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Dass ich erkenne, was die Welt

Im Innersten zusammenhält.

Schau alle Wirkenskraft und Samen,

Und tu nicht mehr in Worten kramen.1

Goethe, Faust

There is much pleasure to be gained from useless knowledge.

Bertrand Russell

1That I may detect the inmost force / Which binds the world, and guides its course; / Its germs, productive
powers explore, / And rummage in empty words no more.



Abstract

Cold polar molecules provide unique opportunities to test fundamental physics and chemistry.

Their permanent electric dipole moments and rich internal structure arising from their vibra-

tional and rotational motion, makes them sensitive probes for new physics. These features also

make them ideal for studying ultracold chemistry, for simulating the behaviour of strongly-

interacting many-body quantum systems, and for quantum information science.

This thesis describes a number of advances in cold molecule physics. The optimum method

for producing an intense, pulsed, supersonic beam of cold CH molecules is investigated, resulting

in a beam with 3.5 × 109 ground state CH molecules per steradian per shot. The beam has a

translational temperature of 400 mK and a velocity that is tuneable between 400 and 1800 m s−1.

The lowest-lying Λ-doublet transitions of ground state CH, at 3.3 GHz and 0.7 GHz, are excep-

tionally sensitive to variations in the fine-structure constant α and the electron-to-proton mass

ratio µ. Many modern theories predict that these constants may depend on time, position, or

local matter density. Using a novel spectroscopic method, the frequencies of these microwave

transitions are measured with accuracy down to 3 Hz. By comparing to radio-astronomical obser-

vations, the hypothesis that fundamental constants may differ between the high and low density

environments of the Earth and the interstellar medium of the Milky Way is tested. These mea-

surements find no variation and set upper limits of |∆α/α| < 2.1×10−7 and |∆µ/µ| < 4.3×10−7.

The frequency of the lowest millimetre-wave transition of CH, near 533 GHz, is also measured

with an accuracy of 0.6 kHz.

The development of a novel type of trap for ground-state polar molecules is presented. Trap-

ping polar molecules is a necessary condition to cool them to ultracold temperatures of 1 µK and

below. The trap uses a high intensity microwave field in a Fabry-Pérot resonator. Experimental

and theoretical investigations are presented that explore the modes of the cavity, how to obtain

the highest possible quality factor, and how to optimally couple the microwave power into the

cavity.

Finally, a cold supersonic beam of BH molecules is developed. This molecule appears to be

particularly well-suited to direct laser cooling due to its favourable rotational structure and

Franck-Condon factors. The laser cooling concept is described, and a first spectroscopic investi-

gation of the relevant molecular structure is presented.
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6.3 Aperture Coupling a Fabry-Pérot Resonator . . . . . . . . . . . . . . . . . . . . . 184

6.4 Experimental Setup - The First Prototype . . . . . . . . . . . . . . . . . . . . . . 187

6.4.1 Cooling the Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.5 Finite-Difference Time-Domain (FDTD) Simulation of the Cavity . . . . . . . . . 196

6.6 The Final Ultra High Vacuum Version of the Microwave Trap . . . . . . . . . . . 201

6.7 Future Directions - A Superconducting Cavity . . . . . . . . . . . . . . . . . . . . 204

6.7.1 High Q Superconducting Cavities . . . . . . . . . . . . . . . . . . . . . . . 208

6.8 Trap Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.9 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7 Towards a Magneto-Optical Trap for Polar Molecules 215

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.2 A Molecular Beam of BH Molecules . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.3 Measuring the Franck-Condon Factors of the A-X Transition . . . . . . . . . . . 224

7.4 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8 Conclusions and Future Directions 228

Bibliography 230



List of Figures

2.1 Potential energy curves for the CH molecule. . . . . . . . . . . . . . . . . . . . . 49

2.2 Rotational levels of CH in the v = 0 level of the X2Π ground state in Hund’s case
(b) notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 A few of the possible rotational lines for the B2Σ−(v′ = 1) ← X2Π(v′′ = 0)
vibronic transition relevant to our experiment. . . . . . . . . . . . . . . . . . . . 53

2.4 A selection of the possible rotational lines for the A2∆(v′ = 0) ← X2Π(v′′ = 0)
vibronic transition relevant to our experiment. . . . . . . . . . . . . . . . . . . . 54

3.1 The vacuum setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 The laser system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 A sketch of the transfer cavity lock. . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Spectrum of the transfer cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 A sketch of the detection chamber and light gathering optics. . . . . . . . . . . . 70

3.6 Comparison of photon counting and current mode of a PMT. . . . . . . . . . . . 70

3.7 CH signal as a function of the probe laser intensity. . . . . . . . . . . . . . . . . . 74

3.8 A detailed view of the source chamber. . . . . . . . . . . . . . . . . . . . . . . . . 86

3.9 A sketch of the discharge assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.10 CH B-X spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.11 An exploded view of the apparatus used to test the discharge-reaction source. . . 92

3.12 Oscilloscope trace of the discharge conditions. . . . . . . . . . . . . . . . . . . . . 93

3.13 Characterisation of the discharge-reaction source. . . . . . . . . . . . . . . . . . . 95

3.14 Photodissociation channels of bromoform. . . . . . . . . . . . . . . . . . . . . . . 99

3.15 A sketch of the gas handling system. . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.16 The CH signal as a function of the excimer laser pulse energy (beam size of
4× 2 mm2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.17 Time-of-flight profiles of CH to characterise the photodissociation source. . . . . 102

3.18 FIG characterisation of three different valves. . . . . . . . . . . . . . . . . . . . . 106

3.19 The CH signal as a function of the skimmer-nozzle distance. . . . . . . . . . . . . 109

4.1 Level diagram and sensitivity coefficients of the (F2, J = 1/2) and (F1, J = 3/2)
states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2 A sketch of the experiment to measure the Λ-doublet transitions of CH . . . . . 119

4.3 Spectrum of the transmission line resonator. . . . . . . . . . . . . . . . . . . . . . 126

4.4 Sketch of the apparatus used to measure the J = 3/2 Λ-doublet transition fre-
quencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 CH signal at the detector without and with state selector . . . . . . . . . . . . . 130

4.6 Field map of the standing wave inside the transmission line resonator using the
molecules as field probes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9



4.7 Rabi oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.8 Single, long pulse measurement of the CH Λ-doublet. . . . . . . . . . . . . . . . . 133

4.9 The experimental sequence for a Ramsey experiment. . . . . . . . . . . . . . . . 134

4.10 Ramsey fringes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.11 Identifying the central fringe. Ramsey fringes for three different free evolution
times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.12 Zeeman splitting of the J = 1/2 Λ-doublet transition. . . . . . . . . . . . . . . . 137

4.13 The Stark tuning of the Λ-doublet states. . . . . . . . . . . . . . . . . . . . . . . 138

4.14 A typical time-of-flight profile from a Ramsey experiment and the velocity depen-
dent frequency shift due to the finite extent of the molecular pulse. . . . . . . . . 139

4.15 A systematic frequency shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.16 Velocity dependence of the measured frequency for the three J = 1/2 transitions. 141

4.17 A time-of-flight profile of CH in the J = 3/2 state with and without the THz
radiation applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.18 The Zeeman tuning of the (3/2+, 2) − (3/2−, 2) transition for large and small
magnetic fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.19 Measured Zeeman tuning of the J = 3/2 transitions. . . . . . . . . . . . . . . . . 146

4.20 Investigation of systematic frequency shifts due to uncontrolled magnetic fields. . 148

4.21 Stark shift of the two (J = 3/2±, F = 2) states. . . . . . . . . . . . . . . . . . . . 149

4.22 A false colour image of the giant molecular cloud W51 taken with the Spitzer
space telescope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.23 Examples of astronomical data we use to determine ∆v12. . . . . . . . . . . . . . 155

4.24 The value of ∆α/α and its error bar for each velocity component. . . . . . . . . . 157

5.1 A sketch of the experimental setup used to measure the lowest mm-wave transition
in CH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.2 Measurement of the lowest mm-wave transition frequency of CH. . . . . . . . . . 169

5.3 Measurement of the Zeeman shift of the (1/2−, 1)− (3/2+, 1) transition to control
magnetic field related frequency shifts. . . . . . . . . . . . . . . . . . . . . . . . . 169

5.4 The mm-wave transition frequency as a function of the velocity. . . . . . . . . . . 170

5.5 Comparing our measurements of the lowest mm-wave transitions in CH with the
previous best measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.1 The ultracold lithium transfer setup. . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2 Theoretical reflected power of the microwave cavity as a function of the microwave
frequency for different coupling hole radii . . . . . . . . . . . . . . . . . . . . . . 187

6.3 Theoretical quality factor and coupling as a function of the size of the coupling
aperture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.4 A sketch of our first prototype cavity. . . . . . . . . . . . . . . . . . . . . . . . . 189

6.5 Transmission spectrum of a very weakly coupled cavity. . . . . . . . . . . . . . . 190

6.6 Wide frequency spectrum of an undercoupled cavity. . . . . . . . . . . . . . . . . 190

6.7 Measured fractional reflected power for an undercoupled cavity. . . . . . . . . . . 192

6.8 Measured reflected power and quality factor as a function of the size of the coupling
aperture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.9 Theoretical dependence of the conductivity of the bulk material as a function of
the temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.10 A sketch of the setup we used to measure the quality factor and coupling as a
function of the temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



6.11 Cooling the cavity mirrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.12 Actual model used for the FDTD simulations of the microwave cavity. . . . . . . 198

6.13 Simulated reflected power and quality factor as a function of the coupling aperture
radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.14 Simulated optimum aperture radius. . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.15 A contour plot of the electric field in the centre of the cavity. . . . . . . . . . . . 200

6.16 Logarithmic contour plot of the electric field in the centre of the cavity for two
aperture sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.17 Simulated normalised electric field magnitude across the centre of the cavity. . . 202

6.18 Photograph of the high precision cavity. . . . . . . . . . . . . . . . . . . . . . . . 202

6.19 Scale drawing of the UHV microwave cavity. . . . . . . . . . . . . . . . . . . . . . 205

6.20 An exploded view of the microwave trap assembly. . . . . . . . . . . . . . . . . . 206

7.1 The potential energy curves of the BH molecule. . . . . . . . . . . . . . . . . . . 218

7.2 The laser cooling scheme for BH. . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.3 Level diagrams of the BH molecule. . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.4 Measured optical spectrum of the BH molecule. . . . . . . . . . . . . . . . . . . . 223

7.5 Measured mm-wave spectrum of BH. . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.6 The setup we use to measure the Franck-Condon factors of the A1Π → X1Σ+

transition in BH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225



List of Tables

2.1 The molecular g-factors for the J = 3/2 and J = 5/2 states of CH . . . . . . . . 58

4.1 The error budget for the J = 1/2 measurements. . . . . . . . . . . . . . . . . . . 142

4.2 The measured J = 1/2 Λ-doublet frequencies with 1σ uncertainties. . . . . . . . 143

4.3 Error budget for the J = 3/2 measurements. . . . . . . . . . . . . . . . . . . . . . 151

4.4 The measured J = 3/2 Λ-doublet transition frequencies with their 1σ uncertainties.152

4.5 The sensitivity constants of the CH transitions, the current best lab frequencies
fl and the nominal frequencies fn used by the astronomers. . . . . . . . . . . . . 155

4.6 The sensitivity coefficients for the OH transitions, the current best lab frequencies
fl and the nominal frequencies fn used by the astronomers . . . . . . . . . . . . 156

4.7 Analysis of the astronomical data. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.8 Extra galactic sources for radio- and microwave spectra of molecules. . . . . . . . 160

5.1 The measured frequencies of the lowest mm-wave transition frequencies. . . . . . 170

12



Chapter 1

Introduction

If this nonsense of Bohr should in the end prove to be right, we will quit physics!

Otto Stern and Max von Laue

The study of matter at the level of fundamental particles has revolutionised our understanding

of the building blocks of nature and their interactions. In particular, the development of the

quantum atom in the early years of the last century has opened a completely new chapter

in the history of physics. It has not only changed the way we describe matter at the most

fundamental level, but also poses serious philosophical implications. Furthermore, quantum

theory is important to understand the stability of atoms and it describes how atoms bond to

form molecules. Modern technologies such as the laser, the transistor and magnetic resonance

imaging are directly related to the development of quantum theory. Efforts are even under way

to develop cryptography schemes based on quantum effects and computers that can perform

certain tasks exponentially faster than current, classical computers.

Modern quantum theories, developed mainly between the 1930s and 1970s, are so successful

that we can now describe three of the fundamental forces and nearly all the fundamental particles

within one theoretical framework - the Standard Model of particle physics. The heart of the

Standard Model are quantum field theories which are among the most stringently tested theories

in physics and have reached accuracies the early pioneers of quantum physics might not even

have dreamt of. However, even the Standard Model has its limits: it can not explain gravity,

why the particles have the masses they have and why the coupling constants that govern their

interactions have the values we measure. Another intriguing question the Standard Model can

not answer is why there is so much more matter than antimatter in the universe. And finally, it

has recently been discovered that most of the universe consists of some peculiar form of matter,

dark matter and dark energy that the Standard Model in its current form, does not describe.

The precise study of atoms and molecules in the gas phase continues to provide insight into

possible new physics, and one of the main tools for this study is the atomic/molecular beam. In

13



Introduction 14

such a beam most unwanted effects such as collisions of atmospheric particles with the species

under investigation can be prevented. This allows to reach unprecedented accuracies and to

isolate and study quantum effects that are inaccessible otherwise. A specific branch of beam

physics, the manipulation of atomic beams with laser light has reached such a high level of

precision that it led to the redefinition of the SI second by using a beam of caesium atoms and

later to the realisation of a new state of matter at extremely low temperatures - the Bose-Einstein

condensate.

By the end of the 1990s new technologies emerged to control the motion of molecules. This

stimulated interest in the possibility of controlling molecules to the same degree as already

obtained for atoms, and then to harvest the new possibilities that arise from the complex internal

structure of molecules. A quest to cool molecules to ever lower temperatures began.

1.1 Overview

This thesis describes several new developments in the field of cold molecules. I first describe the

production of an intense and cold beam of CH molecules. I then describe how I use this beam to

measure microwave and mm-wave transitions in the CH molecule with unprecedented accuracy.

These transitions are sensitive to a possible variation in the fundamental constants, and I use

my measurements to set limits on their possible variation. I go on to present a new kind of trap

that uses a microwave field to confine molecules. Finally, I discuss the possibility of laser cooling

a specific molecule - BH - and present the first steps in this direction.

Chapter 2 gives a brief theoretical description of the CH molecule which is necessary to un-

derstand the subsequent experiments. The characterisation and performance of each molecular

beam source we built is presented in chapter 3. This chapter also presents a careful calibration

of the detector, which allowed us to accurately determine the flux and density of the molecules

we produced.

In chapter 4 and 5 I present the measurements of microwave and mm-wave transition fre-

quencies in CH. By comparing the laboratory measurements with astrophysical measurements I

set upper limits on the variation of the fine-structure constant, and the electron-to-proton mass

ratio.

Chapter 6 presents the work done to build a suitable trap for ground-state molecules which

will allow further cooling, either sympathetically or through forced evaporation. The first proto-

type of such a trap which is based on high-power microwave radiation is described and carefully

characterised.

Some specific molecules have an internal structure that makes them amenable to laser cooling.

The BH molecule appears to be a very promising candidate. Its simple structure facilitates

the direct laser cooling considerably. A magneto-optical trap to cool the molecules to very low
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temperatures and maybe even to quantum degeneracy straight from a molecular beam may be

feasible using this molecule. The first experiments, i.e. the creation of a the molecular beam of

BH molecules and initial spectroscopy experiments are presented in chapter 7.

Before the individual experiments are described, the motivation for our research on polar

molecules will be described in more detail. The recent development in the field of ultracold mat-

ter science is intimately linked to the development of the atomic and molecular beam. A brief

outline of this history is given followed by a more detailed discussion of the potential applications

of cold and ultracold molecules.

1.2 The Atomic and Molecular Beam

This section gives a historical account of the development and applications of atomic and molec-

ular beams. It is not essential for an understanding of the rest of the thesis, and so can be

skipped if desired. However, the interested reader will find a comprehensive summary of the

historical milestones that influenced the development of our modern physical world view, with

particular emphasis on the role of the atomic theory and the nature of heat. In my view the

understanding of the historical development of a field of research is as important as learning

the relevant theoretical and experimental skills. It highlights the dynamics that led to a specific

scientific breakthrough which helps to put modern developments into a wider context.

1.2.1 Motion is Heat

With thermodynamics, one can calculate almost everything crudely; with kinetic theory, one

can calculate fewer things, but more accurately; and with statistical mechanics, one can

calculate almost nothing exactly.

Eugene Paul Wigner

In 1738 the Swiss mathematician Daniel Bernoulli argues in Hydrodynamica that “elastic fluids”,

like air, consist of a large number of “very minute corpuscles, which are driven hither and thither

with a very rapid motion” [1]. He further assumes that if such an elastic fluid is contained in

a cylinder an increase in temperature by heating will result in a “more intense motion in the

particles of air” [1].1 He then uses Leibniz’s concept of “vis viva”, an early expression for en-

ergy, and Newton’s second law to infer that a more intense motion of the particles results in an

1The concept of elasticity of air goes back to Robert Boyle who stated in his woollen fleece theory of 1660,
that air behaved like the wool in a fleece, whose rolled and springy hairs easily yielded to external pressure, and
recovered when the pressure was released. In 1662 he used this concept in the appendix to the second edition of
his “New Experiments Physico-Mechanical Touching the Spring of the Air [...]” to find his famous law relating
pressure and volume. He also put forward the idea of Rene Descartes that “the Air is nothing but a Congeries or
heap of small Particles”.
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increase in pressure onto the container walls.2 Thus, Bernoulli was able to derive Boyle’s law

by assuming that tiny particles move in a “rectilinear” way and can be interrupted by collisions

with other particles and with the walls of a containing vessel [2].

Bernoulli’s theory was almost entirely ignored. It was just one among many other theories of

gases. The most significant one was introduced by Isaac Newton in Book II of the Principia. He

explains the pressure of air by repulsive and attractive forces between particles and its expan-

sion with temperature by vibrations of the particles. This theory explained everything that was

required of it at that time, so there was simply no necessity for other theories. Antoine Lavoisier

took Newton’s idea further and proposed a fluid he called caloric as the substance of heat. He

thought of this substance to be composed of Newton’s particles that repel each other and are

attracted to ordinary matter. In his perception the fluid flows from cold to hot and the quantity

of this substance is constant throughout the universe.

Although we know now that this is conceptually wrong it provided many successful explana-

tions. It was so successful in explaining physical and chemical phenomena that the early kinetic

theory of Bernoulli slowly disappeared from the scientific stage. The early 18th century brought

new hope through novel experiments conducted by talented scientists. In 1787 Jacques Charles

and later in 1802 Joseph Louis Gay-Lussac found that the volume of a gas at constant pressure is

proportional to its temperature. Joseph Louis Proust and John Dalton who independently stud-

ied the same phenomena reintroduce atoms to explain why elements always combine in ratios of

small whole numbers.3 Dalton is the first to assign a characteristic weight to what he called the

“ultimate particles of several gases”. So for him “an atom of water or steam [is] composed of

one atom of [the element] oxygen and one atom [of the element] hydrogen, retained in physical

contact by a strong affinity”. In the same year Dalton published his first part of A New System

of Chemical Philosophy [3].4

Gay-Lussac discovered that there are simple volumetric ratios for reactions between gases.

For example, two volumes of Hydrogen combined with one volume of Oxygen yield 2 volumes of

gaseous water [4]. Dalton rejected Gay-Lussac’s results by criticising his measurement accuracy

among other things. He was convinced of Newton’s conception that the atoms were composed

of a small centre which is surrounded by a large atmosphere of caloric. In his opinion a gas is

composed of static, contiguous particles the size of which is related to their volume. This idea,

however, was difficult to reconcile with Gay-Lussac’s simple volume ratios.

In 1811, Amedeo Avogadro tried to solve this conflict by assuming that “the number of in-

tegral molecules5 contained in a given volume is always the same for equal volumes” [5]. Thus,

he abandons the idea that a gas consists of large, static particles in favour of a dynamic view

2Actually, Boyle proposed this idea already, but only mentions in a sentence that one could explain the increase
in pressure that way. Bernoulli, however, describes it quantitatively.

3Robert Boyle was the first to show that there are more than the four classical elements, but it was Antoine
Lavoisier who published an extensive list of fundamental elements that could not be broken down further.

4Various parts and ideas of this manuscript were published earlier already. In 1803 he gave a brief outline of
his ideas regarding heat and chemical combinations in a course of lectures at the Royal Institution in London.

5He distinguished between molecules elementaires, atoms, and molecules integrantes, molecules.
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in which the particles are not in contact and are quite small compared to the distance between

them. Dalton and the majority of chemists and physicists, however, did not believe that either.

If one volume of oxygen reacts with two volumes of hydrogen to produce two volumes of water,

Avogadro’s hypothesis would suggest that each water molecule possesses only half an oxygen

atom. Widespread reluctance that two atoms of the same element could form diatomic molecules

delayed a further development of Avogadro’s hypothesis for over thirty years.

John Herapath is another unsung hero of the kinetic theory of gases. Over the course of the

second decade of the 19th century he was “amusing [himself] with calculating some of the lu-

nar equations from theory” [6]. While doing so he found a slight discrepancy between Newton’s

theory of gravity and astronomical observations. In order to resolve this problem he turned to

explain the actual cause of gravity. Herapath concluded that the medium mediating gravity

could be “of the same nature as our atmosphere and other gaseous bodies” [6]. Thus, he tried

to explain gravity through density changes of the atmosphere between the very hot sun and the

colder earth and started to investigate the actual cause of heat. Although he “wished to persuade

[himself] that the discovery was altogether beyond the reach of human ability”, he continued:

“Thus between hope and despair, between unceasing attempts and mortifying failures, I con-

tinued until March 1814, at which time my ideas of heat underwent a complete revolution” [6].

He started with the widely accepted idea that heat is the effect of an elastic fluid, but through

careful investigations he came to the conclusion that this was the wrong picture. A much more

simple picture in his view was that gases were made up of particles, or atoms mutually, imping-

ing on one another and the sides of the vessel containing the gas. This allows to explain heat

by “rapid intestine motion”. He submitted his paper to the Transactions of the Royal Society

where it was rejected by Sir Humphry Davy. After nine months during which he experienced

“[...] an unlooked-for, and I might almost venture to say, illiberal opposition” he was forced to

publish in the Annals of Philosophy [6].

In contrast to Bernoulli, Herapath took momentum as the measure of temperature rather than

the square of the velocity. Thus he was the first to account for Dalton’s discovery that atoms

of different gases have different weights, although in a wrong way. Herapath continued his work

on the kinetic theory, but was ignored by most scientists.

John James Waterston has undergone an even worse fate than Herapath, as he invented the

kinetic theory for the third time but this time the right way.6 Waterston correctly identified

that the gas pressure is a function of the number of molecules per unit volume, the molecular

mass and their mean square velocity. He applied this idea to explain temperature and derived

the ideal gas law. Like Herapath he sent his paper to the Royal Society. Since Waterston was

not a Fellow of the Royal Society his paper could only be read in front of the society and it then

became the property of the Society and would not be returned to the author even if it were not

published. Baden Powell, Professor at Oxford, replied after reading it, that the principle that

6It is unlikely that Waterston knew of Herapath’s or Bernoulli’s work when he developed his theory as Lord
Rayleigh points out in the introduction to the publication of the paper in the Philosophical Transactions.
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the pressure of a gas is due to the impacts of the molecules onto its containing vessel, was “very

difficult to admit, and by no means a satisfactory basis for a mathematical theory” [7]. The other

referee, Sir John William Lubbock, first Vice Chancellor of the University of London at the time

wrote: “the paper is nothing but nonsense, unfit even for reading before the Society” [7]. At

this stage the president, Davy, usually informed the author that it would not be published, but

only read in front of the Society. Waterston, however, was working for the East India Com-

pany in Bombay at that time and thus did not submit the paper personally. A friend of his,

who submitted the paper agreed that it should be read in front of the Society, apparently not

knowing the consequences. An abstract was published in the Proceedings of the Royal Society

and the paper disappeared in the archives. It stayed there and remained unknown until 18927,

when Lord Rayleigh discovered and published it in the Philosophical Transactions noting that it

“marks an immense advance in the direction of the now generally received theory. The omission

to publish it at the time was a misfortune, which probably retarded the development of the

subject by ten or fifteen years” [7]. After Bernoulli, Herapath and Waterston, it was a German

chemist, Karl Krönig, who invented the kinetic theory for the fourth time.8 This time with more

luck. James Joule, Julius Robert Mayer and Hermann von Helmholtz have established heat as

a form of energy and introduced the concept of energy conservation.

Krönig’s publication provided the occasion for Rudolf Clausius to publish his independently

developed kinetic theory in 1857. This marks the beginning of the modern kinetic theory. Clau-

sius formulated the second law of thermodynamics, introduced the term entropy and the concept

of mean free path and postulates the virial theorem. He thus was the first to relate the macro-

scopic world of thermodynamics to properties of atoms.

Stimulated by Clausius’ paper, James Clerk Maxwell embarked on an “exercise on mechanics”

to “deduce the laws of motion of systems of particles acting on each other only by impact”. In

this exercise he found (independently of Ludwig Boltzmann) that the molecular velocities are

distributed and thus laid the foundations for modern statistical mechanics [8]. He related the

mean free path to gas properties such as viscosity and even conducted experiments to test his

prediction that the viscosity of a gas is independent of its density.

It was Ludwig Boltzmann, however, who took the kinetic theory to a whole different level. He

studied in Vienna with Josef Stefan and Joseph Loschmidt. Stefan investigated experimentally

the thermal radiation of a blackbody and Loschmidt gave the first reliable estimate of the size

of molecules using the theory developed by Clausius and Maxwell. This allowed him to calcu-

late the number of gas molecules per volume for the first time. Boltzmann named this number

Loschmidt’s number which is approximately equal to what is now known as Avogadro’s constant.

Boltzmann was able to generalise Maxwell’s velocity distribution to arbitrary gases and gas

mixtures which could even be under the influence of external forces. He further related the

7Eleven years after Waterston mysteriously vanished during his morning outing and was declared dead.
8An abstract of Waterston’s presentation at the British Association for the Advancement of Science in 1851

appeared in “Die Fortschritte der Physik”. Krönig was the editor of that journal at that time. Krönig thus might
have been influenced by Waterston.
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thermodynamic quantity entropy to the statistical distribution of molecular configurations and

showed that the increase in entropy of an ideal gas is an irreversible process.

Loschmidt immediately pointed out that a theory which is based on Newtonian mechanics

cannot predict irreversibility, since every single collision is reversible. This reversibility paradox

and the fact that the theory predicts a wrong value for the specific heat of gases which are

composed of diatomic molecules were treated as serious problems of the atomistic-mechanical

viewpoint in general.

This triggered a fierce scientific debate about the reality of atoms. Ostwald wanted to replace

atomic theories by “Energetics”, a kind of generalized thermodynamics. For the positivist Mach,

knowledge could only be gained from experience and logical analysis. Since one cannot observe

small things such as atoms he insisted that atoms were not considered to have a real existence,

although he recognized that it is a useful hypothesis for science. Boltzmann was a bit more

pragmatic. In his opinion the atomic view yielded an analogy, a picture or model of reality

which is useful to understand the behaviour of gases. Nothing more or less.

He further argued that the reversibility problem can be solved if entropy is conceived as a

measure of the probability of a state. The most likely state, the state with the highest entropy,

is thermal equilibrium. Hence, it is possible that entropy decreases, but it is extremely unlikely.

However, it is these fluctuations of entropy which certainly occur if one waits long enough that

led Ernst Zermelo, a student of Max Planck, and Henri Poincaré to refute the kinetic theory and

any theory that is based on the assumption that matter is composed of particles moving with

the laws of mechanics.

Boltzmann also showed great interest in Maxwell’s electrodynamic theory. He derived the

empirical law obtained by Josef Stefan, which accounted for the total intensity of the radiation

emitted by a heated blackbody using a connection between radiation and the second law of

thermodynamics.

Wilhelm Wien picked up on this idea and developed it further to describe the dependence of

the energy distribution of heat radiation on temperature, now known as Wien’s displacement

law. Wien, however, could only restrict the distribution itself to a certain class that would trans-

form correctly under his law and other thermodynamic assumptions. He developed this theory

from statistical methods and thermodynamic arguments only and it agreed well with Friedrich

Paschen’s empirical law.

Max Planck tried to derive Wien’s law without any of the assumptions Wien had to make. Up

to that point Planck mainly worked on thermodynamics and its application to physical chemistry

and was quite sceptical about the utility of the atomic-kinetic theory and Boltzmann’s statistical

approach. Opposing Boltzmann, he wanted to deduce the principle of irreversibility rather from

electromagnetic theory than from molecular models in a kinetic theory of gases. He considered

an idealized system of oscillators (resonators) which absorb and emit electromagnetic waves. He

later revoked his scepticism and stressed that Boltzmann’s statistical interpretation of entropy

is the key to the understanding of the quantum theory of radiation. Planck realised that Wien’s
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law corresponds to a very simple formula for entropy and that it was perfectly consistent with

the second law of thermodynamics. So he identified what he called electromagnetic entropy,

with the thermodynamic entropy and derived from it Wien’s law of blackbody radiation.

Planck analysed the relation between energy and entropy of a radiating blackbody to derive

Wien’s law in a more systematic way directly from the second law of thermodynamics. In the

same session of a meeting of the German Physical Society in 1900, as Planck presented the new

derivation of Wien’s law, Lummer and Pringsheim showed that this very law breaks down at high

temperatures and low frequencies. Rubens and Kurlbaum performed new experiments at very

long wavelengths and informed Planck that the intensity of the radiation increases proportionally

to the temperature, in agreement with Lord Rayleigh’s formula. Planck took this as an occasion

to study the theoretical implications of these experimental results using his entropy approach.

He then proposed an empirical interpolation between his earlier results which would reduce to

Lord Rayleigh’s formula in the limit of long wavelengths. This formula, now known as Planck’s

law of radiation, successfully described the experimental data. The theoretical derivation of this

empirical law, however, still remained unclear. Although Planck initially showed a very indiffer-

ent attitude towards the atomistic theory and probabilistic interpretation of entropy, developed

by Boltzmann, he recognised the similarity between his concept of irreversibility through radia-

tion and Boltzmann’s molecular chaos. Hence he started to search for a physical interpretation

of his radiation formula using Boltzmann’s statistical theory of molecular gases. And indeed

he discovered a similar expression for his equilibrium entropy of blackbody radiation in one of

Boltzmann’s early papers. In this paper Boltzmann calculates the combinatorial arrangements

of atoms the energies of which are proportional to a basic quantum. Boltzmann would at the

end of his calculation take the limit of an infinitesimally small quantum. Planck, however, re-

alised that if he calculated the combinatorial arrangement of a certain number of oscillators

among which the total amount of energy is distributed in integral multiples of a basic quantum,

he arrives, after using Boltzmann’s formula for entropy, exactly at the desired expression for

the equilibrium entropy he discovered earlier by empirical interpolation. He thus could derive

his radiation law by assuming that the given amount of energy is not infinitely divisible but is

rather composed of a completely definite number of finite, equal parts, distributed among the

resonators according to Boltzmann’s formula. Planck presented these results at a meeting of the

German Physical Society in Berlin on 14 December 1900 which, as Arnold Sommerfeld would

later call it, marks the birthday of quantum theory.

Although the success of the kinetic theory and especially the statistical concepts introduced

by Maxwell, Boltzmann and later also by Gibbs led to wide acceptance of the theory under

scientists, direct evidence for the molecular structure of matter was still missing. Atoms and

molecules were still widely considered as purely hypothetical constructs, although evidence was

growing from a different field of research: cathode rays. In 1864 Heinrich Geissler used his newly

invented mercury displacement pump to evacuate glass tubes to unprecedented levels. After

solving the problem of how to get an electrode into such a tube he could demonstrate the first
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glow discharge. William Crookes managed to evacuate tubes based on Geissler’s design to even

lower pressure using improved vacuum pumps. He noticed that as he lowered the pressure the

glowing disappeared and the glass walls behind the anode started to fluoresce. In 1876 Eugen

Goldstein proved that these were rays originating from the cathode, and thus called them cath-

ode rays.

Heinrich Hertz discovered that thin metal leaves transmit cathode rays and showed it to his

assistant Philipp von Lenard. Hertz suggested that this could be very useful to use as a window

to separate two chambers of different pressures in order to study these rays in more detail and

to decide if these rays were a “kind of undulatory motion in the ether” or consist of negatively

charged particles ejected by the cathode. Lenard, however, was more interested to see what effect

these rays had on air of normal density. He separated a discharge tube from a tube filled with

air with thin aluminium foil and could indeed show that cathode rays would pass through air of

normal density, however only up to a few centimeters. He argued that since light passes through

air, the molecules that make up air must be much smaller than the wavelength. However, since

the cathode rays are hindered by each of these air molecules, he concluded that these rays must

be extremely fine. He further suggested that one could use cathode rays to find out more about

atoms and molecules. He showed that the energy of rays produced by irradiating metals with

ultraviolet light9 depends on the wavelength of the light and not on its intensity.

Whereas Lenard was convinced that he discovered electricity itself, so electrical charge without

charged bodies, or “unknown parts of the ether” [9], John J. Thomson believed that cathode

rays were made up by tiny corpuscles with a “mass much smaller than any atom of any known

element” [9]. Thomson measured the charge to mass ratio and found that it does not depend on

the material of the electrode or the gas he used. Thus these particles must be of “very general

occurrence” [10]. So evidence for the reality of atoms with a definite mass and size was piling

up. Einstein became interested in the foundations of the kinetic theory in order to find “facts

which would guarantee as much as possible the existence of atoms of finite size” [11]. Einstein,

in complete ignorance of Gibbs’ and most of Boltzmann’s work, rediscovered all the essential

features of statistical mechanics in 1902 in order to derive a law for blackbody radiation directly

from kinetic theory [12]. He pointed out that Planck did not give a proper interpretation of his

newly introduced universal constant and that his derivation was not consistent with Maxwell’s

electrodynamic theory.

Einstein assumed that “monochromatic radiation of low density [...] behaves, in a thermody-

namic sense, as if it consisted of mutually independent radiation quanta [...]” [13]. Using this

hypothesis he could elucidate three unexplained phenomena: fluorescence, the photoelectric ef-

fect and the ionization of gases by ultraviolet light. While working on his statistical mechanics

Einstein wanted to prove that, “according to atomistic theory, there would have to be a move-

ment of suspended microscopic particles open to observation [...] [13].”

It is quite remarkable that he arrived at these results ignorant of anything done on the subject

9An effect first described by Heinrich Hertz in 1887.



Introduction 22

already. Just during the final stages of his theory that describes the motion of these microscopic

particles he became aware that Brown had observed this motion nearly 80 years earlier and that

there were numerous earlier attempts to describe it. Einstein embarked on this journey through

statistical physics with the aim to find facts that would prove the reality of atoms and molecules.

He was convinced that he found a suitable test that would decide this fundamental question.

Max Born would later write that Einstein’s theory “did more than any other work to convince

physicists of the reality of atoms and molecules, of the kinetic theory of heat and of the funda-

mental part of probability in the natural laws” [12]. Motivated by his earlier work on cathode

rays and X-rays, Jean Baptiste Perrin, became interested in the kinetic theory of gases and thus

stumbled across Einstein’s explanation of Brownian motion. In 1908 he showed experimentally

that small soap like particles, gamboge, suspended in water, obeyed the laws predicted by Ein-

stein’s theory which is based on the kinetic theory. He was able to calculate the size of a water

molecule and thus Avogadro’s number which was consistent with values obtained by completely

different methods. In this way the discrete nature of matter was proved beyond doubt and he

was awarded the Nobel prize in physics, although nearly twenty years later. This finally con-

vinced most scientists of the physical reality of atoms and molecules.

The very fundamental assumption of the kinetic theory that atoms and molecules move in

straight lines was demonstrated three years later by a student and assistant of Perrin, Louis

Dunoyer. He used a glass tube and divided it into three sections by using small apertures. He

filled sodium metal into the first part and evacuated the tube. He then heated the metal so

that it evaporates and condensed the sodium vapour on the other end of the tube by cooling

the wall with liquid air. He could show that the shape of the sodium deposit is consistent with

the fact that atoms and molecules move in straight lines like rays of light. Therefore, he called

such a beam a molecular ray or molecular beam. This can not only be seen as the birth of the

molecular beam method but also of the thin film deposition technique. Subsequent experiments

on fluorescence of a beam of sodium atoms helped to establish the new technique and stimulated

the interest of other scientists.

