, scanned at 400 Hz and with line 

average of n = 2. The two images of fluorescence from GFP and chlorophyll a were 

then merged and smoothed for localisation analysis. 

 

2.7.9 Single-particle analysis 

Freshly isolated proteins samples were immediately applied to copper grids and 

negatively stained with 2 % (w/v) uranyl acetate. The prepared samples were then 

examined and analysed by Dr Jon Nield at Queen Mary University of London 

according to the following procedure. The grids carrying protein samples were 

examined using a Philips CM100 transmission electron microscope, operating at 80 

kV and 350,850 magnification at room temperature. Micrographs were chosen for 

minimal astigmatism/drift and scanned using a Nikon LS9000 densitometer. 3400 

particles was compiled using “boxer” of the EMAN software package (Ludtke et al., 

2004). Further processing was performed using Imagic-5 (Image Science) at a 
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sampling frequency of 2.5 Å/pixel on the specimen scale. Reference-free alignment, 

multivariate statistical analysis, and iterative refinement resulted in two-dimensional 

class averages (Ruprecht and Nield, 2001). Eulerian angles were then assigned a 

priori by angular reconstitution (Van Heel, 1987) and iterative refinements 

implemented. The resolution of the final three-dimensional map, which comprised 

263 class averages, merged from a broad range of relative orientation subpopulations 

representing 2964 particles, was estimated conservatively (0.5 correlation coefficient) 

by Fourier shell correlation (Van Heel and Schatz, 2005). Reprojections were taken 

from the final three-dimensional model and used to identify atypical views and further 

refine averages. Coordinate data sets were obtained from the Research Collaboratory 

Structural Bioinformatics Data Bank (www.rcsb.org) for 3KDS.pdb (structure of the 

cytosolic region of the Thermotoga maritima FtsH protease at 2.60 Å; Bieniossek et 

al., 2009) and 1GTA.pdb (structure of GST at 2.4 Å; McTigue et al., 1995). Structures 

were modeled into the final calculated three-dimensional map using PyMol (DeLano, 

2008). Surfacerenderedviews are shown with a threshold of 2.5 s. 

 

2.7.10 Protein identification via mass spectrometry analysis 

Protein samples for mass spectrometry analysis were separated on SDS-PAGE and 

stained with silver. The candidate protein band was excised with a clean scalpel from 

the gel and transfer to a 1.5 ml centrifuge tube. Then the gel was destained in 15 mM 

potassium hexacyanoferrate (III) and 50 mM sodium thiosulfate for 8 min. Then the 

solution was removed and the colourless gel was stored at – 80 
o
C until departure. For 

sequence identity analysis, the collected protein samples were shipped to Prof. 

Michael Hippler, University of Münster, and analysed by co-workers using liquid 

chromatography-mass spectrometry according to the following procedure. Upon 

arrival, the protein gel band was digested with trypsin overnight. The tryptic peptides 

were then diluted in 10 μl of buffer A (0.1% (v/v) formic acid in 5% (v/v) acetonitrile, 

95% (v/v) water) and centrifuged for 5 min at 12,000 × g. The peptide containing 

http://www.uni-muenster.de/en/
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supernatant fraction was then used for Liquid Chromatography-Mass Spectrometry 

analysis. The peptides were fractioned on an LC-Packings PepMap C18 column 

(75-μm [inner diameter] by 150 mm) with a 3-μm particle size and a 100-Å-pore 

diameter (NAN-75-15-03-PM) with the flow rate set at 250 nl/min. The column eluent 

was monitored at 214 and 280 nm with a rapid-scanning spectrophotometer equipped 

with a 3-nl flow cell (LC-Packings UZ-N10 160015). A LCQ Deca XP ion trap mass 

spectrometer (Thermofinnigan, USA) was used for MS/MS analysis. The tolerance 

for the selection of the MS-MS precursor ranged from 1.5 to 3.0 m/z (low to high m/z). 

The resulting data were then evaluated by comparing to the Synechocystis data base 

(cyanobase). 
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Chapter 3: FtsH complexes in Synechocystis, 

composition, localisation and structure 

3.1 Probing the composition of FtsH proteases 

FtsH proteases have been found to form large membrane-anchored complexes in both 

E. coli (see section 1.6.2) and in eukaryotic cells, where multiple FtsH-encoding 

genes are present.  In the latter case, FtsH complexes might contain multiple types of 

FtsH isomers (see section 1.7). One of the major objectives of this work is to 

determine the composition of each type of FtsH complex found in the cyanobacterium 

Synechocystis 6803; hence a method for specifically isolating each of the target FtsH 

homologues was required. Affinity chromatography is a method commonly employed 

to isolate target proteins for in vitro characterisation; therefore, an affinity tag, 

glutathione-S-transferase (GST), was fused to the C-terminus of each FtsH homologue 

to enable isolation (see section 3.1.1). The resulting mutants were then selected for 

segregation and their genotypes were analysed (see section 3.1.2). Affinity tagging is 

a powerful tool to study protein architecture, however, it could potentially provide 

misleading information should the tag perturb the properties of the target protein. In 

fact, the C-terminal tagging applied in this work was based on the consideration that a 

N-terminal fusion of GST tag might disrupt membrane insertion of FtsH. Disruption 

of ftsH genes in Synechocystis leads to distinguishable growth defects, with the 

exception of ftsH4 (see section 1.8), therefore, the phenotypes of the mutants 

generated in this work were assessed by growth assays (see section 3.1.3). Then the 

FtsH complexes were isolated from each mutant, the composition of which was 

probed with antibodies specific to each homologue (see section 3.1.4). Moreover, the 

N-termini of transmembrane proteins often carries a cleavable signalling peptide for 

membrane specific targeting, in this work, the N-terminal sequence of each FtsH 

homologue was analysed to examine the integrity of the mature proteins (see section 

3.1.5). 
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3.1.1 Construction of ftsH::gst mutants 

The ftsH::gst transformation vectors were constructed using the FtsH GST/GFP 

C-terminal tagging system constructed in this work (see section 2.6.11). Firstly, the 

gst tagging cassette was released from the pGST-ErmA vector via EcoRV and SpeI 

double digestion (see section 2.6.11.3), and then ligated into the EcoRV and XbaI sites 

of vector pGEMFtsHx (see section 2.6.11.2) to create the ftsH::gst transformation 

vectors, namely pFtsHxGSTery, where FtsHx is the particular ftsH homologue (Figure 

3.1). The resulting plasmid vectors were then sequenced over the ligation junction to 

ensure no frame-shift had occurred during the cloning process. 

 

 

Figure 3.1: Construction of the pFtsHxGSTery transformation vectors.  

(A) The plasmid map of pFtsH2GSTery vector. The size and location of NotI sites on 

the other three pFtsHxGSTery vectors are almost identical. (B) Restriction digests of 

each of the pFtsHxGFPcam vector using NdeI, where FtsHx represents the particular 

homologue. 

 

Synechocystis strain WT-G was transformed with the pFtsHxGSTery vectors and the 

resulting mutants, namely SynFtsHxGSTery (where FtsHx represents the particular 

ftsH homologue), were selected for erythromycin resistance under low-light 

conditions, on BG11 plates supplemented with glucose, erythromycin and DCMU.  

 

3.1.2 Genotyping of the SynFtsHxGSTery mutants 

Synechocystis cells contain multiple genomes, therefore, it is important to check the 

genotype of the mutants to confirm that all copies of the untransformed WT genome 
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were fully eliminated. Genomic DNA from the mutant cells was extracted to check 

the segregation status of the mutant genome via Taq polymerase PCR using primer 

pair FtsHx-Seq3 and FtsHx-R (Table 2.5). The resulting PCR products were analysed 

on agarose gels, where the PCR products from the ftsH::gst constructs were bigger 

than their wild-type counterpart, due to the insertion of the gst and 

erythromycin-resistance cassette (Figure 3.2 C). 

 

 

Figure 3.2: Genotyping of the SynFtsHxGSTery mutants.  

(A) A schematic representation of the PCR amplification region. (B) PCR analysis of 

the wild-type ftsH 1-4. (C) PCR analysis of each SynFtsHxGSTery mutant. 
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The PCR results showed the absence of the wild-type band in each ftsH::gst lane, 

which confirmed full segregation of the mutant genome; moreover, the PCR bands of 

the remaining 3 ftsH homologues that were not manipulated were not shifted 

compared to the wild type, which proved that only the correct ftsH homologue was 

mutated in each mutant. 

 

3.1.3 Phenotype analysis of SynFtsHxGSTery mutants 

In order to test the physiological effect of the genetic modification in the mutants, a 

growth experiment was performed in which each mutant was streaked and tested on 

BG11 plates with and without glucose, under high and medium-light conditions 

(Table 2.2). Plates were incubated at 30 
o
C for approx. 4-7 days. 

 

 
Figure 3.3: Growth experiment of SynFtsHxGSTery mutants.  

WT-G: the wild-type strain; SynFtsHxGSTery: mutant stratins expressing FtsHx-GST 

fusion protein, where x represents the specific homologue. Cells were tested for 

growth under high (A and B) amd medium (C and D) light conditions on BG11 plates 

supplemented with 5 mM glucose (A and C) and plain BG11 (B and D). 
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All mutants grew well under low (data not shown) and medium light conditions, but 

under high light stress, SynFtsH3GSTery strain failed to grow. The results proved that 

the FtsH1-GST and FtsH2-GST fusion proteins retained the major functions compared 

to their wild-type counterpart. The SynFtsH3GSTery mutant was much more sensitive 

to high light stress than any other gst tagged mutants, suggesting its function might 

have been interfered with by the GST tag. On the other hand, cells cannot survive if 

ftsH3 is disrupted (Mann et al. 2000); therefore, FtsH3-GST must have retained some 

degree of activity which rescued the mutant from lethality. The growth experiment 

could not provide clues about whether the function of FtsH4 was disrupted by the 

C-terminal GST tag as functional disruption of FtsH4 yields no distinguishable 

phenotype under these growth conditions (Mann et al. 2000). 

 

3.1.4 Isolation of the GST-tagged FtsH complexes 

To isolate the respective FtsH complexes, 1 L culture of each SynFtsHxGSTery 

mutant was prepared for this experiment. The cells were harvested when the optical 

density at 730 nm reached ~ 1.5, and cells broken for sequential purification steps. 

Purified FtsH-GST samples were then concentrated and analysed on 10 % SDS-PAGE 

gels, followed by immunoblotting with antibodies specific to GST, E. coli FtsH and 

each FtsH homologue (Figure 3.4). 
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Figure 3.4: Affinity purification of GST-tagged FtsH complexes from each of the 

SynFtsHGSTery mutants.  

(A) Purified FtsH-GST proteins were separated by SDS-PAGE and analysed by silver 

staining. (B) Immunoblot analysis using antibodies specific for GST, global FtsH and 

each FtsH homologue. (C) Table summarizing the interactions between the FtsH 

homologs.   

 

Strikingly, two predominant bands were detected in the silver stained gel, with the 

exception of FtsH4-GST sample which only contained the upper band. The upper 

band, of ~ 100 kDa, matches the predicted size of FtsH-GST fusion protein, whereas, 

the lower band, of ~ 70 kDa, was similar to that of wild-type FtsH. The identity of the 

upper band was confirmed as the FtsH-GST fusion protein by immunobloting using 
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antibodies specific to GST and FtsH. Interestingly, the lower band was also detected 

an FtsH antibody raised against E. coli FtsH (αFtsH (E. coli)), indicating the presence 

of an additional FtsH subunit in the isolated complex. Further investigation using 

peptide antibodies specific to each FtsH homologue revealed that FtsH3 co-purified 

with FtsH1-GST and FtsH2-GST, and consistently, WT FtsH1 and FtsH2 were 

co-purified with FtsH3-GST. Therefore, our data suggested possible complex 

formation between FtsH1/FtsH3 and FtsH2/FtsH3. In contrast, FtsH4-GST seemed 

not to interact with other FtsH homologues. 

 

3.1.5 N-terminal sequence analysis of purified FtsH proteases 

The N-terminal transmembrane domain of FtsH is responsible for selective membrane 

integration and previous work on chloroplast thylakoid Type A and Type B FtsH 

proteases unveiled the presence of a potentially cleavable signalling peptide sequence 

at the N-terminal of the FtsH precursors, and that a similar cleavage site is also 

present in the peptide sequence of FtsH4  (Rodrigues et al. 2011). To clarify the 

proposed post-translational modification, the N-terminal sequence of each FtsH 

homologue was analysed. The N-terminal sequence of FtsH2-GST and the co-purified 

wild-type FtsH3 subunit isolated from a similar mutant (hereafter SynFtsH2GST) has 

already been determined (unpublished data from Dr M. Barker). Therefore, attempts 

were made to obtain N-terminal sequence data from the FtsH1-GST/FtsH3 and 

FtsH4-GST complexes isolated in this work. 

 

To prepare samples for N-terminal protein sequencing, GST-tagged FtsH complexes 

from SynFtsH1GSTery and SynFtsH4GSTery were isolated via GST affinity 

chromatography (see section 2.7.2.1), and then separated on denaturing SDS-PAGE 

gels and blotted onto a PVDF membrane according to the specified procedure (see 

section 2.7.4). The blot was then stained accordingly (Figure 3.5) and sent to the 

Protein & Nucleic Acid Chemistry facility (PNAC, Cambridge) to be sequenced. 
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Figure 3.5: N-terminal sequence of mature FtsH proteases.  

The stained blots of sequencing samples prepared from FtsH1-GST/FtsH3 (A) and 

FtsH4-GST (B) complexes. (C) Table of reference FtsH N-terminal sequence and 

sequencing results. The sequencing data of FtsH2-GST/FtsH3 complex are from 

unpublished preliminary work performed by Dr Myles Barker. 

 

The first 6-10 residues of both FtsH3 and FtsH4 were successfully sequenced via 

Edman degradation (PNAC facility, Cambridge) although the identity of some of the 

residues was unclear. However, subunit FtsH1-GST failed to produce valid data, 

possibly due to N-terminal blockage. The available sequencing data confirmed that 

only the first methionine of FtsH3 and FtsH4 was missing in the mature protein and 

FtsH2 retained the full N-terminal sequence. Our data did not support the idea of a 
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post-translational removal of a signal peptide in the N-terminal region of 

Synechocystis FtsH. Moreover, the N-terminal sequences of FtsH3 co-purified with 

FtsH1-GST and FtsH2-GST were identical. Taking into account that FtsH1 and FtsH2 

are separate complexes, the FtsH3 in both complexes seemed to be the same. 

 

3.2 Probing the localisation of FtsH complexes 

As membrane-anchored proteases, FtsH complexes are associated with proteolysis of 

membrane protein substrates. Therefore, probing the localisation of FtsH is an 

important step towards understanding the function of the proteases. Confocal 

fluorescence microscopy is one of the commonly used techniques to study the 

localisation of proteins in situ. In order to track the fluorescence signal of FtsH 

complexes, mutants expressing a C-terminal GFP-tagged FtsH homologue were 

analysed by fluorescence microscopy, in collaboration with Prof Conrad Mullineaux. 

In this section, the mutagenesis (see section 3.2.1), characterisation of mutants (see 

section 3.2.2-3.2.4) and localisation of each FtsH-GFP homologue (see section 3.2.5) 

are described. In addition to fluorescence microscopy, an independent approach to 

study the localisation of FtsH homologues in the wild-type strain by biochemical 

fractionation is also described (see section 3.2.6). 

 

3.2.1 Construction of ftsH::gfp mutants 

Benefitting from the GST/GFP C-terminal tagging system (see section 2.6.11), the 

ftsH::gfp transformation vectors were constructed by a simple one-step cloning. 

Firstly, the gfp tagging cassette was released from the pGFP-CamA vector via EcoRV 

and SpeI double digestion (see section 2.6.11.4), and then ligated into the EcoRV and 

XbaI sites of vector pGEMFtsHx (see section 2.6.11.2) to create the ftsH::gfp 

transformation vectors, namely pFtsHxGFPcam, where FtsHx is the particular ftsH 

homologue (Figure 3.6). The resulting plasmid vectors were then sequenced over the 

ligation junction to ensure no frame-shift occurred during the cloning process. 
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Figure 3.6: Construction of the pFtsHxGFPcam transformation vectors.  

(A) The plasmid map of pFtsH2GFPcam vector. This vector contains an additional 

NdeI at the beginning of the ftsH2 ORF comparing to the other three vectors. (B) 

Restriction digests of each of the pFtsHxGFPcam vector using NdeI, where FtsHx 

represents the particular homologue. 

 

Wild-type Synechocystis strain WT-G was transformed with the pFtsHxGFPcam 

vectors and the resulting mutants, namely SynFtsHxGFPcam (where FtsHx represents 

the particular ftsH homologue), were selected for chloramphenicol resistance under 

low-light, on BG11 plates supplemented with glucose, chloramphenicol and DCMU.  

 

3.2.2 Genotyping of the SynFtsHxGFPcam mutants 

Genomic DNA from the mutant cells was extracted to check the mutant genome 

segregation status via Taq polymerase PCR using primer pair FtsHx-Seq3 and 

FtsHx-R (Table 2.5). The resulting PCR products were analysed on agarose gels, 

where the PCR products from the ftsH::gfp constructs were separated from the 

wild-type due to the integration of the gfp sequence and chloramphenicol resistance 

cassette (Figure 3.7). 
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Figure 3.7: Genotyping of the SynFtsHxGFPcam mutants.  

(A) A schematic representation of the PCR amplification region. (B) PCR analysis of 

the wild-type ftsH 1-4. (C) PCR analysis of each SynFtsHxGFPcam mutant. 

 

The PCR results showed absence of the wild-type band in each ftsH::gfp lane, which 

provided evidence of full segregation of the mutant genotype. Moreover, the PCR 

bands of the remaining 3 ftsH homologues showed an identical migration profile to 

the wild-type, which proved that only the correct ftsH homologue was mutated in the 

mutants. 
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3.2.3 Immunochemical detection of the FtsH(x)-GFP recombinant proteins 

Immunoblotting was used to examine the expression level and size of the FtsH-GFP 

recombinant proteins from the mutants. The protein samples used in analysis were 

either whole cell proteins through direct solubilisation of cell pellets with SDS sample 

buffer, or membrane proteins extracted from a crude membrane preparation. To 

prepare the protein samples for the assay, ~50 ml of each SynFtsH(x)GFPcam culture 

was harvested, and the crude membrane fraction was prepared. The membrane 

proteins were then separated on 8 % SDS-PAGE gels. After electrophoresis, the 

proteins were either stained with Coomassie Blue or transferred to a PVDF membrane 

for immunoblotting with specific antibodies. 

