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ABSTRACT 

 
 

 

This thesis develops a novel understanding of the fundamental issues in characterising and 

propagating unpredictability in rock engineering design. This unpredictability stems from the 

inherent complexity and heterogeneity of fractured rock masses as engineering media. It 

establishes the importance of: a) recognising that unpredictability results from epistemic 

uncertainty (i.e. resulting from a lack of knowledge) and aleatory variability (i.e. due to 

inherent randomness), and; b) the means by which uncertainty and variability associated with 

the parameters that characterise fractured rock masses are propagated through the modelling 

and design process. Through a critical review of the literature, this thesis shows that in 

geotechnical engineering – rock mechanics and rock engineering in particular – there is a lack 

of recognition in the existence of epistemic uncertainty and aleatory variability, and hence 

inappropriate design methods are often used. To overcome this, a novel taxonomy is 

developed and presented that facilitates characterisation of epistemic uncertainty and aleatory 

variability in the context of rock mechanics and rock engineering. Using this taxonomy, a new 

framework is developed that gives a protocol for correctly propagating uncertainty and 

variability through engineering calculations. The effectiveness of the taxonomy and the 

framework are demonstrated through their application to simple challenge problems 

commonly found in rock engineering. This new taxonomy and framework will provide 

engineers engaged in preparing rock engineering designs an objective means of characterising 

unpredictability in parameters commonly used to define properties of fractured rock masses. 

These new tools will also provide engineers with a means of clearly understanding the true 

nature of unpredictability inherent in rock mechanics and rock engineering, and thus direct 

selection of an appropriate unpredictability model to propagate unpredictability faithfully 

through engineering calculations. Thus, the taxonomy and framework developed in this thesis 

provide practical tools to improve the safety of rock engineering designs through an improved 

understanding of the unpredictability concepts. 
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General notation 

A  Area of sliding block 
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roofP  Roof support pressure 

Q  Rock quality index for tunnelling 
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sS  Spacing of strand anchors 
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T  Tension in bolt 

bT  Yield strength of rock bolts 

sT  Yield strength of strand anchors 

U  Water pressure acting on failure plane 

V  Water pressure acting in tension crack 

W  Weight of sliding block 

z  Depth of tension crack 

wz  Height of water in tension crack 

  Acceleration coefficient 

  Reliability index 

  Unit weight of rock 

w  Unit weight of water 

  Angle of friction 

  Mean discontinuity spacing 

f  Angle of slope face 

p  Angle of failure plane 

  Inclination of bolt to failure plane 

1  Major principal stress at failure 

3  Minor principal stress at failure 

ci  Uniaxial compressive strength of intact rock 

h  In-situ horizontal stress 

v  In-situ vertical stress 

  
Induced tangential stress around a circular underground 

opening 

spall  Rock spalling strength 

  

Set and probabilistic notation 

 b,a  Interval bounded by a  and b  

X  Set containing all possible values of variable x  

 x  A set containing all values of x  
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 Element of (set membership) 

  Not an element of (non-set membership) 

 xf  Function of x  

Sup Supremum – least upper bound 

Inf Infimum – greatest lower bound 

X̂  Fuzzy number of variable x  

 xX  Fuzzy membership value 

X   -cut of X̂  

 xL  Lower bound fuzzy membership function 

 xR  Upper bound fuzzy membership function 

 x  Possibility distribution of x  

  Possibility measure 

N  Necessity measure 

 FF ,  A p-box bounded by lower and upper CDFs of F  

 xF  Cumulative density function of variable x  

 xF  Lower bound cumulative density function of variable x  

 xF  Upper bound cumulative density function of variable x  

 xf X  Probability density function of variable x  

E  An event E  

S  Sample space 

E  Complementary event of E  (i.e. not E ) 

 XP  Probability of a value X  

 xf post  Posterior probability distribution of variable x  

 xf prior  Prior probability distribution of variable x  

)|( ehP  Conditional probability of h given e 

  Universal quantifier (for all  ) 

  Mean 

  Standard deviation 

2r  Coefficient of variation 
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Abbreviations 

CDF Cumulative density function 

CHILE Continuous Homogeneous Isotropic Linear Elastic 

DIANE 
Discontinuous In-homogeneous Anisotropic Non-

Elastic 

FMF Fuzzy membership function 

FORM First order reliability method 

FoS Factor of safety 

FOSM First order-second moment 

GSI Geological strength index 

JRC Joint roughness co-efficient 

LEM Limit equilibrium model 

LoI  Level of information 

LSD Limit state design 
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PDF Probability distribution function 
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RQD Rock quality designation 
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SRF Stress reduction factor 
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GLOSSARY OF TERMS 

The following glossary presents the meaning of the terms as used throughout this thesis. 

Terms used in the definitions that are themselves defined elsewhere in this glossary are 

emboldened and italicised.   

Accurate Refers to a situation where data can be measured or assessed, without 

significant error, and close to the correct value of the parameter in 

question. Accuracy is required to attain a state of precise information. In 

general, accurate data can only be obtained through objective 

measurement of quantitative data.  

Aleatory 

Variability 

Stemming from the Latin ‘alea’, which means rolling of dice, aleatory 

variability refers to that part of unpredictability resulting from inherent 

randomness (see random), or natural variability in a physical system of 

environment. Also known as stochastic (see stochastic model) 

uncertainty, objective uncertainty or irreducible uncertainty, and can be 

modelled using a probability distribution function.  

Bayesian From Bayes’s Theorem; the Bayesian approach requires an 

unpredictable (see unpredictability) parameter to be modelled as a 

random variable (i.e. with a probability distribution function that is 

precise) defined using prior knowledge, expert opinion and any 

objective information, no matter how little, which may be available. 

Bayes’s Theorem can then be applied to update this ‘prior’ distribution 

to a ‘posterior’ distribution as further evidence or data becomes 

available.  

Bonus-Malus A system of reward and penalty often used by insurance companies in 

minimising risk of loss to the company. This system is analogous to the 

framework of exchangeable bets on which the subjective Bayesian 

approach is based.  
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Calculus A method of undertaking mathematical calculations. 

Degree-of-belief A subjective assessment of probability, likelihood or level of confidence 

in the materialisation of an event, or a parameter or system taking on a 

particular value. Required when defining a probability distribution 

entirely through expert opinion or judgement – i.e. with no justification 

through objective data – when applying the Bayesian approach using 

subjectivist probability. 

Dissonance Lack of agreement; inconsistency. Dissonance between experts refers to 

disagreement between their beliefs.  

Epistemic 

Uncertainty  

Derived from the Greek ‘episteme’, meaning knowledge – epistemic 

uncertainty refers to that part of unpredictability resulting from a lack of 

knowledge; it is both subjective in nature and influenced by 

preconceptions of what is considered realistic for the system in question. 

It has also been called ignorance, imprecision (see imprecise) or 

reducible uncertainty, and can be reduced or eliminated through 

additional information or knowledge, and is most appropriately modelled 

using non-stochastic methods (see stochastic model).  

Exceedence Refers to a situation when the value of a parameter is surpassed or 

exceeded. For example, the probability of exceedance refers to 

probability of a parameter exceeding a certain value. 

Exemplar An illustrative problem serving as a typical example or excellent model. 

Extrinsic Not belonging to the essential nature or constitution of a thing. See for 

example, extrinsically epistemic. 

Extrinsically 

epistemic 

Refers to parameters for which a probability distribution function could 

be determined if the data can be refined from imprecise to precise values 

or, if the data are precise, additional information deems the quantity 

sufficient to define an aleatory model (see aleatory variability).  Thus, 

when sufficient information becomes available, an extrinsically 

epistemic property can be treated as an aleatory property, and modelled 

using stochastic methods (see stochastic model). 
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Faithfulness Faithfulness can be seen as the pursuit for consistency with available 

information. That is, when characterising unpredictability, one should 

select a suitable modelling method commensurate with the level of 

information available. In particular, faithfulness requires that in the 

absence of any objective information, a non-stochastic (see stochastic 

model), interval-oriented, unpredictability modelling method should be 

used in lieu of the subjective assignment of a PDF that is precise (i.e. 

the Bayesian approach). The latter approach would arguably be 

misrepresenting the available information and in fact introduce 

information on probabilities of occurrence that are not actually available. 

Frequentist 

probability 

Probabilistic approach appropriate for modelling aleatory variability, 

which assumes that an event is the result of a random process, which can 

be realised by repeating an experiment a large number of times and 

plotting the number of times each outcome occurs. The variability in the 

results is characterised by one of the well known probability distribution 

functions, fitted to the data using various statistical tools and accepted 

on passing a number of hypothesis tests. 

Imprecise In this thesis, imprecise refers to situation where there is either an 

insufficient quantity of precise data, or the quality of data is neither 

precise nor accurate enough to objectively fit a probability distribution 

function to characterise the unpredictability in the parameter in 

question. Generally, subjectively determined parameters are considered 

imprecise.       

Indifference Refers to a situation where one has no objective information or degree-

of-belief on which to select any particular shape of a probability 

distribution function except for a uniform distribution. The principle of 

indifference is utilised in Bayesian approach using subjectivist 

probability.   

Intrinsic Belonging to the essential nature or constitution of a thing. See for 

example, intrinsically epistemic.  

Intrinsically 

epistemic 

Refers to parameters that are inherently imprecise and for which, no 
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matter the quantity of information, the quality of data could not be 

improved to reach a precise state. For such parameters it is inappropriate 

to assign a precise probability distribution. 

Nominal A scale of measurement where numerals assigned to define parameters 

are used only as labels or type numbers, and words or letters would serve 

just as well. A classic application of the nominal scale is where numbers 

are assigned to identify football players.  

Objective A method of assessing data in which the values assigned to parameters 

can be justified by physical or mathematical tests undertaken on factual 

and quantitative data. This method of assessment reduces dissonance 

between experts. 

Ordinal A scale of measurement where numerals are used to define rank ordering 

in the values of the parameters they define. That is, the numerical 

information on an ordinal scale provides information only on the 

ordering of the measurement. Ordinal scales are commonly used in rock 

mass classification systems. 

P-Box Probability boxes, or p-boxes, are mathematical structures that are able 

to represent both epistemic uncertainty and aleatory variability through 

the concept of imprecise probability. Imprecise probability, also referred 

to as probability bounds, analysis combines the methods of interval 

analysis and classical, or frequentist probability theory to produce a p-

box comprising two non-intersecting cumulative distribution functions 

that generalise an interval. 

Parameter Parameters are defined as inputs required to define mathematical 

models. Parameters may be used to specify properties of the material or 

system they describe. For example, a commonly used parameter to 

define stiffness of intact rock is the Elastic Modulus (E). 

Posterior When applying Bayesian updating, the prior probability distribution is 

updated, using Bayes’s Theorem, as further data is obtained. The initial 

(i.e. prior) distribution is thus updated to the ‘posterior’ distribution.  
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Precise Refers to situation where the data can be measured or assessed without 

ambiguity, vagueness and with sufficient exactness such that the value of 

the obtained measurement may be considered an accurate value of the 

parameter in question. In general, a sufficient number of objective 

measurements are required to obtain a state of precise information.  

Predictable The opposite of unpredictable. See unpredictability. A predictable 

parameter is one which may be exactly defined by a single value, e.g., 

the height of a rock slope can be accurately and precisely measured 

using surveying equipment and defined by a single value of height.  

Prior The Bayesian approach requires an unpredictable parameter to be 

modelled as a random variable (i.e. with a probability distribution 

function) defined using prior knowledge, expert opinion and any 

objective information, no matter how little, which may be available. This 

is known as the ‘prior’ probability distribution. 

Probability 

Distribution 

Function (PDF) 

A stochastic model used to characterise aleatory variability. A 

probability distribution function is a mathematical model defined by 

parameters that include its statistical moments (e.g. mean, standard 

deviation, etc.); well known examples include normal and uniform 

PDFs. A PDF can be fitted to the data using various statistical tools, and 

accepted on passing a number of well known, statistical hypothesis tests. 

Property  A property refers to a physically observable manifestation of the 

behaviour of a material or system. For example, the discontinuity 

spacing is a physical property of a fractured rock mass; the 

unpredictability in this property is commonly defined by a negative 

exponential PDF using the parameter  , which describes mean 

discontinuity spacing.  

Random Refers to an outcome or event chosen by chance; relating to, having, or 

being elements or events with definite probability of occurrence. 

Something being random implies complete unpredictability, except in 

the relative frequencies with which it occurs (see frequentist 

probability).  
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Robustness Robustness refers to a characteristic of interval-oriented uncertainty 

modelling methods such that, so long as the intervals forming the inputs 

bound the true value of the parameters they represent, the output is also 

guaranteed to bound the true result.  

Stochastic model Over a large number of trials, variability will tend to follow some 

distribution – the stochastic model, which describes a system of 

countable events, where the events occur according to some well-defined 

random process defined over some domain.  

Subjective A method of assessing data that used expert opinion, induction and ones 

degree-of-belief in estimating or assessing the values assigned to 

parameters. This method of assessment is used when no objective data 

are available, or the data are entirely qualitative in nature. Subjective 

assessment can lead to dissonance between experts. 

Subjectivist 

probability 

Probabilistic approach that interprets probability as a subjective measure 

of confidence (i.e. one’s degree-of-belief) in the available information. 

Subjectivist probability forms the basis of the Bayesian approach, which 

suggests that both aleatory variability and epistemic uncertainty (i.e. 

total unpredictability) should be modelled as a random variable – i.e. 

using a probability distribution function that is precise. This thesis 

demonstrates how this approach is neither faithful nor robust when the 

unpredictability is epistemic. 

Taxonomy In this thesis, the purpose of the proposed taxonomy is to provide a 

means of orderly arrangement of the terms required to objectively 

characterise the true nature of unpredictability, and present guidance on 

the appropriate unpredictability model with which to model and 

propagate the unpredictability of the parameter in question. 

Uncertainty Uncertainty represents that component of unpredictability which is due 

to a lack of knowledge, and thus a deficiency in the available 

information. It may be qualitative or quantitative in nature. 

Unpredictability Unpredictability characterises all our deficiencies and inabilities to be 

able to precisely predict the value of a parameter or system. 
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Unpredictability is due to the combination of lack of knowledge and 

randomness, i.e. the combination of epistemic uncertainty and aleatory 

variability.  

Variability Variability is the result of randomness and can be characterised by 

stochastic models and propagated using probability theory. 
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Chapter 1  

INTRODUCTION 

The inherent complexity and heterogeneity of fractured rock masses as engineering media 

makes their detailed and accurate characterisation an exceptionally challenging task. Feng & 

Hudson (2010) identify the need for collection of sufficient site investigation data as 

paramount to this characterisation process and consequently producing robust engineering 

designs. The reality is however, on actual rock engineering projects, site investigation is 

usually discontinued once the (small) budget allocated to it is depleted. Consequently, the 

combination of rock mass complexity and a lack of information lead to both significant 

simplifications regarding characterisation and subjective estimation of many physical 

parameters. Together, these simplifications and estimations result in an element of 

unpredictability in the engineering properties of fractured rock masses. 

In geotechnical engineering, the term uncertainty has been broadly – and, as this thesis 

will show, incorrectly - used throughout geotechnical engineering (Baecher & Christian, 

2003; Bárdossy & Fodor, 2004; Christian, 2004) to characterise all our deficiencies and 

inabilities to be able to precisely predict the value of a parameter or total unpredictability of a 

system (Vose, 2000). However, much of the literature from various fields of science and 

technology recognises that unpredictability in a parameter or system results from the 

combined contribution of epistemic uncertainty and aleatory variability (Hoffman & 

Hammonds, 1994; Ferson & Ginzburg, 1996; Helton & Oberkampf, 2004; Ang & Tang, 

2007), which are fundamentally different in nature. Epistemic uncertainty – derived from the 

Greek ‘episteme’, meaning knowledge – is due to lack of knowledge (Baecher & Christian, 

2003); it is both subjective in nature and influenced by preconceptions of what is considered 

realistic for the system in question (Kiureghian & Ditlevsen, 2009). It has also been called 

ignorance, imprecision or reducible uncertainty, and can be reduced or eliminated through 

additional information or knowledge (Guo & Du, 2007). Aleatory variability – etymologically 

from the Latin ‘alea’, which means the rolling of dice – on the other hand, describes the 
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inherent random variability in a physical system or environment (Baecher & Christian, 2003). 

It has been suggested that as aleatory variability – also known as stochastic uncertainty, 

objective uncertainty or irreducible uncertainty (Kiureghian & Ditlevsen, 2009) – describes 

inherent randomness (Ferson, 2002; Dubois & Guyonnet, 2011), it can be characterised by 

stochastic models and handled using probabilistic methods (Dubois & Guyonnet, 2011). It is 

now widely recognised that uncertainty and variability are fundamentally different in nature 

and so cannot be modelled using the same techniques (Dubois & Prade, 1989; Hoffman & 

Hammonds, 1994; Ferson & Ginzburg, 1996; Guyonnet et al., 1999; Ferson, 2002; Moller  & 

Beer, 2008; Dubois & Guyonnet, 2011). 

The putative difficulty in characterising heterogeneous rock masses coupled with the, 

all too often, case of limited objective data with which to characterise unpredictability is 

perhaps one reason for traditionally handling total unpredictability using deterministic models 

with conservative (‘lower bound’ or ‘worst case’) values as their inputs (Christian, 2004). 

This approach, however, fails to address the problem of satisfactorily quantifying and 

consistently dealing with lack of knowledge or randomness uncertainties (Nadim, 2007), but 

rather introduces further uncertainty and room for disagreement amongst experts on the 

question, ‘how conservative is conservative enough?’ The answer to which is based upon the 

subjective experience of the modeller or analyst. In some cases perceived ‘conservatism’ may 

still result in unsafe design assumptions (Becker, 1996). To account for these shortcomings, 

probabilistic approaches to analysing and quantifying uncertainty have become commonplace 

in rock engineering (e.g. Priest & Brown, 1983; Zhang & Einstein, 1998; Cai et al., 2000). In 

fact various authors have suggested that total unpredictability, i.e. both epistemic uncertainty 

and aleatory variability, can be handled using the Bayesian approach with associated 

subjective probabilistic methods (Jeffreys, 1961; Lindley, 2000; Howson, 2002). The 

Bayesian approach then allows one to make statements using familiar statistical terms such as 

‘probability of occurrence’, ‘mean value’, ‘confidence limit’ and so forth. However, the 

appropriateness of probabilistic methods to characterise and propagate epistemic uncertainty 

has recently been increasingly questioned (Baudrit et al., 2006; Baudrit et al., 2007; Dubois & 

Guyonnet; 2011), and in fact has been shown to produce erroneous and unconservative 

results. For geotechnical engineering design, one of the consequences of such errors is the 

potential for unsafe or unstable structures.  

In the context of geotechnical engineering, and rock mechanics and rock engineering 

in particular, it appears that the true meaning of uncertainty has not been correctly understood, 

and thus methods for its quantification have not been applied in an appropriate manner. This 
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may well result from the deficiency of a formal definition of uncertainty in the field of 

geotechnical engineering; rock mechanics and rock engineering in particular.  

For these reasons, this thesis develops a new taxonomy that will allow the true nature 

of geotechnical uncertainty to be correctly addressed rather than erroneously considering all 

unpredictability as aleatory variability (Uzielli, 2008). By drawing on non-stochastic models 

developed and presented in the wider literature – which explicitly account for 

incomplete/imprecise information, and have thus been extensively utilised to handle epistemic 

uncertainty in other fields of science and engineering – this thesis develops and presents a 

new framework, applicable to rock mechanics and rock engineering, that directs the user to 

simply and objectively characterise the nature of unpredictability in a parameter or system 

before propagating it through the analysis and design process using the appropriate 

(mathematical) tools. 

Applications of the new taxonomy and framework are demonstrated through three 

‘challenge problems’ commonly encountered in rock engineering. This concept of challenge 

problems is adopted from their inception at the epistemic uncertainty workshop, hosted by 

Sandia National Laboratories, and focuses on the representation, aggregation, and propagation 

of mixtures of epistemic and aleatory uncertainty through simple analytical models (Ferson et 

al., 2002; Helton & Oberkampf, 2004; Oberkampf et al., 2004). The challenge problems 

presented in this thesis follow this premise. As a result, this thesis is able to show that using 

non-stochastic methods when the unpredictability is epistemic can reduce dissonance amongst 

experts and even avoid potentially erroneous results obtained by the bias outputs that result 

from the Bayesian approach (Klir, 1989; Klir & Yuan, 1995; Ferson & Ginzburg, 1996; 

Baudrit & Dubois, 2006). 

The outcome of the developments presented in this thesis is that application of these 

new tools will harmonise designs by reducing arbitrary choices in characterising and 

propagating unpredictability in rock mechanics and rock engineering. This will mean that 

designers and policy makers will have a framework against which rock mechanics designs can 

be assessed and scrutinised. As such, this would mean that safety of rock mechanics designs 

will be greatly improved as the unpredictability concepts, currently not properly understood, 

will be better incorporated in to designs. 

1.1 Structure of this thesis 

This thesis consists of 8 chapters and various appendices. 
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Following this introduction, Chapter 2 presents a critical discussion on the concepts of 

epistemic uncertainty and aleatory variability, and the unique characteristics of each in the 

context of rock engineering. This discussion demonstrates the need to distinguish between 

epistemic uncertainty and aleatory variability with specific reference to design methods 

commonly used in rock engineering. This chapter confirms that aleatory variability may be 

handled using well known probabilistic techniques, but epistemic uncertainty requires 

alternative, non-probabilistic approaches. As a result, a novel taxonomy for characterising 

epistemic uncertainty and aleatory variability in rock mechanics and rock engineering is 

presented.  

Chapter 3 applies the taxonomy to demonstrate the importance of selecting an 

appropriate unpredictability model, after assessing the available information, to propagate 

uncertainty or variability. To support this, the unpredictability modelling methods of interval 

analysis, fuzzy arithmetic, imprecise probability boxes (i.e. p-boxes) and Bayesian and 

classical, or frequentist, probabilistic methods are examined. 

Chapter 4 presents a novel framework, in a series of three flowcharts, for 

characterising and propagating uncertainty or variability when undertaking design through 

engineering computations. The first flowchart is the overall framework, which contains two 

sub-charts. The first of these directs characterisation of the available data, with the second 

selecting an appropriate unpredictability model. 

Following this, the new taxonomy and framework are applied to three challenge 

problems. Chapter 5 uses a planar slope instability problem to compare application of an 

aleatory model with a non-probabilistic approach selected by following the framework. 

Chapter 6 demonstrates how empirical rock mass classification systems, and the Q-system in 

particular, are intrinsically epistemic. In both cases, conclusions are drawn regarding the 

appropriate unpredictability models that should be applied. Chapter 7 examines the problem 

of predicting the peak strength or intact rock and jointed rock masses. This problem 

demonstrates how, as information becomes progressively available, epistemic uncertainty 

may be re-classified as aleatory variability, and probabilistic methods then applied to the 

calculation. These three challenge problems illustrate the strength of the new taxonomy and 

framework in directing selection of an appropriate unpredictability model through an 

assessment of the available information. 

Chapter 8 draws together the conclusions reached through this research and presents 

proposals for further research. Finally, the thesis is supported by references and various 

appendices.  
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Chapter 2  

CHARACTERISATION OF 

UNPREDICTABILITY  

The introduction of this thesis identified the need to differentiate between uncertainty and 

variability as the two components that contribute to the total unpredictability within a 

parameter or system, especially when the available information to characterise the properties 

of the parameter or system is limited. This Chapter commences by presenting formal 

definitions of uncertainty and variability, followed by a discussion on the importance of 

characterising each through a quantitative and qualitative assessment of the available 

information. This discussion leads to the presentation of a new taxonomy for objectively 

characterising uncertainty and variability. Finally, this Chapter demonstrates the applicability 

of this new taxonomy through examples specific to rock mechanics and rock engineering. As 

a result, this chapter shows the effectiveness of the new taxonomy when selecting an 

appropriate unpredictability model if the available information is imprecise and/or sparse.  

2.1 Uncertainty and variability  

A review of the wider literature reveals the general acceptance that unpredictability is due to 

the combination of lack of knowledge and randomness (Dubois & Prade, 1988; Hoffman & 

Hammonds, 1994; Ferson & Ginzburg, 1996; Vose, 2000; Ferson, 2002; Baecher & Christian, 

2003; Helton & Oberkampf, 2004; Christian, 2004; Ang & Tang, 2007; Moller & Beer, 2008; 

Dubois & Prade, 2009; Helton et al., 2010; Beer et al., 2012). In geotechnical engineering, 

however, the term ‘uncertainty’ is often universally applied to define the total unpredictability 

of a parameter or system, with probability theory and statistics seen as the optimal methods 

for its quantification (Whitman, 2000; Duncan, 2001; Bárdossy & Fodor, 2004; Christian, 

2004; Uzielli, 2008). This may be a consequence of geotechnical industrialists’ failure to 
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distinguish between variability and uncertainty as the two components that contribute to 

unpredictability. Indeed, to faithfully characterise unpredictability, it is essential that these 

terms are recognised as being applicable to specific, different characteristics (Ferson & 

Ginzburg, 1996; Kiureghian & Ditlevsen, 2009; Dubois & Guyonnet, 2011).  

A dictionary definition of uncertainty is “not able to be relied on; not known or 

definite” (Merriam-Webster Inc., 2005), which suggests that uncertainty and knowledge are 

related. In turn, knowledge itself may be defined as “what is known in a particular field or in 

total; facts and information” (Merriam-Webster Inc., 2005). On a scientific level, the 

definition is the subject of heavy debate, even by theoretical mathematicians (Bárdossy & 

Fodor, 2004), and various science and technology fraternities interpret it in different ways 

(Ferson et al., 2002; Oberkampf et al., 2004). Zimmermann (2000) presents a generic 

definition of uncertainty in the context of scientific understanding as: “Uncertainty implies 

that in a certain situation a person does not dispose about information which quantitatively 

and qualitatively is appropriate to describe, prescribe or predict deterministically and 

numerically a system, its behaviour or other characteristica [sic]”. These definitions infer a 

link between knowledge and information, from which one can conclude that uncertainty 

represents a lack of knowledge, and thus a deficiency in the available information, which may 

be qualitative or quantitative in nature.  

In geotechnical engineering, a lack of knowledge – and thus uncertainty – may 

eventuate from a shortage of field or laboratory investigation data (i.e. incompleteness), or 

because the nature of the data is such that they cannot be objectively measured (e.g. degree of 

weathering). Such data require subjectivity or expert judgement in their estimation, which 

leads to dissonance, ambiguity and vagueness (Dubois & Prade, 1988; Klir & Yuan, 1995; 

Bárdossy & Fodor, 2004). In rock mechanics and rock engineering, many parameters are 

empirical in origin and not physically measureable, rather they are derived from expert 

opinion or imprecise correlations (e.g. rock mass classification). Similarly, other parameters 

are either based on an approximation, or require the analyst to make one, which Zimmermann 

(2000) defines as a situation with insufficient information to make a precise description.  All 

of these situations introduce imprecision and inaccuracy (Dubois & Prade, 1988; Dubois & 

Prade, 1989; Walley, 1991; Bárdossy & Fodor, 2004). On this basis, any part of total 

unpredictability that stems from a lack of knowledge due to shortage of objective data, 

subjective estimation, or reliance on the beliefs of experts is termed epistemic uncertainty.  

Variability differs from uncertainty in that it is a function of the inherent randomness 

of a system. The key term here is ‘random’, a dictionary definition of which is: “chosen at 
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random; relating to, having, or being elements or events with definite probability of 

occurrence.” (Merriam-Webster Inc., 2005).  Indeed, the statistician Sir David Cox stated: 

“Variability is a phenomenon in the physical world to be measured, analysed and where 

appropriate explained. By contrast uncertainty is an aspect of knowledge” (Vose, 2000). 

Consequently, in this thesis, the term aleatory variability is used to characterise those aspects 

of unpredictability deriving from inherent random variability related to natural fluctuations of 

the property in question  (Dubois & Guyonnet, 2011). In the context of geotechnical 

engineering, aleatory variability is exemplified by the variation, within a nominally uniform 

material, of properties such as uniaxial compressive strength. The variability in uniaxial 

compressive strength can be characterised through a series of measurements obtained from 

laboratory test, to which a stochastic model can be fitted.  

Having identified epistemic uncertainty as a function of the available information, it 

follows that obtaining additional knowledge – for example undertaking more field or 

laboratory tests – will reduce this aspect of unpredictability. If sufficient additional 

information to improve the state of information is obtained, it may be possible to re-

characterise the uncertainty as variability. Using this concept of reducibility, the distinction 

between aleatory variability and epistemic uncertainty can be made through an understanding 

of the current level of knowledge, given the available information (Aughenbaugh & Paredis, 

2006; Guo & Du, 2007; Dubois & Guyonnet, 2011), as shown in Figure 1. This figure shows 

how complete ignorance is one extreme of epistemic uncertainty, and that as knowledge 

increases so it may be possible to recognise that aleatory variability exists. Figure 2 shows 

how this transition from epistemic uncertainty to aleatory variability occurs as knowledge, 

and thus information, increases and a threshold – the state of precise information – is crossed. 

The state of precise information is achieved when there is sufficient data to use established 

statistical methods to objectively fit a precise probability distribution function to characterise 

it, i.e. apply an aleatory model. That is, the data can be measured with acceptable accuracy to 

allow a unique probability of occurrence to be assigned to each value of a variable. Once an 

acceptable aleatory model has been developed, additional investigation will not reduce the 

variability – which is inherent in the system and thus irreducible – but may increase the 

precision of the parameters that describe it (Christian, 2004). This aspect of reducibility is 

discussed in the following sections of this Chapter and also demonstrated later in Chapter 7 by 

the challenge problems on characterising unpredictability in estimating the strength of intact 

rock and fractured rock masses.  
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Figure 1: Total unpredictability: Uncertainty, 

variability and degree of knowledge  

(from Bedi & Harrison, 2013a). 

Figure 2: Uncertainty and information states (from 

Bedi & Harrison, 2013b). 

Figure 3 illustrates how an assessment of the quantity and quality of the available 

information can be used to characterise the nature of unpredictability. This figure shows that 

aleatory variability can only be invoked once a sufficient quantity of precise data is available. 

It also suggests that a transition from epistemic uncertainty to aleatory variability can be 

achieved by gathering more (quantitative) or better (qualitative) information. However, 

attaining this additional information is not always possible, which presents the following 

corollary: that the state of information remains imprecise and the unpredictability must be 

characterised as epistemic uncertainty. 

Precision (quality of information)

A
m

o
u
n

t 
o
f 

in
fo

rm
a

ti
o

n
 (

q
u

a
n

ti
ty

) Sufficient quantity

Poor quality
(large data set)

(imprecise data)

EPISTEMIC

UNCERTAINTY

Insufficient quantity

Poor quality
(small data set)

(imprecise data)

EPISTEMIC

UNCERTAINTY

Sufficient quantity

High quality
(large data set)

(precise data)

ALEATORY

VARIABILITY

Insufficient quantity

High quality
(small data set)

(precise data)

EPISTEMIC

UNCERTAINTY

 

Figure 3: Uncertainty and variability as a function of quality and quantity of available information  

(from Bedi & Harrison, 2013a). 

Through the concepts presented so far, it can be concluded that a key step when 

characterising unpredictability is to ascertain whether the current state of information is 
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precise or imprecise. Kurighien & Ditlevsen (2009) propose that it is the job of the analyst or 

engineer to make this distinction between aleatory variability and epistemic uncertainty before 

commencing on methods to propagate them through the modelling and design process. On 

this basis, the following discussion shall examine the circumstances that lead to a state of 

imprecise information, and thus introduce epistemic uncertainty. This is followed by a 

discussion on the nature of aleatory variability, with specific references in each case to rock 

mechanics and rock engineering.  

2.2 Epistemic uncertainty  

The archetypal problem often quoted to illustrate the nature of epistemic uncertainty is a deck 

of playing cards in a strategic game; after the deck of cards is shuffled, the arrangement of the 

cards is fixed but unknown (i.e. a lack of knowledge). The arrangement cannot be modelled 

stochastically, but can be discovered by examining each card in turn (i.e. increasing 

information). However, in games like Contract Bridge such an examination does not take 

place, these games use observation and induction in an attempt to obtain information about 

the arrangement of the cards (i.e. subjectivity) (Christian, 2004). 

From an engineering perspective, as part of the design process we often rely on 

idealised models of reality in our analysis and predictions (e.g. assumption that the rock mass 

is continuous, homogeneous, isotropic, linearly elastic). These idealised models, which may 

be mathematical or physical models, require inputs in the form of parameters – usually 

obtained from laboratory or site investigation data – to define engineering properties that then 

govern the behaviour of the system. Both the input parameters and the models themselves are 

abstractions of reality (Kiureghian & Ditlevsen, 2009). Therefore, the results of analyses, 

estimations, or predictions obtained on the basis of such models are inaccurate; they yield 

some unknown degree of error and thus also contain uncertainty (Ang & Tang, 2007). It 

follows that epistemic uncertainty can eventuate throughout the various stages of this design 

process; investigation and data collection, analysis and decision-making. Sources of 

uncertainty that arise in the course of investigation and data collection include lack of 

representative sampling, insufficient quantity or errors in precise measurements, uncertainties 

in the description of non-measureable properties and temporal uncertainty (Bárdossy & 

Fodor, 2004). During the analysis phase concept and model uncertainties, or uncertainties due 

to subjective information (belief) and uncertainties in mathematical modelling, may arise. 

Lastly, uncertainty in the final design may result from decision-making based upon outputs 

from uncertain inputs. All of these sources of uncertainty are routine in geotechnical 
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engineering and constitute a lack of information, which leads to a state of imprecise 

information. The uncertainties stem from either a qualitative or quantitative lack of 

information, or the type of data available.  

The following section first discusses how qualitative or quantitative lack of 

information leads to an imprecise state of information with specific reference to rock 

mechanics and rock engineering. This is followed by an examination of the types of 

information attributed to the means employed in measuring, or quantifying, rock engineering 

parameters. This discussion substantiates the earlier claim that probability theory is 

inappropriate for the quantification of epistemic uncertainty.  

2.2.1 Qualitative and quantitative lack of information 

According to Figure 3 (above), a quantitative lack of precise data requires that the state of 

knowledge be regarded as imprecise and, consequently, characterised as epistemic. This is 

now demonstrated with reference to an example of attempting to characterise data that can be 

objectively and precisely measured (e.g. standardised laboratory test results of uniaxial 

compressive strength) by a precise stochastic model. Figure 4a presents a set of data 

containing thirty samples and the distribution fitted to it. The closeness of the fit between the 

histogram and the distribution suggests that an aleatory model, i.e. a known stochastic 

function – in this case, normal – is appropriate to characterise the unpredictability. On the 

contrary, if presented with a limited number of precise measurements – for example, either of 

the two subsets (‘A’ or ‘B’) shown in Figure 4b, each limited to seven outcomes drawn from 

the data set – there are too few results to justify an aleatory model. This insufficiency of 

information requires the unpredictability to be characterised as epistemic uncertainty.  
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a) Data exhibiting aleatory uncertainty b) Data exhibiting epistemic uncertainty 

Figure 4: Appropriateness of a stochastic model to define an extrinsically epistemic data set  

(from Bedi & Harrison, 2012). 
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Alternatively, many parameters used to characterise properties in rock mechanics are 

either defined qualitatively or quantified entirely subjectively through expert judgment. 

Consequently, their estimation requires one to make an approximation. Examples include the 

many parameters used within empirical rock mass classification systems such as the joint set 

number nJ  in the Q -system (Barton et al., 1974), or the discontinuity condition rating used in 

the Rock Mass Rating (RMR) (Bieniawski, 1989). The empirical Geological Strength Index 

(GSI) (Hoek, 1994; Hoek et al., 1995) is another example. In any case, regardless of the 

amount of information collected or expert consultation undertaken, the subjectivity required 

to estimate such parameters will always result in approximate values and dissonance between 

experts (Klir, 1989; Tonon et al., 2000; Sonmez et al., 2003). Consequently, the state of 

information will always remain imprecise. Indeed, one of the originators of the GSI 

recognised this inherent imprecision and advised, “Do not try to be too precise. Quoting a 

range from 33 to 37 is more realistic than stating that GSI = 35” (Hoek, 2007). In these 

instances, imprecision results from a qualitative lack information, which may be further 

augmented by the use of parameters derived from approximate correlations. Examples include 

prediction of rock mass deformation from an estimated Q -value (Barton, et al., 1974) (Figure 

5a) or the estimation of rock mass modulus from GSI (Figure 5b), both of which are derived 

from approximate correlation with empirical evidence. There are a multitude of such 

empirical correlations commonly used in rock mechanics (see Gokceoglu et al., 2003; 2004 

for an extensive review); the precision of these correlations is generally unknown and in fact, 

as Figure 5 demonstrates, may be rather imprecise (Stille & Palmström, 2003; Palmström & 
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a) Deformation predicted from Q -value  

(from Barton, et al., 1994) 

b) Relationship between GSI and deformation modulus 

of rock mass (after Gokceoglu et al., 2003) 

Figure 5: Empirical correlation commonly used in rock engineering design. 
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Broch, 2006).  Once again, one of the originators of the Q -system realises this limitation, 

which is evident through the statement: ‘‘ Q  gives relatively simple correlations with 

parameters needed for design, due to the fact that rock masses also display a huge range of 

strengths, stiffnesses and degrees of stability or instability” (Barton, 2002). Characterising the 

unpredictability that results from the use of such rock mass classification systems is discussed 

in further detail in section 2.8.1. 

A final but significant example is a parameter that can be objectively measured, 

though the measurements are often sparse, imprecise or erratic; that parameter is k , which 

defines the ratio of the in-situ horizontal stress ( h ) to the in-situ vertical stress ( v ). In the 

absence of objective measurements, simple correlations based on empirical measurements are 

often utilised to estimate the in-situ horizontal stress from the vertical stress (see Figure 6). 

The vertical stress is often computed directly from the depth and density of the rock mass. 

Figure 6a suggests that such a relationship is valid, though there is a significant amount of 

scatter (variability) in the measurements. Figure 6b indicates the presence of clear bounds on 

the value of k , but a high degree of imprecision in intermediate values. Whilst the 

correlations in Figure 6b are global, site specific measurements of the parameter that defined 

in-situ stress ratio, k , also show a high degree of imprecision in its measurement, locally at 

any particular site (see e.g. Obara & Sugawara, 2003; Martin et al., 2003).  
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a) Correlation between vertical stress and depth b) Correlation between in-situ stress ratio (k) and depth  

Figure 6: Various correlations between in-situ vertical and horizontal effective stress  

(after Brady & Brown, 2004).  

From the discussion and examples presented thus far, it can be concluded that 

parameters used in rock engineering that fundamentally incorporate significant approximation 

or require subjectivity (e.g. expert judgement) in their derivation are qualitatively lacking 

information, and are therefore imprecise. Alternatively, a situation where the parameter in 
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question can be precisely measured though there is an insufficient quantity of data to fit a 

precise stochastic model, also constitutes imprecision. With respect to Figure 2 and Figure 3 

presented earlier, it is evident that either a quantitative or qualitative lack of information 

means that the state of information can only fall in the region of ‘imprecision’ and therefore 

the parameter in question must be categorised as epistemic. This imprecision naturally leads 

us to the conclusion that a stochastic model – which incorporates a precise probability 

distribution as its basis – is not appropriate to characterise such epistemic uncertainty. 

2.2.2 Uncertainty as a function of information type 

The objective and subjective measurement of parameters used to characterise rock mass 

properties introduces various types of information resulting from the measurement process 

itself. The types of information can be broadly characterised as; numerical, linguistic, 

interval-valued or symbolic (Zimmermann, 2000), and each influence the state of information 

differently. Thus, a qualitative and quantitative assessment of each data type is required to 

determine whether the state of information can be characterised as imprecise or precise. In the 

following discussion, we explore the theory of measurement with respect to the data types that 

result from objective and subjective measurement. These are discussed with specific reference 

to rock mechanics and rock engineering.  

In a seminal paper outlining the fundamentals of measurements, measurement is 

defined as: “in the broadest sense, as the assignment of numerals to objects or events 

according to rules. The fact that numerals can be assigned under different rules leads to 

different kinds of scales and different kinds of measurement” (Stevens, 1946). 

Stevens (1946) advocates that measurement exists in a variety of forms and thus, 

scales of measurement fall in to distinct classes, which are determined both by the empirical 

operations invoked in the process of ‘measuring’ and by the mathematical properties of the 

scales. Stevens (1946) thus concludes that: 

 “the statistical manipulations that can be legitimately applied to empirical data 

depend upon the types of scales against which the data are observed. The type of scale 

achieved depends upon the character of the basic empirical operations performed. These 

operations are limited ordinarily by the nature of the thing being scaled and by our choice of 

procedures, but, once selected, the operations determine that there will eventuate only one or 

another of the following scales: nominal, ordinal, interval and ratio”.  