1.2.2 Otto Stern - Of Spatial Quantisation and Bad Cigars

Otto Stern received his PhD in 1912 in physical chemistry for his work on the kinetic theory

of osmotic pressure in concentrated solutions, e.g. soda water, and joined Albert Einstein as

an assistant in Prague. He followed him to ETH in Zurich a year after where they started to

work on the problem of zero point energy. Under Einstein’s influence Stern became interested

in statistical physics, the nature of atoms and light quanta. He thus became acquainted with

the early stages of quantum theory and Bohr’s model of the atom. He met and became friends

with Max von Laue who recently discovered that X-rays are diffracted from crystals. They were
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later quoted by Wolfgang Pauli saying that “if this nonsense of Bohr should prove to be right in

the end, we will quit physics” [14]. Stern then followed his friend Max von Laue to Frankfurt in

1914 where he was appointed Privatdozent in theoretical physics. During the first world war he

had been engaged in military research in Belgium, Poland and later in Berlin where he joined

the experimentalists James Franck and Max Volmer in Walther Nernst’s laboratory. After the

war had ended Stern went back to Frankfurt. Inspired by the experience in Nernst’s laboratory

and the pioneering work of Dunoyer he considered to conduct his own experiments to measure

properties of single atoms and molecules. As Max von Laue left Frankfurt for Berlin, Max Born

was appointed professor in Frankfurt and became Stern’s boss. As Born recalled later, they were

both not “very good with [their] hands” [14], so they relied on Adolf Schmidt their mechanic to

do the experimental work while they told him what to do. Stern’s first attempt was motivated

by the kinetic theory. In particular, he wanted to measure the velocity distribution of a beam

of silver atoms. He did so by mounting his atomic beam machine on a rotating platform which

he could spin up to 2400 rotations per minute. By detecting the centrifugal displacement of the

beam he could deduce the mean velocity of the atoms and confirm the theoretical predictions of

Maxwell and Boltzmann. Stern could not measure the whole distribution due to experimental

difficulties and thus decided to try something else.

It was known from spectroscopic experiments that atoms behaved like small magnets. Depend-

ing on the orientation of these magnets in an external field the spectral lines of atoms would split

into components. This was shown experimentally already in 1896 by Pieter Zeeman. Joseph

Larmor found a classical, theoretical description a year later, assuming rotating electrons. How

these electrons could be confined to circular orbits around a heavy nucleus without losing energy

by radiation remained unsolved until Niels Bohr proposed his atomic model of discrete, station-

ary electron orbits. Owen Richardson and later Einstein and De-Haas could prove the existence

of these “molecular currents” by measuring the mechanical rotation induced in a ferromagnetic

material.

In 1916 Arnold Sommerfeld and Peter Debye independently tried to amend Bohr’s atomic

model in order to account for the Zeeman effect. They proposed that Bohr’s electron orbits

not only possess discrete sizes and shapes, but that the orbital planes could only have certain,

discrete spatial directions with respect to an externally applied field. This idea amounted to

postulating that the magnetic moment associated with the orbiting electrons could only take

certain discrete orientations in an external field, contrary to the classical, continuous case.

In contrast to his contemporaries Otto Stern took this idea literally, in the sense that one could

use it to prove that the whole concept of Bohr’s model was flawed. So his plan was to design an

experiment to decide if the classical or the quantum interpretation was correct. Max Born and

even Debye thought of this “spatial quantization” rather as a kind of symbolic expression for

something they did not understand. Born even tried to persuade Stern that there was no sense

to look for such an effect using his atomic beam machine. But Stern remained stubborn and
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conceived an experiment to subject an atomic beam of silver atoms to an inhomogeneous mag-

netic field. If the classical description was right then one should only observe a broadening of the

beam, since the classical magnets would only precess but remain randomly oriented. If, on the

other hand, the quantum description was right then the beam should split into two components,

corresponding to the two directions of the magnetic moment allowed by the quantization condi-

tion. Stern immediately ran into experimental challenges, regarding his beam machine. Luckily,

in 1920, a very talented young man joined the experimental institute in Frankfurt, Walther Ger-

lach. As Gerlach would recall later, Born was very happy about having him around: “Thank

God, now we have someone who knows how to do experiments.” Gerlach had already made first

attempts on molecular beams as an assistant to Friedrich Paschen in Tübingen, where he had

set up Dunoyer’s sodium machine for spectroscopic purposes and magnetic studies of bismuth.

The experiment proved to be incredibly difficult. They used an oven in vacuum which they

had to heat to 1000 ◦C and collimated the beam using two slits only 30 µm wide. Thus a mis-

alignment of the two slits or the magnet by less than 10 µm could spoil an experimental run

which took hours of operation. Due to the small collimation slits the deposited silver film was

very thin. First they could not see it, but as Dudley Herschbach and Norman Ramsey recalled

later, Stern smoked bad cigars which contained a considerable amount of sulphur. While staring

at the plate Stern’s sulphurous breath turned the silver into silver sulphide, which is black and

easily visible [14, 15]. Stern became Professor in Rostock in 1921 and thus Gerlach had to finish

the experiment by himself. After further refinements he could unambiguously show a splitting of

the beam into two parts in February 1922. He immediately sent a telegram to Stern, which read

“Bohr is right after all!” [14]. This agreement with what is now known as the “old” quantum

theory of Bohr and Sommerfeld was a lucky coincidence since it is actually not the quantised

orbital angular momentum that causes the magnetic moment of the silver atoms but rather the

magnetic moment of the electron itself, caused by its spin angular momentum. This internal

angular momentum of the electron was not discovered until three years later when George Uh-

lenbeck and Samuel Goudsmit proposed the concept of spin in order to solve the decade long

struggle to explain the anomalous Zeeman effect10. After Uhlenbeck and Goudsmit sent their

paper to Die Naturwissenschaften they became aware of the fact that Pauli and Lorentz had

thought about the same problem but rejected the idea because they were frightened of the in-

compatibility of a spinning electron with special relativity. Worried about the publication, their

mentor Paul Ehrenfest consoled them with: “You are both young enough to afford a stupid-

ity like that” [12]. As it turned out later, Lorentz and Pauli were wrong as Llewellyn Thomas

showed that a spinning electron actually does not violate special relativity. Ralph Kronig, an

assistant of Landé, working at Columbia University had conceived the concept of spin a few

months earlier, but Pauli had frightened him when he presented the idea in Tübingen and he

subsequently refrained from publishing it.

10It was found that for the majority of atoms under the influence of a magnetic field, the spectral lines would
split into an even number, which could not be accounted for by the Bohr-Sommerfeld or classical model.
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Stern stayed in Rostock for two years only and moved to Hamburg in 1923 to become professor

of physical chemistry and director of the newly founded Institute for Physical Chemistry at the

University of Hamburg. He set up a world renowned research group which helped to establish the

atomic/molecular beam method as an essential tool for atomic, molecular and nuclear physics.

After this great initial success he immediately came up with a hugely ambitious research plan

which contained eight major research goals. Among others he wanted to use the molecular beam

method to measure nuclear magnetic moments, to determine the recoil of photons and confirm

Louis de Broglie’s wave-particle duality. Hence he immediately started to improve every single

aspect of the molecular beam machine. He developed novel, more intense molecular sources, ve-

locity selectors and more efficient detectors, based on hot tungsten wires. With these and other

measures Stern wanted to improve the angular resolution of his experiments by a factor of 105

which should make it possible to detect scattering of molecular beams from gases and surfaces to

measure van der Waals forces. Stern’s reputation attracted many, very talented young research

fellows from all over the world. Among them were Isidor Rabi and Emilio Segrè who would later

become leading figures as well. But it was also the close relation to the theoretical institute

which fostered an especially stimulating and creative atmosphere. Among the theorists working

in Hamburg at that time were Wolfgang Pauli, Ernst Ising, Walter Gordon, Wilhelm Lenz, Pas-

cual Jordan and Hans Jensen. Stern was the first to diffract helium and hydrogen molecules to

confirm the “dual nature of rays of matter”. Thus, in addition to the experiment of Davisson

and Germer with electrons, he could show that de Broglie’s hypothesis is also true for composite

particles such as atoms and molecules. Subsequently, matter wave interferometry with electrons

was picked up again in the 1950s, with neutrons in the 1960s, and with atoms in the late 1960s.

With the advent of nanofabrication, the diffraction from material gratings became feasible in

the late 1980s. In 1999 even the diffraction of heavy, complex molecules such as Fullerenes from

a material grating could be demonstrated [16]. The interference of de Broglie waves has since

become a rich branch of atomic physics with many applications in modern science. One can even

envision many practical applications, such as the construction of highly sensitive, miniaturized

gravitational detectors, frequency standards or accelerometers based on such matter waves [17].

Knauer, one of Stern’s assistants, succeeded in measuring the differential cross sections for

scattering of He, H2, O2, H2O molecules from each other. This would later be picked up again

in the 1960s and lead to the Nobel prizes for Dudley Herschbach, Yuan Lee and John Polanyi

for their studies on molecular collisions and reaction dynamics which is still an active field of

research today in physical chemistry.

Otto Frisch, another assistant, was able to detect the recoil of a sodium beam upon absorption

of a resonant photon. This work was picked up again in the late 1960s and early 1970s when

better light sources, especially lasers, became commonly available. This work would lead to the

development of powerful methods for cooling, trapping and manipulating of neutral atoms with

laser light. This led to dramatic achievements and to an explosion of the field of atomic physics.
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Most importantly for the further development of the molecular beam method were Stern’s at-

tempts to measure the magnetic moment of the proton. Pauli and other theorists told him that

there was no point in measuring it since it should just be inversely proportional to the masses

of the particles times the magnetic moment of the electron. Nevertheless, Stern measured it the

theorists were wrong, and Stern’s measurement pointed to an internal structure of the proton.

This work would be further pursued and developed by Isidior Rabi.

1.2.3 My Name is Rabi, I Have Come Here to Work

Isidor Rabi came to Europe after finishing his PhD at Columbia University because there were no

jobs in the US at that time. Rabi remarked later that “in the United States, as far as theoretical

physics was concerned, we were provincial. Definitely provincial” [18]. He was awarded a small

fellowship and went to Zurich to work with Schrödinger, although without any arrangements.

On his first day he sat in a colloquium and did not understand a word. In his desperation he

looked around for fellow Americans (“they always wore white shirts with their collars attached”).

Luckily he found one and it turned out to be Linus Pauling, who consoled him by saying,“don’t

worry, he was not talking German, he was talking Schwitzerdeutsch” [18]. Schrödinger left on

the same day to Berlin and Rabi went to Munich to visit Sommerfeld. Again without any

arrangements, he came to Sommerfeld’s office and said, “My name is Rabi, I’ve come here to

work.” He was shown a room where Sommerfeld’s students, Hans Bethe was among them, were

working and joined them. In the autumn, Rabi went to London, but soon left to Copenhagen

when he realised that he would see “financial disaster staring me in the face” if he stayed there.

Copenhagen was the Mecca for theoretical physics at that time. “Everything good came out of

Copenhagen in one way or another.” In Copenhagen he went to the Institute for Theoretical

Physics, rang the bell and said his usual sentence “My name is Rabi, I’ve come here to work.”

He was granted access. Bohr was busy and arranged, without asking Rabi, for him to go to work

with Pauli in Hamburg. First disappointed he quickly realised that “Hamburg was actually the

greatest institution in the world for physics at that moment”. He became friends with Ronald

Fraser and John Taylor, who worked in Stern’s lab, “to talk some English”. Rabi became inter-

ested in the molecular beam method and was allowed to conduct his first experiments in Stern’s

lab.

Rabi obtained a lectureship at Columbia and started to build his own molecular beam experi-

ments by 1931. Over the next couple of years, together with his assistant, Sidney Millman, and

his colleagues Polykarp Kusch and Jerrold Zacharias, Rabi refined the technique of manipulating

atoms and molecules with a combination of inhomogeneous and homogeneous fields. After Cor-

nelius Gorter suggested to use varying radio waves to manipulate the orientation of the magnetic

moments, Rabi added this new feature to his beam machine. He could deflect molecules in a
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strong magnetic field by tuning the frequency of electromagnetic waves (or varying the magnetic

field strength) and hence measure the transition from one energy state to the other. This also

enabled him to measure magnetic moments with unprecedented accuracy for a variety of atoms

and molecules.

Through the discovery by Ed Purcell and Felix Bloch that one could observe such nuclear

resonances in solids and liquids as well, Rabi’s technique led to nuclear magnetic resonance

imaging in medicine and nuclear magnetic resonance spectroscopy of complex molecules, such as

proteins. Purcell was also the first to detect radio emission from neutral galactic hydrogen (the

famous 21 cm line). This observation launched the extremely fruitful field of radio astronomy.

Radio frequency and microwave spectroscopy soon revealed new aspects concerning the structure

of galaxies and a huge variety of molecules in interstellar clouds.

Further improvements in radio frequency and microwave technology during the second world

war allowed Kusch, using Rabi’s technique, to measure the magnetic moment of the electron to

unprecedented accuracy and found a slight discrepancy with Dirac’s relativistic quantum the-

ory [19].

Willis Lamb started his career as a theorist at the University of California with Oppenheimer,

working on electromagnetic properties of nuclear systems. In 1938, he went to Columbia and

“came into close relation with Professor I. I. Rabi” [20]. He immediately became interested in

Rabi’s newly developed resonance technique. During the war he was working at the Columbia

Radiation Laboratory to improve microwave radar for military applications. He would later

use this experience to resolve a minute energy difference between the 2S1/2 and 2P1/2 levels of

hydrogen. Dirac’s theory could not account for such a difference either. Both experiments thus

pointed towards something new, which would later become known as quantum electrodynamics.

In the 1950s Alfred Kastler together with his student Jean Brossel realised that one can selec-

tively excite atoms to a single Zeeman sublevel with polarised light and use it to optically detect

the magnetic resonance of excited states [21]. This technique would later be called the double-

resonance method, because it combines a magnetic (radio frequency) resonance with an optical

resonance. This improvement of Rabi’s original method has proven to be extremely powerful

and is still used today. Note that this also marks the birth of the manipulation of atoms with

optical electromagnetic fields out of which the now extremely fruitful research area of ultracold

matter would emerge.

Also in the 1950s Charles Townes and at the same time Nicolay Basov and Aleksandr Prokhorov

could show coherent amplification of microwaves by a beam of ammonia molecules [22–24]. This

laid the foundation for the laser.

Norman Ramsey, a PhD student of Rabi, improved Rabi’s resonance technique for measuring

nuclear magnetic moments with unprecedented accuracy. He came up with the method of sepa-

rated oscillatory fields. This method uses two short regions of oscillatory fields (rf or microwaves)

instead of a single long region as in the case of Rabi’s method. This has many advantages and

increases the sensitivity: The resonance is narrower and the contrast is not reduced when there
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are non-uniform magnetic fields between the pulses.

The width of the resonance, and thus the accuracy, is proportional to the time between the

pulses. Making the interaction time longer meant making the beam machine longer which was

not very practical. So Ramsey soon realized that the two oscillatory fields do not have to be

separated in space but can be separated in time. So he decided to use an atomic beam in which

the atoms, after passing through the first oscillatory field would enter a storage box where they

would bounce around for a period of time and then emerge to pass through the second oscillatory

field. Initially he used caesium and teflon as a wall coating of his storage box. It worked, but

the atoms lost their orientation after a few collisions with the wall. He could improve that by

coating the walls with paraffin and obtained a resonance even after 190 collisions. He wanted to

do even better and decided to use an atom with a lower mass and lower electric polarisability to

reduce the wall interactions even further. Atomic hydrogen turned out to be ideal, however it

was difficult to detect. Knowing of Townes’ experiments on the ammonia maser, he designed and

built the experiment to obtain maser oscillations at the atomic hydrogen hyperfine frequency.

Ramsey was also the first to conceive the idea that one could use maser oscillation as a timing

standard. Ramsey’s work thus made it feasible to perform spectroscopy at a level many orders of

magnitude more precise than with Rabi’s technique. This stimulated extremely fruitful and ex-

tensive applications both in testing the foundations of physics with atomic and molecular beams

and applications in technology. By the end of the 1950s and in the early 1960s the molecular

beam method has become so widely used in physics, chemical physics and chemistry that it is

impossible to list every major contribution. We thus conclude the historical overview by keeping

in mind that everything began with the simple idea that heat can be expressed as motion of

small particles. After Dunoyer’s pioneering work on sodium it was the far reaching work of Otto

Stern and his collaborators and students that truly helped the molecular beam method to take

off and thus he can be seen as the founding father of experimental atomic physics.

With the improvement of laser technology and its potential for manipulating atoms and

molecules, interest in the physics community to use atomic beams grew. Moreover, the suc-

cess of cold and ultracold atomic physics, stimulated by the first Bose-Einstein condensation

of an atomic vapour, boosted molecular beam research in the physics community. Efforts to

reach ultracold temperatures for molecules as well got under way. As Dudley Herschbach put it,

“much of the hot appeal of molecules [today lies] in the cold (< 1 K) and ultracold (< 1 mK)”.

Molecules, however, are more complicated than atoms. Additional to electronic degrees of free-

dom molecules can rotate and vibrate. They can have an electric or magnetic moment, fine and

hyperfine structure. Each of these properties can be seen as an additional tunable experimental

parameter. And it is these parameters that give ultracold molecular gases unique properties

that allow for the study of new physical phenomena. However, it is these additional degrees of

freedom that prevent using the work horse of ultracold atomic physics - laser cooling. The prob-

lem is not so much the rotation of the molecule, since transitions between different rotational

states are governed by strict selection rules. The main problem is the vibrational structure. In
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general, molecules end up distributed over a large number of vibrational states after a single

or few spontaneous emission events which makes laser cooling challenging. The motivation to

reach ultracold temperatures for molecules has led to the development of very general methods

to manipulate molecular beams.

1.3 Why Cold Molecules?

As we can infer from the previous section, atomic and molecular beams and the manipulation of

these revolutionised aspects of both physics and chemistry. The ability to control every degree

of freedom of atomic and molecular ensembles has now reached a level the early pioneers may

not even have dreamt of. This level of control, coupled with ground breaking developments

of ultra stable lasers, have resulted in clocks that have an absolute uncertainty at the 17th

decimal place. It paved the way for the observation of Bose-Einstein Condensation, “the most

spectacular application of laser cooling and atom trapping” [25]. Interferometers exploiting the

coherent manipulation of de Broglie matter waves, similar to that associated with atoms and

their motion has led to precise measurements of gravity, gravity gradients, rotations and the

photon recoil of an atom [17]. Furthermore, a whole optics toolbox for atoms has been developed,

that includes beamsplitters, mirrors, lenses and more. This has led to numerous applications

ranging from quantum physics to precision metrology already and will play a major role in

addressing fundamental problems regarding gravity and quantum mechanics. The possibility

of making artificial crystals for atoms with optical lattices is the first step towards realising

Feynman’s dream of building a quantum simulator [26, 27]. It has now become possible to use

a controllable quantum system to simulate other systems that are currently not, or only poorly,

understood. This high degree of control has been extended to the most fundamental level of

single quantum systems, like single atoms and single photons [28, 29]. This allows to create

elementary quantum communication, quantum computation and eventually maybe the quantum

internet [30]. Complementary to manipulating the very small, the concepts of cold atom physics

(quantum optics toolbox) have been extended to meso- and macroscopic objects. It is now

possible to manipulate mechanical resonators that span the size from hundreds of nanometers

in the case of nano-opto-mechanical or nano-electro-mechanical devices to tens of centimeters

in the case of gravitational wave detectors [31]. The coherent control of these large and heavy

mechanical systems on the single-phonon level has now been achieved and first applications as

novel measurement tools in technology and fundamental science have been demonstrated. Taking

the step from ultracold atomic ensembles to molecules is expected to have a similar profound

impact allowing us to address problems that are not accessible with atoms. Below, I review some

of the applications of cold molecules.
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1.3.1 High Resolution Spectroscopy and Precision Measurements

A general rule for spectroscopy experiments is that, in the absence of any systematic uncertainties

and extraneous noise, the uncertainty in determining a transition frequency is proportional to

1/
(
T
√
N
)

, where T is the time the particles spend in the observation region (coherence time)

and N the total number of detection events. Consequently, if all other mechanisms that broaden

an atomic or molecular transition are absent, it is the time the atom or molecule spends in the

measuring device that determines its width and thus the accuracy with which the transition

frequency can be determined. Ideally one wants to use a trapped sample of atoms or molecules.

For example, the magnetic moment of the electron has been measured to 3 parts in 1013 using

a single electron trapped for months [32]. Using a single trapped Aluminium ion in combination

with sub-hertz linewidth lasers, a clock based on an optical transition with a fractional frequency

inaccuracy of below 1 part in 1017 has been constructed [33]. However, trapping might not always

be the most accurate way to do spectroscopy since the trapping fields might lead to perturbations

of the measurement process. Another way to increase the interaction is by slowing the particles

so that they spend more time in the interaction region, i.e. to increase the coherence time.

A length of a typical atomic beam experiment is of the order of 1 m. At room temperature a

nitrogen molecule moves at about 500 m s−1 limiting the interaction time to a few milliseconds,

which in turn limits the width of a spectral line to a few kilohertz. Decreasing the temperature

to 1 mK leads to an average velocity of only 1 m s−1 and thus interrogation times of the order

of seconds would become feasible. Furthermore, the cooling of the internal degrees of freedom,

like rotation and vibration, dramatically enhances the number of molecules in a single quantum

state and thus the number of detected particles.

1.3.2 Molecules and Time Reversal Symmetry

It is currently widely believed that the Standard Model of particle physics is invariant under the

CPT-transformation. This means that we could not distinguish our universe from one where:

• Every particle is replaced by its antiparticle (charge conjugation transformation)

• The sign of the spatial coordinates fixing the particles position in space are flipped (parity

transformation)

• The direction of time is reversed (time reversal transformation)

But why is this rather odd combination of C, P and T transformation needed to produce an

identical copy of our universe? If a physical law does change under a given transformation it is

said to break the symmetry of the underlying transformation. In 1956 Lee and Yang suggested

some experiments that could be done to test whether or not the weak interaction violates the
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symmetries C and P [34]. Within a year Wu performed an experiment on β-decay and could

show that the weak interaction indeed violates parity [35]. It was then thought that the weak

interaction would preserve the combined symmetry, CP, meaning that particles could violate

parity as long as their antiparticles did so in the opposite way. In 1964, however, James Watson

Cronin, Val Logsdon Fitch and collaborators discovered that the decay of neutral K-mesons

was not invariant under the combined CP transformation. Thus the conclusion was that phys-

ical laws must at least be invariant under the combined transformation of CP and T. Until

now there is no experimental evidence for CPT violation. Gerhart Lüders, Wolfgang Pauli and

implicitly Julian Schwinger independently showed that if any physical law is invariant under

Lorentz transformations it also implies that it is invariant under CPT transformation [36]. Thus

any violation of CPT symmetry would imply a violation of Lorentz invariance and thus of special

and general relativity. Spin statistics and the fact that particles and antiparticles have identical

properties, such as mass, lifetime and magnetic moment all arise from CPT invariance. Hence

there is good reason, until proven wrong, to assume that physical laws do not change under

CPT transformation. This implies that any process that violates CP symmetry must violate

time reversal symmetry T as well. As Andrei Sakharov pointed out in 1967 CP-violation is one

of three necessary conditions to explain why the universe mainly consists of ordinary matter and

why all the antimatter has disappeared [37]. Thus studying CP or direct T violation provides

a clue to the origin of the large-scale matter-antimatter imbalance of the universe. Until now

CP violation has only been observed in mesons, unstable subatomic particles, and is essentially

consistent with the predictions of Kobayashi and Maskawa in the framework of the Standard

Model. The Standard Model, however, cannot explain the matter-antimatter asymmetry. Thus

it is necessary to search for new sources of CP violation or direct T-violation.

In 1950 Ed Purcell and Norman Ramsey proposed testing P symmetry by using electric dipole

moments (EDMs) of elementary particles [38]. In that time, parity was still thought to be a

good symmetry and Purcell and Ramsey immediately designed an experiment to test it using

neutrons. The dipole moment is a measure of the charge distribution of a particle. For example,

a finite electric dipole moment of the electron suggests that there is an average displacement of

the electron charge from the electron’s centre of mass. The only way to specify an orientation of

an elementary particle is to use the orientation of its angular momentum, the spin in the case of

an electron. The dipole moment has to lie either parallel or anti-parallel to the angular momen-

tum. Since it is a displacement (∝ r(x, y, z)) it flips sign under the parity transformation. The

angular momentum direction, however, does not change under P. Likewise, angular momentum

changes direction under the T transformation, whereas the dipole moment does not. Thus, an

electric dipole moment of a fundamental particle violates P and T individually. Hence if one

believes that the CPT theorem is right it must also violate CP symmetry.

The Standard Model of particle physics predicts a small electric dipole moment for the elec-

tron, of approximately 10−40 e cm. This is too small to be detected by any currently conceived

experiment.
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Extensions of the Standard Model are usually accompanied by new particles. Supersymmetry,

for example, introduces a bosonic partner for each fermion and a fermionic partner for each

boson of the Standard Model. The contribution of these particles to EDMs depends on their

masses and the resulting EDM can be significantly larger (up to 10−26 e cm for the electron)

than the Standard Model prediction. This should not really be a surprise, since one of the major

flaws of the Standard Model is that it does not contain enough CP violation to explain the

matter-antimatter asymmetry.

Therefore, measuring EDMs with high accuracy directly probes physics beyond the Standard

Model and is capable of placing tight constraints to exotic particle physics. But what has all

that to do with atomic and molecular beams? In order to measure an EDM one needs to apply a

strong uniform electric field to the particle (align the dipole) and look for a response. Neutrons

do not possess charge, so one can apply the electric field directly to a slow beam, or even to a

trapped sample of neutrons. The current best limit on the EDM of the neutron was obtained in

2006 and is dn < 2.9× 10−26e cm (90 % confidence) [39]. The situation changes if one wants to

measure the EDM of charged particles like the electron or proton. Since these particles possess

charge they will be rapidly accelerated in the externally applied electric field.

A solution to this quite fundamental problem became apparent when Leonard Schiff studied

the possibility to use atoms to measure the EDM of a nucleus [40]. Nuclear EDMs of an atom

stem from neutrons, protons and P and T violating forces between the nucleons. If one applies

an electric field to an atom the electrons rearrange and screen the nucleus from the external field.

Consequently, the nucleus does not experience a net electric field at all and there is no interac-

tion with the nuclear EDM. Schiff, however, when deriving the screening effect assumed that the

particles are point particles and only interact via Coulomb forces. The nucleus, however, is an

extended object and the distribution of charge and dipole moments of its constituents is quite

different from a single point. Schiff could show that the finite volume of the nucleus leads to

imperfect shielding and thus to a net interaction between the dipole moments and the external

electric field. The attenuation scales with the square of the atomic number Z, thus favouring

heavy atoms. The most stringent constraint on a nuclear EDM is dN < 2.1× 10−28 e cm ob-

tained from measurements in mercury vapour [41]. But even in such a heavy atom the external

field is attenuated by about a factor of 1000.

Schiff also showed that atoms might be useful for measuring the EDM of the electron. Cru-

cially one needs to use paramagnetic atoms, i.e. atoms with one unpaired electron. Schiff showed

that relativistic and magnetic effects lead to imperfect shielding, especially if the electron moves

close to the nucleus where the speed of the electron approaches the speed of light. However,

the EDM interaction would average to zero in a purely spherical electron distribution. Thus an

external electric field is needed to distort the electron distribution, i.e. to add a small portion of

p orbital to the s state. A few years later Sandars pointed out that in heavy atoms, this effect

does not only lead to imperfect shielding of the external electric field but can even enhance it.

The amplification factor scales with the atomic number as Z3 [42]. This means that the EDM
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interaction in a heavy atom is of the order of 100 times larger than that of a free electron in the

same electric field!

An EDM experiment essentially looks for a minute change of the atom’s response that depends

on the orientation of an externally applied electric field. Spectroscopic measurements performed

on an atomic beam of thallium atoms could put an upper limit to the EDM of the electron

to de < 1.6× 10−27 e cm [43]. Because the thallium atom has a large Z the relativistic effects

enhance the external field by a factor of -585. For a laboratory field of 1.23× 105 V cm−1 the

electron effectively experiences a field of 7× 107 V cm−1. The magnitude of this electric field

strength is only limited by the electric breakdown in a typical laboratory vacuum. Sandars

pointed out that there is an alternative way to generate even higher electric fields by attaching

a strong electro negative element, like F or O, to the heavy atom in order polarise it more effi-

ciently. Such a polar molecule possesses a large internal field of the order of 1010 V cm−1. This

large internal electric field, averages to zero if no external electric field is applied to align the

molecule in the lab frame. In order to do so one only needs an electric field strength of the order

of 10 kV cm−1. For the particular case of the YbF molecule, which is used in our lab to measure

the EDM of the electron, the effective internal field is as large as 26 GV cm−1 in a moderate

laboratory field of 10 kV cm−1. This made it possible to set a new upper limit for an EDM of

the electron of 1.05× 10−27 e cm [44].

Measurements of EDMs using atoms or molecules in one way or another all involve using the

magnetic resonance techniques developed by Rabi and Ramsey. In particular, one measures

the precession frequency ω of the electron’s spin in a uniform magnetic and electric field. The

magnetic field provides a quantisation axis for the spin, around which it precesses with a certain

frequency. The EDM changes this precession frequency depending on the orientation of the elec-

tric field, parallel or anti-parallel to the magnetic field. The fundamental statistical uncertainty

of such a magnetic resonance experiment is proportional to 1/(T
√
N), where N is the number of

detection events and T is the spin precession time. Consequently, the only way to increase the

statistical uncertainty is to increase the number of particles and/or increase their spin precession

time. While the large internal electric field of polar molecules is a big advantage over atoms,

it is much more difficult to make intense beams of molecules. The problem is compounded by

the large number of states occupied in an ensemble of molecules at room temperature. This

means that N is typically much smaller for molecules than for atoms. Thus, efficient cooling

of vibrational and rotational motion is necessary to enhance the number of molecules in the

preferred state. To further improve molecular EDM experiments there is a need for brighter

sources of molecules, an improved detection efficiency, and an increase in the observation time

by cooling and slowing the molecules. Such improvements are of great advantage not only for

EDM measurements but also for a large number of other experiments that would greatly benefit

from an improved signal to noise ratio, lower velocity and lower temperature.
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1.3.3 Do Enantiomers of Chiral Molecules have identical spectra?

Another fascinating question which can be addressed by high resolution spectroscopy of molecules

is why nature shows a distinct preference for left-handed amino acids over their mirror images.

The origin of this so called homochirality remains unknown, but some physicists have speculated

that parity violation in the weak interaction might play a role. Calculations predict a minute

energy difference between enantiomers (identical mirror images) of chiral molecules due to inter-

actions of the weak force between the electrons and the nucleus in the molecule. The fractional

frequency shift of a rovibrational transition due to weak interactions is expected to be of the

order of 10−15 − 10−16 [45]. The most sensitive measurement so far has been performed in cells

filled with CHFClBr molecules and was limited by impurities and systematic effects related to

the high pressure in the spectroscopy cell [45]. The resolution of these experiments can be signif-

icantly enhanced by slowing the molecules in order to increase the coherence time. Furthermore,

it is helpful to cool the internal degrees of freedom to enhance the population of molecules in

the ground state.

1.3.4 Variation of Fundamental Constants

A total number of 22 free parameters must be included in the Standard Model of particle

physics [46], the values of which can not be predicted by the theory. These free parameters are

often referred to as fundamental constants and are determined by measurement. There lies hope

that a future theory will predict the values of these constants, or at least reduce their number.

The first to think about possible variations of these dimensionless constants was Paul Dirac

in 1937 who suggested that the value of the constants could be coupled to the evolution of the

universe [47].11 Dirac assumed that Newton’s gravitational constant G would vary with time

with a rate of about 10−10 per year. Dirac arrived at this conclusion by proposing his famous

large number hypothesis: He noticed that the ratio between the electric and gravitational forces

between a proton and an electron is similar to the age of the universe in atomic units and further

assumed that this could be true for all times. This would suggest that the value of fundamental

constants are coupled to the evolution of the universe.

Dirac generated much interest with this idea and an important outcome of his reasoning is

that the constancy of fundamental constants should be checked experimentally. Over ten years

later Edward Teller argued that a decreasing G would contradict paleontological evidence12 and

thus initiated the search for experimental evidence for time-varying constants [48].

Modern theories of high energy physics offer new possibilities for varying constants. Kaluza

11Dirac wrote this article while on honeymoon with Eugene Wigner’s sister Margit. On a short note to George
Gamov he remarked:“That happens if people get married.”

12Teller reasoned that if G was 10% larger 300 million years ago the temperature of the sun must have been so
high that the increase in temperature on earth would have prohibited life and thus contradict fossil evidence of
trilobites that existed at that time.
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and Klein introduced an extra space dimension in the late twenties of the last century to attempt

a unification of gravity with electromagnetism. This approach has been revived in modern string

and M-theories which attempt to unify gravity with the electric, weak and strong interaction.

In general, string theories describe the coupling strengths not by dimensionless constants but

rather as scalar particles that live in a 4 +D dimensional space. However, we do not experience

these extra dimensions so it is assumed that they are compact, i.e. wrapped up on themselves.

The string coupling constants depend on the size of this compact D dimensional space and

any cosmological evolution of these extra spatial dimensions would lead to a temporal and/or

spatial variation in the usual constants we measure in the lab. This represents a first step

towards determining the values of fundamental constants in a self consistent way from theory

and introduces a quite natural framework for a change of these constants with cosmological

evolution.

Over the second half of the 20th century astronomical evidence grew that most of the matter

in the universe is dark and of unknown character. This somewhat concerning fact was topped

by the discovery that the expansion of the universe is accelerating, driven by an unknown force

dubbed dark energy. This has led to a wide range of speculations and to a whole forest of new

cosmological theories. A popular theory invokes a homogeneous, dynamical scalar field that

is slowly rolling down a very shallow self-interaction potential [49]. This rolling behaviour is

necessary to explain the cosmic coincidence problem, i.e. why the acceleration of the expansion

of the universe started about six billion years ago. According to the theory, this happened when

the kinetic energy of the scalar field became smaller than its potential energy. This model has

become so popular that it even received a fancy name, quintessence, referring to its role as

the fifth fundamental force that drives the expansion of the universe. There is, however, one

problem. The coupling of this nearly massless, long range field to ordinary matter should lead to

observable long-range forces. Such long range forces have not been observed in any experiments

searching for fifth forces and would violate the equivalence principle and hence are severely

constrained by Eötvös-type experiments. The standard solution to this problem is to introduce

an unknown symmetry which suppresses such couplings [50].

An alternative attempt to reconcile a strongly interacting quintessence field with local gravity

experiments appeared in 2004 [51]. In this model the mass of the scalar field, and thus its range,

becomes dependent on its environment. In regions of high density, such as on Earth, the mass

of the field is large and thus satisfies the constraints put in place by gravity experiments. On

cosmological scales, however, where the matter density is about 1030 times smaller13, the mass

of the field is much smaller and thus allows for a cosmological evolution of the field. This means

that scalar fields such as quintessence have not been detected by fifth force experiments because

the dense environment we live in shields them. Since the characteristics of this field depends

sensitively on its environment it was dubbed the chameleon field.

13The mass density of visible matter in the Universe is estimated to be 10−28 kg m−3 which is 10−31 times the
density of liquid water



Introduction 36

Furthermore, assuming the absence of an unknown symmetry that suppresses the coupling,

the scalar field is expected to have a non-zero coupling strength to other fundamental forces.

This could lead to a possible observable change of fundamental constants over the evolution

of the universe. Hence measuring the values of fundamental constants through the history of

the universe can provide strong constraints on the possibilities of cosmologies and new physics

that deviates from the Standard Model [52]. Furthermore, if there are chameleon fields the value

of fundamental constants will depend on the environment. Therefore detecting a change in

fundamental constants can be seen as a rare example that allows to test and constrain predictions

of string theories and new kinds of cosmologies.

Atoms and molecules, and their energy spectra in particular, provide us with a very sensitive

tool to probe for any changes in such fundamental constants. One way to do so is by comparing

emission and absorption spectra of atoms and molecules from distant gas clouds, i.e. gas clouds

at high red shift, with laboratory data taken during present times. If at any other point in

space-time the fundamental constants had different values this would show up as a shift in these

transition frequencies. The direction and amount of this shift depends on the specific atomic or

molecular species. High resolution laboratory spectra for a wide range of atoms and molecules

are thus needed. There is a particular need for better laboratory data for molecules, because

the current data is often less precise than the astronomical measurements.