 

An early experiment performed at the same time as fluorescence microscopy, using 

the whole cell extracts from the remaining cell cultures, showed that all four 

SynFtsHxGFPcam mutants expressed full-length FtsH-GFP fusion proteins. However, 

the expression level of FtsH1-GFP and FtsH3-GFP was much lower than the other 

two fusions (Figure 3.8 B). Furthermore, degradation products were detected from 

SynFtsH2GFPcam and SynFtsH4GFPcam samples. The size of the cleavage product 

was ~ 70 kDa, similar to that of the wild-type FtsH. However, the cleavage site was in 

the soluble fragment of FtsH, as the products contain the C-terminally fused GFP tag. 

Hence the cleavage product detected in this sample should be soluble. Whether 

degradation occurred during sample preparation is unclear. Similar degradation event 

cannot be ruled out from FtsH1-GFP and FtsH3-GFP, as the abundance of the 

resulting fragments might not be sufficient for antibody detection. 
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Figure 3.8: Immunoblotting analysis on ftsH::gfp mutants.  

(A) Coomassie stained SDS-PAGE, ftsH(s)::gfp represents the membrane protein 

sample isolated from respective mutant. (B) Immunoblotting with GFP-specific 

antibody. 

 

A second immunochemical analysis using membrane extracts isolated from a different 

batch of culture showed successful fusion of the GFP tag to the FtsH targets, with the 

exception of FtsH3 (Figure 3.9). Data from this experiment showed accumulation of 

truncated FtsH3-GFP, of slightly larger size than wild-type FtsH3, with no sign of 

GFP in the blot. These data are contradictory to the previous blot (Figure 3.8), which 

might reflect variations in the growth conditions and the presence of additional 

secondary mutations in the strain expressing FtsH3-GFP. The SynFtsH3GFPcam 

cultures from both batches were examined via confocal microscopy, signal quality 

from both were extremely poor. Other than FtsH3, the remaining GFP-fused FtsH 

derivatives seemed to be accumulating at the correct size, ~100 kDa, without 

detectable degradation in the membranes. 
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Figure 3.9: Immunochemical detection of FtsH(x)-GFP recombinant proteins.  

(A) Coomassie stained gel of membrane proteins from SynFtsH(1-4)GFPcam mutants. 

(B) Immunoblotting of the protein samples with antibodies specific to GFP (αGFP), 

all FtsH (αFtsH Global) and each FtsH homologue (αFtsH 1-4). (This experiment was 

performed using cells recovered from cryo-stocks. Cells in this experiment were not 

examined by fluorescence microscopy) 

 

Examination of the band intensities in Fig. 3.9 suggested that the FtsH1-GST protein 

was expressed at a comparable level to untagged FtsH1 in both wild type and in the 

other three FtsH-GFP mutants. On the other hand, the FtsH2 level in 



106 
 

SynFtsH1GFPcam was much reduced. The expression level of FtsH2-GFP was lower 

than FtsH2 in wild type. However, the expression level of the other three FtsH 

homologues in SynFtsH2GFPcam was fairly similar to the equivalent levels in 

wild-type, given the limitations of immunoblotting to estimate protein levels. The 

expression level of truncated FtsH3-GFP was about half of the wild-type level, 

surprisingly, the FtsH2 in this strain was barely detectable. The accumulation of FtsH1 

and FtsH4 in SynFtsH3GFPcam was similar to that of the wild-type. Finally, the 

expression level of FtsH4-GFP was much lower than wild-type, and in addition, the 

level of FtsH2 was also dramatically reduced in this mutant. The level of FtsH1 in 

SynFtsH4GFPcam also appeared to be slightly reduced, and the presence of FtsH3 

seemed to be at the normal level. In contrast to FtsH2, whose abundance was reduced 

dramatically by modification of other FtsH homologues, the level of FtsH4 was 

relatively insensitive. 

 

Although immunoblotting as a semi-quantitative method is not an ideal way to clarify 

the accurate stoichiometry between FtsH homologues, it can provided hints as to the 

abundance of the target proteins. Among the four FtsH homologues subjected to 

C-terminal GFP tagging, the level of FtsH1 seemed to be the least affected one by its 

own tag, and was maintained to the wild-type level in the other three mutants. Given 

that the signal of FtsH1-GFP was the weakest using the anti-GFP antibody and 

FtsH1-GFP could not be detected by anti-FtsH (Global) antibody, this analysis would 

suggest that the abundance of FtsH1 is naturally low, much lower than FtsH2 and 

FtsH4. 

 

3.2.4 Phenotype analysis of SynFtsHxGFPcam mutants 

In order to test the physiological influence of the genetic modification in the mutants, 

a growth experiment under various light stresses was performed, where each mutant 

was streaked and tested on BG11 plates +/- glucose, under high, medium and low 

light conditions (Table 2.2). Plates were incubated at 30 
o
C for approx. 4-7 days. 
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Figure 3.10: Growth experiment of SynFtsHxGFPcam mutants.  

WT-G: the wild-type strain; SynFtsHxGFPcam: mutant stratins expressing 

FtsHx-GFP fusion protein, where x represents the specific homologue. Cells were 

tested for growth under high (A and B) amd medium (C and D) light conditions on 

BG11 plates supplemented with 5 mM glucose (A and C) and plain BG11 (B and D). 

 

The growth experiment demonstrated that addition of a GFP tag to the C-terminus of 

FtsH did not impair the major function of FtsH1, FtsH2 and FtsH3.The function and 

growth impact of FtsH4 remain to be revealed, hence the influence of the C-terminal 

GFP fusion to FtsH4 is unclear. It is worth noting that the mutant expressing 

FtsH3-GFP fusion protein is more resistant to light stress than SynFtsH3GSTcam (see 

section 3.1.3), indicating a clear difference in the physiological impact of the two tags, 

even though they are of similar mass. This difference is very likely related to the 

fragmentation of FtsH3-GFP. 



108 
 

3.2.5 Localisation of FtsH complexes in situ 

Confocal fluorescence microscopy is a powerful technique to visualise the localisation 

of proteins in situ. The basic principle of this method is to detect the fluorescence 

from the target proteins (in this case, the FtsH-GFP fusion proteins) and fluorescent 

signals from a marker, the localisation of which is already characterised (in 

cyanobacteria, chlorophyll fluorescence from the thylakoid membranes is 

conveniently used), then plot and analyse the correlation of the two signals. 

 

SynFtsHxGFPcam mutants were grown in liquid BG11 medium for 4-7 days and then 

examined by fluorescence microscopy (see section 2.7.8) in collaboration with Prof. 

Conrad Mullineaux (Queen Mary University of London). 

 

 

Figure 3.11: Wild type cells (WT-G) under fluorescence microscopy.  

(A) Image under visible light. (B) GFP fluorescence emission at wavelengths 500-527 

nm. (C) Chlorophyll a fluorescence emission at a wavelength of 665 nm. (D) Overlay 

image of B and C. 
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The WT-G cells were screened as the background control. Under the microscope, 

Synechocystis cells showed a “blood cell” appearance, as the fluorescence of 

chlorophyll marks the boundary of thylakoid membranes and the cytoplasmic 

membranes localised around the outer surface of the thylakoid membranes were not 

visible in the scanning channels. Although some green signals unrelated to GFP were 

detected during the imaging, the gain was adjusted so that the signal did not show in 

the final image (Figure 3.11 D). Further analysis of the SynFtsHxGFPcam mutants 

were carried out under the same condition, and GFP signals were detected in all four 

mutants, however, the accumulation level of FtsH2-GFP and FtsH4-GFP was much 

higher than that of FtsH1-GFP and FtsH3-GFP (Figure 3.12). 

 

 
Figure 3.12: ftsH::gfp mutants under fluorescence microscopy.  

Cells of SynFtsH1GFPcam (A); SynFtsH2GFPcam (B); SynFtsH3GFPcam (C) and 

SynFtsH4GFPcam (D) were imaged and presented in the figure. White scale bar = 2 

µm. All images are the results of green (500-527 nm) and red (665 nm) channel 

overlay. 
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Signals from chlorophyll a outlined the location of thylakoid membranes in situ, 

which helps determine the localisation of the GFP-tagged FtsH homologues. 

FtsH2-GFP (Figure 3.12 B) and FtsH4-GFP (Figure 3.12 D) were expressed at high 

level, and clearly located in the thylakoid membrane. Although both proteins were 

abundant in the thylakoid membrane, the distribution pattern of FtsH2-GFP was 

relatively spread out (Figure 3.12 B). FtsH4-GFP fusion proteins, however, seemed to 

distribute more heterogeneously, the fluorescent signals clustered into bright spots, or 

straps on the thylakoid membrane, leaving empty area not covered (Figure 3.12 D). 

Accumulation of FtsH1-GFP (Figure 3.12 A) and FtsH3-GFP (Figure 3.12 C) was less, 

and seemed to be present mainly outside the thylakoid membrane, possibly in the 

cytoplasmic membrane. 

 

3.2.6 Localisation of FtsH via immunoblotting analysis 

Fluorescence microscopy is a powerful tool to visualise target proteins in real-time, 

however, extensive image processing is required when the expression level of the 

protein target is low. To further clarify the localisation of each FtsH homologue, a 

biochemical analysis was performed to investigate the presence of FtsH in thylakoid 

and cytoplasmic membranes. Two-phase partitioning procedure enables separation of 

proteins residing in the thylakoid and cytoplasmic membranes. Probing such 

preparations using FtsH-specific antibodies raised in this work (see section 2.7.4.1), 

will provide independent evidence on the location of each homologue. The separated 

thylakoid and cytoplasmic membrane samples were kindly provided by Dr Myles 

Barker. 
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Figure 3.13: Localisation of FtsH via immunoblotting analysis.  

(A) Coomassie stained gel of thylakoid (TM) and cytoplasmic membranes (CM). (B) 

Immunoblotting with a global FtsH antibody (αFtsH) and antibodies specific to FtsH2 

(αFtsH2), 3(αFtsH3) and 4 (αFtsH4). Marker for TM (αCP43) and CM (αSbtA and 

αNrtA) (Zhang et al. 2004). 

 

The separated membrane protein fractions were probed with control antibodies which 

are specific to thylakoid (CP43) or cytoplasmic (SbtA and NrtA) membrane proteins 

(Zhang et al. 2004). The clean signals from the control antibodies confirmed good 

separation of the two subpopulations of membrane proteins. Signals from 

immunoblotting suggested that FtsH2 and FtsH4 are exclusively present in the 

thylakoid membrane membrane, which is consistent with the data from fluorescence 

microscopy, and that FtsH3 is present in both thylakoid and cytoplasmic membranes. 

Unfortunately, time pressure and the lack of cytoplasmic and thylakoid membrane 

fractions prevented the location of FtsH1 subunit to be determined.  

 

3.3 Structure of an FtsH2GST/FtsH3 complex 

A Synechocystis mutant strain, namely SynFtsH2GST, made in a previous study by Dr 

M. Barker (Barker et al. 2006), was used to study the structure of the FtsH2 complex 
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in this work. Similar to the SynFtsH2GSTery mutant made in this study, 

SynFtsH2GST carries a GST-Strep II tag fused to the C-terminal of FtsH2, with the 

difference being that a tobacco etch virus (TEV) protease cleavage site was also 

included in the linker (see Appendix). The phenotype of the strain was characterised 

and found to be consistent with the data collected from SynFtsH2GSTery (see section 

3.1.3 and 3.3.1). Isolated FtsH2GST/FtsH3 complexes were firstly analysed in terms 

of subunit composition (see section 3.3.2) and the structure then analysed by electron 

microscopy (see section 3.3.3). 

 

3.3.1 Characterisation of the SynFtsH2GST mutant 

The SynFtsH2GST mutant was characterised along with the WT-G control and an 

FtsH2 insertion mutant, SynFtsH2GENT (Boehm et al. 2012). Phenotype 

characterisation was performed to test the growth ability of SynFtsH2GST under light 

stress (Figure 3.14 A) and osmotic stress (Figure 3.14 C). In addition, the PSII activity 

(Figure 3.14 B) and expression level of each FtsH homologue (Figure 3.14 D) were 

also examined. Growth assays, isolation and protein analysis of the FtsH2-GST/FtsH3 

complex was done by myself and Marko Boehm, electron microscopy was done by Dr 

Jon Nield and photoinhibition assays by Prof. Josef Komenda. 
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Figure 3.14: SynFtsH2GST expressing FtsH2-GST behaves like WT-G.  

(A) Growth of WT-G, SynFtsHGENT (lacking FtsH2), and SynFtsH2GST on BG-11 

plates under low (5 μE m
−2

 s
−1

) and high light (100 μE m
−2

 s
−1

). (B) PSII repair 

activity of WT-G, SynFtsH2GST, and SynFtsH2GENT assessed by measuring PSII 

oxygen-evolving activity in cells exposed to 300 μE m
−2

 s
−1

 white light at 29 °C with 

or without lincomycin (cyan and red columns, respectively), a protein synthesis 

inhibitor; initial rates of oxygen evolution were 731 ± 46, 802 ± 60, and 545 ± 43 

μmol O2 mg chlorophyll
−1

 h
−1

 for WT-G, SynFtsH2GST, and SynFtsH2GENT, 

respectively (means of two to three measurements for each of the two biological 

replicates ± se). (C) Growth of WT-G, SynFtsHGENT, and SynFtsH2GST in BG-11 in 

either the presence or absence of 300 mM maltose. (D) Immunoblotting analysis of 

the different strains using antibodies specific for all FtsH subunits (global FtsH), GST, 

and each of the FtsH subunits. PsaD was used a loading control. Protein samples were 

separated by SDS-PAGE using 8 % (w/v) polyacrylamide gels lacking urea. 

 

The growth experiments showed that the phenotype of SynFtsHGST mutant was 

comparable to wild-type strain (Figure 3.14 A and C), implicating the FtsH-GST 

fusion protein retained PSII repair function (Nixon et al. 2005), and regulation to 

osmotic stress. The PSII repair analysis provided quantitative data showing that 

SynFtsH2GST was comparable to the wild-type. Immunoblotting data showed that the 
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FtsH2-GST fusion protein was expressed at similar level to that of wild-type and no 

cleavage of the fusion product was found. Besides, the expression levels of FtsH1, 

FtsH3 and FtsH4 were unaffected in the SynFtsH2GST mutant (Figure 3.14). In 

contrast loss of FtsH2 in the SynFtsH2GENT mutant led to a significant reduction in 

the level of FtsH3 (Figure 3.14). 

 

3.3.2 Isolation of the FtsH2-GST/FtsH3 complexes 

The GST-tagged FtsH2 was isolated from SynFtsHGST cells via glutathione-agarose 

resin and eluted with reduced glutathione. The obtained sample was then analysed by 

SDS-PAGE, followed by Coomassie Blue staining. Consistently, FtsH3 was 

co-purified as one of the two major bands in the eluate (Figure 3.15 A and C). 

Immunoblotting with antibodies specific to FtsH2, GST and Strep II tag (Figure 3.15 

B and C) showed that the FtsH2-GST fusion protein migrated as a single band at ~ 

100 kDa on the gel, no truncated product from the fusion protein was detected. Some 

minor bands were detected via silver staining, one of which was shown using specific 

antibodies to be prohibitin (Phb1) (Figure 3.15 B and C).  
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Figure 3.15: Affinity purification of FtsH2-GST.  

(A) Detergent-solubilised thylakoid membranes from SynFtsH2GST before 

chromatography (Pre), the extract after binding to the glutathione resin (Post), the 

wash fraction just before elution (Wash) and the fraction eluted by glutathione 

(Elution) were separated by SDS-PAGE. The positions of the FtsH2-GST and FtsH3 

proteins are indicated by arrowheads. (B) Analysis of column fractions by 

immunoblotting with antibodies specific for the Strep II tag (αStrep II), D1 (αD1) and 

Prohibitin (αPhb1). 100 % Pre corresponds to 1 μg Chl a. (C) Analysis of purified 

sample by Coomassie and silver staining and by immunoblotting with antibodies 

specific for Prohibitin (Phb1), GST, E. coli FtsH, FtsH2 and FtsH3.  

 

3.3.3 EM structure of the FtsH2-GST/FtsH3 complex 

The FtsH2-GST/FtsH3 complexes isolated via affinity chromatography were sent for 

single particle analysis using negative stain EM (collaboration with Dr J. Nield). The 

final structure was solved by analysing 263 classes comprising 2964 particles, and 

then fitted with the crystal structure of the cytosolic region of FtsH from T. 

thermophilus (Suno et al. 2006) and GST to localise the position of tags. The resulting 

3-D structure unveiled a particle that has a diameter of ~ 120 Å, of which 3 GST tags 

were identified arranged in an alternating fashion. These data provided evidence that 

the isolated FtsH2-GST complex was composed of three FtsH2-GST subunits and 

three FtsH3 subunits alternately arranged in a hexameric complex (Figure 3.16). 
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Figure 3.16: Three-Dimensional Modeling of the GST-Tagged FtsH2/FtsH3 

complex. 

An isomesh rendered molecular envelope, contoured with a threshold of 2.5 σ for the 

final calculated asymmetric three-dimensional map, is shown in white. The modeling 

in of the crystallography-derived hexameric soluble fragment of apoFtsH from T. 

maritima (3KDS.pdb) was done by visual inspection with atoms colored as a spectral 

rainbow from the N terminus (blue) to the C terminus (red). (A) A 5-nm-thick cross 

section viewed from the C-terminal PDs of 3KDS.pdb downwards, revealing its 

hexameric nature. (B) A 4-nm-thick cross section, viewed from the GST tags upwards, 

toward the C-terminal domains of the hexameric biological assembly of 3KDS.pdb. 

(C) A 5-nm-thick cross section, viewed from the side; the best fit for the six FtsH 

protomers is shown with the N-terminal AAA+ domain uppermost. (D) Four regions 

shown include an N-terminal cap, whose volume is calculated to be ~36 kD 

(assuming 0.844 Å3 per D at 2.5 σ), a central core of 360 kD, a C-terminal bottom of 

30 kD, and three smaller outlying domains of 18 kD. In (B) to (D), these outlying 

domains, closest to the C-terminally orientated central core 3KDS.pdb file, are 

assigned to the GST tag (1GTA.pdb). Three such domains are observed, even though 

no threefold symmetry operators were applied during angular reconstitution. The 

maximum diameter of the complex was observed to be 120 Å. Bar = 25 Å. 
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3.4 Discussion 

3.4.1 Composition of FtsH complexes in Synechocystis 

Our data support the presence of FtsH1/FtsH3, FtsH2/FtsH3 and FtsH4 complexes in 

Synechocystis sp. PCC 6803. Phylogenetic analysis showed that both FtsH1 and 

FtsH2 are grouped with the Type B FtsH proteases from A. thaliana that interact with 

Type A isomers, and that FtsH3 is the only candidate sharing close phylogeny with 

Type A FtsH (Sakamoto et al. 2003). Therefore the hetero-complexes identified in 

Synechocystis might share close structural similarities with their counterparts in 

chloroplasts. 