The scale levels with the appropriate operations for each are given in Table 1. 
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Of the scales listed in Table 1, the nominal and ordinal scales are of particular interest 

to this discussion, which Stevens (1946) defines as follows: “The nominal scale represents 

the most unrestricted assignment of numerals. The numerals are used only as labels or type 

numbers, and words or letters would serve just as well”. An example of this is rock mass 

classification in terms such as ‘fair’, ‘good’, ‘very good’, where each class is assigned the 

same number; Class III, for all ‘fair’ rock, Class IV for all ‘good’ rock, and so on. Stevens 

(1946) defines the ordinal scale as that which “arises from the operation of rank ordering”. 

That is, the numerical information on an ordinal scale provides information only on the 

ordering of the measurement. A typical example is Moh’s scale of mineral hardness. 

When only nominal or ordinal data are available, conventional statistics such as mean 

and standard deviation are inappropriate. Indeed, Stevens (1946) states: “…for these statistics 

imply a knowledge of something more than the relative rank order of data”. Whilst it is 

acknowledged that pragmatically there may be some merit in computing such statistics, 

strictly speaking these computations will be in error to the extent that the successive intervals 

on the scale are unequal in size (Stevens, 1946). 

According to Stevens (1946), a true quantitative assessment of data can only be made 

once one reaches an interval scale. Bárdosy & Fodor (2004) suggest that geological data may 

be categorised as quantitative, semi-quantitative and qualitative based on the amount of 

uncertainty in their measurement. By adopting Stevens’ scales of measurement it is proposed 

that, of these scales, an aleatory model may only be applied to quantitative data that is derived 

from direct measurement; interval and ratio scales are included within this category. Semi-

quantitative data includes imprecise interval or ratio, as well as ordinal data. An example of 

this type of semi-quantitative data is the empirical correlation for estimating the in-situ stress 

ratio, k . Data resulting from observations that are expressed linguistically should be 

categorised as qualitative; this group encompasses nominal data. It follows that both semi-

Table 1: Scales of measurement (after Stevens, 1946). 
Scale Basic Empirical 

Operations 
Permissible statistics 

Nominal Determination of 

equality 

Number of cases, mode, 

contingency correlation 

Ordinal Determination of 

greater or less 
Median, percentiles 

Interval Determination of 
equality of intervals 

or differences 

Mean, standard deviation, rank-
order correlation, product-

moment correlation 

Ratio Determination of 

equality of ratios 
Coefficient of variation 
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quantitative and qualitative data is epistemic, which needs to be analysed using alternative, 

non-stochastic methods 

Engineers generally feel more confident when working with numbers rather than 

adjectives, as it is complicated to couple adjectives from different parameters when 

calculations are needed (Palmström & Broch, 2006). Consequently, rock mass parameters are 

often derived by assigning a numerical rating to a mixture of recordable observations – made 

in the field through visual comparison to exemplars, adjectives or descriptions – and 

measurements made either in the field or in the laboratory in an attempt to quantify them 

through some basic parameters. This process is an attempt by geotechnical engineers to map 

the various types of information into a numerical form, to which standard calculus may be 

applied. Typical examples are the rock mass classification systems mentioned in the 

preceding section, or the commonly applied Joint Roughness Coefficient (JRC) (Barton & 

Choubey, 1977) in which the joint roughness is estimated by comparing the appearance of a 

discontinuity surface with exemplar profiles and assigning it a numerical rating. This visual to 

numerical mapping of such parameters clearly implies a rank ordering of each input 

parameter, which by definition would declare such parameters ordinal and thus, according to 

Bárdossy & Fodor (2004), semi-quantitative. For example, the RMR classification 

(Bieniawski, 1989) assigns a numerical rating to six parameters in rank order considered 

‘favourable’ to ‘unfavourable’ for tunnelling.  However, a difficulty arises when one 

considers that, in a particular empirical scheme, the linguistic descriptions may be of nominal 

scale but require assignment of a numeric value for use in further calculations. It must be 

emphasised that assignment of a numerical value to such qualitative data does not 

automatically render them as increasing in scale (e.g. from nominal to ordinal).  

From the discussion presented here, it can be concluded that it is important to correctly 

identify the scale of measurement appropriate to particular data, as this will both permit 

correct characterisation of the associated unpredictability and prevent application of incorrect 

mathematical methods in any subsequent calculations. 

2.2.3 A nomenclature of epistemic uncertainty 

Having considered lack of knowledge qualitatively and quantitatively, at this point two new 

definitions for characterising unpredictability are introduced. These definitions affirm that 

epistemic uncertainty can be further sub-characterised as being either intrinsically or 

extrinsically epistemic. The former represents parameters that are inherently imprecise and 

for which, no matter the quantity of information, the quality of data could not be improved to 
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reach a precise state. For these parameters it is inappropriate to assign a precise probability 

distribution, and this is validated through further discussion in section 2.5. The earlier 

examples of subjectively derived parameters and empirical rock mass classification systems 

fall in to this category. The latter represents those parameters for which such a distribution 

could be determined if the data could be refined from imprecise to precise values, or, if the 

data are precise, additional information deems the quantity sufficient to define an aleatory 

model.  Thus, when sufficient information becomes available, an extrinsically epistemic 

property can be treated as an aleatory property, and modelled using stochastic methods. This 

definition of extrinsically epistemic uncertainty is further used in the discussion concerning 

stochastic methods for modelling unpredictability in section 2.6. 

Many of the parameters commonly used in rock mechanics and rock engineering may 

either be intrinsically epistemic (i.e. the subjectivity or approximation in their measurement 

makes them imprecise), or extrinsically epistemic (there is a lack of information to quantify 

the aleatory characteristics). Specific examples of these differences are presented in section 

2.8. Consequently, it is imperative to determine the cause of the unpredictability of a 

parameter or system prior to embarking on an analysis using a specific uncertainty model. The 

proposed taxonomy presented later in section 2.7 refers extensively to these new definitions 

of the sub-categories of epistemic uncertainty.  

2.3 Aleatory variability 

 The introduction of this thesis put forward that aleatory variability is a result of inherent 

random variation related to natural processes and can be handled using stochastic methods. 

The often-cited, classic examples that epitomise aleatory variability are the rolling of dice, 

tossing of coins or sampling a particular trait (e.g. height of an individual) from a population. 

The outcome of each trial is the effect of chance and cannot be practically predicted. 

However, over a large number of trials, the variation will tend to follow some distribution – 

the stochastic model. The stochastic model, simply put, describes “a system of countable 

events, where the events occur according to some well-defined random process” defined over 

some domain (Vose, 2000; Baecher & Christian, 2003), which in geotechnical engineering is 

time (temporal variability, for example the variability in seasonal fluctuation of ground water 

level over a number of years) or space (spatial variability, for example the variation of 

properties such as uniaxial compressive strength with position). Based on these concepts, one 

can conclude that something being random implies complete unpredictability, except in the 
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relative frequencies with which it occurs (Baecher & Christian, 2003). That is, one cannot be 

sure of the true value of a parameter, rather merely best characterise it by a stochastic model.  

The fundamental assumption embodied in the use of a stochastic model is that the total 

unpredictability of a parameter or system can be characterised by a precise probability 

distribution function (PDF), defined by its statistical moments (e.g. mean, standard deviation, 

etc.) (Walley, 1991; Walley, 1996; Sober, 2002; Ferson et al, 2003; Colyvan, 2008). A precise 

PDF is one for which any data value (i.e. the abscissa of the cumulative density function, 

CDF) can be determined with sufficient accuracy to allow a unique probability of occurrence 

(i.e., the ordinate of the CDF) to be assigned.  In order to justify this assumption, the PDF 

must be objectively fitted to the data, using well-known statistical tests (e.g. Kolomogorov-

Smirnoff or Chi-squared goodness-of-fit tests – see e.g. Davis, 2002; Ang & Tang, 2007).  

This demonstrates the objective nature of aleatory variability; characterisation of the 

parameter or system is not influenced by personal feelings or opinions in considering and 

representing facts, and so, “aleatory variability possesses an objective reality that is 

independent of the level of empirical study” (Ferson & Ginzburg, 1996).  This substantiates 

the earlier assertion that aleatory variability cannot be reduced or eliminated by further data 

acquisition, i.e., it is inherent. In effect, if the type of distribution and the moments that define 

it are known perfectly, then the variability is known precisely. Collection of further 

information will not improve the calculated probability of occurrence of a value (Ferson & 

Ginzburg, 1996; Ferson, 2002; Baecher & Christian, 2003; Christian, 2004; Aughenbaugh & 

Paredis, 2006; Nadim, 2007; Moller & Beer, 2008). This idea is illustrated in Figure 7. 

 

Figure 7: Updating the precision of an aleatory model with additional information. A limiting 

precision of variability will be reached at a given level of information (after Hoek, 1991). 

The objective nature and irreducible property of aleatory variability demonstrates that 

it is very different from epistemic uncertainty. Consequently, it can be concluded that when 
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characterising unpredictability, there is a need to clearly differentiate between epistemic 

uncertainty and aleatory variability; the argument for this is presented in the next section.  

2.4 Necessity for separating uncertainty and variability 

The discussion so far has illustrated that uncertainty and variability possess very different 

characteristics. Epistemic uncertainty is due to a qualitative or quantitative lack of knowledge; 

it is subjective in nature and can be reduced by improving the level of information. On the 

contrary, aleatory variability is objective and requires precise information to define a 

stochastic model with which to characterise it. Furthermore, because it is due to randomness, 

it is inherent in the system and thus irreducible. 

If epistemic uncertainty is characterised as if it is aleatory variability and then 

propagated through an analytical model, it would be impossible to see how much of the 

resulting unpredictability was due to uncertainty and variability, and that information is 

useful. If a large part of the unpredictability is known to be due to epistemic uncertainty then 

one knows that collecting further information that reduces epistemic uncertainty will 

significantly reduce unpredictability. On the contrary, as aleatory variability is the result of 

randomness, collecting additional data to refine the parameters that define it will not reduce 

unpredictability but only serve to improve the precision in the model (Vose, 2000; Christian, 

2004). In general, the separation of uncertainty and variability allows us to understand what 

steps can be taken to reduce the unpredictability within a model and allows data collection to 

be focused on those aspects of the model that will benefit most from it. This is validated 

through one of the challenge problems presented in sections 7.1 and 7.2. 

Perhaps the foremost reason for separating uncertainty and variability is that it is 

philosophically (Walley, 1991; Mayo, 1996; Walley, 1996; Zimmermann, 2000; Sober, 2002; 

Swinburne, 2002; Ferson et al., 2003; Tucker & Ferson, 2003) and mathematically (Ferson & 

Ginzburg, 1996; Vose, 2000; Ferson et al., 2004; Baudrit & Dubois, 2006; Rinderknecht et 

al., 2012) more correct. However, it has been suggested that adoption of a subjective, or 

Bayesian, view of probability allows epistemic uncertainty be analysed using stochastic 

methods (Jeffreys, 1961; Lindley, 2000; Howson, 2002; Jaynes & Bretthorst, 2003; Ang & 

Tang, 2007; Aven & Steen, 2010). This ‘Bayesian approach’ uses expert opinion to 

subjectively assign a precise PDF to any analysis, and although popular, the presence of much 

philosophical argument suggests disagreement regarding its validity. One forthright example 

is the statement “many of the hypotheses of interest to science do not have objective prior 

probabilities” (Sober, 2002).  Therefore, it is questionable whether statistically meaningful 
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PDFs can be used when the state of information is imprecise (Guyonnet et al., 1999); their use 

would in fact introduce information on probabilities of occurrence which are not actually 

available.  This approach of wrongly characterising imprecision using an aleatory model can 

significantly bias the results of any analysis in a non-conservative or inefficient manner 

(Ferson & Ginzburg, 1996). Indeed, there is increasing evidence which supports the argument 

that subjective assignment of a PDF can lead to misinformed decisions, dissonance amongst 

experts and even potentially erroneous results (Klir, 1989; Klir & Yuan, 1995; Tonon et al., 

2000; Ferson & Ginzburg, 1996; Vose, 2000; Ferson et al., 2004; Baudrit & Dubois, 2006; 

Rinderknecht et al., 2012). Consequently, the literature recognises that non-stochastic 

characterisation methods that explicitly incorporate imprecision are required for those 

parameters that cannot be objectively measured (Walley, 1991; Dubois & Prade, 1988; 

Zimmermann, 2000; Ferson & Ginzburg, 1996; Baudrit & Dubois, 2006; Dubois, 2006; 

Helton et al., 2004; Dubois & Guyonnet, 2011). 

The following section introduces various non-stochastic approaches that are 

appropriate for representing epistemic uncertainty. Following this, section 2.6 discusses the 

basis of classical, or frequentist, and Bayesian probabilistic methods, respectively. This 

discussion is thus able to show that the characteristics of epistemic uncertainty require a non-

stochastic method for its characterisation. Conversely, stochastic methods are only 

appropriate once the very specific characteristics that define aleatory variability have been 

met.  

2.5 Non-stochastic methods for modelling uncertainty 

As epistemic uncertainty is typified by imprecision, it follows that precise probability 

distributions are inappropriate to characterise it. It is now widely recognised that imprecision 

is best represented by intervals and their generalisations, rather than precise probability 

distributions (Cooper et al., 1996; Ferson & Ginzburg, 1996; Baudrit & Dubois, 2005; Baudrit 

& Dubois, 2006; Baudrit et al., 2007; Dubois & Prade, 2009; Dubois & Guyonnet, 2011). 

Consequently, several interval-oriented uncertainty theories have been developed that 

explicitly handle imprecision. These include: interval analysis (Moore, 1966; Moore & 

Bierbaum, 1979), possibility theory (Dubois & Prade, 1988), which incorporates fuzzy 

numbers (Zadeh, 1965; Kaufmann & Gupta, 1991), and the theory of imprecise probabilities 

(Williamson & Downs, 1990; Walley; 1991), which uses p-boxes to represent imprecision 

(Tucker & Ferson, 2003). All of these are discussed in detail in Chapter 3.  
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In the context of uncertainty in rock engineering, Wenner & Harrison (1996) 

introduced the ‘level of information’ concept and suggested that that for any given amount of 

knowledge  and hence uncertainty there is an optimal model that should be applied (see 

Figure 8) and for each modelling approach shown in Figure 8, there is a particular amount of 

information required. The lowest amount of information is associated with an uncertain 

parameter for which there is only a single value available. As more information becomes 

available, so higher modelling approaches can be applied.  

 

 

Figure 8: Uncertainty models and the level of information concept (after Wenner & Harrison, 1996; 

Aughenbaugh & Paredis, 2006; Guo & Du, 2007; Bedi & Harrison, 2013a). 

Figure 8 also shows that only the interval-oriented methods are applicable when the 

state of information is imprecise. The motivation for this is that these interval-oriented 

theories have been developed to provide new tools to faithfully and robustly characterise and 

propagate imprecision (Ferson & Ginzburg, 1996; Baudrit et al., 2005; Ferson, 2002; Dubois 

& Guyonnet, 2011). Doing so allows a decision to be made based on an assessment of the 

complete unpredictability. The discussion that follows first examines the need for faithfulness 

and robustness in any analysis, but especially those situations where the unpredictability is 

dominated by epistemic uncertainty. We are thus able to draw conclusions on the necessity of 

applying interval-oriented uncertainty models to characterise and propagate epistemic 

uncertainty. The mathematical bases for these interval-oriented methods are discussed in 

detail in section Chapter 3. 

2.5.1 Faithfulness 

Dubois (2010) defines a ‘faithfulness principle’ that suggests, when faced with characterising 

epistemic uncertainty, one should select a suitable interval-oriented uncertainty model 

commensurate with the level of information available. This is in contrast to the Bayesian 

view, which purports subjective assignment of a precise PDF even in the absence of any 
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objective information. The latter approach would arguably be misrepresenting the available 

information and in fact introduce information on probabilities of occurrence that are not 

actually available. Thus, faithfulness can be seen as the pursuit for consistency with available 

information (Dubois & Guyonnet, 2011). This is demonstrated with a very simple example 

based on the work of Ferson & Ginzburg (1996).    

Suppose we want to compute the product AB  of two parameters for which the only 

information we have is: A  lies somewhere between 2 and 4, and B  somewhere between 3 

and 5. If we characterise A  and B as intervals and compute the product using interval 

analysis (discussed in detail in section 3.1), the result is another interval [6, 20]. Figure 9a 

shows the smallest region guaranteed to contain the cumulative distribution of the product 

AB , which this interval represents. Alternatively, if we were to characterise A  and B  as 

uniform probability distributions – as one would be required to when following the Bayesian 

doctrine – an exact solution using probabilistic convolution (Ang & Tang, 2007) or a Monte-

Carlo strategy can be applied to estimate the distribution of the product AB , the result of 

which is shown Figure 9b. This figure clearly shows a concentration of probability near the 

geometric centre of the output interval. Additionally, the cumulative probability calculated 

from such an analysis allows one to make precise statements about the probability of 

occurrence of specific values. For example, based on Figure 9b, we could state that there is a 

95% probability that the product of A and B  will be less than 17.3. However, nowhere in the 

information provided to characterise A  and B is it stated that there is a preference towards 

any value of A  or B , nor is there any evidence to suggest anything about their variability.  

Thus, by using a precise PDF for A  and B we have in fact introduced information that we 

never had. On the contrary, the interval analysis faithfully propagates the imprecision in the 

 

7
.6

1
7
.3

 
a) Region representing the interval [6, 20], guaranteed 

to contain the cumulative distribution of the product AB   

b) PDF of the product of two uniform distributions A 

and B obtained using a Monte-Carlo simulation with 

5000 iterations 

Figure 9: Comparison of interval versus probabilistic output from only bounds as an input. 
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output, from which we can state nothing more except that the product AB  lies somewhere in 

the shaded region of Figure 9a. 

2.5.2 Robustness 

The robustness of interval-oriented uncertainty methods demands that so long as the intervals 

forming the inputs bound the true value of the parameters they represent, the output is also 

guaranteed to bound the true result (Ferson, 2002; Ferson & Hajagos, 2004). This is not 

necessarily the case when applying stochastic modelling techniques (Guyonnet et al., 1999; 

Vose, 2000). For example, when using Monte-Carlo type simulations, scenarios that combine 

low probability parameter values have very little chance of being randomly selected 

(Guyonnet et al., 1999), as is demonstrated by the following example. Let us now assume that 

we have a further two parameters C  equal to [4,6] and D  equal to [5, 7], and we wish to 

compute the unpredictability in CD/AB . Figure 10a shows the area that results when the 

inputs are represented by intervals, the bounds of which are [0.14, 1]. Figure 10b presents the 

results of a Monte-Carlo simulation in which the four inputs parameters are characterised by 

uniform random variables. In this figure, the bounds are between 0.17 and 0.85; 

approximately 15% and 20% from the actual upper and lower bound values, respectively. At 

this point, we note that an exact solution using probability convolution would correctly bound 

the answer. However, for all but the simplest functions of random variables the exact 

solutions are notoriously difficult, if not impossible, to compute. Thus, numerical methods 

such as Monte-Carlo simulation are all but always used (Davis, 2002; Ang & Tang, 2007).  

  
a) Region representing the interval [0.14,1.0], 

guaranteed to contain the cumulative distribution of 

AB/CD 

b) Monte-Carlo simulation of AB/CD 

Figure 10: Comparison of interval and Monte-Carlo simulation involving further arithmetic 

manipulations. 

The corollary of robustness is that the output intervals get wider as more arithmetic 

manipulations are applied, or the number of input parameters is increased. This widening of 
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the output can lead to difficulty in decision making (Helton et al. 2010). Consequently, 

interval analysis is sometimes criticised as suffering from ‘hyper-conservatism’ (Ferson, 

2002). Conversely, the bounds of the Monte-Carlo simulation will shrink away from the 

bounds and towards the mean as more mathematical operations are undertaken, which can 

lead to unconservative or inefficient decisions (Guyonnet et al., 1999; Vose, 2000). From a 

risk minimisation perspective, and especially in a situation where data are scarce,   the 

possibility of the ‘worst case’ has important implications to the design decisions and thus an 

approach which robustly reflects all possibilities seems more appropriate. 

2.5.3 Decision making 

The Bayesian approach requires definition of a subjective PDF prior to the analysis, which 

results in a precise output on which to base a decision. However, when using interval-oriented 

uncertainty methods, the subjective decision takes place at the end of the analysis process 

when no further collection of information that might reduce epistemic uncertainty is possible 

(Dubois & Guyonnet, 2011).  Due to the imprecision in the inputs of an interval-oriented 

approach, the output is also imprecise and in interval form. Thus, one of the major criticisms 

of interval-oriented uncertainty models is the problem in decision making.  

As the outputs of interval-oriented uncertainty models do not specify a single measure 

of (un)certainty on the selection of any one value, it may be hard to make a decision when the 

output is a wide interval (Helton et al. 2010). However, there is strong argument to support 

the notion that if a subjective decision cannot be made at the end, the level of knowledge is 

clearly insufficient to make a critical decision (Ferson & Ginzgburg, 1996; Beer et al., 2013). 

As the level of knowledge has remained unchanged from the gathering phase to the decision 

making stage, it follows that the level of knowledge must have been insufficient to assign a 

precise probability distribution in the first place, and as will be shown through an example in 

section 5.2 , the results of such analysis can only lead to the conclusion that further data 

collection is required.  

In fact, a wide output from an interval-oriented uncertainty model contains vital 

information about unpredictability: it informs the analyst or designer about the lack of 

knowledge, and specifically what he or she does not know. This critical information is 

masked by the precise distribution that results from adopting a Bayesian approach. Indeed, 

Dubois (2004) recognises the importance of faithfulness and robustness in decision making, 

stating that wide output from interval-oriented methods allow a decision maker to “ …know 

when he (or she) actually doesn’t not know enough about the phenomenon under study. It is 
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better to know that you do not know, than make a wrong decision because you delusively think 

you know. It allows one to postpone such a wrong decision in order to start a new 

measurement campaign, for instance” (Dubois, 2004). 

2.6 Stochastic methods for modelling variability 

Having discussed the non-stochastic methods appropriate for modelling uncertainty, with 

respect to the Level of Information concept introduced earlier in Figure 8, the following sub-

sections now reviews stochastic methods that can be applied to model variability. Whilst 

probability theory forms the basis for modelling unpredictability in all stochastic methods, the 

interpretation of probability is not universal; it can be categorised into two schools, the 

frequentist and subjectivist – or Bayesian – view. Here, both interpretations of probability are 

presented. This section also reviews the implication of modelling unpredictability in rock 

engineering using each of these views of probability with respect to the faithfulness principle 

and robustness introduced above.   

2.6.1 Frequentist or classical probability 

The frequentist approach is perhaps the most commonly understood notion of probability and 

assumes an event is the result of a random process that can be realised by repeating an 

experiment – in our case, perhaps a site or laboratory test – a large number of times and 

plotting the number of times each outcome occurs. The variability in the results is 

characterised by one of the well known probability distributions, fit to the data using various 

statistical tools and accepted on passing a number of hypothesis tests (e.g. Kolmogorov-

Smirnov goodness-of-fit test) (Davis, 2002; Fellin et al., 2005; Ang & Tang, 2007).  The 

frequentist view of probability can accordingly be seen as an objective approach. In this 

thesis, it is this definition of probability that is adopted for aleatory variability. 

Many rock mechanics properties have been shown to follow stochastic distributions; 

in this thesis, such properties are defined as intrinsically aleatory. Well known examples 

include intact rock strength (Yamaguchi, 1970; Ruffolo & Shakoor, 2009) (see Figure 11 on 

next page), the modelling of discontinuity spacing (Priest & Hudson, 1976) and discontinuity 

orientation (Priest, 1985). Further examples are discussed in detail in section 2.8.4.   

With reference to Figure 3, which previously defined unpredictability as a function of 

the quality and quantity of information, it can be concluded that the frequentist probability 

model is that which is best suited to characterise the unpredictability in rock mass parameters 

that can be objectively measured with sufficient precision such that the quality and quantity of 
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information is precise.  However, one philosophical problem with this approach is that it is 

not always practical to obtain a sufficiently large data set, from which to fit a representative 

probability distribution. In such a case, the parameters must be classified as extrinsically 

epistemic (as defined previously in section 2.2.3) and characterised using alternative, 

appropriate means until sufficient data become available to formulate an aleatory model. A 

second problem in adopting the intrinsically aleatory assumption is the implication that the 

engineer or modeller has sufficient knowledge or data available to validate the statistical 

assumptions encapsulated by the definition of a probability distribution. For example, how 

does one fit and justify a precise PDF to characterise the unpredictability in a parameter (e.g. 

GSI) where the only information is two interval estimates of it, say [30,40] and [45,50], one 

of which has been obtained from prior experience and the other from the opinion of an 

expert? As was previously shown by a few examples presented in section 2.2.1 , many 

parameters used to quantify rock mass properties are deduced entirely in this subjective 

manner (e.g. JRC, GSI etc.). Evidently, the frequentist approach cannot be applied to such 

parameters, which were termed intrinsically epistemic (see section 2.2.3). For this reason, the 

degree-of-belief – or Bayesian – approach to uncertainty has been suggested as a means to 

amalgamate uncertainty and variability using subjective probabilities and expert judgement.  

2.6.2 Subjectivist probability: the Bayesian approach 

The Bayesian approach interprets probability as a subjective measure of confidence – one’s 

degree-of-belief – in the available information (Davis, 2002; Fellin et al., 2005). Bayesian 

scholars attest that both aleatory variability and epistemic uncertainty (i.e. total 

unpredictability) should be handled in a probabilistic framework. The Bayesian approach 

requires an unpredictable parameter to be modelled as a random variable (i.e. with a precise 

 

Figure 11: Normal distribution associated with uniaxial compressive strength of intact rock – Milbank 

granite (data from Ruffolo & Shakoor, 2009). 
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probability distribution) defined using prior knowledge, expert opinion and any objective 

information, no matter how little, which may be available. This is known as the ‘prior’ 

probability distribution. The Bayesian approach can then be applied in two ways: (1) as 

additional information becomes available, the prior distribution is modified formally using 

Bayes’s Theorem (the method is detailed in section 3.5) to produce an updated, or ‘posterior’, 

probability distribution, or in the absence of any objective information; (2) the total 

unpredictability is defined subjectively by the prior PDF and propagated using statistical 

methods (e.g. Monte-Carlo simulation), the output of which is another precise PDF that  

provides a basis for decision making and formulating design(s) (Ang & Tang, 1984; Ang & 

Tang, 2007). 

When using the ‘Bayesian updating’ approach, the priors are continually updated as 

further objective information becomes available, which may be during the subsequent 

investigation or construction phase(s) of a project. In this way, if sufficient objective 

information becomes available, with continued updating, the Bayesian probability model will 

tend to the frequentist model. This updating process is somewhat analogous to the 

‘observational method’ (Peck, 1969) commonly employed in tunnel engineering. That is, a 

design is prepared based on a prior knowledge and updated as excavation progresses, and 

detailed information on the ground conditions becomes available through observation and/or 

measurement.  

A recent example shows Bayesian updating being used to determine the elastic 

modulus ( E ) of a fractured rock mass in which the Venda Nova II, Portugal, hydroelectric 

power plant is constructed (Miranda et al., 2009). In this analysis, background field and 

laboratory test data suggested that various geotechnical parameters at the site could be 

characterised by either truncated normal or lognormal distributions (the priors), however there 

was no specific information on the expected distribution of E . The analysis considered the 

parameters that define these two ‘priors’ as random variables, and it was these that were 

updated. The updating was performed using in-situ test data obtained from large flat jack 

(LFJ) tests in exploration adits close to the main cavern. Figure 12 presents both priors, and 

updated posterior distributions of E . This figure shows the convergence of both solutions 

towards each other with updating based on the LFJ test data. Whilst this demonstrates the 

strength of the Bayesian approach, a key question in this analysis, and all similar analyses, is 

how to select the prior distributions. In the absence of any objective information on the 

frequencies of probable values, the Bayesian approach demands that ‘non-informative priors’ 

be used (Ang & Tang, 2007).  The reasoning behind this can be traced back to Laplace's 
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Principle of Insufficient Reason, which suggests that the unpredictability be characterised by a 

uniform distribution (Jeffreys, 1961; Baecher & Christian, 2003; Ang & Tang, 2007). Whilst 

this may seem a logical choice, it has been shown (Ferson, 1996; Ferson & Ginzburg, 1996; 

Ferson, 2002; Ferson & Hajagos, 2004) that the shape of the output distribution is extremely 

sensitive to that of the inputs. This is further demonstrated in Figure 13 for the case study of 

Miranda et al. (2009). 

This figure shows that the means of the posterior distributions, updated using the same 

objective evidence but based on different priors, have similar mean values but the variances 

are not in close agreement. The conclusion to be drawn from this example is: to faithfully 

propagate information through a Bayesian analysis, the priors should be formed when there is 

a strong basis for such judgement, i.e. the data must be extrinsically epistemic. Verbraak 

(1990), in his essay ‘The logic of objective Bayesianism’, supports this conclusion and refutes 

the subjective estimation of priors, including the Laplacean approach of automatically falling 

back to non-informative priors in the absence of any objective information. The reasoning 

given is simply that these approaches assume that unpredictability of the property in question 

is already known to be a result of aleatory variability. This is exemplified by Verbraak (1990) 

in stating that the subjective Bayesian approach is often (justifiably) used in industries such as 

motor insurance where “the statistics of the whole portfolio are known for certain already. 

The insurer then tries to particularise via a bonus-malus system according to the probable 

individual risk levels”. This is analogous to the framework of exchangeable bets on which the 

subjective Bayesian approach is based (Dubois, 2006).  
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Figure 12: Prior and posterior distributions of the 

mean obtained from normal and lognormal priors 

(after Miranda et al., 2009). 

Figure 13: Posterior distributions obtained from 

normal, lognormal and ‘non-informative’ priors 

(after Miranda et al., 2009). 
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However, in rock mechanics and rock engineering, the existence of variability in a 

property that a parameter defines is not conclusive. For example, the variability in the 

condition of discontinuities cannot be defined when it is characterised using the subjective 

method of measurement required by the RMR classification. Given the ordinal nature of this 

measurement, it is questionable whether the variability in this property could ever be defined.  

In fact, and as will be shown through examples in section 2.8.4, definition of priors based on 

well known precedence can only be applied to but a few rock mass properties.  

2.6.3 Faithfulness and robustness 

Using the frequentist approach to probability, discussed previously in section 2.6.1, the 

variability in the objective data can be visualised by plotting a histogram, to which a PDF can 

then be fitted. Figure 14 shows a histogram of data to which two different PDFs have been 

fitted, both of which appear to adequately characterise the variability in the data. In order to 

establish the best fit, and thus reduce subjectivity, the choice of the PDF to define the data 

should be established by well known statistical goodness-of-fit tests (Davis, 2002; Fellin et 

al., 2005; Ang & Tang, 2007). Evidently, this objective approach of fitting an aleatory model 

to the available data obeys the faithfulness principle defined earlier in section 2.5.1. That is, 

given the same data, two observers will arrive at the same, or very similar, PDFs to 

characterise variability, which in turn will lead to more consistency in the results of any 

analyses upon which they are based. Hence, decisions based on the output of any analyses 

through which these are propagated will also be similar. This approach is thus considered to 

be both faithful and robust to the available information. However, the same cannot be 

immediately said when adopting the Bayesian approach and associated subjectivist view to 

probability. As was discussed in the preceding section, this is especially the case when a 

precise prior PDF is assumed without evidence to support such a hypothesis.  
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Figure 14: Two probability density functions overlain on a histogram of objective data. 
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Based on the example of Miranda et al. (2009) presented in the preceding section 

(2.6.2), it was concluded that a Bayesian updating approach would faithfully propagate 

unpredictability if the parameters in question are extrinsically epistemic, the prior can be 

objectively formed and sufficient objective data becomes available to update the priors such 

that the posteriors converge towards an aleatory model. However, section 2.6.2 also 

established that the second application of the Bayesian approach advocates that, even in the 

absence of any objective information, the unpredictability can be represented by a precise 

PDF and propagated using conventional probabilistic analysis. However, and as will be 

shown here by example, this latter approach does not faithfully or robustly propagate 

epistemic uncertainty.  

Consider the following scenario: A tunnel is to be excavated in a rock mass with the 

support design determined using the Q -system (Barton et al., 1974), which can be calculated 

using:      SRFJJJJRQDQ warn   (see section 6.1 for a further description). Field 

investigation in the form of geological mapping in the vicinity of the tunnel alignment has 

been undertaken by an expert geologist, who has returned the following description of the 

rock mass in question: 

‘The rock mass is classified as ‘good’ (RQD = 75-90) with one to two joint sets ( nJ  = 2-4) 

present. The joint roughness varies between discontinuous, rough, irregular and undulating 

( rJ  = 2-4). The joint wall surfaces are tightly healed, hard, non-softening to unaltered with 

surface staining only ( aJ  = 0.75-1). Previous tunnelling experience in this rock mass 

indicates that the excavation may encounter minor inflow, i.e. < 5 l/m locally, to occasional 

medium inflow or pressure ( wJ  = 0.66-1). The in-situ stresses are expected to be between low 

and medium (SRF = 1.0-2.5).’  

In accordance with the discussion presented in section 2.2.2, it is immediately 

apparent that the data provided are linguistic but have been mapped, by the geologist, in to 

numeric form using the descriptors provided by the Q -system. This subjective means of 

measurements and assignment of numerical ratings to observations introduces a mixture of 

nominal and ordinal data; the numerical ratings are semi-quantitative. Therefore, the 

information is both quantitatively and qualitatively insufficient to define a precise PDF; the 

state of knowledge is clearly imprecise and thus the unpredictability in these parameters is 

due to epistemic uncertainty. Most importantly, there is no information contained in the 

geologists’ statement that would allow one to assign probabilities of occurrence for any of the 
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parameters. However, in keeping with the Bayesian approach – applying the principle of 

indifference – we adopt non-informative priors for all the input parameters and calculate the 

Q -value using a Monte-Carlo simulation with 5000 iterations. The output of expected Q -

values is shown in Figure 15. This figure allows the following deductions to be made: ‘The 

minimum and maximum likely values of Q  are 14 and 160, respectively. The mean value is 

expected to be 50.’ In fact, Figure 15 allows us to make much more informed statements, such 

as: ‘there is a 95% probability that Q  will be less than 91 and a 5% probability it will be less 

than 24’. However, the initial information does not mention anything about preference or 

probabilities one way or the other. In fact, given the paucity of the information, the only 

justifiable statement one could make would be based on calculating the interval which bounds 

all possible values of Q , which is [9.9, 240]. 

 From this example, we can conclude that using a subjective Bayesian approach 

actually introduces information and fails to actually bound all the possible values; this goes 

against both faithfulness and robustness.  

0
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Figure 15: Output of Monte-Carlo simulation to calculate Q -value. 

2.6.4 Decision making 

The example in the preceding section, which used a subjectively defined precise prior PDF to 

characterise and propagate epistemic uncertainty, demonstrated that the output is neither 

robust nor faithful to the input information. Thus any decision formulated based on the 

bounds of this output may be un-conservative or inefficient. Secondly, a design based on 

statistical measures extracted from the output PDF is erroneous in the sense that it has 

introduced a bias towards a specific value. This bias is not because a probabilistic analysis has 

been adopted, rather because a precise PDF of a defined shape has been adopted to 

characterise epistemic uncertainty (Ferson & Ginzburg, 1996). The shape of the distribution 
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reflects the subjective views of the analyst defining it. As will be shown by the challenge 

problem in Chapter 5, the choice of the shape of the prior has a significant influence on the 

output.  

When probability distributions are used to make decisions in engineering design, it is 

usually the tails that govern. Thus it is critically important to recognise that the tails of the 

posterior PDFs are extremely sensitive to information about the shapes and dependencies of 

the priors (Soundappan et al., 2004; Oberguggenberger & Fellin, 2008). As these tails give the 

probabilities of extreme events, ensuring the safety and efficiency of engineering structures 

demands a precise assessment of them. Figure 16 shows how the predicted probability of 

failure can vary significantly as the shape and variance of the distributions of load and 

resistance also vary. This figure confirms that the choice of probability distribution, even 

among the standard types in use, has dramatic effects on the predicted probability of failure or 

occurrence and consequently two experts may arrive at vastly different conclusions if the 

priors are not objectively determined (Verbraak, 1990; Christian et al., 1994; Sober, 2002; 

Fellin et al., 2005). It is the author’s view that many proponents of Bayesian techniques do not 

pause to consider this issue, instead regarding the Bayesian approach – essentially 

dogmatically – as the natural way to handle epistemic uncertainty (e.g. Walley, 1991; 

Rinderknecht et al, 2012).  

For these reasons, this thesis supports use of the Bayesian updating approach, with 

objectively assigned priors, to tackle problems involving extrinsically epistemic parameters 

(as defined earlier in 2.2.3). That is, parameters that are intrinsically aleatory however, at the 

time of analysis and design, insufficient quality of data is available on which to formulate an 
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Figure 16: Effect of shape of PDF on calculated probability of failure. Both figures have the same 

mean factor of safety (FoS=R/L) (after Naghibi, 2010). 
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objective probability distribution using the aforementioned statistical procedures. The prior 

probability distribution may be formulated from subjective information or expert opinion; 

however, its selection should be justified through prior evidence. As more information 

becomes available, the design is updated via Bayes’s Theorem and at completion will 

converge towards an optimal output that may have been produced originally, had sufficient 

information initially been available to characterise the parameters and model using a 

frequentist approach from the outset. However, in the presence of intrinsically epistemic 

uncertainty, or where additional information is not likely to become available, the statistical 

basis of the Bayesian approach is not robust or faithful to the available information, and hence 

inappropriate. For example, as opposed to the frequentist view, given the same information, 

two experts are likely to come up with different subjective prior distributions and outputs.  At 

this stage, the question could be raised: ‘which expert should I believe?’ The definitive 

answer to this would require objective measurements to confirm the correct distribution of the 

input parameters, by which juncture an expert opinion would not be required. The Bayesian 

answer to this is to revert to adopting a ‘non-informative prior’ in the absence of any objective 

information. However, adopting said ‘prior’ and propagating the analysis using standard 

probability calculus results in a bias (Hoffman & Hammonds, 1994; Ferson & Ginzburg, 

1996; Tonon et al., 2000; Ferson, 2002), and more to the point, introduces information that 

was not available at the outset (refer to earlier discussion in section 2.6.2). Most 

fundamentally, and as was shown in section 2.5, precise probability distributions are 

inappropriate for intrinsically epistemic parameters which are inherently imprecise. 

2.7 Proposed taxonomy 

The preceding discussion showed that the total unpredictability of a parameter or system is an 

accumulation of its components: aleatory variability and epistemic uncertainty. Section 2.3 

and 2.6 identified aleatory variability as due to the inherent random variability of a parameter 

or system, which may be characterised by precise stochastic models that allow the use of 

powerful mathematical tools – probability theory, in particular – to bear on a problem that 

may otherwise be difficult to address. It is objective in nature and applicable to characterise 

random events in the form of a frequency of occurrence in a long series of similar trials. That 

is, two observers, given the same evidence and enough of it, should converge to the same 

numerical value for this frequency of aleatory variability.  

Epistemic uncertainty is subjective by definition, because it is a function of the 

assessor’s level of knowledge (Vose, 2000). As illustrated earlier by Figure 3, a parameter or 



Chapter 2 

Characterisation of unpredictability 

- 55 - 

system must be characterised as epistemic if the quality or quantity of data renders the level of 

information imprecise. It may be reduced through improving both the quantity (amount) 

and/or quality (precision) of information. If additional quantitative or qualitative information 

is obtained, it may become justifiable to characterise the uncertainty as variability, i.e. apply 

an aleatory model. Once an acceptable aleatory model has been developed, additional 

investigation will not reduce the variability but may increase the precision of the parameters 

that describe it (Christian, 2004). As stated in section 2.2.3, such uncertainty is defined by the 

new term extrinsically epistemic.  

Many parameters used to characterise material, or other, properties in rock mechanics 

are defined qualitatively or quantified entirely subjectively through expert judgement. The 

reliance on such subjective measurements suggests that while the underlying property or 

process may be the result of a random process, dissonance and approximation resulting from 

the subjective method used to characterise the variable means – irrespective of the amount of 

additional information or expert consultation – the type of information will always remain 

imprecise. Furthermore, in rock engineering, empirical parameters are routinely used in 

engineering calculations. Such parameters are derived through approximate correlations with 

field evidence (e.g. rock mass classification systems) and thus contain fundamental 

approximation and imprecision in their genesis.  Parameters or systems displaying this form 

of uncertainty are termed intrinsically epistemic. It thus logically follows that such parameters 

are not amenable to characterisation using stochastic models – or propagation using the 

associated probabilistic analysis – which are suitable only for parameters exhibiting aleatory 

variability.  