Atomic and molecular beams have proven to be ideal means for measuring such transition

frequencies to unprecedented accuracies in a laboratory environment. The control over atomic

beams has led to the realisation of atomic fountains which are ideal for building very stable

and accurate clocks. The transition frequencies of these atomic clocks depend on fundamental

constants such as the fine structure constant α or the electron-to-proton mass ratio µ. Thus

by comparing two very accurate clocks whose frequencies depends differently on fundamental

constants, over a period of a few years one can put extremely tight constraints on the variation

of the constants during present times [53, 54].

A molecular fountain for precision tests of fundamental physics theories is currently also under

construction which will allow to measure potential drifts in the electron-to-proton mass ratio with

unprecedented accuracy [55].

1.3.5 Cold Chemistry

Since temperature is directly related to the velocity one can increase the de Broglie wavelength

of atoms and molecules by cooling them to low temperatures. If the wavelength associated with

an atom or molecule becomes larger than the particle, or even the mean distance between par-

ticles in a cold gas cloud, interference and quantum phenomena emerge. A room-temperature

nitrogen molecule is moving at about 500 m s−1 which corresponds to a de Broglie wavelength
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of about 30 pm. This is far too small for quantum effects to influence chemical interactions,

collisions or reaction dynamics. By cooling the molecular motion to mK temperatures the de

Broglie waves extend to lengths that exceed intermolecular forces and quantum interference ef-

fects become important. External fields can then be used to control reaction dynamics, reaction

rates and maybe even the outcome of a chemical reaction by shifting the interaction poten-

tials [56]. The study of reaction dynamics at low temperatures (1 K) using molecular beams

helps to understand the formation of complex molecules in interstellar gas clouds and planetary

atmospheres. By gaining control over the translational motion of molecules to cool them even

further one gets full access to the quantum nature of ultracold collisions which provides a de-

tailed probe for fundamental chemical reactions. Calculations show that collision cross sections

between molecules, or between atoms and molecules, show sharp resonances at low collision en-

ergies [57]. These sharp resonances can have a dramatic effect on the rate at which a chemical

reaction takes place. The detection of these scattering resonances allows accurate determination

of the interaction potentials that govern the collision dynamics.

1.3.6 Dipole Interactions and Quantum Gases of Polar Molecules

If one cools a dilute cloud of atoms to very low temperatures, something very peculiar happens.

If the atoms are bosons, more and more atoms condense into the lowest energy state possible.

At a critical temperature and density all the atoms become indistinguishable and occupy exactly

the same space in the trap. This transition into a new state of matter was first observed in 1995

using Rubidium atoms [58] and has sparked immense interest in the atomic physics community

and beyond. If the atoms are fermions, only one atom is allowed to occupy a single energy level

and the atoms fill up the levels to a certain energy which is called the Fermi energy. The first

observation of a Fermi degenerate gas was in 1999 [59].

Atoms in such a cold gas typically interact through short range van der Waals interactions.

New, intriguing effects are expected to emerge in such cold clouds if one could introduce long

range interactions so that each particle is sensitive to every other particle in the cloud. One

could think of using atoms with large magnetic moments. Chromium atoms, for example, have

a magnetic moment of µ = 6µB, where µB = e~/2me ∼ 9.3× 10−24 J T−1 is the Bohr magneton.

Two atoms with a large magnetic moment exhibit long-range magnetic dipole-dipole interactions

that scale as µ0µ
2/(4πr3), where µ0 is the vacuum permeability and r is the distance between the

atoms. The interaction is also anisotropic depending on the relative orientation of the dipoles.

Pioneering experiments with chromium atoms have shown that such long-range interactions can

have significant influence on the dynamics of such a gas [60]. Recently the Bose-Einstein conden-

sation of the highly magnetic species erbium (7µB) [61] and dysprosium (10µB) [62] have been

demonstrated as well.
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Dipolar interactions start to become important in the cold gas once the dipole-dipole inter-

action energy between two particles exceeds the centrifugal barrier that tends to keep them

apart. For small angular momenta this centrifugal energy is ~2/(mr2), where m is the mass of

the atoms. This yields a characteristic dipole-dipole interaction length for magnetic atoms of

lDD = µ0µ
2m/(4π~2). For dysprosium atoms, this is 414a0, with a0 the Bohr radius, which is

not much larger than typical s-wave scattering lengths. This means that the dipole-dipole inter-

actions still do not dominate the physics of the gas cloud although their influence is observable.

Polar molecules, i.e. heteronuclear molecules with a net positive charge at one end and a

net negative charge on the other end, possess an electric dipole moment µe. The interac-

tion energy between two such dipoles scales with µ2
e/(4πε0r

3), where ε0 is the vacuum per-

mittivity and r is the distance between the molecules. The interaction of two electric dipoles

with an electric dipole moment of 1 D is equivalent to an interaction energy of two magnetic

dipoles with 100µB. The corresponding dipole length for electric dipole-dipole interaction is

lEDD = mµ2
e/(4πε0~2) ≈ 4× 106a0 for the most polar molecule KBr (10.5 D).

Such strong, long-range interactions will have dramatic effects on a cold cloud of polar molecules,

their reactions and collision properties. If the density increases and the temperature decreases

the molecules will start to influence each other and begin to form a crystal like structure similar

to ions in an ion trap. These would lead to fundamentally new condensed-matter phases and new

complex quantum dynamics. A Bose-Einstein condensate of polar molecules would represent a

quantum fluid of strongly and anisotropically interacting particles [63].

1.3.7 Quantum Simulation

As Richard Feynman put it in his presentation: “There’s plenty of Room at the Bottom”, at

an American Physical Society meeting at Caltech in 1959 [64]: “Atoms on a small scale behave

like nothing on a large scale, for they satisfy the laws of quantum mechanics. As we go down

and fiddle around with the atoms down there we are working with different laws, and we can

expect to do different things”. This seminal presentation is widely recognized as one of the main

inspirations for the development of nanotechnology. In another visionary lecture from 1981 [65]:

“Simulating physics with computers”, Feynman proposed to overcome the severe limitations of

classical computers in describing quantum systems by using quantum simulators which operate

according to the laws of quantum mechanics. Hence one can simulate complex systems by using

a set of controllable particles with engineered interactions and predict the value of physical

quantities by simply performing the appropriate measurements. He predicted the advent of “a

quantum machine that could imitate any quantum system, including the physical world”. He

summarised this challenge in the now famous sentence: “Nature isnt classical, dammit, and

if you want to make a simulation of nature, youd better make it quantummechanical, and by
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golly its a wonderful problem, because it doesnt look so easy.” He was certainly right that this

challenge is not so easy. But great progress has been made since 1981. First prototypes of

such quantum simulators, based on quantum gases, trapped ions, photonic or superconducting

systems have become reality already over the last decade.

Cirac and Zoller identified five key criteria a quantum simulator should have [66]:

• It should be made up of a quantum system (bosons or fermions).

• One should be able to prepare a known quantum state.

• It should be possible to engineer a set of interactions with external fields between the

different particles.

• Individual or collective addressing of the particles to perform measurements on the system.

• The simulation should be verifiable. There should be a way of increasing the confidence or

to check the result (running it backwards).

Pioneering experiments use ultracold atoms confined in an optical lattice, i.e. a periodic potential

created by the interference of opposing pairs of laser beams. The optical dipole force thus

generates a periodic potential which resembles the periodic lattice electrons experience due to

the array of atomic cores in condensed-matter system. The atoms can be filled into this optical

lattice which then allows one to study the rich physics of a condensed matter system with a

unique degree of control over the parameters. Using such a lattice system it became possible to

realise and study the Bose-Hubbard model, which serves as one of the most prominent models

for a solid in condensed-matter physics [67, 68]. Recent progress makes it now possible to address

single lattice sites and prepare the spin of a single atom at a predetermined lattice site which

allows to simulate the quantum Ising model [69].

The atoms in such a simulator only interact via short-range interactions. By using polar

molecules in such an optical lattice one can get access to a whole new regime where long range

dipole-dipole interactions govern the dynamics. This can be used to reproduce known, but

unsolvable, condensed-matter Hamiltonians [63]. In fact it is possible to simulate any arbitrary

Hamiltonian for interacting spins on a lattice using molecules [70]. Molecules could thus serve as

extremely versatile tools to realise and study exotic phases of matter and as an efficient modelling

device for currently unsolvable condensed-matter Hamiltonians.

1.3.8 Quantum Information

Polar molecules possess a rich internal structure which allows to efficiently encode and store

quantum information in long-lived states. The long range and strength of the dipole-dipole

interactions can be a very fast and efficient way to entangle qubits and to engineer quantum
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gates. Many different proposals for the technical realisation have been suggested [63]. The large

dipole moment makes it possible to tune the interactions with electric fields and inhomogeneous

electric fields can be used to Stark shift the molecules in an optical lattice which will allow single

site addressing.

1.4 How to Cool Molecules?

The possibility to cool atomic vapours to ultralow temperatures by using laser light has launched

a rich and extremely fruitful research area over the last few decades. Therefore, the most straight-

forward approach would be to cool polar molecules in a similar way. However, the same reason

that gives rise to the wide range of applications of polar molecules prevents using the standard

techniques used to cool atoms - laser cooling which relies on the photon recoil due to 104 − 105

excitation and spontaneous emission cycles. Such closed excitation and emission cycles are, in

general, not accessible in molecules. Due to the large number of internal states the molecule

ends up in a state inaccessible to the excitation laser after a few excitation and emission events.

However, in 2004 Di Rosa identified a specific class of molecules that can be used for laser cool-

ing [71]. The direct free-space laser cooling of the highly polar SrF molecule was demonstrated

by 2010 in the group of DeMille at Yale [72]. Naturally, this scheme, is limited to a few molecular

species only. A more general laser cooling scheme based on coherent off-resonant scattering in a

high finesse optical cavity has been proposed, but has not been realised yet [73–75].

The physical chemistry community have developed a set of very general techniques to produce

beams of a large variety of molecular species using the supersonic expansion technique. The

molecules produced in such a way typically move at a velocity of a few hundred metres per sec-

ond. However, in their moving frame the molecules are translationally, and internally cold (1 K).

Since the molecules are directly produced in a source such techniques are known as the direct

approach to cold molecules. Since the mid 1990s new methods have been developed to decelerate

those fast moving molecules. Influences from the cold neutron community motivated the use of

a cold, cryogenic buffer gas to cool and slow the molecules, which are typically produced at

very high temperatures [76]. Slowing polar molecules using their interaction with electric fields

(Stark decelerator) [77], with magnetic (Zeeman decelerator) [78, 79] or optical fields [80] has

been demonstrated and are by now well established techniques. An excellent recent review which

summarises the manipulation of molecules with electromagnetic fields is given in reference [81].

The filtering of the low velocity tail of a cryogenic, effusive beam has proven to be a very vi-

able technique to get slow moving cold molecules [82]. Billiard-like collisions between molecular

beams has also produced samples of cold molecules at rest [83]. A rotating nozzle whose fast

backward-motion counter-acts the forward velocity of a molecular beam is another technique to

provide slow and cold molecules [84]. Very recently cold molecules at rest have been produced by

photo-dissociating a precursor molecule. The momentum recoil from the dissociation removes
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the kinetic energy and stops one of the dissociation fragments [85].

Most of these techniques provide sufficiently cold and slow molecules so that they can be con-

fined in electro-static [86], ac electric [87] and magnetic traps [76]. Molecules in such traps have

temperatures on the order of 10 mK. Cooling them further turns out to be quite challenging.

However, recently opto-electrical Sisyphus-type cooling of CF3H molecules in an electric trap [88,

89] and evaporative cooling of OH in a magnetic trap [90] show that ultracold temperatures for

molecules cooled from a molecular beam are reachable. The sympathetic cooling of molecules

via elastic collisions with ultra cold atoms has been studied theoretically [91] and experimen-

tally [92], but has not been successfully demonstrated yet.

The control of molecular beams with electric, magnetic and optical fields makes it possible to

trap the molecules, measure the lifetimes of excited states, study and control the collision and

reaction dynamics in crossed-beam experiments, and probe the time dependence of chemical

reactions (e.g. see [81, 93] and references therein). The density of such molecular beams is,

however, still too low and the temperature too high to observe any dipole-dipole interactions.

However, the recent development of direct free-space laser cooling and the first demonstration of

evaporative cooling show that it will become possible to cool molecules from a molecular beam

to 1 µK and below where the dipole interaction and quantum effects govern the dynamics.

If the actual chemistry or type of molecule is unimportant and one purely wants to study

polar molecules at low temperatures an alternative route exists. This is known as the indirect

approach to producing cold molecules, which takes ultracold laser-cooled atoms and converts

them pairwise into deeply bound molecules. The challenge is to efficiently bring the atoms to-

gether without heating the gas due to the release of the binding energy (a few thousand degrees).

The first to accomplish this difficult task was the group of DeMille at Yale who used photoassoci-

ation to convert 108 laser-cooled Rb and Cs atoms to about 10 RbCs molecules in their absolute

ground state, with a translational temperature of 100 µK [94]. This technique uses laser light to

transfer a scattering state of two atoms to an electronically excited state of the molecule. The

electronically excited molecule then decays to the electronic ground state via spontaneous emis-

sion. However, the molecules are, in general, distributed over a large number of rovibrational

states in the ground electronic state. The breakthrough for the indirect approach came by using

a highly dense ensemble of atoms (quantum degenerate gas) in combination with an adiabatic,

coherent transfer of the atoms into the ground state of the molecules. After evaporation, the

atoms are confined in an optical dipole trap at 100 nK. A so-called Fano-Feshbach resonance

occurs in the scattering cross-section of two atoms when the kinetic energy is equal to the bound

state of a molecule. One can tune this energy separation with an external magnetic field and

thus convert atoms into weakly bound molecules (molecules with a large internuclear separa-

tion). In a second step these weakly bound molecules are converted into ground-state molecules

using a two-photon coherent process known as stimulated Raman adiabatic passage (STIRAP).

This was first demonstrated for homonuclear molecules [95, 96] and then for the polar, fermionic

species KRb [97]. Only chemical reactions at low temperature and high density prevented the
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demonstration of the first Bose-Einstein condensate (or degenerate Fermi gas for the case of the

fermionic KRb) of polar molecules [98, 99]. Since then first experiments revealed the dipolar na-

ture of the collisions between polar molecules [100] the possibility to control chemical reactions

with external fields [98, 99], and recently the realisation of a lattice spin model using polar KRb

molecules [101].

A measure for quantum degeneracy is a phase-space density of the gas nΛ3 of the order of

one, where n is the peak density of the gas and Λ = h/
√

2πmkBT is the thermal de Broglie

wavelength of a particle with mass m and temperature T . A phase-space density of the order

of one corresponds approximately to a molecular density of 7 × 109(m[amu])3/2 per cubic cen-

timeter at a temperature of 100 nK. The major advantage of the indirect approach is that it can

produce a phase-space density which is more than 10 orders of magnitude higher than the direct

approach can currently produce. However, the indirect approach can only produce molecules the

constituents of which can be laser-cooled (mainly alkali and alkaline earth metals). Furthermore,

the dipole moment of these molecules is often quite small, e.g. 0.5 D for KRb. This limits the

dipole-dipole interaction length to scales which is much shorter than the spacing between two

sites in an optical lattice (≈ 530 nm). Therefore, molecules with much larger dipole moments

such as LiCs (a predicted dipole moment of 5.5 D) are currently under investigation [102].

1.5 Summary & Conclusion

This chapter should convince the reader that despite the long tradition of molecular beam

research there is still plenty of new developments to come. The recent developments of highly

intense cryogenic sources, Stark and Zeeman decelerators, and direct laser cooling have opened

up a completely new chapter in molecular beam research - the quest for reaching the ultra cold

and ultra precise. The molecular beam research after Ramsey and Rabi saw a shift from the

physics to the chemistry community while the time since the mid 1990s can be described as the

reviving period of molecular beams in the physics community. The boundaries between physics,

physical chemistry and chemistry have started to blur, and this has created a very exciting

and diverse field of research. Many of the new technologies needed to reach the ultracold for

molecules have now been developed and the first great scientific breakthroughs are happening

right now.

One approach towards using molecules to investigate some of the above mentioned exciting

physics is described in this thesis and of course the start of every molecular beam experiment is

the choice of a specific molecule one wants to study. We chose to study the CH molecule. It is

light, has an electric dipole moment, and so is straightforward to manipulate with electric fields.

It is important in combustion processes, fundamental chemical reactions, is highly sensitive to

changes in fundamental constants and is an abundant species in interstellar gas clouds. It thus
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opens up many different potential applications. In addition, a number of molecular beam sources

have been investigated over the past century and we were confident that we could produce it in

large numbers, which is the precondition for any experiment that is to come. The possibility

to reach a high density, the straightforward approach to decelerate and trap it, and the many

potential applications of a beam CH molecules motivated us to investigate molecular beam

sources. But before the various molecular beam sources are presented a brief introduction to

molecular physics and the specific energy level structure of the CH molecule is presented in the

following chapter.



Chapter 2

Molecular Physics - A Theoretical

Description of the CH Molecule

[...] it is more important to have beauty in one’s equations than to have them fit experiment.

Paul Dirac

2.1 Introduction

In this chapter a brief introduction to molecular physics is given, with the aim of describing the

energy level structure of the CH molecule. First the essential steps of the Born-Oppenheimer

approximation are presented. This allows us to plot the distribution of electronic, vibrational

and rotational energies of CH. The orbital motion, electronic spin, and nuclear spin couple to the

rotation of the molecule and lead to fine and hyperfine structure. The coupling scheme relevant to

describe the exact rotational, fine and hyperfine structure of CH is presented. The knowledge of

the electronic, vibrational and rotational structure then allows us to study transitions between

the ground and excited electronic states and to introduce the notation specific to molecular

spectroscopy. The chapter is concluded by a brief description of the interaction of CH with

static electric (Stark effect) and static magnetic (Zeeman effect) fields. This will be used at

a later stage to predict the sensitivity of particular transitions in CH to external electric and

magnetic fields.

44
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2.2 The Born-Oppenheimer Approximation

Two atoms form a covalent bond if the atomic orbitals of the electrons involved in the binding

have similar energies and their wave functions possess the proper symmetry to interfere con-

structively. The bonding results in a molecular orbital with increased electron density between

the two nuclei, and is of lower energy than the two separate atomic orbitals. The strength of

the bond depends on the degree of orbital overlap. The wavefunction of a diatomic molecule,

Ψ(R, ri), satisfies the Schrödinger equation:

ĤΨ(R, ri) = EΨ(R, ri) , (2.1)

where Ĥ is the Hamiltonian describing the molecule, R = RA-RB, with RA and RB the

positions of the two nuclei A and B with masses MA andMB respectively, and ri is the position

vector of the ith electron. The Hamiltonian Ĥ can be broken down into three components: the

kinetic energy of the nuclei T̂N , the kinetic energy of the electrons T̂e and the Coulomb potential

between the electrons and the nuclei V̂ :

Ĥ = T̂N + T̂e + V̂ . (2.2)

The nuclear kinetic energy is given by:

T̂N = − ~2

2MA
∇2
A −

~2

2MB
∇2
B = − ~2

2µ
∇2
R −

~2

2M
∇2
Rcm , (2.3)

with µ = MAMB/(MA +MB) the reduced mass of the molecule, M = MA +MB the total mass,

∇2
R, the Laplace operator for the relative motion and ∇2

Rcm, the Laplace operator for the centre

of mass coordinate. We are not concerned about the centre-of-mass motion and so can drop this

term in the Hamiltonian. The kinetic energy of the electrons is:

T̂e = −
N∑
i=1

~2

2mi
∇2
i , (2.4)

with N the number of electrons, and mi the mass of a single electron. The potential energy

between the electrons and the nuclei is:

V =
ZAZBe

2

4πε0R
− e2

4πε0

N∑
i=1

(
ZA
ri,A

+
ZB
ri,B

)
+

e2

4πε0

N∑
i<j=1

1

rij
. (2.5)

The first term describes the Coulomb repulsion of the nuclei of charge ZA and ZB which are

separated by R = |RA − RB|, the second term describes the attraction between the nuclei

and the electrons with ri,A = |ri −RA| and ri,B = |ri −RB|. The third term describes the

mutual repulsion between the electrons with rij = |ri − rj |. Even for the simplest case of the
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H+
2 molecular ion the Schrödinger equation 2.1 cannot be solved exactly. We therefore need to

introduce approximations that lead to a simpler Schrödinger equation.

The first useful approximation is known as the adiabatic approximation (sometimes referred to

as the first step of the Born-Oppenheimer approximation). This approximation assumes that the

electrons move much faster than the nuclei, i.e. the electron cloud adjusts instantaneously when

the nuclear framework changes. This approximation is good as long as the kinetic energy of the

nuclei is small compared to the electronic energy. We remove T̂N from the total Hamiltonian 2.2

and solve the remaining electronic Schrödinger equation with the electronic Hamiltonian Ĥe =

T̂e + V̂ :

Ĥeψq(R, ri) = Eq(R)ψq(R, ri). (2.6)

The square of the wavefunction ψq(R, ri) yields the charge distribution of the electrons in an

electronic state q for a fixed internuclear separation R which corresponds to an energy Eq(R).

By solving equation 2.6 for different parameters R we obtain the electronic energy eigenvalue

Eq(R) as a function of the internuclear separation. We can choose the electronic wave functions

such that they form a complete orthonormal set of functions. This allows us to expand the

wavefunctions Ψ(R, ri) of the complete Schrödinger equation 2.1 in the basis of the electronic

wavefunctions:

Ψ(R, ri) =
∑
q

χq(R)ψq(R, ri). (2.7)

We can substitute this into the complete Schrödinger equation, integrate over the electronic

coordinates ri and make use of the orthogonality
∫
ψpψq dri = δpq. This results in the coupled

equations:

Ĥeψq(R, ri) = Eq(R)ψqR, ri) (2.8)

T̂Nχn(R) +
∑
q 6=n

cnqχq(R) = (E − En(R))χn(R) , (2.9)

where the coefficients cnq = cnq(ψq) depend on the electronic wavefunctions ψq. In the sec-

ond step of the Born-Oppenheimer approximation we neglect this coupling of the nuclear and

electronic motion by setting cnq = 0. Equation 2.9 then reduces to[
T̂N + En(R)

]
χn(R) = Eχn(R). (2.10)

We can see that En(R) takes the role of the effective potential for the motion of the nuclei. It

contains the total potential and the kinetic energy of the electrons, averaged over the motion of

the electrons. The Born-Oppenheimer approximation thus separates the complete Schrödinger

equation into two uncoupled equations. The first describes the electronic part with fixed nuclei.

We solve this equation for each electronic state and for many different internuclear distances

R and obtain E(R) which takes the role of the potential in the second equation. This second
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equation describes the motion of the nuclei. To solve this equation it is easier to work in

spherical polar coordinates and use an ansatz for the wavefunctions describing the nuclear motion

χ(R,Θ,Φ) = 1
Rf(R)g(Θ,Φ). The solution to the angular part gives the spherical harmonics

g(Θ,Φ) = YJM (Θ,Φ) which leaves us with an equation for the radial part:(
− ~2

2µ

d2

dR2
+
J(J + 1)

2µR2
+ En(R)− E

)
f(R) = 0. (2.11)

To get an analytical solution we can expand the potential E(R) in a Taylor series around the

equilibrium distance Re:

En(R) = En(Re) +

(
dEn
dR

)
Re

(R−Re) +
1

2

(
d2En
dR2

)
Re

(R−Re)2 + . . . , (2.12)

and choose the energy scale such that En(R) reaches a minimum at R = Re which makes the

second term zero. So to a first approximation the potential for the nuclear motion is harmonic

and the Schrödinger equation describing this motion is that of the harmonic oscillator:(
− ~2

2µ

d2

dR2
− 1

2
k(R−Re)2 − Ev

)
f(R) = 0 , (2.13)

where we have used the shorthand k =
[
d2En/(dR

2)
]
R=Re

and gathered all the constants into

Ev = E − En(Re) − Er, with Er = J(J + 1)/(2µR2
e). The solution to this equation give the

well known harmonic oscillator wavefunctions and the energy eigenvalues Ev = (v + 1/2)~ω0,

with v = 0, 1, 2, . . . , an integer and ω0 =
√
k/µ. We identify the harmonic motion of the nuclei

around an equilibrium position with the vibrational degree of freedom with the corresponding

quantised vibrational energy Ev.

The angular part of the Hamiltonian contributes Er = BJ(J + 1) to the total energy, with

B = ~2/(2I) which is known as the rotational constant and I = µR2
e the moment of inertia.

Therefore, the angular part of the Schrödinger equation describes the rotational degree of freedom

of the molecule. The Born-Oppenheimer approximation thus allows us to separate the total

energy into three parts: an electronic part En(Re), a vibrational part Ev and a rotational part

Er.

This model is a good approximation for small vibration amplitudes. The restoring force

F = −k(R − Re), however, keeps increasing with increasing distance from the equilibrium

position. This can not be an accurate description of a real molecule because it does not include

the limiting case of the molecule dissociating into its constituents, i.e. the binding energy should

go asymptotically to zero when the internuclear spacing approaches infinity. Morse realised that

a simple analytical form for the potential allows for a more accurate theoretical description which

reproduces the empirically found expression for the energies:

En(R) = De

[
1− exp−a(R−Re)

]2
, (2.14)
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where De is the dissociation energy (depth of the potential well), and a = ω0/(
√

2D0/µ), with

D0 = De − (~/2)ω0. For small diatomic molecules the potential energy curves En(R) can be

computed to a reasonable accuracy using ab initio methods. Higher accuracy can be achieved

by constructing the potentials from experimental data. To determine the exact shape of the

potential for the different electronic states of a molecule is thus one of the main objectives for

performing spectroscopy on molecules. The potential determines reaction rates for collisions and

whether a reaction is endo- or exothermal. The most popular method to construct the potential

energy curve is based on methods developed by Ragnar Rydberg [103], Otto Klein [104] and

Albert Rees [105]. The so-called RKR method uses the measured energy levels to calculate the

classical turning points where the total energy is equal to the potential energy E = En(R). This

gives the potential energy curves for each electronic state.

In the united atom picture, combinations of atomic orbitals are used to generate a molecular

orbital. Molecular orbitals constructed from atomic 1s orbitals are denoted by 1σ. Similar

to an atomic s orbital the molecular σ orbitals do not possess any nodes and are symmetric

about the internuclear axis. The CH molecule in its ground state has a 1σ22σ23σ21π1 electron

configuration. Electronically excited states of molecules can be attributed to energetically higher

electron configurations. If, for example one of the electrons from the 3σ orbital is promoted into

the 1π orbital, there are four possible ways to arrange the electrons, each of which is attributed

to a different electronically excited state. The potential curves for the ground state and three

different electronic states of CH are shown in figure 2.1.

2.3 The Rotational Structure of CH

Let’s concentrate on the ground electronic and vibrational state for the moment. Depending

on the molecule rotational energies are between 10 and 1000 times smaller than vibrational

energies. The rotational angular momentum (R)1 couples to the orbital (L) and spin (S) angular

momentum of the electrons, and the interactions associated with the couplings contributes to

the total energy. These angular momenta couple to form the total angular momentum (J).

To describe the spectra of diatomic molecules German physicist, Friedrich Hund, devised a

scheme for ordering the various possible couplings according to their strength into four extreme

cases (a)-(d).2 Each case corresponds to a specific set of “good” (well defined) quantum numbers

and facilitates the choice of basis functions to describe the molecule’s rotational structure. If

a molecule can be described by case (a) strong electrostatic forces cause the orbital angular

momentum L to precess rapidly about the internuclear axis. The spin S is strongly coupled to L

1Not to be confused with the internuclear separation R.
2Hund originally only devised four cases but later on a fifth case (e) has been added. The most important ones

for diatomic molecules are the cases (a)-(c). For our considerations of the CH molecule cases (a) and (b) suffice.
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Figure 2.1: Potential energy curves En(R) for the CH molecule [106]. The ground state is
denoted by X. Electronically excited states are labelled according to their energy E(Re) with A,
B, C,. . . . The superscript number gives the spin multiplicity 2S+ 1. The Greek letter gives the
projection of the electronic orbital angular momentum onto the internuclear axis Λ = Σ,Π,∆
which corresponds to Λ = 0, 1, 2. The CH molecule in its ground state has one unpaired electron
in a 1π1 orbital which leads to S = 1/2 and Λ = 1 and thus to a 2Π ground state. The ± of
the Σ states denotes the symmetry of the wavefunction when reflected on a plane containing
both nuclei. For the X and A state the vibrational energies are shown as horizontal lines. The
vertical line indicates the equilibrium internuclear distance Re of the ground state. The inset
shows that for each vibrational state we get a number of rotational states.

due to a strong spin-orbit interaction and so also precesses about the internuclear axis. The

orbital angular momentum L is thus not well defined, i.e. it is not a good quantum number to

label energy levels. However, its projection onto the internuclear axis Λ is well defined. The

total spin S, its projection, Σ3, on the internuclear axis and the sum Ω = Λ + Σ are also well

defined. Note that the precessions of L and S around the internuclear axis can have two equal,

but opposite senses ±Λ (electrons orbiting clockwise or anti-clockwise about the internuclear

axis) and ±Σ. In the absence of any other angular momentum the two orientations of Λ lead

to two degenerate energy levels. However, the coupling to the rotation of the molecule can lift

this degeneracy, resulting in a Λ- or Ω-doublet. The total angular momentum is J = R+L+S.

The corresponding Hamiltonian for the rotational energy is

H = BR2 = B(J− L− S)2 . (2.15)

3The capital Greek letter Σ is used for both the case of Λ = 0 in the molecular term symbol and for the
projection of the spin S onto the internuclear axis.
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The total set of all good quantum numbers in case (a) is (η, J, S,Ω,Λ,Σ), where η contains

all the other quantum numbers of the electronic and vibrational state. The basis functions are

|η, J, S,Ω,Λ,Σ〉. The requirement for case (a) to be applicable to a molecule is that the spin-orbit

energy is much larger than the rotational energy AΛ� BJ , where A is the spin-orbit coupling

constant. The spin orbit interaction leads to 2S + 1 fine-structure states, with corresponding

values of Ω. Each Ω state has its own rotational ladder with energies BJ(J + 1).

A molecule is described by case (b) if the spin-orbit coupling is small (or does not exist e.g.

Λ = 0) compared to the rotation of the molecule (AΛ� BJ). As in case (a) the orbital angular

momentum L is coupled to the internuclear axis and has a well defined projection Λ onto the

internuclear axis. The spin-orbit interaction, however, is not strong enough to couple the spin

S to the internuclear axis. Consequently Ω is not well defined. However, we can couple L and

the rotation R and form N = L + R. The total angular momentum J = N + S is formed by

coupling N to the spin S. The good quantum numbers are (η,Λ, N, S, J) and the basis functions

are |η,Λ, N, S, J〉. The Hamiltonian describing the rotational kinetic energy is then

H = BR2 = B(N− L)2 = B
(
R2 + L2 − 2N · L

)
(2.16)

The rotational levels have the energies N(N + 1) with the lowest N level having a value N = Λ.

The second term in equation 2.16 is a constant and can be added to the electronic energy, the

third term is small and will be discussed later. For an electronic state with Λ = 1 and S = 1/2 (a

2Π state, as in the case of ground state CH) each N -level is split by the spin-orbit interaction 4.

We therefore get two rotational ladders which we denote with F1 for J = N + 1/2 and F2 for

J = N −1/2. Note that the spin-orbit splitting (F1(N)−F2(N)) tends to zero for large N [107].

These two Hund’s cases are the most important ones for diatomic molecules. Note however,

that they are limiting cases and most molecules are described by an intermediate situation.

This allows us now to draw a level diagram of the CH molecule in its ground electronic and

vibrational state. This is shown in figure 2.2 where Hund’s case (b) labelling is used. CH is

light (small moment of inertia) and thus has a large rotational constant B = 14.457 cm−1. The

spin-orbit constant is A = 28.1 cm−1. As can be seen in figure 2.2 each J-level is split into

a so-called Λ-doublet. To understand the origin of this splitting we need to look more closely

at equation 2.16. The third term in the last expression is the so-called rotational electronic

Coriolis interaction. The spin-orbit and the Coriolis interaction couple two different electronic

states with ∆Λ = ±1. In the case of a Π ground state these interactions lead to a small (second

order) admixture of a distant Σ state. This small perturbation lifts the degeneracy between the

states with Λ = +1 and Λ = −1 (electrons moving clockwise or counter-clockwise around the

internuclear axis). Therefore, each J state is split into two closely spaced opposite parity states,

which are shown in figure 2.2. The size of the splitting depends on the value of J .

4Note that the spin-orbit constant A is nearly the same as the 2B. In the ground state (N = 1) there is no
rotation (R = 0) and it is the spin-orbit interaction that leads to a splitting of the each N level.
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Figure 2.2: Rotational levels of CH in the v = 0 level of the X2Π ground state in Hund’s
case (b) notation. Each N level is split by the coupling of spin (S = 1/2) and rotation into two
manifolds which are labelled by F1 and F2 corresponding to N + 1/2 and N − 1/2 respectively.
Note that for a molecule with Λ = 1 the lowest N quantum number is one. Each J level is
split into a Λ-doublet. The size of the Λ-splitting depends on the value of J . The Λ-doublet is
exaggerated by a factor of 20.

We have also neglected the angular momentum associated with the nuclear spins so far, i.e.

the hyperfine structure. The interaction of the nuclear spin I with the other angular momenta

of the molecule is very weak, i.e. it leads to a very small splitting. We couple the nuclear spin

and electronic angular momenta to make the total angular momentum F = J+I. Since I = 1/2,

each Λ-doublet component splits into two levels with total angular momentum quantum numbers

F = J ± 1/2.

2.4 Transitions Between the Ground and Excited States

The energy difference between two electronic states of diatomic molecules corresponds to a

frequency in the optical domain (E/h ≈ 500 THz) of the electromagnetic spectrum. The Born-

Oppenheimer approximation allows us to separate the exact frequency at which the transition

occurs into three parts (neglecting small splittings such as fine or hyperfine structure for the

moment): an electronic, a vibrational and a rotational part.

An external electromagnetic field E induces a dipole moment d in the molecule. The Hamil-

tonian describing the interaction between the field and the dipole moment is HI = −d · E . The

intensity of the dipole radiation scales with the square of the matrix element of the interaction
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Hamiltonian between the initial and final states

d = 〈1 |d · E| 2〉 =

∫
V

Ψ∗1d · EΨ2 dV . (2.17)

The Born-Oppenheimer approximation allows us to separate the total wave function into its

electronic, vibrational and rotational parts Ψ = ψnfvYJM . The rotational, or angular part of d

yields a constant factor of the form Mrot =
∫
YJ ′M ′Y1MYJ ′′M ′′ dΘ dΦ. The single prime indicates

that the rotational state belongs to the excited electronic state and the double prime that it

belongs to the ground state. Hence the rotational factor is an integral over a product of three

spherical harmonics which gives rise to a Wigner 3-J symbol. This 3-J symbol is zero unless

∆J = J ′ − J ′′ = 0,±1 and ∆M = M ′ −M ′′ = 0,±1. Note that for linearly polarised light

∆M = 0 and for left/right circularly polarised light ∆M = −1/ + 1. If we sum over all M ′

and M ′′ and square the angular factor we get the so-called Hönl-London factor sJ ′,J ′′ which is

a measure for the relative strength of rotational lines, i.e. it indicates the intensity of a specific

rotational line of a vibronic transition.

Evaluating the vibrational part of d yields a vibrational overlap integral
∫
f∗v′(R)fv′′(R) dR.

The square modulus of this overlap integral is known as the Franck-Condon factor qv′,v′′ .

This leaves us with the electronic part of the transition matrix element, which we call dn′,n′′ =∫
ψ∗n′delψn′′ dri, with del = −e

∑
i ri is a sum over the position vectors of the electrons which

contribute to the dipole moment. It depends on the internuclear separation R because the

electronic wave functions ψ = ψ(ri,R) depend on R. However, to a good approximation its

dependence on R is small and we can thus replace it by its average value dn′,n′′(Re). The square

modulus of the electronic part of the transition dipole moment gives the electronic transition

probability. The exact function of the electronic transition dipole moment as a function of

internuclear distance can be calculated using ab initio techniques.

The transition probability for a molecule to undergo a transition between two electronic states

is thus proportional to |dn′,n′′(Re)|2qv′,v′′sJ ′,J ′′ , i.e. it depends on the transition dipole moment,

the overlap between the vibrational wavefunctions in the ground and excited state, and the Hönl-

London factor. The angular part restricts the number of possible transitions and determines the

intensity of particular rotational line of a vibronic transition. For light, linearly polarised along

the laboratory z-axis, the transition must obey the selection rules ∆J = 0,±1 and ∆M = 0. We

can include the hyperfine structure as well and define the analogous selection rule ∆F = 0,±1

with the restriction that a F ′′ = 0→ F ′ = 0 transition is forbidden. Because the dipole operator

is an odd function of coordinates, the parity must change during an electric dipole transition.