 

AFG3L2, one of the two m-AAA protease subunits in human is not only capable of 

forming hetero-complexes with paraplegin, but can also self-assemble into 

homo-complexes (Koppen et al. 2007). Therefore, besides the presence of 

FtsH1/FtsH3 and FtsH2/FtsH3 hetero-complexes, it remains possible that some FtsH1, 

FtsH2 and FtsH3 homo-complexes might accumulate under certain conditions. FtsH2 

is so far the best studied FtsH homologue in Synechocystis and the EM structure of an 

FtsH2-GST/FtsH3 complex was determined in this work (see section 3.3.3). The 

structure was obtained by averaging nearly 3000 individual complexes, isolated via 

affinity purification of the FtsH2-GST subunits, and the resulting structure clearly 

showed three FtsH2 subunits arranged in an alternating fashion in each complex (see 

section 3.3.3). These data indicate that there is only one dominant species of 

FtsH2-GST/FtsH3 complex in the sample, with a strict alternating arrangement of 

subunits. If the arrangement of FtsH2-GST and FtsH3 subunits was random, the 

averaging procedure used in the image reconstitution would have led to a GST “ring” 

at the bottom of the complex, rather than three defined additional densities. These data 

also do not support the presence of FtsH2-GST homo-complexes, at least under the 

growth conditions used to grow the cyanobacterial strain. Currently, the structural data 

of the remaining FtsH complexes are not yet available, however, it seems unlikely that 

FtsH1 and FtsH3 form homo-complexes. Consistent with formation of an 
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FtsH2/FtsH3 heterocomplex, disruption of ftsH2 resulted in the dramatic reduction in 

the amount of FtsH3 in the mutant cells lacking FtsH2 (Figure 3.14D). A more 

in-depth study revealed that the reduction of FtsH3 was due to enhanced degradation 

(Boehm et al. 2012), which leads to the conclusion that the presence of FtsH3 alone is 

unstable in the membranes and is prone to proteolytic degradation. Similarly, 

reduction of FtsH3 level using an inducible plasmid vector system also impaired 

accumulation of FtsH2 when the expression of FtsH3 was suppressed (Boehm et al. 

2012), suggesting that losing either type of the subunits leads to extensive degradation 

of the other one. On that basis, FtsH1, which shares close similarities with FtsH2, is 

unlikely to accumulate without FtsH3. 

 

3.4.2 Membrane targeting system 

In vitro studies of the integration of thylakoid FtsH from A. thaliana have revealed 

that the insertion of FtsH5, a Type A FtsH subunit, is via the Sec pathway and NTP 

dependent, whereas the integration of FtsH2, a Type B protease, is via the Tat pathway 

and requiring a proton gradient across the membrane (Rodrigues et al. 2011). The 

striking difference is thought to be the result of variations in the N-terminal sequences 

of the Type A and Type B subfamilies. In particular, the N-terminus of Type B FtsH 

exclusively features a twin arginine motif just before the first transmembrane helix, 

which is a sign of Tat-directed signal peptide. Moreover, both Type A and Type B 

FtsH contain an A-X-A motif (where X is any amino acid), the cleavage site for the 

thylakoidal processing peptidase (TPP), immediately after the first transmembrane 

helix, suggesting that the mature proteins will have the first transmembrane region 

removed, leaving only one transmembrane anchor and a lumenal-facing small domain 

(Rodrigues et al. 2011). However the N-terminal sequence of chloroplast FtsH 

subunits present in the final FtsH complex has not yet been determined, which leaves 

open the possibility that the observed cleavage of imported FtsH subunits was 

non-physiological.  We examined the N-terminal sequence of the four FtsH 

homologues in Synechocystis (see section 3.1.5) by N-terminal sequencing. Our data 
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suggested that the N-terminus of FtsH2 remains intact, and only the first 

formylmethionine of FtsH3 and FtsH4 is removed in the mature FtsH proteases in 

vivo.  

 

It is surprising that FtsH4, which also features the twin arginine motif and an A-P-A 

cleavage site around the first transmembrane domain, similar to that of Type B FtsH 

in A. thaliana, retained almost its full N-terminal sequence. However, removal of the 

signal peptide is not obligatory for Tat-dependent thylakoid transport (Molik et al. 

2001). Cleavage of the TAT signal peptide requires charged or polar residuals flanking 

the A-X-A cleavage site, possibly to enhance the lumenal exposure to TPP or release 

the protein from the Tat translocon (Frielingsdorf and Klosgen 2007). Further 

bioinformatic analysis on the N-terminal region of FtsH4 suggested that in contrast to 

chloroplastic FtsH, the predicted peptidase cleavage site in FtsH4 is located in the first 

transmembrane helix, which might be embedded in the lipid bilayer and not accessible 

to TPP. Nevertheless, the presence of the twin arginine motif in FtsH4 implies that 

insertion of FtsH4 is likely to be via the Tat pathway, which integrates fully folded 

FtsH4 but without removing the signal peptide. 

 

FtsH3 might be the only FtsH homologue localised in both thylakoid and cytoplasmic 

membranes (see section 3.2.6). The N-terminal sequence analysis of FtsH3 in 

FtsH1-GST/FtsH3 complexes showed no difference to that in FtsH2-GST/FtsH3 

complexes, indicating that specific N-terminal cleavage of FtsH3 does not control the 

integration of FtsH3 into either of the complexes. Considering that FtsH3 is the only 

Type A-like FtsH homologue in Synechocystis (Sakamoto et al. 2003), the Sec 

pathway is most likely to be responsible for the integration of FtsH3. Unlike the Tat 

pathway, which transports both folded and unfolded substrates, Sec pathway 

transports unfolded proteins through a SecYE channel into the membrane which is 

unable to transport folded domains (Henry et al. 1997). Studies on chimeric Type A 
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and Type B chloroplast-targeted FtsH proteins that have swapped signal peptides 

showed that the Sec pathway is unable to insert Type B FtsH, suggesting the domains 

of the fusion protein were folded in the stroma prior to membrane integration, 

whereas the folding process of Type A FtsH occur after integration (Rodrigues et al. 

2011).  

 

Out of the three FtsH homologues that have been N-terminally sequenced, FtsH2 is 

the only one to have an intact sequence. Although related to the Type B FtsH subunits 

in chloroplasts, no twin arginine motif was found in the TM domain, therefore, the 

integration of FtsH2 is unlikely to be Tat dependent. The TM domain of FtsH 

homologues in Synechocystis is the least conserved region over the whole sequence, 

hence the possibility of a Sec dependent membrane integration mechanism cannot be 

ruled out for FtsH2. On the other hand, the N-terminal sequence of FtsH2 only 

contains 4 residues before the first transmembrane helix. Therefore, FtsH2 might 

simply spontaneously insert into the thylakoid membrane without using Sec or Tat 

translocons, similar to that of PsbW (Kim et al. 1998). 

 

No data were obtained from N-terminal analysis of FtsH1, possibly due to N-terminal 

blockage during gel electrophoresis. However, it is still noteworthy that the 

N-terminal sequence of FtsH1 is much longer than any other homologues. There are 

19 residues before the start of the first alpha-helix and 116 residues between the two 

transmembrane helices, which makes it the largest TM domain among the four. 

Although further analysis is required to unambiguously clarify the localisation of 

FtsH1, the current data suggest that FtsH1 is exclusively present in or close to the 

cytoplasmic membrane. The long N-terminal sequence might contain specific 

membrane targeting signals, however, it is unlikely to utilise Tat pathway as the twin 

arginine motif is missing. 
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3.4.3 Localisation of FtsH proteases in Synechocystis 

The localisation of all four FtsH homologues in Synechocystis was investigated via 

both fluorescence microscopy (see section 3.2.5) and immunoblotting (see section 

3.2.6). Benefiting from the high abundance of FtsH2 and FtsH4, it was clear that the 

two homologues are present on the thylakoid membranes, and further immunoblotting 

assays also showed that FtsH2 and FtsH4 are exclusively present in the thylakoid 

membrane fraction. The localisation of FtsH1 and FtsH3 was less obvious by 

fluorescence microscopy, this is due to the lower expression level of FtsH1 (see 

section 3.2.3) and low expression and instability of the FtsH3-GFP fusion (see Figure 

3.9). Nevertheless, the images from fluorescence microscopy showed weak signals 

from the cytoplasmic membrane area. The immunoblotting assay further confirmed 

that FtsH3 is present in both thylakoid and cytoplasmic membranes; unfortunately, 

blotting data could not be obtained for FtsH1. In parallel work, strains of 

Synechococcus elongatus PCC 7942 and Synechocystis PCC 6803 expressing 

C-terminal GFP-tagged FtsH derivatives also yielded similar fluorescence data to that 

shown here (unpublished data from Prof. C. Mullineaux group). Therefore, 

collectively all the data indicate that the FtsH complexes occupy distinct regions of 

the cyanobacterial cell: FtsH2 and FtsH4 complexes are found in the thylakoid 

membranes, FtsH3 is localised to  both thylakoid and cytoplasmic membranes and, 

given the available data, FtsH1 is located in or close to the  cytoplasmic membrane. 

 

The abundance of FtsH3-GFP fusion protein in SynFtsH3GFPcam mutants was 

relatively low compared to amount of FtsH3 in WT-G (Figure 3.8). However, FtsH3 

from WT-G, which is slightly smaller than the other three homologues, ran as a lower 

band on appropriate SDS-PAGE gels, is relatively abundant (Figure 3.13 B and Figure 

3.14 D). Hence the fusion of a GFP tag might have disturbed the stability of FtsH3 

and enhanced degradation (Boehm et al. 2012). FtsH3 was found to interact with both 

FtsH1 and FtsH2 (Figure 3.4). However, FtsH3 predominantly interacts with FtsH2 in 
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WT-G as FtsH3 only accumulated to 10 % of the wild-type level in an FtsH2 

defective mutant (Boehm et al. 2012). This is also in line with a comparison of the 

immunodetectable levels of FtsH1 and FtsH2 in Figure 3.9B. The low level of GFP 

signal detected in SynFtsH3GSTcam was mostly spread towards the cytoplasmic 

membrane region and little was found in the thylakoid membrane where FtsH2/FtsH3 

complexes will be located (Figure 3.12 B and C). One possible explanation is that the 

non-fluorescent cleaved FtsH3-GFP protein is mainly present in the FtsH2/FtsH3 

complexes in the thylakoid membrane, and that the residual FtsH3-GFP interacts more 

strongly with FtsH1 than FtsH3 and so is preferentially located with FtsH1 in the 

cytoplasmic membrane. 

 

3.4.4 Structure of hetero-oligomeric FtsH complexes 

Although crystal structures for the cytosolic domains of bacterial FtsH proteases have 

been determined, there is much less structural information on the intact FtsH complex. 

Indeed the widely assumed hexameric structure for FtsH is dependent on the analysis 

of soluble fragments not the intact complex. Our work on the structure of the native 

FtsH2-GST/FtsH3 complex from Synechocystis therefore provides important new 

information on the structure of an intact hetero-oligomeric FtsH complex. Importantly 

our structural model suggests that the intact complex is indeed hexameric. 

Additionally, the subunit arrangement within the hetero-complex, elucidated by 

localising the additional GST density on the FtsH2 subunits, showed a clear 

alternating arrangement of FtsH2-GST and FtsH3 protomers. Given the 

co-purification of FtsH1 and FtsH3 and the close phylogenetic relationship between 

FtsH1 and FtsH2, it seems likely that the subunits within the FtsH1/FtsH3 complex 

might also alternate.  

 

During the course of this thesis, a cryo-EM structure of the Yta10/Yta12 complex, a 

mitochondrial FtsH complex from yeast, was determined at ~ 12 Ǻ resolution (Lee et 

al. 2011). The structure of the Yta10/12 complex also exhibited a hexameric structure 
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of similar size to the model present here. Although the EM data was of insufficient 

resolution to differentiate between the Yta10 and Yta12 subunits, a computational 

analysis on the subunit arrangement of Yta10/Yta12 complexes also suggested 

alternating protomers (Lee et al. 2011). Interestingly, a ~ 13 Ǻ gap was identified 

between the trans-membrane domain and the substrate binding site in the soluble 

fragment of FtsH, which is equivalent to the length of a polypeptide chain consisting 

of ~ 20 residues (Lee et al. 2011). This finding is consistent with previous work 

showing that the length of the N-terminal tail of D1 is crucial for FtsH-mediated 

degradation and that FtsH-mediated degradation of D1 is likely to be initiated at the 

N-terminus (Komenda et al. 2007b).  
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Chapter 4: Functional characterisation of FtsH proteases 

in vivo and in vitro 

4.1 Functional analysis of FtsH-deficient mutants 

Early mutagenesis experiments revealed that the ftsH1 and ftsH3 genes of 

Synechocystis 6803 are required for cell viability whereas ftsH2 and ftsH4 are 

non-essential (Mann et al. 2000). More recent studies have confirmed that FtsH2 is 

involved in removal of photodamaged D1 protein (Silva et al. 2003; Komenda et al. 

2006b) and osmoregulation (Stirnberg et al. 2007). On the other hand, the function of 

FtsH4 is not yet known as disruption of this gene did not yield a distinctive phenotype 

under the conditions tested (Mann et al. 2000). It has been shown that in the 

chloroplasts of A. thaliana, PSII repair is maintained by multiple types of FtsH 

complexes composed of different isomers of Type A and Type B proteases (Yu et al. 

2005). Among the four homologues in A. thaliana, FtsH1 and FtsH8 appear to 

function as minor isomers, disruption of which results in no obvious phenotype 

(Sakamoto et al. 2003). These results therefore raised the speculation that FtsH4 in 

Synechocystis might have functional overlap with other FtsH complexes. To explore 

the potential function of FtsH4, a double mutant deficient in both FtsH2 and FtsH4 

was made (see section 4.1.2-4.1.3) and characterised in this work (see section 

4.1.4-4.1.5). In addition, a bioinformatic analysis was performed to identify suitable 

residues for mutagenesis (see section 4.1.1 and section 4.2). 

 

4.1.1 Defining the functional domains of each cyanobacterial FtsH. 

Bioinformatic analysis is a great tool to identify conserved amino-acid residues and 

motifs between homologous proteins. Benefiting from the previous experimental data, 

especially the crystal structures of the cytosolic domains of several bacterial FtsHs, a 

few conserved motifs in FtsH have been defined (Suno et al. 2006). After aligning 

FtsH homologues from both Synechocystis 6803 and T. elongatus with that of T. 
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thermophilus, we were able to locate the conserved alanine (A144, designation 

according to the sequence of FtsH from T. thermophilus and hereafter) and glycine 

(G399) at each end of the AAA+ domain (Figure 4.1). The transmembrane and 

protease domains are less conserved due to the diverse physiological functions; 

therefore, the actual boundary of these two domains might vary among individuals. 

The conserved motifs that define the FtsH protease family were aligned (Figure 4.1, 

blue boxes), including the classic Walker A, Walker B and second region of homology 

(SRH) motifs responsible for nucleotide hydrolysis, and the zinc ion-binding motif 

(ZnBD) that enables metalloproteolytic activity. Notably, the FtsH family also 

features a conserved @XG (@ represents hydrophobic residue, X represents any 

residue) sequence in the AAA+ domain, in this case Phe-Val-Gly. According to the 

crystal structures of the T. maritima and T. thermophilus FtsH hexameric complexes, 

this motif appears aligned around the entrance of the central pore, and is believed to 

be responsible for initial substrate binding and translocation through the pore to the 

protease catalytic site (Bieniossek et al. 2006). Moreover, unlike other known zincins, 

the third ligand to the zinc ion in FtsH is an aspartic acid, instead of glutamic acid, in 

the protease domain (Suno et al. 2006). 
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Figure 4.1: Alignment of the cyanobacterial FtsH homologues.  

Sequences of FtsH homologues in cyanobacteria Synechocystis sp. PCC 6803 

(SynFtsH1-4) and T. elongatus (T.e-FtsH1-4) were aligned against that of T. 

thermophilus. The motifs that define the FtsH protease family are labelled in blue 

boxes, and residues that will be subject to site-directed mutagenesis in this work are 

marked in red. Please note that only selected portions of FtsH are shown. 

 

4.1.2 Construction of deletion strains 

Knockout mutants are useful tools to study the function of target genes, and moreover, 

they can be used as recipient strains for functional complementation studies (Koppen 

et al. 2007; Lee et al. 2011; Zhang et al. 2010). It has already been shown that FtsH1 

and FtsH3 are essential to cell viability (Mann et al. 2000), therefore, ftsH2, ftsH4 and 

an ftsH2/4 double null mutant were generated in this study. 

 

Although a few FtsH2 and FtsH4 insertion-disruption mutants have been made and 

characterised in previous work (Boehm et al. 2012; Mann et al. 2000), alternative 

mutants were required in this work as the ftsH knockout mutants were also to be used 
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as recipient strains for site-directed mutagenesis (see section 4.2). The locations for 

site-directed mutagenesis were identified in sequence alignments (Figure 4.1). To help 

improve the efficiency of incorporation of mutations into the genome via homologous 

recombination, part of the ftsH open reading frame (ORF) containing the sites of 

interest was replaced with an antibiotic-resistance cassette (Figure 4.2). 

 

 

Figure 4.2: Construction of the FtsH2 and FtsH4 knockout vectors.  

Schematic representations of the knockout construct design of FtsH2 (A) and FtsH4 

(B), and the plasmid maps of the two knockout vectors (C). The wild-type DNA 

sequence of ftsH2 between the first SmaI and the last EcoNI sites was replaced with a 

kanamycin-resistance cassette (A), whereas only the region between the two SmaI 

sites of ftsH4 was replaced with a kanamycin-resistance cassette (B). The locations of 

the sequences encoding candidate residues to be mutated are indicated. The size of the 

wild-type and knockout constructs are labelled on the right (A and B). 

 

To create the ftsH2 deletion construct, the entire ftsH2 ORF was amplified from 

wild-type genomic DNA of Synechocystis, using primer set FtsH2-F and FtsH2-R1 

(Table 2.5). The resulting PCR product was then cloned into pGEM-T Easy vector to 
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create pFtsH2WT. To replace the region that encodes the candidate residues listed in 

Table 4.2, the parental vector pFtsH2WT was digested with SmaI and EcoNI, and the 

resulting fragments were then separated on an agarose gel. The large fragment 

carrying the 5’ and 3’ ends of ftsH2 was gel purified and blunt-ended using Klenow 

fragment, and then ligated with a kanamycin-resistance cassette to create the final 

transformation vector pFtsH2-Kan (Figure 4.2 C). 

 

Similar to the construction of the ftsH2 knockout vector, the full sequence of 

wild-type ftsH4 was amplified using primer set FtsH4-F and FtsH4-R1 (Table 2.5), 

and then cloned into pGEM-T Easy to create pFtsH4WT. Unlike the ftsH2 construct, 

which possesses suitable restriction sites to enable the region encoding all 7 candidate 

residues to be removed via endonuclease digestion, the ftsH4 ORF did not contain 

desirable restriction sites. Therefore, only a small fragment between the two SmaI 

sites was removed from pFtsHWT via digestion. A kanamycin-resistance cassette was 

then ligated with the backbone fragment of pFtsHWT purified from agarose gel, to 

create pFtsH4-KanA (Figure 4.2 C). 