All of these concepts presented so far and these key characteristics of epistemic 

uncertainty and aleatory variability are presented in the proposed taxonomy of Figure 17. The 

key purpose of this new taxonomy is to allow an objective means of differentiating between 

epistemic uncertainty and aleatory variability. The failure to do so has been the source of 

much confusion in geotechnical engineering. To correct this, Figure 17 is organised in to two 

parts that allow the reader to characterise the total unpredictability through scrutinisation of 

the available data, both quantitatively and qualitatively, with respect to all the concepts 

introduced thus far.  

Figure 17a presents the new taxonomic terms: intrinsically epistemic, extrinsically 

epistemic and aleatory. The characteristics that define each are listed below each, with respect 

to quantitative and qualitative assessment of information. Figure 17a also suggests appropriate 

unpredictability models with respect to the level of information concept (i.e., Figure 8 
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introduced previously in section 2.5) for each of the three sub-classifications of 

unpredictability. For instance, interval arithmetic (Moore, 1966) has been suggested as the 

basic calculus to propagate intrinsic epistemicity when the level of knowledge is at a 

minimum. For situations in which the uncertainty about quantities is purely aleatory in 

character, probability theory is usually preferred.  
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b) Taxonomy arranged with respect to quantity and quality of information 

Figure 17: Proposed taxonomy. 
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When following this taxonomy, the first considerations are whether the cause of 

unpredictability is from a lack of knowledge or random variability. The next consideration is 

quantitative; if the data are precise, though the quantity is limited, the parameter must be 

classed as extrinsically epistemic until sufficient data become available with which to fit a 

precise probability distribution function. As one moves down the columns, a qualitative 

assessment of the information is undertaken; if the parameter can only be determined through 

subjective assessment, e.g. if the data are qualitative and thus inherently imprecise, the 

parameter must be classified as intrinsically epistemic. Most importantly, this table shows that 

to characterise a parameter or system as aleatory, very specific criteria must be fulfilled: the 

unpredictability stems from inherent randomness and there must be a sufficient quantity of 

precise data available with which to objectively fit a probability distribution function.  

Following this, Figure 17b arranges the new taxonomy with respect to the quality and 

quantity of information axes, as first introduced by Figure 3. Figure 17b also indicates the 

states of information that were first depicted in Figure 2. The lower left corner, a state of zero 

quantity and quality of information, represents complete ignorance. Moving diagonally 

across, i.e., by increasing the quantity and quality of information, one reaches ‘the state of 

precise information’. It is at this point that aleatory variability is realised. A lower quantity of 

information (below this point) indicates insufficient data with which to objectively fit a 

stochastic model to the data. To the left of this point indicates a lower quality of information, 

thereby resulting in imprecise data. From the state of precise information, if one obtains a 

greater quantity of data, with precise values, a state of complete precision may be reached. 

This signifies that – assuming one cannot refine the measurement process further to obtain 

higher quality data – further quantity of information will not further improve our estimation of 

the degree of variability. The top right corner of Figure 17 indicates a state of complete 

knowledge; the measurements are precise enough and the quantity of data is such that 

variability is completely eliminated. At this point a single, deterministic value of the 

parameter, which is completely known, can be used. Here, one has eliminated unpredictability 

in the parameter or system. 

The next section applies the proposed taxonomy to characterise the unpredictability in 

parameters commonly encountered in rock mechanics and rock engineering. The examples 

presented in the following section, show how proposed taxonomy will allow the 

characterisation of unpredictability to be an objective process. This supports the conclusion 

introduced by the level of information concept (i.e. Figure 8 in section 2.5) that selection of an 

appropriate uncertainty model should be commensurate with the given level of information. 
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2.8 Rock mass parameters: aleatory or epistemic? 

Two useful acronyms to describe rock masses are CHILE (Continuous, Homogeneous, 

Isotropic, Linear, and Elastic) and DIANE (Discontinuous, Inhomogeneous, Anisotropic, 

Non-linear Elastic) (Hudson & Harrison, 1997). The first of these is the simplifying 

assumption commonly adopted when undertaking design of rock engineering structures, 

whereas the second is the physical nature of the material in which engineering takes place. 

Undertaking rock engineering in CHILE rock masses would be straightforward: material 

properties determined through laboratory or field tests undertaken on small scale samples of 

the rock could be used to characterise the variability in the rock mass. However, the 

heterogeneity in DIANE rock masses makes it particularly difficult to undertake objective or 

precise measurement on samples that are representative of the rock mass as a whole. In fact, 

the distribution and in-situ mechanical properties of the discontinuities generally govern the 

behaviour of the rock mass, and it is the parameters that define these properties that cannot be 

captured through small scale sampling or testing. These complexities in DIANE rock masses 

introduce epistemic uncertainty through: measurement or interpretation errors – or inadequate 

data representation – during site characterisation; modelling uncertainty, as to whether the 

selected mathematical model is an accurate representation of reality; and, parameter 

uncertainty in terms of how model parameters are estimated and analysed. As shown in Figure 

18, these sources of epistemic uncertainty combined with the aleatory component make up the 

total unpredictability of the DIANE rock mass.  
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Figure 18: Sources of unpredictability (after Baecher & Christian, 2003). 

Additionally, geotechnical engineers often rely on empiricism or expert judgement to 

determine rock mass parameters, and these may introduce subjectivity as a form of epistemic 

uncertainty. In rock engineering in particular, parameters required to characterise DIANE 

rock masses are commonly derived through subjective estimates made by geologists through 
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field observations using various exploration methods such as outcrop, core or tunnel mapping. 

Figure 19 illustrates the complexity in the characterisation, analysis and design making 

processes when undertaking design in DIANE rock masses.  

 

Figure 19: Stages of design process where subjective assessment is required: from geological 

characterisation to decision making (from Palmström & Stille, 2007) . 

Of most significance, this figure demonstrates the reliance on engineering or 

geological judgement during various phases of the design process (dashed boxes in Figure 

19). With respect to the taxonomy (Figure 17), it is this subjectivity which leads to a 

quantitative or qualitative lack of information. It follows then, that parameters used to 

characterise DIANE rock masses that require subjective determination can mean the state of 

information upon which a design is based is in fact imprecise. 

The succeeding sub-sections discuss these sources of uncertainty with respect to the 

proposed taxonomy, shown previously by Figure 17 (see section 2.7). This discussion begins 

by investigating the nature of epistemic uncertainty in empirically derived parameters, in 

particular rock mass classification systems. This is followed by a discussion on epistemic 

uncertainty arising in the choice of parameters that are required to define strength criteria 

commonly used to model the strength of intact rock and jointed rock masses. The discussion 

continues by using examples to compare the nature of unpredictability in site characterisation 

data that results from the means with which the parameters are estimated. Finally, examples 

of rock mass parameters that have been shown to be intrinsically aleatory are presented. This 

discussion highlights the applicability of the taxonomy for characterising unpredictability that 

arises from methods commonly applied in rock mechanics and rock engineering. 

Note: 
Dashed boxes 
referred to in 

text 
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2.8.1 Rock mass classification systems 

The difficulty in using objective test methods to characterise DIANE rock masses has led to 

the development and wide use of rock mass classification systems – a compendium of which 

is listed in Table 2 (Note: the references shown in Table 2 have not been retrieved as part of 

this work) – for engineering design in fractured rock masses.  

Bieniawski (1989) defines classification as “the arrangement of objects into groups 

on the basis of their relationship”. In this light, the aim of classification systems is to group 

similar rock mass characteristics in to classes, which can be compared against observed 

behaviours of the rock masses. The rock mass classes (the groups) are generally obtained by 

combining a series of parameters determined by assigning a numeric value to a visual 

observation of a particular rock mass characteristic against a given linguistic or graphical 

description. These numerical values are then combined into a final ‘classification index’ using 

ordinary calculus. This use of numerical indices and ordinary calculus may introduce a false 

perception of precision; however, with respect to the scale of measurement (see section 2.2.2), 

the subjective assessment against linguistic or symbolic descriptor introduces nominal or 

ordinal measurements. As an example, let us consider the joint alteration parameter aJ , which 

is one index used to calculate the Q -value (Barton et al., 1974). The linguistic descriptions 

used to assign numerical ratings to aJ  are divided up in to three major classes: joints that 

exhibit ‘rock wall contact’, ‘rock wall contact before 10cm shear’ and ‘no rock wall contact 

Table 2: A compendium of rock mass classification systems (from Harrison, 2010). 
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when sheared’. Within each of these classes, more detailed joint descriptions are provided 

with the subsequent numerical rating for each.  

Figure 20 presents a simplified arrangement of the joint classes, descriptions and 

associated range of numeric values of aJ . One can see that the descriptions encompass a 

range of significantly different joint conditions, none of which can be objectively measured. 

Instead, one must assign a rating based on judgement, with a higher rating for those joint 

conditions which are less favourable to stability, and lower rating to those considered 

favourable. Furthermore, there is a considerable overlap in numeric ranges across various 

joint types. Thus a numerical rating assigned to aJ  is nothing more than a rank ordering, and 

therefore according to the scales of measurement shown previously in Table 1 (see section 

2.2.2), aJ  is of ordinal scale.  The ordinal nature of aJ  means it is not clear whether a 

numeric value, say 10 for example, has any precise meaning.  Similarly, according to Stevens’ 

(1946) scales of measurements, and as summarised previously in section 2.2.2, for a 

collection of measurements of aJ  although mode and median values can be determined, a 

statistical mean is, strictly, invalid. It follows then, that precise probability distributions that 

are characterised by such statistical moments are inappropriate to characterise such rock mass 

classification indices. 

Yet another source of imprecision resulting from subjective assessments of parameters 

that form the inputs to rock mass classification systems is the need for approximation. That is, 

different experts undertaking an assessment of the rock mass characteristics may well assign 

different numeric values for the parameter in question, which introduces dissonance. 

Additionally, the linguistic or symbolic descriptors that are used as exemplars for deriving the 
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Figure 20:  Simplified arrangement of descriptions associated with the numeric range of aJ  (after 

Barton et al., 1974; Barton, 2002). 
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numeric values of a parameter introduce ambiguity because; a) different experts interpret this 

type of information in unique ways, and b) the rock mass characteristic may fit across a range 

of descriptions. For example, if we consider a situation where a geologist is mapping part of a 

tunnel to determine the joint alteration number, aJ , used in the Q -system; the geologist 

considers that the joints in this area ‘are in contact before 10cm of shear. They contain a 

heavily over-consolidated clay infill less than 5mm in thickness, and montmorillonite 

particles that may have a high potential for swelling in the presence of water’. According to 

the descriptors given in the Q -system, aJ  may range between 6 and 12. Alternatively, 

another geologist assessing the same area may have a different interpretation on the degree of 

overconsolidation of the clay infill or the potential for swelling, and may thus give a range of 

aJ  between 8 and 10. In fact, this approximation means that an objective and precise 

measurement of the joint alteration is impossible.  

With respect to the taxonomy presented earlier in Figure 17, the purely subjective 

assessment and assignment of numeric values against qualitative descriptions results in 

nominal and ordinal scales of the parameter. All these characteristics require the 

unpredictability in such rock mass classification systems to be characterised as intrinsically 

epistemic, and the parameter estimates represented by intervals (bottom left corner of Figure 

17). Tonon et al. (2000) note that many rock mass classification systems, and RMR in 

particular, disregard this imprecision and present single measures for the basic parameter (e.g. 

joint spacing), which, according to the taxonomy of Figure 17, is incorrect . Indeed, Tonon et 

al. (2000) further note that some scholars and practitioners consider it appropriate to take 

imprecision into account (e.g. Barton et al., 1994; Hoek et al., 1995) by using intervals to 

define the basic parameters. Consequently, Tonon et al. (2000) suggest an approach where, 

using the RMR system as an example, each observation for the basic parameters is assigned 

an interval rather than precise values. 

Palmström & Stille (2007) suggest that classification does not provide definitive 

information on the mechanical properties of the rock, but rather only a qualitative assessment 

of them in an attempt to facilitate a common means of understanding the behaviour. This then 

provides a tool for engineers to understand how various features of the DIANE rock mass can 

affect its overall behaviour.  Often, the numerical value of the obtained empirical index is re-

transformed to an adjective that describes the quality of the rock mass. For example, when 

using the Q -system, six input parameters describing various facets of the rock mass are 

combined to compute a Q -value which can then be used to linguistically classify the rock 
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mass. In the Q -system, values between 1 and 4 are classified as ‘poor’ ground. With respect 

to the taxonomy of Figure 17, the subjective means of assessment and type of information 

(qualitative) means that the unpredictability in parameters determined through rock mass 

classification undertaken in this manner must be characterised as epistemic.  

A common feature of these systems is that they have been developed through 

approximate correlation of some easily observable, measureable or recordable characteristics 

of the rock mass with prior experience (Palmström & Stille, 2007). Thus, their use in a 

particular design situation is essentially a transfer of this prior knowledge, through the 

developed correlations, to the site/project at which they are being applied. With respect to the 

discussion presented in section 2.2, the approximations employed in deriving these 

correlations introduce imprecision of an unknown magnitude. The unpredictability is due to a 

lack of knowledge regarding the relationship between the measurements of the observed rock 

mass characteristic and the behaviour being assessed. This is one aspect that requires rock 

mass parameters to be regarded as intrinsically epistemic. 

These aspects of parameter estimation constitute an inherent qualitative lack of 

information, which cannot be reduced or eliminated with additional estimates of the 

parameter. These parameters are intrinsically epistemic and must not be modelled and 

analysed using stochastic models or probabilistic methods. From this, it can be concluded that 

(as described in section 2.2.1) any classification scheme which requires subjective 

determination of parameters through comparison against published descriptors can only ever 

be characterised as intrinsically epistemic.  

2.8.2 Parameters from empirical correlations 

Similar to rock mass classification systems, various empirical relations have been developed 

in an attempt to capture the DIANE response of rock masses through correlations of measured 

rock mass behaviour against easily observable or measurable parameters. The numerous 

published empirical correlations commonly used in rock engineering can be separated into 

two categories; those that use rock mass classification indices – which were shown to be 

intrinsically epistemic (refer definition in section 2.2.3) – correlated against a measured 

property (e.g. GSI versus rock mass modulus, as shown earlier in Figure 5), and; those that 

correlate an objective measurement against a measured property, an example of which is rock 

mass modulus ratio rrm EE /  derived from RQD (Deere, 1989)  shown in Figure 21, where 

rmE  is the deformation modulus of the rock mass and rE  that of the intact rock. Based on the 
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conclusion drawn in the previous section that unpredictability in rock mass classification 

systems must be characterised as intrinsically epistemic, it follows that any correlation that 

utilises a rock mass classification scheme will also inherit this uncertainty and thus must also 

be characterised as intrinsically epistemic.  

Bieniawski, 1978

Ebisu et al., 1992
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Figure 21: Correlation between deformation and RQD (after Zhang & Einstein, 2004).  

The unpredictability in any empirical relation based on objective measurements is 

dependent on the number and quality of the employed data, which in many cases is unknown 

(Gokceoglu et al., 2003; Zhang & Einstein., 2004). Thus, a number of issues need to be 

considered when characterising the unpredictability introduced through the use of such 

empirical correlations. Firstly, an empirical correlation may provide a poor fit to a series of 

objectively measured data gathered from many different sites. This may be due to either a 

quantitative or qualitative lack of information. 

One parameter frequently estimated from empirical correlations is the elastic modulus 

of the rock mass ( rmE ). Figure 21 illustrates various empirical correlations between RQD 

and rmE , alongside a variety of measured data. Whilst this figure suggests there may be some 

correlation between RQD and rmE , and perhaps lower and upper bounds for it, it does not 

suggest that the distribution of the data between these bounds follow a stochastic model. 

Nonetheless, a ‘mean empirical relationship’ between RQD and rmE  has been determined 

using statistical fitting through ordinary least squares regression (Zhang & Einstein, 2004), 

with the goodness-of-fit estimated by the co-efficient of variation 2r . The coefficient of 

variation measures the variability of the test results around the mean – by assuming the 

variability is normally distributed around it – that is explained by the fitted regression model 
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(Davis, 2002). For example, an 2r  value of 1.0 indicates no variation around the fit 

regression. Conversely, an 2r  of 0 implies that errors are not normally distributed about the 

mean but may be explained by unknown, lurking variables or other uncertainty (Davis, 2002). 

The 2r  value can thus be used to test the hypothesis that the regression model, and associated 

statistics, can be used to define the unpredictability in the data. Low 2r values imply that the 

statistical model defined by the least squares regression is inappropriate to model the 

unpredictability in the data. With reference to the empirical relation between RQD and rmE  in 

Figure 21, the 2r  value of 0.75 implies that 25% of the data cannot be explained by the 

statistically fit regression model. This is more evident at RQD values greater than about 75%. 

Thus, even though both RQD and rmE  may have been objectively measured, there appears to 

be a degree of imprecision in the measurement of them; the type of information obtained is 

imprecise numerical data. It is this lack of precision that would require this empirical 

correlation to be characterised as epistemic. However, as with many similar empirical 

correlations, additional site-specific data may significantly improve the fit of the regression 

model. In which case, the correlation can be considered extrinsically epistemic. In fact, Zhang 

et al. (2004) show how site-specific objective measurements coupled with the Bayesian 

updating approach may be applied to these empirical correlations. 

Whilst RQD may arguably be objectively measured, various empirical relationships 

utilise parameters from rock mass classification systems to estimate rmE . Figure 22 presents 

the results of a study undertaken by Gokceoglu et al. (2003) that reports the performance of a 

few such relationships in predicting the rock mass modulus through comparison against 57 

measured values from in-situ plate loading tests. The correlations studied by Gockceoglu et al. 

(2003) are reported in Figure 22 but have not been retrieved as part of this current work. In 

this figure, the prediction error (on the abscissa) is the difference between the measured ( ME ) 

and predicted ( PE ) value of rock mass modulus at each location, expressed as a percentage of 

the measured value, i.e., Prediction error (%) = ( ME - PE )/ ME . The ordinate reflects the 

cumulative distribution of prediction error over the set of 57 data.  In this figure, a positive 

prediction error indicates that the subjectively estimated value of the rock mass modulus is 

greater than that measured. For example, correlation 7 over-predicts 70% of the objectively 

measured rock mass modulus values by 100%.  

This figure, which is truncated at -/+200% error, shows that the use of empirical 

relations to estimate rock mass modulus can result in large over-estimations of the measured, 
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in-situ rock mass modulus. This figure also emphasises that the degree of prediction error is 

highly variable between the various relationships studied by Gokceoglu et al. (2003). This 

may be attributed to the fact that the rock mass classification parameters are determined 

subjectively and this introduces a high degree of imprecision in their estimation. That is, 

dissonance between experts means that each estimation of the rock mass classification 

parameter is dependent on the perception of the expert. Furthermore, this reinforces the earlier 

statement that the unpredictability in estimating many rock mass classification parameters is 

epistemic. Thus any further analyses based on these parameters will only further propagate 

the uncertainty. 

2.8.3 Strength of intact rock and rock masses  

Various peak strength criteria have been proposed to predict the strength of both intact rock 

and jointed rock masses, of which the Hoek-Brown criterion (Hoek & Brown, 1980a; 1980b) 

is one of the most common criteria used in practical applications. The original Hoek-Brown 

criterion was first developed using theoretical and experimental studies (Hoek & Brown, 

1980a), and is given by Equation (2.1)  in terms of principal stresses.  

 2
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In Equation (2.1) , m  and s  are constants which depend upon the extent and distribution of 

fracturing in the rock mass, with ci  representing the uniaxial compressive strength (UCS) of 
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Figure 22: Prediction error of rock mass modulus using the various empirical relations against in-situ 

plate loading test measurements (after Gokceoglu et al., 2003). 
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the intact rock material. In a situation where failure through the intact rock governs the design 

– for example, a small diameter wellbore at significant depth in massive rock – the parameter 

s  reduces to 1is , with m  and c  determined through triaxial tests on samples of intact 

rock. Hoek & Brown (1980b) recommend that at least five triaxial tests should be carried out 

over a confining stress range from zero to one-half of the uniaxial compressive strength. The 

parameter m  is then determined using a statistical fitting procedure (least squares regression), 

with the goodness-of-fit estimated by the co-efficient of variation 2r . Hoek & Brown (1980b) 

have demonstrated that for intact rock, very high 2r  values (mostly greater than 0.9 and 

approaching 1) are obtained when imm  , and is objectively fitted to the results of triaxial 

tests, which suggests that this parameter may be intrinsically aleatory. The same can be said 

for c  determined through uniaxial compressive strength tests undertaken in the laboratory. 

This is verified in the following section and further demonstrated through an example 

presented in Chapter 7. It can thus be concluded that, if the material constants required by 

Equation (2.1) are determined objectively, they may be considered precise and, with a 

sufficient number available may be characterised as aleatory and modelled by stochastic 

models fit using statistical tools. Whilst the intact rock parameters for the Hoek-Brown 

criterion may be determined objectively in the laboratory, similar to the rock mass modulus, 

determining the strength of jointed rock masses by objective testing is generally impractical 

(Hoek, 2007). For this reason, Hoek & Brown (1988) extended the criterion to incorporate an 

empirical relationship between the intact rock material constants im  and the rock mass rating 

(RMR) system of Bieniawski (1989) to estimate the ‘broken’ rock mass constant bm .  Hoek 

(1994) and Hoek et al. (1995) further extended the criterion to incorporate the empirical 

Geological Strength Index (GSI). The latter relationships are given in Equations (2.2) to (2.4).  
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As was discussed in section 2.2.1 and expanded upon in section 2.8.1, rock mass classification 

systems such as RMR and GSI require subjective estimation and incorporate nominal and 

ordinal scales of measurement, all of which mean they are inherently imprecise. This 

imprecision will be perpetuated through any model, such as the Hoek-Brown criterion 

Equation (2.2) to (2.4), which is formulated on using such rock mass classification systems as 

inputs. Thus, it can be concluded that rock mass strength which is estimated using Equations 

(2.2) to (2.4) must be considered as epistemic. In fact, given that GSI is a purely subjective 

estimation and thus inherently imprecise, it follows that use of the Hoek-Brown criterion 

using GSI as an input requires it to be characterised as intrinsically epistemic. Consequently, 

it cannot be characterised by stochastic models or propagated using conventional probabilistic 

analyses. These concepts are demonstrated using an example presented later, in section 7.1.   

2.8.4 Parameters derived from objective measurement 

According to the new taxonomy developed here and presented in Figure 17, a key 

requirement in characterising a parameter as being aleatory is that it can be measured 

precisely, i.e., in a ratio or cardinal scale, using objective methods. In rock engineering, this 

may come in the form of laboratory test data, e.g., triaxial tests, or field tests such as the point 

load index for uniaxial compressive strength (UCS). However, in order to fit a probability 

distribution, the taxonomy also requires there be a sufficient quantity of data, otherwise the 

unpredictability must be regarded as epistemic uncertainty.  

The uncertainty associated with small data sets is exemplified by the variability of the 

UCS with respect to the number of strength measurements made (Ruffolo & Shakoor, 2009). 

Ruffolo and Shakoor analysed five different rock types, with statistical analyses being 

undertaken on subsets of test specimens to determine the minimum number of strength tests 

required to render a reliable estimate of the average strength of the entire set of specimens. 

Figure 23 presents typical results for one of the rock types tested, and shows the precision of 

variability converging to a limiting value with increasing number of specimens. This confirms 

the irreducibility concept first raised in section 2.2. Furthermore, this convergence of the 

mean value is to be expected, in line with the central limit theorem (Davis, 2002), which 

applies to data that can be characterised by stochastic models. However, if we simply consider 

the case of very small sample sizes (e.g., five or fewer specimens), then such statistical 

considerations are invalid and thus strength must be considered as epistemic (i.e., similar to 

the concept presented in the earlier example of Figure 4). These results demonstrate that, 

whilst UCS may be intrinsically aleatory (resulting, for example, from variability within a 
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rock layer), unless sufficient data exist with which to characterise it, the use of an aleatory 

model may be inappropriate. In such a case, uncertainty in UCS should be treated as 

epistemic, and handled using an appropriate, non-stochastic, approach. 

 The work of Ruffolo & Shakoor (2009) also showed that strength variability and 

hence the number of tests required to make adequate estimates of mean strength varies with 

rock type, as shown in Figure 24. In this figure, the degree of anisotropy and heterogeneity in 

the rock type (sandstone to schist) increases from left to right. This suggests that there may be 

a geological link between variability and number of samples required to reduce uncertainty, 

and implies that the minimum number of strength tests required may not be the same for all 

rock types. If true, this will have important ramifications for the codification of testing 

requirements in order to characterise rock strength as aleatory.  

An example of objective measurements obtained from field observations is 

discontinuity spacing determined along a scanline. Priest & Hudson (1976) describe the 

application of this measurement process ‘in-tunnel’ by, wherever possible, setting up 

measuring tapes (the scanlines) of equal lengths in orthogonal directions to obtain a true 

three-dimensional picture of the discontinuity spacing. Figure 25 presents the histogram of 

measurements obtained in an experimental study, which due to limitations in the measurement 

process could only be measured to the nearest 0.01m, along with the negative exponential 

PDF fit to this data.  
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Figure 23: Confidence intervals and acceptable 

strength deviation of Milbank granite (from Bedi 

& Harrison, 2012). 

Figure 24: Minimum number of samples needed to 

estimate the mean unconfined compressive 

strength (from Bedi & Harrison, 2012). 
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Discontinuity spacing, m

%
 o

f 
d

is
c
o

n
ti
n
u

it
y
 s

p
a

c
in

g
 

v
a

lu
e

s
 i
n

 e
a

c
h

 c
la

s
s

Fitted negative exponential

probability density distribution =9.488/m

Statistics from sample:
Total scanline length

Mean spacing
Standard deviation
Number of values

0.113m
4884

0.105m
514.57m

 

Figure 25: Distribution of discontinuity spacing measured from scanlines  

(after Priest & Hudson, 1976). 

Whilst the PDF appears to describe discontinuity spacing, an important aspect of 

precision is worth noting. With regard to the proposed taxonomy, (shown previously in Figure 

17) precision implies that the measurement process is objective with sufficient accuracy to 

represent the phenomena being modelled. In this example, the accuracy of 0.01m is 

considered sufficiently small with respect to the statistics computed from the data (mean 

spacing and standard deviation). Thus, applying the taxonomy, it is evident that discontinuity 

spacing can be considered as aleatory because it is a phenomenon resulting from natural 

random variation of joints in the rock mass, a sufficient number of objective measurements – 

which produce precise numerical data – can be obtained using objective measurement 

techniques to which a precise PDF can be fit. 

2.8.5 Field estimates of random variability 

It is often the case, especially in preliminary stages of a design, that there is insufficient time 

or budget available to undertake objective laboratory measurements to characterise rock mass 

properties. Thus, we often rely on geologists, armed with standard geological field equipment 

(geological hammer, compass, pocket-lens and measuring tape), to undertake field 

measurements to assess values of various parameters used to characterise rock mass 

properties in lieu of laboratory tests. Using these tools, geologists can make measurements of: 

discontinuity parameters – dip/dip direction of joints, fracture spacing and joint roughness 

(e.g. JRC; Barton, 1973), intact rock strength – UCS, shear strength parameters (cohesion, c , 

and friction angle,  ) and lithological parameters such as quartz content (Raab & Brosch, 

1996). With respect to the proposed taxonomy, whilst many of the parameters used to define 

such properties are due to random variability, it is the type of measurement (subjective) that 

introduces imprecision. As such, parameters estimated in this way must be characterised as 
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extrinsically epistemic until objective means of determining precise numerical values are 

employed. The following examples investigate the nature of imprecision in such parameters 

estimated from field observations.  

Uniaxial Compressive Strength (UCS) can be estimated in the field by comparing 

blows from a geological hammer against subjective description of strength (Brown, 1980). 

Fookes (1991) compared the field estimate of the UCS for a range of sandstones and igneous 

intrusive rocks on a road site in Africa by an engineering geologist of some ten years' 

experience with the point load tests subsequently made on the same material (Figure 26). The 

points that lie in the shaded diagonal in this figure indicate those values where the subjective 

and objective estimates are sufficiently similar that the subjective estimate could be 

considered precise. This figure demonstrates that subjective estimates by experts can provide 

reasonable estimates for intrinsically aleatory properties such as UCS. However, and as 

Fookes (1991) acknowledges, “it must be borne in mind that there are many exceptions to 

prove the rule and it must always be clearly stated in reports or in discussions when an 

estimation has been made”. It is this approximation, as illustrated by the spread of the 

subjective estimates in the field estimation, that introduces imprecision and therefore the 

unpredictability should be characterised as epistemic uncertainty.  

Very weak

V
e
ry

 w
e
a
k

Weak

W
e
a
k

Moderately
weak

M
o

d
e
ra

te
ly

w
e

a
k

Moderately
strong

M
o

d
e

ra
te

ly
s
tr

o
n
g

S
TR

E
N
G
TH

O
V
E
R
-E

S
TIM

ATE
D

S
TR

E
N
G
TH

U
N
D
E
R
-E

S
TIM

ATE
D

Strong

S
tr

o
n

g

Very 
strong

V
e
ry

 
s
tr

o
n
g

Extremely
strong

E
x
tr

e
m

e
ly

s
tr

o
n

g

0

8

22

57

13

0

0

%
 o

f 
s
a
m

p
le

s
 i
n

 e
a

c
h

 s
tr

e
n
g
th

 c
la

s
s

M
e
a
s
u
re

d
 s

tr
e
n
g

th

200

100

50

12.5

5.0

1.25

Field estimate of strength made during mapping

Filled circles:
single estimates

84 total estimates
Open circles:

multiple estimates

 

Figure 26: Comparison of field estimates of strength with measured values for the same materials 

(after Fookes, 1991). 
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A similar study undertaken by Raab & Brosch (1996) compared field estimates of 

various rock mass properties along a tunnel alignment against ‘reference values’ determined 

through objective laboratory measurements. One of these properties for which Raab & Brosch 

(1996) provide statistics and the shape of the distribution fit using the Chi-squared goodness-

of-fit test, is discontinuity spacing.  The field estimates of discontinuity spacing were obtained 

from forty-three geologists given the standard geological tools stated above, each of whom 

was requested to provide their ‘best estimate’ of discontinuity spacing. Figure 27 presents a 

comparison of the PDFs fit to the reference set and the set of forty three field observations for 

discontinuity spacing. 

  
a) Distribution of objective measurements using scanline 

data 

b) Distribution of ‘best-guess’ mode spacing from 43 

field estimates 

Figure 27: Comparison of discontinuity spacing estimated objectively and subjectively  (after Raab & 

Brosch, 1996). 

The conclusion to be drawn from this example is that a series of objective 

measurements of a property, such as discontinuity spacing – that is the result of random 

variability and hence intrinsically aleatory – can be used to fit an aleatory model confirmed by 

statistical tests. However, if the same parameters are determined through subjective field 

estimates, the same conclusion cannot be immediately drawn for the following reason: the 

subjectively determined ‘best estimates’ by individual experts varies considerably. So, if a 

single expert is employed to subjectively define a precise PDF for such parameters, his/her 

definition would vary from the next. In fact, according to the new taxonomy (Figure 17), the 

subjective estimation of an individual expert would deem the quantity of information 

insufficient to objectively fit an aleatory model. However, a series of subjective 

measurements (as in this study) constitute further information, and whilst this subjectivity 

requires the state of knowledge to be regarded as imprecise, the additional information 

obtained from the distribution of numerous subjective estimates can allow one to utilise a 

higher modelling method that utilises this information.  Chapter 3 will present a detailed 
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discussion of modelling methods that are appropriate in such instances. This will be followed 

by an exemplar calculation in Chapter 6 that demonstrates the applicability of an appropriate 

modelling method where the unpredictability in the problem is epistemic, however a series of 

field estimations are available. 

Another important conclusion of this, and other similar studies, is that in the absence 

of objective laboratory tests multiple experts may be consulted to estimate a ‘prior’ 

distribution for such extrinsically epistemic parameters, which can then be updated in 

subsequent design phases as further information becomes available. However, the assignment 

of priors to subjectively determined properties should be undertaken with some caution. This 

is exemplified by the work of Beer et al. (2002), which describes the results of an online test 

of the visual assessment of rock profile roughness in terms of the joint roughness coefficient 

(JRC) (Barton & Choubey, 1977). In this test, individuals involved in geotechnical 

engineering were asked to visually assess the JRC values of three surface profiles obtained 

from the same granite block; the results are presented in Figure 28. Through various statistical 

hypothesis tests, the authors concluded that the observations could not be defined by a 

specific stochastic function. In this example there is sufficient test data to attempt a statistical 

analysis. Having done so, the original authors found that the mean and standard deviation of 

the data fluctuated until 50 or so estimations had been made. Regardless of this, Figure 28 

clearly shows that the visual estimations of JRC do not follow any specific distribution. This 

demonstrates that rock mass parameters derived through expert judgement may be epistemic, 
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Figure 28: Epistemic uncertainty in Joint Roughness Coefficient (after Beer et al., 2002). 
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rather than aleatory. It is also important to recognise that, in this study, the number of 

participants – and thus estimates – was high (in the region of 122-125). In general this will not 

be the case. For example, in practice a single or small team of design engineers would agree 

on a value or range of values of JRC to be adopted for design. This is likely to introduce 

subjectivity into the characterisation process, and, unless an appropriate model is used to 

capture the uncertainty, may neither adequately represent the epistemic uncertainty nor 

provide appropriate parameter values (Crawford et al., 2006). However, if JRC had been 

measured objectively using the tilt-test, with repeated experiment it may perhaps follow an 

aleatory model.  

2.9 Synopsis 

Through a critical review of the wider literature, this Chapter presented formal definitions for 

epistemic uncertainty and aleatory variability as the two components that contribute to the 

total unpredictability within a parameter or system.  Section 2.2 identified epistemic 

uncertainty as that portion of unpredictability that is due to lack of knowledge; it is both 

subjective in nature and influenced by preconceptions of what is considered realistic for the 

system in question, and can be reduced or eliminated through additional information or 

knowledge. This Chapter demonstrated that in order to remain faithful to the available 

information and propagate epistemic uncertainty robustly through any analysis, it must be 

modelled using non-stochastic methods. Aleatory variability, on the other hand, describes the 

inherent variability in a physical system or environment, it can be modelled using stochastic 

models and handled using probabilistic methods. 

This Chapter demonstrated the importance of differentiating between epistemic 

uncertainty and aleatory variability by considering the precision of the information available.  

This discussion identified that aleatory variability can be invoked only when we have reached 

a state of precise information, and this requires a sufficient quantity of measurements that are 

precise enough to objectively fit a probability distribution to the data using statistical 

methods, otherwise the unpredictability must be characterised as epistemic uncertainty and 

modelled using non-stochastic methods.  

Using these definitions, a new taxonomy has been proposed. The new taxonomy has 

been presented as one simple figure (Figure 17 in section 2.7) that draws together all the 

concepts presented in this Chapter. A key contribution of this new taxonomy is that it will 

allow engineers undertaking rock engineering designs to correctly and objectively identify the 

true nature of unpredictability.  The developed taxonomy presented new definitions to sub-
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categorise unpredictability in rock mechanics and rock engineering. These definitions 

identified that if the unpredictability is either intrinsically epistemic or aleatory, then 

obtaining further information will not allow re-categorisation of the type of uncertainty. 

However, if the data is extrinsically epistemic, collection of more information may reduce the 

unpredictability and allow the use of different unpredictability models  

Finally, this Chapter concluded by applying the new taxonomy to characterise many 

parameters commonly used to define the properties of DIANE rock masses (Section 2.8), 

using the new taxonomic terms. This discussion identified that many parameters used to 

characterise DIANE rock masses are determined entirely subjectively and thus must be 

regarded as intrinsically epistemic and modelled using an appropriate non-stochastic method. 

On the contrary, this Chapter showed how parameters that can be objectively measured, such 

as uniaxial compressive strength, may be modelled as aleatory. The terms presented in this 

new taxonomy and the latter examples have assisted in developing an understanding of the 

mathematical methods for modelling unpredictability in rock mechanics.  Chapter 3 now 

examines these methods for modelling unpredictability more fully.  
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Chapter 3  

MATHEMATICAL METHODS  

FOR MODELLING 

UNPREDICTABILITY 

In Section 2.5 the Level of Information (LoI) concept was introduced (see Figure 8 in section 

2.5), which suggested a hierarchy of unpredictability modelling methods with respect to the 

available level of information. This in turn implies that the available level of information 

defines an upper bound for the techniques that can be used, with each technique itself being 

defined by the minimum amount of information it requires.  Following this, the proposed 

taxonomy presented previously in Figure 17 (see section 2.7) listed unpredictability models 

considered appropriate for a given level of information. Together, these concepts demonstrate 

that the selection of an unpredictability model should not be arbitrary: in each case it must be 

based on an assessment of the nature and cause of the unpredictability, and the quality and 

quantity of the information available (diagram on the left of Figure 29). The diagram on the 
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Figure 29: Appropriate uncertainty models for a given level of information  

(from Bedi & Harrison, 2013b). 
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right of Figure 29 arranges the appropriate unpredictability models with respect to these 

concepts. The conclusions that can be drawn from these figures are: firstly, stochastic 

methods can only be applied when there is a sufficient quantity of precise data. Secondly, 

Bayesian methods are appropriate where the measurements are precise and additional 

information can be obtained which will allow convergence to an aleatory model through 

updating, using Bayes’s Theorem (Ang & Tang, 2007). Where the data are imprecise, or there 

is insufficient quantity of data available, alternative non-probabilistic modelling methods are 

required.  

This Chapter describes the mathematical basis for each of the unpredictability 

modelling methods of Figure 29, starting with interval analysis and working through the 

hierarchy of modelling methods in an increasing level of information. The discussion 

presented in this section further demonstrates, through examples, the applicability of these 

unpredictability modelling methods with specific reference to rock mechanics and rock 

engineering problems. The mathematical definitions presented in this Chapter are applied to 

undertake the analyses required for the challenge problems presented in Chapter 5 to Chapter 

7. The algorithms developed to analyse the challenge problems, using the methods presented 

in this Chapter, are provided in Appendix A to D.      

3.1 Interval analysis 

As intervals represent one of the lowest levels of information (Figure 8), they are practical for 

characterising imprecise values when little or no information is available (Ferson, 2002; 

Ferson et al., 2007; Dubois & Guyonnet, 2011). The available information may be objective 

(e.g. we are certain that the parameter has a value between some measured data) or subjective 

(the interval is obtained on experience or the opinion of experts) (Kaufmann & Gupta, 1991). 

3.1.1 Definition and examples of an interval 

Mathematically, an interval is formulated on the assumption that a set X  of possible values 

for a variable x   is known but with no specified uncertainty structure within the set (Moore, 

1966; Moore & Bierbaum, 1979); the only information that may be inferred from an interval 

is that the value of x  is somewhere in the set which is bounded by the values  b,a  and can 

be expressed as: 

  bxa|x X  

 

(3.1) 
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Figure 30 presents two theories of what an interval may represent. Figure 30a depicts a ‘spike 

representation’ of an interval and implies that the parameter in question is not drawn from an 

underlying random process – it is intrinsically epistemic. Further information could only serve 

to reduce the bounds of the interval. Figure 30b is referred to as a ‘box representation’, and 

suggests that the interval represents the set of absolutely all cumulative probability 

distribution curves between the bounds (Ferson et al., 2007). That is, the parameter in 

question is drawn from an underlying random process, though the current level of information 

is insufficient to identify the form or parameters of the aleatory model with which to 

characterise it; it is extrinsically epistemic. 

C
u

m
u
la

ti
v
e

 p
ro

b
a

b
ili

ty

 

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

3 exemplar distributions
that may represent the
underlying variability

Shaded area bounding
all CDFs that may 
represent the variable

 
a) Spike representation of interval b) box representation of interval 

Figure 30: Alternative representation of interval numbers (after Ferson et al., 2007). 

In geomechanics, ‘spike-intervals’ may arise in situations where parameters are 

determined subjectively and thus inherently imprecise. A common example is that of rock 

mass classification systems, one of which is the Geological Strength Index (GSI) (Hoek, 

1994). The GSI provides a number which, when combined with the intact rock properties, can 

be used for estimating the reduction in rock mass strength for different geological conditions. 

The GSI is determined by comparing a linguistic description of certain rock mass attributes to 

a tabulated range (see Figure 31). Consider a situation where an estimation of GSI is required, 

however no field investigation has been undertaken. At this point, one could consult an expert 

for advice, who may suggest: ‘Based on my previous experience in a similar rock mass, the 

surface condition is likely to range between ‘fair’ and ‘good’, and the structure of the rock 

mass from ‘blocky’ to ‘very blocky’. With this information, one could only define an interval 

of GSI =  7540,  (solid outline in Figure 31). If additional information were to become 

available, for instance field mapping of nearby outcrops, the expert may choose to refine the 

rock mass description to, say: ‘the surface condition is likely to be ‘good’, and the structure of 

the rock mass ‘blocky’. The refined interval of GSI now becomes  7555, , as shown by the 

dashed area in Figure 31 .  
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Figure 31: Table for estimating GSI (after Hoek, 2007). 