With this information we can draw a level diagram that shows the possible transitions between

the ground and excited electronic states of CH. The level diagram for the B2Σ−(v′ = 1) ←
X2Π(v′′ = 0) transition is shown in figure 2.3 and the level diagram for the A2∆(v′ = 0) ←
X2Π(v′′ = 0) transition is shown in figure 2.4.

By choosing the frequency of the electromagnetic radiation we can excite the molecule on a
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Figure 2.3: A few of the possible rotational lines for the B2Σ−(v′ = 1) ← X2Π(v′′ = 0)
vibronic transition relevant to our experiment. The transitions are labelled according to
∆JF1,2

(J ′′), where ∆J = 0 corresponds to a Q line, ∆J = +1 to an R line and ∆J = −1
to a P line. The superscript p for the pQ line indicates that N is lowered by one. Note that
each level is split into two hyperfine components which have been omitted. All the frequencies
are given in GHz.

specific transition. Once the molecule is excited it will in general dispose of its excitation energy

by emitting radiation after an average time τ which is known as the lifetime of the excited state.

The finite lifetime of the excited state leads to finite spectral width of the rovibronic transition.

It follows from the uncertainty principle (∆E∆τ > ~) that the full-width at half maximum

(FWHM) of a transition ∆f = 1/(2πτ) = Γ/(2π) with Γ the spontaneous decay rate. When the

molecule disposes its excitation by emitting electromagnetic radiation it can end up in different

rovibrational levels in the ground electronic state the lifetime of which are typically much longer

than for an electronic transition. The probability to which vibrational level is governed by the

Franck-Condon factor. Note that the spontaneous decay rate and thus the spectral width of a
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Figure 2.4: A selection of the possible rotational lines for the A2∆(v′ = 0) ← X2Π(v′′ =
0) vibronic transition relevant to our experiment. The transitions are labelled according to
∆JF ′
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(J ′′), where ∆J = 0 corresponds to a Q line, ∆J = +1 to an R line and ∆J = −1
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are given in MHz. The values in brackets are in cm−1

transition is related to the dipole matrix element:

Γj =
ω3

3πε0~c3

∑
i

d2
ij , (2.18)

where dij are the dipole matrix elements for all possible decay channels from the excited state

j to the ground state i. Hence we can measure the dipole matrix element by measuring the

lifetime of the excited state.
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2.5 Stark Effect

The interaction of a dipole µ with a homogeneous electric field E is expressed by the Stark

Hamiltonian Hs = −µ · E . The dipole moment µ has a well defined orientation in the rotating

body-fixed frame of the molecule (x, y, z). The electric field on the other hand has a well defined

orientation in the laboratory frame (X, Y, Z). It is convenient to express both quantities as

irreducible spherical tensor operators of rank 1, Hs = −µ · E = −T (1)(µ) · T 1(E) [108]. We can

choose the Z-axis to be along E which reduces the Hamiltonian to Hs = −T (1)
0 (µ)E , where

T
(1)
0 (µ) is the projection of the dipole moment onto the space-fixed Z axis. A transformation

from the space-fixed frame to the rotating molecular frame can be made by using the Wigner

rotation matrices D:

T
(1)
0 (µ) =

1∑
q=−1

(D(1)
0q (θ, φ, χ))∗T

(k)
0 , (2.19)

with θ, φ and χ the Euler angles which define the orientation of the (X, Y, Z) frame with respect

to (x, y, z). In a Hund’s case (a) basis we have the eigenstates |η, J,Ω,M〉 and we can evaluate

the matrix elements as follows:〈
η, J,Ω,M

∣∣∣T (1)
0 (µ)E

∣∣∣ η′, J ′,Ω′,M ′〉 = E
∑
q

〈
J,Ω,M

∣∣∣D(1)
0q

∣∣∣ J ′,Ω′,M ′〉〈η ∣∣∣T (1)
0 (µ)

∣∣∣ η′〉 . (2.20)

Here, we have used the Born-Oppenheimer approximation to separate the vibronic and rotational

parts. The last factor describes the matrix elements of the dipole moment operator between

electronic states. Because of the large energy separation between electronic and vibrational

states, matrix elements where η 6= η′ contribute very little to the Stark shift. Focussing then

on the matrix elements where η = η′, only the term where q = 0 is non-zero because the dipole

moment lies along Z. So we have〈
η, J,Ω,M

∣∣∣T (1)
0 (µ)E

∣∣∣ η, J ′,Ω′,M ′〉 = µeE
〈
J,Ω,M

∣∣∣D(1)
00

∣∣∣ J ′,Ω′,M ′〉 (2.21)

with µe =
〈
η
∣∣∣T (1)

0 (µ)
∣∣∣ η〉 the permanent electric dipole moment of the ground state. To evaluate

the remaining matrix element we can consult chapter 5.5.5 in Brown and Carrington’s book [107]

and get the final result for the matrix elements of the Stark interaction:

〈
J,Ω,M |HS | J ′,Ω′,M ′

〉
= µE(−1)M−Ω

√
(2J + 1)(2J ′ + 1)

(
J 1 J ′

−Ω 0 Ω′

)(
J 1 J ′

−M 0 M ′

)
.

(2.22)

All we now need to do is to construct the matrix which contains the rotational energy as the

diagonal elements and the interaction terms (Stark terms) as the off-diagonal terms. We can

diagonalise it and the eigenvalues give the Stark shift of the energy levels.

For CH the situation is more complicated because of the spin-orbit splitting, the Λ-doubling
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and the hyperfine structure. The Λ-doubling splits each J state into two closely spaced opposite

parity levels. Therefore, the electric field can mix these levels which leads to a large Stark shift.5

In fact the mixing of the Λ-doublet states is the dominant contribution to the Stark interaction

in CH. In a Hund’s case (a) basis set we get two spin components 2Π|Ω|=1/2 and 2Π|Ω|=3/2.

Due to the fact that the spin-orbit interaction energy and the rotational interaction energy are

comparable in size the energy eigenstates of the molecular Hamiltonian are not pure Hund’s case

(a) wavefunctions |J,Ω = 1/2,M〉 or |J,Ω = 3/2,M〉, but are rather a superposition of both:

|F1,±, J,M〉 = −C1(J) |J,Ω = 1/2,±,M〉+ C2(J) |J,Ω = 3/2,±,M〉

|F2,±, J,M〉 = C2(J) |J,Ω = 1/2,±,M〉+ C1(J) |J,Ω = 3/2,±,M〉 , (2.23)

with

C1(J) =
√

(X + Y − 2)/(2X) C2(J) =
√

(X − Y + 2)/(2X) (2.24)

X =
√

4(J + 1/2)2 + Y (Y − 4) Y = A/B (2.25)

The coefficients C1 and C2 are the components of the eigenvector of the Hamiltonian matrix,

given in equation 9.74 in Brown and Carrington’s book [107], which for the case of CH (A ≈ 2B)

give C1 = C2 = 1/
√

2. So for CH the energy eigenstates are nearly equal superpositions between

the pure case (a) basis functions that correspond to Ω = 1/2 and Ω = 3/2. In equation 2.23 we

have also added a parity quantum number ± to identify the Λ-doublet states.

The J = 1/2 state, however, is special: there is no 2Π3/2 spin component for J = 1/2 level and

it is thus a pure 2Π1/2 state. The equations 2.23 define the so-called parity symmetrised basis.

By using this basis set and assuming that the Λ-doubling is small compared to the rotational

structure, i.e set J = J ′ we can now determine the Stark shift of the Λ-doublet levels:

〈F1,±, J,M |Hs|F1,∓, J,M〉 = −(
1

2
C2

1 +
3

2
C2

2 )µeE(−1)2M−2J M

J(J + 1)
(2.26)

〈F2,±, J,M |Hs|F2,∓, J,M〉 = −(
1

2
C2

2 +
3

2
C2

1 )µeE(−1)2M−2J M

J(J + 1)
, (2.27)

Note that for the J = 1/2 state only the Ω = 1/2 component contributes so that the matrix

elements become:

〈F2,±, 1/2,M |Hs|F2,∓, 1/2,M〉 = −1

2
µeE(−1)2M−2J M

J(J + 1)
. (2.28)

This allows us now to construct the Hamiltonian matrix, which contains the Λ-doubling energies

as diagonal elements and the Stark interaction as off-diagonal elements. The Stark shift of both

5For small electric fields we can invoke perturbation theory: The Stark shift ∆Es = 〈ψi |Hs|ψi〉 +∑
j 6=i
|〈ψi|Hs|ψj〉|2

Ei−Ej
+ . . . . The first term is zero because Hs is odd and the second term is large for small en-

ergy splittings Ei −Ej . Thus, the smaller the energy splitting between the states Hs can mix the larger the shift
of the energy levels.
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Λ-doublet components of the J = 1/2 ground sate is given by diagonalising the 2× 2 matrix:(
−EΛ/2 Q

Q EΛ/2

)
(2.29)

where EΛ is the zero-field Λ-doublet splitting. The off-diagonal elements Q are given by equa-

tion 2.28. The Stark shift is:

E± =

√
E2

Λ

4
±
(

1

2

M

J(J + 1)
µeE

)2

. (2.30)

Note that for some experiments the low field behaviour is important and then the hyperfine

structure must be included in the calculation. This calculation can be found in Brown and Car-

rington’s book (equation 5.148). To account for the hyperfine structure in the Stark interaction

we need to multiply the matrix elements 2.22 by the factor

f = (−1)F+F ′+2J+I−MF+1
√

(2F + 1)(2F ′ + 1)

{
J ′ F ′ I

F J 1

} (
F 1 F ′

−MF 0 MF

)

(−1)M

(
J 1 J ′

−M 0 M ′

)
(2.31)

where, the curly brackets denote the Wigner 6J-symbol.

2.6 Zeeman Effect

The interaction of a molecule with an external magnetic field B is given by the Zeeman Hamil-

tonian [107] (in spherical tensor notation):

Hz = gLµBT
(1)(B) · T (1)(L) + gSµBT

(1)(B) · T (1)(S)− gNµBT (1)(B) · T (1)(I)−

− grµBT (1)(B) ·
[
T (1)(J)− T (1)(L)− T (1)(S)

]
(2.32)

where g is the Landé g-factor associated with the particular angular momentum in question.

The evaluation of the matrix elements is very similar to the one presented above for the Stark

effect and will thus not be presented again. The matrix elements for all the terms are given

in equation 9.71 in Brown and Carrington’s book [107]. Ignoring the hyperfine and rotational

contribution for the moment and using the parity symmetrised basis, we get two total molecular
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F1 F2

J F g J F g

3/2 1 1.081 3/2 1 -0.08
3/2 2 0.648 3/2 2 -0.048
5/2 2 0.578 5/2 2 -0.178
5/2 3 0.413 5/2 3 -0.127

Table 2.1: The molecular g-factors for the J = 3/2 and J = 5/2 states of the two F1 and F2

manifolds, including hyperfine structure.

g-factors for the two sets of states F1 and F2. These are

g1 =
1

J(J + 1)

[
1

2

(
gL −

gs
2

)]
C2

2 +
3

2

[
gL +

gs
2

]
C2

1 +

√
(2J + 3)(2J − 1)

gs
2
C1C2 (2.33)

g2 =
1

J(J + 1)

[
1

2

(
gL −

gs
2

)]
C2

1 +
3

2

[
gL +

gs
2

]
C2

2 −
√

(2J + 3)(2J − 1)
gs
2
C1C2. (2.34)

Similar to the previous section we can account for the hyperfine structure by multiplying g1

and g2 with f from equation 2.31 which for small magnetic fields (neglecting matrix-elements

off-diagonal in J and F ) reduces to:

f =
1

8F (F + 1)
[(2F − 1) (2F + 3) + 4J (J + 1)] . (2.35)

The Zeeman shift of a particular energy level from the sets F1 or F2 is

∆Ez,i = giµBBzMF (2.36)

where i = 1, 2. The molecular g-factors, including hyperfine structure, for the J = 3/2 and

J = 5/2 of the (F1, J, F,MF ) and (F2, J, F,MF ) ladders are listed in table 2.1.

The J = 1/2 ground state is special since it is a pure case (a) 2Π1/2 state. For this state

the magnetic moments due to the orbital and spin angular momentum are very nearly equal

and opposite. In a case (a) molecule both the orbital angular momentum and the spin angular

momentum are strongly coupled to the internuclear axis. The magnetic moments associated

with each angular momentum therefore lie along the internuclear axis with values of µBgLΛ

and µBgSΣ. Because Ω = Λ + Σ the magnetic moment along Ω is µΩ = µB (gLΛ + gSΣ). We

are interested in the magnetic moment along the total angular momentum J . Since Ω is the

projection of J onto the internuclear axis the magnitude of Ω along J is Ω/
√

(J(J + 1)) and thus

the magnitude of the magnetic moment along J is µJ = µΩΩ/
√

(J(J + 1)). If the magnetic field

direction is along z the projection of J onto z is labelled by MF and the magnetic moment along

z is then µz = µJMF /
√
J(J + 1). We can now put everything together and get the Zeeman

shift ∆E = µzBz:

∆E = µBBz
Λ + 2Σ

J (J + 1)
ΩMF (2.37)
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where we have used gL = 1 and gS = 2. For a (2Π, J = 1/2) state Λ = 1 and Σ = 1/2. This means

that the contributions of the electron’s orbital and spin angular momentum to the molecular

g-factor cancel and that there is no Zeeman shift to first order. If we use a more accurate value

for gS = 2.0023 we get a molecular g-factor of g = 7.7× 10−4. Relativistic corrections to gL are

negligible. This means the J = 1/2 state is extremely insensitive to magnetic fields.

Note that we have neglected the contributions of the nuclear spin gI and the rotation gr. The

matrix elements for the total Zeeman Hamiltonian 2.32 are given in equation 9.71 of Brown

and Carrington’s book [107]. The g-factors are slightly different for the two parity components

of the Λ-doublet. Using the molecular constants given in [109] we find g+ = −1.9 × 10−3 and

g− = 0.71× 10−3, for the two parity components of the J = 1/2 state.

2.7 Summary

The Born-Oppenheimer approximation is the fundamental concept that allows us to describe di-

atomic molecules and their spectra. It allows us to separate the total energy of diatomic molecule

into three major parts: electronic, vibrational and rotational energy. The Born-Oppenheimer

approximation can also be used to describe transitions between the electronic ground and excited

states. Such transitions are governed by the electronic transition probability (electronic dipole

moment), the Franck-Condon principle (overlap between vibrational wavefunctions) and angular

momentum selection rules.

The rotational structure of the CH molecule in its ground vibronic state is complicated by

the fact that the spin-orbit interaction is of similar size than the rotational energy (A ≈ 2B).

The coupling of the spin of one unpaired electron to the rotation of the molecule splits each

rotational level, labelled by the Hund’s case (b) quantum number N , into two fine-structure

manifolds, labelled by F1 and F2. Each total angular momentum state J is again split into two

Λ-doublet components due to a Coriolis interaction that couples higher lying electronic states to

the ground state. Each Λ-doublet state is again split into two hyperfine components due to the

coupling of the hydrogen nuclear spin with the other angular momenta. This description of the

ground state is essential to understand and predict the high resolution spectroscopy experiments

which will be presented in chapters 4 and 5. We have outlined the Stark effect in CH which

will allow us to predict the sensitivity of certain transitions in CH due to external electric fields.

The description of the Zeeman effect in CH reveals that the (F2, J = 1/2) state possess only a

minute magnetic moment of the order of 10−3µB. The (F1, J = 3/2) state, on the other hand,

is highly sensitive to external magnetic fields with a magnetic moment of the order of 1µB. The

accurate description of the Zeeman effect is necessary to predict the sensitivity of CH transitions

to external magnetic fields.



Chapter 3

Experimental Setup and Molecular

Sources

An expert is a person who has found out by his own painful experience all the mistakes that one

can make in a very narrow field.

Niels Bohr

3.1 Introduction

Most diatomic molecules that posses intriguing features like a permanent electric dipole moment

have to be produced in a well controlled, isolated environment. This is because most of these

species are highly reactive or not stable under ambient conditions. Naturally occurring polar,

diatomic molecules such as CO, NO, HF, HCl have either a small dipole moment in their ground

state (CO, NO) or are notoriously hard to detect (HF, HCl,...) in a state selective way, i.e.

they only possess optical transitions in the deep ultra violet where no laser systems are available

for resonant detection schemes. Salts or salt-like inorganic compounds like LiH, MgF or KBr

can possess large dipole moments (up to 11 debye for KBr) but suffer from the problem that

they have high boiling points and tend to react violently in the gas phase and to form clusters.

Polar diatomic molecules that do not occur naturally have to be produced. These production

techniques usually involve a precursor of some kind that undergoes a violent treatment through

electron bombardment, high intensity laser ablation or ultra violet photolysis to name a few.

The chemical processes happening during this step are very complex and not very well under-

stood which makes this production process a highly empirical art that involves a certain degree

of black magic. With few exceptions these production techniques are extremely inefficient which

severely limits the number of molecules one has available for further experiments.

Another promising route to high density samples of polar molecules is the use of polyatomic

60
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molecules such as NH3 or CH3F which can readily be supplied in gas bottles that can simply

be plugged in to the experiment. Although these molecules are still hard to detect it is nowhere

near as difficult as producing a comparable number of molecules through the above mentioned

production techniques. With new cooling and manipulation techniques such as direct laser cool-

ing of diatomic molecules or Sisyphus cooling of polyatomic molecules emerging it can only be

a question of time until the first high density samples of ultracold molecules become reality.

Recent results in Jun Ye’s group at JILA even show evaporative cooling of OH molecules [90].

Although these results are still controversial it shows that efforts to reach this goal become ex-

tremely ambitious. The main limitation is and has always been the inefficiency of the molecular

sources.

In this chapter the backbone of our molecular beam experiments is presented. In particular

the vacuum apparatus, the laser system, the detector and the source are presented. A thorough

characterisation of the detection efficiency provides a reliable measure of both the molecular flux

and the density of polar molecules in the detection region. A brief overview and discussion of the

wide range of molecular production techniques gives the background to the process of finding

the optimum source. This is followed by a presentation of the tour de force of producing the CH

molecule. We tried, tested and carefully characterised in total four different production tech-

niques. Each technique is comprehensively analysed, characterised, compared to other molecular

sources and to the ideal theoretical model. The characteristics and important parameters for

each type of source are identified and presented. This will, hopefully, convince the reader that

a persistent systematic approach to the art of molecular sources can be rewarding and allows to

lift the curtain of black magic - at least a tiny bit.

3.2 The Vacuum System

In order to do experiments with diatomic polar molecules in a controlled and reproducible way

it is of great importance to isolate them from any disturbing environmental influences. As we

have learnt from the introduction, one of the best ways to do so is the use of a vacuum chamber

and a free-jet molecular beam. So the starting point of a molecular beam experiment is the

construction of an appropriate vacuum system. The outline and basic ingredients for such a

vacuum system have more or less remained the same since the times of Rabi and Ramsey [110].

It consists of a source, a science, and a detector chamber. A sketch of the setup is shown in

figure 3.1. The source chamber is used to create or introduce the species of interest. The science

chamber is where the actual experiment takes place and the detector chamber, as the name

suggests, houses an appropriate detector for the molecules of interest. The basis for the source

and the detection chamber is a commercial DN200CF 6-way cross. The science chamber consists

of a custom built cylinder that connects the two crosses. The whole system is evacuated by

two turbomolecular pumps (Leybold MAG W 1300, Leybold Turbovac 1000) attached to the
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78.7 cm

Source Chamber Science Chamber Detector Chamber

z

y

x

Leybold MAG W 1300
1300 l/s turbo pump

Leybold Turbovac 1000
1000 l/s turbo pump

Figure 3.1: The vacuum setup

source and detector chamber respectively. The pump for the source chamber is equipped with

oil-free magnetic bearings and has a pumping speed of 1300 l s−1. This allows to cope with large

volumes of corrosive gases which are commonly used in molecular radical production techniques.

The only conduction between the source and the other two chambers happens through the

2 mm diameter opening of a conical skimmer. Skimmers are used as collimating apertures that

extract the centre of a molecular beam in order to limit its angular spread. Additionally, the

small aperture limits the gas conduction between the chambers and thus allows for a large

pressure differential between the source and other two chambers. Skimmers are specially designed

apertures which minimize any interference with the molecular beam. Beam molecules can be

scattered by molecules reflected from exterior surfaces and also by collisions with the gas that

builds up inside the skimmer. To minimise these effects the skimmers are usually thin-walled,

with very sharp edges, and are curved to maximize the interior angle.

The pumps are able to decrease the pressure inside the vacuum chambers to approximately

10−8 mbar. When the source is operated it introduces gas in short pulses of approximately

250 µs at a repetition rate of 10 Hz. This leads to a pressure increase in the source chamber to

5× 10−5 mbar. However, because there is only a small aperture connecting the source and the

other two chambers the pressure in the latter remains below 5× 10−7 mbar when the source is

operating. The entire vacuum chamber is mounted onto a rigid Bosch frame. A single rotary

vane pump (Leybold CF4-25) sits beneath the setup and provides a rough vacuum of 10−3 mbar

for the turbomolecular pumps.

Now we have a basic vacuum chamber, but before we can start producing molecules we need

to add a detector so we can detect and characterise the molecular source.
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Figure 3.2: The laser system for detecting molecules. The Ti:Sapphire laser (MBR-110) is
pumped by 8 W of green laser light. The emission of the crystal is very broad band and thus a
single frequency is selected by birefringent elements inside the cavity. The red Ti:Sapphire light
is then frequency-doubled by a non-linear crystal which sits in a build up cavity. The blue light
is then directed through the detector chamber. The frequency of the Ti:Sapphire is stabilised
with respect to a temperature stabilised helium neon laser via a transfer cavity (TC-Lock) which
will be explained in the next section.

3.3 Detection Hardware and Laser System

Ideally the detector should enable us to count the molecules we have produced with high ef-

ficiency. It should be state selective, tell us the temperature of the molecules in their moving

frame and their speed. All these properties are vital ingredients which allow us to analyse and

characterise various molecular beam sources. Different techniques for detecting molecules have

been developed over the last century. A particular useful one for our purpose was first demon-

strated in 1968 by Ezekiel and Weiss from MIT [111]. They used the light of an argon ion laser

to induce an electronic transition in iodine molecules. The molecules decay back into the ground

electronic state by the emitting fluorescence light which is detected by a sensitive photon detec-

tor. This technique is since known as laser-induced fluorescence detection. We use the very same

principle, however, with a different laser system. The laser we use for detecting molecules is a

commercial single-mode, continuous wave Ti:Sapphire laser (Coherent MBR-110), the frequency

of which is doubled in a non-linear crystal which sits in a build up cavity (Coherent MBD-200).

A schematic of the setup is shown in figure 3.2.

The active laser medium of an MBR-110 consists of a sapphire crystal (Al2O3) which is doped

with titanium ions, typically at a concentration of 0.1 % by weight. Sapphire is used as a host
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crystal because of its high transparency, high thermal conductivity, good chemical inertness,

high mechanical rigidity and hardness. The Ti:Sapphire crystal needs to be optically pumped

to create the initial population inversion necessary for lasing to occur.

Due to the presence of titanium ions the crystal shows a broad absorption feature ranging

from 380 to 620 nm which peaks at approximately 490 nm. The absorption of such a blue-green

pump photon excites the titanium ion electronically and causes it to shift slightly with respect

to its sapphire host lattice. Such phonon excitations of the host lattice are accompanied by

relaxation processes which shift the emission wavelengths towards the red (Stokes shifted). The

many possible vibrational excitations of the ion-crystal system lead to a very broad emission

spectrum, the width of which exceeds 300 nm and is centred about 790 nm.

We use a frequency doubled Nd:YVO4 laser (Coherent Verdi V8) which provides 8 W in a

2 mm diameter beam at 532 nm to pump the Ti:Sapphire crystal. The crystal itself sits in a

bow-tie resonator which provides the feedback needed to sustain lasing.

A convenient way to choose the frequency at which lasing should occur is the use of birefrin-

gent elements inside the optical resonator. A birefringent plate (birefringent filter, BRF) is cut

with its optical axis at a tilt angle to the surface of the plate. The plate itself is tilted such

that the angle of incidence is at Brewster’s angle. The transmission through the plate then de-

pends on the phase difference between the two waves propagating as ordinary and extraordinary

waves. For light of the right wavelength the filter acts effectively as a full waveplate. For all

other wavelengths it introduces large losses at the Brewster surfaces. By rotating the birefrin-

gent filter about an axis perpendicular to its surface one effectively changes the angles of the

refracted rays and thus one can shift the maximum transmission to a different wavelength. This

is a very coarse wavelength control and so a thin Fabry-Pérot etalon inside the laser resonator

is used to select a single cavity-mode. Hence rotating the birefringent filter does not change the

frequency smoothly but rather in steps of 225 GHz which corresponds to the free spectral range

(FSR= c/2d) of the etalon, where d is the thickness of the etalon. Fine tuning of the frequency

can then be achieved by changing the angle of the etalon which effectively changes its thickness

and thus the transmitted wavelength.

In order to stabilise the laser frequency a fraction of the laser light is directed into a tem-

perature controlled reference cavity. The laser cavity is stabilised with respect to this reference

cavity which results in a single frequency laser linewidth of below 100 kHz. It is possible to

scan the laser frequency by up to 30 GHz with two pieces of polished fused silica plates which

are mounted inside the laser cavity on galvanometers at Brewster’s angle. A small change in

angle of these plates changes the laser cavity length and thus the laser frequency slightly. A

fraction of the output light is directed into a temperature controlled reference cavity. The laser

is locked to one of the cavity fringes. In order to assure that the laser stays locked while scanning

the frequency the length of the reference cavity can be scanned. Strain gauges attached to the

reference cavity in combination with a servo-loop feed back to the galvanometer-mounted plates

and thus ensures a highly linear frequency scan without unlocking the laser. Additionally, the
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reflection from the etalon is monitored on a photodiode. This is used to stabilise the etalon

position to prevent unwanted mode hops.

With 8 W of pump light, the Ti:Sapphire cavity well optimized and with all the elements

thoroughly cleaned we have achieved output powers of up to 1.1 W at a wavelength of 860 nm.

This optimum condition, however, does not last for very long, so on an everyday basis 850 mW

is a more typical figure of merit. In order to produce the detection light for CH molecules the

860 nm light from the Ti:Sapphire laser is frequency doubled to produce light at 430 nm.

Frequency doubling was first achieved in 1961 shortly after the invention of the laser. Peter

Franken and co-workers focused the intense light of a pulsed ruby laser into a crystalline quartz

sample and analysed the emerging light with a spectrometer [112]. They clearly saw a spot on

the photographic plate of their spectrometer at exactly half the wavelength. Note that only one

part in 108 of the incident wave was converted into the second harmonic. In fact, the actual

data point on the photograph of the spectrometer plate was so dim that the editor of the journal

where the results were published removed it, mistaking it for a speck of dirt.

If a laser beam travels through a dielectric medium the electric field polarises the material,

i.e. it displaces the electrons in the material from their equilibrium positions. This polarisation

P may be expressed as a Taylor series in the electric field E in the following way,

P = ε0

(
χ(1) · E + χ(2) · E2 + χ(3) · E3 + . . .

)
, (3.1)

where χ(n) are the n-th order susceptibilities of the material. The linear susceptibility χ(1) is

much greater than the other, higher order terms. However, for large electric fields (108 V m−1)

the higher order terms contribute a significant amount if the corresponding susceptibilities are

non-zero. If we now assume a monochromatic plane wave of the form E = E0e
−iωt + E∗0e

+iωt,

oscillating at an angular frequency ω, enters the medium the polarisation becomes

P = ε0χ
(1)E + ε0χ

(2)
(
E∗0E0 + E0E

∗
0 + E2

0e
−2iωt + E2

0e
+2iωt

)
+ . . . (3.2)

This can be rewritten as

P = ε0χ
(1)E + 2ε0χ

(2)E∗0E0 + 2ε0χ
(2)E2

0 cos (2ωt) + . . . (3.3)

The term proportional to χ(1) in equation 3.3 corresponds to the light that is re-radiated by

the medium in response to the incident light. This is the usual refracted wave that propagates

through the medium. The terms proportional to χ(2) contain very interesting components. The

first is a constant polarisation of the material proportional to E∗0E0 which establishes a constant

voltage across the material which is proportional to the light intensity. The second term is

at exactly twice the original frequency and is the reason for second harmonic generation in

materials with a non-zero χ(2). The polarisation varies at twice the fundamental frequency and

thus the re-radiated light oscillates at twice the fundamental frequency. In isotropic media the
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polarisation, or the displacement of the electrons in the material, is symmetric about inversion.

This means that P (−E) = −P (E). Hence in isotropic media such as glass or water the even

orders of equation 3.3 are zero which means that no second harmonic generation is observed in

such materials. However, in crystals that lack inversion symmetry the polarisation reacts non-

linearly to the electric field which makes second harmonic generation possible. To double the

red light from a Ti:Sapphire laser we use a lithium triborate (LiB3O5, or LBO) crystal. It has a

very broad transmission range that spans from the UV to the mid-infrared, a very high damage

threshold and a relatively large non linear susceptibility χ(2). In such a crystal the doubling

efficiency is still very small. To increase this efficiency it is useful to put the crystal into an

enhancement cavity which is resonant with the pump light. The pump light passes many times

through the crystal greatly increasing the intensity and hence the doubling efficiency.

The MBD-200 system is a bow-tie cavity system with a 2 cm long LBO crystal sitting in it.

The faces of the crystal are cut at Brewster’s angle for the fundamental wavelength. The cavity

amplifies the incident fundamental light which results in an overall doubling efficiency as high

as 16% per Watt of input power.

To achieve stable second harmonic generation in the MBD-200 system the length of the cavity

must be stabilised. This is done by using a technique that was developed by Hänsch and

Couillaud in 1980 [113]. It is based on monitoring the polarisation of the light that is reflected

from the doubling cavity. In particular, it makes use of an intra-cavity polariser, which in our case

is the crystal, the faces of which are cut at Brewster’s angle. The polarisation of the incoming

pump light possesses both vertical and horizontal polarisation components, the size of which can

be adjusted by rotating a λ/2 plate before the beam enters the cavity. The wrong polarisation

component (the one which experiences large losses at the Brewster surfaces of the crystal) is

reflected from the cavity. This beam serves as a reference. The part of the beam with the right

polarisation sees a cavity of low loss and experiences a frequency dependent phase shift. Part of

it leaves the cavity and overlaps with the reference beam. Any relative phase change between

the two beams due to a change in length of the cavity will make the combined beam elliptically

polarised which is equivalent to a superposition of two counter-rotating circularly polarized

components of different amplitudes. A λ/4 retarder then transforms the circular components into

orthogonal linear polarisations which are separated by a polarising beam splitter. Each beam

is then detected by a photodiode. The two photodiodes are connected through a differential

amplifier which provides a dispersion-shaped error signal with a zero-crossing at the resonance

frequency of the cavity. All one then needs to do is to feed the error signal into a servo-loop and

stabilize the cavity length through a piezo-mounted mirror. This locking technique allows the

doubler unit to follow scans of the fundamental frequency up to 30 GHz without decreasing the

doubling efficiency. If everything is optimally aligned we have achieved up to 130 mW of output

power with about 900 mW of fundamental light going into the doubler unit.
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Figure 3.3: A sketch of the transfer cavity lock. The light of a helium-neon laser is frequency
stabilised, sent through a scanning transfer-cavity and detected on a photodiode. The light from
the Ti:Sapphire laser is sent through the same cavity and detected on a second photodiode. We
see two transmission peaks and modulate the Ti:Sapphire laser frequency to keep its distance
to the He-Ne peak constant.

3.3.1 The Transfer Cavity Lock

The reference cavity of the Ti:Sapphire laser is not sufficiently stable for our purpose. The

frequency of the laser drifts by about 10 MHz per minute. This is not good enough if we want

to stay on resonance with the CH transition for long periods of time. In order to stabilise the

Ti:Sapphire laser against such temperature fluctuations we compare its frequency to the fre-

quency of a stabilised He-Ne laser via a transfer cavity. A schematic of this setup is shown in

figure 3.3. As a first step towards stabilising the Ti:Sapphire laser against frequency drift we

need to stabilise the reference He-Ne laser. The length of the He-Ne tube determines the distance

between two longitudinal (axial) cavity modes (free spectral range) to be c/2L, where c is the

speed of light and L the length of the tube. For a length of 21 cm we expect about 20 modes to

fit within the 1.5 GHz bandwidth of the neon gain medium. Due to mode competition it is ener-

getically favourable for two adjacent axial modes to have orthogonal polarisation. We separate

two orthogonal modes with a polarising beam splitter and detect them using two separate pho-

todiodes. If the voltage difference is zero the two modes are symmetrical about the centre of the

Doppler broadened neon emission profile (see figure 3.4). The relative intensity of the two modes

changes with the resonator length. Hence in order to stabilise the cavity we need to keep the

voltage difference between the photodiodes constant [114]. Whenever the photodiodes register

an imbalance between the two intensities the error signal is sent to a thin film heater attached to

the tube. This results in a significant local temperature rise and hence thermal expansion of the

tube which changes the length of the cavity and balances the two components [115]. It is useful

to bias the tube to a temperature well above ambient room temperature to minimize an asymme-

try between heating and cooling periods. Furthermore, any turbulent air or draft leads directly
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Figure 3.4: Left: Two axial cavity modes (red lines) under the gain bandwidth of neon. Right:
Oscilloscope trace of the transmission of the Ti:Sapphire laser through the transfer cavity. The
scope is triggered by the start of the voltage ramp. By fitting a Lorentzian function we determine
the width of the peaks to be δν = 8.5 MHz which corresponds to a finesse F = FSR/δν = 190.

to increased frequency noise of the output. A sealed box around the He-Ne tube is therefore

obligatory. The stabilised laser beam then passes through an optical isolator and is reflected by

another beamsplitter into a confocal cavity (Thorlabs SA200-5B) with a free spectral range of

FSR = 1.5 GHz. We call this the transfer cavity. The length of the transfer cavity is scanned by

applying a voltage sawtooth (0-10 V, with a variable offset) to a piezoelectric transducer which

is attached to one mirror. This voltage ramp is supplied by a ramp generator (TTI-TG210) at

a rate of 100 Hz. When the cavity is on resonance with the He-Ne laser the light is transmitted

through the cavity. It is then reflected by a second beamsplitter and focused onto a photodiode

(see figure 3.3).

A small fraction of the Ti:Sapphire laser beam is redirected by a glass plate oriented near

Brewster’s angle and sent through the same transfer cavity onto a second photodiode. The

ramp and the amplified output voltages from the two photodiodes are then read into the com-

puter via a data acquisition card (NI PCI 6024E). A piece of software, mainly developed by

Sean Tokunaga, then plots the signal from each photodiode against the ramp voltage. When

the cavity is on resonance (L = nλ/2 with n an integer and λ the wavelength) either with the

stabilised He-Ne laser or the Ti:Sapphire laser we register a transmission peak. An oscilloscope

trace of the Ti:Sapphire transmission is shown in figure 3.4. The software fits a Lorentzian func-

tion to each photodiode signal and finds the centre of the transmission peaks. It then calculates

the difference between the two ramp voltages at which the He-Ne and Ti:Sapphire transmissions

peak. This difference is kept constant by feeding back to the Ti:Sapphire frequency.

Using this technique we can lock the Ti:Sapphire frequency to the CH transition frequency

for a whole day. The software further allows to accurately scan the laser with respect to the

stabilized He-Ne and to apply very precise detunings.

Small temperature fluctuations can cause drifts of the transfer cavity length. This changes the

voltage corresponding to a He-Ne peak. Since the Ti:Sapphire has a different wavelength to the

He-Ne the voltage change due to the temperature fluctuations is slightly different for the two
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lasers by a factor of λ2
1/ (2ε)− λ2

2/ (2ε), where λ1 and λ2 are the wavelengths of the He-Ne and

Ti:Sapphire laser respectively and ε is the small length change due to temperature fluctuations.

This makes it necessary to lock the transfer cavity first to the He-Ne laser before the Ti:Sapphire

laser can be locked to the He-Ne laser via the transfer cavity. This can be achieved by adding

a variable offset to the ramp voltage. This offset is adjusted such that the voltage at which the

He-Ne peak appears is always constant.