 

4.1.3 Genotyping of the ftsH2 and ftsH4 deletion mutants 

Synechocystis WT-G cells were transformed with pFtsH2-Kan and pFtsH4-KanA 

vectors and selected on BG11 plates supplemented with glucose, kanamycin and 

DCMU. In addition to wild-type cells, an ftsH2 insertion mutant namely Δ0228-Cam 

(Komenda et al. 2006a) was also used as a recipient strain for the pFtsH4-KanA 

vector to create a double ftsH2/ftsH4 null mutant. The double mutant was selected for 

resistance to both chloramphenicol and kanamycin. All three mutants were grown 

under low-light conditions and restreaked weekly until segregation was complete as 

judged by PCR. 
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Figure 4.3: Genotyping of the ftsH2 and ftsH4 deletion mutants.  

Mutated ftsH genes were amplified via PCR and analysed on agarose gels to show 

segregation of the mutant genotype (A, B and C). The PCR fragments amplified from 

ftsH2 cells were further digested with HindIII (A, right panel) to confirm integration 

of the kanamycin resistance cassette. (D) A schematic representation of the disruption 

construction of ftsH2 in Δ0228-Cam. 

 

The genomic DNA of the newly constructed mutants, namely ΔftsH2, ΔftsH4 and 

ΔftsH2ΔftsH4, was extracted via phenol-chloroform extraction and the mutated ORFs 

were amplified with primer pair FtsH2-F/FtsH2-R1 and/or FtsH4-F/FtsH4-R1, 

respectively (Figure 4.3 A B and C). The ftsH4 construct is ~700 bp longer than the 

wild-type; the ftsH2 knockout construct, however, is almost the same size as the 

wild-type. Therefore a diagnostic restriction digest with HindIII, which exclusively 

cuts the kanamycin-resistance cassette (Figure 4.3 A), was performed (Figure 4.3 A, 

right panel). According to the PCR and digestion results, all three mutants, ΔftsH2, 

ΔftsH4 and ΔftsH2ΔftsH4 were either fully segregated or virtually fully segregated. 

The extra higher molecular mass bands observed in the WT samples might reflect the 
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production of larger DNA fragments due to non-optimised PCR conditions. 

 

4.1.4 Immunochemical detection of FtsH2 and FtsH4 in the deletion 

mutants 

In addition to the genotype analysis, immunochemical detection of FtsH2 and FtsH4 

was performed to provide direct and independent evidence to the knockout status of 

the target proteins. 

 

To prepare the protein samples for the assay, ~50 ml of ΔftsH2, ΔftsH4 and 

ΔftsH2ΔftsH4 cultures was harvested, and the crude membrane fraction was prepared 

(see section 2.7.1). The membrane proteins were then separated on 8 % SDS-PAGE 

gels (see section 2.7.3.2). After electrophoresis, the proteins were either stained with 

Coomassie Blue or transferred to a PVDF membrane for immunoblotting with 

specific antibodies. 
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Figure 4.4: Immunochemical detection of FtsH2 and FtsH4.  

(A) Coomassie stained gel of membrane protein extractions. (B) Immunoblotting of 

the protein samples with antibodies specific to all FtsH (αFtsH Global) and each FtsH 

homologue (αFtsH 1-4). Some weaker non-specific signals were detected with the 

FtsH2 antibody. 

 

The immunoblotting data showed lack of detectable FtsH2 and/or FtsH4 in the three 

deletion mutants. Interestingly, two additional faint protein bands were detected by 

anti-FtsH2 antibody exclusively in ΔftsH2 and ΔftsH2ΔftsH4 samples, the sizes of 

which are either bigger or smaller than the theoretical size of FtsH2. The identities of 

these bands are unclear, possibly non-specific detection of proteins that accumulate on 

the membrane when the function of FtsH2 is disrupted. Notably, the accumulation of 
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FtsH3 was dramatically reduced in the mutants lacking FtsH2 (Figure 4.4 B), which is 

consistent with previous work on another FtsH2 deficient mutant (Boehm et al. 2012). 

Because protein loading was not controlled in the experiment shown in Figure 4.4, 

care has to be taken drawing conclusions on relative abundance between mutants and 

WT-G. 

 

4.1.5 Phenotype analysis of the deletion strains 

Growth of the Synechocystis ΔftsH2, ΔftsH4 and ΔftsH2ΔftsH4 mutants was tested on 

BG11 plates or BG11 plates supplemented with 5 mM glucose under low, medium 

and high-light conditions. 
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Figure 4.5: Growth experiment of ftsH knock out mutants.  

Each plate carries 4 strains: WT-G: wild-type strain, ΔftsH2-Cam: FtsH2 null mutant, 

ΔftsH4: FtsH4 null mutant and the ΔftsH2ΔftsH4: FtsH2/FtsH4 double deletion 

mutant. Cells were tested for growth under high (A and B), medium (C and D) and 

low (E and F) light conditions on BG11 plates supplemented with 5 mM glucose (A, 

C and E) and plain BG11 plates (B, D and F). 

 

Similar to the ftsH insertion-disruption mutant characterised by Mann et al. (2000), 
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the ftsH4 null mutant displayed a WT-like phenotype (Figure 4.5 A) and the ftsH2 null 

mutant was more susceptible to light stress (Silva et al. 2003) (Figure 4.5 A). 

Interestingly, the double mutant was even more sensitive to light stress comparing to 

the ftsH2 single mutant (Figure 4.5 C), indicating FtsH4 could play a minor role in 

counteracting photoinhibition.  

 

4.2 Construction of FtsH site-directed mutants 

Previous studies on chloroplast, mitochondrial and bacterial FtsH proteases have 

identified conserved residues that have a  great impact on the correct function of the 

protease complex (Arlt et al. 1996; Karata et al. 1999; Suno et al. 2006; Zhang et al. 

2010). In this work, we took advantage of the available data to target seven 

Synechocystis residues in the AAA+ and PD domains for mutagenesis (Table 4.1 and 

Table 4.2), with the aim to generate protease inactive complexes to allow 

identification of potential substrates in pull-down assays. Six of the characterised 

residues were chosen to test for effects on protease activity or ATP-ase activity (Table 

4.1). The conserved residues at Walker A and Walker B motifs are essential for correct 

docking of ATP into the binding pocket of the AAA+ domain, whereas, the conserved 

“arginine finger” on the second region of homology (SRH) has been proposed to be 

essential to the hydrolysis of ATP (Suno et al., 2006). The remaining three residues 

located at the protease domain are the three ligands that coordinate the zinc ion at the 

proteaolytic site, some of which have been shown to be essential to the proteolytic 

activity (Karata et al., 1999; Zhang et al., 2010). In addition, a conserved cysteine 

residue found in the Walker B motif, and found in all cyanobacterial FtsH homologues, 

was mutated to serine to test for a potential role in redox-control of the enzyme 

(Mata-Cabana et al., 2007). Notably, the cysteine is unique to five of the eight 

cyanobacterial FtsH proteases covered in this study, only SynFtsH1, TheFtsH1 and 

TheFtsH4 have a second cysteine downstream of the HEXGH motif. Moreover, this 

cysteine is not universally conserved across the entire FtsH family; according to the 

phylogenetic analysis, most mitochondrial FtsH orthologues have a serine or alanine 
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instead. 

 

Table 4.1: List of candidate residues targeted for site-directed mutagenesis and 

the supporting references. 

 

FtsH2 of Synechocystis (SynFtsH2) was used as an example of alignment in this table, 

along with FtsH residues previous characterised in other organisms. Seven conserved 

residues essential to the function of each motif/domain were selected in this study 

(residues listed under SynFtsH2) and their counter parts in other organisms were also 

highlighted in red. 

  

4.2.1 Construction of site-directed mutagenesis transformation vectors 

In this study, only FtsH2, FtsH3 and FtsH4 from Synechocystis were targeted for 

site-directed mutagenesis (Table 4.2). This was due to the time limitation, and because 

the thylakoid FtsH proteases are more closely associated with photosynthesis, which 

is the focus of this research.  
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Table 4.2: List of the site-directed mutants chosen for construction in this work. 

  FtsH2 FtsH3 FtsH4 

Walker A K218A K207A K220A 

Walker B E272Q E261Q E274Q 

SRH R329A R318A R333A 

ZnBD (HEXGH) 
H433L H423L H438L 

E434Q E424Q E439Q 

ZnBD D511N D504N D515N 

Trx control C266S C255S C268S 

 

The construction of the site-directed mutagenesis vectors was similar to that of  the 

pFtsH(x)GSTery vectors, with the following changes: pGEMFtsH(x) plasmid vectors 

were used as the DNA template, instead of the wild-type genomic DNA, in the first 

overlap extension PCR with primer pairs FtsH(x)-F/FtsH(x)(R)-R and 

FtsH(x)(R)-F/FtsH(x)-R, where FtsH(x) represents the particular homologue and (R) 

represents the particular mutation. The PCR products from the first PCR reactions 

were gel extracted and used as the DNA templates in the second overlap extension 

PCR reaction with primer pairs FtsH(x)-F/FtsH(x)-R. The resulting PCR fragments 

were gel extracted and ligated into pGEM-T Easy vector after addition of an A 

overhang at the 3’ ends, to yield the intermediate vectors pGEMFtsH(x)(R). The 

sequence of the resulting vectors was then checked to ensure only the correct mutation 

was present in the vectors. 

 

To enable affinity purification of the mutated FtsH proteases, the gst tagging cassette 

from pGST-CamA was used to fuse a gst::strepII tag and a 

chloramphenicol-resistance cassette to the 3’ end of ftsH via the EcoRV and XbaI sites. 

The resulting transformation vectors, namely pFtsH(x)(R)GSTcam, were then 

sequenced over the ligation junctions to ensure no frame-shift occurred during the 

cloning process. 
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Figure 4.6: Construction of the FtsH mutagenesis vectors.  

(A) A schematic representation of the construction of the pGEMFtsH(x)(R) and 

pFtsH(x)(R)GSTcam vectors. FtsH(x) represents the particular FtsH homologue and 

(R) represents the particular mutation. (B) Purified PCR fragments from the overlap 

extension PCR reactions. Lane A is the fragment amplified with primer pair 

FtsH(x)-F/FtsH(x)(R)-R, lane B is resulting fragment of FtsH(x)(R)-F/FtsH(x)-R and 

lane C is the PCR product of FtsH(x)-F/FtsH(x)-R, using fragments from lane A and 

B as DNA templates. 
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4.2.2 Generation of tag-free protease inactive mutants of FtsH2 

A previous study on the var2 mutant of A. thaliana has shown that chloroplast FtsH2 

carrying point-mutations in the zinc-ion binding motif, but not motifs in the AAA+ 

domain, was able to rescue leaf variegation caused by var2 disruption (Zhang et al. 

2010). This observation provided evidence in support of a hetero-oligomeric structure 

for the FtsH complex. To test whether a similar effect holds for the cyanobacterial 

system, pGEMFtsH2(R) vectors lacking the antibiotic-resistance cassette were used to 

transform ΔftsH2 directly and the mutants were selected on BG11 plates under 

high-light illumination. The resulting mutants, namely SynFtsH2(R), are free of the 

gst::strepII tagging cassette. Interestingly, out of the 7 missense mutations targeted, 4 

mutants SynFtsH2H433L, E434Q, D511N and C266S successfully restored growth at 

high light intensities (Figure 4.7), whereas SynFtsH2K218A, E272Q and R329A 

failed to grow. The genotypes of the resulting PS+ mutants were confirmed by PCR 

and the resulting fragments sequenced to confirm that the correct mutations had been 

incorporated into the genome (data not shown). 
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Figure 4.7: Growth experiment of FtsH2 mutants.  

Each plate carries 6 strains: WT-G: wild-type strain, ΔftsH2: FtsH2 null mutant and 

the mutants expressing FtsH2 that carrying point-mutations at C266 

(SynFtsH2C266S), H433 (SynFtsH2H433L), E434 (SynFtsH2E434Q) and D511 

(SynFtsH2D511N). Cells were tested for growth under high (A and B), medium (C 

and D) and low (E and F) light conditions on BG11 plates supplemented with 5 mM 

glucose (A, C and E) and plain BG11 plates (B, D and F). 

 

The restoration of photoautotrophic growth under high-light conditions strongly 
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suggests that the conserved protease activity of FtsH2 is not essential to the activity of 

the complex, which is consistent with the observation in plants and the results in 

Chapter 3 showing that FtsH2 forms a hetero-oligomeric complex with FtsH3. 

Moreover, the conserved cysteine in the AAA+ domain of FtsH2 seemed to be 

relatively unimportant to the function of the AAA+ domain, as judged by the ability 

of the mutant to survive the high-light stress. 

 

4.2.3 Generation of GST-tagged FtsH mutants 

Three recipient strains, WT-G, ΔftsH2 and ΔftsH4, were used to generate the 

FtsH-inactive mutants. Vectors pFtsH2(R)GSTcam were used to transform ΔftsH2, 

which has ~1,200bp of the ftsH2 ORF replaced with a kanamycin-resistance cassette 

(see section 4.1.2), the resulting mutants were named SynFtsH2(R)GSTcam. Vectors 

pFtsH4(R)GSTcam were used to transform ΔftsH4, which has ~550bp of the ftsH4 

ORF replaced with a kanamycin-resistance cassette (see section 4.1) and the resulting 

mutants were named SynFtsH4(R)GSTcam. The pFtsH3(R)GSTcam vectors were 

used to transform WT-G, to create SynFtsH3(R)GSTcam. The mutants were selected 

for chloramphenicol resistance under low-light conditions on BG11 plates 

supplemented with glucose, chloramphenicol and DCMU.  

 

Table 4.3: List of mutants obtained. 

  FtsH2 N/A CM FtsH3 CM FtsH4 CM 

Walker A K218A     K207A √ K220A   

Walker B E272Q   √ E261Q   E274Q √ 

SRH R329A     R318A √ R333A √ 

ZnBD 

(HEXGH) 

H433L √ √ H423L √ H438L   

E434Q √   E424Q   E439Q √ 

ZnBD D511N √ √ D504N √ D515N √ 

Trx 

control 
C266S √   C255S √ C268S √ 

Ticked box on the right of each mutation represents colonies being maintained, red 

tick represents the genotype of the mutant is checked to be correct. In the first line of 

boxes, N/A: mutant without selectable marker, CM: mutants confer chloramphenicol 

resistance. 
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Among the 21 constructs made in this project, the screening of FtsH4 

protease-inactive mutants was one of the top priorities as FtsH4 does not form 

hetero-complexes (see section 3.1.4), hence the inactivation of FtsH4 complexes is 

not subject to the residual activity from the other type of subunit. Four mutants 

carrying designated mutations at C268, E274, R333 and E439 have been generated so 

far with the DNA sequence of the resulting mutants confirmed via sequencing. Further 

protein analysis using immunoblotting with anti-FtsH4 antibody showed the 

FtsH4-GST fusion protein was intact, however, the expression level of the fusion 

protein was much lower than that of wild-type, which is consistent with the previous 

observations on SynFtsH4GFPcam strain, indicating the C-terminal tag affects the 

accumulation of the protease (Figure 4.8). 

 

 
Figure 4.8: Immunochemical detection of FtsH4(R)-GST recombinant proteins.  

(A) Coomassie stained gel of membrane proteins from SynFtsH4(R)GSTcam mutants. 

(B) Immunoblotting of the protein samples with antibodies specific to FtsH4. 
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4.3 Physiological influence of the C-terminal GST tag on FtsH 

protease activity 

As described in Chapter 3 (see section 3.2.4), the addition of a C-terminal GFP tag to 

FtsH1, FtsH2 and FtsH4 did not alter the sensitivity of the mutants to light stress. In 

contrast, addition of a GST tag to the C-terminus of FtsH3 led to increased 

susceptibility to photoinhibition (see section 3.1.3). Immunoblotting analysis further 

provided hints that the increased sensitivity might be attributed to the presence of the 

C-terminal GST tag, whereas the FtsH3-GFP strain was not affected possibly due to 

the cleavage of the GFP tag from the C-terminus (see section 3.2.3). As multiple types 

of FtsH complex were identified in this work (see section 3.1.4), it is possible that the 

functions of complexes with different composition might show functional overlap (see 

section 5.1.1). To further examine the physiological influence of the C-terminal GST 

tag of each FtsH homologue with reduced functional interference from other types of 

FtsH complexes, the double deletion mutantΔftsH2ΔftsH4 was used as the recipient 

strain instead of WT-G cells to construct double and triple mutants expressing 

FtsH-GST derivative proteases. 

 

4.3.1 Construction and phenotype analysis of the mutants 

pFtsHxGSTery vectors (see section 3.1.1) was used to transform the FtsH2/4 null 

mutant ΔftsH2ΔftsH4, yielding a triple mutant SynFtsH1GSTΔ24, and two double 

mutants SynFtsH2GSTΔ4 and SynFtsH4GSTΔ2. The transformation was carried out 

following the same procedure as described earlier (see section 3.1.1). Growth of the 

resulting mutants was then compared to the wild-type and the parental strain 

ΔftsH2ΔftsH4 under various light intensities. 
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Figure 4.9: Growth experiment of SynFtsH1GSTΔ24, SynFtsH2GSTΔ4 and 

SynFtsH4GSTΔ2 mutants.  

WT-G: the wild-type strain; ΔftsH2ΔftsH4: FtsH2/FtsH4 double deletion mutant. 

SynFtsH1GSTΔ24: ftsH1::gst with ftsH2/4 null genotype; SynFtsH2GSTΔ4: 

ftsH2::gst with ftsH4 null genotype and SynFtsH4GSTΔ2: ftsH4::gst with ftsH2:Cam 

null genotype. Cells were tested for growth under high (A and B) amd medium (C and 

D) light conditions on BG11 plates supplemented with 5 mM glucose (A and C) and 

plain BG11 (B and D). (E) Extended growth period over 23 days under low-light 

condition. (F) Conformation of segregation of the mutant from the recipient genome. 

Upon full segregation, the chloramphenicol resistance cassette used to disrupt FtsH2 

in ΔftsH2ΔftsH4 was replaced with ftsH2::gst fusion construct in SynFtsH2GST Δ4; 

respectively, the kanamycin resistance cassette was replaced with ftsH4::gst in 

SynFtsH4GSTΔ2. Hence fully segregated SynFtsH2GST Δ4 and SynFtsH4GSTΔ2 

are sensitive to kanamycin/chloramphenicol double selection. 
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The growth experiment showed that restoration of FtsH2 with the FtsH2-GST fusion 

construct recovered the growth ability under high-light, although the growth seemed 

to be poorer than that of wild-type, possibly due to the reduced expression level of 

FtsH2 (immunoblotting data, not shown). The FtsH1 was successfully tagged with 

GST in the ftsH2/ftsH4 double knockout genome (data not shown) and the resulting 

triple mutant SynFtsH1GSTΔ24 exhibited a similar phenotype under light stress to the 

ΔftsH2ΔftsH4 recipient strain, providing no evidence over the potential influence of 

the GST tag to FtsH1. Strikingly, no colonies were obtained following transformation 

of ΔftsH2ΔftsH4 cells with pFtsH3GSTery vector. Further attempt to knockout ftsH2 

in SynFtsH3GSTery strain was also unsuccessful (data not shown). 