It is evident that the box-interval representation does not apply to subjectively 

determined parameters such as GSI. That is, GSI is not a measurement of a random process; it 

is a subjective estimation that contains imprecision and requires significant approximation. 

With respect to the new taxonomy (Figure 17) and Figure 3, this qualitative lack of 

information means that no matter how much additional expert consultation is obtained for 

GSI, it cannot be considered as aleatory variability. On the contrary, the box-interval analogy 

is appropriate for precise parameters, such as the uniaxial compressive strength (UCS) of 

intact rock. Say for example, at an early stage of design no test data is available and thus 

expert consultation is enlisted to estimate UCS. The expert advises: ‘Based on my previous 

experience in this rock type, I estimate UCS to lie between 40 and 80MPa’, i.e., the interval 

 8040, . Published literature (Yamaguchi, 1970; Gill et al., 2005; Ruffolo & Shakoor, 2009) 

suggests that UCS may in fact be intrinsically aleatory, and best characterised by a truncated 

normal (or beta) distribution. However, at this stage, the lack of quantitative and qualitative 

data requires it to be classified as epistemic and characterised by an interval. With subsequent 

data collection, a sufficient number of precise measurements (laboratory tests in this case) 

may become available to objectively fit a probability distribution for UCS, which would turn 

out to be one of the infinite number of distributions initially encapsulated by the box-interval.  
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Using this example, it can be concluded that intervals are required when it is 

inappropriate to make statistical statements about a parameter, with the information available. 

In this respect, an interval differs from a uniform random variable, which implies that the 

values between the bounds of an interval are equally probable.  Consider once again the 

expert’s estimate of GSI characterised by the interval  7540, . Given the qualitative and 

quantitative lack of information, it is invalid to make statistical statements such as; ‘the mean 

value of GSI is 57.5’, or ‘there is a 75% probability that the GSI will be less than 86.3’, both 

of which are implied by a uniform probability distribution function (PDF). It is evident that a 

uniform PDF contains a significantly greater amount of information than an interval. 

Consequently, and as will be shown in Chapter 7, the output of any analysis which adopts this 

GSI as a uniformly distributed random variable will lead to potentially invalid statements 

based on additional information not initially present.  

3.1.2 Mathematics of interval analysis 

Intervals can be propagated through a model using interval analysis (Moore, 1966; Moore & 

Bierbaum, 1979), the output of which is another interval that bounds all possible values the 

model may take. That is, an arithmetic operation, denoted by  , performed on two interval 

numbers  bax ,  and  dcy ,  results in the output interval: 

      dycbxayxdcba  ,|,,  
 

(3.2) 

 

The basic mathematical operations involving two interval numbers are given by 

Equations (3.3) to (3.6), however, the mathematics of intervals covers all arithmetic 

manipulations, including trigonometric functions and matrix operations (Moore & Bierbaum, 

1979), and so the calculations routinely undertaken in rock mechanics can generally be 

readily tackled using interval analysis.  

      dbcadcba  ,,,  
 

(3.3) 

 

      cbdadcba  ,,,  
 

(3.4) 

 

         cdbcadaccdbcadacdcba ,,,max,,,,min,,   
 

(3.5) 

 

 
 

       cdbadcba

thendcif

1,1,,,

,,0




 

 

(3.6) 
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Similarly, all arithmetic operations on interval numbers can be applied to functions of 

intervals. That is, a function f  of the variables  nxxx ,...,, 21  results in a set of all possible 

values that could be obtained from f  given any combination of inputs from the sets of the 

respective intervals nXXX ,...,, 21 , and is defined as: 

     nnnn xxxxxxff XXXXXX  ,...,,|,...,,,...,, 22112121  
 

(3.7) 

 

To simplify computations involving multiple ( n ) interval functions, Dong & Shah (1987) 

proposed the ‘vertex method’, which involves performing a series of computations on the end 

points of each interval functions. For a model involving n  intervals functions, the number of 

computations required is n2 . Each computation can be represented by a vertex of an n -

dimensional hypercube. For a 3-dimensional space, the cube produced using the vertex 

method is shown in Figure 32. 

 

x1

x2

x3

( )a a b1 2 3

( )a a a1 2 3

( )a b b1 2 3

( )a b a1 2 3

( )b b a1 2 3

( )b b b1 2 3

( )b a a1 2 3

( )b a b1 2 3

 

Figure 32: Vertex method of computing bounds with interval inputs (after Dong & Shah, 1987). 

The output interval is then obtained from the two vertices representing the minimum 

and maximum values in the hypercube, as given by: 

         njcfcff j
j

j
j

n ,...,1,max,min,...,, 21 






 XXXY  

 

(3.8) 

 

where jc  is the ordinate of the j -th vertex. 

This method of interval analysis allows computation of complex functions of intervals 

while faithfully and robustly propagating uncertainty (Walley, 1991; Ferson & Ginzburg, 

1996; Baudrit et al., 2005; Dubois & Guyonnet, 2011). 



Chapter 3 

Mathematical methods for modelling of unpredictability 

- 82 - 

The analyses discussed in the challenge problems presented in Chapter 5, onward, and 

the complementary computations presented in the appendices have been undertaken using the 

vertex method. More specifically, the challenge problem presented in Chapter 6 shows how 

the vertex method can be applied to assist in maximising the information obtained from an 

interval analysis.  

3.2 Fuzzy numbers and Possibility theory 

Fuzzy arithmetic is a specific field of fuzzy set theory (Zadeh, 1965), which uses fuzzy 

numbers as an extension of intervals to characterise epistemic uncertainty (Kaufmann & 

Gupta, 1991).  Possibility theory uses fuzzy numbers in a framework that allows measures of 

confidence (i.e. possibility measures) to assist in decision making. The following section first 

defines fuzzy numbers with possibility theory discussed further in section 3.2.3. 

3.2.1 Definition and examples of fuzzy numbers 

If sufficient information is available that allows one to make statements about levels of 

preference of values within an interval, a fuzzy number ( X̂ ) can be constructed through a 

series of nested intervals that are assigned a degree of possibility through a membership value 

 xX  between 0 and 1. These nested intervals are termed the ‘ -cuts’ of the fuzzy number. 

Figure 33 shows the fuzzy relationship between the likelihood that the quantity X  may take 

on a certain value x  through its membership value  xX  (Kaufmann & Gupta, 1991).  

X̂

 

Figure 33: Fuzzy numbers as an extension of intervals. 

A fuzzy number, X̂ , is defined by the quadruplet  d,c,b,a .  a  and d represent the 

bounds, and b  and c  the ‘core’. The membership values of X̂  are given by: 
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 xL  and  xR  are continuous functions in the interval  b,a and  d,c , respectively, and 

termed the fuzzy membership functions (FMFs).     0 dRaL  and     1 cRbL . The 

 -cuts of X̂  are a ‘crisp’ set, defined by: 

   10   ,Xx,x|xX X  
 

(3.10) 

 

Fuzzy numbers may take many shapes, though these should be justified by the available 

information, which may be objective or subjective. It is triangular and trapezoidal fuzzy 

numbers (TFN and TrFN, respectively) that are most commonly used (Dubois & Prade, 1989; 

Kaufmann & Gupta, 1991; Bárdossy & Fodor, 2004).  Let us consider again the examples of 

GSI & UCS presented earlier. Let us now assume that during data collection we obtained the 

interval of GSI from the expert  7540,  and additional mapping of an outcrop near the 

construction site indicated a GSI range of  7050, . Based on this information, we may 

construct the TrFN,  75705040 ,,,IŜG  , as shown in Figure 34a. Similarly for UCS, we have 

the interval of UCS =  8040, from expert opinion, but we now also have a small number (say 

2) of UCS tests undertaken on specimens collected from the proposed site, both of which 

indicate a UCS of 60MPa. Based on this data, we may represent UCS with a TFN, 

 80606040 ,,,SĈU   as shown in Figure 34b. Figure 34a may be interpreted as: ‘the most 

possible value of GSI lies in the interval [50,70] ( 1GSI ). Values below 40 and above 75 

are considered impossible ( 0GSI )’. Similarly, the TFN characterising UCS may be 

interpreted as ‘the most possible value of UCS is 60MPa ( 1UCS ). Values below 40 and 

above 80 are considered impossible ( 0UCS )’.  

Both these figures now contain more information on the structure of uncertainty 

1

0
50 60 70 8040



ISG ˆ

 

1

0
50 60 70 8040
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a) Trapezoidal fuzzy number of GSI b) Triangular fuzzy number of UCS 

Figure 34: Type of fuzzy numbers. 
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between the bounds of their respective intervals; the possibility of the values that lie between 

them. The first and most important step, in deciding whether to progress from interval to 

fuzzy analysis is to determine whether the level of information is sufficient that the fuzzy 

membership functions (FMFs) of the uncertain parameters can be justified. It should be noted 

that while the fuzzy numbers shown in Figure 34 appear similar to a PDFs, fuzzy numbers are 

not probability distributions. A FMF is a subjective valuation, as opposed to an objective 

measure defined by a PDF, and contains much less information than a PDF. As such, fuzzy 

numbers follow their own rules of arithmetic (Kaufmann & Gupta, 1991). 

3.2.2 Mathematics of fuzzy analysis 

According to the ‘extension principle’ introduced by Zadeh (1975), algebraic operations on 

real numbers can be extended to fuzzy numbers. Using this extension principle, various 

authors have presented closed form solutions for arithmetic manipulations involving 

triangular fuzzy numbers, (e.g. Hanss, 2005; Chutia et al., 2011).   The obvious limitation of 

many of such solutions are first that they are limited to triangular fuzzy numbers, and second 

that closed form solutions can become cumbersome when many arithmetic manipulations are 

required. To overcome this, fuzzy analysis can be undertaken by discretising the fuzzy 

number and applying numerical computational techniques. In fact, as fuzzy numbers can be 

represented by a series of nested intervals, i.e. the  -cuts of the fuzzy number, the vertex 

method, described above, can be extended to undertake numerical computations involving 

functions of multiple fuzzy numbers. Figure 35 illustrates the extension of the vertex method 

for computing the output of a function of n  fuzzy numbers, each discretised into k  number 

 -cuts.  The number of computations required is nk 2 .  
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Figure 35: Vertex method of computing bounds with interval inputs (after Hanss, 2002). 
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Figure 36, presents a flow-chart of the implementation procedure in a function 

involving fuzzy and non-fuzzy parameters.  

 

Output: Construct 
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
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Figure 36: Vertex method applied to functions involving fuzzy and non-fuzzy numbers. 

The fuzzy analyses undertaken in the challenge problems presented in Chapter 5 and 

Chapter 6, with the corresponding computations presented in the appendices, have been 

undertaken using this extended vertex method, and procedure shown in Figure 36. 

3.2.3 Possibility theory 

The theory of possibility (Dubois & Prade, 1988) encapsulates fuzzy numbers as possibility 

distribution, analogous to the way a probability distribution is associated with a random 

variable (Guyonnet et al., 1999; Hanss, 2005). The possibility distribution )(x  can be 

effectively represented by means of a fuzzy number, X̂ , whose membership function is 

)()( xxX    (Dubois & Prade, 1988). For the fuzzy number to be implemented in a 

possibilistic framework, two important properties are required; convexity and normality. A 

fuzzy number is convex if, and only if, the  -cuts are bounded and closed intervals (Dubois 

& Prade, 1988). That is,  xL  is a non-decreasing function and  xR  is a non-increasing 

function (Chutia et al., 2011). The normality condition requires that at membership value of 

the core,  c,b , equal 1. This condition specifies that at least one value of the parameter is 

entirely possible.  
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Unlike probability theory – which defines the likelihood of an event through a single 

precise utility measure – the imprecision characterised by a possibility distribution results in 

two evaluations of the likelihood of an event: the possibility (  ) and necessity ( N ) 

measures. The possibility and necessity that the value of a parameter defined by the fuzzy 

number X̂ , is less than A   are then given by Equation (3.11) and Equation  (3.12), and 

depicted in Figure 37 (Baudrit & Dubois, 2006).  

  )(),(minSup)( xxAX AX
x

  
 

(3.11) 

 

 )](),(1max[Inf)( xxAXN AX
x

  
 

(3.12) 

 

Figure 37 demonstrates the application of the possibility and necessity measures with regard 

to the proposition of a parameter X  taking on a value A . In Figure 37a,   1 AX  and 

  1 AXN : the proposition that X  is less than A is necessarily true (certain). Figure 37b 

shows a situation where   1 AX and    1AXN : the proposition at X  will be 

less than A  is entirely possible but not necessarily true, with a necessity measure of 1 . 

This implies a greater possibility of the proposition being true than not true. In Figure 37c, 

   AX and   0 AXN : The proposition that X  is less than A  is possibly true 

with a possibility measure  . That is, the value is more likely to be greater than A . Figure 
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Figure 37: Fuzzy numbers and possibility theory. 
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37d,   0 AX  and   0 AXN : the proposition that X  is less than A  is necessarily 

false. That is, it is entirely possible that the value of X  is not less than A .  

The challenge problem in Chapter 5 shows how this concept of possibility and 

necessity measures has been applied in considering the stability of a rock slope when faced 

with epistemic uncertainty. Additionally, the challenge problem in Chapter 6 uses these 

possibility and necessity measures to investigate how they may assist in decision making 

when using rock mass classification systems.  

Having discussed the possibility and necessity measures, it naturally follows that of 

critical importance to the output of a possibilistic analysis is the interpretation of ‘possibility’. 

The semantics of possibility have been debated amongst theorists (Zadeh, 1980; 1982; Dubois 

& Prade, 1988; Dubois, 2006) with the following ideas offered to describe it; ‘feasibility’, 

referring to the solution of a problem: e.g. “it is possible to solve this problem”; ‘plausibility’, 

referring to the propensity for events to occur: “it is possible that the train arrives on time”; 

‘logical’, describing the degree of consistency with the available information (Dubois, 2006), 

i.e. a possible proposition does not contradict the information. Yet another view of possibility 

relates to ‘degree of surprise’ (Baudrit & Dubois, 2005). This thesis adopts the view that a 

possibility distribution describes the more or less plausible values of an uncertain parameter, 

given the available information, which may be objective, subjective or a combination of the 

two (e.g. Figure 34). Indeed, Kaufmann and Gupta (1991) suggest that fuzzy numbers are 

well suited to characterise epistemic parameters because rather than being a measurement, 

they are functions that allow assignment of a subjective valuation to represent imprecise 

values. 

3.3 P-boxes and Imprecise Probability  

Probability boxes, or p-boxes, are mathematical structures that are able to represent both 

epistemic uncertainty and aleatory variability through the concept of imprecise probability 

(Williamson & Downs, 1990; Walley, 1991; Ferson et al., 2003). Imprecise probability, also 

referred to as probability bounds, analysis combines the methods of interval analysis and 

classical probability theory to produce a p-box (Ferson & Hajagos, 2004; Baudrit & Dubois, 

2006) comprising two non-intersecting cumulative distribution functions (CDF) that 

generalise an interval. 
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3.3.1 Definition and examples of p-boxes 

Figure 38 illustrates the concept of a p-box and imprecise probability. In Figure 38a, the upper 

bound CDF measures the degree of plausibility of an event (plausibility function), with the 

lower bound distribution used as a measure of the degree of certainty (belief function) of an 

event (Ferson et al., 2003; Dubois & Guyonnet, 2011). The distance between the plausibility 

and belief functions is a function of the imprecision in the model (Dubois & Guyonnet, 2011). 

Figure 38b shows how a p-box degenerates to a precise CDF when uncertainty is eliminated 

and only variability remains. This reducibility supports the definitions of epistemic 

uncertainty presented previously in section 2.2.1; the degeneration to a precise CDF may be 

achieved by improving the quality and/or quantity of information such that the threshold of 

precise information is crossed (as was illustrated by Figure 2).  With respect to the new 

taxonomy previously presented in Figure 17 (see section 2.7), this transition from epistemic 

uncertainty (the p-box in Figure 38a) to aleatory variability (the precise CDF of Figure 38b) 

can be achieved by improving the quality and/or quantity of information. 
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a) P-box with upper and lower bound CDF representing 

imprecision 

b) P-box degenerates to a precise CDF when the state of 

precise information is reached 

Figure 38: Imprecision represented by a p-box and degenerate p-box with no imprecision. 

3.3.2 Mathematics of p-boxes 

The p-box of Figure 38a represents the family of all possible probability distributions between 

the upper and lower bounds, and is denoted by the interval      xFxF ,  of all cumulative 

probability functions such that      xFxFxF  . That is,  xF is the lower bound on the 

probability of occurrence of the imprecisely known parameter x , and an upper bound on the 

quantiles (i.e. the value of x ). Similarly,  xF  is an upper bound on the same probability and 

a lower bound on the quantile (Ferson et al., 2003).  
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P-boxes may be employed to characterise extrinsically epistemic parameters (as 

defined earlier in section 2.2.3) when; the shape of the underlying distribution is known but 

precise values are not available with which to define its statistical moments (a parametric p-

box), or; the shape of the distribution is unknown, but statistical parameters such as mean, 

mode or median are known (a non-parametric p-box) (Tucker & Ferson, 2003). These two 

approaches are demonstrated by returning to the example of UCS.  

Earlier, using evidence from examples presented in published literature, it was 

explained how UCS could be characterised as an extrinsically epistemic property that can be 

characterised by a truncated normal distribution. Suppose now that on top of the information 

received thus far, one undertakes a few additional laboratory tests, which are insufficient in 

number to fit a precise PDF, but allow us to estimate intervals of the mean, say  6555, , and 

standard deviation, say  85, . Having evidence of the underlying shape of the distribution, 

with this information a p-box can be obtained by computing the envelope of all normal 

distributions that have parameters within these intervals. These bounds are determined by 

convolution on the CDF of the normal distribution ( normF ), where the imprecise values of the 

moments are given by the set       2121  ,,,|,  , as follows: 

 )(min)( xFxF norm



  

 

(3.13) 

 

 )(max)( xFxF norm



  

 

(3.14) 

 

In practical terms, the bounds of the p-box are simply the lower and upper envelope of the 

four permutations:  11  , ,  21  , ,  12  , ,  22  , , as shown in Figure 39a. The 

parametric p-boxes for other well known probability distributions can be similarly obtained. If 

sufficient information is obtained to define precise values for the moments of the underlying 

distribution, the parametric p-box will degenerate to a precise CDF, similar to the example of 

Figure 38.  

Alternatively, if one was unaware of the underlying distribution of UCS (or any other 

parameter) but could provide the bounds and a statistic such the mode, mean or median value, 

it would be possible to construct a non-parametric p-box, as shown in Figure 39b-d. Simple 

mathematical expressions to generate these non-parametric p-boxes are presented in detail by 

Tucker & Ferson (2003). 



Chapter 3 

Mathematical methods for modelling of unpredictability 

- 90 - 

200

0.2

0.4

0.6

0.8

1.0

[55,5]

[55,8]
[65,8]

[65,5]

CDFs:

UCS=   

40 60 80 100

C
u
m

u
la

ti
v
e
 p

ro
b
a

b
ili

ty

UCS

F(UCS) F(UCS)

 
200

0.2

0.4

0.6

0.8

1.0

40 60 80 100

C
u
m

u
la

ti
v
e
 p

ro
b
a

b
ili

ty

UCS

F(UCS) F(UCS)

M
o
d
e

 =
 5

0

 
a) parametric (normal) p-box of UCS b) Non-parametric p-box of UCS with a mode of 

50MPa 

200

0.2

0.4

0.6

0.8

1.0

40 60 80 100

C
u
m

u
la

ti
v
e
 p

ro
b
a

b
ili

ty

UCS

F(UCS) F(UCS)

M
e
a

n
 =

 5
0

 
200

0.2

0.4

0.6

0.8

1.0

40 60 80 100

C
u
m

u
la

ti
v
e
 p

ro
b
a

b
ili

ty

UCS

F(UCS) F(UCS)

M
e
d
ia

n
 =

 5
0

 
c) Non-parametric p-box of UCS with a mean of 50MPa d) Non-parametric p-box of UCS with a median of 

50MPa 

Figure 39: Parametric and non-parametric p-boxes (after Tucker & Ferson, 2003). 

In Figure 39, the horizontal spans between the bounds of the p-boxes represent the 

interval of values at a given probability level. The vertical distance between the bounds of the 

p-box represents the imprecise probability for any given value. That is, the area between the 

bounds is proportional to the degree of imprecision (Tucker & Ferson, 2003). Consequently, 

only imprecise statements can be made on either the probability of occurrence or quantiles of 

the parameter. For example, from the p-box in Figure 39a, the following statements can be 

made: ‘the probability that UCS is less than 60MPa is between 0.9 and 0.1’, or; ‘there is a 

50% probability that UCS is contained in the interval  6555, ’. Note that this is consistent 

with the information available from our few precise measurements and previous knowledge 

on the shape of the distribution. This example demonstrates how the p-boxes follow the 

faithfulness principle, which was first detailed in section 2.5.1, the crux of which is that the 

representation model does not require one to subjectively invent a precise probability 

distribution when the data are in fact imprecise.  

The challenge problem presented later in Chapter 7 uses the concept of parametric p-

boxes presented in this section to characterise the unpredictability in UCS and propagate this 



Chapter 3 

Mathematical methods for modelling of unpredictability 

- 91 - 

through a mathematical model. Appendix D presents the algorithms used in the challenge 

problem Chapter 7, which are based on the theory presented in this section.  

3.4 Frequentist probability 

Section 2.6 introduced the frequentist approach to probability as being that which assumes an 

event is the result of a random process that can be realised by repeating an experiment a large 

number of times and characterising the variability by a probability distribution function 

(PDF).  This section describes this precise nature of probability theory.  

3.4.1 Axioms of frequentist probability 

Through a large series of trials, the variability in the objective data can be visualised by 

plotting a histogram, to which a PDF can then be fit. The probability distribution function 

contains very specific information on the probability of occurrence of the parameter it defines. 

This information is derived through statistics obtained from the data sampled and defined by a 

probability density function )x(f X , which describes the relative probability that a random 

variable X  will take on a given value x . From this, the cumulative density function (CDF) 

can be derived to calculate the probability that the random variable X  will be less than or 

equal to x , as follows: 

    


x

XX dx)x(fxF  

 

(3.15) 

 

Any function used to define the probability distribution of a random variable must 

satisfy the following axioms of probability theory (Ang & Tang, 2007): 

For every event E  in a sample space S , there is a probability  

(i) 0)E(P  
 

(3.16) 

 

The probability of the certain event S , is 

(ii) 1)S(P  
 

(3.17) 

 

For two mutually exclusive events 1E  and 2E  

(iii) )E(P)E(P)EE(P 2121   

 

(3.18) 
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On the basis of these axioms of probability theory, the following condition for an event and its 

complement, cE ,  must be satisfied:  

 )(1)( EPEP c   

 

(3.19) 

 

It is Equation (3.19) which epitomises the precise nature of probability theory. This equation 

implies that the probability of a specific event occurring or not occurring is certain. That is, it 

removes the possibility that the event could take on a range of values; it does not allow for 

imprecision (Colyvan, 2008). From this, one can conclude that probability distribution 

functions are only appropriate to define random variability when the state of information is 

sufficiently precise. It is on the basis of these axioms that the proposed taxonomy presented 

earlier in section 2.7, and illustrated in Figure 17, requires a sufficient quantity of precise 

(high quality) objective data to characterise aleatory variability. If these criteria are met and 

the state of information can be characterised as precise, probability theory offers powerful 

tools to propagate variability through analytical models in order to develop probabilistic 

representations of the response of a parameter or system.  

3.4.2 Applications of frequentist probability models 

One of the most widely used tools is Monte-Carlo (MC) simulation, which randomly samples 

values from the PDFs that define the variability of the input parameters, and enters these into 

the calculation to obtain a PDF of the output variable being investigated. A large number of 

iterations are required in order to produce an adequately representative output PDF. The 

theory of MC type simulation procedures has been comprehensively published and is 

therefore not repeated here (see e.g. Ang & Tang, 2007). Monte-Carlo simulations have been 

widely applied to many rock mechanics and rock engineering problems to calculate 

distributions of various performance measures. One example is that of predicting 

displacements around an underground cavern (Cai, 2011), as shown in Figure 40. However, 

one of the most common applications of MC simulations has been to calculate the ‘probability 

of failure’ (see Figure 41), i.e. the probability that the Factor of Safety is less than 1, of 

various rock engineering structures in an attempt to quantify risk and reliability. Risk is 

defined as the probability of occurrence of some adverse consequence (Vose, 2000; Tucker & 

Ferson, 2003; Aven, 2010) with reliability being the probability that a system or product will 

perform its intended functions within specifications over its intended design life (Booker & 

MacNamara, 2005). 
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Figure 40: Distributions of boundary displacement 

determined using Monte Carlo simulation (from 

Cai, 2011). 

Figure 41: Probability of failure by assuming 

Loads (L) and Resistances (R) are aleatory.  

For risk quantification studies, and as alternative to MC simulation, increased use has 

been made of reliability analysis in an attempt to formally quantify unpredictability and 

ascertain the level of risk prior to execution of the project. Commonly applied tools in 

reliability analysis are; first order-second moment (FOSM) approaches, first and second-order 

reliability methods (FORM and SORM), and event tree analysis (Einstein & Baecher, 1983; 

Zhao & Ono, 2001; Low, 2008). To perform a reliability analysis using these tools requires 

knowledge of the means and the variances (the second moments) of the input variables that 

form the load (L) and resistance (R) functions, which in turn are used to evaluate the 

performance function (M) that defines the safety factor (see Figure 42) (Christian, 2004; 

Johari et al., 2013). Using these tools, a reliability index (Figure 43) can be computed, which 

is a factor by which variability, quantified in terms of the standard deviations of the random 

variables, would need to change to bring the system to the failure condition. The advantage of 

these reliability methods over MC simulation is the reduced computational effort required. 

For instance, Low (2008) presents a simple example of FORM analysis applied to assess rock 

slope stability using a simple spreadsheet program (see Figure 43). 

The immediate benefit of such probabilistic analysis is that one can quantify 

uncertainty in well known terms of risk, reliability and probabilities of failure etc. This is 

especially useful in decision making, where a precise output means that definitive decisions 

upon which they are based are easily made. For example: we will only accept a design where 

the probability of failure or the probability of deflections exceeding a given value is greater 

than 95%, or the reliability index is greater than a pre-specified value.   
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Figure 42: Distribution of margin of safety  

(M=R-L) used in reliability analysis (after 

Christian, 2004). 

Figure 43: Graphical representation of the 

reliability index (from Low, 2008). 

Of course, all of these risk and reliability based tools fail to differentiate between 

aleatory variability and epistemic uncertainty. The fundamental assumption embodied in these 

methods is to treat the total unpredictability as being entirely aleatory. That is, the 

unpredictable rock mass parameters are defined as random variables described by statistical 

parameters (Nadim, 2007) with the uncertainty modelled as a known stochastic distribution, 

i.e. )x(f X . The resulting output is a precise probability distribution, which follows the 

axioms of probability theory, and this can then be used to predict the probability of 

occurrence of certain values (Becker & Moore, 2007; Ruffolo & Shakoor, 2009). However, 

the proposed taxonomy (i.e. Figure 17) presented in section 2.7  demonstrated that in order to 

characterise unpredictability as aleatory variability, a very strict set of requirements is needed; 

one of which is the objective nature of the type of measurement, i.e. two people observing the 

same data will arrive at the same conclusions. In this way, as was discussed earlier in section 

2.6.3, the analysis remains both faithful and robust to the level of information present in the 

input data. Otherwise, and as was first shown by the example of Figure 16 (see section 2.6.4), 

analysis using different values for each of these parameters can result in a different FoS value, 

which in turn introduces subjectivity. This subjectivity goes against the criteria required by 

the new taxonomy Figure 17 that characterise aleatory variability.  

3.5 Subjectivist probability: Bayes’s Theorem 

When applying a subjectivist approach to probability, in order to remain faithful to the 

available level of information, Section 2.6.2 supported application of the Bayesian updating 

approach, with objectively assigned priors, to tackle problems involving extrinsically 

epistemic parameters. This section briefly describes the basis of Bayes’s Theorem that forms 

the basis of the Bayesian updating approach. 
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3.5.1 Definition of Bayes’s Theorem 

Bayes’s Theorem adopts the subjectivist view of probability by using the concept of 

conditional probability. Conditional probability links the subjective degree of belief one has in 

the likelihood of a proposition, before and after accounting for objective evidence. Most 

simply, Bayes’s Theorem uses conditional probability to determine the probability of a 

hypothesis h  being true, given the evidence, e , and is given by (Swinburne, 2002): 

 
)(

)()|(
)|(

eP

hPheP
ehP   

 

(3.20) 

 

In Equation (3.20), )(hP  is the prior probability of the hypothesis, and )|( ehP  is the 

posterior probability given the probability based on the evidence, i.e. the quotient 

)(/)|( ePheP , which is a measure of the support the evidence provides for the initial 

hypothesis (Ang & Tang, 1984; Tucker & Ferson, 2003; Ang & Tang, 2007).  

With respect to the new taxonomy presented in Figure 17, it is the continued gathering 

of evidence, and hence support for the hypothesis, that allows an objectively assigned PDF to 

converge to an aleatory model  

3.5.2 Mathematics of subjectivist probability 

Bayes’s Theorem to update the prior distribution ( )(xf prior ) of a parameter ( x ) modelled as 

random variable ( x ) using a precise PDF, to obtain an updated, or ‘posterior’, probability 

distribution ( )(xf post ) is given as follows:  

 



dxxfxeP

xfxeP
xf

prior

prior
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)()|(

)()|(
)(  

 

(3.21) 

 

In Equation (3.21), )|( xeP is the conditional probability, or likelihood, of observing the 

experimental outcome e  assuming that the value of the parameter is x  (Ang & Tang, 

2007).This ‘Bayesian updating’ process is continued as further objective information ( e ) 

becomes available.  This updating process is repeated as further data become available by 

adopting the posterior distribution as the new prior for subsequent iterations in the updating 

process. The updating may be performed by data gathered in any order, and singly or in 

groups; the final posterior distribution obtained once all the data have been collected is the 

same irrespective of this. As data accumulates during sequential updates, the initial choice of 

the first prior has a smaller and smaller influence on the final posterior (Ang & Tang, 2007). 
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However, and as exemplified by the discussion presented earlier in section 2.6.2 (Figure 12 

and Figure 13), experts may assign different priors based on their subjective belief in the 

initial hypothesis. As a result, their posteriors will likely differ. Therefore, it is paramount that 

sufficient objective data is collected so that the updated posteriors converge to a distribution 

near that which would have resulted if the data had been available to assign an aleatory model 

in the first instance (Tucker & Ferson, 2003).  

Section 2.6.2 also concluded that application of the Bayesian approach where the 

priors are defined subjectively, i.e. without any objective evidence as justification, and not 

subsequently updated using Bayes’s Theorem is neither faithful nor robust. To account for 

this shortcoming of the subjective Bayesian approach, robust Bayes’s analysis, also called 

Bayesian sensitivity analysis (Berger, 1985; Insua & Ruggeri, 2000), has been proposed. In 

this approach, an analyst’s uncertainty about which prior distribution should be used is 

expressed by replacing a single precise prior distribution by an entire class of prior 

distributions. The analysis proceeds by studying the variety of outcomes as each possible 

prior distribution is considered. In this approach, uncertainty about the likelihood function or 

even the utility function can likewise be expressed with classes of PDFs (Tucker & Ferson, 

2003). This approach is closely related to probability bounds analysis discussed in section 3.3.   

3.6 Hybrid analysis 

Rock mechanics calculations are generally multi-parameter problems, some of which may be 

intrinsically epistemic, extrinsically epistemic and others aleatory. As these parameters 

represent varying levels of information, a framework is required with which to jointly 

propagate uncertainty and variability represented by any combination of the unpredictability 

models discussed in this Chapter. Fortunately, the theory of imprecise probability provides 

such a framework, with the output being in the form of a p-box. Joint propagation, or hybrid, 

analysis methods have been developed using formal links between intervals, possibility 

theory, imprecise probability and belief functions (Baudrit & Dubois, 2006). Their 

applications in various fields of science and technology have been published (Cooper & 

Ferson, 1999; Baudrit et al., 2005; Baudrit & Dubois, 2006; Baudrit et al., 2007) and 

extensively reviewed by Dubois & Guyonnet (2011).  The following discussion presents a 

summary of the key concepts required to undertake hybrid analysis involving problems 

combining deterministic values, intervals, fuzzy numbers and probability distributions. These 

concepts are then used to construct the generic algorithms (see Appendix A) to propagate 
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unpredictability in the hybrid challenge problem presented later in Chapter 7 (implementation 

provided in Appendix D). 

3.6.1 Hybrid interval and fuzzy analysis 

As a fuzzy number is a generalisation of an interval, it follows that an interval can be 

represented by a fuzzy number. This is shown in Figure 44. The information contained in this 

figure is as follows: ‘at every possibility level, the value of x lies between  b,a ’, which is 

equivalent to the definition of intervals presented in section 3.1 (Equation (3.1)). Therefore, if 

the parameters in an analysis are a mix of intervals and fuzzy numbers, the computation may 

be propagated by representing the intervals as fuzzy numbers and propagating the analyses 

using fuzzy arithmetic, the output of which will be another fuzzy number. 

X̂

 

Figure 44: Fuzzy representation of an interval. Each  -cut is an interval  b,a . 

3.6.2 Hybrid epistemic and aleatory analysis 

Analyses where the parameters are a combination of intervals, fuzzy numbers or probability 

distributions require the use of imprecise probabilities. As imprecise probability naturally 

couples interval and stochastic analysis, and as fuzzy numbers are generalisations of intervals, 

it follows that intervals, fuzzy numbers and probability distributions may be combined if a 

relationship exists between each of these. This relationship is demonstrated with reference to 

Figure 45 and Figure 46.  

An interval, whether spike or box representation (see Figure 30 in section 3.1), can be 

represented by the p-box shown in Figure 45. This p-box contains the following information: 

there is a 0% probability that the value is less than ‘ a ’ and 100% probability that the value is 

less than ‘ b ’. That is, the value must lie within  b,a , with no other information about the 

uncertainty structure between them. Once again, this is the same level of information that was 

defined for intervals in section 3.1 (Equation (3.1)). For an extrinsically epistemic interval 

(‘box-interval’), as additional data became available, one could move to represent it by a 
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unique p-box, and eventually a precise PDF. This is demonstrated later through the challenge 

problem presented in Chapter 7. 

The possibility and necessity measures of a possibility distribution have been shown to 

be linked to the boundaries of a p-box, as shown in Figure 46 (Zadeh, 1965; Zadeh, 1995; 

Baudrit & Dubois, 2006; Baudrit et al., 2007). In basic terms, the relationship between 

possibility and probability can be understood through the following: If an event X , which 

takes on a value x , is impossible,   0 X , then it is also improbable and so   0XP . 

Similarly, if the event X  is necessary,   1XN  (a certainty), then it is also completely 

probable, i.e. 1)( XP . Using these definitions, Figure 46 can be plainly interpreted as: there 

is 0% probability that X  is less than the interval represented by the minimum and most 

possible value, the interval  c,a , and there is 100% probability that the value is less than the 

interval defined by the most possible and maximum value  d,b . The link between Figure 45 

and the non-parametric p-box of Figure 39b, above, can be seen; a p-box defined with the 

mode value is equivalent to a fuzzy number with the core set at the mode value. 
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Figure 45: Interval represented as a p-box. Figure 46: Possibility distribution as a p-box. 

One important aspect of this possibility-probability transformation needs to be 

realised: while a possibility distribution can encode a family of probability distributions, it 

does not imply that the parameter represented by the possibility distribution is aleatory. This 

is because the p-box induced by the possibility distribution cannot degenerate to a precise 

PDF, it is inherently imprecise and the output of any analysis using this p-box will also be 

imprecise. Indeed the normality and convexity criterion of a possibility distribution means 

that any possibility distribution can be expressed as a p-box, however not any p-box can be 

expressed as a possibility distribution (Baudrit & Dubois, 2006). This implies that p-boxes 

can be used to convey additional information that a fuzzy number, and its associated 

possibility distributions, cannot. Based on these concepts, it can be concluded that in multi-

parameter models, each of the parameters should be characterised based on the level of 
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information available, and if required expressed as an equivalent p-box to propagate the 

hybrid analysis.  

As part of this thesis, using the concepts presented in this section, simple algorithms to 

undertake hybrid analysis that combines intervals, fuzzy numbers, p-boxes, precise PDFs and 

deterministic parameters have been set up using MathCAD. Verification of these algorithms 

has been undertaken by replicating the results of a numerical example (involving 

deterministic, fuzzy and precise PDFs) presented in the literature by Dubois & Guyonnet 

(2011). The hybrid algorithms developed alongside the verification example are presented in 

Appendix A. These algorithms are used later in the challenge problems presented in Chapter 5 

to Chapter 7. 

3.7 Synopsis 

This Chapter presented a detailed discussion on the mathematical basis of the unpredictability 

models initially introduced in the Level of Information concept (Figure 8 in section 2.5). The 

definitions presented in this Chapter conclude that intervals are required when it is 

inappropriate to make statistical statements about a parameter, with the information available. 

With respect to the proposed taxonomy (Figure 17), this section also defines what an interval 

may represent; the first theory uses the analogy of ‘spike-intervals’ and implies that the 

parameter in question is not drawn from an underlying random process – it is intrinsically 

epistemic (as defined in section 2.2.3). Further information could only serve to reduce the 

bounds of the interval. The second theory is referred to as a ‘box representation’, and suggests 

that the parameter  in question is drawn from an underlying random process, though the 

current level of information is insufficient to identify the form or parameters of the aleatory 

model with which to characterise it; it is extrinsically epistemic (also defined in section 2.2.3) 

On the contrary, through an examination of the axioms of probability theory, the 

discussion in this Chapter has demonstrated the precise nature of probability theory. On this 

basis, it is concluded that that probability distribution functions are only appropriate to define 

random variability when the state of information is sufficiently precise, which (as was stated 

in section 2.2.1) requires a sufficient quantity and quality of objective data. The proposed 

taxonomy identifies this need for precision as one criterion that must be fulfilled in order to 

characterise unpredictability as aleatory variability.  

This Chapter has shows how intermediate levels of information can be modelled using 

theories that generalise intervals. As information increases epistemic uncertainty may be 

characterised by a fuzzy numbers if one is able to define preferences to values between the 
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intervals. It is triangular and trapezoidal fuzzy numbers that are most commonly used. The 

fuzzy numbers may be defined subjectively but should be consistent with the available 

information.  If one is able to further increase the level of information, p-boxes may be 

employed to characterise extrinsically epistemic parameters when; the shape of the underlying 

distribution is known but precise values are not available with which to define its statistical 

moments (a parametric p-box), or; the shape of the distribution is unknown, but statistical 

parameters such as mean, mode or median are known (a non-parametric p-box) (Tucker & 

Ferson, 2003). These unpredictability modelling methods may be combined using hybrid 

analysis, the output of which is a p-box. Verified algorithms for hybrid analysis have been 

developed and presented in Appendix A. 

Having examined the basis of each of these unpredictability modelling methods and 

the level of information required to implement each, the next Chapter combines the concepts 

presented in the proposed taxonomy (Figure 17 in section 2.7), the level of information 

concept illustrated in Figure 17 and the concepts presented in this section to develop a novel 

framework that directs the user to objectively determine the optimal unpredictability 

modelling method through a review of the available information. 
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Chapter 4  

PROPOSED FRAMEWORK FOR 

CHARACTERISING AND 

PROPAGTING UNCERTAINTY 

AND VARIABILITY 

The concepts and discussion presented in section Chapter 2 suggested that as an initial step, it 

is important to recognise the distinction between epistemic uncertainty and aleatory variability 

when characterising a parameter or system. The proposed taxonomy, presented in Figure 17, 

provides a tool to assist in identifying of the nature of unpredictability through a qualitative 

and quantitative assessment of the available information so that a complete picture of the total 

unpredictability can be developed.  This information forms the input to one of the 

unpredictability models discussed in section Chapter 3  (i.e. interval-oriented or probabilistic 

approaches), which processes the information in specified ways presenting an output in terms 

of ‘measures of unpredictability’ (e.g. possibility measures, probability of exceedence, etc.) or 

descriptions of unpredictability (e.g. probability distribution function) (Zimmermann, 2000).  

In order to select the most appropriate uncertainty model, therefore, the next steps of 

the analyst should be to consider: the causes of uncertainty, quantity and quality of 

information available, type of information processing required by the respective uncertainty 

calculus (e.g. precise PDFs or intervals) and the language required as an output. Currently, the 

selection of epistemic or aleatory models seems to be undertaken at the whim of the analyst, 

which is incorrect. However, it is proposed that that the selection of these models should be 

an objective process.  
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Therefore, in this Chapter, a new framework is introduced that draws together all these 

concepts and directs the user to the most appropriate unpredictability model, through an 

assessment of the available level of information. This framework is one of the principal 

contributions of this work. Uniquely, it provides a new tool that will allow engineers engaged 

in rock mechanics and rock engineering to objectively characterise and propagate 

unpredictability in parameters that define the properties of fractured rock masses.   