3.3.2 The Detector

Next, we need a detector that is able to efficiently count the number of emitted photons from

the molecules. Photomultiplier tubes (PMTs) are commonly used as such photo detectors. The

high gain, low noise and fast response time make them to ideal detectors for our purposes. We

use the R928P model from Hamamatsu which uses a multialkali photocathode which is made

from a mix of sodium, potassium, antimony and caesium. This gives it a very large spectral

response between 185 nm and 900 nm which peaks at approximately 400 nm. When a photon

hits the photocathode it releases an electron with an efficiency of 20 %. This photo-electron is

accelerated into a dynode which is held at a large positive voltage. The single electron with its

large kinetic energy gets multiplied by secondary electron emission from the dynode. After eight

more multiplying stages the initial single electron has been multiplied to 107 electrons. Finally

the bunch of electrons reaches the anode where the sudden accumulation of charge results in a

sharp current pulse indicating the arrival of a photon at the photocathode. For a typical anode

rise time of 2 ns the current pulses can be as high as 0.7 mA. The small active area of 8×20 mm2

makes it necessary to construct an imaging system that covers a large solid angle. A sketch of

the detection chamber with the containing collecting optics is shown in figure 3.5. We use a

spherical mirror (Melles Griot 01MCG023) of diameter 90 mm and focal length of 30 mm, and

two aspheric condenser lenses (Comar 55AF73) of diameter 73 mm and focal length of 55 mm.

The mirror and one of the lenses are rigidly attached to the DN200CF top flange of the detector

chamber. The second lens is mounted inside the PMT assembly outside the vacuum chamber.

The optical elements are arranged such that a 1:1 image of the fluorescing gas pulse is formed

at the position of the photocathode. The detector covers a total solid angle of 1.27 steradians.

The PMT output can be connected to a fast amplifier in combination with a fixed-threshold

discriminator. The use of a discriminator ensures that only current pulses of a certain amplitude

are counted as photons and thus gets rid of most of the background noise. It also converts each

current pulse into a TTL pulse which is fed into a computer via a data acquisition card (NI

PCI-6251). This is known as photon counting mode and is useful for detection at low count

rates below 1 MHz. If the photon rate is too high the individual pulses cannot be distinguished

any more and the output appears as a constant current. The photon counting mode saturates
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Figure 3.5: A sketch of the detection chamber and light gathering optics.
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Figure 3.6: Left: Measured count rate versus photon input rate, showing that the photon
counting mode saturates at high count rates. Right: Measured output current (converted to a
voltage and amplified) versus photon input rate showing that in current mode the output of the
PMT remains linear even for high count rates.

as shown in figure 3.6. This continuous current is still proportional to the incoming photon flux

and can be converted into a voltage, amplified and read by the computer via the data acquisition

card. This is what is known as operating the PMT in current mode. In figure 3.6, on the right,

the output of the PMT in current mode is shown. In contrast to the photon counting mode

it starts to saturate only for very high count rates, that exceed 100 MHz. There exists a large

enough overlap between the two operating modes which allows us to calibrate the current mode

against the photon count mode. Once the exact detection efficiency is determined we can relate

the number of photons detected to the number of molecules in the detection volume.
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3.3.3 Detection Efficiency

We can now estimate the total efficiency of our detector hardware. We measured the transmission

through the lenses and the window at the detection wavelength to be Tl = 0.96 and Tw = 0.95

respectively. The reflectivity of the mirror is given by R & 0.87 and the quantum efficiency of

the PMT is Q(430 nm) = 0.2. Because the photo cathode can degrade over time we measured

the quantum efficiency with a calibrated light source and detector to verify the number. All

these factors with the solid angle covered by the first lens Ω =1.3 sr can be put together into an

overall wavelength dependent detector sensitivity

ε =
Ω

4π
(1 +R)T 2

l TwQ(λ) = 0.03 . (3.4)

We have also checked the alignment of the imaging system by imaging a light source (LED)

fixed at the position where the detection laser crosses the molecular beam. Although all of the

factors in equation 3.4 are slightly wavelength dependent, the main wavelength dependence is in

the quantum efficiency of the PMT. In certain circumstances it is useful to use a filter in front

of the PMT, which has to be accounted for in equation 3.4.

In addition to the detector efficiency, we also need to know how many photons are scattered

by each molecule after excitation with the detection laser. In general, the number of photons

emitted by a molecule after excitation depends strongly on molecular properties such as the

electronic transition probability, the Franck-Condon factors, the rotational line strength and the

intensity of the probe laser. All these factors have to be accounted for which involves a rather

long and elaborate description. Such a detailed description can be found in [116, 117] and thus

only a brief outline is given here.

We will consider a three level system where level 1 is the ground state of the molecule, level 2

is the electronically excited state, and level 3 represents all other relevant states of the molecule

interacting with laser light. First, however we start with the description of a 2 level system.

This is described by the usual optical Bloch equations (consult Foot’s book, for example [118]):

dρ̃22

dt
= −dρ̃11

dt
= −1

2
iΩ (ρ̃12 − ρ̃21)− Γρ̃22 , (3.5)

dρ̃12

dt
= −dρ̃

∗
21

dt
= −1

2
iΩ (ρ̃11 − ρ̃22)−

(
Γ

2
− iδ

)
ρ̃12 , (3.6)

where ρ̃11, ρ̃22 are the populations of levels 1 and 2, ρ̃11, ρ̃22 are the coherences, Ω is the Rabi

frequency and Γ is the damping rate. These equations are a set of coupled differential equations

that tell us the exact temporal evolution of the population in each state of the system under the

influence of an external oscillating light field. We can simplify the equations further by assuming

that the coherences reach a steady state on the time scale of the excited state lifetime, which is

short compared to the interaction time of the molecules with the laser. Setting dρ̃12/dt = 0, the
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equations reduce to
dρ̃22

dt
=

ΓΩ2

Γ2 + 4δ2
(ρ̃11 − ρ̃22)− Γρ̃22 . (3.7)

We can now identify a laser excitation rate R = ΓΩ2

Γ2+4δ2 and rename the state populations N1

as the population in the ground state and N2 the population in the excited state. The rate

equation for the excited state then becomes

dN2

dt
= R (N1 −N2)− ΓN2 . (3.8)

Another useful definition is the on-resonance saturation parameter

s0 =
I

Is
=

2Ω2

Γ2
(3.9)

where I is the intensity of the laser and Is = ε0c~2 (Γ/2)2 /d2 is the saturation intensity. Here

d =
〈

1
∣∣∣d̂ · E∣∣∣ 2〉 is the matrix element of the electric dipole operator in the direction of the

polarisation of the light. It is at the saturation intensity that the laser excitation rate starts to

exceed the spontaneous decay rate Γ or where the Rabi frequency Ω becomes comparable to Γ.

A molecule, however is slightly different from a two-level system. The cycle is usually not

closed because of leakage to other vibrational or rotational states in the electronic ground state.

We call these levels collectively state 3 which is a dark state, because the laser does not address

this level. We further assume that the decay to the ground state from level 3 is much longer

than the time scale of the laser-molecule interaction. If the laser excites the molecule from level

1 to level 2, there are now two ways it can decay: either back to level 1 at a rate rΓ, with r the

branching ratio, or to level 3 at a rate (1 − r)Γ. Including this second decay channel the rate

equation model becomes

dN1

dt
= −RN1 + rΓN2 +RN2

dN2

dt
= R (N1 −N2)− rΓN2 − (1− r) ΓN2

dN3

dt
= (1− r) ΓN2 . (3.10)

To get the number of fluorescence photons per molecule, np, we solve the coupled equations 3.10

for N2 and integrate ΓN2 over the laser interaction time τ [117]. The result is

np =
RΓ

R+ −R−

(
e−R+τ − 1

R+
− e−R−τ − 1

R−

)
, (3.11)

where

R± = R+ Γ/2±
√
R2 + rRΓ + Γ2/4 . (3.12)
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Finally we account for the transverse velocity distribution of the molecular. This velocity dis-

tribution leads to Doppler broadening of the resonance linewidth ∆fD = fαv/c, where f is the

centre transition frequency, α is the full divergence angle of the molecular beam, and c is the

speed of light. The divergence angle of the beam is mainly set by the distance of source to

the skimmer, the size of the skimmer aperture the detector size and the spatial extent of the

source. For typical parameters of our beam apparatus this amounts to a full divergence angle

α of 20 mrad which corresponds to a Doppler broadening of the resonance width (FWHM) of

50 MHz. We verify this by scanning the laser frequency across the resonance. In order to account

for this Doppler broadening we average the number of photons per molecule np over a Gaussian

distribution with a FWHM of ∆fD = 50 MHz,

n̄p =

∫∞
0 np exp

[
− (8 ln 2)δ2

8π2∆f2
D

]
dδ∫∞

0 exp
[
− (8 ln 2)δ2

8π2∆f2
D

]
dδ

. (3.13)

We can now use this model to predict the number of photons the molecules scatter when they

pass through the detection laser. Initially, we detected CH by exciting the Q2 (1/2) line of the

B2Σ− (v′ = 1) ← X2Π (v = 0) transition near 366 nm and detected the Stokes shifted fluores-

cence of the (v′ = 1→ v′′ = 1) band near 403.5 nm. This allowed us to use a filter in front of the

PMT that blocks any scattered light from the detection laser. Note that the filter used has a

transmission of 0.5 at 403.5 nm which has to be accounted for in equation 3.4. We switched later

to the A2∆(v = 0)← X2Π(v = 0) near 431 nm where our laser system is more efficient and we

thus get more laser power which we needed for subsequent experiments1. Due to the large Franck-

Condon factor of this transition the majority of the population decays back into the vibrational

ground state which prevents the use of interference filters. For the B-X transition Γ = 2.4 MHz,

the electronic part (see previous chapter) of the transition dipole moment de = 0.271 e a0, where

e is the charge of the electron and a0 = 0.529× 10−10 m is the Bohr radius. In order to calculate

the full transition dipole moment we need to include the vibrational and rotational part as well

(see previous chapter). The Franck-Condon factor accounts for the vibrational part and is 0.1

for this transition. For the rotational or angular part we need to evaluate the 3J-symbol for the

specific transition and sum over the different M sub-levels in the final J-state. This amounts to a

factor of 0.45 in the branching ratio r. Hence the total transition dipole moment, including the

vibrational and angular part becomes
√

0.1× 0.45× d2
e = 0.05 e a0= 4.9× 10−31 C m = 0.13 D.

This yields a saturation intensity Is = 177 W m−2 which corresponds to 3.2 mW of laser power

for a beam size of 6×3 mm2. If we put these numbers into our model we expect on average 0.1

photon per molecule if the laser intensity is set to the saturation intensity Is and the molecules

are travelling at a speed2 of 820 m s−1, which corresponds to an interaction time of τ = 3.7 µs .

Figure 3.7 on the left shows a plot of the CH signal as a function of the probe laser intensity.

1We also wanted to rule out a potential pre-dissociation in the B state which would decrease the CH signal.
2This is the velocity we measured for a particular molecular source. How we measure this and why the molecules

are moving with that particular velocity will be explained in the next section
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Figure 3.7: Left: CH signal plotted as a function of the probe laser intensity for the X-B
transition (blue dots). The solid red line is a plot of equation 3.13 using the experimental data
mentioned in the text. The model is normalised such that n̄p = 1 at 33 mW cm−2. Right:
The same data as on the left but for the A-X transition. The model is normalised to n̄p = 1
at 350 mW cm−2.

Note that there are no fitting parameters used. The model is normalised to 1 for a laser intensity

of 33 mW cm−2. The model shows striking agreement with the data and thus can accurately

predict the number of photons we expect on average per molecule.

Knowing the number of photons we expect per molecule for a given transition, the transmis-

sion and solid angle subtended by the light-gathering lens, the reflectivity of the mirror and the

quantum efficiency of the photomultiplier tube we can estimate our total detection efficiency

for the B2Σ−(v = 1) ← X2Π(v = 0) transition to be n̄p · ε = 0.15% for a laser intensity of

177 W m−2 and an interaction time of 3.7 µs.

The A state has a slightly longer lifetime of 540±5 ns as compared to the B state. So

the natural linewidth Γ is 1.85 MHz and the electronic transition dipole moment is 0.294 e a0.

The Franck-Condon factor for this transition is 0.9913 and the rotational factor is 0.3. This

gives a total transition dipole moment, including the vibrational and angular part of D =

0.17 e a0 = 1.4× 10−30 C m = 0.43 D. The saturation intensity Is =12.3 W m−2. Using these

numbers we expect on average 0.2 photons per molecule for molecules travelling at a speed3

of 570 m s−1 with a laser intensity of 71 mW cm−2 (5 mW in a 0.4×0.15 cm2 beam). For this

transition we did not use any filter because the majority of the fluorescence stems from light of

the same wavelength as the laser excitation. The comparison of the experimental data and the

model is shown on the right of figure 3.7. This yields a total detection efficiency for the X-A

transition of n̄pε = 0.6%.

3The X-A data was taken with a different source and thus a different velocity.
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3.4 The Ultimate Guide to Sources for the CH Molecule

By the 1950s molecular beams were still produced in the very same way as Dunoyer invented the

technique in 1911 (see introduction). The apparatus consisted of a gas supply chamber, or source

chamber, which was separated from the rest of the beam machine by a slit. The gas molecules

in the source chamber have a Maxwellian velocity distribution and simply effuse through a slit

into the science chamber. In 1950 Arthur Kantrowitz and Jerry Grey proposed that if one places

the slit in the flow by a miniature supersonic nozzle similar to the ones used in steam turbines

or rocket engines one can produce molecular beams of very high intensity [119]. An isentropic

expansion through the nozzle converts most of the random translational and internal energy of

the source chamber gas into directed motion. They realised that such a beam has a narrow

velocity distribution and high average velocity.

In thermodynamics an isentropic expansion is both an adiabatic and reversible process with

no change in the total entropy of the system. Hence there is no loss due to friction or dissipative

processes but both the temperature and the pressure of the gas change due to the expansion

of the gas. This leads to very efficient cooling of the gas molecules and thus reduces popula-

tion in excited rotational and vibrational states. Kistiakowsky and Slichter implemented the

Kantrowitz-Grey technique experimentally [120]. However, due to the limited pumping capac-

ity available at that time they achieved only a partial success. Becker and Bier were the first

to report experimental evidence that the Kantrowitz-Grey technique indeed works [121]. Otto

Hagena showed in 1963 that the use of commercially available electromagnetic valves, in partic-

ular injection valves of combustion motors to modulate the molecular beam results in improved

beam characteristics compared to the continuous type [122]. Pulsed supersonic beams produce

higher densities, colder internal state distributions and a narrower velocity distribution. Fur-

thermore, the use of such pulsed beams reduces the total gas load and thus the high pumping

speeds required for nozzle beams. A wide variety of pulsed valves have been developed since.

We tested three different valve types which will be described later in more detail. Modern valves

can generate intense gas pulses with a peak particle number of 1016 in pulses as short as 7 µs.

This corresponds to a beam brightness of 1022 sr−1 s−1 [123]. Such short pulses make it possible

to design a very compact molecular beam apparatus with high quality supersonic beams.

3.4.1 How to Produce a Supersonic Beam of Diatomic Radicals

Interest grew over the decades to produce molecular beams of ever more species. Until the end

of the 1970s only gases with a high enough vapour pressure allowed for a high enough pressure

behind the valve to produce a supersonic beam. Abauf et al. [124] conceived the idea of seed-

ing small concentrations of the molecular species of interest into an inert carrier gas to create

intense beams of a large variety of complex and heavy molecules. It turns out that even for
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fractions as low as 1% the supersonic beam still outperforms the traditional effusive source in

terms of number density, velocity spread and temperature. In 1969 Miller and Patch combined

the seeding technique with a high frequency gas discharge to create an intense supersonic beam

of oxygen atoms by using a mixture of 5% O2 in helium [125]. The first to combine a DC glow

discharge with a nozzle type source was Searcy in 1974 [126]. He produced an intense beam of

excited helium atoms this way. In the same year Larsen et al. succeeded to produce supersonic

beams of alkali atoms [127] based on the seeding technique of Abauf et al. In 1976 Valentini

and co-workers combined a high temperature oven with a graphite nozzle to thermally dissociate

halogen molecules and create atomic beams of chlorine, bromine and iodine [128]. Such a heated

nozzle is a very versatile technique to produce atoms and radicals. The hot nozzle, however, also

leads to a very hot beam with a wide velocity distribution.

High frequency discharges only work for very low gas pressures and thus cannot make use of

the full supersonic expansion cooling. Moreover, the DC glow discharge developed by Searcy is

generally prone to arc discharges in a high pressure gas environment which has severe effects

on the radical production efficiency. In 1983 Droege and Engelking developed a simple corona

discharge source in order to circumvent the problems of these earlier discharge sources [129, 130].

A corona discharge is the low current version of an arc discharge where a high voltage is applied

to a wire of small diameter which is inserted into a gas flow tube and ends just behind the

nozzle aperture. When gas is present at the nozzle a small corona discharge forms. Droege and

Engelking produced the OH radical using this method by dissociating a mix of 20 mbar of water

in 4 bar of helium and the NH radical by dissociating NH3. They observed the remarkable effect

that the rotational temperature of the molecules decreased to only 11 K but that the vibrational

temperature only to 3400 K. This indicates that the various degrees of freedom do not reach

thermal equilibrium.

In parallel to the development of these early discharge sources for supersonic beams people

realised that one could use intense light pulses to dissociate precursor molecules via a process

called photolysis. This foundation of using light to induce and study photochemical reactions

can be traced all the way back to 1949 to the work of Manfred Eigen, Ronald Norrish and George

Porter who invented the technique of flash photolysis in that year [131]. They were awarded the

Nobel Prize in Chemistry in 1967 for “their studies of extremely fast chemical reactions, effected

by disturbing the equilibrium by means of very short pulses of energy”. Back in the 1940s they

used simple gas-discharge flash-lamps that were developed for photographic purposes to induce

these photochemical reactions. By using a 1 m long tube with large tungsten electrodes they

could produce 104 J in a 4 ms flash. The flash lamps were later replaced by pulsed gas lasers such

as the nitrogen laser and finally excimer lasers which became commercially available by 1977.

Excimer is a portmanteau of “excited dimer” and refers to the role of the active medium in such

a laser. It typically uses a combination of a noble gas (Ar, Kr or Xe) with a reactive halogen gas

(F, Cl). An electrical discharge excites and ionises the Ar atoms and dissociates the F2 molecules

into excited or ionised F atoms. The excited or ionised Ar and F atoms form an excited dimer
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ArF which has a lifetime of approximately 10−8 ns. In the ground state the molecule dissociates

very quickly into its constituents which guarantees a large population inversion. Depending on

the gas mix that is used different output wavelengths can be generated. Early work concentrated

on the photolysis studies in low pressure spectroscopy cells until Monts and co-workers applied

the technique to create supersonic beams of the highly reactive methylene radical (CH2) [132].

They focused the 337 nm light of a pulsed N2 laser beam onto a pulsed supersonically expanding

mix of 1% ketene (CH2CO) in 3 bar of helium in order to produce CH2. This marked a big

breakthrough because it was the first time that unstable molecules or free radicals had been

produced in a cold supersonic free jet expansion. In 1981 Heaven and his colleagues used for the

first time the output of an ArF excimer laser to create a supersonic beam of SH and CN radicals

by photolysis of hydrogen sulfide (H2S) and BrCN respectively. They detected the products via

laser induced fluorescence and could clearly show the versatility of this method and how useful

cold spectra of radicals can be, i.e. the improved signal-to-noise ratio and resolution compared

to spectra recorded at ambient temperatures in a spectroscopy cell.

All these sources still rely on a stable precursor that has a reasonable vapour pressure at a

manageable temperature. Interest grew, especially in the analytical chemistry community, to

analyse nonvolatile organic molecules. Various groups came up with ideas on how to bring the

molecules into the gas phase. The most successful one has been suggested by Posthumus and

associates in 1978 [133]. They coated the molecules onto a stainless steel probe which was placed

under vacuum into a mass spectrometer. They then focused a pulsed laser onto the target and

the resulting ablation plume was analysed in a mass spectrometer. To most people’s surprise the

fragile organic molecules survived the violent ablation process and thus could be analysed. It

took not very long that this idea of ablating a solid precursor as a means to produce a supersonic

jet would be picked up in the physical chemistry community.

This was mainly motivated by the fact that people wanted to study complex metal clusters

and designed ever more sophisticated ovens combined with supersonic nozzles to produce con-

tinuous cluster beams of nearly any metal. These ovens were very challenging to operate and

suffered from many disadvantages. By the early 1980s Vladimir Bondybey and Richard Smalley

independently conceived the idea of laser ablation of the metal into a supersonically expanding

helium carrier gas [134]. Smalley mounted a reaction channel onto the pulsed valve which in-

creased the carrier gas density around the laser ablation plume in order to cool the atoms back

to room temperature where the condensation into clusters begins. By varying the length of this

nozzle channel he could even control the extent of cluster formation. At the end of this channel

the mixture supersonically expands into the vacuum chamber and leads to a cold, collision-free

and well-collimated beam of metal clusters. Later in 1985 Smalley and his group, while at Rice

University in Houston, Texas, used the very same technique with graphite as a target in order

to study carbon clusters. By analysing the mass distribution of their cluster beam they found

a very pronounced peak at a mass of 60 carbon atoms and another smaller one at a mass of
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70 carbon atoms. They had discovered a very intriguing new form of carbon the Buckminster-

fullerenes, for which Kroto, Curl and Smalley received the Nobel Prize in Chemistry 1996.

Simard et al. showed that the technique of laser vaporisation in combination with supersonic

cooling can also be used to produce very intense molecular beams and achieve very low tempera-

tures and thus very high resolution spectra for molecules such as ZrO [135]. Before the invention

of the laser desorption technique people relied on high source temperatures for molecular radi-

cals such as ZrO. Arcs, ovens, exploding wires, flames or discharges were used to produce these

radicals at very high temperatures which led to extremely complex spectra and suffered from

very low concentrations of the species of interest. These hot sources resulted in broad spectra

which prevented the investigation of small effects such as hyperfine interactions and interactions

with external fields.

Simard et al. produced these high temperatures by focusing the beam of a XeCl excimer laser

onto a rotating Zr rod. A mixture of 0.2% of molecular oxygen in 3.6 bar of helium expands

through a pulsed valve into the ablation plasma. The vaporised Zr atoms then react with the

oxygen molecules to form the diatomic species ZrO. The supersonic expansion efficiently cools

the products from more than 104 K to very low temperatures of only a few K. Other groups

immediately realised the importance and underlined the versatility of such a laser evaporation

source which allowed them to study a wide range of small molecular radicals with great accu-

racy [136, 137]. Using this technique Ebben and colleagues produced and detected many different

molecules: CuH, CH, SiH, CuO to FeO to name a few. These radicals are of great interest to

chemists and physical chemists in order to understand fundamental chemical processes. Hence

detailed knowledge about their electronic structure and therefore their electronic spectra was

needed and were now accessible through the invention of this technique. Many other molecules

followed soon after.

By the mid 1990s the group of John Doyle at Harvard University took this idea a step further:

They surrounded the target by a copper box (V ≈ 1 cm3) which was connected to a cold plate

(4 K) of a helium cryostat. The box is filled with helium gas which thermalises with the cold

walls of the copper box. This has two major advantages: First the temperature of the carrier

gas is reduced to cryogenic temperatures which results in a slower molecular beam as compared

to the traditional supersonic beam. This will be discussed in more detail in the next section.

Second by using hydrodynamic effects one can extract a large fraction of the ablation plume

into a molecular beam through an aperture in the box. This can boost the overall flux by up

to two orders of magnitude as compared to the supersonic source. This simply stems from the

fact that the interaction volume between the carrier gas and the ablation plume is much larger.

However, the typical temporal width of such an extracted pulse of molecules is 10 - 100 times

wider. This is mainly because the width is now not limited by the duration of the pulsed valve

but rather by the time it takes to sweep the molecules out of the cell. This technique works well

for solid targets that can be attached to the inside of the copper box. If one wants to introduce

gaseous precursors or even liquids it becomes more challenging because of ice that forms at the
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extraction hole and on the cell walls.

We tried nearly all of the techniques described above to produce an intense beam of CH

molecules, but before I describe the various sources in more detail a brief description of the

supersonic expansion is presented.

3.4.2 Supersonic Expansion

Early experiments showed that the simple model of adiabatic isentropic expansion introduced

by Kantrowitz and Grey is sufficient to describe a supersonic beam very accurately [119]. This

means that effects like the viscosity of the gas and heat transfer can be safely neglected.

Such a source consists of a high pressure region which is typically filled with an inert gas

to a pressure p0 at a temperature T0. A small aperture connects this high pressure region

with the source chamber which is evacuated by vacuum pumps to a very low pressure p1. The

pressure difference leads to a steady flow of the gas from the high pressure reservoir into the

low pressure chamber at a flow velocity v. The flow is driven by a pressure gradient, so the

correct thermodynamic potential to describe the system is enthalpy H which is defined as the

total internal energy (rotation, vibration, kinetic energy of the gas particles) U plus the energy

required to make room for the system pV where p is the pressure of the system and V its volume:

H = U + pV . (3.14)

In differential form this can be written as

∆H = ∆U + p∆V + V∆p . (3.15)

The first law of thermodynamics tells us that a change in the internal energy of the system is

equal to the heat added to the system Q minus the work done by the system W :

∆U = Q−W . (3.16)

We do not add any heat to our system so Q = 0 and the work done by the system is W =

p1V1 − p0V0. The work done by the system also creates the mass flow between the chambers

which results in a kinetic energy of the gas of 1
2mv

2, where m is the total mass of the gas flowing

through the nozzle with a velocity v. The total change in internal energy is thus

∆U = −(p1V1 − p0V0)− 1

2
mv2 (3.17)
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At this point it is useful to introduce the internal energy u = U/m and enthalpy h = H/m per

unit mass. Using ∆u = u1 − u0 and equation 3.15 the change in enthalpy is

∆h = −1

2
v2 . (3.18)

In our sources we are mainly using monatomic inert gases such as He, Ne, Ar and Kr. Thus

we can approximate the gas as an ideal gas with pV = NRT , where N is the amount of gas in

moles and R is the universal gas constant. Both the enthalpy h = cpT and the internal energy

U = cvT are then only a function of the temperature T . The rates at which these quantities

change with temperature are called the specific heat capacity at constant volume cv = du/dT

and the specific heat capacity at constant pressure cp = dh/dT . This allows us now to relate the

change in internal energy ∆u due to the isentropic expansion to a change in temperature.

∆u =

∫ T0

T1

cv dT (3.19)

∆h =

∫ T0

T1

cp dT (3.20)

Furthermore, we can express the velocity of the gas pulse as a result of the pressure gradient

between the two chambers as a function of the temperature by using equations 3.18 and 3.20 to

v =
√

2cp(T0 − T1) . (3.21)

Instead of using the specific heat at constant pressure it is more common to use the adiabatic

ratio γ = h
u = cp/cv because it is directly related to the degrees of freedom of the atoms/molecules

f of an ideal gas γ = 1 + 2
f . The specific heat cp then becomes

cp =
γ

γ − 1

R

mmol
(3.22)

Where mmol is the molar mass of the gas. We can now express the maximum velocity of the gas

after expanding into vacuum as a function of the adiabatic ratio:

v =

√
2R

mmol

γ

γ − 1
(T0 − T1) . (3.23)

The most important result here is that the final velocity of the supersonically expanding gas

scales with the square root of the temperature of the gas behind the nozzle. This is also the

reason why it helps to use a buffer gas cell which is connected to a 4 K helium cryostat. This

lowers the initial temperature and thus results in a beam with a terminal velocity that is about

9 times lower as compared to the room temperature helium beam. Furthermore, we see that the

velocity of the gas pulse scales inversely with the mass of gas particles. Thus using heavier gases

also results in a slower beam. Characteristic velocities for typical carrier gases used in room
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temperature molecular sources such as He, Ne, Kr, Ar and Xe are 1744, 777, 552, 381, 305 m s−1

respectively.

Let us now turn to the question what temperatures T1 we expect the gas to reach after the

expansion. There is an alternative way to describe the supersonic expansion which is very useful.

This description makes use of the Mach number M , which is the ratio of the average flow velocity

of the expanding gas to the local speed of sound. This is also the more traditional way which

was introduced by Kantrowitz and Grey and is a very general and elegant way to express all

the thermodynamic variables with only two parameters, γ and M . A detailed derivation of this

formalism can be found in [138]. The expression for the temperature then becomes:

T

T0
=

(
1 +

γ − 1

2
M2

)−1

. (3.24)

Since we are dealing with an expanding gas through a nozzle both the temperature and the

Mach number are position dependent. Considering the continuum properties of the expansion

and assuming isentropic, compressible flow of an ideal gas with a constant specific heat ratio

and by solving the fluid mechanics equations of conservation of mass, momentum and energy an

expression for M(x) can be found:

M(x) = A

(
x− x0

d

)γ−1

− 1

2

(γ + 1)/(γ − 1)

A[(x− x0)/d]γ−1
, (3.25)

where d is the nozzle diameter, which in our case is 0.8 mm, x0/d = 0.075 and A = 3.26 are

constants of monatomic gases. Using this model we expect that the gas pulse cools to 1.5 K within

20 mm and to 0.24 K within 80 mm downstream from the nozzle from an initial temperature of

T0 = 293 K. So we can clearly see how effective the cooling due to a rapid expansion can be.

This is why the technique has become the standard technique to generate molecular beams.

It is useful to introduce the ideal free-jet centerline intensity per steradian per second in

terms of the nozzle flow rate. This makes it possible to compare our sources to the ideal case

and lets us quickly estimate what molecular fluxes we can expect from the different production

techniques. It further allows us to find an approximate production efficiency with respect to

the ideal supersonic expansion. Beijernick and Verster found an analytical form to describe the

mass flow rate out of a nozzle source and found good agreement with experimental results [138,

139]:

I0 =
κṄ

π
, (3.26)

with

Ṅ = F (γ)n0

√
2kBT0

m

πd2

4
and F (γ) =

(
γ

γ + 1

)1/2( 2

γ + 1

)1/(γ−1)

, (3.27)
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where I0 is the centre-line beam intensity in molecules per steradian per second, κ = 1.98 is the

peaking factor (this factor is 1 for an effusive source), n0 = p0/(kBT0) is the initial gas density

behind the nozzle, kB the Boltzmann constant, T0 the temperature of the gas behind the nozzle,

m the mass of the gas particles, d the nozzle diameter and γ = 5/3 for a monatomic gas. For

typical parameters in supersonic sources (p0 = 4 bar of argon, d = 0.8 mm, T0 = 293 K) this

yields an ideal beam intensity of I0 = 6.4× 1021 sr−1 s−1, which translates to 6.4× 1017 sr−1 per

pulse for a typical pulse duration of 100 µs. Now we know how to describe the expansion and we

know what velocity and final temperature we expect after the expansion. In a typical experiment

the molecules, however, do not only possess a single velocity but there exists a distribution of

speeds in the molecular beam about the central velocity calculated earlier. In our laser induced

fluorescence detector this appears as a time-dependent fluorescence signal, which is called the

time-of-flight profile. In order to find an expression for this velocity distribution, let’s assume a

box full of gas which has a temperature T . The distribution of velocities v of the molecules in

an interval of v and v + dv can be described by the function found by Maxwell and Boltzmann

f(v) dv = Av2e
− mv2

2kBT dv (3.28)

where m is the mass of the particle, kB is the Boltzmann constant, and A is a normalization

constant. If we now drill a hole in this box the number of molecules leaving the hole with a

velocity in the interval between v and v+dv have a distribution of F (v) ∝ vf(v) dv. The extra v

simply stems from the fact that we want to know the velocity distribution of a flux of molecules

out of an aperture. Furthermore, in a beam the velocities are distributed about a centre velocity

v0 which is equivalent to the stream velocity of the gas pulse we calculated earlier. Putting

everything together the velocity distribution of the flux of molecules in a molecular beam with

a velocity between v and v + dv is

F (v) dv = Bv3e
−m(v−v0)2

2kBT dv . (3.29)

Our detector is not detecting velocities directly but rather counts the number of molecules as a

function of time, hence the name time-of-flight profile. We should therefore transform 3.29 into

a distribution of arrival times [140]

h(t) dt = B
L4

t50
exp

[
− mL2

2kBTt40
(t− t0)2

]
dt , (3.30)

with v = L/t and dv = −(L/t2)dt, where L is the distance of the detector from the source,

t0 = L/v0 and it is assumed that the spread of arrival times is small compared to the time-of-

flight t ≈ t0. For many pulsed molecular source types we can safely assume that the source emits

an infinitely narrow pulse with no spatial spread [140]. We can see that the spread in the arrival

times of the molecules is mainly due to the finite temperature T of the gas pulse. By fitting to
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the time-of-flight profile we can extract the full width at half maximum (FWHM) w = 2σ
√

2 ln 2

of the pulse, where σ is the standard deviation of the Gaussian distribution in equation 3.30,

which is a direct measure of the translational temperature T of the gas pulse

T =
σ2mL2

2kBt40
=

w2

8 ln 2

mL2

kBt40
. (3.31)

By using two well separated detectors one can test if the assumptions in 3.30 that the source

produces molecules with zero temporal and spatial spread is justified. For a typical laser evap-

oration source the error in T by using only one detector has been determined to be of the order

of 1% [140]. However, for discharge sources these assumption might not hold any more due to

the relatively large volume involved in the discharge process. Hence using one detector sets only

an upper limit to the temperature. For an ideal supersonic beam of argon the atoms travel at

552 m s−1 and have a translational temperature of 0.25 K (at the position of the skimmer) which

corresponds to a velocity spread of ∆v/v0 = 4%. This small velocity spread in combination with

the small angular divergence of the beam and the reduced occupation of excited states makes

the supersonic source so superior to a conventional, effusive oven source.

A very important figure to estimate the efficiency of the source is the flux of molecules per

steradian per second (or per pulse) or the density of the molecules at the detector. The detector

registers a photon count rate in MHz within a certain temporal width of the gas pulse. For a

supersonic beam of CH molecules in argon we measure photon count rates typically of the order

of Γp = 10 MHz in a pulse the FWHM of which is w = 90 µs. So the total number of photons

we register per shot is nc = Γp × τ = 900. For the A-X transition we know from the detector

calibration that the efficiency is n̄p × ε = 0.6%. Hence we detect N = nc/(n̄pε) = 1.5 × 105

molecules per shot. This allows us to calculate the flux through the detection area.

The detection area is determined by the height of the laser beam along y and the length of the

effective detection area along x. This can either be the size of the PMT along x or the finite spa-

tial acceptance of the imaging system due to vignetting effects. By placing an aperture in front

of the PMT one can carefully map the signal as a function of the effective detection area along

x. We found that decreasing the PMT aperture along x from 20 to 10 mm changed the signal

only by a few per cent. The background scatter from the detection laser, however, decreased by

nearly a factor of 2. We estimate a detection area of A = 0.5×1 cm2 which corresponds to a solid

angle of the detection area of Ωd = A/L2 = 0.8× 10−4 sr, with L being the distance between the

nozzle and the detector. The flux per steradian per pulse becomes φ = N/Ωd = 2.25× 109 sr−1

per pulse or Φ = φ/w = 2.5× 1013 sr−1 s−1 for a pulse width of w = 90 µs.

What density of molecules in the detection volume does that correspond to? If we assume

that 1.5× 105 molecules pass through the detection area A = 0.5 cm2 in a time t = 90 µs with a

velocity v = 570 m s−1 the density is given by ρ = N/(Avt) = Φ/(vL2) = 5.1× 104 cm−3.
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3.4.3 Beams of CH molecules

Studies of the CH molecule as well as the production techniques have a long history and go back

as far as the 1920s when early spectroscopic investigations were performed in hydrocarbon flames

of a Bunsen burner or discharge lamps. Such lamps consist of a vacuum glass tube that contains

two electrodes. The tube is filled with benzene gas and when a high voltage is applied to the

electrodes an electric discharge creates bright arcs which can be analysed with spectrometers

[141–143]. The analysis of these emission spectra played an important role in the development of

our understanding of spectra of diatomic molecules. Later on, more refined techniques evolved

to deliberately produce CH for the sole purpose of measuring the spectra more accurately and

even measure the lifetimes of its excited states. These systematic approaches to CH production

involved electron bombardment of methane, photolysis of diazomethane and methane by means

of the intense light of a Xe flash lamp and controlled discharges in Geissler-type tubes.

Herzberg and his colleagues used all these techniques to produce a wide range of diatomic

radicals and generated a large amount of spectra this way. Especially the flash-photolysis tech-

nique developed in his lab turned out to be extremely fruitful. It consists of two quartz tubes

next to each other, about 1 m long and 1 cm in diameter. One tube contains the gas which

should be photo-dissociated and analysed and the other tube is used to create an intense flash of

light. The flash tube is filled with Xe and dissipated 4800 J (600 µF at 4 kV) in a flash duration

of 1.5 ms [144]. After the flash has done its job a second small white-light flash is ignited the

light of which is directed through the gas tube containing the photolysis products. The beam

which passed through the specimen tube is then analysed with a grating spectrometer. Still,

today we rely on the immense amount of spectra taken by Herzberg over 50 years ago using this

very method. He was awarded the Nobel Prize in Chemistry 1971 “for his contributions to the

knowledge of electronic structure and geometry of molecules, particularly free radicals”.