 

4.3.2 Isolation of FtsH4 complexes from SynFtsH4GSTΔ2 

Among the four homologues, FtsH3 has been found to interact with both FtsH1 and 

FtsH2 (see section 3.1.4), hence it is interesting to explore the possibility of a 

potential interaction between FtsH3 and FtsH4 when FtsH2 is not available in the 

thylakoid membrane. Therefore, FtsH4-GST was purified from SynFtsH4GSTΔ2 cells 

and analysed by SDS-PAGE, followed by immunoblotting with anti-FtsH (global) and 

anti-FtsH4 antibodies (see section 2.7.4.1). 

 

Proteins of the concentrated elution faction only separated into a single strong band at 

~ 100 kDa on the gel (Figure 4.10 A). The identity of the band was further confirmed 

to be FtsH4 by antibodies (Figure 4.10 B). Faint protein bands were also visible on 

the Coomassie Blue-stained gel, and they seemed to be degradation products of 

FtsH4-GST. Therefore, our data do not support the presence of FtsH3/FtsH4-GST 

complex. Furthermore, the anti-FtsH (E. coli) antibody showed degradation products 

of FtsH in the pre-column binding sample, the majority of the immunodetectable FtsH 

seemed to be cleaved into ~ 40-kDa products. This observation might reflect the 

enhanced turnover of FtsH3 when FtsH2 is disrupted. The E. coli FtsH antibody only 

recognises FtsH4 relatively weakly; hence FtsH4-GST is only detected in the final 
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purified fraction. 

 

Figure 4.10: Isolation of FtsH4 complexes from SynFtsH4GSTΔ2.  

(A) Detergent-solubilised thylakoid membranes from SynFtsH2GST before 

chromatography (Pre-inc), the extract after binding to the glutathione resin (Post-inc), 

and the fraction eluted by glutathione E and the final concentrated elution fraction [E] 

were separated by SDS-PAGE and stained in Coomassie blue. (B) Analysis of the 

column fractions by immunoblotting with antibodies specific for FtsH4 and E. coli 

FtsH. 

 

4.4 In vitro characterisation of FtsH homologues 

Despite the many studies on cyanobacterial FtsH, there has been no rigorous 

biochemical analysis of enzyme activity. To explore the NTP hydrolysis and 

proteolytic activity of the FtsH proteases, in vitro assays (see section 2.7.5 and 2.7.6) 

were used to examine the activity of FtsH proteases. Unfortunately, indigenous FtsH 

complexes purified from SynFtsH(x)GSTery mutants failed to show significant 

activity in the assays (data not shown). This was possibly due to the fact that the 

reaction condition was not optimal and the membrane anchored complexes was not 

stable in the detergent micelles.  

 

The bottleneck to the optimisation of the in vitro assays was the insufficient supply of 
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the Synechocystis FtsH samples, due to its low abundance in the cells. To overcome 

this problem, an E. coli over-expression system was developed to produce large 

quantities of recombinant FtsH protease. Although the transmembrane domain of FtsH 

was speculated to be beneficial to the oligomerisation of FtsH complexes (Kihara et al. 

1998), it was not essential to the function and complex formation of some bacterial 

FtsH (Suno et al. 2006). Therefore, to further reduce the challenges in protein 

purification and in vitro assays, only the soluble cytosolic region of each FtsH 

homologue, namely Δ(tm)FtsH, was expressed.  

 

Although vectors expressing Synechocystis FtsH homologues were constructed (data 

not shown), the work described in this study was more focused on the expression of T. 

elongatus FtsH proteases. The focus on T. elongatus was mainly because of the 

potential to conduct structural studies. To initiate the study, only FtsH2, FtsH3 and 

FtsH4 from T. elongatus were expressed and tested in this project (Table 4.3). Proteins 

from T. elongatus are more robust and thermostable, which make them highly suitable 

for structural and biochemical studies. Due to time pressure, FtsH1 was not included 

in this work because it seemed least likely to be involved in PSII repair, based on its 

location within the cell (Figure 3.12 A).  

 

4.4.1 Defining the FtsH homologues from Thermosynechococcus elongatus 

As the model organism for physiological study of proteins involved in photosynthesis, 

the four FtsH homologues in Synechocystis sp. PCC6803, ftsH1 (slr1390), ftsH2 

(slr0228), ftsH3 (slr1604) and ftsH4 (sll1463), have been defined in previous studies 

(Mann et al. 2000; Sokolenko et al. 2002). In contrast, although four FtsH 

homologues, tll1832, tll0734, tll0131 and tlr0528 have been annotated in the 

Thermosynechococcus elongatus genome, none of the four ORFs has been properly 

defined. To clarify the evolutionary relationship between the FtsH homologues found 

in T. elongatus with their orthologues in Synechocystis sp. PCC 6803, the phylogeny 
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of the candidate genes were mapped using Promlk (Figure 4.11). According to the 

phylogenetic tree, the genes encoding each FtsH homologue in the T. elongatus 

genome can be annotated as the following: ftsH1 (tll1832), ftsH2 (tll0734), ftsH3 

(tll0131) and ftsH4 (tlr0528).  

 

 

Figure 4.11: Phylogeny of FtsH orthologs between Synechocystis sp. PCC 6803 

and T. elongatus.  

Phylogenetic analysis by maxium likelihood of the FtsH genes in Synechocystis and T. 

elongatus genome was performed using Montpellier server, branch support was 

calculated using bootstrap mehod. FtsH homologues from Synechocystis were labelled 

FtsHx, where x is the specific number of the homologue. The FtsH homologues from 

T. elongatus were labelled according to the designations from the database 

(Cyanobase, see section 2.1). 

 

4.4.2 Construction of the expression vectors and transformation of the E. 

coli expression strain 

The cytosolic region of each FtsH homologue was identified after a protein sequence 

alignment with Δ(tm)FtsH from T. thermophilus. To enable future investigation into 

the potential formation of an FtsH2/FtsH3 complex, a StrepII tag was fused to the 
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C-terminus of the FtsH2 sequence (Figure 4.12 A). As a result, the formation of an 

FtsH2strep/FtsH3 complex could be potentially tested by co-purification of FtsH3 

following Strep-Tactin affinity chromatography. 

 

Table 4.4: Fragments of FtsH chosen for expression in E. coli 

Name Source gene Expressed region (AA) Vector 

Δ(tm)FtsH2strep tll0734 144-631 pRSET2strep 

Δ(tm)FtsH3 tll0131 127-612 pRSET3 

Δ(tm)FtsH4 tlr0528 155-619 pRSET4 

 

The expression vector used in this work is a pRSETA (Life technologies limited, UK) 

derivative, in which the sequence encoding the T7 gene 10 leader (a transcript 

stabilising sequence), Xpress™ Epitope (peptide tag) and enterokinase cleavage site 

was replaced with that of the thrombin cleavage site (Figure 4.12B).  

 

The target ftsH genes were PCR amplified using primer set TheFtsH(x)-F and 

TheFtsH(x)-R, where TheFtsHx represents the particular FtsH homologue from T. 

elongatus. The resulting PCR fragments were then gel purified and digested with 

BamHI and XhoI. The digested PCR fragments were then purified and ligated into the 

pRSET vector via BamHI and XhoI sites (Figure 4.12 B). The resulting FtsH 

expression vectors namely pRSET2strep, pRSET3 and pRSET4 were then validated 

by sequencing with a T7 primer. 
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Figure 4.12: Construction of the cytosolic-FtsH expression vectors.  

(A) A schematic representation of the cytosolic FtsH proteases expressed from the 

vectors. (B) A plasmid map of the expression vector producing Δ(tm)FtsH2strep. The 

vectors for FtsH3 and FtsH4 do not have the strepII tag at the 3’ end of the ftsH 

sequence. 

 

4.4.3 Expression and purification FtsH2, 3 and 4 fragments from E. coli 

E. coli expression strain KRX (Promega, UK) was transformed with the FtsH 

expression vectors. The recombinant FtsH proteins were induced with L-rhamnose 

according to the induction protocol (see section 2.7.2.2). After overnight incubation at 

18 
o
C, cells were harvested and the recombinant proteins were purified via nickel 

affinity chromatography (see section 2.7.2.2). Samples from each fraction during the 

purification procedure were collected and analysed on 10 % SDS-PAGE gels (Figure 

4.13). 
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Figure 4.13: Over-expression and purification of Δ(tm)FtsH4, Δ(tm)FtsH2strep 

and Δ(tm)FtsH3. 

Δ(tm)FtsH4 (A), Δ(tm)FtsH2strep (B) and Δ(tm)FtsH3 (C) samples from each step of 

the purification procedure were collected and analysed on 10 % SDS-PAGE. The 

“uninduced” and ”induced” lanes were loaded with whole cell samples collected 

before/after induction and cell disruption, respectively, and “soluble” “insoluble” were 

samples from soluble/insoluble fractions after cell disruption. 

 

The fractionation profile showed that although all three FtsH constructs were 
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successfully expressed, a large amount of the recombinant protein was found in the 

insoluble fraction, which might due to the formation of inclusion bodies under 

sub-optimal induction condition. Nevertheless, the elution profile of Δ(tm)FtsH2strep, 

Δ(tm)FtsH3 and Δ(tm)FtsH4 showed that the three recombinant FtsH proteases were 

successfully induced and purified (Figure 4.13). The purified recombinant proteins in 

the elution lane were relatively pure and matched the theoretical masses of 52.27 kDa 

for Δ(tm)FtsH4, 55.93 kDa for Δ(tm)FtsH2strep and 55 kDa for Δ(tm)FtsH3. The 

eluates were subsequently concentrated and tested for NTPase and protease activities. 

 

4.4.4 NTPase activity of Δ(tm)FtsH4, Δ(tm)FtsH2strep and Δ(tm)FtsH3 

FtsH proteases have been reported to utilise diverse nucleoside-5’-triphosphate for 

proteolytic activities (Bruckner et al. 2003). To further investigate the nucleotide 

specificity of the AAA+ domain in our FtsH constructs, four nucleotides ATP, GTP, 

CTP and UTP were tested. Data from the NTP hydrolysis assay showed that the 

activity of Δ(tm)FtsH4 was in general much higher than the other two proteases and 

capable of hydrolysing both ATP and CTP. The hydrolysis rate of CTP by Δ(tm)FtsH2 

was also comparatively high, in fact CTP seemed to be the most favourable nucleotide 

among the four (Figure 4.14 A). A negative control using His-tagged Psb28, a known 

PSII assembly factor, purified from the same expression strain according to the same 

procedure gave an ATPase activity of approximately 20% of the ATP only control 

(data not shown).  
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Figure 4.14: Preliminary test on the nucleotide specificity of Δ(tm)FtsH2, 3 and 4.  

The specificity of the AAA+ domain of each FtsH homologue to ATP, GTP, CTP and 

UTP was tested by measuring the phosphate libration rate from hydrolysis. For each 

reaction, measurements were taken at time 0, 30 and 60 min. an NTP only sample, 

without addition of FtsH protease was also analysed along with other samples as the 

negative control. 

   

 

4.4.5 Proteolytic activity of Δ(tm)FtsH2, Δ(tm)FtsH3 and Δ(tm)FtsH4 

Preliminary examination of the proteolytic activity of the over-expressed FtsH 

recombinant proteins was carried out using an EnzChek Protease Assay Kit 

(Invitrogen). In the hope of detecting activities from FtsH2/FtsH3 hetero-complexes, 

the two proteins were also mixed at 1:1 ratio and tested in the assay (Figure 4.15). 

Unsurprisingly, Δ(tm)FtsH4 was the only sample that showed a clear activity in the 

test. The fluorescence readings from Δ(tm)FtsH2 and Δ(tm)FtsH3, and the combined 
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sample were slightly higher than that of His-tagged Psb28, hence minor activity from 

these samples still cannot be excluded. Moreover, previous studies showed the 

activity of FtsH from E. coli is highly dependent on oligomerisation (Kihara et al 

1998). In this experiment, the combined Δ(tm)FtsH2 and Δ(tm)FtsH3 sample did not 

show improved activity, possibly because inducing oligomerisation of FtsH might not 

be straightforward. 

 

 

Figure 4.15: A fluorescence-based quantitative protease assay trial.  

The proteolytic activity of each FtsH homologue was assessed according to the 

degradation rate of the casein substrate. In addition to Δ(tm)FtsH2, Δ(tm)FtsH3 and 

Δ(tm)FtsH4, recombinant Psb28 expressed and purified using the same expression 

system was also included in this experiment as negative control of contamination of E. 

coli proteases. To explore the potential oligomerisation of active FtsH2/FtsH3 

complex in vitro, a sample containing equal amount of Δ(tm)FtsH2, Δ(tm)FtsH3 was 

also prepared and analysed. 

 

4.5 Discussion 

4.5.1 The dispensability of subunits within FtsH hetero-complex 

Previous work has shown that the FtsH hetero-complexes residing in the thylakoid 

membrane of A. thaliana are still capable of participating in the PSII repair process 

when the protease activity, but not the AAA+ domain, of the Type B subunit is 

inactivated (Zhang et al. 2010). To test whether the FtsH2/FtsH3 hetero-complex in 

cyanobacteria also exhibited a similar characteristic, similar mutations were generated 

in the Type B-like homologue FtsH2, and the resulting mutants were selected for 
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growth under high-light conditions. Among the 7 designed mutations, only 4 mutants 

were able to grow after transformation, including the three mutations at the zinc 

ion-binding residues and the cysteine that proposed to play a role in thioredoxin 

control. None of the three mutations designed to disrupt ATP hydrolysis were able to 

restore photoautotrophic growth at high light. These mutants have subsequently been 

isolated by introducing a GST tagging cassette and selecting with antibiotics (data not 

shown). Therefore, the current data suggest that the proteolytic activity of FtsH2 in 

the FtsH2/FtsH3 complex is not essential for D1 degradation function. Presumably the 

proteolytic activity still present in the FtsH3 subunit confers sufficient activity to the 

FtsH2/FtsH3 complex to allow growth at high light. In contrast, the AAA+ domain of 

FtsH2 appears to play a much more important role for the function of the complex. 

 

It is still unclear whether inactivating the protease domain of FtsH3 but not FtsH2 

would impair D1 degradation. It is conceivable that FtsH3 plays a more important 

proteolytic role in the degradation of substrates in the hetero-complex, at least the 

degradation of D1. It cannot be ruled out that the function of FtsH2, and perhaps the 

other type B-like homologue, FtsH1, might mainly be to act as a molecular scaffold to 

stabilise FtsH3 and to assist the ATP-dependent proteolytic activities. Similar 

complexes that consist of inactivated FtsH subunits are naturally present in the 

chloroplast envelope of A. thaliana, where FtsH12 forms complexes with FtsHi, an 

FtsH sub-family that lacks the zinc ion binding motif. The partially inactive 

FtsH12/FtsHi complexes are essential for embryogenesis in plants (Wagner et al. 

2012). Conceivably, formation of some FtsH hetero-complexes might have evolved 

for better substrate specificity, at the expense of maximal proteolytic activity.  

 

4.5.2 Effect of C-terminal GST tag on FtsH function 

C-terminal GST/ GFP tags have been fused to each of the four FtsH homologues in 

the WT-G Synechocystis strain and the growth of the resulting mutants was then 
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assessed under a range of illumination intensities. Firstly, we showed that the addition 

of the C-terminal GST or GFP tag did not cause lethality, hence the tag did not abolish 

the function of FtsH1 or FtsH3 completely. On the other hand, mutant 

SynFtsH3GSTery, which expresses the FtsH3-GST fusion protein, exhibited increased 

sensitivity to light and was unable to grow under strong illumination (Figure 3.3). The 

degree of the sensitivity was similar to that of the FtsH2 null mutant (Figure 4.5). 

Since the FtsH2/FtsH3 hetero-complexes are responsible for maintenance of PSII 

activity under light stress (Boehm et al. 2012), it is conceivable that the PSII repair 

function of the FtsH2/3 complexes was impaired by addition of the GST tag at the 

C-terminus of FtsH3. Further attempts to construct an FtsH2 null mutant that 

expressed GST-tagged FtsH3 derivative failed to yield colonies after transformation. 

Three approaches were tried: either introducing ftsH3::gst construct into ΔftsH2 and 

ΔftsH2ΔftsH4, then disrupting ftsH2 in SynFtsH3GSTery; all proved unsuccessful (see 

section 4.3.1). Therefore, it seems the genotype is lethal to cell viability. Disruption of 

ftsH2 destabilises and prohibits the accumulation of FtsH3 in the thylakoid 

membranes (Boehm et al. 2012), hence the lethality of the ΔftsH2/ftsH3::gst genotype 

should be attributed to the functionally impaired FtsH1/FtsH3 complexes, or effects 

on the expression of FtsH3.  

 

In contrast, the GST tag fused to the C-termini of FtsH1 and FtsH2 seemed not to 

affect drastically the growth phenotype of the resulting mutants. The phenotype of 

SynFtsH1GSTΔ24, presumably only expressing FtsH1GST/FtsH3 complexes, was 

comparable to that of the recipient ΔftsH2ΔftsH4 strain. Together, the presence of a 

GST or GFP tag at the C-terminal of the Type B-like FtsH subunits seemed to not 

affect the major function of the complexes. Considering the diverse cellular activities 

that FtsH proteases play, the possibility that some minor functions of the FtsH 

hetero-complexes might be interrupted by the C-terminal tag on Type B-like subunits 

cannot be rule out at this stage. 
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FtsH4 is the only FtsH subunit in Synechocystis that did not show any detectable 

interaction with other homologues, and also the only one that did not show 

distinguishable phenotype upon disruption. Hence it remains unclear whether the GST 

and GFP tagged FtsH4 fusion proteins are functional in vivo or not. The 

immunoblotting data have consistently showed drastic reduction of the FtsH4 level in 

the mutant strains compared to wild-type (Figure 3.9 and 4.8), which might be a sign 

of functional disruption of the complexes causing enhanced instability in the 

membrane. Alternatively, the effect might simply reflect effects on transcript 

abundance due to the destabilising effect of the antibiotic-resistance cassette on the 3’ 

region of the transcript. 

 

4.5.3 Types of FtsH complex in the thylakoid membranes 

FtsH proteases play an important house-keeping role in maintaining the quality of 

membrane proteins. Proteins embedded in the thylakoid membranes are maintained by 

three FtsH homologues, FtsH2, FtsH3 and FtsH4 (see section 3.2.5 and 3.2.6). 