Figure 47 presents a conceptual layout of the overall framework, which consists of 

three individual flowcharts; the main-framework, a data characterisation strategy sub-chart 

and an unpredictability model selection sub-chart. 

Data acquisition

Analysis

Decision making

Design

Unpredictability 
model selection

Data 
characterisation

 
 

Figure 47: Conceptual outline of proposed framework. 

4.1 Proposed framework 

Chapter 2 and Chapter 3 discussed the range of models available for handling uncertainty and 

variability. Here, a new framework (Figure 48) is presented that gives a protocol for correctly 

characterising and propagating uncertainty and variability through engineering calculations, 

based on a faithful assessment of the available information. The framework is divided in to 

three distinct phases of the design process; data acquisition and characterisation, model 

propagation, and decision making. The entry point of Figure 48 is at the initial data 

acquisition stage, leading to a second data acquisition stage following identification of the 

unpredictable parameters to be used in the analytical model. This allows the second data 

acquisition stage to target collection of data for the epistemic parameters (as noted earlier in 

section 2.4). Prior to undertaking the analysis, the framework leads to a separate data 

characterisation and model selection strategy (discussed further in section 4.2 and 4.3, 

respectively), both of which influence the form of the output.  
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Following the analysis, the framework directs the analyst in interpreting the output.  

Analyses which contain epistemic parameters result in an imprecise output, i.e. an interval, 

fuzzy number or p-box, while the output of a Bayesian analysis produces a subjectively 

determined precise PDF. Both these outputs require the analyst to make a subjective 

assessment based on the available information in order to produce a design. If the analyst is 

unable to make a decision because the bounds of the output are too wide, the framework 

directs the user back to collect further data. On the other hand, an entirely aleatory analysis 

produces an objective precise PDF, which can be used to form a decision based on statistical 

measures (e.g. reliability index. See e.g. Baecher & Christian, 2003; Low, 2008), or 

probability of occurrence).  

The strength of this framework is two-fold: firstly, it assists in directing investigation 

(which can be costly) appropriately to reduce unpredictability. Secondly, it presents a method 

for objectively selecting an appropriate uncertainty analysis based on the available 

information. The overall result is that following this framework will harmonise designs by 

reducing arbitrary choices in characterising and propagating unpredictability in rock 

mechanics and rock engineering, and thus improve the safety and efficiency in rock 

engineering designs.  

4.2 Data characterisation strategy 

The data characterisation flowchart of Figure 49 directs the selection of an appropriate theory 

to represent the unpredictability of a parameter. The first question divides the path between 

representation tools appropriate for parameters which may be aleatory and those which are 

intrinsically epistemic. The former of these require the state of information to be precise, 

which can only be achieved by a sufficient number of (objective) precise measurements (see 

Figure 3 in Chapter 2). If the parameter is inherently imprecise, and requires subjective 

estimation (e.g. GSI), the flowchart leads towards intervals and fuzzy models; i.e. the 

parameter is intrinsically epistemic, as defined previously in 2.2.3.  

The first question in Figure 49, ‘Can the data be objectively measured?’ ensures that 

the parameter in question is not inherently imprecise which, as we have seen, would require 

the use of an imprecise modelling method. After this, the sequence of questions in the data 

characterisation strategy sub-chart are organised in a manner that directs the user through a 

path starting from the highest level of information to the lowest (from right to left in Figure 

49). In this way, the user may determine – through a series of ‘no’ answers – the true nature of 
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the unpredictability in the parameters and thus potentially pre-empt what further data 

collection may be required to improve the level of information, if necessary.  

A path which requires specific consideration is that which leads to a subjective PDF 

via the Bayesian approach. The path leading to the Bayesian approach requires one to answer 

‘yes’ to the first question. That is, the data can be – though they may not have been – 

objectively measured; they must be extrinsically epistemic. This eliminates subjective 

estimation of precise PDFs for intrinsically epistemic parameters. In this way, the path 

presented in this framework reflects our earlier assertion (see section 2.6.2) that the definition 

of a ‘prior’ PDF should be based on objective empirical evidence and updated to converge to 

the aleatory model as information becomes progressively available.  

4.3 Uncertainty model selection strategy 

Figure 50 presents the model selection strategy flowchart which directs the user to select the 

most appropriate unpredictability model, following characterisation of the parameters used in 

the analysis.  

In Figure 50, the solid arrows represent the path that should be followed if all the 

parameters in the analysis are characterised by the same unpredictability representation tool 

(i.e. the bottom of the data characterisation strategy sub-chart). The dashed arrows direct the 

user to an unpredictability model capable of handling multiple data types. In this way, the 

framework leads the user to a modelling method which requires the least amount of 

computational effort, given the available information. Figure 50 ends by identifying the type 

of output expected, which then allows the user to pick up at the appropriate location in the 

main framework. 

4.4 Synopsis 

This Chapter presents one of the main contributions of this thesis: a novel framework for 

characterising and propagating epistemic uncertainty and aleatory variability in rock 

mechanics and rock engineering. This framework brings together all the concepts presented in 

the new taxonomy (Figure 17 introduced in section 2.7) with the Level of Information concept 

(Figure 8 in section 2.5), in a series of three flowcharts. These flowcharts are set out in a 

methodical manner, commencing with the data acquisition phase and leading the user through 

the data characterisation process given the available information, on to selecting an 

appropriate unpredictability model and thence to decision making. 
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The framework is presented in a series of three separate flow charts. The main 

framework (Figure 48) leads the user through the design process and directs further 

investigation/data acquisition through-out the design process, if so required. In this process, 

the data characterisation strategy sub-chart (Figure 49) leads the user to characterise each of 

the unpredictable parameters with an appropriate representation tool. These tools are the 

mathematical modelling methods detailed in Chapter 3. This data characterisation strategy 

sub-chart amalgamates the level of information concept (Figure 8) within it. Once the 

unpredictable parameters have been adequately characterised, the model selection strategy 

sub-chart (Figure 50) directs the user to apply the appropriate analytical methods detailed in 

Chapter 3.  

This framework provides the single tool that can be applied in practice to properly 

characterise and propagate unpredictability in rock engineering design. In following this 

framework, the output will be both faithful and robust to the available information. The 

taxonomy of (Figure 17) may be used to supplement understanding of the framework with the 

concepts presented in this thesis.  Using these tools, engineers will be able to tackle, in a 

manner that has never been done before, the problem of unpredictability in rock engineering 

problems. In order to demonstrate the use of these new tools, the succeeding Chapters will 

now embark on a series of challenge problems commonly encountered in rock engineering. 
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1 -Preliminary investigation 
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6 - Select appropriate 
unpredictability model  
(See ‘Model selection 
strategy’ - Figure 50)
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Figure 48: Proposed framework for characterising and propagating unpredictability. 
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Figure 49: Data characterisation strategy sub-chart (after Aughenbaugh, & Paredis, 2006; Guo & Du, 

2007; Wenner & Harrison, 1996; Dubois & Guyonnet, 2011). 
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Figure 50: Model selection strategy sub-chart. 
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Chapter 5  

CHALLENGE PROBLEM 1 –  

PLANAR SLOPE STABILITY  

In DIANE rock masses, the stability of rock slopes is usually governed by the potential for 

sliding along well-defined discontinuity or fracture surfaces. Rock slope stability is often 

assessed using closed form, limit equilibrium models (LEMs) that compute a Factor of Safety 

(FoS) against sliding along one, or a series of intersecting, joint surfaces. Hoek & Bray (1974) 

provide a comprehensive account of the methods for calculating the Factor of Safety (FoS) for 

planar slopes using deterministic inputs within LEMs. 

Customarily, the inputs to LEMs have been deterministic values, which lead to a 

deterministic FoS.  Consequently, the acceptable FoS in a particular design situation has been 

based on the analyst’s level of confidence in the input parameters as well as the perceived 

importance of the structure (Hoek & Bray, 1974; Hoek, 1991).  In fact, Hoek (2007) states 

that there are “no simple universal rules for acceptability nor are there standard factors of 

safety which can be used to guarantee that a rock structure will be safe and that it will 

perform adequately”. One fundamental problem with the deterministic LEM approach is that 

the arbitrary definition of a FoS means that unpredictability, in both the input parameters and 

resulting FoS, is not explicitly expressed but hidden in the calculation. This makes hazard 

perception and the quantification of the risk of slope instability impossible. For these reasons, 

various unpredictability-oriented approaches have been studied and published in the literature; 

these include both non-probabilistic and probabilistic studies. 

In many of the slope stability analyses presented in the literature, limited or no 

objective data was available to characterise the parameters required for the LEM. 

Consequently, the analyses are based on input parameters formulated subjectively through 

expert opinion which, in accordance with the proposed taxonomy (Figure 17), introduces 
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epistemic uncertainty. In line with the new framework presented in the preceding Chapter, 

any analysis where the unpredictability is epistemic requires a non-stochastic modelling 

method, commensurate with the available level of information. Therefore, any analyses using 

stochastic methods and subjectively assigned priors without evidence to support them, or 

updating them using Bayes’s Theorem, are inappropriate. Through a critical review of various 

analyses presented in the literature, focussing on the model of planar slope stability, the 

following section examines the validity of the unpredictability model applied in various 

studies with respect to the level of information available and the concepts presented in the 

taxonomy (Figure 17). Following this, the discussion uses a case study to explore the effect 

on the FoS of slope stability calculated using probabilistic models that incorporate alternative 

subjectively assigned probability distributions. These alternatives mimic the opinion of 

multiple experts. The results are shown to strongly depend on the shape of the input 

distributions, and thus the expert opinion utilised. This section concludes by showing the 

applicability of the framework presented in Chapter 4 to select a more appropriate analytical 

model that is both faithful and robust given the epistemic nature of the available information. 

5.1 Critical review of planar slope stability analyses 

The basic planar slope stability model is shown in Figure 51 with the required input 

parameters explained. This ‘classical approach’ defines FoS as the ratio between forces 

resisting sliding ( R ) to those inducing sliding ( L ), as per Equation (5.1) (see Appendix B for 

a full definition of all parameters in this equation). A FoS of 1 is the condition of limiting 

equilibrium and thus a factor less than one implies instability. 
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Parameters: 

H – Height of slope  

z  – Depth of tension crack  

wz  – Height of water in tension crack 

p  – Angle of failure surface  

f – Angle of slope face  

c  – Cohesion of failure surface 

 – Angle of friction of failure surface 

T – Tension in bolt 

  – Angle of bolt installation 

W  – Weight of rock  

U  – Water pressure on sliding plane  

V –- Water pressure in tension crack 

 – acceleration co-efficient 

Figure 51: Limit equilibrium model for planar slope stability  

(after Hoek & Brown, 1980b; Low, 2008). 
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(5.1) 

 

Various studies that utilise the LEM applied to the free body diagram of Figure 51 have been 

presented in the literature; some of these are listed in Table 3. The methods of analysis within 

the studies reviewed include: estimated deterministic values, interval analysis, fuzzy analysis 

– using both fuzzy arithmetic and fuzzy inference systems – and various probabilistic 

methods. The entries in Table 3 have been sorted by the parameters required in the methods of 

analysis, with those requiring the lowest level of information at the top to the highest at the 

bottom (as previously defined by level of information concept presented in Figure 8).  

Table 3: List of studies on planar slope stability.  
Parameters Method of 

analysis 
Reference 

Estimated deterministic value & Interval Analytical LEM Hoek, 2007 

Estimated deterministic value  Analytical LEM Nilsen, 2000 

Fuzzy; using rock mass classification Fuzzy inference 

system 
Basarir & Saiang (2012) 

Fuzzy; using rock mass classification Fuzzy inference 
system 

Daftaribesheli et al (2011) 

Fuzzy numbers Fuzzy arithmetic Park et al., 2012 

Fuzzy numbers Fuzzy arithmetic Sakurai & Shimizu, 1987 

Stochastic classification Monte-Carlo Priest & Brown, 1983 

Stochastic; using Joint Roughness 

Coefficient 
Monte-Carlo Tamini et al. (1989) 

Stochastic Monte-Carlo Jimenez-Rodriguez et al. (2006) 

Stochastic FORM Low (2008) 

Stochastic using GSI compared to interval Monte-Carlo Li et al. (2012) 

Stochastic Monte-Carlo Park & West, 2001 

Stochastic Monte-Carlo Hoek (2007) 

Stochastic  Monte-Carlo Park et al., 2005 

Stochastic  Point Estimate 

Method 
Park et al., 2012 

Stochastic; using Joint Roughness 
Coefficient 

Monte-Carlo Feng & Lajtai (1998) 

Stochastic Monte-Carlo Nilsen, 2000 

5.1.1 Review of selected non-stochastic analyses 

Hoek (2007) presents an investigative study of the potential instability of the Sau Mau Ping 

road slope adjacent to an area where slope failures had recently occurred; this is later used as 

a case study in section 5.2. At the time of the study, no objective information was available 

and so the estimates of parameters required for computing both the driving (e.g. acceleration 

co-efficient and depth of water in the tension crack) and resisting forces (e.g. shear strength 

parameters) were estimated purely through expert judgement. Given the lack of objective 

data, Hoek (2007) estimated intervals of the shear strength parameters ( c  &  ) using 

published literature. The interval of the depth of water in the tension crack was taken as the 
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minimum and maximum depth of the crack physically possible, with a ‘worst case’ estimate 

of the acceleration co-efficient based on local experience. With respect to the taxonomy and 

level of information concept (Figure 17 and Figure 8, respectively), this characterisation of 

the uncertain parameters as intervals is a faithful representation of the epistemic uncertainty 

present in the problem. Furthermore, the ‘worst case’ deterministic value for acceleration co-

efficient indicates the lowest level of information – complete ignorance.  

Using this combination of deterministic and interval valued parameters, Hoek (2007) 

undertook a sensitivity study – a form of interval analysis (Saltelli, 2004) – to estimate the 

change in FoS by varying the parameter values between these bounds. Indeed, Hoek & Londe 

(1974) state that sensitivity studies can provide useful information on the response of the 

structure to changes in significant parameters. Nilsen (2000) presents a similar sensitivity 

analysis using ‘worst case’ and ‘best case’ parameter combinations; the calculated FoS ranges 

between approximately 1.0 and 2.0. Whilst the analyses of Nilsen (2000) and Hoek (2007) are 

both faithful to the available information and robust, there is no means of objectively 

estimating the level of uncertainty in the calculated FoS, nor the likelihood of intermediate 

conditions (e.g., intermediate water levels or smaller accelerations). Hoek & Londe (1974) 

recognised the lack of precision in such analyses suggesting that, given the paucity of 

information to undertake the analysis, it is the responsibility of the engineer “not to compute 

accurately but judge soundly”. Whilst the merit in this statement is recognised, one of the 

major aims of this thesis is to provide tools to assist making objective judgements when faced 

with such cases where the unpredictability is highly epistemic. The eventual goal of which is 

to reduce subjectivity and dissonance between experts. 

Sakurai & Shimizu (1987) present an example in which rock mass classification, 

RMR in particular, is used to estimate the shear strength parameters ( c  &  ) as the inputs to 

the LEM (Figure 52). Sakurai & Shimizu (1987) recognise the imprecision in the estimation 

of RMR through their statement that “compared with materials such as steel and concrete, 

the determination of a probability density function for the mechanical constants of rock 

masses is extremely difficult”. Furthermore, they appreciate the value of fuzzy numbers to 

characterise epistemic uncertainty resulting from the subjective means of estimating RMR. In 

their analysis, imprecise correlations between the RMR rock class – which are of a nominal 

scale, as previously defined in Table 1 –  and the shear strength parameters are used to 

estimate fuzzy numbers for c  and   . By characterising the shear strength parameters as 

fuzzy numbers, Sakurai & Shimizu (1987) obtain a fuzzy FoS for a number of failure surface 
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angles. It should be noted that the angle of the failure surface itself could have been 

characterised as a fuzzy number and propagated through the analysis to obtain a single fuzzy 

FoS. However, it appears to not have been implemented for ease of computation.   
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1.0

0

0.2

10 20 30
Friction angle (deg.)

40 50

0.4

0.6

0.8



 45353020 ,,,ˆ 
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Figure 52: Fuzzy shear strength parameters computed from RMR (after Sakurai & Shimizu, 1987). 

To assist in decision-making, Sakurai & Shimizu (1987) define a ‘stability index’, as 

illustrated in Figure 53, based on possibility theory (see possibility and necessity measures 

discussed in section 3.2) for classifying stability, which expresses the degree of plausibility on 

which to form a judgement on the question: ‘this slope is stable’. Given the imprecision in the 

input information and by applying the new taxonomy of Figure 17, it is evident that the 

imprecise FoS and stability index calculated by Sakurai & Shimizu (1987) remains faithful to 

the information. In particular, the RMR input classes are of a nominal scale as are the output 

stability classes. From this, it can be concluded that the analysis of Sakurai & Shimizu (1987) 

does not introduce additional information, in the form of a precise PDF, in the computation of 

FoS. Further, the use of fuzzy numbers in lieu of intervals allows some measure on the 

uncertainty in the calculated FoS.  
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Figure 53: Proposed stability index (after Sakurai & Shimizu, 1987). 

5.1.2 Review of selected stochastic analyses 

As Table 3 illustrates, numerous probabilistic techniques such as Monte-Carlo simulation and 

Point Estimate Methods have been applied to FoS analyses using LEMs. In these studies, the 
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primary impetus for using probabilistic methods is the perception that probabilities of failure 

can be calculated to quantify the risk of slope instability; the reliability-based approaches,  

which include FORM and FOSM methods, offer an attractive framework in this endeavour 

(Jimenez-Rodriguez et al., 2006). All these methods share a commonality: requiring the 

unpredictable parameters to be modelled as random variables characterised by a precise 

probability distribution function. In accordance with the taxonomy, to substantiate the use of 

aleatory models and the subsequent probabilistic analyses requires a sufficient quantity of 

precise data. However, many of the analyses listed in Table 3 use subjectively defined PDFs. 

This subjectivity in defining PDFs conforms to the Bayesian approach. As discussed in 

section 2.6.2 and illustrated in the framework of Chapter 4, in order for this approach to 

remain faithful to the available information, the ‘priors’ must be objectively derived and 

updated using Bayes’s Theorem. However, in many of the analyses listed in Table 3, this is 

not the case.  

One of the first probabilistic analyses of planar slope stability was undertaken by 

Priest & Brown (1983), who based the resistance to sliding on shear strength parameters 

derived through empirical correlations between RMR and the Hoek-Brown strength criterion. 

As mentioned previously and discussed in detail in section 2.8.1, these correlations 

incorporate significant approximations and subjectivity in their estimation and are thus 

intrinsically epistemic. It follows that the inherent imprecision within RMR means that 

characterising unpredictability with precise PDFs, as described in section 2.5, is inappropriate 

due to the introduction of information and precision that does not exist; it is unfaithful to the 

available level of knowledge.  

More recently, various researchers have re-analysed the Sau Mau Ping road case study 

using various probabilistic techniques, as listed in Table 4. Whilst each of these probabilistic 

methods has differences (computational effort), they all require the input parameters to be 

characterised as random variables and, consequently, knowledge of the statistical moments 

that define them. However, earlier in this discussion we identified the entirely subjective 

means employed by Hoek (2007) to estimate the input parameters for the LEM. Given this 

quantitative and qualitative lack of information, it was concluded that the deterministic and 

interval analysis undertaken by Hoek (2007) was faithful to the available information. Hoek 

(2007) also presents a study in which the epistemic uncertainty in the LEM parameters is 

incorrectly treated as aleatory variability and characterised using PDFs. Consequently, this 

introduces information and precision into the output. Furthermore, as Monte-Carlo simulation 

is utilised to propagate the unpredictability, the outputs are neither faithful to, nor robust with 



Chapter 5 

Challenge problem 1 – Planar slope stability 

- 115 - 

the available level of information (refer to section 2.5). These statements are further validated 

by the following investigation of this case study presented in section 5.2. Consequently, any 

of the analyses listed in Table 4, all of which utilise the subjectively defined random variables 

of Hoek (2007) will suffer from the same drawbacks as Hoek’s Monte-Carlo simulation. In 

fact, a review of these other analyses shows that the distribution of FoS calculated by the 

various other studies is in close agreement with the PDF determined by Hoek (2007).  

Table 4: Slope stability analyses undertake on Sau Mau Ping road.  
Method of analysis Reference 

Monte-Carlo simulation Hoek (2007) 

First Order Reliability Method (FORM) Low (2008) 

Response Surface Method (RSM) Li et al. (2011) 

Reliability-based Robust Geotechnical 
Design 

Wang et al. (2013) 

Jointly Distributed Random Variable 

(JDRV) method 
Johari et al. (2013) 

 

In contrast to the subjectively assigned PDFs used in the various probabilistic analyses 

of the Sau Mau Ping road slope, the study by Park & West (2001) demonstrates a far greater 

appreciation for the attributes required to characterise unpredictability as aleatory variability 

for propagation through probabilistic analysis. In their study, Park & West (2001) state that 

the parameters defining the orientation and geometry of discontinuities, such as length, 

spacing and persistence as well as the shear strength parameters, may be defined as random 

variables.  However, unlike the studies discussed above, they recognise the objective nature of 

aleatory variability and recommend that the “types of distribution functions for each random 

variable should be selected carefully in a probabilistic analysis. However, there is a lack of 

consensus on these choices, which could lead to very different analysis results”. For this 

reason, Park & West (2001) use objective data obtained from measurements on a total of 280 

discontinuities to objectively fit the PDFs. The measurement techniques involved the scanline 

method on rock outcrops and existing road cut slopes, as well as the use of a borehole method 

providing oriented cores. The selected PDFs are justified using Chi-square goodness-of-fit 

tests.  

A deficiency in Park & West’s study was the inability to objectively measure the shear 

strength parameters, and thus these were characterised by subjectively defined PDFs. The 

following statement exemplifies their justification for this deficiency: “In addition, since the 

number of tests performed and data measured are generally insufficient for a sound statistical 

analysis, a certain amount of experience and good engineering judgement are always 

needed”. Whilst the latter part of the statement calling for good engineering judgement is 
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supported, in the context of the framework presented in Chapter 4, to faithfully characterise 

unpredictability the imprecision in these parameters should be expressly acknowledged and 

the data characterised by a non-stochastic method commensurate with the available level of 

information and propagated using hybrid analysis. Further studies by Park et al. (2005) and 

Park et al. (2012) follow the same methodology, characterising the variability in many input 

parameters using large data sets (280 and 350 measurements, respectively), with the shear 

strength parameters characterised subjectively.   

The examples reviewed in this section present both non-stochastic and stochastic 

approaches for characterising unpredictability in subjectively assigned parameters, i.e. when 

the unpredictability is epistemic. With respect to the new taxonomy of Figure 17, such 

subjective assessment of parameters means that the unpredictability cannot be characterised as 

aleatory and thus the stochastic approaches are inappropriate. With respect to the discussion 

presented earlier in section 2.5.1, these non-stochastic approaches are not faithful to the 

available information. This review highlights the need for the new taxonomy proposed in this 

thesis (i.e. Figure 17). Furthermore, it suggests that an objective means of characterising 

unpredictability and thus identifying the optimal modelling method is required. This objective 

means of characterising and propagating unpredictability is provided by both the proposed 

taxonomy and framework (presented earlier in Chapter 4). The following discussion now 

demonstrates the applicability of the proposed framework to the Sau Mau Ping road case 

study.  

5.2 Case study: Sau Mau Ping road 

Following a series of landslides in Hong Kong that were triggered by exceptionally heavy 

rains, which caused some loss of life and a significant amount of property damage, the 

stability of a rock slope on Sau Mau Ping Road in Kowloon – located immediately across the 

road from two blocks of apartments, each housing approximately 5,000 people – was brought 

into question (Hoek, 2007).  

Given the critical nature of this slope, a study was required to investigate the factor of 

safety (FoS) of the slope under normal conditions and under conditions that could occur 

during an earthquake or during exceptionally heavy rains. Unfortunately – and as is often the 

case in geotechnical engineering – no objective data (i.e. laboratory or field observations and 

measurements) were available at the time of undertaking the study. Consequently, critical 

input parameters for the analysis had to be determined from expert judgement and previous 

experience (Hoek 2007). The geometry of the slope, as well as those parameters for which no 
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objective data were available – referred to herein as the non-deterministic parameters – are 

shown in Figure 54. 

Random variables PDF Mean St. Dev.

Sliding surface friction,  (deg) Normal 35° 5°
Sliding surface cohesion,  (t/m ) Normal 10 2
Tension crack depth,  (m) Normal 14 3
Tension crack water depth,  (m) Exponential max = 

Horizontal seismic accln. factor, Exponential 0.08 max = 

c
z

z z z

2

w
/2

2



 

z
20m

60m

Unit weight of rock = 2.6 t/m
3

Unit weight of water = 1.0 t/m
3

70° 50° 35°

 

Figure 54: Geometry and non-deterministic parameters in Sau Mau Ping Road analysis  

(from Bedi & Harrison, 2013a). 

Irrespective of the lack of objective data with which to characterise the non-

deterministic parameters, various authors have presented probabilistic approaches to assess 

the factor of safety of the Sau Mau Ping road slope (see Table 4). In these analyses, the non-

deterministic parameters are characterised as random variables that have been defined 

subjectively using expert judgement (Hoek, 2007). However, given the absence of objective 

information, the validity of these probabilistic approaches for this case study is questionable. 

The discussion that follows, using the concepts presented in the proposed taxonomy and 

framework, first presents a critical review of the basis on which the non-deterministic 

parameters have been characterised as random variables, and thus draws conclusions on the 

suitability of stochastic analysis to determine the FoS, given the level of information. This is 

followed by a comparison of the results from Monte-Carlo simulation based on a subjectivist 

(Bayesian) approach to probability and a non-probabilistic approach selected by following the 

framework presented in Chapter 4. This example illustrates the significant differences in 

design decisions that may result depending on the model adopted to characterise and 

propagate uncertainty and compare the results with an alternative calculation in which the 

non-deterministic parameters are characterised as fuzzy numbers.  
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5.2.1 Critical review of data characterisation with respect to the proposed 
framework  

With respect to the proposed taxonomy as illustrated in Figure 17 (see section 2.7), the 

absence of objective data with which to fit a PDF for each non-deterministic parameter 

constitutes a quantitative lack of information. According to this figure and the new taxonomy 

as set out in Figure 17, the non-deterministic parameters must therefore be classified as 

epistemic and propagated using an appropriate, non-stochastic uncertainty model. However, 

and contrary to these concepts, Hoek (2007) suggests that even in the absence of objective 

information the non-deterministic parameters can be modelled as random variables (i.e. 

aleatory) defined solely from expert judgement or experience.  Indeed, Hoek (2007) suggests 

that lack of objective data is often used as an excuse for not using probabilistic tools in 

geotechnical engineering. On this basis, Hoek (2007) characterises the non-deterministic 

parameters as random variables in order to undertake a probabilistic assessment of the factor 

of safety of the Sau Mau Ping slope.  

Recalling the level of information concept presented in Figure 8 and the faithfulness 

principle previously discussed in section 2.5.1, the simple act of defining a probability of 

occurrence when faced with epistemically uncertain parameters introduces a significantly 

greater level of knowledge than is actually available. Of most importance is not the magnitude 

of the selected minimum, maximum or mean values, but rather the shape of the PDF chosen 

to define them (Ferson & Gizburg 1996). Contrary to this, Hoek (2007) reasons that 

properties arising from the sum of a number of random effects, none of which dominate the 

total, are normally distributed., and that the normal distribution is “generally used for 

probabilistic studies in geotechnical engineering unless there are good reasons for selecting a 

different distribution”. On this basis, Hoek (2007) suggests that, in the absence of information 

on the actual distribution, a normal distribution be used where the means represent the ‘most 

likely’ values and the minimum, maximum and standard deviations are arbitrarily chosen.  

In the analysis presented by Hoek (2007), the shear strength parameters ( c  and  ) 

were modelled using truncated normal distributions with the mean and standard deviation 

estimated subjectively based on literature reports (see Figure 55, reproduced from Hoek & 

Bray, 1974) of back analysed slope failures in similar rock types. Hoek (2007) states the 

minimum and maximum truncation limits were arbitrarily chosen to allow for a wide range of 

values in the analysis. For the friction angle, these bounds represent extreme limits of a 

smooth slickensided surface (30°) and a fresh, rough tension fracture (70°), and for cohesive 

strengths the minimum and maximum values chosen were 0 and 25 tonnes/m2 (i.e. 0 and 
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0.25MPa), respectively. Similarly, the lack of access to inspect the crests of the slopes for the 

presence of tension cracks meant the PDF defining their depth was also speculative. Finally, 

truncated exponential PDFs were used to define the tension crack water depth and seismic 

acceleration with the means defined through “expert judgement and using very crude 

guidelines”. Table 5 summarises the minimum, maximum and most likely values determined 

by Hoek (2007), and form the basis of the subjectively defined PDFs of Figure 56.  

Table 5: Minimum, maximum and mean values used by Hoek (2007). 

Parameter  Minimum Mean Maximum 

Cohesion ( c ,tonnes/m2 ) 0 10 25 

Angle of friction ( , deg) 15  35 70 

Depth of tension crack ( z , m) 0 0.5 maxz  0.5 maxz  

Depth of water in tension crack ( wz , m) 0 0 
maxz  

Accelaration coefficient (a) 0 0 0.16 
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Figure 55: Empirical data of c &  based on back analysis of failed slopes (after Hoek & Bray, 1974; 

Hoek, 2007). 
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Figure 56: PDFs of non-deterministic parameters used in Monte Carlo simulation (from Bedi & 

Harrison, 2013a). 

In this example, there is perhaps some basis (local seismological and meteorological 

information) for selecting exponential PDFs to define the probability of occurrence of 

typhoons and earthquakes; however, there is no evidence to suggest that the shear strength 

parameters and tension crack depth are better defined by normal distributions rather than, say, 

triangular or beta distributions. Consequently, dissonance between experts may well result in 

others opting for alternative distributions; the triangular distribution is a common choice. For 

these reasons, the Bayesian view contends that ‘non-informative’ PDFs (i.e. uniform 

distributions between the estimated lower and upper bounds) may be assigned in the absence 

of information on the shape of the distribution. 

Regardless of whether non-informative or other distributions are chosen to model the 

non-deterministic parameters, Figure 8 (i.e. uncertainty models and the LoI concept) and 

Figure 29 (i.e. appropriate uncertainty models for a given level of information) coupled with 

the proposed taxonomy illustrated in Figure 17, indicate that an aleatory model represents the 

highest level of information and requires a sufficient quantity of precise data to justify the 

choice of PDF. In the case of Hoek’s (2007) analysis, the information met neither the 

qualitative or quantitative criteria required to define an aleatory model. Furthermore, with 

respect to the proposed framework presented earlier in Chapter 4, the data characterisation 
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strategy sub-chart (Figure 49) suggests that the Bayesian approach is only suitable when the 

subjectively determined priors can be justified through prior evidence, and further data 

collection is planned with which to update the initial (i.e. prior) distributions to ‘posterior’ 

distributions, using Bayes’s Theorem (Ang & Tang 2007). This case study offered no 

evidence to justify the chosen shape of all the distributions, nor was it possible to obtain 

further objective data. Therefore, even though the non-deterministic parameters may be the 

result of random processes, the level of information available does not fulfil all the key 

attributes required to characterise unpredictability as aleatory, as set out by the proposed 

taxonomy and framework. Instead, the current lack of knowledge requires that they should 

have been characterised as epistemic. The following exemplar calculations investigate the 

effect on the calculated factor of safety obtained by Monte-Carlo simulation when using 

various subjectively assigned PDFs. 

5.2.2 Effect of subjectively assigned priors 

Figure 57 compares the results of three Monte-Carlo (MC) simulations – with 5000 iterations 

for each run – each with a different PDF defining the non-deterministic shear strength 

parameters ( c  and  ) and the depth of the tension crack (z). The first MC simulation uses the 

PDFs shown in Figure 56, the second adopts triangular distributions that approximate the 

parameters of Figure 56(a-c), and the final simulation adopts the Bayesian philosophy and 

assigns non-informative priors to these parameters. In each simulation the minimum, 

maximum and mean values shown in Table 5 are used to define the PDFs.  
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Figure 57: Comparison of three Monte-Carlo simulations (from Bedi & Harrison, 2013a). 

Figure 57 demonstrates how the choice of the input PDFs has a significant influence 

on the output of the Monte-Carlo simulations. Most importantly, despite the input 

distributions having the same minimum, maximum and mean values the different shapes of 
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the PDFs have resulted in significant differences in the bounds and fractile values of the 

output.  

These differences result from the varying degree of information contained purely in 

the shape of the selected PDF. That is, the triangular distribution contains more information 

on the probability of occurrence of the mean value than the uniform distribution. Likewise, 

the truncated uniform distribution contains even further information on the distribution of 

probabilities around the mean and between the bounding values; the standard deviation of 5° 

implies that about 68% of the friction angle values defined by the distribution will lie between 

30° and 40°. This precise statement has been made on the basis of a subjectively determined, 

and hence imprecise, area shaded in Figure 55 that does not support such statements about 

probability of occurrence within the shaded region.  It is thus evident that in this example, 

there is simply no evidence to warrant the selection of one PDF over another. In fact, this 

dispute on the selection of an appropriate PDF in the absence of any knowledge on the 

parameters which define it dates back to Laplace’s principle of indifference, which itself 

dictates the use of uniform distributions (Ferson & Ginzburg 1996).  

In this example, the results of the three MC simulations presented in Figure 57 can be 

considered a reflection of the subjective opinions of three different experts. The question then 

becomes, how do the views of each of these experts differ with respect to the FoS of the slope 

and what influence does this have in determining remedial measures, if any? 

5.2.3 Decision making 

In terms of stability of the Sau Mau Ping slope, a FoS less than 1.0 indicates that the slope is 

unstable; a FoS of 1.0 can be thought of as the ‘limit state.’ In civil engineering, a 5% 

probability of occurrence of the limit state is often considered as the threshold of acceptable 

risk. Table 6 presents a summary of various statistics for the FoS, calculated from the results 

of the three analyses presented in Figure 57. The final column in this table presents the 

calculated probability of the FoS being less than 1.0, i.e., the probability of occurrence of the 

limit state.  

Table 6: Statistics computed from Monte-Carlo simulations. 

Simulation  Type of 

PDF 

Min 

FOS 

Lower 

5% 

Mean Max 

FOS 

P(FoS≤1) 

N Normal 0.59 0.97 1.34 2.31 6.4% 

T Triangular 0.46 0.88 1.68 4.59 9.5% 

U Uniform 0.25 0.70 1.94 5.21 14% 
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The results of Simulation ‘N’ indicate that the probability of a FoS less than 1.0 is 

6.4%.  As a result of this analysis, Hoek (2007) states that this FoS represents “a reasonable 

risk of failure for short term conditions and a risk of this magnitude may be acceptable in an 

open pit mine, with limited access of trained miners, and even on a rural road. However, in 

the long term, this probability of failure is not acceptable for a densely populated region such 

as Kowloon”, Simulations using triangular and uniform PDFs, respectively, indicate that the 

probability of a FoS less than 1.0 is 9.5% and 14%. These are both substantially more than 

that obtained in the simulation using normal PDFs, and suggest that the slope may not be 

stable. Note also that there are significant differences in the other minimum and maximum 

calculated values. If we consider the results of Simulation ‘T’ and ‘U’ as the findings of two 

other experts, it is apparent that their conclusions may be vastly different to those of Hoek 

(2007). 

These simulations demonstrate how differing views on the stability of the slope may 

be obtained when a subjective approach to assigning probability distributions is applied. As 

subjective distributions are determined by expert opinion, and the conclusion each expert 

reaches on the basis of these subjective inputs varies, such a situation would only serve to 

generate dissonance between the experts. In essence, the results of the analysis reflect a 

situation where the experts have agreed to disagree. Therefore, one would have to adopt the 

decision of the expert they deem most competent (introducing further subjectivity) or 

undertake objective tests to verify the assumptions of the input distributions defined by the 

expert; the only means of doing so would be to undertake objective measurements.  

The next section applies the proposed framework and shows that given only the 

minimum, maximum and ‘most possible’ values used in this analysis, the path followed 

would lead each expert to the same non-stochastic approach to characterise and propagate the 

epistemic uncertainty in this problem.  

5.3 Application of proposed framework applied to Sau Mau 
Ping slope stability analysis 

The analysis presented in the preceding section used non-deterministic parameters that were 

defined as random variables (i.e. aleatory) around a common minimum, maximum and mean 

value. Regardless of these commonalities, the calculated performance of the slope varied with 

the chosen shape of the input PDFs. The discussion in section 5.2.1 concluded that for the Sau 

Mau Ping road slope case study, the lack of objective data required the unpredictability in the 

non-deterministic parameters to be characterised as epistemic uncertainty, and so a more 



Chapter 5 

Challenge problem 1 – Planar slope stability 

- 124 - 

appropriate uncertainty model is one that uses only the minimum, maximum and ‘most 

typical’ value of any of the non-deterministic parameter. The discussion that follows 

demonstrates how the framework presented in section Chapter 4 leads the user to an 

appropriate uncertainty model that is faithful to the available information.  

5.3.1 Framework paths 

The first step in the proposed framework (Figure 48) is preliminary investigation and data 

acquisition, which is later followed by, in step 5, characterisation of the non-deterministic 

parameters for propagation through an appropriate unpredictability analysis. For the Sau Mau 

Ping road case study, the shear strength parameters were estimated through published 

empirical relations (Figure 55), with the remainder being estimated through expert judgement. 

Table 7 presents a summary of the path followed through the main framework (Figure 48) and 

the data characterisation strategy (Figure 49) and model selection strategy (Figure 50) sub-

charts. This table presents the decision made or question answered at each box encountered in 

the path through the framework.   

Whilst the questions and answers presented in Table 7 are straightforward, a few key 

stages require additional discussion.  Firstly, the first question in the data characterisation 

strategy (box 5.1) asks the question ‘Can the data be measured objectively?’ For this case 

study, the answer to this is of course ‘yes’, and thus the framework directs us towards 

questions that determine whether the quality or quantity of information is sufficient to 

characterise the parameter as aleatory (see taxonomy and figures). In this case, the 

insufficiency of objective data leads us away from the aleatory model towards the Bayesian 

updating route (box 5.3), and asked the question ‘Prior information on which to formulate a 

precise PDF is known?’. At this stage, knowing that the parameters in question can be 

objectively measured and thus may be intrinsically aleatory, we could arguably suggest that a 

PDF should be formulated on expert judgement.  However, the earlier discussion in section 

5.2.1 demonstrated the lack of evidence to support the shape of a distribution. Nonetheless, if 

we were confident in justifying a subjectively determined prior distribution and answered 

‘yes’ to the above question, the next question posed would be whether we propose to gather 

further data to update the priors to posterior PDFs. As we do not intend to subsequently 

update the priors with objective data, the state of information is realised as imprecise and we 

are returned back towards questions leading towards an epistemic characterisation of the 

unpredictability in the parameter. The data characterisation strategy finally leads us to 

characterise the parameters using triangular fuzzy numbers.   
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Table 7: Framework paths – questions and answers table. 

Box 

# 

Question Answer 

1 Preliminary investigation/data 

acquisition 

No objective data available. Parameters derived from expert 

judgement 

2 Select analytical model Closed form limit equilibrium model for planar slope stability 

(See Equation (5.1)) 

3 Identify parameters required for 

model 

Non-deterministic parameters per Figure 54 

4 Further investigation/data 

acquisition 

Not available 

5 Uncertainty parameters 

characterisation 

Move to ‘Data characterisation strategy’ sub-chart (Figure 49) 

START DATA CHARACTERISATION STRATEGY SUB-CHART 

5.1 Can the data be objectively 

measured? 

The non-deterministic parameters may be measured through 

laboratory or field measurements 

5.2 A sufficient number of precise 

measurements are available? 

No measurements available 

5.3 Prior information on which to 

formulate a precise PDF is 

known? 

No. But we could arguable suggest that a PDF is formulated 

on expert judgement, which leads to the Bayesian Updating 

path. However, as we do not propose to subsequently update 

the priors with objective data, we are returned back to the 

following question 

5.4 The type of distribution is 

known and intervals for its 

parameters can be provided? 

There is no evidence to support any particular shape of 

distribution 

5.5 A sufficient number of 

imprecise measurements are 

available? 

Refer 5.2 

5.6 An interval that bounds the 

parameters is known? 

Yes. Prior published data and expert opinion can be used to 

provide bounds for each parameter 

5.7 An estimate of the most 

plausible values can be 

provided? 