By the end of the 1970s, nearly fifty years after the first spectrum of CH had been recorded

there was still interest in the spectroscopy of this molecule. The flash tubes were replaced by

excimer lasers. In particular, the photolysis of CHBr3 turned out to be a very efficient way to

produce CH in a spectroscopy cell. With the advent of tunable pulsed dye lasers, laser induced

fluorescence entered the stage of CH spectroscopy as well [145]. The first pulsed supersonic beam

of CH was produced by Shinohara and Nishi in 1982 [146]. They did not intend to produce CH

in the first place but rather studied the photo-fragments of acrolein (C3H4O). They focused the

193 nm radiation of an ArF excimer laser into the supersonic expansion of pure acrolein and

found strong emission of A-X radiation from excited CH molecules.

The first to deliberately create a supersonic beam of CH molecules were Ubachs and colleagues

in 1986 using a very different technique [147]. A microwave discharge (100 W, 2.45 GHz) through

a mixture of H2O and O2 produces hydrogen and oxygen atoms which are flowing into a reac-

tion zone where acetylene (C2H2) is added. The authors did not specify the actual reaction that

leads to CH formation but do mention that the acetylene has to be added near the supersonic
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expansion because the unstable CH molecules would immediately react with other discharge

by-products. It is also very interesting that they could not observe any CH production when

they used H2 or O2 only without adding any H2O which indicates a quite complicated reaction

path.

In 1998 Lindner and colleagues [148] reported the first supersonic beam of CH produced by

photolysis of bromoform using 193 nm and 248 nm excimer light. We investigated and charac-

terised this source and it will thus be described in more detail later. In the same year Weibel et

al. showed the production of CH via a supersonic corona discharge of 3% CH4 in argon [149]. The

source Weibel and his colleagues used is based on the design by Engelking [130]. We developed

a source based on a glow discharge across CH4 as well which will be described in the following

section.

Interest grew to study the fundamental reactions of CH with other molecules, particularly due

to the dominant role of CH radicals as an intermediate step to create air pollutants such as

nitrogen and carbon oxides via the combustion of hydrocarbon fuels. The production methods

described so far, however, always led to other radicals of precursor material as well which had

substantial influence on the measured reaction rates. This need to produce pure molecular beams

free of any other by-products led to the invention of sophisticated sources in combination with

manipulation techniques using electric and magnetic fields. An attempt to build such a clean,

high intensity source of CH was reported recently by the group of Kasai and Ohoyama from the

University of Kyoto [150]. They developed a very unique type of source which is based on a well

known chemical reaction. We have built and characterized this source as well and it will thus

be described in more detail. But let me first introduce the general source hardware which most

of the sources we built share.

3.4.4 Source Hardware

The heart of the source is a pulsed valve. It is a General Valve Series 99 with a 0.8 mm diameter

orifice. It is actuated by passing a current pulse through a solenoid which exerts a magnetic force

onto a ferromagnetic armature. A spring inside the armature pushes it back after actuation and

seals the orifice with a PTFE poppet attached to it. A homebuilt voltage supply is triggered

by the computer control and sends a voltage pulse of typically 230 V with a duration of 150 µs

to the valve’s solenoid. The valve then opens and releases a gas pulse with a typical FWHM of

250 µs.

The valve is rigidly attached to a translational valve assembly which allows to position it within

the source chamber with high accuracy. The special design of this valve assembly allows further

to optimize the valve position in x and y while the source is running under vacuum. In order to

change the z-direction, i.e. the distance between the skimmer and the valve the chamber must

be vented and the distance adjusted.



Experimental Setup and Molecular Sources 86

Valve Assembly

Valve Translation

Valve Valve

Valve Cooling

Skimmer

Source Chamber Section View (Centre Cut)

z

x

y

z

y

x

Figure 3.8: Left: A detailed view of the source chamber. Right: A section view through the
centre which reveals the skimmer assembly.

At a later stage of the experiment this valve assembly was replaced by an ultra high vacuum

compatible XYZ-stage (VG Scienta Miniax XYZ) which allows for even more accurate valve

positioning and very precise measurements of the CH flux as function of the valve-to-skimmer

distance.

3.4.5 A Glow Discharge Source for Producing CH Molecules

Until high intensity pulsed lasers became available one of the most widely used tools for gen-

erating radicals for spectroscopic purposes was based on electrical discharges. Engelking and

co-workers pioneered the technique of combining an electrical discharge with a supersonic expan-

sion. This allowed to greatly simplify the spectra of molecular radicals decreasing the congestion

by hot vibrational bands and thermal excitation of rotational levels. Davis et al. then took this

idea further and applied it to the pulsed supersonic jet [151]. Furthermore, they replaced the

corona discharge by an intense glow discharge. The corona discharge typically extended into

the expansion region of the gas pulse which caused additional heating and chemical degradation

of the species of interest. The glow discharge on the other hand is ignited in a very short dis-

charge channel (1 mm) in a high gas density. The radical precursors thus only spend a few µs

in the discharge environment which is too short for gas kinetic radical-radical reactions. After

the production all the reactions freeze out in the supersonic expansion and Davis and colleagues

could measure densities of OH molecules as high as 8× 1012 cm−3 1 cm downstream from the

nozzle and could put an upper limit to the rotational temperature of Trot < 25K. They used

a mix of 0.1% H2O in neon at a total pressure of 400 Torr. They could further show that the

OH production scales linearly with the discharge current which indicates that the production

efficiency was limited by the electron flux to about 1−2% and not by subsequent radical-radical



Experimental Setup and Molecular Sources 87

25.00
R
4.60

 1.00

1.80

2.80

 4.00

R18.60


1.30

Valve
Ceramic
Spacer

Ceramic Spacer
Ground

Electrode
End Cap High Voltage Eelctrode

(Stainless Steel)

Figure 3.9: A sketch of the discharge assembly. A high voltage steel electrode is separated
from ground by a ceramic spacer. The whole assembly is directly attached to the solenoid valve.

reactions.

We attempted to produce CH molecules using a pulsed discharge similar to the one used by

Lewandowski and co-workers [152]. We attached a discharge assembly to the valve and supplied

a negative voltage of up to 3.5 kV through a high voltage MOSFET switch to the front elec-

trode. A sketch of this discharge assembly is shown in figure 3.9. The switch is controlled by

the computer via a TTL input which makes it possible to adjust the duration and start of the

high voltage pulse with an accuracy of 1 µs. A variable resistor in series with the voltage supply

and the discharge limits the discharge current. This is important to stabilise the discharge and

prevents arcing. As the voltage is increased in the presence of the gas a small current flows be-

tween the electrodes that stems mainly from ionising radiation. At a certain voltage, the ignition

voltage, the emitted electrons start to ionise the gas atoms. An avalanche process starts and

becomes sustainable if enough current can be drawn from the power supply. If the power supply

can deliver more current the gas will break down and will start to glow. This is known as the

glow discharge regime and is accompanied by a sudden drop in discharge voltage. In this regime

the discharge voltage is nearly independent over many orders of magnitude of discharge current.

We monitor the voltage dropped between the discharge electrodes and the flow of current.

We found our first CH signal by discharging across a mix of 2% CH4 in 3 bar of helium with a

discharge voltage of −1.5 kV applied to the cathode. We applied the discharge voltage for 1 ms

which is basically DC for gas pulses that have a duration of 250 µs and probed for CH on the

B-X transition. We detected a signal of 10 photons per gas pulse (shot) which corresponds to

7000 molecules in the detection region, or 8.75× 107 sr−1 per pulse. We optimised the position

of the valve with respect to the skimmer and the probe laser beam. Then we shortened the

discharge pulse until we noticed a decrease in the CH flux. After that we shifted the start time
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of the discharge to optimise for maximum CH flux. Once we found the optimum position for the

source we changed the discharge voltage and current until we observed a uniform glow discharge

without arcing inside the chamber. This was confirmed by a smooth discharge voltage at about

600 V (1.5 kV applied) and a stable discharge current of 100 mA. After optimisation we saw an

increase of the CH flux by a factor of 7. This flux would still make any deceleration, trapping

or high resolution spectroscopy experiments very challenging so more source optimisation was

needed. We thus started to investigate the influence of the insulating material between the elec-

trodes and the geometry of the discharge assembly on the production efficiency. We found that

polishing the stainless steel electrodes improved the discharge stability and thus the shot-to-shot

stability of the discharge but had no influence on the peak flux. We then replaced the poly-

mer thermoplastic (PEEK) electrode spacers with spacers made of macor, a machinable glass

ceramic which possesses very good heat and chemical resistance and a large dielectric strength

(60 kV mm−1)4. Again this had no effect on the peak flux, but decreased the amount of large

current spikes that appeared from time to time due to arcing.

In order to investigate the influence of the geometry of the discharge channel we kept the

aperture in the grounded electrode constant at 1 mm and increased the hole in the spacer and

high voltage electrode from 2 to 4 mm. The discharge voltage and current had to be optimised

but even for optimum discharge conditions we detected a decrease in the CH flux by a factor

of 2. We concluded that a smaller discharge channel is favourable and returned to the previous

version.

We then started to change the fraction of precursor to carrier gas by mixing pure methane

with argon in a mixing bottle. We varied the amount of methane from 0.5− 10% in argon and

found that the signal slightly increased between 0.5 and 2% and stayed constant thereafter.

We then added a hot filament close to the discharge region. The thermally emitted positive

ions are accelerated towards the outer electrode which should, in principle, help to initiate a

stable discharge at lower electrode voltage and shorter duration. We, however, did not observe

any of these effects.

So with nothing else to change we decided to try a new precursor molecule. Our attention

was drawn to CHBr3 (96% CHBr3 with 3% ethanol as stabilizer, Sigma Aldrich) which was used

by a group in Paris to generate a supersonic beam of CH by means of discharge [153]. They

measured the CH density they produced via cavity ring-down spectroscopy to (5± 1) 109 cm−3

2.5 cm downstream from the nozzle. Note, however, that they only give the total number of CH

molecules which includes all the molecules in higher rotational states in the vibrational ground

state. By fitting to the rotational spectrum they deduce an occupation of the J=1/2 ground state

of 0.14 of the total number of molecules produced in the source. Furthermore, they were using

a pulsed detection laser, the bandwidth of which is larger than the Λ-doubling of the J= 1/2

state. Hence, assuming an equal distribution in the two Λ-doublet states, the number of CH

4Note that HBC grade hot-pressed boron nitride is an even better choice due to its large thermal conductivity
of 29 W m−1 K−1 (10% that of copper), even greater heat resistance and dielectric strength >100 kV mm−1.
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Figure 3.10: Left: A spectrum obtained when scanning across the Q2(1/2) line of the
B2Σ−(v′ = 1)← X2Π(v = 0) transition reveals the fine and hyperfine structure of CH. The laser
frequency is scanned over a range of 3 GHz in steps of 15 MHz. We record the photon count rate
for each frequency step and use a single molecular beam pulse for each frequency step. Right:
A time-of-flight profile of the molecular pulse. We lock the laser to the peak frequency of the
spectrum and average over 200 shots. The wide temporal width (230 µs) and central arrival time
of 375 µs (2000 m s−1) show that the pulses are heated to considerable temperatures during the
discharge process.

molecules in a single quantum state, ignoring hyperfine, becomes ρ = 0.14× 0.5× 5× 109 cm−3,

which corresponds to a flux Φ = ρvL2 = 3.7× 1014 sr−1 s−1, where v = 1700 m s−1 is the typical

velocity for a helium beam, and L = 2.5 cm the distance from the nozzle to the detector.

Bromoform (CHBr3) is a liquid which has a vapour pressure of 6.7 mbar at room temperature.

The conventional way to mix it with the inert carrier gas is to bubble the carrier gas through the

liquid. A stainless steel container is filled with bromoform. The gas inlet tube ends just above

the bottom of the steel container. The outlet sample tube is well above the surface of the liquid

and is connected to the valve. Through this tube it is also possible to evacuate the gas lines

before the inert gas is bubbled through. In order to prevent pumping air through the liquid one

can cool the container to below the freezing temperature and pump on both the inlet and outlet

tube. However, we find that this makes no difference to the CH production efficiency. After

the tubes have been evacuated the carrier gas is bubbled through the liquid which results in a

mixture of < 1% of bromoform in the carrier gas. After optimising the discharge parameters we,

surprisingly, measured exactly the same CH flux as for the case of 2% methane in argon. A scan

across the Q2(1/2) line of the B2Σ−(v′ = 1)← X2Π(v = 0) transition is shown in figure 3.10, on

the left. We can also record the fluorescence as the molecules fly through the laser beam. This

gives information about the velocity distribution and thus the temperature of the molecules.

Such a profile is called time-of-flight profile. Comparing the maximum flux of 6.1× 108 sr−1 per

pulse we measured to the one measured by Romanzin of 3.72× 1010 sr−1 per pulse we conclude

that our flux is a factor of 60 lower. As we found out later during the operation of the source

presented in the next section it is extremely important that the discharge voltage is as low as

possible. Hence the drop to 600 V in the presence of the gas might not have been large enough.

By controlling the gas density in the discharge region more carefully it might have been possible

to tune the discharge conditions to a lower voltage.
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Using other carrier gases than helium resulted in an even worse signal-to-noise ratio. In ad-

dition to that we detected a considerable increase in luminescent discharge by-products (also

known as glowing crap). This has also been observed by Romanzin. In general the source

operation was prone to large shot-to-shot fluctuations, the electrodes had to be cleaned after

about two weeks of operation and the sealing poppet of the valve degrades quickly due to the

discharge. Finally we tried methanol and acetone as precursors as well which gave even less CH

as compared to bromoform or methane. The low production efficiency, the high temperature,

and worse signal-to-noise ratio for carrier gases of larger mass left us with no other option but

to try something completely different.

3.4.6 A Discharge-Reaction Source for Producing CH Molecules

Over a course of 10 years starting from 1995 Hiroshi Ohoyama and his colleagues from the

Department of Chemistry at Osaka University developed a new kind of CH source which is

based on the well known exothermic chemical reaction

C
(

1D
)

+ H2 → CH(X2Π) + H (+25 kJ mol−1) . (3.32)

The first to investigate this reaction in great detail were Jursich and Wiesenfeld at Cornell Uni-

versity in 1984 with the aim to study its importance in combustion processes [154]. By that time

chemists have already performed extremely fruitful experiments with oxygen in its metastable

excited state, O(1D) and thus expected to get new insights into a rich carbon chemistry from

reactions involving the excited (1D) state of carbon. The first experiments of such kind date

back to the end of the 1960s. Until 1984, however, no one has succeeded in building a convenient

and clean source of excited carbon atoms which hindered detailed investigations of the reaction

dynamics. Jursich and Wiesenfeld were flowing a mixture of carbon suboxide (C3O2) and molec-

ular hydrogen (H2) through a reaction chamber. In the middle of the chamber they dissociated

the carbon suboxide with a fluorine F2 excimer laser operating at 157 nm which yields about 3%

of C(1D) and 97% of C(3P) [155]. They then probed for CH molecules with a pulsed dye laser on

the X-A transition via laser induced fluorescence. A nice feature of this reaction is that only the

production of CH in its electronic and vibrational ground state is energetically possible (exother-

mic by 25 kJ mol−1) which they could confirm by the absence of any spectral lines originating

from excited vibrational states. The rotational distribution was consistent with a Boltzmann

distribution characteristic of 300 K. It is quite remarkable that they could not even detect any

additional rotational heating due to the release of the binding energy. This means most of the

energy is converted into translational energy of the reaction products CH and H. This could be

confirmed by an extensive study of the reaction by Mikulecky and Gericke in 1993 [156].

Ohoyama, however, chose an alternative way to produce the excited carbon atoms: a DC

glow discharge across helium promotes the carbon atom into the metastable (23S) state. The
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metastable helium is then injected into a reaction channel further downstream which is filled

with a mixture of 50% CO and 50% H2 molecules. The nearly 20 eV of internal energy of

metastable helium is enough to break the CO triple bond (11.19 eV) and excite the carbon atom

to its metastable C(1D) state (1.26 eV). The metastable carbon then reacts with a hydrogen

molecule according to the path described in equation 3.32. The complete reaction pathway is

(one asterisk denotes an excited state and two asterisks a metastable state):

He + e− → He∗∗(23S) (3.33)

He∗∗(23S) + CO(X1Σ+) → C∗∗(21D) + O + He (3.34)

→ (CO+)∗ + He + e− (3.35)

C∗∗(21D) + H2 → CH(X2Π, v = 0) + H (3.36)

It is worth pointing out that the primary reaction channel is the Penning ionisation process

(3.35) that produces excited carbon monoxide ions. Furthermore, it is possible that after the

dissociation of CO the oxygen atom is excited into a metastable state instead of the carbon atom.

Hurt measured the relative reaction rates to be 96% Penning ionisation and 4% to dissociation

of the carbon monoxide molecule [157]. To be more precise, the most probable production of

metastable carbon involves an intermediate electronically excited state. This means that after

the dissociation the carbon atom is either in the 31P, 33P or 33D state. The only allowed

radiative decay channel to the 21D level thus stems from population in the 31P state which has

a radiative lifetime of about 10 ns. This means that the overall efficiency of creating metastable

carbon atoms via the reaction path 3.34 is of the order of 1%.

Ohoyama produced the metastable helium by a simple pulsed DC discharge geometry very

similar to the one used by us for the discharge across methane and bromoform. Figure 3.11

provides an overview of our source hardware. A teflon reaction channel (20 mm long and 13 mm

in diameter) is directly attached to the discharge source. The CO/H2 mix is injected directly

into the mixing channel through a second pulsed valve. The reaction then takes place in the

mixing channel and produces CH molecules which then supersonically expand through a 3 mm

diameter hole in the end cap of the assembly. Great care must be taken to achieve full control

over the individual parameters:

• The stagnation pressure behind the helium valve.

• The voltage supplied to the helium valve and the duration it opens for.

• The discharge voltage, current, length and time after opening the valve.

• The stagnation pressure behind the CO/H2 valve.

• The voltage supplied to the CO/H2 valve and the duration it opens for.
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Figure 3.11: An exploded view of the apparatus used to test the discharge-reaction source.

• The time the CO/H2 mix is injected with respect to the helium.

So there are in total eleven parameters we can independently vary. First we characterized each

valve carefully using a fast ionisation gauge. A fast ionisation gauge can be put into the molecular

beam and responds directly to the molecular density on the microsecond time scale. This allowed

us to pin down the exact voltage needed to open the valve for a given duration and stagnation

pressure. Additionally, these measurements allowed us to identify the exact time it takes the

valve to open after the drive pulse is supplied to valve. The peak of the helium gas pulse for

example arrives 720 µs after the rising edge of the voltage that is supplied to the valve. This

depends on the stagnation pressure and the gas species. Knowing the exact time it takes for the

helium to emerge we knew when to apply the discharge. Similar to our earlier discharge source

we put a variable current limiting resistor in series between the high voltage switch and the high

voltage electrode. First we applied the discharge voltage for a very long time of up to 1.5 ms.

As soon as the gas arrives the voltage drops and a constant discharge current appears. This

is another very useful technique to identify when the gas actually appears. We then shortened

the duration the discharge voltage is applied to approximately 450 µs. The discharge typically

drew a current of 120 mA at an ignition voltage of −1.7 kV. In the presence of the gas this

voltage dropped to about 400 V. Figure 3.12 shows an oscilloscope trace of the discharge current

and voltage. As we found out later the ideal conditions are such that a bright white glow can

be seen in the source chamber in contrast to a dim blue/UV glow. On the discharge voltage



Experimental Setup and Molecular Sources 93

 - 1.0  - 0.5 0.0 0.5 1.0
 - 2.

 - 1.5

 - 1.

 - 0.5

0. 0.

50.

100.

150.

200.

Time ms

D
is

ch
ar

ge
V

ol
ta

ge
k
V

D
is

ch
ar

ge
C

u
rr

en
t

m
A

Vi

Figure 3.12: An oscilloscope trace of the discharge current (blue) and voltage (red). To start
the discharge a high ignition voltage Vi is necessary which drops to a stable discharge voltage of
-400 V as the gas arrives. Both the voltage and current have to be stable and smooth without any
current spikes. Furthermore, the discharge voltage must not vary when changing the discharge
current. This indicates that we operate in the smooth glow regime.

monitor only the white glow showed a large drop in voltage to about 400 V which seems to be

crucial for efficient CH production. With this setup we could only produce a small amount of

CH, similar to the earlier discharge sources. Ohoyama used two general valves (series 99) with a

slightly smaller nozzle diameter of 0.5 mm and applied 200-250 V for about 250 µs. When he was

operating the source the chamber pressure increased to 4× 10−5 mbar which was very similar to

our operation conditions. It was not until we built the next version of Ohoyama’s source [158]

that we would realise the key to success. This source is described now in more detail.

During the testing of the source we realised that Ohoyama and his colleagues published another

version of the source which solved one of the major drawbacks of the previous version - it could

only be operated with helium, so the molecules travelled with a speed of over 1700 m s−1. It

turned out that other carrier gases only yielded extremely poor dissociation efficiencies for CO.

Although metastable Ne (16.6 eV) and Ar (11.5 eV) possess enough energy to dissociate CO there

is not enough energy to excite ground state carbon into the 31P state which radiatively decays

into the metastable 21D state. Hence Ohoyama and his colleagues replaced the dissociation

of carbon monoxide to produce C(21D) with the collision of highly excited species with solid

carbon. The heat of sublimation of solid carbon is 7.4 eV and the excitation energy to the 21D

and 31P states are 1.3 eV and 7.7 eV respectively. The reaction paths are:

Rg + e− → Rg∗∗ (3.37)

Rg∗∗ + C∗∗(solid) → C(1D) + Rg (3.38)

C∗∗(1D) + H2 → CH(X2Π, v = 0) (3.39)

where Rg is the rare gas used which is either helium, neon or argon. The source hardware itself

is only marginally different from the earlier one. Two carbon electrodes are sandwiched between

the stainless steel electrode and the reaction channel and a graphite tube (10 mm long with a
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6 mm central aperture) is inserted into the reaction channel. Pure H2 is now injected into the

reaction channel instead of a mixture of H2/CO. It was in this source configuration that we got

the source finally working. We found that the crucial parameter was the duration for which the

voltage is supplied to the valves. By changing this time with an accuracy of 1 µs, which is only

a minute change in gas density, we could stabilise the “good” white light discharge condition

and as soon as we got the time right for the H2 injection we could detect a healthy amount of

CH. The timing of the H2 injection is rather peculiar. The source only works if the hydrogen is

pre-injected into the mixing channel. In addition, we produced the most CH using the CO/H2

mix in combination with the carbon version. In particular the following parameters are crucial

to get right:

• The pressure conditions in the discharge region and the reaction channel are important.

• The time of the H2/CO injection with respect to the He injection.

• The timing of the discharge with respect to the He and H2/CO injection.

• The time for which the discharge voltage is applied (unnecessary excessive discharge ex-

tensively decreases the CH beam intensity).

• A uniform, soft glow discharge with bright visible light instead of UV/blue light yields

more CH.

The top left plot of Figure 3.13 shows a time-of-flight profile for this source using He carrier gas,

where zero is the rising edge of the trigger sent to the high voltage switch of the discharge source.

The arrival time of 570 µs (1366 m s−1) indicates that the rising edge of the discharge does not

define the actual time when the molecules are created. Ohoyama measured the velocity using

the focusing curve of their hexapole field to be 1900 m s−1 which is much more reasonable for a

hot helium beam. Furthermore, the large mixing volume has an impact on the beam quality.

From the FWHM of w = 211 µs we infer a temperature of 44 K, which again must be treated

with care since the initial spatial and temporal width is unknown.

The top right hand side plot of figure 3.13 shows a parameter scan. We lock the laser to the

resonance frequency and scan the time when the voltage is supplied to the CO/H2 valve with

respect to the helium valve. We can clearly see that it is crucial to pre-inject the gas mix into

the mixing channel by 840 µs before the helium which is a very peculiar feature of this source.

The bottom left plot shows the dependence of the CH signal as a function of the pressure behind

the CO/H2 valve. We noticed that the discharge conditions change for different CO/H2 pressures

which indicates that due to the pre-injection the part of the gas mix enters the discharge region.

We scanned the time when the discharge was applied for the different stagnation pressures and

took the maximum value of that scan for each pressure value. With the optimum discharge

conditions fixed for each pressure we then optimized the duration of the voltage pulse that is
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Figure 3.13: Top left: A time-of-flight profile of CH molecules produced by the discharge-
reaction source. Top right: A parameter scan. We lock the laser to the transition frequency and
scan the time when the CO/H2 valve fires with respect to the helium valve. Zero in this plot is
the rising edge of the helium valve trigger. Bottom left: The optimised CH signal as a function
of the CO/H2 stagnation pressure. Bottom right: The optimised CH signal as a function of the
opening time of the helium valve.

sent to the CO/H2 valve.

The bottom right figure shows the dependence of the CH signal as a function of the voltage

pulse duration that is sent to the helium valve. When we started investigating the source we

left this value constant at 315 µs which was an unfortunate choice since the signal is then very

small. Once we started to scan this parameter the signal increased dramatically. The tuning

of this parameter also allows to tune the discharge condition between the dim blue glow regime

with a high residual discharge voltage of 800 V and the bright white glow regime with residual

discharge voltages as low as 300 V. The lower the discharge voltage the bigger the signal.

3.4.6.1 Determining the Flux

The maximum photon count rate we measured for detecting CH in the J= 1/2− state on the R22

line of the A-X transition with a laser intensity of 670 W m−2 (1 mW in a beam of 5×1.5 mm2)

was Γp = 20.5 MHz in a pulse of FWHM w = 211 µs. For such a laser intensity and speed

of the molecules (1900 m s−1) the detection efficiency is n̄pε = 0.35%. The total number of

molecules registered by the detector 0.79 m downstream from the nozzle is thenN = Γpw/(npε) =

1.2×106. This corresponds to a beam flux of φ = N/Ωd =1.55× 1010 sr−1 per pulse (Φ = φ/w =
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7.3× 1013 sr−1 s−1). Ohoyama and his colleagues report a flux of Φ = 1.3× 1016 sr−1 s−1 in the

J= 1/2 state. They use a pulsed detection laser which cannot resolve the Λ-doubling. Accounting

for that we were missing approximately a factor of 100 in flux. Let us put that into context with

the ideal supersonic source.

The ideal supersonic source with 1 bar of helium behind the nozzle produces a beam flux of

Φ = 2× 1021 sr−1 s−1 through an aperture of 0.5 mm diameter. The production efficiency for a

highly optimised continuous metastable helium source is of the order of 10−5 [159]. Assuming

that all the metastable helium atoms are converted into CH molecules via the reaction mentioned

in 3.39 we expect a flux of Φ = 2× 1016 sr−1 s−1. Ohoyama and colleagues measure a similar

flux which is quite surprising since it is well known that the production efficiency of metastable

helium decreases rapidly in a supersonic source due to the fast quenching of the metastable state

in the high pressure environment of the expansion. Halfmann and colleagues for example report

an efficiency of only 10−7 for such a source [160]. Furthermore, we have not accounted for the

fact that only about 1% of the initial number of metastable carbon atoms is converted into CH.

Although this source produced a CH beam with a brightness about ten times greater than

other supersonic molecular beams in our lab, the molecules were translationally hot (50 K)

and moving at 1900 m s−1. This significantly degrades its practicality to applications such as

Stark deceleration, cooling or high resolution spectroscopy experiments. The high temperature

leads to a large velocity spread and the high, central velocity to very long decelerators and

short interaction times. All our efforts to produce a slower beam using argon as a carrier gas

failed. Furthermore, the source was very complex and the discharge behaviour very erratic

which resulted in large shot-to-shot fluctuations. Because of the high temperature, high speed,

complexity and erratic discharge behaviour, in combination with the fact that we could not

operate it using krypton or xenon carrier gas (even in principle) we decided to abandon the use

of this source.

3.4.7 Laser Ablation

To cut a long story short, laser ablation does not work at all. We tried ablating a solid graphite

target into an expansion of 2% H2 in argon. This is not really surprising because ablating carbon

from a graphite rod is the main method of producing large carbon clusters such as fullerenes.

We also tried ablation in a buffer gas cell: We mounted a graphite rod inside a small copper

box which was connected to a 4 K cold plate of a closed cycle cryocooler. We sprayed hydrogen

into the cell and ablated the carbon rod under steady flow of cold helium buffer gas. We could,

however, not detect any CH molecules via laser absorption in the cell nor through laser induced

fluorescence outside the cell.



Experimental Setup and Molecular Sources 97

3.4.8 Photodissociation of Bromoform

When a molecule absorbs a photon it gets electronically excited. If this excited state is repulsive,

i.e no bound states exist the molecule dissociates into its constituents. That is because the ra-

diative decay back into the ground state is very slow (ns) compared to dissociation which usually

occurs within one vibrational period (10−13 s). The dissociation cross-section is continuous with

photon energy and the shape is only governed by the Franck-Condon principle, i.e it peaks close

to a vertical excitation. Consequently the energy used to dissociate a molecule can be much

larger than what is commonly defined as the dissociation energy (the depth of the molecular

potential). This process is called direct photodissociation.

Predissociation happens if the initial absorption occurs into a bound excited state which is

perturbed by a nearby repulsive electronic state. The dissociation rates then typically depend

on the strength of the coupling and the specific levels that are involved. The photodissociation

cross section then consists of a series of discrete peaks.

A third way for a molecule to dissociate is if the excited state is not predissociated but radia-

tively decays into the continuum of a lower lying repulsive state. The dissociation cross section

consists now of a series of peaks narrower than in the predissociation case.

We are dealing mainly with polyatomic precursor molecules which possess many excited elec-

tronic states. Detailed information about the electronic states of the molecules is usually not

available and hence a full description is, in general, not possible. We can thus expect that a

mixture of all of the above mentioned dissociation processes will happen in such molecules. The

photodissociation typically cleaves the weakest bond. The rupture of two bonds followed by the

formation of a new bond, however appears to be more common in polyatomic molecules [161].

As the molecules get larger the density of vibrational states increases which decreases the

probability that the molecule “finds its way” along a specific dissociative path. In addition, the

extremely high intensities available from pulsed lasers leads to non-linear effects in the light-

matter interaction. This can lead to the effect that a single molecule absorbs more than one

photon. When this happens sequentially, via a real intermediate excited state, it is referred

to as resonant-multiphoton excitation: the first photon transfers the molecule into an excited

electronic state and before the molecule can decay back into the ground state it absorbs a second

photon which can transfer it into a dissociative state. A second mechanism is non-resonant multi-

photon excitation where there is no resonant intermediate state involved and several photons

are absorbed simultaneously: Through such higher order processes molecules whose dissociation

energy is less than twice the single photon energy can be dissociated. The higher the order of

the process the more laser intensity is necessary for efficient dissociation.

A good precursor has a large absorption cross section in the UV. It also has a high quantum

yield for the species of interest. The quantum yield of a photo dissociation product is simply

defined as the ratio of the number of desired product molecules formed by the overall process to
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the number of quanta absorbed by the precursor molecule. Hence the more dissociation chan-

nels are energetically allowed the lower the quantum yield will be. Note that the quantum yield

can, in principle, be larger than one if a single photon is enough to produce more than one

product. One photon for example can be enough to dissociate H2O2 into two OH molecules.

The production of the OH radical using photodissociation is especially efficient. Usually only a

single bond must be cleaved since most acids and all alcohols possess a loosely bound OH group

attached to a hydrocarbon chain which makes it very likely to be the weakest bond. In particu-

lar, the C-O bond energy is lower than the O-H bond energy by 1.1 eV. An extremely efficient

precursor for OH is nitric acid (HNO3) whose UV absorption cross section reaches a maximum

of σ = 2× 10−17 m−2 at 185 nm [162]. Furthermore, the quantum yield for producing OH from

nitric acid has been measured to be 0.3 for 193 nm and is close to unity for 248 nm [163].

For CH it is quite challenging to find an ideal precursor. Due to the four unpaired electrons of

the carbon atom, CH cannot be found as a loose attachment to another molecule. At first sight

acetylene (C2H2) might appear as the ideal candidate since it is made up of two CH molecules.

However, the covalent triple bond, between the carbon atoms is so strong (8.7 eV compared to

the 4.3 eV for the C-H bond) that the CH bond breaks instead of the triple bond. Furthermore,

the UV absorption cross section is three orders of magnitude smaller as compared to nitric acid.

Consequently, hardly any CH is produced by photolysis even through higher order processes.

The most promising route is to look for molecules with a single carbon atom where the carbon-

hydrogen bond is the strongest. The attention is then immediately drawn to the halomethanes.

These molecules are derivatives from methane (CH4) with one or more hydrogen atoms replaced

with halogen atoms (F, Cl, Br, I). The heavier the halogen atom the weaker its bond to the

carbon atom. Iodoform would be preferable because iodine forms the weakest bond under the

common halogens to carbon. At room temperature it is a solid so it must be heated to high

temperatures to produce an appreciable vapour pressure. We therefore decided to use bromo-

form which is a liquid and has a high enough vapour pressure to be a useful precursor.

It is believed that CH production from bromoform occurs via a sequential dissociation pro-

cess [153, 164]. Figure 3.14 shows some of the possible dissociation channels. A single-photon

dissociation leads mainly to prompt C-Br bond fission,

CHBr3 + hν → CHBr2 + Br . (3.40)

There are then three competing fragmentation channels of CHBr2 through secondary photo-

dissociation,

CHBr2 + hν → CHBr + Br , (3.41)

CHBr2 + hν → CH + Br2 , (3.42)

CHBr2 + hν → CBr + Br2 . (3.43)



Experimental Setup and Molecular Sources 99

hν

hν

hν

hν

0

2

4

6

8

10

12

14
Energy (eV)

193nm248nm

CHBr2+Br

CHBr+Br2

CHBr+2Br CHBr+2Br

CHBr+Br CH+3Br

CH+Br+Br2

CH*+3Br

CH*+Br+Br2

Figure 3.14: Various photodissociation channels are possible after the irradiation of bromoform
with the 193 or 248 nm light of an excimer laser.

We can see that the CH production is bound to be a quite inefficient process due to the many

possible dissociation channels. Romanzin and colleagues measured the quantum efficiency of CH

from photodissociation of bromoform in a vacuum flow cell using cavity ring-down spectroscopy

to be (5 ± 2.5) × 10−4 [153]. The efficiency in a supersonic expansion is expected to be even

less. It is well known that heavy molecules tend to cluster when they expand supersonically into

vacuum and the fact that bromoform is liquid already at room temperature enhances this effect

even further. In addition, the CH radical is known to be very reactive which could lead to rapid

loss by reactions with the more abundant parent molecule CHBr3 and other dissociation prod-

ucts in the high density region just after the nozzle. All this needs to be considered when trying

to find the best precursor molecule and thus an extensive trial and error phase is obligatory.

To get started we used a GAM EX5 excimer laser which delivers up to 12 mJ in an 8 ns pulse

at a wavelength of 193 nm with a maximum repetition rate of 1 kHz. We focused the output

of the excimer laser with a 500 mm focal length lens (fused silica) right in front of the nozzle

of the solenoid valve to an area of 5 × 2 mm2. The excimer laser beam was orthogonal to the

molecular beam with the long axis along the molecular beam. Note that a pulse of argon gas

with a FWHM of w = 200 µs has a spatial extent of ∆x = vw ≈ 10 cm. The excimer pulse

duration is only 8 ns long so that only the molecules that spatially overlap with the laser beam

length of 5 mm are dissociated. Hence the ideal scenario would be to co-propagate the excimer

laser beam with the gas pulse. Direct focusing of the excimer beam into the nozzle, however,

damages the sealing poppet and the valve starts to leak. One could think of a valve protector

in front of the nozzle to prevent damage to the poppet, but a more serious issue forced us to
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Figure 3.15: A sketch of the gas handling system built for the experiment. This allows us to
mix the precursor with the carrier in arbitrary ratios. The bottle labelled with X is a symbol
for all other gases that have been used.

abandon this idea. We found that focusing the laser under a steep angle onto the valve leads

to a large amount of ablation from the valve face plate which has detrimental effects on the CH

production. Hence we remained with the orthogonal configuration.

Before we can start we must prepare the gas mix. We found that care must be taken re-

garding the cleanliness of the gas/precursor handling system. Thus we only used high grade

stainless steel tubing. A sketch of the gas handling system is shown in figure 3.15. We built

a mixing chamber to investigate the CH yield for various precursor fractions. We prepared a

mix of 0.2% bromoform in 4 bar argon. From the measurements with the fast ionisation gauge

we knew approximately when the gas appeared in front of the nozzle for a given valve voltage

and duration of the voltage pulse. We noticed a dim blue glow which mainly stems from the

A-X fluorescence of excited CH when the timing of the excimer beam and alignment is correct.