Preliminary studies showed FtsH2 and FtsH3 form hetero-complexes that play a 

dominant role in D1 degradation. However, mutants lacking FtsH2 were also viable 

for photoautotrophic growth under low-light conditions. Taken into account that D1 is 

a short-lived membrane protein which undergoes irreversible damage even under 

low-light conditions, it is likely that additional proteolytic systems capable of D1 

removal exist. The FtsH2/FtsH4 double deletion mutant generated in this work 

displayed increased sensitivity to light stress compare to the FtsH2 single deletion 

mutant (see section 4.1.5), which raised speculation that FtsH4 homo-complexes 

might also contribute to PSII repair, albeit, only play a minor role or an indirect one.  

 

In human mitochondria, FtsH can form both homo and hetero-complexes (Koppen et 

al. 2007), which raises the possibility that potentially FtsH4 could form a 

hetero-complex with FtsH3 in the absence of FtsH2. To test this theory, the 
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composition of FtsH4 complexes from SynFtsH4GSTΔ2 was examined, as the 

potential interaction between FtsH3 and FtsH4 should be enhanced when the major 

competitor FtsH2 is missing in this strain. The results showed no evidence for 

co-purification of other types of FtsH with FtsH4. Therefore, the current data still 

favour functional overlap between FtsH4 and FtsH2/FtsH3 complexes or a indirect 

role for FtsH4 to aid D1 degradation. Furthermore, the FtsH2/FtsH4 double deletion 

mutant is still capable of photoautotrophic growth. The underlying maintenance 

mechanisms are still to be elucidated. In addition a notable phenotype observed with 

the double mutant was enhanced senescence under low light (Figure 4.9). 

 

4.5.3 Nucleotides hydrolysis and proteolytic activity of Δ(tm)FtsH4, 

Δ(tm)FtsH2 and Δ(tm)FtsH3 

The cytosolic domains of FtsH2, FtsH3 and FtsH4 were cloned and expressed in E. 

coli, with the aim to provide activity data for cyanobacterial FtsH proteases. The 

activity of FtsH includes hydrolysis of nucleotides in the AAA+ domain and 

processing of protein substrates through the Zn
2+

-binding motif. According to one 

current model, which were established on the basis of the crystal structure of FtsH 

from T. thermophilus (Suno et al. 2006) and supported by in vivo assays (Zhang et al. 

2010), the hydrolysis of a nucleotide in the AAA+ domain requires synergetic 

movement between neighbouring protomers in the hexameric complex. However, an 

individual subunit can also hydrolyse NTP in an inefficient manner. Our results 

showed NTPase activities from all three FtsH proteases, of which, FtsH4 displayed a 

much higher activity than the other two. The striking difference might reflect the 

potential presence of some complex formation in the FtsH4 sample. However, it is 

noteworthy that the rate of nucleotide hydrolysis was extremely low, even that of 

FtsH4 comparing to other bacterial FtsH presented in the literature (Suno et al. 2006). 

Studies on E. coli FtsH have shown that the AAA+ domain of FtsH is rather 

unspecific to substrates, in particular, CTP was also a favourable nucleotide in  in 

vitro assays (Bruckner et al. 2003). Our data is largely in line with this conclusion, as 
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the hydrolysis rate of CTP was even higher than that of ATP. Only FtsH4 was able to 

degrade the casein substrates in the protease assay. The other FtsH proteases, 

including a sample with FtsH2 and FtsH3 combined did not yield any activity, 

possibly because heterocomplex formation was unsuccessful. The trans-membrane 

domain of E. coli FtsH is important for complex formation, however, cytosolic 

domains of FtsH from T. thermophilus can form hetero-complexes without the 

trans-membrane region. Therefore, the necessity of N-terminal truncation for 

oligomerisation is dependent on the characteristic of each complex and so we cannot 

exclude the possibility that only full-length FtsH2 and FtsH3 from cyanobacteria can 

form a complex. The ability to isolate soluble fragments of FtsH from T. elongatus 

demonstrated here paves the way for more detailed structural studies on 

cyanobacterial FtsH. 
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Chapter 5: Probing physiological function and 

regulatory mechanisms of FtsH in Synechocystis 

5.1 Identification of potential substrates and auxiliary proteins 

Very little is known about the substrate specificity of the FtsH complexes in 

Synechocystis 6803 and the proteins with which they interact. FtsH in E. coli has been 

found to form supercomplexes with members of the Band 7 superfamily and to bind 

to YccA (reviewed by Ito and Akiyama 2005). Therefore, we explored the potential 

substrates and auxiliary proteins of FtsH in Synechocystis by analysing the identity of 

proteins that co-purified with each FtsH-GST derivative (see section 5.1.1). A range of 

proteins was identified in each FtsH sample, among which, both prohibitin and a 

cyanobacterial homologue of YccA were detected in the FtsH2 and FtsH3 samples. 

Interestingly, a homologue of the Arabidopsis ethylene-dependent 

gravitropism-deficient and yellow-green-like 2 protein (EGY2), encoded by sll0862, 

was also co-purified with FtsH2 and FtsH3. EGY2 is one of the few metalloproteases 

involved in intramembrane proteolysis in A. thaliana and contributes to fatty acid 

biosynthesis  (Chen et al. 2012). Preliminary work to characterise the function of the 

Synechocystis EGY2 and YccA homologues was also performed in this study (see 

section 5.1.2). In addition, I have investigated whether Psb29 might also play a role in 

controlling the expression level of FtsH proteases in Synechocystis as previous work 

in Arabidopsis has made such a link. 

 

5.1.1 Potential substrates/auxiliary proteins co-purified with FtsH 

proteases 

To elucidate the potential binding partners and substrates of FtsH complexes, proteins 

co-purified with each FtsH-GST construct were analysed via peptide mass 

fingerprinting (PMF); this work was carried out in collaboration with Prof. Michael 

Hippler, University of Münster. 

http://www.uni-muenster.de/en/


160 
 

To prepare samples for mass spectrometry sequencing, GST-tagged FtsH complexes 

from SynFtsH1GSTery, SynFtsH3GSTery, SynFtsH4GSTery (see section 3.1) and 

SynFtsH2GST (see section 3.3) were isolated via GST affinity chromatography, then 

separated on SDS-PAGE gel, followed by silver staining. Major protein bands from 

each protein sample were cut out and sent for identification. A number of proteins 

were identified in the PMF data (see Appendix for full list); noteworthy, the 

abundance of a few co-purifying proteins was relatively high in the FtsH2 sample 

suggesting a rather specific interaction with FtsH2GST/FtsH3 complexes (Figure 5.1). 

 

 

Figure 5.1: Proteins co-purified with FtsH2GST/FtsH3 complex.  

(A) Detergent-solubilised thylakoid membranes from SynFtsH2GST before 

chromatography (Pre), the extract after binding to the glutathione resin (Post), the 

wash fraction just before elution (Wash), and the fractions eluted by glutathione 

(E1-E3) and concentrated E1 fraction [E1] were separated by SDS-PAGE. The 

positions of the FtsH2-GST and FtsH3 proteins are indicated by arrowheads. (B) List 

of proteins the major proteins present in the elution sample. 

 

Six major protein bands were analysed from the FtsH2-GST sample. As expected the 

FtsH3 isomer was identified in the FtsH2-GST complex. In addition, elongation factor 
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(EF-Tu) and phosphoglycerate kinase (PGK), both soluble components, were 

identified. These results indicated that the FtsH2-GST/FtsH3 complex might play a 

role in regulation of translation and glycolysis. Prohibitin or Band 7 homologues have 

been shown to form complexes with bacterial and mitochondrial FtsH (Steglich et al. 

1999; Van Aken et al. 2007), possibly to help stabilise the complex (Janska et al. 

2013). A prohibitin homologue (Slr1106) was also found in the sample, hence a 

similar regulatory interaction between FtsH and prohibitin might also be present in the 

cyanobacterial system. A homologue of YccA, which is known to be a substrate and 

also an auxiliary binding partner of FtsH in E. coli (Kihara et al. 1998), was also 

identified in the eluate. Recent work has suggested that YccA might down-regulate 

the activity of FtsH in E. coli (van Stelten et al. 2009). Surprisingly, the homologue of 

Arabidopsis EGY2, encoded by sll0862, was also co-purified with FtsH2, and its 

interaction with FtsH3-GST was also confirmed (see Appendix). EGY2 belongs to the 

Site-2 protease (S2P) family and is one of the few intra-membrane proteases localised 

in the chloroplast thylakoid membrane. It also features a Zn
2+

-binding motif in the 

peptidase domain and is capable of degrading casein substrate in an ATP 

hydrolysis-independent manner (Chen et al. 2012). An interesting point is that the 

proteolytic site of Sll0862 is likely to be within the membrane, whereas its FtsH 

counterpart is in the cytoplasm. This raises the interesting possibility that Sll0862 

might co-operate with FtsH complexes to help remove recalcitrant substrates from the 

membrane. 

 

5.1.2 Probing the function of Sll0862 and Sll1150 

5.1.2.1 Construction of sll0862 null mutants 

The entire ORF of sll0862 was removed from the genome and replaced by an 

antibiotic-resistance cassette. To achieve the goal, a deletion vector was constructed in 

two steps. First, two flanking sequences, 445 bp upstream and 555 bp downstream of 

the sll0862 ORF were joined together via overlap extension PCR using primer set 
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Sll0862 (containing four primers 1F, 2R, 3F and 4R). The resulting DNA fragment, 

which lacks the entire sll0862 ORF was then ligated with the recipient vector 

backbone pGEM-T easy to produce the parental vector pGEMSll0862 (Figure 5.2 A). 

In the second step, a selectable marker conferring resistance to chloramphenicol was 

inserted into pGEMSll0862 at an EcoRV site, and depending on the insert orientation, 

the resulting vectors were named pSll0862camA or B (Figure 5.2 A and B). 

 

The transformation vectors were then used to transform the WT-G strain of 

Synechocystis and the resulting mutants were selected on BG11 plates supplemented 

with glucose, chloramphenicol and DCMU. After restreaking three times from a 

single colony, the mutants were subjected to DNA analysis to check the segregation 

status, using the primer set Sll0862-1F and 4R (Table 2.5). The size of the 

chloramphenicol-resistance cassette is similar to that of sll0862, hence DNA 

restriction digestion was performed using the PCR fragments (Figure 5.2 C). Cells 

from two individual colonies of each type of transformant were analysed, and all four 

mutants were confirmed to be correct (Figure 5.2 D). 
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Figure 5.2: Construction of Sll0862 defective mutants.  

(A) A schematic representation of the disruption design. (B) The digestion pattern of 

the two transformation vectors. (C) Genotyping via PCR analysis, the primers used 

were Sll0862-1F and 4R. (D) Restriction digestion of the PCR fragments. A1 and A2 

are two colonies picked from a plate of cells transformed with pSll0862camA, 

whereas B1 and B2 were transformed by pSll0862camB. 

 

5.1.2.2 Construction of sll1150 null mutant 

A similar procedure was applied to knock-out sll1150.  A 445-bp upstream DNA 

fragment and a 555-bp downstream fragment were joined together via overlap 

extension PCR using primer set Sll1150 (containing four primers 1F, 2R, 3F and 4R). 

The resulting DNA fragments, which also had the entire sll1150 ORF replaced by an 

EcoRV site, was then cloned into pGEM-T easy to form parental vector 

pGEMSll1150. Then the chloramphenicol-resistance cassette was inserted into 

pGEMSll1150 (Figure 5.3 A). Only one transformation vector, named pSll1150cam 

(Figure 5.3 A), was obtained at this stage, in which the transcription direction of the 
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chloramphenicol-resistance gene is in the same direction as sll1150 ORF. 

 

Synechocystis WT-G was transformed with pSll1150cam and selected under dim light 

on BG11 plates supplemented with glucose, chloramphenicol and DCMU. After 

restreaking three times, the genotype of the resulting mutants were checked for 

segregation and the resulting mutant was named SynSll1150cam (Figure 5.3 B). 

 

 

Figure 5.3: Construction of Sll1150 defective mutants.  

(A) A schematic representation of the disruption design. (B) Genotyping via PCR 

analysis, the primers used were Sll1150-1F and 4R. Two individual colonies were 

screened in genotyping. 

 

5.1.2.3 Phenotype analysis of sll0862 and sll1150 null mutants 

To test whether Sll0862 and Sll1150 might be critical for PSII repair and 

photoprotection, growth assays were performed under high, medium and low light 

conditions, to compare the growth of the three mutants lacking Sll0862 and Sll1150 

with the FtsH2 defective mutant, ΔftsH2. 

 

All three mutants were able to grow photoautotrophically under the high-light 

condition and did not show a distinguishable phenotype compare to the wild-type 

control in terms of growth rate and pigmentation. In contrast, the FtsH2 defective 

mutant ΔftsH2 was consistently unable to cope with the high-light environment, and 

even photoautotrophic growth under medium light was affected (Figure 5.4 and see 

section 4.1.5). Moreover, the growth rate of ΔftsH2 also seemed to be slower. 
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In summary, the growth assays showed that growth of mutants lacking Sll0862 and 

Sll1150 at high irradiances was not drastically affected, hence the function of FtsH2 

was not drastically impaired by the respective mutations. Nevertheless, these data are 

insufficiently sophisticated to exclude a possible role of Sll0862 and Sll1150 in FtsH 

function. The physiological functions of Sll0862 and Sll1150 also remain unclear as 

the mutants exhibited wild-type-like phenotype under the tested conditions.  
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Figure 5.4: Growth experiment of Sll0862 and Sll1150 defective mutants.  

Each plate carries 5 strains: WT-G: wild-type strain, ΔftsH2: FtsH2 null mutant and 

the disruption mutants SynSll0862camA/B and SynSll1150cam strains. Cells were 

tested for growth under high (A and B), medium (C and D) and low (E and F) light 

conditions on BG11 plates supplemented with 5 mM glucose (A, C and E) and plain 

BG11 plates (B, D and F). 
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5.2 Role of Psb29 in accumulation of the FtsH2/3 complex 

The formation of PSII requires a range of accessory proteins to assist the assembly of 

intermediate complexes and cofactors (see section 1.4.1). Psb29 has been identified as 

a component that interacts with PSII complexes in Synechocystis (Kashino et al. 

2002) , and further analysis in higher plants has suggested that Psb29 is involved in 

the formation of PSII-supercomplexes in chloroplasts and the PSII repair cycle (Shi et 

al. 2012). Studies on the Psb29 null mutant of A. thaliana (also known as thf1) have 

demonstrated that the thylakoid FtsH level is decreased in the absence of Psb29 

(Zhang et al. 2009), however, the precise mechanism remains unclear. The initial 

work on cyanobacterial Psb29 showed that disruption of psb29 leads to increased light 

sensitivity (Keren et al. 2005), which raises the obvious possibility that the expression 

level of FtsH proteases in cyanobacteria might also be regulated via Psb29. Therefore, 

Psb29 null mutants were constructed and characterised to test this hypothesis. 

 

5.2.1 Construction of the Psb29 defective mutants 

The psb29 (sll1414) disruption vectors were achieved in two steps: first, 

overlap-extension PCR was used to construct a parental vector, pGEMPsb29, that 

contains 445 bp of upstream and 555 bp of downstream flanking sequences but which 

lacks the entire Psb29 ORF (Table 2.5). In the second step, a selectable marker 

conferring resistance to chloramphenicol was inserted into pGEMPsb29 at a unique 

EcoRV restriction site, and depending on the insertion orientation, the resulting 

vectors were named pPsb29camA or B (Figure 5.5 A). 

 

The transformation vectors were then used to transform the WT-G strain of 

Synechocystis, and the resulting mutants were selected on BG11 plates supplemented 

with glucose, chloramphenicol and DCMU. After restreaking three times, the mutants 

were subjected to DNA analysis to check the segregation status. The resulting PCR 

fragments from both mutants using primers amplifying the entire flanking sequences 

showed complete segregation of the mutants (Figure 5.5 B). 
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Figure 5.5: Construction and characterisation of Psb29 defective mutants.  

(A) schematic representation of the vector construct used to disrupt psb29 and (B) 

PCR analysis to confirm complete segregation of the mutants. 

 

5.2.2 Probing the FtsH level in Psb29 defective mutants 

Benefiting from the FtsH specific antibodies generated in this thesis (see section 

2.7.4.1), the accumulation level of each FtsH homologue in the Psb29 defective 

mutants was investigated. The WT-G strain and SynPsb29CamA and B were 

cultivated in 50 ml of liquid BG11 medium, with and without the supplementation of 

glucose for ~ 1 week until stationary phase was reached. The cells were then 

harvested and lysed for protein analysis. The membrane proteins were separated on 

SDS-PAGE gels and blotted for immunodetection with antibodies specific for each 

FtsH protease.  
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Figure 5.6: Probing the FtsH level in a psb29 null mutant.  

Proteins solubilised from the membrane fraction were separated by SDS-PAGE and 

then immunoblotted using antibodies specific to FtsH homologues. 

 

The data from SDS-PAGE indicated that the protein expression profile of the psb29 

null mutant varied with supplementation of glucose, with for example the intensity of 

the band at ~75 kDa dramatically reduced, suggesting that Psb29 might play a role in 

regulation of glucose metabolism. The immunoblotting experiment revealed a 

dramatic change in the FtsH2 and FtsH3 levels in the psb29 mutant, FtsH2 was 

undetectable, whereas, only a small amount of FtsH3 remained in the mutant (Figure 

5.6). The levels of FtsH1 and FtsH4 were comparable to that of WT-G. Therefore, our 
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data suggest that in cyanobacteria, the accumulation of FtsH2 and FtsH3 is dependent 

on Psb29. The other psb29 knockout mutant SynPsb29camB was also examined via 

immunochemical detection, and comparable results were obtained (data not shown). 

 

5.2.3 Phenotype analysis of the Psb29 defective mutant 

Growth of Psb29 defective mutants of Synechocystis 6803 has been previously 

reported to be more sensitive to strong illumination (Keren et al. 2005). To confirm 

this finding, a growth experiment was performed to compare the light sensitivity 

between SynPsb29camA and the FtsH2 null mutant ΔftsH2. 

 

The data from the growth experiment showed that disruption of psb29 led to increased 

light sensitivity (Figure 5.7 B). However, the phenotype of the psb29 mutant was not 

as severe as the FtsH2 defective mutant as SynPsb29camA grew, although more 

poorly than WT-G, under high-light with glucose and moderate-light without glucose 

(Figure 5.7 A and D). A plausible explanation is that there might be trace amounts of 

FtsH2 present in the psb29 null mutant which evaded detection by the FtsH2 antibody. 

Alternatively, expression of FtsH2 might be aberrant in the psb29 mutant under low 

light levels or in flask-grown liquid cultures but could be overcome to some degree at 

increased irradiance levels in the presence of glucose. 
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Figure 5.7: Growth experiment of Psb29 defective mutant.  

Each plate carries 3 strains: WT-G: wild-type strain, ΔftsH2: FtsH2 null mutant and 

SynPsb29camA: Psb29 null mutant. Cells were tested for growth under high (A and 

B), medium (C and D) and low (E and F) light conditions on BG11 plates 

supplemented with 5 mM glucose (A, C and E) and plain BG11 plates (B, D and F). 