Yes. Refer 5.6. All the non-deterministic parameters can be 

characterised by triangular fuzzy numbers. 

We now return to the main flowchart 

6 Select appropriate uncertainty 

model 

Move to ‘Uncertainty model strategy’ sub-chart (Figure 50) 

START MODEL SELECTION STRATEGY SUB-CHART 

6.1 Parameter characterisation Given that no further data collection is proposed, at this stage 

the data are characterised as intrinsically epistemic.  

6.2 Select uncertainty model All the parameters are fuzzy numbers and so we use 

possibility analysis 

6.3 Analytical output Subjective bounded output. We now return back to the main 

flowchart (Figure 48) 

 RETURN TO MAIN FRAMEWORK FLOW CHART 

7 Analysis We undertake a fuzzy analysis 

8 Model propagation The analysis results in a subjective bounded output 

8a Are the bounds small enough to 

generate a useable output 

Yes. See discussion in 5.3.3 

8b Subjective 

assessment/defuzzification 

We use the concept of agreement index ( as will be discussed 

further in section 5.3.3, Figure 59) to obtain the agreement 

index from which to formulate design decision 

 DESIGN Using the agreement index curve, we conclude that the FoS 

is insufficient at the required agreement level and thus 

mitigation measures need to be implemented. We now 

propose to investigate the impact on agreement index with 

the installation of rock bolts to improve the FoS.  
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One final note is box 5.4, which asks whether the type of distribution is known and if 

intervals for its parameters can be provided. At this point, one could argue that the 

exponential distributions for depth of water in the tension crack and earthquake could be 

justified. However, given the approximation used by Hoek (2007) in coming up with these 

distributions, to remain as faithful as possible to the available information, we have chosen to 

answer ‘no’ for all the non-deterministic parameters and continue with a possibility analysis. 

5.3.2 Possibility analysis  

By following the framework to characterise the non-deterministic parameters using triangular 

fuzzy numbers (TFNs), the minimum, maximum and ‘most likely’ values provided by Hoek 

(2007) are used to construct these, as shown in Figure 58.  It is important to realise that the 

TFNs are different to triangular PDFs, in that they contain a lower level of information. The 

fuzzy numbers do not define precise probabilities of occurrence for values of the parameter 

they characterise, but rather encode preferences of imprecise measures. The resulting fuzzy 

factor of safety ( SôF ) is shown at the lower right of Figure 58.  The generation of the fuzzy 

numbers and output fuzzy factor of safety has been computed by discretising the fuzzy 

numbers into cuts and applying the vertex method discussed in 3.2.2. The calculation 

algorithms are provided in Appendix B.  
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Figure 58: Fuzzy inputs and computed fuzzy factor of safety (from, Bedi & Harrison, 2013a). 
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In comparison with the results of the earlier analyses (see Table 6), fuzzy arithmetic 

ensures that the resulting fuzzy factor of safety correctly bounds the minimum and maximum 

possible values, however improbable they may be (Kaufmann & Gupta 1991). Thus, the fuzzy 

number faithfully represents the full range of uncertainty.  Figure 58f also depicts the most 

possible factor of safety, so the result shown in Figure 58f may be expressed linguistically as 

‘A FoS less than 0.05 or greater than 5.58 is considered impossible. Values close to these 

bounds are considered least possible; the most possible FoS is 1.58. The median FoS is likely 

to lie in the interval [0.63, 2.93]’.  

Although fuzzy analysis faithfully propagates epistemic uncertainty, the imprecise 

output means pragmatic decision-making is awkward. One way to overcome this issue is to 

use a defuzzification measure, as discussed below. 

5.3.3 Decision making 

Kaufmann & Gupta (1991) present a defuzzification procedure using the concept of an 

‘agreement index,’ which is a measure of the proportion of the fuzzy number, by area, less 

than a certain upper bound, as shown in Figure 59. An agreement index of 0 represents a 

condition where every value of the fuzzy number is greater than the upper bound, and an 

agreement index of 1 represents the case in which every part of the fuzzy number is less than 

the upper bound. By using the factor of safety as the value of the upper bound, an ‘agreement 

index’ is computed by calculating the agreement index for a range of factor of safety values. 

Figure 60 shows a comparison between the agreement index and the cumulative probability 

distribution functions from the Monte-Carlo simulations. 
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Figure 59: Defuzzification of a fuzzy number using the agreement index (after Kaufmann & Gupta, 

1991; Harrison & Hudson 2010). 
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The agreement index is interpreted as follows: Figure 58(f) shows that the most possible FoS 

is 1.58. Now, using the agreement index curve in Figure 60, we can see that there is a 35% 

agreement that the FoS will be less than or equal to this value. Similarly, there is a 15% 

agreement that the FoS will be less than or equal to 1. Comparing the 5% agreement index 

with the lower 5% fractile value obtained from the three Monte-Carlo simulations (Table 6), 

the fuzzy analysis indicates a FoS of 0.55 at this level.  

When comparing the agreement of the limit state with the probability of occurrence 

based on the Monte-Carlo simulations, the fuzzy analysis indicates more conservative 

conclusions. This is perhaps warranted given the little objective information on which to base 

critical decisions. However, it is not clear what agreement index should be deemed acceptable 

in terms of rock engineering designs. 
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Figure 60: Defuzzification of a fuzzy number using agreement index (from Bedi & Harrison, 2013a). 

As all the analyses predict potential instability of the slope, stability may be improved 

using various remedial measures, such as the installation of rock bolts. Using the fuzzy 

approach, Figure 61 compares the agreement index obtained from a further analysis with a 

support force of 1000 t per metre of slope (applied via rock bolts inclined 30° counter-

clockwise from the normal to the sliding plane) with the in-situ condition. This figure shows 

that the installation of rock bolts reduces the minimum agreement index to 0.33, with a most 

possible value of 3.10 and a maximum of 10.34. Figure 61also shows that the agreement 

index at a FoS = 1 falls from 15% to 3% with the applied support. On this basis, one can see 

that the proposed agreement index curve may be useful for comparing design scenarios during 

the decision-making stage. 
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Figure 61: Agreement index for in-situ and stabilised slope (from Bedi & Harrison, 2013a). 

5.4 Synopsis 

The example presented in this Chapter demonstrates the fundamental errors that may result if 

subjective probabilities are applied to characterise epistemic parameters without prior 

objective information to support them. The example calculations presented here showed that 

by arbitrarily assuming a prior probability density function, one implies a greater level of 

information than is actually available; the increased level of information is in the definition of 

the shape of the PDF. The significantly different results can be taken to represent the 

subjective views of different experts. This example also demonstrated that the assumed prior 

PDF coupled with Monte-Carlo simulation has the effect of erroneously producing 

distribution tails that the information does not support. This may have detrimental 

consequences for engineering design, as it is often the extreme values represented by the tails 

of the distributions that govern design decisions. The Bayesian approach allows statements 

that presume a greater level of information than is available, thereby introducing a false sense 

of confidence by introducing precise statistical measures that have no real basis. Additionally, 

the assumed prior PDF, coupled with Monte-Carlo simulation, results in extreme 

combinations of parameter values disappearing from the analysis as a result of Monte-Carlo 

averaging. In civil engineering design, especially where critical decisions on the in-situ factor 

of safety are required, it is important that the engineer is able to clearly see these ‘worst case’ 

events in order to make an informed decision based on the information available. 

In contrast, this example demonstrated how following the framework to characterise 

and propagate unpredictability leads to the selection of a non-probabilistic method 

commensurate with the given level of information, and allows one to use all the available 

information and propagate the uncertainty faithfully through the analysis of an intrinsically 



Chapter 5 

Challenge problem 1 – Planar slope stability 

- 130 - 

epistemic system. This example has shown how non-probabilistic analyses using fuzzy 

mathematics are more suitable for the characterisation and propagation of epistemic 

uncertainty. Associated with this, the Chapter presented a new measure to defuzzify the 

output of such an analysis and thus assist in decision-making. As a result, it has been possible 

to demonstrate how a possibility analysis may give more meaningful results than subjective 

probability in the face of epistemic uncertainty. Most importantly, such methods will always 

contain the extreme events, however unlikely their occurrence may be. At the end of the 

modelling and risk analysis process the designer may then make a completely informed 

decision with regard to these unlikely events.  

In this challenge problem, many of the parameters used to define slope stability may 

have been objectively measured however, a quantitative lack of objective data and reliance on 

subjectivity required them to be characterised as epistemic. The next challenge problem 

investigates the application of the new taxonomy and framework when faced with a 

qualitative lack of information; that of intrinsically epistemic rock mass classification 

systems.  

 



 

- 131 - 

Chapter 6  

CHALLENGE PROBLEM 2 – 

ROCK MASS CLASSIFICATION 

Section 2.8.1 identified that the difficulty in using objective test methods to characterise 

DIANE rock masses has led to the wide development and use of rock mass classification 

systems. While the simplicity of these rock mass classification systems makes them attractive 

to practitioners faced with limited data, the presence of numerous approximations embodied 

within them has raised many questions regarding their use in engineering design (Palmström 

& Broch, 2006; Schubert, 2012). This thesis does not continue the debate on either the 

fundamental assumptions made in deriving such schemes or the validity of their application. 

Rather, it is shown how the concepts presented in the new taxonomy (Figure 17) and 

framework (Chapter 4) require the unpredictability resulting from their use to be characterised 

as epistemic uncertainty and thus propagated using an appropriate, non-stochastic modelling 

method. 

The discussion in section 2.8.1 showed the inherent imprecision in the parameters that 

form the basis for Q , and thus concluded that when using this classification system, the 

unpredictability must be characterised as intrinsically epistemic. With respect to the new 

taxonomy, Figure 29 (i.e. appropriate uncertainty models for a given level of information 

presented in Chapter 3) and the data characterisation strategy flowchart (Figure 49 in Chapter 

4), it follows that inherently imprecise data, i.e., intrinsically epistemic parameters such as 

those found in empirical rock mass classification systems like Q , are best characterised by 

intervals or fuzzy numbers.  

In recognition of the inherent imprecision embodied in rock mass classification 

systems, many researchers present investigations on the application of fuzzy methods when 

using rock mass classification systems. The previous section discussed Sakurai & Shimizu’s 

(1987) approach to rock slope stability using a fuzzified approach to select shear strength 

parameters based on RMR. Nguyen (1985) established a general fuzzy set approach to rock 
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mass classification, which lead to studies on specific rock mass classification systems using a 

similar approach (e.g. Juang & Lee, 1990; Habibagahi & Katebi, 1996; Aydin, 2004). These 

studies all use fuzzy sets (Zadeh, 1965) to capture vagueness in the linguistic descriptors of 

rock mass classification systems, i.e. subjective measurement of purely qualitative data. 

Nguyen (1985) and Hudson & Harrison (1997) proposed using fuzzy numbers and fuzzy 

arithmetic (as defined in section 3.2) to characterise and propagate imprecision in the 

parameters used in the Q -system. Tonon et al. (2000) present a random set approach (i.e., 

analogous to using an imprecise p-box) to rock mass classification. Various analyses also 

suggest using probabilistic approaches that use random variables to characterise rock mass 

classification parameters (e.g. Priest & Brown, 1983; Carter & Miller, 1995). 

The proposed taxonomy (Figure 17) and framework (Chapter 4) support the non-

stochastic analyses of the various authors mentioned above, which recognise the intrinsically 

epistemic nature of rock mass classification systems. Similarly, the probabilistic analyses of 

rock mass classification presented in the literature are considered inappropriate. As illustrated 

by the new taxonomy, it is the reliance on subjective assessment of the rock mass 

classification parameters that requires the state of information to be regarded as imprecise and 

thus inappropriate to support an aleatory model. This subjectivity is, once again, captured by 

the first question in the data characterisation strategy of the proposed framework (Figure 49): 

‘Can the data be objectively measured?’. For rock mass classification systems, and the Q -

system in particular, the answer is of course ‘no’, and thus the data characterisation strategy 

requires the use of an imprecise unpredictability modelling method. On this basis, the next 

section examines the application of interval analysis and fuzzy numbers to a case study where 

the Q -system has been used to estimate the support requirements for an underground cavern.  

6.1 Case study – Gjøvik Cavern support design  

The Gjøvik cavern, constructed in Norway in 1994, measures a span of 60 m, a length of 90m 

and a height of 25m. Support requirements were principally determined using the Q -system 

(Barton et al., 1974). In the example that follows, actual field investigation data collected 

during the feasibility phases of the Gjøvik cavern project and published in Barton et al. (1994) 

are used to show how the taxonomy and framework may be applied to estimate support 

requirements and assess the feasibility of constructing the cavern, based on the Q -system.  
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The Q -value is estimated using Equation (6.1), with tunnel roof support pressure 

being estimated from a common correlation based upon analyses of case records, given by 

Equation (6.2) (Grimstad & Barton, 1993).  
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Due to the dependence of the required roof support pressure on Q , its calculation will inherit 

any uncertainty in the estimation of Q . In fact, as this expression contains additional 

repetitions of the intrinsically epistemic parameters nJ  and rJ , the resulting uncertainty may 

be exacerbated further.  

For the Gjøvik cavern, support pressure was proposed to be provided through 

permanent rock reinforcement in the form of grouted rebar rock bolts, untensioned fully-

grouted strand anchors and 10cm of steel fibre reinforced shotcrete (Barton et al., 1994). The 

spacing of the strand anchors ( sS ) was proposed to be twice that required for the rock bolts 

( bS ). Using this proposed rock reinforcement layout, in the analysis presented here the 

spacing of the rock bolts is calculated using Equation (6.3), where sT  and bT  are the capacity 

of the anchors and bolts at yield, respectively. The shotcrete is not assumed to provide any 

active support. A full derivation of Equation (6.3) is provided in Appendix C.  
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6.1.1 Project conception: Interval analysis 

At the project conception stage, it is often the case that little or no factual data are available 

for use in the engineering design calculation. In these situations, it is common practice to rely 

on precedent experience or expert judgement to determine the bounds of the parameters used 

in the analysis. In the case of Gjøvik, precedent experience came in the form of two smaller 

caverns previously constructed in the same hillside, approximately 100m from the proposed 

cavern (Barton et al., 1994). 

In this example, we assume that at this preliminary stage, experts were able to provide 

only the bounds of the various Q  parameters based on a qualitative assessment of the rock 
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mass through visual mapping of the adjacent caverns. The rock mass description assumed is 

as follows: 

‘The rock quality designation ranges between ‘poor’ and ‘excellent’ (RQD = 30-100) 

with one to three plus random joint sets ( nJ  = 2-12) present. The joint roughness varies 

between rough/irregular, planar to discontinuous ( rJ  = 1.5-4). The joint wall surfaces range 

from unaltered joint walls with surface staining only to those having softening or low-friction 

clay mineral coatings with rock wall contact ( aJ  = 1-4). Previous tunnelling experience in 

this rock mass indicates that the excavation may encounter minor inflow, i.e. < 5 l/m locally, 

to occasional medium inflow or pressure ( wJ = 0.66-1). At this stage, the in-situ stress 

classification of ‘medium’ is considered appropriate (SRF = 1.0).’  

 The bounds of each of the interval parameters required to calculate the Q -value are 

summarised in Table 8. 

Table 8: Lower and upper bound of input parameters for Q . 

Parameter Lower bound (L) Upper Bound (U) 

RQD 30 100 

nJ  2 12 

rJ  1.5 4 

aJ  1 4 

wJ  0.66 1 

 

With respect to the proposed taxonomy (Figure 17) and framework (Chapter 4), 

having obtained a set of subjectively estimated bounds of the input parameters, we can only 

apply an interval analysis to obtain the bounds of Q . The interval operations applied to obtain 

the output interval of Q  are those presented in section 3.1; specifically Equations (3.5) and 

(3.6). Applying these equations to Equation (6.1) and simplifying, the output interval of the 

lower and upper bounds of Q  is obtained as defined by Equation (6.4) , in which the 

superscript L denotes the lower bound and the superscript U the upper bound: 
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Using the values of Table 8 within Equation (6.4), the resulting interval of Q  is given by: 

   200,62.0, UL QQ . Applying this interval of Q  within Equations (6.2) and (6.3), and once 
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again applying interval arithmetic we obtain an interval of bolt spacing    5.7,1.1, U

b

L

b SS m, 

and consequently a strand anchor spacing of    0.15,2.2, U

s

L

s SS m. 

 With the current level of information, the only statement that may be interpreted from 

this interval is, simply that  ‘Q  will lie somewhere between 0.62 and 200’. When converted 

back to the linguistic classes given by the Q -system, this translates to: ‘the rock quality will 

lie somewhere between poor and extremely good’. Similarly, only statements on the 

minimum and maximum spacing of the proposed rock reinforcement can be made.  

As discussed previously in section 2.5.3, the lack of information contained in intervals 

leads to difficulty in decision-making as exemplified by the wide range of the calculated 

interval of Q  and bolt spacing. In order to assist in decision-making, the previous section 

showed how various researchers undertook sensitivity studies using intervals (e.g. Hoek, 

2007). The following discussion demonstrates how the vertex method (see section 3.1.2) can 

be applied to provide additional insight into the result of the interval analysis.  

If we consider that the initial data contained five intervals of input parameters for Q  

(Table 8), with the output being a single interval of Q ; this appears to represent a loss of 

information. Applying the vertex method, we obtain a five-dimensional hypervolume with 32 

(25) vertices, each representing a unique combination of the five intervals that form the inputs 

to Q . Figure 62 presents a two-dimensional representation of the five-dimensional 

hypervolume, with the 32 (25) vertices representing unique combinations of the five intervals 

that form the inputs to Q . Each vertical line in this figure represents one vertex of the five-

dimensional hypervolume in the interval of Q . From it we see that the hypervolume bounds 

Q  between the values predicted by the interval solution, Q  = [0.62, 200]; however, we can 

also see the concentration, or spread, of the vertices. 

 

Figure 62: 2D representation of the 5D hypervolume of Q  obtained from the vertex method. 
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The following information may be drawn from this figure: there are two vertices, and 

thus combinations of the input parameters, which give a Q  value greater than 75. However, 

we cannot deduce the likelihood of occurrence of these two larger values because the input 

intervals contain no such information. For example, it would be unfaithful to the information 

to say: ‘2 out of 32 of the vertices result in a Q  value < 75, therefore there is a 94% 

probability that Q  will be less than 75’.  However, this analysis allows one to identify the 

combination of parameters that result in these two higher value vertices, and thus identify the 

attributes of the rock mass classification leading to the higher calculated values of Q . In this 

case, it is the calculations that involve the lower bound value of nJ  (2) and the upper bound 

value of aJ  (4) that result in the values at these two vertices. 

 Having obtained an imprecise interval output from Q and reviewed the vertices of the 

resulting five-dimensional hypervolume, with respect to the framework (box 8a in Figure 48) 

the question would now be posed: ‘Are the bounds small enough to generate a useable 

output?’. Given the large output interval of Q , the answer to this is likely to be ‘no’, at which 

point the framework would lead one back to ‘further investigation/data acquisition’. Armed 

with the knowledge of the two extreme vertices, nJ   and aJ , one could arguably attempt to 

obtain additional information to increase the level of understanding on the joint number and 

alteration. This information is used later in the following section (6.1.4) when we consider 

decision making.   

Nonetheless, with the available information, the interval analysis allows us to only 

make statements such as ‘because our knowledge is limited to only the values defining each 

interval, we are not able to give any estimate of what will be the most likely value of Q  

between the values of 0.62 and 200. Further information is required to make a more detailed 

assessment’. This analysis clearly shows there is too little information on which to make an 

engineering design decision, and the uncertainty is too large to make a subjective judgment. 

6.1.2 Project conception: Comparison with the Bayesian approach 

Due to the difficulty in decision-making based on interval analysis, and as previously 

discussed in section 2.6.2 on subjectivist probability, the Bayesian approach, which applies 

Laplace’s principle of insufficient reason – i.e. using non-informative priors – is often 

utilised. With respect to the new taxonomy of Figure 17, due to the intrinsically epistemic 

nature of the uncertainty in rock mass classification systems, this is approach is incorrect, and 

as demonstrated earlier in section 2.6.3, is neither faithful nor robust. Whilst applying this 
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Bayesian approach is strictly incorrect, for demonstration purposes, Figure 63a presents the 

expected distribution of Q  obtained from a Monte-Carlo analysis using 5000 simulations with 

‘non-informative priors’ in the form of uniform PDFs, given the available information. The 

resulting distribution of bolt spacing is illustrated in Figure 63b. 
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Figure 63: Monte-Carlo simulation of Q based on uniform prior PDFs as inputs. 

In comparison to the interval analysis, the results of the Bayesian analysis allow much 

more informative statements to be made, such as: ‘The mean value of Q  is 12.5. There is a 

5% probability that Q  will be less than 2.6, and a 95% probability that it will be less than 

34.3. The analysis predicts that Q  will neither be less than 0.8 nor greater than 127’. 

Critically, these statements are based on the same information as used in the interval analysis, 

but with the addition of an assumed prior. Thus, it is clear that it is the priors that allow these 

statements to be made, not the underlying information. The statements are therefore 

unsubstantiated, and suggest the presence of more information than is actually available.  

From this example, it can be concluded that adopting a Bayesian approach using 

uniform PDFs to characterise the unpredictability in estimating the Q -value is neither faithful 

nor robust. Furthermore, recalling the proposed taxonomy (Figure 17) and the scales of 

measurement (Stevens, 1946) detailed previously in section 2.2.2 and given that many of the 

parameters of Q are nominal and ordinal, it is questionable whether the calculated statistics 

are meaningful. Therefore, we now continue the investigation on the feasibility of the Gjøvik 

cavern based on results obtained from the interval analysis.  

6.1.3 Additional information: mapping of adjacent caverns 

The initial feasibility assessments, using interval analysis, concluded that the range in the 

interval was too large to make definitive decisions and so, by following the framework, 
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required further data to reduce the uncertainty in the model. For the Gjøvik cavern, additional 

data from detailed mapping of the adjacent caverns, as shown in the histograms in Figure 64a, 

became available later in the project. We now re-apply the framework of Chapter 4 to this 

additional data.  One important aspect that the histograms in Figure 64a represent the 

distributions of the subjective assessments of the parameters that are used to estimate the Q -

value. While the histograms imply that the parameters may be defined by a probability 

distribution, the data characterisation strategy does not allow one to reach this conclusion. The 

reasoning behind this lies in the earlier discussion in this Chapter; the subjective nature of the 

assessments as well as the approximations embodied in the estimation of Q  mean that the 

unpredictability from its use must be characterised as intrinsically epistemic. In this way, the 

new framework directs one to a non-stochastic method that remains both faithful and robust to 

the available information.  
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a) Normalised histograms of mapping results from 

existing caverns adjacent to proposed Gjøvik site  

b) Fuzzy numbers defined from histograms of mapping 

Figure 64: Histograms of Q -Mapping and fuzzy numbers fit to the data (from Bedi & Harrison, 

2013b). 
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As concluded previously in section 2.8.1, the subjective means of assessing many of 

the parameters used in the Q -system results in nominal and ordinal input values. Recalling 

Stevens’ (1946) scales of measurement presented in Table 1, the mode is a valid statistic that 

can be used from the histograms in Figure 64a. The mode values represent additional 

information that through application of the data characterisation strategy sub-chart (Figure 

49), can be used in a new fuzzy analysis. Consequently, we have used the data from Figure 

64a to define triangular fuzzy numbers (TFNs) with the mode specifying the ‘most possible’ 

(   = 1) value (see Table 9) as illustrated in Figure 64b. The algorithms used to undertake the 

fuzzy analysis are presented in Appendix C.  

Table 9: Lower, upper bound and most typical values of input parameters for Q . 

Parameter Lower bound ‘Most possible’ Upper Bound 

RQD 30 90 100 

nJ  2 6 12 

rJ  1.5 1.5 4 

aJ  1 1 4 

wJ  0.66 1 1 

 

The resulting possibility distribution for fuzzy- Q  ( Q̂ ) is presented in Figure 65a with 

the resulting fuzzy bolt and strand spacing given in Figure 65b. It is clear from Figure 65 that 

the use of TFNs resulting from the collection of further information has given internal 

structure to the uncertainty in Q : the figure shows the most possible value of Q  to be 30. By 

comparison with the interval analysis, this is a substantial reduction in uncertainty. 

 

Fuzzy bolt spacing

3m 6m

Fuzzy strand spacing

 
a) Fuzzy Q  b) Fuzzy bolt and strand spacing 

Figure 65:  Resulting fuzzy numbers for Q  and rock reinforcement spacing. 
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Unlike the Bayesian analysis presented above (section 6.1.2), the fuzzy analysis 

continues to bound the extreme values of Q  calculated using the interval analysis, but 

importantly, now allows the following statements to be made: ‘The value of Q  will range 

between 0.6 and 200, but these values are least likely, with the most likely value being 30’. A 

similar statement can be made with respect to the rock reinforcement spacing: ‘It is possible 

for the bolt spacing to range between 1.1 and 7.7m, but these values are least likely, with the 

most likely value being 3m. The equivalent strand spacing is twice these values’.  The next 

section now investigates how the information from the interval and fuzzy analyses can be 

used to assist in making pragmatic decisions regarding the feasibility of the design.  

6.1.4 Decision making: Assessment of feasibility  

As the name implies, one of the main purposes of a feasibility study is to provide an 

assessment of the viability of a project. For a large scale project such as the Gjøvik cavern, a 

key consideration may be cost feasibility, a large part of which may be attributed to rock 

support and reinforcement. For example, Tzamos & Sofianos (2006) have presented a 

correlation between estimated support weight and Q -value for cost feasibility assessment. In 

our example, let us assume that a bolt spacing of 2.0m (and hence a strand spacing of 4.0m) is 

the minimum feasible in terms of support costs.  

One means of assessing the likelihood of exceeding this threshold is through the 

possibility and necessity measures discussed earlier in section 3.2 (see Figure 37). For this 

example, Figure 66 illustrates the possibility and the necessity measures:   6.00.2  msb  

and   00.2  msN b , respectively. The necessity measure of 0 indicates a greater possibility 

of the bolt spacing being greater than 2.0m. However, there is a possibility, at a level  = 0.6 

in Figure 66, that the bolt spacing may be less than the 2.0m threshold. As an additional 

measure, we could de-fuzzify the fuzzy bolt spacing at the 2.0m threshold using the 

‘Agreement Index’ presented earlier in Equation (5.2), as follows: 
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(6.5) 

 

As shown by Equation (6.5), we obtain an agreement index of approximately 0.1 that the bolt 

spacing will be less than 2.0m.  
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Figure 66: Possibility measure of fuzzy bolt spacing for feasibility assessment. 

At present, there is no published literature on the engineering significance of the 

calculated values of these ‘fuzzy confidence measures’ (this will be discussed later in section 

8.3 on further work). However, both the possibility measure and agreement index indicate that 

the limited data available suggests a higher possibility of a bolt spacing greater than the 2.0m 

threshold. With respect to the new taxonomy (Figure 17), given the low quality and quantity 

of information at this stage, the fuzzy analysis has been able to provide a faithful and robust 

indication of the full range of unpredictability in estimating the Q -value and bolt spacing. On 

this basis, one may decide to continue with further investigation and design for the Gjøvik 

cavern.  

6.1.5 Further investigation: Refining possibility  

With specific reference to the Gjøvik Cavern, a second phase of investigation was 

commissioned, which involved refining the assessment of the Q -value based on diamond 

cored holes drilled within the footprint of the cavern (Barton et al., 1994). The additional data 

obtained is presented in the histograms in Figure 67a.  

Using this additional data, Barton et al. (1994) suggested refining the estimates of 

three of the parameters, as follows;  9,4nJ ;  3,5.1rJ , and;   3,1aJ . Applying these 

refined bounds to the interval solution of Q  as defined by Equation (6.4), above, we obtain an 

updated interval of Q : 
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(6.6) 

 

By comparing this refined interval with that calculated at the project conception stage (i.e. in 

section 6.1.1, above), and specifically with the vertex method calculation (Figure 62), one can 
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see that this additional information has eliminated the two vertices that resulted in calculations 

of Q  greater than 75. Now, using the fuzzy number calculated for Q  in Figure 65a, this 

refined interval of the Q -value determined using Equation (6.6) approximates bounds 

represented by the  -cut at a possibility level ( Q ) of approximately 0.44, as illustrated in 

Figure 65b. The corresponding interval of bolt spacing at this possibility level is 

then  9.4,7.1 m.  
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Figure 67:  Normalised histograms of Q -mapping results from existing caverns and additional drill 

core data at proposed Gjøvik site and resulting fuzzy numbers for Q  and rock reinforcement spacing. 

In the context of the new taxonomy and framework, the intrinsically epistemic nature 

of the Q -system will not allow one to move from an epistemic to an aleatory model with 

additional information. This is once again exemplified by the data characterisation strategy 

sub-chart (Figure 49) which directs the analysis towards fuzzy numbers or intervals when the 

data is assessed subjectively. However, at the decision making stage in the proposed 
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framework (Figure 48), if the answer to the question ‘Are the bounds small enough to 

generate a useable output’ is ‘no’, the framework directs further investigation. As this 

example has demonstrated, given the unpredictability is intrinsically epistemic,  additional 

information only allows one to target further data collection at those parameters that will 

allow a reduction in the level of epistemic uncertainty. With this additional information, one 

can refine the original intervals of the intrinsically epistemic parameters, or alternatively 

move up the possibility level in the fuzzy number.  

6.1.6 Comparison with design implemented at Gjøvik 

The permanent rock reinforcement in the Gjøvik cavern consisted of systematic bolting and 

cable bolting in alternating 2.5 and 5. 0 m, centre-to-centre, patterns. The rock reinforcement 

was based on assessment of the Q -value during construction. With respect to the analysis 

presented in this Chapter, a bolt spacing of 2.5m represents a value close to the ‘most 

possible’ predicted by the fuzzy analysis. Given the intrinsically epistemic uncertainty 

inherent in rock mass classification systems, this demonstrates that with additional 

information one may refine the possibility measures further, however some imprecision is 

likely to remain in the final result.  

6.2 Synopsis 

The discussion in 2.8.1 concluded that empirical rock mass classification systems are 

inherently imprecise and thus must be recognised as being intrinsically epistemic. By using 

the new taxonomy and framework, the challenge problem presented in this Chapter showed 

that the unpredictability must therefore be characterised using non-stochastic methods. In this 

instance, intervals and fuzzy numbers.  

In the case of the Gjøvik cavern, where the scale and complexity of the project was 

unprecedented (Barton et al., 1994), given the lack of information at the feasibility stage, 

interval-oriented methods provide a means of capturing approximation and imprecision in Q . 

That is, the interval analysis at the project conception stage demonstrated that knowledge was 

insufficient to make a potentially critical decision; ‘to go, or not to go ahead’ with the project. 

However, at the same level of information, a decision based on a Bayesian approach may 

have resulted in misinformed decisions (Figure 63). On the contrary, at the early stage when 

only interval data were available, given the wide intervals of Q  and calculated bolt spacing, 

the only decision that could be reached was to gather further information. Undertaking some 

further mapping of the adjacent caverns allowed us to move to a fuzzy analysis. 
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This example showed how the fuzzy analysis can be used to estimate the range of bolt 

spacing and in turn, utilise this information to estimate cost feasibility of the project with 

using prior experience and a limited number of subjective measurements. A purely subjective 

interval may have resulted in the project costs being unfeasible. However, a small amount of 

additional data – in this case, limited mapping of adjacent caverns – results in a substantial 

reduction in epistemic uncertainty and thus assists in further decision-making whilst still 

presenting a robust assessment of the ‘best and worst case’ to the decision makers. As this 

example has demonstrated, this is not so if a Bayesian approach is used. Furthermore, this 

example demonstrates the usefulness of interval-oriented approaches in presenting a faithful 

representation of the available information.  

As the parameters in this challenge problem were intrinsically epistemic (as discussed 

earlier in section 2.8.1), the framework of Chapter 4 does not allow anything more than an 

imprecise analysis. However, the next Chapter shows how the framework allows one to move 

to a higher unpredictability modelling method when the data are extrinsically epistemic and it 

is possible to collect further data collection is possible to reduce epistemic uncertainty.  
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Chapter 7   

CHALLENGE PROBLEM 3 – 

EMPIRICAL STRENGTH CRITERIA 

Section 2.8.3 discussed the application of the Hoek-Brown failure criterion (Hoek & Brown, 

1980a; b) in modelling the peak strength of intact rock and rock masses. This earlier 

discussion demonstrated that as the parameters required to define intact rock strength can be 

obtained from objective laboratory measurements; they can be characterised as aleatory 

provided a sufficient number of triaxial test data are available with which to objectively fit 

probability distributions to define them. However, application of the Hoek-Brown criterion to 

estimate the strength of rock masses requires a subjective estimation of GSI. With respect to 

the new taxonomy (Figure 17), and as further discussed in section 2.8.1, the subjective 

assessment of GSI means the unpredictability resulting from its use must be characterised as 

intrinsically epistemic.  

This section first presents an example that demonstrates the applicability of the new 

framework (Chapter 4) in characterising unpredictability in parameters used to estimate the 

strength of a jointed rock mass. In this example, the Hoek-Brown strength criterion requires 

GSI as an input to define the rock mass properties, and therefore the unpredictability must be 

characterised as intrinsically epistemic. This is followed by a second example in which the 

peak strength of the intact rock is estimated from parameters obtained through laboratory 

testing on intact rock specimens; the parameters are intrinsically aleatory. Using the concepts 

presented in this thesis, the applicability of the framework is demonstrated as data become 

progressively available. This second example shows that a quantitative lack of data requires 

the parameters to be characterised as extrinsically epistemic. The example presented in this 

section shows how in such an case, the proposed framework directs the user to a non-

stochastic approach but with further data collection one can to move to an aleatory model. To 

facilitate the discussion, actual laboratory test results for Milbank granite obtained from the 
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literature (Ruffolo & Shakoor, 2009; Bauer et al., 2012) are used, with the exemplar rock 

mass also based on the Milbank granite data.  

7.1 Strength of rock masses – intrinsically epistemic 

Section 2.8.3 introduced the Hoek-Brown failure criterion for estimating the strength of 

jointed rock masses, as defined earlier by Equation (2.1). In this expression, the rock mass 

parameters, bm  and s , are derived through approximate correlations with GSI (Equations 

(2.1) to (2.3)). The Hoek-Brown equations used in the following example are reproduced 

below.  

2

331 cicib sm    (2.1) 
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The two laboratory properties required for the application of the Hoek-Brown criterion are the 

uniaxial compressive strength (UCS) of the intact rock ( ci ) and the intact rock material 

constant im . Ideally these two parameters should be determined by triaxial tests on carefully 

prepared specimens as described by Hoek and Brown (1980b). In our example, we assume the 

minor principal stress 3  is deterministically known, ten UCS test results have been provided 

and there is no objective test data available with which to determine im .  

For this example, the UCS data have been randomly drawn from a set of fifty tests 

undertaken on Milbank granite by Ruffolo & Shakoor (2009). A statistical analysis 

undertaken on these data concludes that ci  can be characterised by a normal distribution 

with a mean MPa158  and standard deviation MPa28 , as shown in Figure 68a. 

Hypothesis testing using the Kolmogorov-Smirnoff goodness-of-fit test concluded that the 

hypothesis that the data are drawn from a normal distribution cannot be rejected at the 95% 

confidence level. A Quantile-Quantile plot to visually confirm this is shown in Figure 68b. In 

this plot, data lying close to or on the diagonal indicate a good fit with a normal distribution. 

Using this information, following the data characterisation strategy, ci  is characterised as 

aleatory and an objective PDF fitted using statistical procedures. 



Chapter 7 

Challenge problem 3 – Empirical strength criteria 

- 147 - 

C
u

m
u
la

ti
v
e
 p

ro
b
a
b

ili
ty CDF of 10No.

UCS data

Normal CDF 
fitted to data

  
a) Normal distribution fit to uniaxial compressive 

strength data 

b) Quantile-Quantile plot of data against normal 

distribution  

Figure 68: Statistical analysis on ten uniaxial compressive strength test data. 

Given the absence of objective data for im , it must be determined subjectively through 

expert consultation or prior knowledge. Hoek (2007) provides an empirically derived table 

containing a range of values for im  by rock group, which for granites is recommended as 

32±3. It should be noted that no preference is given to any specific value within this range, 

nor is it considered that the values in this range are equi-probable. Consequently, following 

the data characterisation strategy,  im  is characterised by the box-interval  3529, . It should 

be noted, that while it is known that im  can be obtained from precise measurement, i.e. it is 

extrinsically epistemic (see section 2.8.3). Given the available information, this statement is 

by definition true because im  has – at this stage, at least – been determined entirely 

subjectively. 

Section 2.9.1 concluded that rock mass classification systems such as GSI require 

subjective estimation and incorporate nominal and ordinal scales of measurement, all of 

which mean they must be characterised as intrinsically epistemic and thus it is inappropriate 

to represent the unpredictability by stochastic models. On this basis, we now apply the 

proposed framework to an example of estimating the peak strength of a jointed rock mass. In 

this example, we assume that an expert geologist has provided the following classification of 

GSI: ‘The rock mass structure is ‘blocky’ and the surface quality is good. The bounds of GSI 

are between 55 and 80, with a most likely value of 70’. Using this description and following 

the data characterisation strategy, GSI is represented by the fuzzy number 

 80707055 ,,,IŜG  , and is shown in Figure 69a. The fuzzy number of GSI and the interval of  

im  is then used to compute the fuzzy rock mass constants bm̂  and ŝ , using Equations (2.2) 

and (2.3), which are illustrated in Figure 69b and c.  
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Figure 69: Fuzzy numbers and equivalent p-boxes for input parameters. 

Equation (2.1) now consists of a mix of fuzzy numbers with an aleatory variable ( ci ), 

which requires a hybrid analysis. For this analysis, the fuzzy numbers are considered within a 

possibilistic framework and the possibility and necessity measures used to construct 

equivalent p-boxes, as shown in Figure 69d,e and f. The output is in the form of a subjective 

bounded output; this p-box is shown in Figure 70.  The calculations for undertaking this 

hybrid analysis are given in Appendix C.  
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Figure 70: P-box from hybrid analysis to compute rock mass strength.  

The paths followed in the main framework as well as the data characterisation and 

model selection strategy sub-charts for each of the parameters are presented in Table 10. 



Chapter 7 

Challenge problem 3 – Empirical strength criteria 

- 149 - 

Table 10: Paths followed in framework for hybrid analysis. 

Box # Question Answer 
1 Preliminary investigation/data 

acquisition 

10 UCS tests and no other objective data. 

2 Select analytical model Hoek-Brown failure criterion for rock mass strength using 

GSI  

3 Identify parameters required for 

model 
Uniaxial compressive strength ci  , material constant im  

and GSI are non-deterministic.  

4 Further investigation/data 

acquisition 

Not available 

5 Uncertainty parameters 

characterisation 

Move to ‘Data characterisation strategy’ sub-chart (i.e. 

Figure 49) 

 Start Data characterisation strategy - ci  

5.1 Can the data be objectively 

measured? 

Yes – UCS tests performed in laboratory 

5.2 A sufficient number of precise 

measurements are available? 

Yes – 10 data available.  

5.3 Statistical tests can be used to 

fit a unique PDF? 

Yes. Hypothesis (by K-S test) that the data are drawn from a 

normal distribution cannot be rejected at the 95% level. See 

Q-Q plot for visual confirmation. Fit Objective PDF 

 Start Data characterisation strategy - im  

5.1 Can the data be objectively 

measured? 
Yes – im  can be measured through triaxial tests 

5.2 A sufficient number of precise 

measurements are available? 

No measurements available 

5.3 Prior information on which to 

formulate a precise PDF is 

known? 

No.  

5.4 The type of distribution is 

known and intervals for its 

parameters can be provided? 

There is no evidence to support any particular shape of 

distribution 

5.5 A sufficient number of 

imprecise measurements are 

available? 

Refer 5.2 

5.6 An interval that bounds the 

parameters is known? 

Yes. Prior published data and expert opinion can be used to 

provide bounds for each parameter (see Hoek, 2007) 

5.7 An estimate of the most 

plausible values can be 

provided? 

No. Empirical data (Hoek, 2007) only specifies a range with 

no preferred value.  

5.8 An interval of more plausible 

values can be provided? 
Not at this stage. Therefore characterise im  using an 

Interval 

 Start Data characterisation strategy - GSI 

5.1 Can the data be objectively 

measured? 

No – GSI must be determined subjectively by visual 

comparison against exemplar profile  

5.2 A sufficient number of 

imprecise measurements are 

available? 

No – An expert geologist has been requested to provide 

guidance.  

5.3 An interval that bounds the 

parameters is known? 

Yes. See above. 

5.4 An interval of more plausible 

values can be provided? 