CH production following the photodissociation of ketene (CH3COCH3), acetone ((CH3)2CO),

methyl iodide (CH3I), dibromomethane (CH2Br2), chlorodibromomethane (CHClBr2) and chlo-

roform (CHCl3) have also been reported. We tried the dissociation of bromoform (CHBr3),

chloroform (CHCl3), methyl iodide (CH3I), methane (CH4), methanol (CH3OH) and acetone

((CH3)2CO). In the end, after trying all these precursors at various mixing ratios it turned out
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Figure 3.16: The CH signal as a function of the excimer laser intensity reveals a quadratic
dependence which is characteristic for a two-photon dissociation process.

that simply bubbling the inert carrier gas through bromoform yields the most stable source with

the highest CH flux.

An important parameter when characterising the source is the dependence of the CH signal

as a function of the dissociation laser intensity. This immediately gives access to the number of

photons that are involved in the dissociation process. If the dependence is linear it is a single

photon process and if it scales quadratically with the laser intensity it is a two photon process.

The important question then is: can we deliver enough intensity to saturate the CH production?

The first experiment with the GAM EX5 revealed a quadratic dependence which is shown in

figure 3.16. The solid blue line in figure 3.16 is a fit to a power law, S = kIn, where S is the

signal, I the laser intensity, and k, n fitting parameters. This fit gives n = 1.7 ± 0.3 which

is consistent with a two-photon process and confirms earlier findings of Lindner [148]. We did

not see any signs of saturation at the maximum pulse energy of the EX5 laser. Lindner et al.

found that a pulse energy of 30 mJ, in a beam size similar to ours, saturated the CH production.

Note that we could not focus the excimer beam any further than 4×2 mm2 in order to explore

saturation at higher intensities. First the laser beam mode is not particularly Gaussian, i.e it

does not focus very well, and second we were restricted by the vacuum chamber to lenses with

focal lengths longer than 300 mm. Furthermore, reducing the excimer beam size would reduce

the spatial overlap of the excimer beam with the gas pulse even further. Hence in the ideal case

we would like to saturate the production for a very gentle focus which means we needed more

energy per pulse. This also means buying a bigger laser. So we upgraded to the SEMENTO

ASX-750 that can provide up to 230 mJ in 20 ns at 193 nm and 450 mJ at 248 nm which should

be sufficient to saturate the CH production.

We observed an increase by a factor of 4 at full pulse energy which is not the factor of 9 we

expected from Lindner’s measurements. First we checked that we are actually saturating by

decreasing the pulse energy to half and observed that the signal only decreased by 5% which

is a clear sign of saturation. The discrepancy between our measurement and Lindner’s shows

clearly that additional loss mechanisms are present which we attribute to reactions of the CH
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Figure 3.17: Two time-of-flight profiles of CH using either helium or argon as carrier gas. The
velocity and temperatures are very close to the ideal supersonic expansion which indicates very
little additional heating of the dissociation products. The profiles are averaged over 200 shots.

radical with dissociation products in the high density region in front of the nozzle. Furthermore,

two 193 nm photons have enough energy to produce CH in the excited A state as well as to

ionise bromoform. Both processes enhance the probability for unfavourable reactions and thus

decrease the CH yield.

In order to investigate a potential dependence on the dissociation wavelength we changed the

excimer gas and the cavity mirror (note the gain of the excimer gas is so high that the cav-

ity only consists of one highly reflective mirror and an MgF2 output coupler). To our surprise

we saw an increase by a factor of 2 in the ground state CH production, even though the UV

absorption cross section is smaller at 248 nm. Hence we operated the laser at 248 nm and saw

an increase in the CH flux by a factor of 8 in total as compared to the small excimer laser

operating at 193 nm. The maximum overall flux per pulse we measure is a factor of 10 lower

compared to our version of Ohoyama’s source. However, using helium as a carrier gas the result-

ing pulse is also 10 times narrower. The important thing is that the peak flux remained nearly

the same and we only observed a reduced temporal width of the CH pulse. Figure 3.17 shows

typical time-of-flight profiles for the photolysis source for the two different carrier gases, helium

and argon. The narrow time-of-flight profile shows that the photodissociation source produces

molecules at translational temperatures as low as 0.4 K (using argon as carrier gas) as compared

to Ohoyama’s source which was 50 K. The velocities of 1725 m s−1 and 570 m s−1 for helium

and argon respectively are very close to the terminal velocity of an ideal supersonic source, and

so are the translational temperatures. This means that there is little residual heating involved

in the dissociation process. For typical laser beam parameters and accounting for the slightly

different detection efficiencies for the different velocities we can convert the photon count rate

into a molecular flux. Using helium as a carrier gas we measure a flux of 1.1× 109 sr−1 per

pulse (FWHM of 23 µs). Using argon as a carrier gas we detect a flux of 3.5× 109 sr−1 per pulse

(FWHM of 92 µs). This flux is about ten to one hundred times less intense than the typical
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OH beam generated by the photolysis of nitric acid5. This is mainly due to the second order

multiphoton process necessary for producing CH, in combination with a lower quantum yield

and a smaller UV absorption cross-section (a factor of 10 less).

For most applications of molecular beams, short, intense and cold pulses are favourable be-

cause it leads to a small spatial and velocity spread of the molecules. Stark deceleration, high

resolution spectroscopy or reactive scattering experiments all benefit enormously from the fact

that nearly all the molecules travel with the same velocity and at a minimal spatial spread. It

is therefore unlikely that we can actually make use of the larger number of molecules we get by

using Ohoyama’s source because the beam is nearly a hundred times hotter which results in a

large velocity spread. Furthermore, the shot-to-shot stability of the photo-dissociation source is

unrivalled. Unlike ablation sources where the metal target degrades over time the continuous

supply of a gaseous precursor results in an extremely stable source6. Even small fluctuations in

the dissociation laser intensity do not affect the CH yield if we operate well above the saturation

energy of approximately 100 mJ per pulse. Moving the lens by up to 10% of its focal length in

either direction does not change the CH flux on the few per cent level.

3.4.9 Valve Testing

A way to increase the flux of molecules is to compress the gas pulse so it matches the spatial

size of the excimer laser beam. This means that we need a higher peak flux out of the nozzle,

preferably in a shorter pulse such that the number of precursor molecules is increased in the

dissociation volume without increasing the background pressure. In order to achieve that we

need to operate the valve such that it fully opens for about 10 µs which corresponds to a spatial

extent of the pulses of about 5 mm. This is quite challenging but, since the early introduction

of modified fuel injector valves to create pulsed molecular beams, many groups have developed

many different varieties of valves designed for specific applications.

Nearly all valve mechanisms are based on a harmonic oscillator principle with a force constant

κ and an effective mass, m. The natural oscillation period of such a harmonic oscillator is given

by t0 = 2π
√
m/κ. This means in order to achieve a displacement of ≈ 1 mm to open the valve

for a time of 10 µs one needs to exert a restoring force of the order of 105 N onto a mass of 1 g,

which exceeds the tensile strength of most common materials. Even and co-workers, however,

miniaturised and optimised the components of a solenoid valve and achieved valve openings as

short as 8 µs when operating the valve at high gas pressures of 100 bar [165]. By operating at

such high pressures the restoring force exerted on the moving armature can be reduced and this

allows the valve to complete its free travel of 0.1 mm in 8 µs. This valve operates with a very

5To my best knowledge, absolute flux measurements of such an OH source are not available in the literature.
The estimate is based on private communication with G. Meijer.

6The noise is dominated by shot noise that arises from background laser scatter and not from fluctuations in
the molecular beam intensity.
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small aperture of 0.2 mm only which reduces the number of inert gas atoms that emerge from

the nozzle by a factor of 16 as compared to our solenoid valve with an aperture of 0.8 mm. One

can compensate for that by increasing the stagnation pressure to 100 bar. We, however, cannot

increase the number of precursor molecules because bromoform is a liquid with a limited vapour

pressure of 7 mbar at room temperature.

There is a second effect that can limit the flow of gas out of the valve. It is well known that

the solenoid valve does not open fully, and this limits the gas flow because the poppet is not

completely removed from the aperture. Other types of valves might provide a larger flow which is

only limited by the conductance of the nozzle. This flow is known as choked flow. Furthermore,

shorter overall gas pulses decrease the amount of gas that does not interact with the excimer

laser and thus reduce the gas load in to the source chamber. This makes it possible to operate

at higher repetition rates.

We investigated two other valves apart from the solenoid valve. The first was a beam-bending

valve (PSV Pulsed Supersonic Valve C-211, Jordan TOF Products, Inc.) which was originally

conceived by Dimov [166] and then developed further by Gentry and Giese at the University

of Minnesota [167]. The second valve we investigated is the Amsterdam Cantilever Piezo Valve

which is based on a design by Gerlich from 1989 [168] and has been redeveloped to a commercial

product by the group of Maurice Janssen in Amsterdam [169].

The Jordan Valve

The PSV Pulsed Supersonic valve, which is commonly known as the Jordan valve, seals the

nozzle with a metal bar, the centre of which sits on an O-ring. A metal hairpin is rigidly

attached to the valve’s faceplate and forms a current loop. The static bar of the hair pin has an

aperture in the middle with an O ring around it. When the valve is not operated the flexible

metal bar pushes against the O ring and seals the nozzle. When a large current (up to 5000 A)

passes through the loop for 20 µs it generates a magnetic field that pushes the flexible metal bar

from the static one and opens the 0.5 mm nozzle. This results in a short gas pulse which has a

nearly top-hat profile and lasts for approximately 40 µs. The top hat profile indicates that the

valve fully opens and choked flow conditions prevail. It turns out that this valve gave the most

intense CH beam which is approximately 3 times greater than the one produced by using the

solenoid valve.

The valve is delivering short pulses and a high intensity, but the large current through the

loop leads to rapid heating of the gas which increases both the translational temperature of the

resulting molecular beam and its velocity. The longer we were operating the valve the hotter

the gas became which resulted in large variations of the arrival times of the molecules. Such

variations are detrimental if one wants to average over thousands of pulses in high resolution

spectroscopy experiments. Hence we refrained from the use of the Jordan valve.
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The Piezo Valve

Using piezoelectric ceramics for the rapid actuation of a valve has a long tradition in the molecular

beam community. A common design involves a large cylindrical piezo which displaces a sealing

plunger if a voltage of up to 1000 V is applied [170–172]. These valves can deliver pulse widths of

approximately 100 - 150 µs at repetition rates up to 100 - 1 kHz. The group of Maurice Janssen

in Amsterdam developed a fast valve based on a twenty year old design by Dieter Gerlich from

the Technical University in Chemnitz. It is based on a cantilever piezoelectric ceramic that

seals the nozzle by pushing onto an O-ring with a blocking force of about 1-2 N. Cantilever

piezos have the advantage that they can deliver large displacements of the order of 70 µm and

because the piezo itself is sealing the nozzle and there is no need to displace a heavy plunger.

Thus very fast oscillation frequencies are possible which results in pulses with a FWHM as

short as 7 µs, measured 10 cm downstream (6 bar of helium) at repetition rates as a high as

5 kHz [169]. The nozzle has a conical shape with a full angle of 40◦ and a length of about 1 cm.

Janssen and his colleagues measure approximately 1016 gas particles in the source chamber when

operating at a backing pressure of 6 bar. Due to the conical shape of the nozzle they assume a

full angular distribution of the supersonic expansion of 12◦ FWHM by referring to measurements

performed by Even and Lavie using a similar nozzle [123]. We care mostly about the peak flux,

which increases the number of precursor molecules in the dissociation region. The peak flux

corresponds to the maximum deflection of the piezo, which is obtained using the maximum

possible voltage and this results in significantly longer pulses than the reported 7 µs. Using a

fast ionization gauge we measure a FWHM of 180 µs 8 cm downstream using 4 bar of argon. The

pulse width decreases to 25 µs for the minimum piezo deflection which, however, results in a

peak flux which is ten times smaller.

Operating the valve in fully-open mode we see an increase in CH signal of nearly a factor of 2

as compared to the solenoid valve. However, the special design of the nozzle prevents access to

the high density region just in front of the aperture which typically decreases the dissociation

efficiency. Furthermore, the nozzle shape, affects the temperature of the gas pulse. It restricts

the full, free expansion and thus limits the cooling which results in a slightly hotter CH beam as

compared to the solenoid valve. Note that this could also be due to the fact that the dissociation

takes place in a region where most of the expansion has happened already which again limits

the cooling effect. The main advantage of the nozzle shape is that it enhances the on axis flux

as shown by Even and Lavie in [165].

Valve Comparison

Figure 3.18 compares the pulse amplitudes and widths of the three different valve types measured

with a fast ionisation gauge. The Jordan valve produced the most intense CH beam, which
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Figure 3.18: The signal of a fast ionisation gauge (FIG) as the pulse from three different valve
types passes through it. The signal of the piezo valve has been inverted for clarity. The Jordan
valve provides the pulse with the highest peak flux of precursor molecules and thus also yields
the most CH molecules.

we attribute to the higher precursor density in the dissociation region. However, it can only

operate at a maximum repetition rate of 10 Hz and the resulting CH beam suffered from large

temperature fluctuations which caused random drifting of the time-of-flight of the molecules.

The piezo valve released the same peak number of precursor molecules, however the resulting

CH beam had a slightly lower intensity than the Jordan valve. We attribute this to the fact that

the high density area in front of the nozzle aperture is inaccessible due to the shape of the nozzle

which decreases the dissociation efficiency. We have recently received an adapted version of the

piezo valve which allows us to move the excimer beam close to aperture. We have not yet had

the chance to test it. The advantage of the piezo valve is that it can operate at high repetition

rates with minimum pumping requirements. With the solenoid valve we are currently limited

to a repetition rate of 10 Hz at optimum CH flux. By optimising the piezo valve conditions we

should be able to increase that to 40 Hz.

If it was possible to operate the piezo valve or the Even-Lavie valve with 7 µs pulses it would

reduce the gas load by a factor of 35 as compared to a solenoid valve. This means that an

experiment which is now limited to 10 Hz due to the large gas load of the solenoid valve, could

run at rates as high as 350 Hz.

3.4.10 Skimmer Interference

The very first molecular beams used apertures to extract the center-line beam from a high

pressure source chamber. With the invention of the supersonic source people realised that one

has to be very careful where to position these apertures in order to avoid hydrodynamic shock

structures and interference with gas molecules reflected from the aperture walls. To minimize

such beam disruptions aerodynamic beam skimmers have been developed. The influence of these

long conical apertures on the beam intensity has been studied over many decades. However, most
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studies that investigate the ideal position of the skimmer with respect to the nozzle were done for

the case of continuous beams and the findings were simply copied to the pulsed beams without

changes [165].

With modern turbomolecular pumps and fast pulsed valves one can keep the background

pressure in the source chamber low enough to avoid the main problems faced by these early

experiments. This means that the pressure between two pulses is low enough to move the

shock wave of the supersonic expansion (zone of silence) to many cm from the nozzle. The

simulations of Luria and colleagues show that in the extreme case for high pressure (100 bar)

pulsed supersonic sources a skimmer placed 200 mm downstream from the nozzle can have severe

effects on the beam temperature. The gas heats up at the skimmer aperture which causes the

gas to expand radially and thus decreases the on-axis density. Sharp edges with a thickness

of only 3 µm can reduce these effects. In addition to that the skimmer transmission for such

high density beams can be as low as 1% if the diameter of the skimmer aperture is chosen too

small. In direct contrast to the earlier findings of continuous beams it is thus more favourable

to place the nozzle far away from the skimmer. A general rule of thumb applies: the higher

the backing pressure used the larger should the distance between the nozzle and skimmer be.

Furthermore, skimmers with large apertures of 3-4 mm assure efficient transmission of the order

of 60% even for backing pressures as high as 100 bar. It is still very common, especially in the

physical chemistry community to have nozzle-to-skimmer distances of below 2 cm and to use

skimmers with apertures as small as 1 mm which can seriously affect the beam quality. In order

to investigate the dependence of the CH signal as a function of the skimmer-to-nozzle distance

we upgraded our source translation assembly to allow for continuous adjustment of the z-axis as

well.

3.4.10.1 Skimmer to Nozzle Distance

Recently the group of Prof. Kaiser at the University of Hawai’i at Mānoa reported experiments

on the chemical dynamics of the CH radical with acetylene using crossed molecular beams [173,

174]. They bubble 2.2 bar of helium through liquid bromoform and expand the mix through

a piezo actuated valve of the Proch-Trickl type (large piezoelectric disk displacing a sealing

plunger) with a nozzle diameter of 0.96 mm. Such a valve typically yields gas pulses of 150 µs

duration. They then dissociate the bromoform molecules with a pulsed excimer laser operating

at 248 nm with an energy of 60 mJ per pulse which is focused to 4×0.7 mm right in front of

the nozzle. Following the tradition of the physical chemistry community they placed a skimmer

13±1 mm downstream from the nozzle. This should have a detrimental effect on the beam

quality. However, they report a very high intensity beam of CH molecules. They claim to

produce a CH density of ρ = 1012 cm−3 at L = 4 cm downstream from the nozzle [174] which

corresponds to a flux Φ = ρvL2 = 2.7× 1018 sr−1 s−1 for a velocity v =174 000 cm s−1. Assuming
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a typical FWHM of the pulse of 10 µs for a helium beam this corresponds to a staggering flux of

1013 sr−1 per pulse (1018 sr−1 s−1), or nearly a factor of 104 larger than what we measure. Let’s

quickly put that into context of what we would expect from an ideal supersonic source. An ideal

supersonic expansion of 2.2 bar helium releases 1.66× 1022 sr−1 s−1. The fraction of precursor

molecules in the gas mix is 0.2% which yields a flux of precursor molecules of 3.3× 1018 sr−1 s−1.

We now have to account for the fact that only a fraction of the gas pulse interacts with the

excimer laser beam, which is much shorter than the gas pulse itself. The interaction time of

the excimer laser with the gas pulse is d/v = 3 µs, where d is the width of the excimer beam

along the molecular beam axis and v the velocity of the molecules. Hence the excimer beam only

interacts with a fraction of < 3/100 of the molecular beam that emerges from the pulsed valve.

Accounting for that, the total flux expected from this ideal supersonic source which dissociates

every bromoform precursor molecule that interacts with the excimer laser into a CH molecule

is 1017 sr−1 s−1. This means Kaiser and co-workers produce 10 times more CH than there are

precursor molecules in an ideal supersonic source. We measure a flux of 4.3× 1013 sr−1 s−1 using

argon carrier gas and assuming an interaction time of the excimer laser with the gas pulse of 9 µs,

our CH quantum efficiency of 10−4 ties in with the measurements of Romanzin and colleagues

who measured (5± 2.5)10−4 in a low pressure flow cell [153].

To summarize: our source is exactly the same as Kaiser’s apart from the nozzle to skimmer

distance and a lower flux by a factor of 10000. Kaiser mentions in their most recent paper that

the intensity of the CH beam strongly depends on the nozzle-to-skimmer distance [174]. They

mounted the valve onto vacuum compatible translation stages to optimise the CH flux. From

all the considerations above we find it unlikely that they measured the right density. However,

to investigate whether we could increase the flux by adjusting the skimmer-to-nozzle distance

we bought a high precision ultra high vacuum compatible translation stage (VG Scienta Miniax

ZXYZ1015) and attached the piezo valve to it. This means that we are now able to adjust the

skimmer to nozzle distance smoothly from 0-10 cm with an accuracy of 5 µm. Furthermore, we

can optimise the valve position in x and y with a resolution of 1 µm. We locked the laser on

the CH transition and while we were monitoring the signal we changed the valve to skimmer

distance continuously until the signal changed. We then re-optimized the excimer beam position

and moved the valve again. Unfortunately we did not see a sudden increase in signal close

to the skimmer, but rather a continuous decrease from a skimmer-to-nozzle distance of 50 mm

onwards. This is shown in figure 3.19. We also noticed a continuous increase in the translational

temperature of the molecules as we approached the skimmer which agrees with the simulations

of Even and co-workers. We repeated this measurement for various stagnation pressures. For

lower stagnation pressures we could approach the skimmer a bit further than 50 mm, but the

overall signal was less.
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Figure 3.19: The normalised CH signal as a function of the skimmer-nozzle distance. We used
argon carrier gas at three different stagnation pressures. This final data set was taken by fellow
PhD student Darren Holland.

3.5 Conclusion

We have built, tested and extensively characterised in total 4 different production methods for

the CH molecule. We have identified the main limitations of the different sources and identified

the production method most suitable for our purposes: the photodissociation of bromoform. It

yields a CH flux of 3.5× 109 sr−1 per pulse in a single quantum state (J = 1/2,−, F = 1). The

time-of-flight profile has a width of 92 µs measured 0.79 m downstream from the nozzle which

corresponds to a translational temperature of the CH molecules of 0.4 K only. The molecules

move at a velocity of 570 m s−1 when argon is used as a carrier gas. Both the low translational

temperature and the centre velocity are very close to the values of the ideal supersonic expansion.

Helium, neon and krypton have been tested as well and yield similar fluxes. It is also a very

stable source which yields a sufficiently high flux for high resolution spectroscopy experiments.

We have further carefully calibrated the fluorescence detector which makes it possible to measure

the absolute flux of CH molecules to high accuracy.

John Weinstein from the University of Reno in Nevada pointed out that the laser ablation of

iodoform (CHI3) in a buffer gas cell might be another option for a high CH yield. He measured a

relative absorption of the detection laser beam tuned to the X-A transition of 0.5%. He expects

to extract a beam with an intensity of 1012 - 1013 sr−1 s−1. For a typical buffer gas cell the

molecular pulse after ablation is a few ms long which means he is aiming at generating 109-

1010 sr−1 per pulse. The big advantage is that the CH molecules emerging from such a source

travel with a speed of 200 m s−1. Iodoform, however, comes in powder form and it is well known

that powders do not ablate well and lead to large shot-to-shot fluctuations. It might be possible

to grow a crystal of iodoform or press it into a solid target.



Chapter 4

Searching for Variations of

Fundamental Constants Using CH

Molecules

4.1 Introduction

If the Lord Almighty had consulted me before embarking on creation thus, I should have

recommended something simpler.

King Alfonso X of Castile

Currently we describe gravity by general relativity and the three other interactions by the stan-

dard model of particle physics. Within this theoretical framework we must consider 22 free

parameters [46]. These are the Newton constant, G, the Yukawa coefficients that fix the masses

of the six quarks and the three lepton flavours, two parameters for the Higgs field, four parameters

for the CKM matrix, a phase for the QCD vacuum and three coupling constants. Additionally

we need to add the speed of light and the Planck constant. In order to include massive neutrinos

one has to add another 7 parameters. These free parameters are often referred to as fundamental

constants. Fundamental because their numerical values cannot be derived from a fundamental

principle. We fix these free parameters by measuring them. The failure of our theoretical model

to explain these numbers can thus be seen as the failure of the model itself.

As mentioned in the introduction already theories that attempt to extend the standard model

treat these parameters rather as dynamical variables which change with the evolution of the

universe. In higher dimensional theories such as string theories for example the values of the

fundamental constants depend on the size of the extra dimensions. Their size might change in

a similar way to the observed expansion of the universe causing the constants to change as well.

110
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Theories of dark energy also predict variation of such constants. In particular, these theo-

ries hypothesize that a long range (nearly massless) scalar field is responsible for the observed

accelerated expansion of the universe. This field couples to matter and the strength of the

fundamental forces become dependent on the value of the local scalar field. Such a scalar field

should be detectable through tests of the equivalence principle or fifth force experiments on

Earth. So far, however, no evidence has been found in such experiments. Khoury and Weltman

suggested in 2004 that the mass of the field, and thus its range, depends on the local matter

density [51]. Therefore, it satisfies the constraints of equivalence principle tests, but can evolve

on a cosmological scale where the matter density is typically 1030 times smaller. They dubbed

such scalar fields chameleons. Based on this idea, Olive and Pospelov developed a model in

2008 that predicts variations in fundamental constants such as elementary particle masses and

coupling constants with the local matter density [175]. By comparing the value of the coupling

constants on Earth with the coupling constants in low density interstellar clouds we can test

such chameleon models.

The study of the variation of constants on a cosmological scale is also a test of the equivalence

principle on cosmological scales. A variation of fundamental constants implies violation of the

universality of free fall, of Lorentz invariance and thus of CPT invariance. The search for such

variations thus offers a unique means for testing new physics beyond the standard model and

general relativity.

In particular, the test of two such constants, the fine structure constant α and the electron-to-

proton mass ratio µ has attracted much interest over the last decade. The fine structure constant

α as such is not a fundamental constant according to the definition presented above, but is re-

lated to the electromagnetic coupling constant of the standard model via the renormalisation

group and the Weinberg angle. The electron-to-proton mass ratio is also not a fundamental

constant as such, as it includes the mass of the proton which is not a fundamental particle but

consists of gluons and two quarks. The gluons make up for most of the mass of the proton and

µ is therefore proportional to the QCD energy scale ΛQCD which is related to the strength of

the nuclear force. The electron mass me is related to the vacuum expectation value of the Higgs

field and thus to the scale of the weak nuclear force.

Why are these two constants of particular interest? Simply because their size influences the

electromagnetic spectra of atoms and molecules. And if physicists have mastered a technique

over the last century then it is the precise spectroscopy of atoms and molecules which approaches

accuracies in the 18th decimal place. Furthermore, we can record such spectra from distant as-

tronomical objects, compare them to laboratory values to search for differences and thus probe

for variations on a cosmological scale.

How do such spectral lines shift with changing constants? Let’s start with the simplest case of

the Lyman-α transition in the hydrogen atom. The transition angular frequency ω for the case
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of an infinitely massive nucleus can be written in terms of the fine structure constant α as

ω =
3

8

mec
2α2

~
, (4.1)

where me is the mass of the electron and ~ is the reduced Planck constant and c is the speed

of light. The fractional change in transition frequency due to a change in the fine structure

constant is thus
∆f

f
= 2

∆α

α
= Kα

∆α

α
(4.2)

where Kα = 2 is the so-called sensitivity coefficient of the transition to variations in the fine

structure constant1. If we account for the mass of the nucleus and assume no change in the fine

structure constant we can derive the sensitivity of the Lyman-α transition to variations in the

electron-to-proton mass ratio µ = me/mp
2 by replacing the electron mass by its reduced mass,

ω =
3

8

mpme

me +mp

c2α2

2~
=

3

8

1

1 + µ

mec
2α2

2~
, (4.3)

where, mp is the mass of the proton. The fractional change of the transition frequency if µ

changes becomes
∆ω

ω
= − µ

(1 + µ)

∆µ

µ
= Kµ

∆µ

µ
, (4.4)

where Kµ = − µ
1+µ ' µ ' −5.4× 10−4 is the sensitivity coefficient of the transition to variations

in the electron-to-proton mass ratio. Note that the sensitivity coefficients depend on the units

that are used. It is common in the literature to use atomic units (~ = me = e = 1). In atomic

units the sensitivity coefficients for the Lyman-α transition are then K
(a.u.)
α = K

(SI)
α − 2 = 03

and K
(a.u.)
µ = K

(SI)
µ . In a measurement one must compare at least two transitions that shift

differently with a changing fundamental constants, i.e. only the relative sensitivity coefficient

matters.

The fractional shift of an atomic transition is very insensitive to changes in µ. This is quite

unfortunate because some theoretical models predict that the variation of µ is considerably

larger than the variation of the fine structure constant [177]. The situation changes for the case

of molecular spectra. Molecules can vibrate and rotate. The vibrational energies scale with

Ev ∝
√

1/µ which gives rise to a sensitivity coefficient of Kµ = −1/2. The rotational energies

scale with Er ∝ 1/µ which leads to a sensitivity coefficient of Kµ = −1. As will be explained

1Note, that all atomic and molecular energy levels share the same sensitivity coefficient to first order (Kα = 2).
To search for variations of fundamental constants one must therefore compare at least to two transitions with
different sensitivity coefficients. In atoms such a difference can arise from second order effects such as relativistic
corrections and are typically of the order of ∆Kα = 10−3 − 10−2.

2It is common to define µ as the proton-to-electron mass ratio mp/me. We, however chose this definition to be
consistent with Kozlov who calculated the sensitivity coefficients for CH using the definition µ = me/mp [176].

3The natural energy scale for atoms and molecules is the Rydberg constant which is proportional to α2.
Therefore all atoms and molecules have the same dependence on α to first order. Since it is necessary to compare
at least two transitions to search for a drifting α one needs to find transitions with a large differential sensitivity
coefficient ∆Kα. Two fine-structure doublet states in atoms for example typically have ∆Kα ' 10−3.
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later in more detail, the coupling of angular momenta in molecules leads also to large differential

sensitivity coefficients ∆K for different transitions within the same molecule.

These considerations should only highlight the difference in molecular and atomic spectra and

introduce the concept of sensitivity coefficients. For more complicated atoms or molecules the

calculation of these sensitivity coefficients is not so trivial. There are relativistic corrections,

there is coupling of angular momenta, fine and hyperfine structure. Each of these additional

terms depends differently on fundamental constants. In the case of the dysprosium atom, for

example, a near degeneracy between two opposite parity states leads to an enhancement of the

sensitivity. The two levels move in opposite directions if α varies which results in a sensitivity

of the radio frequency transition between the two states of Kα ≈ 106 [178]. Recently the group

of Budker at Berkeley used a hot beam of dysprosium atoms to test for the temporal evolution

in the fine structure constant. Their result ∆α/α = (−5.8± 6.9)× 10−17 per year is consistent

with no change [179].

One can also compare two atomic clocks whose transition frequencies have different sensitivity

coefficients. By comparing an aluminium and a mercury single-ion optical clock Rosenband et

al. could constrain the temporal variation of the fine-structure constant to −1.6 ± 2.3 × 10−17

per year [53].

Accidental degeneracies such as in dysprosium are quite rare in atoms. In molecules, however,

they do occur more often due to the additional degrees of freedom. In particular, ammonia

(NH3) and the carbon monoxide molecule (CO) have been suggested as suitable candidates for a

search for variations of µ [180] in the laboratory. It turns out that a certain rotational transition

in CO possesses a large sensitivity of Kµ = −302. A second transition in the same molecule shifts

in the opposite direction with a sensitivity of Kµ = 202. The combined transitions thus have a

sensitivity 500 times larger than ordinary rotational transitions. Additionally, the opposite shift

of the two levels rejects systematic errors that could imitate a change in µ.

The current most stringent laboratory constraint on µ-variation stems from the comparison

of the Cs standard to optical clocks and was measured to be ∆µ/µ = (1.6 ± 1.7) × 10−15 per

year [54]4. Another measurement compared a rovibrational transition in the SF6 molecule to

the Cs frequency standard and sets a limit of ∆µ/µ = (−3.8± 5.6)× 10−14 per year [181].

Such laboratory experiments put tight constraints on the variation of fundamental constants

at the present. Astronomical measurements of atomic and molecular spectra, on the other hand,

can probe for variations on cosmological scales. These measurements are less precise than the

current lab based methods, but probe over completely different time and length scales. Further-

more, measurements in dilute interstellar gas clouds where the matter density is usually 1020

times lower than on earth allows searching for chameleon fields.

In 1956, Savedoff was the first to compare astronomical spectra with laboratory spectra in

order to investigate if Z = gµα2 has the same value in a galaxy 3×108 light years away by com-

paring fine structure emission doublets of nitrogen and neon with the hydrogen 21 cm hyperfine

4Note that the hyperfine structure of atomic transitions can be sensitive to µ.
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line [182]. He found ∆Z/Z = 3.3± 3.2× 10−3 and thus no change.

The discovery of quasars by Maarten Schmidt in 1963 stimulated George Gamov to propose

a test of the constancy of the fine structure constant using such high redshift5 objects [183]. In

the same year Schmidt and his colleague John Bahcall set out to do the experiment. In contrast

to Savedoff they used absorption spectra of silicon and measured ∆α/α = (1 ± 2) × 10−3 at a

redshift of z = 1.95 which corresponds to a look-back time of 10.2 Gyr. Until 1999 only a hand-

ful of quasar absorption spectra have been analysed for a potential variation in α and another

handful for a variation in µ. They all provide null results on the level of ∆α/α < 10−4. Uzan

provides an extensive summary of these efforts in [46, 184].

It should be pointed out that the analysis of relative isotope abundances and fission products

of natural reactors provided tight constraints on α variations on the 5× 10−8 level over the last

2 billion years and thus attracted much more attention between the 1970s and 1990s [185]. A

recent reanalysis of this data, however, found the positive result that the value of α has slightly

decreased over the last 2 billion years (∆α/α > 4.5 × 10−8) with 6σ confidence [186]. The re-

sults from these natural reactors tend to be model dependent, requiring assumptions about the

constancy of other parameters, as well as modelling of the nuclear reactions the actual physical

conditions in the reactor.

The situation changed when high resolution telescopes, such as Keck and VLT became avail-

able by the mid to end of the 1990s. At the same time Webb and colleagues conceived the

idea of the many multiplet method [187]. For over three decades observations concentrated on

the measurement of the fine-structure splitting of alkali atoms (doublets) measured in gas clouds

against the background light of quasars. The separation between these lines is proportional to α2

(in atomic units). Any change in the separation of these doublets would indicate a variation in

α. Webb et al., however, showed that one can increase the sensitivity by an order of magnitude

by comparing doublets and multiplets of different atomic species [178, 187]. The difference in the

sensitivity coefficient for different atomic species can be much larger than the relative sensitivity

of a fine structure doublet that shares the same ground state. The sensitivity mainly stems from

relativistic corrections which are large for the electronic ground state. These corrections scale

with the square of the atomic charge. Thus heavy atoms such as Fe show a larger sensitivity

than lighter atoms such as Mg. Other transitions might even shift in the opposite way due to

many body effects.

By the end of the 1990s the Keck telescope in Hawai’i provided high resolution data from

about 30 quasar absorption systems. The precision of some of these spectra even exceeded the

accuracy of the available laboratory spectra at that time. The Australian group around Webb,

5The redshift z we are talking about here is defined by the frequency shift of an emitted frequency fe from an
object due to the expansion of the universe. We observe the redshifted frequency fo. The redshift z is then defined
as 1 + z = fe

fo
. Using a cosmological model for the expansion of the universe we can relate the redshift to the

time when the observed object emitted the light. For common parameters for the matter density ratio Ωm = 0.27
and the present day Hubble constant H0 = 70 km/s/Mpc a redshift of z = 1 corresponds to a look-back time of
approximately 7.8 Gyr and a redshift of 10 to a look-back time of 13.2 Gyr.
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Murphy and Flambaum analysed more and more absorption systems and concluded that α had a

smaller value ten billion years ago. They measured ∆α/α = (−0.74± 0.17)× 10−5 by 2004 after

analysing 143 absorbers using data from Keck [188] for redshifts of z > 1.8. By 2004, five years

of data from VLT in Chile was accumulating which allowed them to cross-check their findings

using a completely different telescope and spectrograph. The results were quite puzzling because

as more and more VLT spectra were analysed it clearly showed opposing results to the Keck data

for high redshift. Using VLT they found ∆α/α = (+0.61± 0.2)× 10−5 for redshifts of z > 1.8.

They then realised that the two telescopes are probing different parts of the sky and plotted the

variations along the sky for the different line of sights. Fitting to the data they found a 4.1σ

significance in favour of a dipole over a monopole model [189]. This means that α not only varies

over time but also over space. Even when they fitted to the data from the individual telescopes

they found a dipole-like dependence of α. The two individual dipoles surprisingly pointed in the

same direction and had the same amplitude. Even in the equatorial plane where the Keck and

VLT look in the same directions they did not find any evidence for inconsistency. This would

mean that there is a spatial gradient of the values of α throughout the universe. As Earth moves

through this gradient we should see a relative annual variation of ∆α/α = 10−20 [190].

Note that this analysis was made using archival data. The first dedicated measurement to

search for a variation in α using VLT is currently in progress. Webb and colleagues assume

that the relative isotope abundances are similar to the ones on Earth. Agafonova and colleagues

could show that this is in general not the case and that the heavy isotopes of Mg are indeed

overabundant at high redshifts [191]. Molaro and colleagues re-analysed the Keck dataset of

Murphy et al. [188] with and without the Mg data. The data including the Mg lines yields

∆α/α = (−4.8± 1.2)× 10−6. Without the Mg data they get ∆α/α = (−1.1± 1.7)× 10−6 [192].

They could further convincingly show that the error bars used by Murphy et al. were underes-

timated.