Note: Plate (A) was grown under high light for 4 days, and then transferred to low 

light to grow a further 1 week as SynPsb29camA grew very poorly under constant 

hight light condition. 
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5.3 Discussion 

5.3.1 Identification of co-purifying proteins  

In vivo studies using FtsH2 deficient mutants have demonstrated a serious growth 

defect under a range of abiotic stress conditions including high light and heat stress 

(Nixon et al. 2010), hence FtsH2 is considered to be a general housekeeping protease 

that plays a quality control duty in cyanobacteria (Nixon et al. 2010). On the other 

hand, little is known about the functions of the other three FtsH homologues in 

Synechocystis, due to the challenges generating null mutants (FtsH1 and FtsH3) and a 

lack of a distinguishable phenotype (FtsH4). Analysis of co-purifying proteins in 

various GST-tagged FtsH preparations is one way that candidate substrates or 

interacting proteins can be identified for further investigation.  Both soluble and 

membrane proteins with diverse cellular functions have been found to apparently 

interact with FtsH proteases (see section 5.1.1 and Appendix), suggesting that all four 

FtsH proteases are involved in various cellular activities in Synechocystis. We propose 

that the identified proteins that co-purify with FtsH complexes might be: (1) subunits 

of the complex (2) auxiliary modules that form supercomplexes with FtsH or (3) 

substrates of FtsH proteases. On the other hand, due to the high sensitivity, 

contaminants inside samples are often detected by PMF and resulting in false reading. 

For instance, trace amount of FtsH4 was identified in FtsH1-GST sample by PMF 

(see Appendix), which is contradictory to the immunoblotting (see section 3.1.4) and 

fluorescence microscopy data (see section 3.2.5). Further investigation showed the 

size of the protein band where FtsH4 was detected was just ~ 20 kDa (data not shown), 

therefore, it is likely to be contamination due to the high abundance of FtsH4 in vivo 

(Figure 3.12). To minimise the influence from contamination, control experiments 

with wild-type cells should be included in the future. 

 

Members of the Band 7 protein family are known to form supercomplexes with FtsH 

in both E. coli and mitochondria (Back et al. 2002; Kihara et al. 1996). Since FtsH 

alone retains proteolytic activity in vitro (Suno et al. 2006), the Band 7 proteins are 
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considered to be auxiliary proteins thought to play a regulatory role in FtsH activity 

(Janska et al. 2013). Given this, it is highly significant that members of the Band 7 

protein family of Synechocystis were also detected in three out of the four FtsH 

samples (see section 5.1.1 and Appendix). The trace amount of Band 7 proteins in the 

Synechocystis samples might reflect instability during purification or the presence of 

only small amounts of supercomplex. Such low amounts help explain why larger 

supercomplexes were not detected by electron microscopy. Prohibitin1 (Slr1106), a 

Band 7 protein of unknown function (Boehm et al. 2009), was co-purified with FtsH4 

in addition to previously identified interaction with FtsH2/FtsH3 complex (see section 

3.3.2). Interestingly, Prohibitin 5 (Sll1021), another member of Band 7 family, was 

detected exclusively in the FtsH4 sample. However, due to the lack of phenotype from 

the FtsH4 defective mutant, it is difficult to probe the physiological function of this 

interaction. Neither of the two prohibitins was detected in the FtsH1 sample, hence it 

is not clear whether FtsH1/FtsH3 complexes interact with Band 7 proteins. 

Prohibitin1 is a membrane protein localised on both thylakoid and cytoplasmic 

membranes (Boehm et al. 2009), therefore, a potential interaction with FtsH1/FtsH3 

complex remains plausible. 

 

YccA is a small integral membrane protein, containing 7 transmembrane helices 

(Kihara et al. 1998). Interestingly, YccA can interact with FtsH both as a substrate (Ito 

and Akiyama 2005) or an inhibitor (van Stelten et al. 2009). In vivo studies have 

showed that accumulation of YccA is regulated by FtsH-mediated degradation in E. 

coli (Kihara et al. 1998), and that the abundance or stability of YccA suppresses the 

activity of FtsH (van Stelten et al. 2009). Again it is highly significant that the 

Synechocystis homologue of YccA (Sll1150) was also detected in the FtsH 

preparations. To gain insight into the function of the YccA homologue in 

Synechocystis, a mutant (SynSll1150cam) having the entire DNA coding region 

removed, was constructed in this work. Preliminary characterisation via growth assay 
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showed no distinguishable phenotype comparing to the wild-type strain (see section 

5.1.2.3). Hence the function of YccA in Synechocystis remains unclear. Nevertheless, 

the growth assay showed that the function of the FtsH2/FtsH3 complexes was not 

compromised by the lack of YccA. However, this is to be expected if Sll1150 acts as a 

negative regulator. 

 

YccA is a bacterial homologue of Bax Inhibitor-1 (BI-1), a protein conserved in both 

mammalian and plants cells (Huckelhoven 2004). In mammalian cells, BI-1 plays a 

regulatory role in Bax-mediated programmed cell death (Grzmil et al. 2003; Villalva 

et al. 2002). Strikingly, despite having no Bax-mediated pathway in plants, the BI-1 

homologues in Arabidopsis are not only conserved, but are also capable of 

complementing the function of their mammalian counterparts (Huckelhoven 2004). 

Therefore, it is conceivable that BI-1 might execute its function via regulation of FtsH, 

which is also conserved in both mammalian and plants system. 

 

A number of proteins that are part of photosynthetic complexes were also identified 

exclusively in the FtsH2 and/or FtsH3 samples (see appendix for full list), including 

the phycobilisome rod linker (Sll1580), the phycocyanin alpha subunit (Sll1578) and 

the gamma chain of ATP synthase (Sll1327). These data indicate the FtsH2/FtsH3 

complex might play a general role in maintaining the photosynthetic machinery, 

however, the D1 protein, which is in the centre of FtsH-mediated PSII repair cycle 

(Nixon et al. 2005), has so far not been detected in any of the samples. 

Characterisation of mutants lacking FtsH2 has shown that D1 degradation is impaired 

at an early stage (Silva et al. 2003); however, evidence of direct contact between the 

two proteins is still lacking. A possible explanation is that FtsH-mediated D1 

degradation is a rapid process, so that the abundance of D1 trapped in FtsH complexes 

is low. Alternatively, D1 could be released from the FtsH complexes during 

purification. Recent work on FtsH in E. coli has identified new substrates via mutating 
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the Zn
2+

-binding motif, hence fast processing substrates were “trapped” in the 

protease inactive FtsH derivative (Westphal et al. 2012). A similar approach could be 

applied to explore the D1-FtsH interaction using the mutants described in Chapter 4. 

 

The function of FtsH4 is unclear due to lack of distinctive phenotype in the protease 

defective mutants. The PMF data showed FtsH4 interacts with several proteins which 

were also detected in other FtsH samples (see Appendix). Therefore, the functional 

redundancy across FtsH homologues is likely to compensate the loss of FtsH4. 

However, a few proteins carrying distinctive physiological functions were exclusively 

detected in the FtsH4 sample, including the homologue of Arabidopsis KaiC (Slr0758) 

involved in regulation of circadian clock, the precursor of phosphate-binding 

periplasmic protein (Sll0680) that might play a role in cell adhesion (Zaborina et al. 

2008), a homologue of the FkbM family of methyltransferases (Sll1530), which is 

involved in the synthesis of FK506 associated with immunosuppression (Chen et al. 

2013). These preliminary data therefore open up interesting new avenues to explore 

the role of FtsH4. 

 

Although FtsH2/FtsH3 complexes appear to play a major role in D1 degradation, it 

remains feasible that additional proteases might associate with FtsH complexes in vivo 

to help aid processive proteolysis of transmembrane proteins. That is why it is so 

exciting to identify a second protease, a homologue of Arabidopsis EGY2 (Sll0862), 

interacting with the FtsH2/FtsH3 complex (see section 5.1.1). EGY2 is an 

ATP-independent, Zn
2+

-binding metalloprotease thought to cleave proteins within 

transmembrane regions (Chen et al. 2012).  Using the FtsH complex as an anchor 

would generate a general “membrane protein degradation centre” capable of removing 

recalcitrant membrane substrates. To test for a role for sll0862 in photoprotection, two 

sll0862 null mutants were constructed and photoautotrophic growth was assessed 

under strong illumination. However, both mutants showed no distinguishable defect 
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compared to the wild-type, in contrast to the FtsH2 defective mutant (see section 

5.1.2.3). Therefore, these data do not indicate a critical role for Sll0862 in 

photoprotection, which would suggest that FtsH2/FtsH3 complexes are capable of 

maintaining the PSII repair cycle in the absence of Sll0862. Given that there is a 

homologue of Sll0862 encoded in the Synechocystis genome (annotated as Slr0643) it 

still remains possible that loss of Sll0862 might be compensated for by this protein. 

This can be tested by analysis of a double mutant. 

 

5.3.2 A role for Psb29 in controlling levels of the FtsH2/3 complex 

Psb29 is universally conserved in cyanobacteria, green algae and all vascular plants 

for which genome data are available (Keren et al. 2005). Psb29 was initially identified 

as a novel PSII-associated protein in His-tagged PSII preparations isolated from 

Synechocystis (Kashino et al. 2002). Subsequent characterisation revealed that the 

Synechocystis Psb29 defective mutant exhibited slow-growth and increased light 

sensitivity. 

 

Psb29 is the homologue of THYLAKOID FORMATION 1 (THF1) in A. thaliana 

(Wang et al. 2004), which is ubiquitously expressed in all organs of A. thaliana, and 

dual targeted to the membrane envelop and the stroma (Huang et al. 2006). THF1 

plays diverse cellular roles including a G-protein-coupled signalling pathway that 

regulates sugar transport and FtsH accumulation in chloroplasts (Huang et al. 2006; 

Zhang et al. 2009). The data presented in this chapter suggest that the level of the 

FtsH2/FtsH3 complex is also dependent on Psb29 in Synechocystis. In addition the 

protein expression profile is abnormal in psb29 null mutants grown in the presence of 

glucose (Figure 5.5), suggesting that Psb29 might also be somehow involved in 

glucose sensing. The link between Psb29 and FtsH is still unclear. The decrease in 

FtsH accumulation in the psb29/thf1 null mutant of Arabidopsis is not due to effects 

on transcript levels (Zhang et al. 2009), but rather seems to be post-transcriptional. 
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Given that unassembled FtsH2 and FtsH3 are rather sensitive to degradation (Boehm 

et al. 2012; Sakamoto 2003), it seems plausible that Psb29 might play a direct role in 

the assembly of the FtsH2/FtsH3 complex. Notably, the accumulation level of FtsH1 

and FtsH4 was comparable to that of wild-type (Figure 5.5), which would suggest that 

Psb29 is not involved in, or not important for, the assembly of FtsH4 complexes and 

FtsH1/3 complexes.  

 

Disruption of thf1 in Arabidopsis leads to a dramatic reduction in the level of FtsH 

heterocomplexes in the thylakoid membrane. Interestingly, the accumulation of the 

FtsH subunits in the membrane depends on the type of FtsH subunit with the 

abundance of Type A subunits reduced to ~ 20 % of the wild-type level whereas the 

Type B subunit was only reduced to 60 %. It is possible that Psb29 might act as a 

molecular scaffold assisting the correct folding of Type A subunits, or coordinating 

the assembly of the FtsH2/3 complex. Given the similarities in the phenotypes of the 

cyanobacterial and Arabidopsis mutants with regard to effects on FtsH complexes, it 

seems that this role for Psb29 has been conserved through evolution. Localisation data 

for Psb29 in Synechocystis are still lacking, but on the basis of the interaction between 

Psb29 and His-tagged PSII, and also the fact that the FtsH2/FtsH3 complex resides in 

the thylakoid, it is likely that Psb29 does indeed attach to the thylakoid membrane. 
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Chapter 6: Conclusions and future work 

This work has investigated the FtsH family proteases in the cyanobacterium 

Synechocystis sp. PCC 6803, and has provided further insights into the structure, 

function and regulation of these proteases. FtsH proteases are universally preserved in 

eubacteria, mitochondria and chloroplasts (Ito and Akiyama 2005). Most bacteria only 

express one type of FtsH and, in the case of E. coli, it is essential to cell viability 

(Ogura et al. 1999). In contrast four FtsH homologues have been identified in 

Synechocystis, of which, FtsH1 and FtsH3 are essential (Mann et al. 2000), FtsH2 

plays important role in maintaining photosynthesis (Nixon et al. 2005), and the 

function of FtsH4 is unknown. Little was known at the outset of this thesis about the 

structure and function of these FtsH proteases, in particular, the interaction between 

the different homologues. The experimental data presented in this work has provided 

new insights into the composition, localisation and structure of FtsH proteases (see 

Chapter 3; see section 6.1), functional mechanisms (see Chapter 4; see section 6.2) 

and the substrates and regulation of FtsH proteases (see Chapter 5; see section 6.3). 

Some data obtained in this work, including the composition analysis of FtsH 

complexes and the EM structure of the FtsH2GST/FtsH3 hetero-hexameric complex 

both in Chapter 3 were published in Boehm et al., 2012. In this final chapter, the most 

important results from previous chapters will be briefly summarised, followed by an 

outlook on potential future work (see section 6.4). 

 

6.1 FtsH complexes in Synechocystis, composition, localisation and 

structure  

FtsH proteases are integral membrane proteases that have been implicated to form 

large complexes in vivo (Ito and Akiyama 2005). In the case of yeast mitochondria, 

both homo- and heterocomplexes are found in the inner membrane. Genetic and 

biochemical studies have also provided early indications that the FtsH complexes 
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found in Arabidopsis chloroplasts are also homo-oligomeric and hetero-oligomeric 

(Sakamoto 2003; Zaltsman et al. 2005); the latter composed of two types of FtsH 

subunit: type A and type B. However, no FtsH complex has been isolated from 

chloroplasts and characterised so there is a lack of direct evidence. In addition, FtsH 

can form large supercomplexes with members of the Band 7 (or SPFH) family of 

proteins. Whether such a situation exists in plant chloroplasts or cyanobacteria is 

unclear (Janska et al. 2013). Although FtsH is widely considered to be a hexamer, this 

is based on the crystal structures for the cytosolic domains of bacterial FtsH 

over-expressed in E. coli. Although this would appear a reasonable assumption, the 

structure of the native FtsH complex is still lacking, hence vital details concerning the 

size, shape and subunit positioning within the complex, particular important in the 

case of hetero-complexes of FtsH, remain important questions to answer.  

 

In this work, mutagenesis was performed to fuse a C-terminal GST tag to each of the 

four FtsH homologues found in the cyanobacterium Synechocystis sp. PCC 6803. The 

resulting mutants showed wild-type-like phenotype, with the exception of the mutant 

encoding FtsH3-GST, which showed an increased light sensitivity (see Figure 3.3). 

Nevertheless, the ability to segregate the mutation plus the phenotype analysis 

suggested that fusion of a C-terminal tag did not inactivate activity of the FtsH 

proteases (see section 3.1.3). Subsequently, each FtsH homologue was isolated via 

affinity purification and subjected to biochemical and structural analysis. The 

immunoblotting analysis revealed co-purification of FtsH1/FtsH3 and FtsH2/FtsH3, 

suggesting the presence of hetero-complexes, although formation of a small 

proportion of homocomplexes cannot be excluded, whereas no other FtsH homologue 

was detected in the FtsH4 sample (Figure 3.4). Structural analysis of an 

FtsH-GST/FtsH3 complex revealed the presence of a hexameric particle that has a 

diameter of ~ 120 Å, with FtsH2-GST and FtsH3 subunits arranged in an alternating 

fashion (Figure 3.16). This work has been published (Boehm et al. 2012). 
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As a membrane protease, correct localisation is vital to gain access to membrane 

bound substrates. In addition to the cytoplasmic membrane, cyanobacteria contain a 

unique thylakoid system in which the photosynthetic machinery resides (Vermaas 

2001). In chloroplasts, different FtsH homologues have been found either in the 

thylakoid membranes (Zaltsman et al. 2005) or in the chloroplast envelope 

membranes (Ferro et al. 2010), which raised speculation that the localisation of FtsH 

complexes in Synechocystis might also be membrane specific. Localisation data were 

collected using two independent approaches: first, fluorescence microscopy showed 

that GFP-tagged FtsH2 and FtsH4 were mainly detected in the thylakoid membrane 

system, whereas weak signals of FtsH1 and FtsH3 were detected in or close to the 

cytoplasmic membranes. Second, immunoblotting of protein fractions comprising 

cytoplasmic and thylakoid membranes of wild-type Synechocystis using FtsH-specific 

antibodies confirmed that FtsH2 and FtsH4 were present in the thylakoid membrane 

fraction, whereas, signals of FtsH3 were detected in both the cytoplasmic and 

thylakoid membrane fractions (Figure 3.13). The localisation of FtsH1was not 

elucidated in biochemical analysis due to time limitations. Further work is required to 

assess whether the FtsH complexes are found in defined regions of the membrane 

system, such as biogenesis centres where the photosystems are thought to be 

assembled or repair centres where PSII may be repaired following photodamage 

(Komenda et al. 2012). 

 

The compositional and structural analysis, in tandem with data from localisation 

studies, therefore suggests that the four FtsH homologues could form two 

heterocomplexes (FtsH1/FtsH3 and FtsH2/FtsH3) and an FtsH4 homocomplex. 

FtsH2/FtsH3 complex along with FtsH4 appear to be located in the thylakoid 

membranes, whereas, the FtsH1/FtsH3 complex is likely to reside in or close to the 

cytoplasmic membrane. N-terminal sequencing data did not support the hypothesis 

that the first predicted transmembrane helix of FtsH acts a cleavable signal peptide as 
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suggested for chloroplast FtsH from import experiments (Rodrigues et al. 2011). 

Hence my current view is that FtsH proteases in Synechocystis contain both 

transmembrane helices. It should be noted that this conclusion does not rule out a 

targeting function for the first transmembrane helix and does not extend to FtsH1 for 

which no N-terminal sequence data were obtained. 

 

6.2 Functional characterisation of FtsH proteases in vivo and in vitro 

The function of FtsH is vital and diverse and in E. coli substrates of FtsH-mediated 

degradation cover a range of soluble and membrane proteins (Ito and Akiyama 2005). 