Expert geologist advice based on nearby outcrop mapping: 

‘The rock mass is structure is ‘blocky’ and the surface 

quality is good. The bounds of GSI are between 55 and 80, 

with a most likely value of 70’. Therefore GSI is 

characterised using a triangular fuzzy number 

6 Select appropriate uncertainty 

model 

Move to ‘Uncertainty model strategy’ sub-chart (see Figure 

50) 
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Table 10: Paths followed in framework for hybrid analysis (continued). 
Start Model Selection Strategy Sub-chart 

6.1 Parameter characterisation 
ci  is characterised as aleatory and im  as intrinsically 

epistemic as there is no justification to support it as 

stochastic and GSI as intrinsically epistemic as it is 

determined subjectively (qualitative lack of information) 

6.2 Select uncertainty model Combination of aleatory and epistemic parameters requires 

hybrid analysis 

6.3 Analytical output Subjective bounded output. We now return back to the main 

flowchart (Figure 48) 

Return to Main Framework 

7 Analysis We undertake a hybrid analysis using p-boxes 

8 Model propagation The analysis results in a subjective bounded output 

8a Are the bounds small enough to 

generate a useable output 

See following discussion  

 

At the end of Table 10 we once again find ourselves at decision making stage, faced 

with the question: ‘Are the bounds small enough to generate a useable output?’. If the answer 

to this is ‘no’, the framework directs us back to the further data collection stage (Box 4 in 

Figure 48). However, as GSI can only be estimated subjectively, and is thus intrinsically 

epistemic, further data collection may reduce the uncertainty in the estimate of GSI (e.g. 

reducing the bounds) however, the refined estimate of GSI will still be imprecise. The 

intrinsic epistemicity of such parameters is captured by the first question posed in the data 

characterisation strategy (Figure 49): ‘Are objective measurements available?’. The 

consequence of this is that when extrinsically epistemic parameters are included in any 

analysis, the output will always be imprecise. With respect to this example, the data 

characterisation strategy sub-chart (Figure 49) illustrates that a number of imprecise 

measurements of GSI could be used to define a non-parametric p-box. An example of non-

parametric p-boxes to characterise parameters such as GSI has been presented by Tonon et al. 

(2000). 

The example that follows  shows that if the parameters are extrinsically epistemic, the 

framework allows re-characterisation of the unpredictability from epistemic to aleatory as the 

level of information increases.  

7.2 Intact rock strength - extrinsically epistemic 

The Hoek-Brown failure criterion for estimating the strength of intact rock is given by: 

 2

331 cicii sm    

 

(7.1) 
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Using the aleatory and interval parameters for ci  and im , respectively, defined in the 

previous section, the model characterisation strategy (Figure 50) illustrates that a hybrid 

analysis is required, the result of which is a subjective bounded output. To undertake the 

hybrid analysis, the interval of im  is modelled as an equivalent p-box shown in Figure 71 and 

combined with the aleatory model of ci , using Equation (7.1). The resulting p-box, shown in 

Figure 72, accounts for both the imprecision in im  and variability of ci . The area between 

the upper and lower cumulative density functions of the output p-box in Figure 72 represents 

the region of unpredictability within which the value 1  must lie.  
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Figure 71: P-box representation of the interval of 

im . 

Figure 72: P-box of intact rock strength calculated 

using the Hoek-Brown failure criterion. 

Having obtained the bounded subjective output, the framework directs the user 

towards the decision making stage by asking the question: ‘Are the bounds small enough to 

generate a useable output?’ For demonstration purposes, we will assume the answer to this is 

‘no’.  The framework then asks ‘can more data be obtained?’. For this example, we assume 

the answer is ‘yes’, and thus return to ‘Further investigation/data acquisition’ stage. 

At this stage, we could assume that there is a limited budget available for further 

testing. Thus, a decision would need to be made on whether to spend this budget on additional 

UCS tests or triaxial tests to obtain some objective data with which to fit im , or a 

combination of the two. In section 2.4, it was stated that once an aleatory model was fitted to 

a sufficient number of objective data, further testing would not reduce unpredictability but 

only serve to refine the precision of the parameters that define variability. On the contrary, it 

was stated that unpredictability could be reduced through further knowledge that would 

decrease imprecision, and hence uncertainty. The following two sections substantiate this 

claim through continuation of this example.  
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7.2.1 Refining the precision of the aleatory model 

Continuing the example above, we now assume that further UCS tests were undertaken to 

refine the variability in UCS. Using the data of Ruffolo & Shakoor (2009), Figure 73a 

presents a comparison of the PDFs fitted to the original set of ten UCS tests, with a second 

dataset containing fifty samples with a mean MPa159  and standard deviation 

MPa25 .  

Following the framework through a second time, Figure 73b presents a comparison of 

the p-boxes calculated using the PDFs of UCS obtained from a dataset containing ten samples 

to that with fifty samples. This figure demonstrates that only a small change in 

unpredictability is observed with the collection of an additional 40 UCS samples.  
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a) PDFs fitted to UCS data for a subset containing 10 

samples and another containing 50samples 

b) Resulting p-boxes for UCS defined with 10 and 50 

samples. 

Figure 73: Comparison of aleatory model and p-box obtained by UCS fit to 10 and 50 samples, 

respectively. 

With respect to the earlier discussion in section Chapter 2, and especially the example 

of limiting precision in UCS presented in section 2.8.3, this example confirms the assertion 

that as aleatory variability is inherent in a system it cannot be reduced by additional 

investigation, though one may increase the precision of the parameters that describe it. 

7.2.2 Reducing epistemic uncertainty 

We now examine the effect of obtaining a better estimate of the parameter im  through a series 

of triaxial tests and subsequent curve fitting to these, as described in Hoek & Brown (1980b). 

In our example, we have only been able to obtain six triaxial test results (Bauer et al., 2012), 

of which only two are at a confining stress greater than zero. The fitting procedure produces 

an estimate of  im  equal to 34.2, with an 
2r  value of 0.86. Whist the triaxial test data are 

precise, given the low sample number, the quantity of information is not considered adequate 
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to warrant an aleatory model to characterise im . However, it may be used to reduce the 

interval to 34±1, as shown in Figure 74b.  

  

a) im  fit using (objective) triaxial test data b) refined interval of im  using results of triaxial test 

data 

Figure 74: im  fit to triaxial test data and p-box of reduced interval of im . 

The p-box resulting from a hybrid analysis using the reduced interval of im  compared 

to the original analysis in the preceding section, is shown in Figure 75. This figure shows a 

marked reduction in the distance between the lower and upper probability bounds, which in 

turn validates the earlier assertion that obtaining additional information can serve to reduce 

imprecision in epistemic parameters and hence reduce unpredictability.  
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Figure 75: Comparison of p-boxes for im  defined subjectively and as an interval refined based on a 

limited number of triaxial test data.  

Hoek & Brown (1980b) show that for various rock types, very high values of 2r  can 

be obtained for im  fit to precise triaxial data.  Thus, if sufficient test data were available, 

following the framework further would allow im  to be re-characterised as aleatory and 

modelled using a precise PDF. From this, one can conclude that while im  may in fact be 

aleatory, if it is estimated entirely subjectively it must be classified as intrinsically epistemic. 
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On the other hand, if objective data is available, it may be characterised as extrinsically 

epistemic until sufficient data become available with which to fit an aleatory model.  

7.3 Rock spalling around underground openings 

A common problem that requires estimation of the strength of rock is that of rock spalling 

around underground openings. Rock spalling is usually defined as a function of the induced 

tangential stresses around the opening (  ) as well as the spalling strength of the rock 

( spall ), and has traditionally been computed using a factor of safety approach given by 

(Harrison & Hudson, 2010):  

 



 spall
FoS   

 

(7.2) 

 

Harrison & Hudson (2010), present a simple solution to compute the FoS against spalling as a 

function of the in-situ stress ratio k  and overburden stress, v , as follows: 

 
13

/




k
FoS

vspall 
 if 1k  

 

(7.3) 
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 if 1k  

 

(7.4) 

 

With respect to the examples presented in the preceding sections, 7.1 and 7.2, unpredictability 

in peak strength may be calculated using the Hoek-Brown strength criterion and characterised 

as intrinsically epistemic, extrinsically epistemic or aleatory depending on whether failure is 

considered in a fractured rock mass or intact rock. Furthermore, in the absence of a sufficient 

number of precise measurements of the in-situ stresses, empirical correlations are often used 

to estimate k  from a calculated value of overburden stress, v . One such correlation was 

presented previously in Figure 6 of section 2.2. With respect to the new taxonomy of Figure 

17, the imprecision in such a correlation requires the parameter k  to be characterised as 

epistemic.  

In recognition of the epistemic nature of uncertainty that may result in both in rock 

spalling  and the in-situ stress ratio, Harrison & Hudson (2010) present a fuzzy approach to 

calculating a fuzzy factor of safety ( SoF ˆ ) by characterising unpredictability in rock strength 

( spall ) and in-situ stress ratio ( k ) using fuzzy numbers. In their assessment, Harrison & 

Hudson (2010) adopt the simplifying assumption that the rock mass under examination is 
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CHILE. Due to this simplifying assumption, as we have seen previously in section 2.8.4 and 

in the above example of section 7.2, given a sufficient number of precise data, the intact rock 

strength could have been characterised as aleatory, and with respect to the data 

characterisation strategy flowchart in the proposed framework (Figure 49 in Chapter 4) 

modelled using an alternative modelling method.  

In contrast, Martin et al. (2003) and Martin & Christiansson (2009) present a 

probabilistic assessment of rock mass spalling around circular opening constructed in a 

fractured rock mass at the Aspo Hard Rock Laboratory. In their example, both the rock mass 

strength ( spall ) and the in-situ stress ratio ( k ) are characterised by precise, triangular PDFs. 

Martin & Christiansson (2009) provide the following justification for the choice of 

distribution: “The triangular distribution is typically used as subjective description when 

there is only limited sample data and the user wishes to provide the most likely value. Other 

distributions can be used if sufficient data are available”. 

With reference to the new taxonomy (i.e. Figure 17) presented in this thesis; 

characterisation of unpredictability by a PDF requires a sufficient quantity of objective data to 

justify the use of an aleatory. However, the subjective means of assigning the distribution as 

proposed by Martin & Christiansson (2009), will lead to a purely subjective output, which as 

we have seen previously in the rock slope stability challenge problem presented in Chapter 5, 

can lead to erroneous results and dissonance. 

 In the two sub-sections that follow, we apply the new taxonomy and framework to the 

assessment of spalling FoS around a circular opening using the parameters for the exemplar 

jointed rock mass and intact rock used in the previous examples of section 7.1 and 7.2, 

respectively. 

7.3.1 Spalling around circular opening in jointed rock mass 

Using the Hoek-Brown criterion (i.e. Equation (2.1)) to estimate the spalling strength of the 

jointed rock mass, the minor principal stress ( 3 ) is set equal to zero. Simplifying this 

expression, we obtain an estimate of the rock mass spalling strength by: 

 2

9

100
exp cispall

GSI
 







 
  

 

(7.5) 

 

This expression requires a subjective estimate of GSI, and as concluded earlier in section 7.1, 

must therefore be characterised as intrinsically epistemic. In line with the data characterisation 

strategy sub-chart (Figure 49), and as detailed previously in section 7.1, GSI is thus 
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characterised using a fuzzy number. The intact rock strength ( ci ) is characterised using an 

aleatory model, with a normal distribution as defined previously in section 7.1. 

In this example, we assume the depth of the opening is 500m below ground level and 

adopt a deterministic value for the overburden stress, MPa5.13v . The parameter defining 

the in-situ stress ratio, k ,  is estimated using the correlation of  Figure 6 (see section 2.2) and 

assigned an interval [0.3,3].  

By applying a hybrid analysis (see Appendix D), to Equations (7.2) to (7.4), we obtain 

a p-box of the resulting FoS against spalling for this rock mass, as shown in Figure 76. 
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Figure 76: FoS against spalling in jointed rock mass using Hoek-Brown strength criterion. 

Figure 76 shows that there is a low FoS against spalling in the rock mass, and thus a 

high potential for spalling at this depth. This conclusion is drawn accounting for both the 

imprecision in the rock mass spalling strength as well as the in-situ stress ratio. What this 

example demonstrates is; irrespective of the wide interval of k  there is still a high potential 

for spalling in this rock mass. Therefore, a higher FoS could only be attained by increasing 

confidence in the spalling strength parameters of the rock mass. It is on those parameters 

where further data investigation should be focussed.    

7.3.2 Spalling around circular opening intact rock mass 

Similar to the example above, by setting the minor principal stress ( 3 ) equal to zero in 

Equation (2.1), the spalling strength of intact rock is derived, as follows:  

 cispall    
 

(7.6) 
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That is, the spalling strength is directly proportional to the uniaxial compressive strength of 

the rock. Similarly, and as previously defined by section 7.2, the intact rock strength ( ci ) is 

characterised using an aleatory model, with a normal distribution. 

Similar to the previous section, by applying a hybrid analysis (see Appendix D), to 

Equations (7.2) to (7.4), we obtain a p-box of the resulting FoS against spalling of the intact 

rock, as shown in Figure 77. 
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Figure 77: FoS against spalling in jointed rock mass using Hoek-Brown strength criterion. 

Figure 77 shows that there is generally a high FoS against spalling of the intact rock, 

and thus a low potential for spalling at this depth. However, given that the intact rock strength 

ci was modelled using a precise distribution, it is the imprecision in the in-situ stress ratio, 

k , that has resulted in an imprecise output. However, given that the upper bound CDF (the 

Belief function) is entirely to the right of a FoS of 1, and the lower bound CDF (Plausibility 

function) intersects a FoS of 1 at a low probability level, this may give sufficient confidence 

in assessing the low potential for spalling through the intact rock and thus eliminating any 

further need for investigation.  

7.4 Synopsis 

 In this example, the varying levels of information for the various parameters means that 

unpredictability must be propagated using a hybrid analysis. The corollary of this is that 

hybrid methods do not yield a unique estimate of the probability. Although the very aim of 

these joint propagation methods is to promote consistency with available information 

(maintain robustness and faithfulness) and avoid the assumptions of Bayesian methods, the 

use of imprecise probabilities may become an impediment at the decision-making stage, since 

decision-makers may not feel comfortable with the notion of an imprecise probability of 

exceeding a threshold (Ferson & Ginzburg, 1996; Dubois & Guyonnet, 2011). Thus, if a 
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decision cannot be made based on a subjectively bounded output, the decision-maker has the 

following options; a) adopt the conservative bound of the p-box and form a decision; b) 

change the model which is used in the analysis by moving to one which contains only 

intrinsically aleatory parameters, or; c) develop a means to ‘de-fuzzify’ or ‘de-box’ the 

imprecise output in a way that allows a subjective decision to be made. 

In this example, due to the lack of prior information – and for demonstration purposes 

– regarding the nature of unpredictability in characterising im , this parameter has been 

assigned an interval. However, it was also noted that in published literature there is evidence 

to support the aleatory nature of im . Therefore, it may be argued at im  could have initially 

been represented by a uniform distribution – applying the principle of indifference – and 

updated once the regression data became available. This approach is perfectly valid with 

respect to the framework and supported with the arguments presented in this thesis. However, 

in this example we have chosen to demonstrate the reduction in epistemic uncertainty with 

increasing information. In this way, we support our earlier statement that epistemic 

uncertainty is reducible and can be re-characterised as aleatory variability if the parameter in 

question is intrinsically epistemic and further data becomes available to objectively fit a 

stochastic model.  

The three challenge problems presented so far have served to demonstrate the 

effectiveness of the taxonomy in characterising unpredictability in parameters used in rock 

engineering, which may be obtained subjectively or objectively. These challenge problems 

have shown that irrespective of whether the unpredictability is due to epistemic uncertainty or 

aleatory variability, the novel framework proposed in this thesis provides a means of 

objectively characterising and propagating the unpredictability faithfully and robustly through 

analytical models. This concludes the demonstration of the applicability of the concepts 

presented in this thesis. The following Chapter provides a summary, conclusions drawn from 

and contributions made as a result of this work, as well as recommendations for further work. 
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Chapter 8   

SUMMARY, CONCLUSIONS & 

FURTHER WORK 

This final Chapter gives a summary of the concepts presented in this thesis. This is followed 

by a list of the conclusions drawn and the contributions made as part of this work. Finally, 

this work concludes by presenting areas for further work and development on the new 

concepts and contributions introduced in this thesis. 

8.1 Summary 

The discussion presented in this thesis, has shown that unpredictability in a parameter or 

system is due to the combination of epistemic uncertainty and aleatory variability. In the 

context of geotechnical engineering, unpredictability can be regarded as an accumulation of 

errors in sampling, observation, measurement, and the mathematical evaluation of data, 

together with concept and model uncertainty and inherent natural variability. In order to 

simply characterise unpredictability in rock mechanics and rock engineering, this thesis 

presented formal definitions for epistemic uncertainty and aleatory variability. Through a 

review of the wider literature, this thesis identified that aleatory variability – also known as 

stochastic uncertainty, objective uncertainty or irreducible uncertainty – describes the inherent 

variability in a physical system or environment; it can be modelled using stochastic models 

and handled using probabilistic methods. Epistemic uncertainty, on the other hand, is due to 

lack of knowledge; it is both subjective in nature and influenced by preconceptions of what is 

considered realistic for the system in question. It has also been called ignorance, imprecision 

or reducible uncertainty and can be reduced or eliminated through additional information or 

knowledge. Based on these concepts, this thesis presented justification for the notion that 

epistemic uncertainty cannot be modelled stochastically. 
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Through a critical review of the literature, this thesis has identifies that in geotechnical 

engineering, and rock mechanics and rock engineering in particular, the fundamental and 

intrinsic difference between epistemic uncertainty and aleatory variability appears to have not 

been correctly understood. Consequently, it appears that there is a lack of understanding 

regarding the need for characterising and propagating uncertainty and variability separately. 

Using examples specific to rock mechanics and rock engineering, this thesis showed that 

uncertainty and variability possess very different characteristics. Epistemic uncertainty is due 

to a qualitative or quantitative lack of knowledge; it is subjective in nature and can be reduced 

by improving the level of information. On the contrary, aleatory variability is objective and 

requires precise information to define a stochastic model with which to characterise it. 

Furthermore, as it is due to randomness, it is inherent in the system and thus irreducible.  

Using these concepts, this thesis proposed a new taxonomy that, firstly, will allow 

geotechnical engineers to easily recognise these critical differences between epistemic 

uncertainty and aleatory variability and secondly, provide an objective means of 

characterising unpredictability through an assessment of the available information. The new 

taxonomy summarises the link between quantity and quality of information with respect to 

uncertainty characterisation. It demonstrates that aleatory variability can only be invoked once 

a sufficient quantity of precise information is available. The taxonomy is necessary to 

objectively fit a probability distribution to the data. It also confirms that a transition from 

epistemic uncertainty to aleatory variability can be achieved by gathering either more or better 

information. However, whether this is possible or desirable depends on the nature of the 

parameters or system under consideration. 

Using the new taxonomy, this thesis put forward the notion of intrinsically aleatory 

parameters and suggested that such parameters may be characterised using statistics and 

propagated by the frequentist approach to probability. That is, one can assume that the 

variable under assessment (in our case, a parameter defining the ground property in question) 

is the result of a random process and can be characterised by a particular probability 

distribution; further knowledge would only refine the precision of the variability. This thesis 

suggested that one philosophical problem with this approach is that, in geotechnical 

engineering – rock engineering in particular – it is not always practical to obtain a sufficiently 

large data set, based on test results etc., from which to fit a representative probability 

distribution. In such cases, the parameters must be classified as extrinsically epistemic and 

characterised using alternate, non-stochastic means until sufficient data becomes available to 

formulate an aleatory model. However, many parameters used to characterise material, or 
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other, properties in rock mechanics are defined qualitatively or quantified entirely 

subjectively through expert judgement. For such parameters, while the underlying property or 

process may be the result of a random process, the subjective method used to characterise the 

variable means, irrespective of the amount of additional information or expert consultation, 

the intrinsic stochasticity, if present, will not be disclosed. In this thesis, such parameters are 

characterised as ‘intrinsically epistemic’. This thesis concluded that such parameters are not 

amenable to characterisation using stochastic models – or propagation using the associated 

probabilistic analyses – which are suitable only for parameters exhibiting aleatory variability.  

Despite the general recognition by geotechnical engineers that most rock masses are 

inherently heterogeneous and that there is also imprecision in the measurement or estimation 

of the engineering parameters used to describe their properties, there still appears to be much 

confusion regarding the nature of uncertainty. Consequently, various authors have suggested 

that total unpredictability, i.e. the combination of both epistemic uncertainty and aleatory 

variability, can be handled using the Bayesian approach and associated subjective 

probabilistic methods.  However, this thesis has shown that the use of subjectively assigned 

probability distribution functions to characterise epistemic uncertainty can lead to erroneous 

results. Specifically, the Bayesian approach of assigning subjective ‘priors’ introduces 

information that is not actually available; thus this approach is identified as neither faithful 

nor robust. 

This work presented arguments to support the thesis that the epistemic uncertainty and 

aleatory variability should be propagated, analytically, using different unpredictability 

modelling methods. Basically, interval-oriented approaches should be used to propagate 

epistemic uncertainty, and probability theory should be used to propagate variability. This 

thesis expand on the ‘Level of Information’ concept originally conjectured by Wenner & 

Harrison (1996) and propose a new framework for selecting an appropriate unpredictability 

model through a faithful assessment of the available information. This framework uses the 

concepts presented in the taxonomy and directs the user through a data characterisation 

strategy in order to determine whether the unpredictability is either epistemic or aleatory. The 

framework then leads the user to a model selection strategy in order to select an 

unpredictability model that faithfully propagates the available information through the 

analytical process. The development of this framework follows on from the taxonomy to 

provide an objective means of characterising unpredictability. Using this framework, once the 

unpredictability has been characterised as either epistemic or aleatory, an unpredictability 

model is selected that faithfully propagates the available information through the analytical 
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process. This supports the fundamental thesis that for any given amount of knowledge — and 

thus degree of uncertainty — there is an optimal model that should be applied 

This thesis applied the new taxonomy and framework to three simple problems 

involving intrinsically and extrinsically epistemic parameters, as well as aleatory parameters. 

These examples served to demonstrate the fundamental errors that may result if a Bayesian 

approach, using subjective probabilities, is applied to intrinsically epistemic parameters. 

These examples showed that by arbitrarily assuming a prior probability density function, we 

are implying a greater level of information than is actually available: the greater level of 

information is in the definition of the shape of the PDF. The assumed prior PDF coupled with 

Monte-Carlo simulation has the effect of erroneously producing distribution tails that the 

information does not support. This may have detrimental consequences for engineering 

design, as it is often the extreme values represented by the tails of the distributions that 

govern design decisions. Through these examples, this thesis showed that the use of a more 

appropriate non-stochastic approach commensurate with the given level of information, 

selected using the framework, allows one to use all the available information and propagate 

the uncertainty faithfully through the analysis of an intrinsically epistemic system. 

Importantly, such methods will always contain the extreme events, however unlikely their 

occurrence may be. At the end of the modelling and risk analysis process the designer may 

then make a completely informed decision with regard to these unlikely events.  

Using these, non-traditional method, as stated by (Dubois and Guyonnet, 2011), the 

advantage is that assessment of reliability takes place at the end of the risk analysis process, 

“when no further collection of evidence is possible that might reduce the ambiguity due to 

epistemic uncertainty. This feature stands in contrast with the Bayesian methodology, where 

epistemic uncertainties on input parameters are modelled by single subjective probabilities at 

the beginning of the risk analysis process”. This approach allows the epistemic uncertainty to 

be retained throughout the data collection and analysis phases with the expert opinion, or 

subjectivity, introduced at the final decision- making stage. This approach is advantageous in 

that it does not ‘mask’ epistemic uncertainty, as would occur if a Bayesian approach was 

applied from the beginning. The advantage of the approach proposed in this thesis is that it 

will, for the first time, allow an objective approach to faithfully characterise and propagate 

uncertainty and variability in rock mechanics and rock engineering. It will also beneficially 

reduce the dissonance between experts when faced with characterising epistemic uncertainty. 

Additionally, it allows the identification of areas where data acquisition will best serve to 

reduce unpredictability. We see that the methods proposed in this thesis can thus serve to 
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provide greater safety in engineering design as well as optimise data collection and 

investigation schemes.   

8.2 Conclusions and contributions 

The conclusions drawn and contributions made as a result of the work presented in 

this thesis are summarised below. These conclusions and contributions are divided in to two 

sub-groups: principal and supporting conclusions and contributions, and these are listed with 

respect to the Chapter of this thesis in which they were first introduced 

8.2.1 Principal conclusions and contributions  

 

1. Through an extensive review of the wider literature, Chapter 2 presents a 

discussion on the fundamental nature of unpredictability and, thus, provides formal 

definitions of epistemic uncertainty and aleatory variability as the two components that 

contribute to unpredictability. These definitions have been drawn from other fields of science 

and technology. Using these definitions, this Chapter demonstrates the importance of 

recognising the difference between uncertainty and variability and the means by which 

unpredictability associated with the parameters that characterise fractured rock masses are 

propagated through the modelling and design process. As a result, Chapter 2 contributes 

towards a novel understanding of the fundamental issues in characterising and propagating 

unpredictability in rock engineering design.  

2. Using the new definitions proposed in section 2.2.3 and the level of 

information concept (Section 2.5), a new taxonomy is proposed in section 2.7 that will allow 

engineers preparing rock engineering designs to correctly and objectively identify the true 

nature of unpredictability. A further contribution of this new taxonomy is that it allows a 

means of identifying an appropriate, non-stochastic or stochastic, unpredictability model to 

propagate the unpredictability through the modelling and design process. The key 

contribution of this taxonomy is that it provides practitioners with one reference (Figure 17), 

with key terms identified by this work arranged in a simple manner, that can be used to 

objectively characterise the nature of unpredictability through an assessment of the available 

information. This table is supplemented by a key figure (Figure 17) that arranges these key 

terms with respect to the quantity and quality of information such that engineers can visualise 

the level of precision in the available information and thus gauge an appropriate means of 

modelling unpredictability. This table and figure that make up the proposed taxonomy 

succinctly summarise all the concepts presented in this Chapter.  
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3. The proposed taxonomy concludes that in order to characterise unpredictability 

as aleatory, a set of specific criteria need to be met; only when all of these criteria are fulfilled 

can the unpredictability be characterised as aleatory variability and modelled using 

probabilistic methods. The corollary of this is that failure to meet any criterion that defines 

aleatory variability means the unpredictability must be treated as epistemic uncertainty and 

thus handled using appropriate, non-stochastic models. The proposed taxonomy thus 

contributes to develop an understanding of unpredictability, which can be applied in rock 

engineering. 

4. One of the major contributions of this work is the novel framework presented 

in Chapter 4.  The framework has been developed by integrating the concepts presented in the 

new taxonomy  (i.e. Figure 17) and the level of information concept (Figure 8 in section 2.5) 

with the unpredictability models introduced in Chapter 3. This new framework provides three 

flow-charts that, through a series of simple questions, directs the user to simply and 

objectively characterise the nature of unpredictability in a parameter or system before 

propagating it through the analysis and design process using the appropriate (mathematical) 

tools.  

5. One contribution of this framework is to provides a tool for directing 

investigation (which can be costly) appropriately to reduce unpredictability. Secondly, it 

provides a protocol for objectively selecting an appropriate unpredictability analysis based on 

the available information. The practical contribution of this framework is that its application 

in practice will harmonise designs by reducing arbitrary choices in characterising and 

propagating unpredictability in rock mechanics and rock engineering. This will mean that 

designers and policy makers will for the first time have a framework against which rock 

mechanics designs can be assessed and scrutinised. As such, this would mean that safety of 

rock mechanics designs will be greatly improved as the unpredictability concepts, currently 

not properly understood, will be better incorporated in to designs. 

6. Chapter 5 presents a challenge problem, that of planar slope stability, to 

demonstrate the applicability of the new taxonomy and framework. Through a critical review 

of existing analyses presented in the literature, this Chapter shows that in a situation where no 

objective data are available and expert assessment of slope stability is required, use of 

stochastic methods with subjectively assigned PDFs can lead to dissonance between experts 

in reaching conclusions on critical decisions such as the safety of a slope. This is due to the 

arbitrary choices required when characterising uncertainty in this manner. This Chapter shows 

how use of the framework provides an objective means of characterising and propagaing 
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unpredictability, which means that even with limited information, experts should converge to 

the same conclusions.  

7. The second challenge problem investigates application of the framework when 

using empirical rock mass classification systems. This example illustrates the philosophical 

awkwardness in assigning a prior probability when presented with either limited or no 

objective information, or when the information is inherently imprecise. This challenge 

problem shows how for an intrinsically epistemic system such as Q , the framework directs 

the user to undertake a fuzzy analysis, which can be used to assist in making informed 

decisions during the feasibility stage of a major project. This example also concludes that the 

assignment of a subjectively determined probability distribution, given little or not evidence 

to support it, (i.e. applying the Bayesian approach without updating) may lead to either 

misinformed decisions or over-confidence in the accuracy of the resulting conclusions drawn 

from such analyses. 

8. This thesis concludes with a final challenge problem involving estimation of 

the peak strength of jointed rock masses and intact rock. Through application of the 

framework, this challenge problem demonstrates how the new framework does not allow 

parameters that are inherently imprecise to be characterised using a probabilistic approach. 

Therefore, it is concluded that such parameters must always be handled using non-

probabilistic methods. The final section in this last challenge problem re-applies the 

framework after additional data becomes available to show how one may re-characterise 

epistemic uncertainty as aleatory variability if the additional information meets the 

requirements of the latter presented in the taxonomy.  This challenge problem is the first 

application of hybrid analysis to a problem in rock mechanics. A series of verified hybrid 

calculation algorithms have been developed and presented in the Appendices of this thesis 

using the program MathCAD. Whilst probabilistic approaches are widely applied to rock 

mechanics problems, fuzzy solutions are less common and this research has not uncovered 

any examples of hybrid analyses. This may be due to the perception that these latter methods 

are computationally challenging, or the lack of commercial software available to implement 

them. Thus, the hybrid algorithms developed for this challenge problem demonstrate the ease 

in which they may be applied. This may open up an avenue for application of fuzzy and 

hybrid analysis in routine geotechnical design.  
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8.2.2 Supporting conclusions and contributions 

9. Section 2.2 identifies the necessity to characterise unpredictability through a 

review of the quality and quantity, as well as the type, of information available to the analyst. 

Using these concepts, the new definitions intrinsically epistemic, extrinsically epistemic, and 

intrinsically aleatory are presented. These new definitions allow identification of the 

underlying nature of unpredictability within a parameter or system. 

10. Using these new definitions, section 2.3 concludes that as epistemic uncertainty 

is reducible, separating uncertainty and variability in an analysis allows one to understand 

what steps can be taken to reduce the unpredictability within a model. An important 

conclusion drawn from this discussion is that unpredictability is most significantly reduced by 

targeting data collection to reduce epistemic uncertainty, and in particular at re-categorisation 

of extrinsically epistemic parameters to aleatory. In this way, site investigation and data 

collection can be focussed at those aspects of the model which will benefit most from it. The 

practical implication of which is that site investigation can be performed more efficiently, 

thereby reducing both cost as well as reducing unpredictability in the final design.  

11. Section 2.5 significantly develops the level of information concept (i.e. Figure 

8) first conjectured by Wenner & Harrison (1996), by proposing a hierarchy of non-stochastic 

and stochastic approaches appropriate for propagating unpredictability. The conclusion drawn 

is that for any specified level of information an optimal model should be applied. Through 

simple examples, this discussion is able to confirm that non-stochastic methods 

commensurate with the given level of information allow one to use all the available 

information and propagate the uncertainty faithfully through the analysis of an intrinsically 

epistemic system. This confirmed level of information concept can thus be used as a basis for 

simply identifying the unpredictability modelling methods that can be applied to rock 

mechanics and rock engineering problems. 

12. Section 2.8 applies the new taxonomy to examples specific to rock mechanics 

and rock engineering to show that many parameters – such as those used in rock mass 

classification systems – are intrinsically epistemic and that no matter the quantity of data, the 

inherent imprecision in such parameters means they can only ever be characterised as 

epistemic. On the contrary, parameters that can be objectively measured may be intrinsically 

aleatory, however if there is an insufficient quantity of data they must be characterised as 

extrinsically epistemic. Through application of the taxonomy, this review is able to conclude 

that the unpredictability in parameters used to characterise DIANE rock masses that are 

determined subjectively, must be modelled using non-stochastic methods. The conclusion 
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drawn is: use of stochastic analysis methods for such parameters is inappropriate and may in 

fact introduce a false sense of confidence in the output of designs on which they are based. 

Hence this discussion contributes to realising that many stochastic analyses presented in the 

literature where the unpredictability was epistemic may be potentially erroneous.  

13. Another contribution of the discussion presented in section 2.8 is that it shows 

that whilst many of the parameters used to characterise DIANE rock masses are determined 

subjectively and so epistemic, others that can be determined objectively are in fact 

intrinsically aleatory. Through a review of the literature this section shows how parameters 

such as UCS are aleatory. This review can then form a basis for developing testing 

recommendations to assist in identifying those parameters which are aleatory and appropriate 

tests methods to characterise them.   

14. The discussion in Chapter 3 details the mathematical basis of the various 

unpredictability models presented by the level of information concept (Figure 8 in section 

2.5). Using examples specific to rock mechanics and rock engineering, this Chapter shows 

how these methods can be applied to rock mechanics problems. Of most importance, this 

section concludes that hybrid methods can be applied to rock engineering models where many 

parameters, each with a differing level of available information, need to be combined. 

15. By using the methods introduced in the discussion presented in Chapter 3, 

algorithms for interval, fuzzy and hybrid analysis using MathCAD are developed. The basic 

algorithms are presented in the Appendices and can be used to develop further analytical 

models, e.g. tetrahedral wedge failure, if required.  

16. A review of the literature revealed that Low (2008) presented a stochastic 

solution (using FORM) to planar slope stability using a simple spreadsheet program. 

However, to use the method of Low (2008) requires the unpredictability to be aleatory. In 

contrast, the case study presented in Chapter 5, characterises uncertainty using fuzzy numbers. 

As part of this work, a robust algorithm for calculating the fuzzy factor of safety for planar 

slope stability has been developed and presented in the Appendices of this thesis. These 

algorithms are implemented in MathCAD though they may be readily adapted to any similar 

software.  

17. This thesis identifies that the imprecise output produced by non-stochastic 

methods can lead to difficulties in decision making. Thus, the challenge problem of Chapter 5 

presents a new concept of ‘the Agreement index’, which uses a de-fuzzification procedure 

that may assist in decision making.  
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8.3 Further work 

The fundamental nature of this work has naturally raised many questions with regard to 

further application to rock mechanics and rock engineering problems. These questions can be 

categorised in three major areas for future research: a) Significance of the new concepts of 

intrinsically epistemic, extrinsically epistemic and intrinsically aleatory with regards to 

characterising parameters commonly used in rock mechanics and rock engineering. More 

specifically, how these concepts will influence future testing directive and design 

methodologies; b) Further development and applicability of the non-stochastic and hybrid 

methods analysis methods with specific reference to rock engineering design, and; c) Decision 

making based on the imprecise outputs of the interval-oriented approaches. The following 

areas are each discusses herein. 

8.3.1 Significance of the new concepts of intrinsically epistemic, extrinsically 
epistemic and intrinsically aleatory 

 

1. The term intrinsically epistemic was introduced to define rock mass parameters 

which are inherently imprecise and for which, no matter the quantity of information, the 

quality of data could not be improved to reach a precise state; for these it is inappropriate to 

assign a precise probability distribution. It is apparent that this statement has significant 

repercussions; most notably, it implies that all parameters that are derived subjectively, 

through imprecise correlations and approximations can only ever be modelled using non-

stochastic methods. This in turn implies that all probabilistic analyses undertaken to date, 

using such parameters are, strictly, in error. Therefore, there is a need to validate the 

appropriateness of applying subjectivist probabilistic methods in the context of rock 

engineering design. Specifically, there is a need to investigate whether geotechnical design 

codes should restrict the widespread use of such intrinsically epistemic parameters in detailed 

design calculations that are based on probabilistic methods or assumptions. Or, at least 

provide informative guidance on the need to recognise the imprecision inherent in these 

parameters.  

2. Following on from this, it is apparent that there is a need to undertake research 

in to those parameters that may be intrinsically aleatory, though there is not enough evidence 

in the literature to support this. This thesis has identified a few properties, such as UCS and 

joint spacing that exhibit aleatory variability. However, it was also noted that it is not at all 

clear whether many objectively determined parameters are aleatory, and if so, why the 
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objective measurements produce such imprecise correlations. The most important of these 

parameters is the in-situ stress ratio (k). Figure 78a shows the imprecision in the correlation of 

the in-situ stress ratio with depth, which suggests that k is epistemic. However, the looking at 

the data between 400m and 600m depth, Figure 78b suggests that the in-situ stress ratio in this 

region may be characterised by a Weibull distribution. Therefore, it is not clear whether k is 

‘globally intrinsically epistemic’ and perhaps ‘locally intrinsically aleatory’.  Furthermore, it 

is unclear as to why the imprecision appears to be greater at surface than at depth. The 

distribution of in-situ stress near a fault (Figure 79) also presents similar questions as to the 

nature of the unpredictability in k. At this stage, it is not clear how one would characterise k, 

and thus great deal of research is needed in to the nature of unpredictability in this parameter. 

  
a) Ratio of major horizontal to vertical principal stresses 

with depth  

b) Ratio of minor horizontal to vertical principal stresses  

Figure 78: In-situ stress ratios determined from the Scandinavian database (from Martin et al., 2003). 

 

Figure 79: Rock stress distribution near a fault (from Obara & Sugawara, 2003). 
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8.3.2 Development and applicability of non-stochastic methods for rock 
engineering 

 

3. The challenge problems presented in this thesis were selected based on their 

simplicity to demonstrate the applicability of the framework to handle problems involving 

parameters at varying levels of information. However, there is great potential to expand the 

complexity of the challenge problems to account for various phenomena such as plasticity. 

For instance, Schweiger & Peschl (2005) have presented a preliminary investigation in to ‘a 

random set finite element method’ (i.e. using non-parametric p-boxes) for a retaining wall. 

Similarly, Peschl & Shweiger (2003) present a fuzzy finite element study of a footing on soil. 

There is also no shortage of literature on the stochastic finite element approach. However, in 

each of these analyses, the unpredictability has been characterised at the whim of the analyst. 

Therefore, an investigation in to application of the framework and a hybrid FEA approach is 

one avenue worth further investigation.  

4. Limit state design (LSD) codes (e.g. Eurocode 7 in Europe) have become 

legislative design standards for geotechnical engineering in many countries. These codes 

recognise the need for rock engineering designs to comply with the LSD paradigm.  This 

paradigm requires that both the effect of actions (i.e. loads) and resistance in a structure be 

aleatory in nature (see Figure 80 for LSD model). However, as this thesis has shown, many 

parameters used to characterise DIANE rock masses are epistemic; some intrinsically 

epistemic. Therefore, it is evident that such parameters cannot be handled by LSD codes in 

their current form. Bedi & Harrison (2012) provide a detailed discussion on this matter.  

However, unlike LSD, the non-stochastic methods presented in this thesis can be used when 

the level of knowledge is inappropriate to characterise the unpredictability using an aleatory 

model. The examples presented in this thesis show that for many rock engineering structures, 

such as rock slopes, the load and resistance functions can be defined using fuzzy numbers or 

imprecise probability distributions. This opens up a research area aimed at investigating the 

applicability of the proposed framework and the concept of ‘imprecise Limit State Design’ 

principles. At this early stage of the development of the framework, on face value, it appears 

that there may be a place for this new framework to provide a means of directing geotechnical 

designs in the face of epistemic uncertainty whilst the link between LSD and this work is 

established.  
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Figure 80: Both effects of actions and material resistance are considered as random variables in 

geotechnical LSD (from Bedi & Harrison, 2012). 

 

The examples presented in this thesis show that for many rock engineering structures, 

such as rock slopes, the load and resistance functions can be defined using fuzzy numbers or 

imprecise probability distributions. Thus, there appears to be a space for investigation in to 

‘imprecise Limit State Design’ principles.  

8.3.3 Decision making based on imprecise outputs 

 

5. In civil engineering, risk and reliability analyses using probabilistic methods 

have a long history. As such, levels for accepting a probability of failure or reliability index 

are generally well established. In terms of LSD, as Figure 80 also shows, the LSD concept 

uses partial factors to provide the required level of safety for structures designed in 

accordance with its principles. In this thesis, we presented the concept of an ‘agreement 

index’ by de-fuzzifying the outputs of a fuzzy analysis. Whilst the literature has presented 

means of undertaking ‘fuzzy reliability analysis’ (e.g. Yubin et al., 1997; Nunes & Sousa, 

2009; Carvalho et al., 2011; Park et al., 2012), there does not appear to be any studies that 

present acceptable levels of fuzzy reliability measures. For example, for various structures in 

engineering acceptable probabilities of failure have been determined (e.g. Figure 81). Thus, 

investigation in to acceptable imprecise or ‘de-fuzzified’ reliability indices appears necessary.  