Similarly, in Synechocystis, FtsH2 plays a general housekeeping role in maintaining 

the quality of membrane proteins (Nixon et al. 2005). Preliminary work on 

Synechocystis FtsH showed the essentiality of FtsH1 and FtsH3 and dispensability of 

FtsH2 and FtsH4 (Mann et al. 2000). Among the four homologues, the function of 

FtsH4 is totally unknown as no distinguishable phenotype was observed in the FtsH4 

null mutant (Mann et al. 2000). Our localisation data clearly showed that both FtsH2 

and FtsH4 are present in the thylakoid membranes, although a location in different 

regions cannot be totally excluded, (see section 3.12), which raised the speculation 

that the function of FtsH4 might be overshadowed by the FtsH2/FtsH3 complex due 

to functional redundancies. Hence an FtsH2/FtsH4 double knockout mutant was 

constructed and compared with FtsH2 single deletion strain under increased 

illumination intensity (see Figure 4.5). Growth of the double mutant showed a higher 

sensitivity to light stress comparing to the FtsH2 single mutant, indicating FtsH4 also 

contributes to photoprotection. However, the underlying mechanism is still unclear. 

 

In chloroplasts, FtsH isomers are believed to mainly form heterocomplexes 

(Sakamoto 2003). Despite having no structural data, an interesting observation is that 

inactivation of only one type of subunits on the AAA+ domain via amino acid 

substitution rendered the entire protease non-functional, whereas, inactivation of the 
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Zn
2+_

binding motif only had minor effect on the proteolytic function of the FtsH 

complex (Zhang et al. 2010). A similar effect also seems to hold for the Synechocystis 

FtsH2/FtsH3 complex. Indeed, FtsH2 mutants containing mutations which lead to loss 

of protease activity in homologous FtsH subunits were still capable of growing under 

high-light conditions (see Figure 4.7). Along with the protease defective mutants, the 

C266S mutant also survived light stress. C266 is a conserved residue localised in the 

AAA+ domain, which has been speculated to play a role in regulatory control of the 

FtsH complex (Mata-Cabana et al. 2007). However, the function of FtsH2 seemed to 

be unaffected in this preliminary test. 

 

Despite in vivo studies showing that FtsH is at the centre of D1 degradation in the 

PSII repair cycle (Nixon et al. 2005), evidence of direct interaction between FtsH and 

D1 protein is still lacking. Inactivation of the Zn
2+ 

binding motif has been shown to 

“trap” fast degrading substrates in the proteolytic chamber (Westphal et al. 2012). 

Hence construction of the protease defective FtsH might increase the chance of 

detecting such interaction. Unfortunately, the protease domain of FtsH2/FtsH3 

complex functions redundantly as with their counterparts in Arabidopsis (Zhang et al. 

2010), which possess greater challenge to achieve complete inactivation of the 

protease domain. On the other hand, since FtsH4 functions alone, inactivation of the 

protease domain is much simpler. In this work, four FtsH4 mutants carrying point 

mutations were made (see Figure 4.8) and ready for future characterisation. 

 

The C-terminal GST tag fused to each FtsH homologue did not compromise the major 

function of FtsH, however, mutant expressing FtsH3-GST fusion protein exhibited 

increased sensitivity to light stress (see Figure 3.3). To gain further insight into the 

influence of the GST tag on the physiological function of FtsH, the ftsH2/ftsH4 

double deletion strain, which was used as recipient strain to minimise the functional 

overlap from other FtsH homologues, was transformed with the four GST tagging 
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vectors. In contrast to the other three mutants, cells transformed with pFtsH3GSTery 

construct failed to grow. A reverse approach was also attempted, by disrupting ftsH2 

from SynFtsH3GSTery strain, and again, no colonies were obtained (data not shown). 

Hence GST tag at the C-terminus of FtsH3 did lead to functional disturbance, 

however, the fusion protein still retained limited activity as judged from 

transformation of WT-G. Interestingly, and in contrast to FtsH3, the GST-tagged 

FtsH1 seemed not to affect cell viability; the phenotype of the triple mutant was 

indistinguishable to the recipient strain (see Figure 4.9). 

 

FtsH4 is the only homologue not found interacting with other FtsH homologues. We 

explored the possibility that competition from FtsH2 might prevent the interaction 

between FtsH3 and FtsH4, which are both found in the thylakoid membrane. Hence a 

protein preparation of FtsH4 was performed to isolate FtsH4-GST fusion protein from 

SynFtsH4GSTΔ2, the double mutant lacking FtsH2. The isolated protein sample, 

again, containing only one major band (see Figure 4.10), hence the interaction 

between FtsH homologues is rather specific. 

 

FtsH is a member of AAA+ superfamily, and contains three functional domains: a 

transmembrane domain, an AAA+ domain and a Zn
2+

 binding protease domain (Sauer 

and Baker 2011); hence FtsH possesses both ATPase and protease activity. There is 

however very limited characterisation of native FtsH activity from either 

cyanobacteria or chloroplasts mainly due to low abundance and insolubility. To 

bypass this limitation, an E. coli heterologous expression system was used to 

over-express the cytosolic region of FtsH2, FtsH3 and FtsH4. Noteworthy, to 

maximise the chance of getting stable proteins, the coding sequence of the 

recombinants proteins were cloned from a thermophilic cyanobacterial strain, T. 

elongatus (see Table 4.3). The resulting recombinant proteins lacking the 

transmembrane domain were purified from the soluble fraction (see Figure 4.13) and 
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then tested for NTPase and protease activity. Among the three homologues 

investigated, FtsH4 exhibited the highest NTP hydrolysis activity (see Figure 4.14), 

and was the only one possessing proteolytic activity in vitro using casein as a 

substrate (see Figure 4.15). Both FtsH2 and FtsH3 exhibited comparatively low 

activity in the NTP hydrolysis assay, however, the activity of FtsH2 was dramatically 

increased when incubating with CTP (see Figure 4.14). In fact, among the four 

nucleotides, CTP seemed to be the preferred substrate to all three FtsH proteases, 

followed by ATP, GTP and UTP. Early functional characterisation of E. coli FtsH 

suggested complex formation is key to efficient ATP hydrolysis and proteolytic 

activities (Akiyama and Ito 2000), therefore, it is conceivable that 

hexameric-oligomers might be present in the FtsH4 sample and contribute to the 

higher activities. The availability of these soluble fragments of cyanobacterial FtsH in 

high yield opens up the possibility of conducting crystallisation trials to enable more 

detailed structural information to be obtained. 

 

6.3 Probing physiological function and regulatory mechanisms of 

FtsH in Synechocystis 

Proteins that co-purify with FtsH are potential substrates of the complex, possibly 

trapped in the complex (Westphal et al. 2012). Further work is required to confirm 

that they are truly substrates such as by comparing turnover of the protein in vivo in 

WT and mutant. In agreement with the general housekeeping role that FtsH play, both 

soluble and membrane proteins with diverse cellular functions have been found 

interacting with FtsH proteases (see Appendix). Thus, the composition of the 

candidate substrates varies between homologues, indicating that each homologue 

carries out specific duties. In the case of the FtsH2/FtsH3 complex, a few subunits of 

photosynthetic complexes were detected in FtsH2 and/or FtsH3 samples, hence 

providing direct evidence that FtsH2/FtsH3 complex is involved in maintenance of 

photosynthetic pathway. Previous in vivo characterisation was unable to elucidate the 

function of FtsH4 due to the lack of distinguishable phenotype of the defective mutant 
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(Mann et al. 2000). Interestingly proteins involved in the circadian cycle, and ion 

uptake were detected. Hence FtsH4 might play a role in these pathways and be located 

in regions of the thylakoid membrane close to the periplasm, such as the 

PratA-defined membranes (Schottkowski et al. 2009). 

 

The function of FtsH in other systems is thought to be regulated via interaction with 

auxiliary proteins, such as members of the Band 7 family of proteins and possibly 

YccA homologues. Although Prohibitin 1, a member of the Band 7 family, was 

consistently detected in FtsH2-GST/FtsH3 protein samples (see section 3.3.2, 5.1.1 

and Appendix), a regulatory function of Prohibitin 1 in FtsH activity in Synechocystis 

has not been observed so far (Boehm et al. 2009). Therefore, the regulation of FtsH 

complexes remains unclear. Two more candidates that might regulate or work with 

FtsH complexes were tested in this work. These included the homologues of E. coli 

YccA (Sll1150) and Arabidopsis EGY2 (Sll0862). YccA is a substrate and inhibitor of 

E. coli FtsH (Ito and Akiyama 2005; van Stelten et al. 2009), whose abundance and 

stability influence the FtsH activity. In our preliminary study, a sll1150 null mutant 

was constructed and tested for photoautotrophic growth. The resulting mutant 

exhibited wild-type-like phenotype; hence did not yield functional insights into the 

FtsH complex. EGY2 is an membrane-bound Zn
2+

-binding protease involved in 

cleaving transmembrane regions of membrane proteins. A working hypothesis for the 

interaction between FtsH and Sll0862 was that by anchoring on the FtsH2/FtsH3, the 

two proteases can form a repair centre to degrade a wider range of substrates, possibly 

through a synergetic process. Defective mutants of Sll0862 were made and checked 

for photoautotrophic growth, however, the mutants exhibited a wild-type-like 

phenotype (Figure 5.3). Hence the involvement of Sll1150 and Sll0862 in 

FtsH-mediated PSII repair remains unclear. It therefore remains possible that Sll0862 

is actually a substrate of FtsH rather than a co-protease. More work is therefore 

required to monitor D1 degradation in the absence of Sll0862, to see if D1 turnover is 



186 
 

slower for instance, and to test for possible overlap of function with a close 

homologue of Sll0862 also found in Synechocystis. This can be done through 

construction of a double mutant. 

 

Psb29 has previously been identified as an auxiliary factor of PSII (Kashino et al. 

2002). A mutant of Arabidopsis lacking a functional homologue of Psb29, also termed 

Thf1, shows striking leaf variegation similar to that of FtsH defective mutants (Zhang 

et al. 2009). In this work, psb29 null mutants were constructed and tested for growth. 

Growth of the psb29 null mutant was sensitive to light stress, but the effect was less 

severe than that of ftsH2 null mutants (see Figure 5.6). Analysis of FtsH protein levels 

in the psb29 mutant revealed a remarkable reduction in both FtsH2 and FtsH3 but not 

FtsH1 and FtsH4 (see Figure 5.5). Our working model is that the phenotype of the 

psb29 mutant is related to perturbed accumulation of specifically the FtsH2/FtsH3 

heterocomplex. The underlying mechanism remains unclear but we assume that it has 

been conserved through evolution. Based on the data obtained with the thf1 mutant, 

the effect appears to be post-transcriptional, possibly at the level of assembly of the 

FtsH complex. 

 

6.4 Future work 

Significant progress has been made in this work in understanding the structure and 

function of the FtsH proteases in Synechocystis 6803. Among the three FtsH 

complexes identified in this work, only the structure of the FtsH2/FtsH3 complex has 

been studied to any great depth. The size and subunit organisation of FtsH1/FtsH3 

complex might be similar to that of the determined FtsH2/FtsH3 complex, however, 

little is known about FtsH4 as the evidence of homocomplex formation is lacking. 

Subsequent work, such as by electron microscopy, could address the size and 

composition of the remaining complexes. 
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I have provided evidence that the protease domain of FtsH2 is not required for a 

functional FtsH2/FtsH3 complex, which is consistent to the observation in 

Arabidopsis (Zhang et al. 2010). On the other hand, a number of mutants carrying 

mutations in the AAA+ domain and having drastic effects on function have been 

constructed but have yet to be analysed. The equivalent mutations in Arabidopsis 

FtsH2 (VAR2) led to inactivation of the whole complex. Moreover, to clarify the 

potential thioredoxin control of FtsH complexes, a mutant carrying C266S mutation 

was made. The mutant displayed wild-type-like phenotype in the preliminary growth 

experiment. Growth experiments under different environmental conditions might 

identify a growth defect. 

 

Growth experiments showed that affinity-tagging of FtsH1 and FtsH2 does not 

compromise the function of the proteases. However, the C-terminal GST tag showed 

partial functional interference of FtsH3, whereas the influence of GST tagging on 

FtsH4 remains unclear. Further investigations would be beneficial to clarify the 

differential interference of GST tagging between Type A-like (FtsH3) and Type B-like 

(FtsH1 and FtsH2) subunits. 

 

Substrate analysis unveiled the potential functions of FtsH4, which suggested 

directions for future experiments. A series of mutants expressing inactive FtsH 

derivatives have been made, some of which were designed to “trap” substrates, hence 

capable of capturing fast degrading degradants (Westphal et al. 2012). Future work is 

required to analysis the composition of co-purified proteins, in a hope to identify 

previously unknown substrates, and also possibly D1. 

 

The auxiliary proteins that form supercomplexes with FtsH are potentially involved in 

regulation the activity of the FtsH complexes. Two potential candidates, homologues 

of YccA and EGY2 were examined in preliminary studies, but no evidence of 
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regulation has so far been observed. Further investigations might be beneficial 

towards understanding the interaction between these proteins and FtsH. It is worth 

noting that in E. coli, the N-terminus of YccA seems to be essential to FtsH-mediated 

degradation, and truncated YccA lacking the N-terminal region, which is not 

degradable, could stably interact with FtsH and inhibit its activity (Saikawa et al. 2004; 

van Stelten et al. 2009). Therefore, future studies on mutants expressing truncated 

Sll1150 are suggested. 

 

The accumulation of FtsH2/FtsH3 complex is mediated by Psb29, however, the 

underlying regulatory mechanism is so far unclear. The crystal structure of Psb29 

from T. elongatus has recently been solved (Nixon and Murray, unpublished), and has 

revealed it to be a “pin” shape. On the basis of the structure of Psb29, a potential 

working hypothesis to be tested is that Psb29 might act as a molecular scaffold to 

stabilise unassembled FtsH3 or FtsH2 isomers on the thylakoid membrane as 

unassembled FtsH subunits have been shown to be unstable and rapidly degraded 

(Boehm et al. 2012). 

 

Finally, vectors expressing the cytosolic domain of FtsH2, FtsH3 and FtsH4 from T. 

elongatus, were constructed in this work and the resulting recombinant proteins 

displayed low level of NTPase activity. In contrast to FtsH2 and FtsH3, the 

recombinant FtsH4 exhibited higher activity in NTP hydrolysis, and is the only one 

that displayed proteolytic activity. The in vitro data raised the speculation that the 

increased activity from FtsH4 might be a result of homo-oligomerisation Therefore, 

future work might include examining the size of FtsH4, also in vitro oligomerisation 

of FtsH2 and FtsH3.  Attempts to crystallise the over-expressed FtsH proteins could 

be made to yield the necessary atomic resolution structural data to help elucidate the 

molecular mechanism of cyanobacterial FtsH proteases. 
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Appendix 

Mass spectrometry data  

 

Table S1: Full list of proteins identified in the FtsH sample from PMF 

ORF FtsH1 GST *FtsH2 GST FtsH3 GST FtsH4 GST Note 

sll0067 √ √ √ √ glutathione S-transferase 

sll1150 √ √ √ √ hypothetical protein (YccA) 

sll1106 √   √ √ hypothetical protein (conserved membrane protein with unknown function) 

slr0236 √   √ √ similar to glutathione S-transferase 

sll1577   √ √   phycocyanin beta subunit 

slr1106   √ √ √ Prohibitin (Phb1) 

sll1099 √ √ √   elongation factor Tu 

sll0862   √ √   hypothetical protein (membrane-associated, Zn metalloprotease, M55 peptidase family) 

slr0774     √ √ protein-export membrane protein SecD 

Above is the list of co-purified proteins detected in more than one type of FtsH-GST  

slr1390 √ √     FtsH1 

slr0228   √ √   FtsH2 

slr1604 √ √ √   FtsH3 

sll1463 √     √ FtsH4 

Above is the list of co-purified FtsH 
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sll1580   √     phycobilisome rod linker polypeptide 

slr0394   √     phosphoglycerate kinase 

Above is the list of co-purified proteins detected exclusively in FtsH2-GST 

sll1578     √   phycocyanin alpha subunit 

slr0244     √   hypothetical protein (USP: universal stress protein) 

sll1450     √   nitrate/nitrite transport system substrate-binding protein 

sll1327     √   ATP synthase gamma chain 

sll1196     √   phosphofructokinase 

slr1299     √   UDP-glucose dehydrogenase 

sll1536     √   molybdopterin biosynthesis MoeB protein 

Above is the list of co-purified proteins detected exclusively in FtsH3-GST 

slr0758       √ circadian clock protein KaiC homolog 

sll0680       √ phosphate-binding periplasmic protein precursor (PBP) 

sll0689       √ Na+/H+ antiporter 

sll1530       √ unknown protein (FkbM family methyltransferase) 

sll1021       √ hypothetical protein (Band 7 protein, Phb5) 

Above is the list of co-purified proteins detected exclusively in FtsH4-GST 



Genotype and cloning procedure of SynFtsH2GST 

 

 

Figure S1: Plasmids used to construct SynFtsH2GST. Schematic representations of the inserts found in the (A) p0228, (C) p0228TEVHISSTREP 

and (D) p0228GSTSTREP plasmids and (B) a vector map of the p0228TEVHISSTREP plasmid. A detailed description of how the individual plasmids 

were constructed can be found in the Materials and Methods section. (A-D) Black and yellow boxes indicate genes, grey boxes indicate non-coding sequence 

and triangular arrows depict the direction of transcription of the labeled genes. The purple box indicates the TEV protease site, the blue box the His9 and the 

red box the Strep tag-II encoding sequences. Restriction sites used for cloning steps or construct identification are labeled including the number of sites in 

superscript type. Restriction sites in brackets indicate that the respective site has been destroyed. Primers used for gene amplification, construct confirmation 

and sequencing are marked. Gene sizes, PCR products and restriction fragments are labeled in kb and annotated with the fragment name or restriction 

enzyme used to digest the fragment. (E) Predicted primary structure of the FtsH2-GST fusion protein including sequence of the linker. 



Confocal flurescence microscopy images of each ftsH::gfp mutant 

 

 

Figure S2: SynFtsH1GFPcam under confocal fluorescence microscopy.  

(A) Image of GFP fluorescence emission scanned at wavelengths 500-527 nm. (B) Image of Chlorophyll a fluorescence emission at a wavelength of 665 nm. 

The overlay image of A and B are enlarged and presented on the left, scale bar 0-5 µm



 

 

Figure S3: SynFtsH2GFPcam under confocal fluorescence microscopy.  

(A) Image of GFP fluorescence emission scanned at wavelengths 500-527 nm. (B) Image of Chlorophyll a fluorescence emission at a wavelength of 665 nm. 

The overlay image of A and B are enlarged and presented on the left, scale bar 0-5 µm. 



 

 

Figure S4: SynFtsH3GFPcam under confocal fluorescence microscopy.  

(A) Image of GFP fluorescence emission scanned at wavelengths 500-527 nm. (B) Image of Chlorophyll a fluorescence emission at a wavelength of 665 nm. 

The overlay image of A and B are enlarged and presented on the left, scale bar 0-5 µm. 



 

 

Figure S5: SynFtsH4GFPcam under confocal fluorescence microscopy.  

(A) Image of GFP fluorescence emission scanned at wavelengths 500-527 nm. (B) Image of Chlorophyll a fluorescence emission at a wavelength of 665 nm. 

The overlay image of A and B are enlarged and presented on the left, scale bar 0-10 µm. 

 