6. This thesis expanded on the concept of ‘Agreement index’ (Kaufmann & 

Gupta, 1991) to propose an agreement index to assist in decision making. This index is only 

valid when the output is a fuzzy number. However, a similar index does not appear to have 

been published in the literature for p-boxes or the output from a hybrid analysis. This research 

has only revealed one such index presented by Dubois & Guyonnet (2011), who suggest the 

concept of a confidence index; this approach, however, appears highly subjective. On the 
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contrary to the confidence index suggested by Dubois & Guyonnet (2011), the agreement 

index uses the information contained in the shape of a fuzzy number as a means of de-

fuzzification. Thus, there appears to be a need to develop a similar ‘de-boxing’ method that 

uses the information in the p-box. 

 

The work presented in this thesis has demonstrated a clear need to better understand 

uncertainty and variability in rock mechanics and rock engineering. The new taxonomy and 

framework developed and presented in this thesis aim to provide convenient tools in this 

endeavour. These new tools and further contributions made as part of their development can 

be applied immediately by practising engineers and rock mechanics. However, this section on 

further work illustrates the potential to build on the work presented in this thesis and apply the 

tools developed here to actual site-specific problems. Further development of the concepts 

and tools developed in this thesis will serve to improve both safety and efficiency in rock 

engineering designs.  

 

 

 

Figure 81: Acceptable limits on probabilities of failure for various structures (from Baecher & 

Christian, 2003). 
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Appendix A – Verification of generic 

MathCAD algorithm for hybrid analysis  

A.1   Verification of hybrid calculation routines: Numerical 
example provided by Dubois & Guyonnet (2011) 

 

Dubois & Guyonnet (2011) provide a numerical example of a hybrid calculation where the 

inputs are a mixture of fuzzy numbers and precise probability distributions. This example is 

used here to verify the performance of the numerical routines implemented in this thesis. 

The function used in the hybrid calculation of Dubois & Guyonnet (2011) is given by 

the following expressions:  

 IER D UER  
 

(A.1) 

 D
I C EF ED

BW AT
 (A.2) 

The following table summarises the unpredictability model chosen to represent each 

parameter and the minimum, mode or core and upper bound values. 

Table A.1: Parameters used for hybrid calculation (from Dubois & Guyonnet, 2011) 

Parameter Mode of 
representation 

Lower bound Mode or core Upper bound 

C 
Precise PDF 

(triangular) 
5 10 20 

I 
Fuzzy number 

(triangular) 
1 1.5 2.5 

EF 
Fuzzy number 

(triangular) 
200 250 350 

ED 
Precise PDF 

(triangular) 
10 30 50 

UER 
Fuzzy number 

(triangular) 

210-2 

 

5.710-2 

 

10-1 

 

 

The figure below presents the output obtained by Dubois & Guyonnet (2011). In their 

example, Dubois & Guyonnet (2011) undertake the simulation by 100 iterations of a hybrid 

Monte-Carlo technique. 
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In this figure, the Plausibility curve represents the upper bound CDF of the p-box, 

with the Belief curve representing the upper bound distribution of the p-box. The curve 

labelled 'Mote-Carlo' is the result of a solution using precise PDFs (triangular distributions) 

for all the parameters.  

 
Figure A.1: Parameters used for hybrid calculation (from Dubois & Guyonnet, 2011) 

 

In the verification calculation that follows, a similar hybrid Monte-Carlo routine with 

5000 iterations is implemented. 
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A.1.1   Generic MathCAD routines 

Set up discretisation vectors

n 1000 Number of discretisations of each p-box

Create vector for ordinate of cumulative density function (CDF) w ith 'n' discretisations

v_P v 0

j 0

i 0

i
j

1000


v
0

0

v
n

1

v
j

i

j 1 999for

vreturn



k 5000 Input number of i terations for Monte-Carlo simulation

bins round n  Set bins

Create user-defined triangular distribution functions

Create vector of probabil i ty density

dtri a b c ( ) v 0

j 0

v
j

2 j a( )

b a( ) c a( )
a j bif

2 c j( )

c a( ) c b( )
b j cif

0 otherwise



j 0 n 1for

vreturn

 v_pd v 0

j 0

i 0

v
j

j

j 0 n 1for

vreturn



Create vector of cumulative density

ptri a b c ( ) v 0

j 0

v
j

0 j aif

j a( )
2

b a( ) c a( )
a j bif

1
c j( )

2

c a( ) c b( )
 b j cif

1 otherwise



j 0 n 1for

vreturn


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Create vector of inverse cumulative density

qtri a b c ( ) v 0

i 0

j 0

i
j

n


v
0

a

v
n

c

v
j

i b a( ) c a( ) a 0 i
b a

c a
if

c 1 i( ) c a( ) c b( ) 
b a

c a
i 1if



j 1 n 1for

vreturn



Create vector of 'k' random numbers from triangular distribution

rtri a b c ( ) v 0

u 0

j 0

u runif k 0 1 ( )

v
j

u
j

b a( ) c a( ) a 0 u
j


b a

c a
if

c 1 u
j

  c a( ) c b( )





b a

c a
u

j
 1if



j 0 k 1for

vreturn



Check output - test values for user defined triangular distribution 

a 5 b 10 c 20

v_dtri dtri a b c ( ) v_ptri dtri a b c ( ) v_qtri qtri a b c ( )

0 10 20 30 40
0

0.05

0.1

0.15

Probablity density

v_dtri

v_pd

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Cumulative density

v_P

v_qtri
 

Figure A.2: MathCAD plots to check user-defined triangular distribution functions  
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Define Monte-Carlo simulation functions

v_rtri rtri a b c ( ) Create vector or random numbers generated

from user-defined triangular PDF

v_htri sort v_rtri( )

Sort vector and create histrogram of random numbers

h_tri histogram bins v_htri ( )

5 10 15 20
0
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R
el
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e 
fr
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1 

k
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0 

 

Figure A.3: Histogram of random numbers generated for triangular PDF . 

 

 

Define functions to create p-box from fuzzy numbers

The L-R fuzzy numbers are defined as detailed in Chapter 3 of this thesis, i .e. fuz = [a,b,c,d]

v_fuzL a b c d ( ) v 0

i 0

j 0

i
j

n


v
0

a

v
n

b

v
j

qunif i a b ( )

j 1 n 1for

vreturn

 v_fuzR a b c d ( ) v 0

i 0

j 0

i
j

n


v
0

c

v
n

d

v
j

qunif i c d ( )

j 1 n 1for

vreturn



 
 

The numerical example of Dubois & Guyonnet (2011) is now commenced on the next 

page using these defined functions 
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A.1.2   Verification of generic MathCAD routines 

Apply generic routines to problem by Dubois & Guyonnet (2011). 

Input parameters

Deterministic input parameters

BW 70 AT 70

Probabil istic input parameters

Ci qtri 5 10 20 ( ) ED qtri 10 30 50 ( ) Define triangular PDFs

5 10 15 20
0

0.2

0.4

0.6

0.8

1

v_P

Ci

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

v_P

ED

Fuzzy input parameters

I 1 1.5 2.5( )

a I
0 0  

 b I
0 1  

 c I
0 1  

 d I
0 2  



Create p-box vector of fuzzy_I

v_IL v_fuzL a b c d ( )

v_IR v_fuzR a b c d ( )

EF 200 250 350( )

a EF
0 0  

 b EF
0 1  

 c EF
0 1  

 d EF
0 2  



Create p-box vector of fuzzy_IEF

v_EFL v_fuzL a b c d ( )

v_EFR v_fuzR a b c d ( )

UER 2 10
2

 5.710
2

 10
1 

a UER
0 0  

 b UER
0 1  

 c UER
0 1  

 d UER
0 2  



Create p-box vector of fuzzy_UER

v_UERL v_fuzL a b c d ( )

v_UERR v_fuzR a b c d ( )
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Figure A.4: P-boxe generated from fuzzy numbers.  

 

Create vectors of random numbers for hybrid Monte-Carlo simulation 

Ci rtri 5 10 20 ( ) ED rtri 10 30 50 ( )

v_IL runif k I
0 0  

 I
0 1  

   v_IR runif k I
0 1  

 I
0 2  

  

v_EFL runif k EF
0 0  

 EF
0 1  

   v_EFR runif k EF
0 1  

 EF
0 2  

  

v_UERL runif k UER
0 0  

 UER
0 1  

   v_UERR runif k UER
0 1  

 UER
0 2  

  

Calculate lower and upperbound value of IER from random vectors

IERL

v_IL Ci v_EFL ED

BW AT
v_UERL


















2.74 10
6

 
Note: a factor of 2.74x10^-6 needs to

be applied to convert input units to be

consistent with the ouput  

IERR

v_IR Ci v_EFR ED

BW AT
v_UERR











2.74 10
6

 
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Sort upper and lower bound results from Monte-Carlo results

 and define historgrams for plot

v_hIERL sort IERL  v_hIERR sort IERR 

h_IERL histogram bins IERL   h_IERR histogram bins IERR  

Set up numerical integration to create CDF from PDFs

produced through Monte-Carlo simulation

_cdf in_hist( ) v 0

j 0

i 0

h 0

h histogram bins in_hist ( )

v
j

0

j

i

h
i 1  

k




j 0 bins 1( )for

vreturn



cdf_IERL _cdf IERL 

cdf_IERR _cdf IERR 
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Figure A.5: MathCAD output of verification computation  

 

Conclusion: The results produced by the hybrid Monte-Carlo simulation functions set 

up here re-produce the output calculated by Dubois & Guyonnet (2011). Minor differences in 

the output graphed in the figure above and that of Dubois & Guyonnet (2011) are due to 

Monte-Carlo sampling meaning two analyses will not produce identical results. However, the 

deviation between two calculations is minimal.
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Appendix B – Algorithms for fuzzy 

planar slope stability analysis   

 

W

W

V

U

T


H

zzw

pf

Anchor

Water pressure
distribution

 

Parameters: 

H – Height of slope  

z  – Depth of tension crack  

wz  – Height of water in tension crack 

p  – Angle of failure surface  

f – Angle of slope face  

c  – Cohesion of failure surface 

 – Angle of friction of failure surface 

T – Tension in bolt 

  – Angle of bolt installation 

W  – Weight of rock  

U  – Water pressure on sliding plane  

V –- Water pressure in tension crack 

 – acceleration co-efficient 

Figure B.1: MathCAD output of verification computation 

 

Table B.1: Functions for definition of driving and resisting forces 

Description of function Variable used Equation of function 

A  

Area of block/m 
 pzHfA ,,  

p

zH
A

sin


  

W  

Weight of block/m 

  ,,,, fpzHfW   





































 fp

H

z
HW  cotcot1

2

1
2

2
 

U  

Water pressure normal to 
sliding plane 

 wwp zzHfU ,,,,   

p

wwww

zH
zzAU




sin2

1

2

1 
  

V  

Horizontal component of water 
pressure 

 ww zfV ,  2

2

1
ww zV   

 
Table B.2: Functions for definition of driving and resisting forces 

Force 
components 

U V W  

║ to plane 0 pt VV cos  pt WW sin  ∑ = forces 

causing sliding 

┴ to plane U  pn VV sin  pn WW cos  ∑ = effective 

normal force 
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B.1   MathCAD computation of fuzzy slope stability 

Using the geometry in Figure B.1 and the functions defined in Table B1 and B2, the 

governing equation for planar slope stability is given by: 

  




sin)cos(sincos

tancossinsincos
FoS

(L) forces Driving

(R) forces Resisting

TWV

TVUWcA

ppp

ppp









 

 

(B.1) 

 
Deterministic inputs

Geometry inputs Weight density inputs

H 60  2.6

f 50deg  w 1

p 35deg Bolt incl ination

 35deg

zmax H 1
tan p 
tan f 










 24.747

Limit state

zwmax zmax 24.747 FOS 1

bmax H cot p  cot f   35.343

Fuzzy inputs

a b c d



c

z

b

zw

a





















a

15deg

0

0

0

0

0



















 b

35deg

10

0.5zmax

0.5bmax

0

0





















 c

35deg

10

0.5zmax

0.5bmax

0

0





















 d

70deg

25

zmax

bmax

zwmax

0.16






















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Functions to define a-cuts of fuzzy numbers
Fuzzy membership function L-R

Y x( )
x a

b a
a x bif

1 b x cif

d x

d c
c x dif

a-cuts of triangular fuzzy numbers

n 10 Number of alpha cuts , range variable ofcuts 0 n

 0
1

n
 1 membership values of a-cuts

inc
1

n
0.1 Increment of a-cuts

min ( ) b
0

a
0

  a
0

 max ( ) d
0

d
0

c
0

  

cmin ( ) b
1

a
1

  a
1

 cmax ( ) d
1

d
1

c
1

  

zmin ( ) b
2

a
2

  a
2

 zmax ( ) d
2

d
2

c
2

  

bmin ( ) b
3

a
3

  a
3

 bmax ( ) d
3

d
3

c
3

  

zwmin ( ) b
4

a
4

  a
4

 zwmax( ) d
4

d
4

c
4

  

amin ( ) b
5

a
5

  a
5

 amax ( ) d
5

d
5

c
5

  

Fuzzy variables as a-cut range variables

f_ min ( ) min ( )

Fuzzy ?
f_ max ( ) max ( ) }
f_c min ( ) cmin ( )

Fuzzy c
f_c max ( ) cmax ( ) }
f_zmin ( ) zmin ( )

Fuzzy z}
f_zmax ( ) zmax ( )

f_b min ( ) bmin ( )

Fuzzy b}
f_b max ( ) bmax ( )

f_zwmin ( ) zwmin ( )

Fuzzy zw}
f_zwmax ( ) zwmax( )

f_a min ( ) amin ( )

Fuzzy a
f_a max ( ) amax ( ) }

0 20 40 60 80
0

0.2

0.4

0.6

0.8

Fuzzy 





f_ min ( )

deg

f_ max ( )

deg
  

 



Appendix B 

- 197 - 
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0 20 40 60 80
0

0.2

0.4

0.6

0.8

Fuzzy 





f_ min ( )

deg
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0 10 20 30
0

0.2

0.4

0.6

0.8
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



f_z min ( ) f_z max ( )  
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Fuzzy crack position





f_bmin ( ) f_bmax ( )  
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
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Figure B.2: Fuzzy numbers of input parameters produced from stacked array of  -cuts 
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Fuzzy geometry functions

f_A min ( )
H f_zmax ( )

sin p 


Fuzzy Area of sl iding plane}
f_A max ( )

H f_zmin ( )

sin p 


f_W min ( )
1

2
 H

2
 1

f_zmax ( )

H









2











cot p  cot f 











Fuzzy Weight of block}
f_W max ( )

1

2
 H

2
 1

f_zmin ( )

H









2











cot p  cot f 











Fuzzy w ater pressures

f_Umin ( )
1

2
f_A min ( )  w f_zwmax ( )

Fuzzy water pressure on sl iding plane}
f_Umax ( )

1

2
f_A max ( )  w f_zwmin ( )

f_Vmin ( )
1

2
 w f_zwmax ( ) 2



Fuzzy water pressure in crack}
f_Vmax ( )

1

2
 w f_zwmin ( ) 2



 

Fuzzy driv ing and resisting forces
 

f_Rmin ( ) f_c min ( ) f_A min ( ) f_W min ( ) cos p  f_a max ( ) sin p   f_Umin ( ) f_Vmin ( ) sin p   tan f_ min ( ) 

f_Rmax ( ) f_c max ( ) f_A max ( ) f_W max ( ) cos p  f_a min ( ) sin p   f_Umax ( ) f_Vmax ( ) sin p   tan f_ max ( ) 
 

f_Qmin ( ) f_W min ( ) sin p  f_a max ( ) cos p   f_Vmin ( ) cos p 

f_Qmax ( ) f_W max ( ) sin p  f_a min ( ) cos p   f_Vmax ( ) cos p 
 

Fuzzy Factor of Safety

f_FOSmin ( )
f_Rmin ( )

f_Q min ( )


Fuzzy

Factor of safety}
f_FOSmax ( )

f_Rmax ( )

f_Qmax ( )


Fuzzy bolt tension to ensure FOS > 1

f_T max ( )
FOS f_Qmin ( ) f_Rmin ( )

cos ( ) tan f_ min ( )  sin ( )


Fuzzy

bolt tension}
f_T min ( )

FOS f_Qmax ( ) f_Rmax ( )

cos ( ) tan f_ max ( )  sin ( )

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Figure B.3: Fuzzy numbers of functions produced from stacked array of  -cuts 
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FOStri f_FOSmin 0( )  f_FOSmin 1( )  f_FOSmax 0( )   0.047 1.586 5.578( )
 

Figure B.4: Computed fuzzy factor of safety and bolt tension to ensure FoS > 1 
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B.2   MathCAD routines to compute Agreement index 
 

De-fuzzification functions to calculate Agreement index from FoS

FOS 0.55 Fos value at which AI is calculated

Function to convert fuzzy range variables to vectors- f_FOSvec(f_FOS,n):

- f_FOS = fuzzy FOS function as a range variable

- n = number of alpha cuts

f_FOSvec N n 1

v
j

f_FOSmin
j

n









j Nif

f_FOSmax 1( ) j Nif

f_FOSmax
2N 1( ) j

n









otherwise



u
j

j

n
j Nif

1 j Nif

2N 1( ) j

n









otherwise



j 0 2N 1( )for

v

u









return



f_FOSx f_FOSvec
0



f_FOSy f_FOSvec
1



0 2 4 6
0

0.2

0.4

0.6

0.8

1

f_FOSy

f_FOSx
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Function to trim fuzzy number - trim(f_V,c):

- f_V = fuzzy function to trim

- c = trimming condition

Bounds of integration for desired FOS value

lu  Upper integration l imit
ub  Lower integration l imit

lb FOS Lower integration l imit
uu FOS Upper integration l imit

Create sub-array for l inear interpolation of end co-ordinates

f_FOSxinterp stack submatrix f_FOSx 0 n 0 0   submatrix f_FOSx n 2 rows f_FOSx  1 0 0    

f_FOSyinterp stack submatrix f_FOSy 0 n 0 0   submatrix f_FOSy n 2 rows f_FOSy  1 0 0    

Define trimming boundary conditions

lim_l f( ) ub f uu

Trim to the left of bounds

Function to trim fuzzy number - trim(f_V,c):

- f_V = fuzzy function to trim

- c = trimming condition

Bounds of integration for desired FOS value

lu  Upper integration l imit
ub  Lower integration l imit

lb FOS Lower integration l imit
uu FOS Upper integration l imit

Create sub-array for l inear interpolation of end co-ordinates

f_FOSxinterp stack submatrix f_FOSx 0 n 0 0   submatrix f_FOSx n 2 rows f_FOSx  1 0 0    

f_FOSyinterp stack submatrix f_FOSy 0 n 0 0   submatrix f_FOSy n 2 rows f_FOSy  1 0 0    

Define trimming boundary conditions

lim_lf( ) ub f uu

Trim to the left of bounds

triml f_V c ( ) i 0

U 0

ub linterp f_FOSxinterp f_FOSyinterp uu   f_FOSmin 1( ) f_FOSmax 1( ) FOS f_FOSmin 1( )if

linterp f_FOSxinterp f_FOSyinterp lb   FOS f_FOSmax 1( )if

1 otherwise



xub linterp f_FOSxinterp f_FOSxinterp uu   f_FOSmin 1( ) f_FOSmax 1( ) FOS f_FOSmin 1( )if

linterp f_FOSxinterp f_FOSxinterp lb   FOS f_FOSmax 1( )if

FOS otherwise



U
i

f_V
j



index lookup U
i

f_FOSx f_FOSy  

T
i

index
0



i i 1

lim_l f_V
j  1if

j 0 rows f_V( ) 1for

stack U xub  

stack T ub  









return



f_FOSxtl triml f_FOSx lim_l  
0



f_FOSytl triml f_FOSx lim_l  
1



0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

f_FOSytl

f_FOSxtl
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lim_r f( ) lb f lu

Trim to the right of bounds

trimr f_V c ( ) i 0

U 0

lb linterp f_FOSxinterp f_FOSyinterp lb   f_FOSmin 1( ) f_FOSmax 1( ) FOS f_FOSmax 1( )if

linterp f_FOSxinterp f_FOSyinterp uu   FOS f_FOSmin 1( )if

1 otherwise



xlb linterp f_FOSxinterp f_FOSxinterp lb   f_FOSmin 1( ) f_FOSmax 1( ) FOS f_FOSmax 1( )if

linterp f_FOSxinterp f_FOSxinterp uu   FOS f_FOSmin 1( )if

FOS otherwise



U
i

f_V
j



index lookup U
i

f_FOSx f_FOSy  

T
i

index
0



i i 1

lim_r f_V
j  1if

j 0 rows f_V( ) 1for

stack xlb U  
stack lb T  









return



f_FOSxtr trimr f_FOSx lim_r  
0



f_FOSytr trimr f_FOSx lim_r  
1



0 2 4 6
0

0.2

0.4

0.6

0.8

1

f_FOSytr

f_FOSxtr
 

 

intFOS_l j 0

i 0

 0

 0

ub linterp f_FOSxinterp f_FOSyinterp uu  

T
j

j

rows f_FOSxtl  2

i

1

2
f_FOSytl 

i 1
f_FOSytl 

i






 f_FOSxtl 
i 1

f_FOSxtl 
i




















  inc

j 0 nfor rows f_FOSytl  n 1if

T
j

j

rows f_FOSxtl  2

i

1

2
f_FOSytl 

i 1
f_FOSytl 

i






 f_FOSxtl 
i 1

f_FOSxtl 
i


















 ubif

0 otherwise



  inc

j 0 nfor otherwise

T



 

Create numerical integration sub-routines for fuzzy FOS 
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intFOS_r j 0

i 0

 0

 0

ub linterp f_FOSxinterp f_FOSyinterp uu  

T
j

0

rows f_FOSytr  2 j

i

1

2
f_FOSytr 

i 1
f_FOSytr 

i






 f_FOSxtr 
i 1

f_FOSxtr 
i




















  inc

j 0 nfor rows f_FOSytr  n 1if

T
j

0

rows f_FOSytr  2 j

i

1

2
f_FOSytr 

i 1
f_FOSytr 

i






 f_FOSxtr 
i 1

f_FOSxtr 
i


















 ubif

0 otherwise



  inc

j 0 nfor otherwise

T



 

Check trimmed fuzzy integration sub-routines:

Intf_FOS n rows f_FOSx 

0

n 2

i

1

2
f_FOSy

i 1
f_FOSy

i






 f_FOSx
i 1

f_FOSx
i


















2.436

Integration of ful l  function

intf_FOStr n rows f_FOSxtr 

0

n 2

i

1

2
f_FOSytr

i 1
f_FOSytr

i






 f_FOSxtr
i 1

f_FOSxtr
i


















2.315

Integration to the right

intf_FOStl n rows f_FOSxtl 

0

n 2

i

1

2
f_FOSytl

i 1
f_FOSytl

i






 f_FOSxtl
i 1

f_FOSxtl
i


















0.121

Integration to the left

sum_FOS intf_FOStr intf_FOStl 2.436 Numerical integration is accurate
 

AI

intf_FOStl

sum_FOS
0.05 Agreement index
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Appendix C – MathCAD routine for 

calculation of fuzzy-Q 

This appendix presents the MathCAD routines to calculate the fuzzy Q-value, bolt and strand 

spacing used in Challenge problem 2, presented in Chapter 6. 

By applying interval analysis (as described in section 3.1), and specifically Equations 

(3.5) and (3.6), the minimum and maximum intervals of Q  are obtained by Equation C.1.  

Similarly, the corresponding interval of required roof support pressure is defined by equation 

C.2. Both of these intervals are confirmed by numerical computations using the vertex 

method (described in section 3.2.2).  

  













L

mU
w

L
a

U
r

L
n

U
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w

U
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r

U
n

L
UL

SRF

J
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RQD

SRF

J

J

J

J

RQD
QQ ,,  

 

(C.1) 

  
L

LR

n

R

RL

nU

roof

L

roof

rr
J

QJ

J

QJ
PP

3

2
,

3

2
,

3131

  (C.2) 

The required bolt spacing is derived by assuming the strand spacing ( sS ) is equal to 

twice the bolt spacing ( bS ). The support pressure provided by each element is equal to the 

yield load of each element divided by the area over which it acts. Assuming a square pattern, 

the support pressure is provided by: 

 22

s

s

b

b

roof
S

T

S

T
P   

 

(C.3) 

Now, setting the strand spacing bs SS 2 , substituting this in to Equation C.3 and 

solving this for bS , the required bolt spacing is obtained by: 

 
roof

sb
b

P

T.T
S

250
  (C.4) 

Using the interval of required roof support pressure, i.e. Equation C.2, in Equation 

C.4, the required bolt spacing can be estimated from the Q -value.  
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C.1   MathCAD routines to compute fuzzy-Q 

Y x( )
x a

b a
a x bif

1 b x cif

d x

d c
c x dif


a-cuts of triangular fuzzy numbers

n 10 Number of alpha cuts , range variable ofcuts 0 n

 0
1

n
 1 membership values of a-cuts

inc
1

n
0.1 Increment of a-cuts

RQDmin( ) b
0

a
0

  a
0

 RQDmax( ) d
0

d
0

c
0

  

Jnmin ( ) b
1

a
1

  a
1

 Jnmax ( ) d
1

d
1

c
1

  

Jrmin ( ) b
2

a
2

  a
2

 Jrmax ( ) d
2

d
2

c
2

  

Jamin ( ) b
3

a
3

  a
3

 Jamax ( ) d
3

d
3

c
3

  

Jwmin ( ) b
4

a
4

  a
4

 Jwmax( ) d
4

d
4

c
4

  

SRFmin( ) b
5

a
5

  a
5

 SRFmax( ) d
5

d
5

c
5

  

Fuzzy variables as a-cut range v ariables

f_RQDmin ( ) RQDmin( )

Fuzzy RQD
f_RQDmax ( ) RQDmax( ) }
f_Jnmin ( ) Jnmin ( )

Fuzzy Jn
f_Jnmax ( ) Jnmax ( ) }
f_Jrmin ( ) Jrmin ( )

Fuzzy Jr
f_Jrmax ( ) Jrmax ( ) }
f_Jamin ( ) Jamin ( )

Fuzzy Ja
f_Jamax ( ) Jamax ( ) }
f_Jwmin ( ) Jwmin ( )

Fuzzy Jw
f_Jwmax ( ) Jwmax( ) }
f_SRFmin ( ) SRFmin( )

Fuzzy SRF
f_SRFmax ( ) SRFmax( ) }
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Fuzzy functions

f_Qmin ( ) min
f_RQDmin ( )

f_Jnmin ( )

f_Jrmin ( )

f_Jamin ( )


f_Jwmin ( )

f_SRFmin ( )


f_RQDmin ( )

f_Jnmax ( )

f_Jrmin ( )

f_Jamax ( )


f_Jwmin ( )

f_SRFmax ( )
 











Fuzzy Q}
f_Qmax ( ) max

f_RQDmax ( )

f_Jnmin ( )

f_Jrmax ( )

f_Jamin ( )


f_Jwmax ( )

f_SRFmin ( )


f_RQDmax ( )

f_Jnmax ( )

f_Jrmax ( )

f_Jamax ( )


f_Jwmax ( )

f_SRFmax ( )
 










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Figure C.1: Fuzzy inputs and calculated fuzzy-Q 
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Fuzzy functions for bolt spacing

Proof 11.023
2 Jn Q

1

3

3Jr

 
 

Note: Factor of 11.023 applied to convert original units of kg/m3 used by Grimstad & Barton 

(2003) to tons/m2 used by Barton et al. (1994) for the Gjøvik cavern design.  

f_Proofmin ( ) 11.023
2 f_Jnmin ( ) f_Q max ( )

1

3











3f_Jrmax ( )


Fuzzy roof support

pressure requried
}

f_Proofmax ( ) 11.023
2 f_Jnmax ( ) f_Qmin ( )

1

3


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


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


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Prooffuz f_Proofmin 0( )  f_Proofmin 1( )  f_Proofmax 1( )  f_Proofmax 0( )   0.444 2.897 2.897 19.916( )
 

Figure C.2: Fuzzy roof support pressure calculated from Q 
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Calculate fuzzy support requirements

Tbf 22 Bolt yield strength

Tsf 16.7 Strand yeild strength
 

f_sb min ( ) min
Tbf 0.25Tsf

f_Proofmin ( )

Tbf 0.25Tsf

f_Proofmax ( )
 











Fuzzy bolt

spacing}
f_sb max ( ) max

Tbf 0.25Tsf

f_Proofmin ( )

Tbf 0.25Tsf

f_Proofmax ( )
 











f_ss min ( ) 2min
Tbf 0.25Tsf

f_Proofmin ( )

Tbf 0.25Tsf

f_Proofmax ( )
 











Fuzzy strand

spacing}
f_ss max ( ) 2max

Tbf 0.25Tsf

f_Proofmin ( ) psc

Tbf 0.25Tsf

f_Proofmax ( ) psc
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sb.fuz f_sb min 0( )  f_sb min 1( )  f_sb max 1( )  f_sb max 0( )   1.146 3.006 3.006 7.676( )

ss.fuz f_ss min 0( )  f_ss min 1( )  f_ss max 1( )  f_ss max 0( )   2.293 6.012 6.012 15.351( )
 

Figure C.3: Fuzzy bolt and strand spacing calculated from Q 
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Appendix D – MathCAD functions for 

hybrid analysis of peak strength using 

Hoek-Brown failure criterion 

D.1   Strength of rock mass – extrinsically epistemic 

Set up discretisation vectors

n 1000 Number of discretisations of each p-box

Create vector for ordinate of cumulative density

function (CDF) w ith 'n' d iscretisations

Create vector of s.ci

v_P v 0

j 0

i 0

i
j

1000


v
0

0

v
n

1

v
j

i

j 1 999for

vreturn

 v_ci   ( ) v 0

j 0

i 0

i
j

n


v
0

qnorm 0.0001  ( )

v
n

qnorm 0.9999  ( )

v
j

qnorm i   ( )

j 1 n 1for

vreturn



Define functions to create p-box from intervals

Create p-box vector of i nterval_mi

v_intL a b ( ) v 0

i 0

j 0

i
j

n


v
0

a

v
n

a 0.00001

v
j

qunif i a a 0.00001 ( )

j 1 n 1for

vreturn


v_intR a b ( ) v 0

i 0

j 0

i
j

n


v
0

b

v
n

b 0.00001

v
j

qunif i b b 0.00001 ( )

j 1 n 1for

vreturn


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Define functions to create p-box from fuzzy numbers

The L-R fuzzy numbers are defined as detailed in Chapter 3 of this thesis, i .e. fuz = [a,b,c,d]

v_fuzL a b c d ( ) v 0

i 0

j 0

i
j

n


v
0

a

v
n

b

v
j

qunif i a b ( )

j 1 n 1for

vreturn

 v_fuzR a b c d ( ) v 0

i 0

j 0

i
j

n


v
0

c

v
n

d

v
j

qunif i c d ( )

j 1 n 1for

vreturn



 
 

Input fuzzy GSI

f_GSI 55 70 80( ) fuzzy min, mode & max

Create p-boxes of fuzzy GSI and calculate m & s

a f_GSI
0 0  

 b f_GSI
0 1  

 c f_GSI
0 1  

 d f_GSI
0 2  



vf_GSIL v_fuzL a b c d ( ) vf_GSIR v_fuzR a b c d ( )

Create p-box vectors of m.b and s

v_mbL vi_miL exp
vf_GSIL 100

28


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






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



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

 v_mbR vi_miR exp
vf_GSIR 100
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

v_s GSI.L exp
vf_GSIL 100

9








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 v_s GSI.R exp
vf_GSIR 100

9
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
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Figure D.1: P-boxes generated from possibility distributions of fuzzy numbers. 
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Create vectors of random numbers for hybrid Monte-Carlo simulation 

k 5000 Input number of i terations for Monte-Carlo simulation

bins round n  Set bins

Function to generate vector of random variables from p-boxed calculated from fuzzy distributions

v_rand v_in k n ( ) v 0

i 0

j 0

i rnd n 1( )

i round i( )

v
0

v_in
0 0  



v
k 1

v_in
n 0  



v
j

v_in
i 0  



j 0 k 1for

vreturn



Generate random variables from p-boxes derived from fuzzy distributions

mbL v_rand v_mbL k n   mbR v_rand v_mbR k n  

GSIL v_rand vf_GSIL k n   GSIR v_rand vf_GSIL k n  

sGSI.L v_rand v_s GSI.L k n   sGSI.R v_rand v_s GSI.L k n  

ci rnorm k   ( ) Vector containing uniform random variables for UCS

Calculate Pl(s.1) Calculate Bel(s.1)

1_GSI.L 3 ci mbL

3

ci

 sGSI.L


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

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

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 1_GSI.R 3 ci mbR

3

ci

 sGSI.R








0.5
















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Sort upper and lower bound results from Monte-Carlo results

 and define historgrams for plot

v_h1_GSI.L sort 1_GSI.L  v_h1_GSI.R sort 1_GSI.R 

h_1_GSI.L histogram bins 1_GSI.L   h_1_GSI.R histogram bins 1_GSI.R  

Set up numerical integration to create CDF from PDFs

produced through Monte-Carlo simulation

_cdf in_hist( ) v 0

j 0

i 0

h 0

h histogram bins in_hist ( )

v
j

0

j

i

h
i 1  

k




j 0 bins 1( )for

vreturn



cdf_ 1_GSI.L _cdf 1_GSI.L 

cdf_ 1_GSI.R _cdf 1_GSI.R 
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Figure D.2: P-boxes of rock mass strength and histograms from hybrid Monte-Carlo simulation.  
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D.2   Strength of Intact rock – extrinsically epistemic 
 

Inputs

s.ci is aleatory and defined by a normal distribution.

 158  28 Moments to define UCS - units of MPa

3 50 Assume s3 is deterministic

s 1 s = 1 for intact rock

m.i is defined by an interval

mi 29 35( ) Interval of mi

Define functions for PDF and CDF of normal distribution

x 0 1 300

fci x( )
1

2 
exp

1

2
2

x ( )
2
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

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
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Figure D.3: Uniaxial compressive strength defined by normal distribution  
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Define functions to calculate p-box of s.1 

Create p-box vector of interval_mi

Note: We can apply interval analysis at every probablity level to simply construct the p-box in this

analysis. T he lower and upper fracti le values for s.1 are then given by the fol lowing l imiting functions  

ci v_ci   ( ) Vector containing CDF of s.ci

vi_miL v_intL mi
0 0  

mi
0 1  

 






Vector containing lower bound of m.i

vi_miR v_intR mi
0 0  

mi
0 1  

 





 Vector containing upper bound of m.i

1L 3 ci vi_miL

3

ci

 s








0.5
















Lower bound of p-box

1U 3 ci vi_miR

3

ci

 s







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
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
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

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


 Upper bound of p-box
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Figure D.4: P-box of interval of mi 
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Figure D.5: P-box of intact rock strength using interval of mi

. 
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D.2.1   Refining the precision of the aleatory model 

 

_new 159 _new 25 Moments to define UCS - units of MPa

Define functions to calculate p-box of s.1 

Create p-box vector of interval_mi

Note: We can apply interval analysis at every probablity level to simply construct the p-box in this

analysis. T he lower and upper fracti le values for s.1 are then given by the fol lowing l imiting functions  

ci_new v_ci _new _new ( ) Vector containing updated CDF of s.ci

Lower bound of p-box
1L_new 3 ci_new vi_miL

3

ci_new
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
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Figure D.6: P-box of intact rock strength using updated aleatory model of UCS. 
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D.2.2   Reducing epistemic uncertainty 
 

mi_new 33 35( ) Updated interval of mi

Define functions to calculate p-box of s.1 

Create p-box vector of interval_mi

Note: We can apply interval analysis at every probablity level to simply construct the p-box in this

analysis. T he lower and upper fracti le values for s.1 are then given by the fol lowing l imiting functions  

vi_mi_newL v_intL mi_new
0 0  

mi_new
0 1  

 






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



Lower bound of p-box
1L_mi 3 ci vi_mi_newL

3

ci

 s








0.5

















1U_mi 3 ci vi_mi_newR

3

ci

 s








0.5
























 Upper bound of p-box

300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Old mi_L

Old mi_U

New mi_L

New mi_U

v_P

v_P

v_P

v_P

1L 1U  1L_mi  1U_mi  
 

Figure D.7: P-box of intact rock strength using reducing interval of mi. 
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D.3   Rock spalling around circular opening in intact rock  
 

Inputs

s.ci is aleatory and defined by a normal distribution.

 158  28 Moments to define UCS - units of MPa

3 0 Assume s3 is deterministic

s 1 s = 1 for intact rock

m.i is defined by an interval

kstress 0.3 2( ) Interval of k

v 500 0.027 13.5

Set up discretisation vectors

n 1000 Number of discretisations of each p-box

Create vector for ordinate of cumulative density

function (CDF) w ith 'n' d iscretisations

Create vector of s.ci

v_P v 0

j 0

i 0

i
j

1000


v
0

0

v
n

1

v
j

i

j 1 999for

vreturn

 v_ci   ( ) v 0

j 0

i 0

i
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n


v
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qnorm 0.0001  ( )

v
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qnorm 0.9999  ( )

v
j

qnorm i   ( )

j 1 n 1for

vreturn



Define functions to create p-box from intervals

Create p-box vector of i nterval_mi

v_intL a b ( ) v 0

i 0

j 0

i
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n


v
0

a

v
n

a 0.00001

v
j

qunif i a a 0.00001 ( )

j 1 n 1for

vreturn


v_intR a b ( ) v 0
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v
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v
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qunif i b b 0.00001 ( )

j 1 n 1for

vreturn



 



Appendix D 

- 219 - 

Define functions to calculate p-box of s.1 

Create p-box vector of interval_mi

Note: We can apply interval analysis at every probablity level to simply construct the p-box in this

analysis. T he lower and upper fracti le values for s.1 are then given by the following l imiting functions  

ci v_ci   ( )

Vector containing CDF of s.ci

v_kL v_intL kstress
0 0  

kstress
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 






Vector containing lower bound of k
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 Vector containing upper bound of k
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Figure D.8: Degenerate P-box of UCS and interval P-box of k. 
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Figure D.8: P-box FoS for spalling in intact rock. 
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D.4   Rock spalling around circular opening in fractured 
rock mass 
 

Define functions to create p-box from fuzzy numbers

The L-R fuzzy numbers are defined as detailed in Chapter 3 of this thesis, i .e. fuz = [a,b,c,d]
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Figure D.8: P-boxes of GSI and s for rock mass. 
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Create vectors of random numbers for hybrid Monte-Carlo simulation 

k 5000 Input number of i terations for Monte-Carlo simulation

bins round n  Set bins

Function to generate vector of random variables from p-boxed calculated from fuzzy distributions

v_rand v_in k n ( ) v 0

i 0

j 0

i rnd n 1( )

i round i( )

v
0

v_in
0 0  



v
k 1

v_in
n 0  



v
j

v_in
i 0  



j 0 k 1for

vreturn



Generate random variables from p-boxes derived from fuzzy distributions

GSIL v_rand vf_GSIL k n   GSIR v_rand vf_GSIL k n  

sGSI.L v_rand v_s GSI.L k n   sGSI.R v_rand v_s GSI.L k n  

ci rnorm k   ( ) Vector containing uniform random variables for UCS

Calculate Pl(s.1) Calculate Bel(s.1)

ci_GSI.L ci
2

sGSI.L








 ci_GSI.R ci
2

sGSI.R










Lower bound of p-box
FoSL

ci_GSI.L

v 3 kstress
0 1  

 1






























FoSR

ci_GSI.R

v 3 kstress
0 0  





















 Upper bound of p-box

 



Appendix D 

- 222 - 

Sort upper and lower bound results from Monte-Carlo results

 and define historgrams for plot

v_h1_GSI.L sort FoSL  v_h1_GSI.R sort FoSR 

h_1_GSI.L histogram bins FoSL   h_1_GSI.R histogram bins FoSR  

Set up numerical integration to create CDF from PDFs

produced through Monte-Carlo simulation
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Figure D.9: P-boxes of FoS for spalling in fractured rock mass from hybrid Monte-Carlo simulation.  



 

- 223 - 

Appendix E – Summary of permissions 

for third party copyright works 

The third party copyright works (including text, figures and tables) cited in this thesis are 

covered by the fair dealing exception for the purpose of criticism or review, as defined by the 

Copyright, Designs and Patents Act 1988. These third party copyright works have been 

appropriately acknowledged and referenced within the main body of this thesis. Full 

bibliographical details/citation of the title of work, its author and source are provided in the 

reference list (following Chapter 8) included in this thesis, in accordance with common 

scholarly practice.  
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