Comparing heavy to light atoms is problematic because the spectra can have completely dif-

ferent origins in the gas cloud. This leads to different velocity profiles and thus to relative

Doppler shifts which could mimic a variation in α. There are also known calibration issues of

the spectrographs. Griest et al. for example showed that the Keck spectra could be subject

to calibration errors which could lead to systematic errors as large as 30 ppm per night and

120 ppm over several nights [193]. They found serious systematic errors arising from a failure

to calibrate the Keck spectrograph to the precision needed, and could produce any result, from

significant detections of either sign to strong null limits using a single source at z = 2.309. Van

Weerdenburg et al. on the other hand found good agreement between Keck and VLT using H2

and HD lines from an object at z = 2.059 at the accuracy level of 5× 10−6 [194]. New spectro-

graphs such as the ESPRESSO project or the use of femtosecond frequency combs for accurate

wavelength calibration will be a major step towards solving such calibration issues [195].

Molecular hydrogen lines can be used to constrain variations in µ. It is the most abundant

molecule in the Universe and has numerous UV rovibrational transitions. The main challenge
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using hydrogen is the difficulty in detecting it. The transitions are weak and redshifted ab-

sorbers are hidden in the so-called Lyman-α forest. Four of these systems have so far produced

constraints with the highest accuracy of ∆µ/µ = (0.3± 3.2stat± 1.9sys)× 10−6 obtained by King

and colleagues in 2011 [196] using VLT and an absorber at z = 2.811.

The positive result of the Australian group remains the only strong positive result. Never-

theless, the result stimulated great interest to search for variations of fundamental constants by

comparing astronomical to laboratory spectra. More and more groups become involved and new

sensitive probing methods are invented.

All the results discussed above come from transitions in the visible and UV. The most accurate

astronomical measurements of cosmological variation in α or µ are obtained from observations

using radio frequency and microwave transitions in molecules. The most stringent limit for µ

variation at non-zero redshift has recently been obtained from absorption lines of methanol, with

the result ∆µ/µ = (0.0 ± 1.0) × 10−7 at a redshift of z = 0.89 [197]. Several transitions could

be observed each having a different sensitivity coefficient. By only using methanol, systematic

errors due to the different velocities of different species were avoided. Kanekar and colleagues

used microwave transitions in OH in combination with hydrogen lines to constrain α variation

to ∆α/α = (−1.7± 1.4)× 10−6 over the last 6.7 Gyr (z = 0.765) [198].

Although molecules provide exceptional sensitivity there are until now no known sources for

molecular microwave spectra at redshifts comparable to those where Murphy and colleagues

find the largest spatio-temporal variation (z > 1.5). An exception are far infrared rotational

lines in CO which have recently been found at an exceptionally large redshift of z = 5.2 which

corresponds to a look back time of 12.9 Gyr [199]. However, the lines were too weak and too

wide to provide accurate results. The results obtained is consistent with both the dipole and no

variation, yielding a constraint of |∆α/α| < 8× 10−6.

Measurements using methanol spectra (CH3OH) in our own galaxy are extremely precise and

constrain the variation in µ with matter density at the level of |∆µ/µ| < 2.9 × 10−8 with 1σ

uncertainty [200]. Levshakov et al. also compared the inversion transitions in ammonia (NH3)

to rotational transitions in cyanoacetylene (HC3N). The results, when interpreted as a change

in µ suggest ∆µ/µ ∼ 2.6×10−8 with 8σ significance. However, it is now known that the spectra

obtained at the 100 m telescope at Effelsberg suffered from a combination of hard and software

bugs [201]. Using recent data from the Medicina 32 m telescope in Bologna and the 45 m telescope

in Nobeyama they corrected this result and get the very tight constraint of |∆µ/µ| < 3× 10−9

with 1σ confidence [201].

To summarise: there is some evidence for variation in constants (especially at high redshift)

and some evidence against. Dedicated experiments at Keck and VLT with improved calibration

techniques and measurements with other telescopes will help to confirm or refute the spatial

gradient. The sensitivity of molecular spectra to variations in fundamental constants exceeds

electronic transitions by up to three orders of magnitude. In addition, molecules provide multiple

transitions that can even shift in opposite directions which can eliminate many systematics that
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Figure 4.1: The level diagram of the X2Π(v = 0, N = 1) including fine and hyperfine structure
and the sensitivity coefficients for the two Λ-doublets (averaged over the hyperfine structure,
taken from [176]).

originate from comparing different species. However, the laboratory frequencies of molecular

spectra are often not known accurately enough or have not been measured at all. Furthermore,

molecules are hard to find in outer space, particularly at high redshift.

In 2009 Kozlov pointed out that molecules with Λ-doublets can have large sensitivity coeffi-

cients to variations in both α and µ [176]. He analysed NO, LiO, CH and OH and found that

the sensitivity of CH and OH is further enhanced by J-dependent decoupling of the electron

spin from the molecular axis. For OH this decoupling happens in the J = 9/2 excited state and

leads to exceptional sensitivity of Kα = −922 for the (J = 9/2, F = 5)− (J = 9/2, F = 4) tran-

sition. However, the transition frequency at 88.95 MHz is unlikely to be detected by any radio

telescope. For CH this decoupling happens in the first excited J = 3/2 state. Compared to OH

the sensitivity of the J = 3/2 transition in CH is lower with Kα(J = 3/2) = −8, but it has been

detected in cold, interstellar gas clouds already [202]. Moreover, the sensitivity coefficient of the

J = 1/2 transition is positive Kα(J = 1/2) = +0.6. The J = 1/2 doublet transition thus shifts

opposite compared to the J = 3/2 transition. A level diagram of the X2Π(v = 0, N = 1) state of

CH including the sensitivity coefficients is shown in figure 4.1. Two astronomical measurements

recorded both lines from a single gas cloud [202, 203]. However the J = 3/2 transitions have not

previously been measured in the lab at all and the J = 1/2 only to insufficient accuracy to be

useful for our purposes.

We have measured all three hyperfine lines of the J = 1/2 Λ-doublet and all four hyperfine

lines of the J = 3/2 Λ-doublet in order to use CH as a new, sensitive probe for variations in

fundamental constants.
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4.2 How to Measure the Λ-doublet Transitions in CH?

The precise measurement of transition frequencies in atoms or molecules owes much to Norman

Ramsey. The techniques developed by Ramsey are based on the magnetic resonance technique

which was invented by his doctoral adviser Isidor Rabi. Ramsey developed this technique further

which allowed physicists to reach such high precision that it gave rise to the redefinition of the

SI second [204]. Both, Rabi and Ramsey, were awarded the Nobel prize in physics (see intro-

duction, for more details): Rabi in 1944 “for his resonance method for recording the magnetic

properties of atomic nuclei” and Ramsey in 1989 “for the invention of the separated oscillatory

fields method and its use in the hydrogen maser and other atomic clocks”. The accuracy with

which one can measure a transition frequency which is not limited by spontaneous decay is only

limited by the interaction time with the electromagnetic field. So in principle longer interaction

regions should lead to narrower lines. Rabi and Ramsey, however, immediately realised that in

practice this was not the case because it was impossible to create completely uniform magnetic

fields for their magnetic resonance experiments over long interaction times. Hence, the reso-

nances frequently broadened far beyond the theoretical predictions [205].

Ramsey joined Harvard University in 1947 and set up his own lab. When designing his new

beam apparatus he naturally wanted to maximise the spectral resolution. While struggling with

the problem of how to achieve uniform magnetic fields he recalled a lecture by Philip Dee from

his time at Cambridge about the Michelson stellar interferometer. Dee suggested that: “if the

resolution of your telescope is not quite high enough to determine whether an object is a single or

double star, simply paint the middle of the mirror black. The image will be dimmer but almost

twice as sharp” [206]. It was Ramsey’s ingenious idea to adapt this concept for his molecular

beam apparatus. By using two pulses (two phase coherent short π/2 pulses separated by a long

free evolution time T ) instead of a single long π-pulse he could create an atomic interferometer

which overcomes the restrictions of the traditional method and yields a linewidth which is twice

as narrow. Ramsey conceived his idea as a tool for precision spectroscopy and, as it is often the

case with ground-breaking inventions, they become useful beyond the initial applications. It has

become the experimental protocol for manipulating quantum states which led to the most recent

Nobel prize in physics for Serge Haroche and Dave Wineland. May it be for the manipulation

of fields in cavities, of vibrating atoms and ions in traps or even of large systems that behave

as artificial atoms, Ramsey’s methods can be applied. It is also used in quantum information

science to prepare atoms in superpositions, to build quantum gates and demonstrate quantum-

computation algorithms and is especially useful to protect them against decoherence.

It is also Rabi’s and Ramsey’s methods that we use to measure the Λ-doublets of both the

J = 1/2 and the J = 3/2 state of the ground electronic and vibrational state of CH to un-

precedented accuracy. In the previous chapter the methods to produce a molecular beam of CH

molecules were presented. The most versatile and stable source for high resolution spectroscopy

experiments is the photolysis of bromoform. It provides a decent flux of CH molecules, but
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Figure 4.2: A sketch of the experiment to measure the Λ-doublet transitions of CH (not drawn
to scale). The molecular beam is produced via photolysis of bromoform as described in the
previous chapter. The beam is skimmed and passes through a state selector (pump laser). The
molecules then enter a magnetically shielded interaction region where we drive the transition.
Finally, the molecules are detected by laser induced fluorescence.

more importantly is extremely stable, i.e. there are no drifts of the arrival time, the shot-to-shot

variations are minimal and it allows changing the velocity of the molecules by using different

carrier gases.

Furthermore, the detector is capable of counting the total flux of molecules with high sen-

sitivity and good efficiency. The use of a narrow continuous wave laser enables us to address

individual hyperfine levels and to record the time-of-flight profile of the molecules in a single

gas pulse with a temporal resolution of 5 µs. These features are ideal preconditions for precision

spectroscopy experiments. All we needed to add is a microwave interaction region to drive the

Λ-doublet transitions, a state selector and a magnetic shield to screen unwanted magnetic fields.

We chose a transmission line resonator as interaction region. The reasons for that will be given

in section 4.2.2. All we need to know for now is that the microwaves are launched along the

molecular beam axis z and form a standing wave in a transmission line. A sketch of the setup

is shown in figure 4.2.

4.2.1 Driving the Λ-doublet Transition with Microwaves - Theory

Before we get started with the experiment it is useful to discuss the theory of a molecular beam

resonance experiment, so that we know what to expect and can identify potential systematic

errors. The Hamiltonian describing the interaction of a two-level system (atom, molecule) with

an oscillating electric field can be written as H = H0 + HI (consult your favourite quantum
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optics text book ([207] for example) for all the details) where

H0 = ~ω1 |1〉 〈1|+ ~ω2 |2〉 〈2| (4.5)

with |1〉 and |2〉 the eigenstates of the unperturbed (field-free) Hamiltonian H0 |n〉 = ~ωn |n〉,
for n = 1, 2. For microwaves polarised along y the interaction is governed by the electric dipole

interaction

HI = −d ·E(t) = − (Y12 |1〉 〈2|+ Y12 |2〉 〈1|)Ey(t) (4.6)

where d = −er is the electric dipole operator, Y12 = e 〈1 |y| 2〉 is the matrix element of the

electric dipole moment along y and Ey = ŷE0 cos (ωt+ φ) is the oscillating electric field along

y. We can to express the wavefunction |ψ(t)〉 of the two-level system that interacts with electro-

magnetic radiation as a linear combination of the eigenstates of the unperturbed Hamiltonian

with time-dependent coefficients:

|ψ(t)〉 = B1(t) |1〉+B2(t) |2〉 . (4.7)

Substituting equations 4.6 and 4.7 into the Schrödinger equation i~∂t |ψ〉 = H |ψ〉 gives two

coupled differential equations for the probability amplitudes B1 and B2. Before solving these

equations it is useful to transform the coordinates into the rotating frame by bn = Bne
−iωnt for

n = 1, 2. We can also neglect the fast oscillating terms proportional to e±(ω2−ω1+ω) (rotating

wave approximation). This approximation holds because we are dealing with excitation close to

the resonance frequency ω0 = ω2 − ω1. The two coupled equations then read

ḃ1 = i
Ω

2
e−iφb2e

iδt ḃ2 = i
Ω

2
eiφb1e

−iδt (4.8)

where we introduced the Rabi frequency Ω = Y12E0/~ and the detuning δ = ω − ω0. We can

write the solutions in matrix form(
b1(t)

b2(t)

)
= M(Ω, t0, t, φ)

(
b1(0)

b2(0)

)
. (4.9)

where M is a 2x2 matrix

M(Ω, t0, t, φ) = eitδ/2

(
cos (Wt/2)− (iδ/W ) sin(Wt/2) (−iΩ/W ) e−iφ+ωt0 sin (Wt/2)

(−iΩ/W ) eiφ+ωt0 sin(Wt/2) cos (Wt/2) + (iδ/W ) sin (Wt/2)

)
(4.10)

with W =
√

Ω2 + δ2 and we allowed for an arbitrary start time of the interaction t0. The matrix

M propagates the initial state in time while the system is under the influence of electromagnetic

radiation. In the case when all the molecules start in state |1〉 (b1(0) = 1, b2(0) = 0) the
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probability of finding molecules in the excited state |2〉 after an interaction time t = τ becomes

P2 = |b2|2 =
Ω2

W 2
sin2

(
Wτ

2

)
. (4.11)

We are using a transmission line resonator which consists of two counter propagating waves along

the molecular beam axis z. This means that we need to add an extra phase term in equation 4.8

which accounts for the finite velocity of the molecules with respect to the standing wave. This

phase shift is
(
A1e

−ikz +A2e
ikz
)
, where k = 2π/λ, λ is the wavelength of the microwaves in the

transmission line, z = vt and v is the velocity of the molecules. We can account for this extra

phase by defining a generalised detuning ∆ = δ + ∆ωD, where

∆ωD = ω0
v

c
(4.12)

is the Doppler shift. If we neglect the Doppler shift for the moment and set the radiation to

the resonance frequency then W = Ω and the population in the excited state oscillates with

a specific frequency Ω. These oscillations are known as Rabi oscillations and Ω is the Rabi

frequency, after Isidor Rabi who first observed these oscillations. For the case of electronic tran-

sitions these oscillations are usually washed out by the fast spontaneous decay of the excited

state. However, the spontaneous emission rate scales with the cube of the transition frequency

and thus becomes negligible for transitions in the radio frequency or microwave domain on time

scales of a typical molecular beam experiment (1 ms). In such a case multiple Rabi oscillations

between the two levels can be observed. From equation 4.11 we can infer that if the experimental

conditions are set such that Ωτ = π and ω = ω0 the population is transferred from level |1〉 to

level |2〉. Hence a pulse of resonant radiation of duration τ = π/Ω is called a π-pulse. If we

fix the time and amplitude of the microwave pulse to Ωτ = π and scan the frequency we get

the typical sinc2(x) = sin2(x)/x2 shape of the resonance the width of which is ∆f ' 1/τ . In

such a single pulse experiment we can reach interaction times of the order of 1 ms which yields a

linewidth of approximately 1 kHz. Molecules travelling with a velocity of 600 m s−1 then experi-

ence a Doppler shift of ∆ωD/(2π) = 6.6 kHz for a transition frequency of 3.3 GHz. We are using

a standing wave microwave field which consists of two counter propagating waves. Each wave

produces a resonance which is Doppler shifted by ∆ωD with opposing sign. If the interaction

is long enough to produce a lineshape which is narrower than the Doppler shift we expect to

observe two resonances which are split by twice the Doppler shift.

Due to the fact that the lifetime of the excited state is extremely long the associated natural

linewidth is extremely narrow. The linewidth in our experiment is thus not limited by the life-

time of the excited state but rather by the limited interaction time τ . This is what is known as

transit time broadening.

We use the Ramsey method, applying two short π/2 pulses separated by a period of free evo-

lution for a time T . The first π/2-pulse creates a superposition of population in the two states.
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The superposition freely evolves at the angular frequency ω0 of the transition for a time T .

Meanwhile the microwaves evolve at an angular frequency ω. The molecular superposition and

the microwave field accumulate a phase difference ∆φ = (ω−ω0)T . A second π/2-pulse applied

after the free evolution T completes the transfer to the excited state with a probability propor-

tional to cos2(∆φ). By measuring the excited state population as a function of the oscillator

frequency we can resolve these so called Ramsey fringes and determine the resonance frequency.

It might be surprising that one can extract information about an energy interval between two

states from a field free region, but it becomes obvious from the simple consideration of a Fourier

transformation of a pulse sequence which is analogous to double slit interference. The sine of

the diffraction angle is then replaced by the detuning δ = ω − ω0 and the distance between the

slits by the free evolution time T . The squared Fourier transform of two rectangular pulses of

duration τ separated by a time T is

|b2|2 ∝
(

sin(δτ/2)

δτ/2

)2

cos2

(
δT

2

)
. (4.13)

The population oscillates with a period T and has a sinc2, single pulse envelope of width 1/τ .

This technique not only allows for longer interaction regions and thus higher resolution but

furthermore yields a 40% narrower line width as compared to the ideal single pulse experiment.

To be more precise we can use the description we developed above and propagate the initial

state vector with the matrix M for the first interaction of duration τ1, is followed by a period

of free evolution for a time T , described by a matrix F and the a second pulse of radiation of

duration τ2. The free evolution is simply described by

F =

[
eiω0T/2 0

0 e−iω0T/2

]
. (4.14)

The subsequent application of the matrix M and F to the initial state vector is then(
b1(t)

b2(t)

)
= M(Ω2, t1 + T, τ2, φ2)F (T )M(Ω1, t1, τ1, φ1)

(
b1(0)

b2(0)

)
. (4.15)

If all the population starts in the ground state (b2(0) = 0) the probability of exciting the molecule

becomes

P2 =
1

W 2
1W

2
2

(
Ω2

1c
2
2s

2
1W

2
2 + Ω2

2c
2
1s

2
2W

2
1 + δ2Ω2

1s
2
1s

2
2 + δ2Ω2

2s
2
1s

2
2

)
− 2

Ω1Ω2

W1W2
s1s2

[
cos Φ

(
δ2s1s2

W1W2
− c1c2

)
+ sin Φ

(
δc2s1

W1
+
δc1s2

W2

)]
(4.16)
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with

W1 =
√

∆2 + Ω2
1 W2 =

√
∆2 + Ω2

2 ∆ = δ + ∆ωD

Φ = T∆ + φO c1,2 = cos

(
1

2
W1,2τ1,2

)
s1,2 = sin

(
1

2
W1,2τ1,2

)
. (4.17)

Here we added another phase term φO which is the difference in phase of the microwave field

due to a change in position of the molecules along the transmission line between the two pulses.

In the ideal experiment with no Doppler shift, we set τ1 = τ2 = τ , Ω1 = Ω2 = Ω, W1 = W2.

The lineshape given in equation 4.16 then simplifies to the one given in [205]. If we simplify this

further and assume that each pulse is an ideal π/2-pulse equation 4.16 reduces to

P2(δ) =
4π2 sin2

(
X
4

)
X4

[
X cos

(
X

4

)
cos

(
δT + φ0

2

)
− 2δτ sin

(
X

4

)
sin

(
δT + φ0

2

)]2

(4.18)

where X =
√
π2 + 4δ2τ2. In a molecular beam experiment the molecules, however, travel with a

velocity of about 600 m s−1. Hence we cannot neglect the Doppler shift. In a Ramsey experiment,

the Doppler shift enters as an additional phase as indicated in equation 4.16 and thus leads to

a frequency shift. The Doppler shift is suppressed to first order by using a standing wave.

Now we should investigate the effect of a non-ideal, i.e. not perfectly balanced standing wave.

In a good resonator the amplitudes of the two counter propagating waves are equal. As we

characterised the transmission line we realised that there is a slight imbalance ε between the

amplitudes of the two counter-propagating waves (this will be explained further in section 4.3).

We can write the electric field in such an imperfect resonator as

E =
E0

2
(1 + ε) cos(kz − ωt) +

E0

2
(1− ε) cos(kz + ωt). (4.19)

For perfectly balanced waves the two counter propagating waves lead to two Ramsey patterns

with a relative phase difference of 2kz = 2kvT . In the experiment we observe only the sum of the

two which is proportional to cos2(δT + kz) + cos2(δT − kz) which is 1 + cos(2δT ) cos(2kz) which

leads to a reduction of the contrast of the Ramsey fringes, but not to a systematic frequency shift.

Note that this means that the contrast vanishes for velocities that satisfy kz = π/4. For the case

of an ideal standing wave the Doppler shift of equation 4.23 cancels completely. If the standing

wave is not perfect and there is a small imbalance between the two waves the Doppler shift does

not cancel completely but is suppressed by the imbalance factor ε. We can get an expression

for the position dependent phase shift of the microwaves by rewriting 4.19 using trigonometric

identities,

E = E0

√
cos2 (kz) + ε2 sin2 (kz) cos(ωt− φim) (4.20)

where

φim(kz) = tan−1 [ε tan (kz)] . (4.21)
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If the standing wave is not perfect this imbalance ε leads to a small phase shift in the microwave

field φO = φim. We pulse the microwaves on when the molecules are at the antinodes of the

transmission line resonator, simply because the smallest phase change is near the antinodes and

because most of the microwave power will be located there. This means that we choose the free

evolution time between the two pulses as an integer number of antinodes, i.e. T = nλ/(2v) where

n is an integer and v is the velocity of the molecules. Hence we pulse the microwaves on when

the molecules are at positions z1 = z0 + δz0 and z2 = z1 + (1 + εz)nλ/2, where z0 is the position

of the antinode used for the first π/2 pulse and δz0 and εz allow for a small imperfect timing of

the microwave pulses due to a small uncertainty in the velocity of the molecules. Expanding the

phase 4.21 around the antinodes gives a frequency shift due to an imperfect standing wave of

∆fO ≈ εεz
(v
λ

)
. (4.22)

Note that this frequency shift is independent of δz0 to first order.

There is a second contribution to the velocity-dependent frequency shift. This comes about

from the Doppler shift of the individual π/2 pulses. For a travelling wave and for ideal π/2

pulses, we can expand equation 4.16 about the resonance frequency. This yields a frequency

shift of

∆ωD,R =

(
1− 4

π

)
τ

T
∆ωD , (4.23)

due to the finite velocity of the molecules during the individual π/2 pulses. For a standing wave

this further reduced by the imbalance factor ε.

4.2.2 Experimental Setup

The setup is shown in figure 4.2. It provides a convenient geometry for both Rabi and Ramsey

experiments. As we have learnt from the previous section the linewidth in a single pulse experi-

ment is 1/τ and the resolution of a Ramsey experiment is set by the free evolution time T . In a

molecular beam experiment both times are limited by the velocity of the molecules and the size

of the vacuum chamber.

4.2.2.1 Transmission Line Resonator

A common way to drive a microwave transition is the use of waveguides or microwave resonators

with small apertures to feed the molecular beam through the interaction region. These structures

provide very well defined electric and magnetic fields and are thus ideally suited for such pur-

poses. For driving the J = 3/2 Λ-doublet transition we need radiation at about 700 MHz. The

dimensions of a WR-1150 waveguide which supports such microwaves is 29.2×14.6 cm2 which
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simply does not fit into our vacuum chamber. An alternative is to use a parallel plate trans-

mission line. Simply speaking this is a coaxial cable that instead of two cylindrical conductors

consists of two parallel, conducting plates. Provided the plate spacing is smaller than half the

microwave wavelength, the parallel plate transmission line supports only TEM waves meaning

that there is no component of the electric or magnetic field in the propagation direction. Fur-

thermore, the boundary conditions force the electric field to be perpendicular to the metal plates

similar to a plate capacitor which defines the polarisation of the microwaves very well.

The output of a microwave synthesizer for such frequencies, however, is usually into a coaxial

cable. A straight forward way to connect the coaxial cable to the transmission line is to split the

coaxial cable and connect the centre core to one plate and the outer shield to the other plate.

We use RG-405 (non-magnetic!) semi rigid coaxial cable (50 Ω). The characteristic impedance

of such a coaxial cable is

Z =
1

2π

√
µ

ε
log

d

D
(4.24)

where, µ and ε are the magnetic permeability and the dielectric constant of the insulator between

the two conductors, respectively and d/D is the ratio of the diameters of two conductors. By

splitting the cable one abruptly changes the ratio d/D which in turn changes the impedance

of the coaxial cable. Every change in impedance along a transmission line leads to reflections

and interference between the incoming and reflected wave, which affects the coupling efficiency

onto the plates. The same happens at the output of the parallel plate transmission line which

can lead to very complex interference patterns and thus to a very complicated field distribu-

tion. By keeping the coupling region short and the splitting small compared to the wavelength

we hoped to minimise the impedance mismatches. A small splitting means also a small spac-

ing between the plates and hence we decided the minimum distance between the plates to be

d = 7 mm which in turn fixed the width of the plates to D = 53 mm to achieve an impedance

of Z =
√
µ/ε(d/D) = 50 Ω. The length of the transmission line is limited by the length of

the vacuum chamber to about L = 50 cm. However, even for such a small splitting we found

that only about one percent of the incident power was transmitted through the transmission line

at 3.3 GHz and the transmission was extremely sensitive to the shape and position of the in- and

output couplers. Simply by changing the angle of the coax cable slightly we could change the

coupling efficiency by a factor of 10. This was unsatisfactory and means that although the cou-

pler is only about a tenth of the wavelength it has significant impact on the coupling efficiency.

For low frequencies on the other hand (between 10 and 200 MHz) nearly perfect coupling could

be observed. We tried to change the geometry of the coupler, to add trimming capacitors and

to use a balun to balance the impedance, but nothing improved the coupling to our satisfaction.

Hence we decided to leave one end open circuited so that a resonator is formed and produce a

well defined standing wave. By cutting the length of the plates such that L = nc/(2f), where n

is an integer, c the speed of light and f the approximate transition frequency of the Λ-doublet

match the resonant frequency of the transmission line to that of the molecule. We checked this
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Figure 4.3: We excite the transmission line with one port of a vector network analyser. We then
measure the electric field inside the transmission line resonator as a function of the frequency
with a small antenna attached to the other port of a vector network analyser. If the plates are
cut to the right length there is a resonance exactly at the resonance frequency of the molecules.
The width of the resonance is about 30 MHz. The dashed line shows the approximate transition
frequency of the (1/2+, 1)− (1/2−, 0) line at 3.264 GHz.

by exciting the transmission line with one port of a vector network analyser (Agilent 8722ES)

and measured the transmitted power as a function of the frequency with an electric field an-

tenna placed between the plates and attached to the second port of the network analyser. A

plot of the transmission as a function of the applied frequency is shown in figure 4.3. We found

that fine adjustment to the length of the resonator was necessary to tune the resonance of the

transmission line exactly to the resonance frequency of the molecules. This means that the

point of reflection at each end is not exactly the end of the plates. We further noticed that the

exact shape and location of the coupler influences both the width and location of the resonance

peak. The end caps of the magnetic shield also influence the resonance considerably. It is thus

of utmost importance to check the resonance frequency when the plate structure is in its final

setup inside the vacuum chamber.

We also probed the electric field with an antenna attached to a microwave power meter which

was mounted on a motorised translation stage. By scanning the position of the power me-

ter along the transmission line we could produce a field map of the standing wave inside the

resonator. We found that terminating the transmission line with a short between the plates

produced significant distortion of the standing wave towards the end of the plates.

The field map showed a standing wave that was consistent with a wavelength of 9 cm which

is the expected wavelength for f = 3.3 GHz. Later measurements using the molecules as field-

probes revealed a wavelength of 11.9 cm. This means that the wave vector of the microwaves

was angled with respect to the molecular beam axis resulting in an effective longer wavelength.

The coupler thus launched a higher order mode which was travelling with an angle of ≈ 40◦

with respect to the molecular beam even though the plate spacing is smaller than half the
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wavelength. The higher-order mode is one that zig-zags between the open sides of the trans-

mission line, reflecting from the impedance change at these open sides. The molecules experi-

enced an effectively longer wavelength of the microwaves which led to a smaller Doppler shift

∆fD = ∆ωD/(2π) = v/λ. By reducing the width of the plates we fixed that problem. Narrower

plates provide a sharp cut-off for such higher order modes. Hence for the final measurements

we used plates with a width of 30 mm and reduced the distance between the plates to 5 mm to

reduce fringe fields.

4.2.2.2 Controlling Magnetic Fields

To screen the interaction region against ambient magnetic fields we surround the plates with a

high permeability nickel-iron based alloy (MuMetal) cylinder which reduces the ambient magnetic

field by approximately a factor of 1000. The shielding factor S for static magnetic fields (the

ratio of the magnetic field outside of the shield to the field inside a single-layer shield) is S ≈
µt/D = 1000, where µ ≈ 105 is the relative permeability of the material the shield is made of,

t = 1.5 mm the thickness and D = 15 cm the diameter of the shield [208]. Note that this is

the transverse shielding factor for magnetic fields perpendicular to the cylinder axis. The axial

shielding factor is usually worse. However, we benefit from the coincidence that the magnetic

field in our lab along this direction is a factor of 10 smaller than in the other two directions.

The J = 3/2 Λ-doublet transitions are nearly a thousand times more sensitive to magnetic

fields as compared to the J = 1/2 transitions. Hence for these measurements we added a

second layer of magnetic shielding which extended into the state selection area. A sketch of

this setup is shown in figure 4.4. For well separated shields the shielding factor then becomes

S = S1S2

[
1− (D1/D2)2

]
≈ 3 × 105 [208]. We measured the shielding factor for the single and

two layer shield with a three axis fluxgate gaussmeter (Bartington) to be better than 1000 and

10000, respectively despite apertures for the molecular and laser beams. De-gaussing coils are

wound between the shields to be able to demagnetise them. We drive these coils with a 50 Hz

sine wave that saturates the shields and then slowly ramp the H-field to zero [209].

Furthermore, we added two pairs of coils in order to be able to apply well controlled magnetic

fields in x and y. The coils are made from four metal rods which run along the transmission line.

The metal rods are connected such that a homogeneous magnetic field is created along the entire

transmission line when a current flows through them. A solenoid wound along the transmission

line provides a uniform field along z. The assembly consisting of the plates, field coils, magnetic

shields and de-gaussing coils is then centred in the vacuum chamber. We carefully align the

position of the plates using a laser beam that enters the chamber centrally, goes through the

skimmer and hits the valve nozzle.
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Figure 4.4: For the measurement of the J = 3/2 Λ-doublet we added a second layer of magnetic
shielding that extends into the state selection region and added magnetic field coils. We replaced
the optical pumping laser with resonant THz radiation to selectively transfer population from
the J = 1/2 to the J = 3/2 state.

4.2.2.3 Microwave Electronics

The microwaves for driving the Λ-doublet transitions are generated by a Gigatronics Synthesized

Signal Generator 7100 (synth) which is phase locked to a GPS frequency reference (Quartzlock

E8-X). The GPS antenna is installed on the roof of our laboratory to assure good reception

which is essential for a stable lock. We monitor the GPS signal strength on a computer via

a RS232 interface using the freely available WinOncore software. We have good visibility to

at least 8 (typically 10) satellites which allows an accurate calculation of the local time. The

E8-X then locks its internal 20 MHz reference oscillator to the GPS signal and provides a phase-

locked 10 MHz sine wave or 1 pulse per second TTL which can be used as a frequency or time

reference. The typical short term stability is given as an Allan variance of < 2× 10−10 for time

scales on the order of 1 s and as low as < 2× 10−12 for long terms > 104 s. We use the 10 MHz

sine wave output and amplify it before connecting it to the external lock port of the synth. The

lock of the synth is cross-checked against a counter which is also locked to the stable 10 MHz

signal. If the 10 MHz signal is removed from the synth the counter shows frequency shifts of

up to 1 kHz for synth output frequencies in the GHz range. We could not detect any influence

of the RF amplifier on the stability of the lock. The phase locked microwave output is then

connected to the transmission line cavity through a fast, TTL activated, high isolation switch

(Mini Circuits ZASWA-2-50DR), a coaxial DC-Block and an SMA vacuum feedthrough. The

switch output is monitored on an oscilloscope using a fast diode (Agilent).
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4.2.2.4 State Selector

We measure the population in one specific Λ-doublet state as a function of the microwave fre-

quency. Our molecular beam source creates an equal amount of molecules in the two Λ-doublets

of the J = 1/2 ground state. If we drove a π-pulse with an initially equal population in both

states we only swap the population and can not detect any change in signal due to the interaction

with the microwaves. Hence the first step is to create an imbalance between the populations in

the two states. We can do so by means of optical pumping. We take part of our detection laser

and let it interact with the molecules before they enter the transmission line. We lock the laser

to the R22(1/2) line of the A2∆(v = 0) ← X2Π(v = 0) transition, for example, which depletes

the (1/2−, 1) level (see level diagrams 2.4 and 4.1). We use the short hand (Jp, F ) to label the

levels from now on. Hence without resonant microwaves we cannot detect any CH molecules

in our detector because they were all pumped away into a dark state. We now need to apply

the microwaves while the molecules are flying through the transmission line and measure the

fluorescence signal in our detector as the microwave frequency is scanned. This technique is

known as molecular beam laser-microwave double-resonance spectroscopy.

Approximately 95% of the CH molecules are created in the J = 1/2 ground state. With such

little signal in the J = 3/2 state a measurement of the Λ-doublet would be extremely challeng-

ing. We therefore populate the J = 3/2 state by driving the J = 1/2 to J = 3/2 transition with

resonant THz radiation near 533 GHz. We generate this so-called mm-wave radiation with a

commercial amplifier multiplier chain (VDI AMC 331). The AMC generates the 54th harmonic

of its input frequency (between 9.3 and 13.9 GHz, 13 dBm (13 mW)) which corresponds to an

output scan range of 500-750 GHz. The mm-waves are launched into a free-space Gaussian beam

by a WR-1.5 diagonal gain horn (gain of 26 dB, 84% Gaussicity). The beam waist radius at

the horn output is 1 mm, the E-field polarisation is along y with a maximum power output of

typically -20 dBm (10 µW) and a full 3 dB bandwidth angle of 10 degrees. The output radia-

tion can be modulated via a TTL input and attenuated with a control voltage. The beam is

collimated with a teflon lens (f = 30 mm) to a diameter of 1 cm enters the vacuum chamber

through a quartz window and intersects the molecular beam orthogonally at z = 24 cm.6 An

excellent overview of the technology and optical elements for microwaves, millimeter and sub-

millimeter waves is provided in Goldsmith’s book about Quasioptical Systems [210]. The teflon

lens is mounted on a 3-axis translation stage to optimise beam position and collimation. For the

J = 3/2 measurement we use the Gigatronics 7100 for generating the fundamental frequency for

the AMC and a second synth (HP 8656B) to generate the 700 MHz for driving the Λ-doublet

transitions in the J = 3/2 state.

6Note that reflective elements such as curved mirrors are preferred in the THz community because they prevent
back-reflections and mirrors are usually more efficient (less loss). A number of different materials exists for focusing
THz radiation. Tsurupica or TPX (polymethylpentene) for example have a similar refractive index (n = 1.52)
for THz and visible light, which facilitates alignment procedures. Both materials are highly transparent to THz
radiation. However, due to the high price of these lenses we preferred to make teflon lenses in our own workshop.
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Figure 4.5: CH signal at the detector without (blue) and with (red) optical pumping laser.

4.3 Measuring the J = 1/2 Λ-doublet

4.3.1 First Preparations

When we add the optical pumping laser at z = 24 cm the signal at the detector decreases by

approximately 75% as shown in figure 4.5. This means that part of the molecules return to the

initial state after optical pumping which is expected due to the large Franck-Condon overlap

of the A-X transition. The pump laser typically has a power of 50 mW in a 6 × 3 mm2 beam

which is reflected to increase the intensity and the interaction time. For the probe beam we use

about 5 mW in a beam of similar size. Now we have depleted the population in the negative

parity state which allows us to measure an increased population in that state by driving molecules

from the positive to the negative parity state using the microwaves.

First we pulse the microwaves on for a short time (τ = 15 µs) when the molecules are in the

middle of the interaction region (at an antinode) and scan the microwave frequency over the

resonance with an arbitrarily chosen power (0 dBm for example). The short pulse results in

a very broad resonance and thus can easily be detected. For the case that we did not detect

anything we changed the power of the microwaves, but usually we could detect a small resonance.

If the power is too high it can result in very odd-shaped resonances. If that is the case we lower

the power by factors of two until we see a nice resonance that resembles a sinc2 function. We

then fix the resonance frequency to the centre of the peak and scan the microwave power to

record Rabi oscillations which then allows us to find the exact power needed to drive a π-pulse.

Such Rabi oscillations are shown in figure 4.7 on the left.

We then use the molecules as a field probe to create a map of the standing wave electric field.

We fix the pulse length, microwave power and frequency and scan the time when the microwaves

are pulsed on. Due to the standing wave the electric field amplitude varies along the transmission

line. Therefore, less molecules are transferred when the microwaves are pulsed on and the

molecules are at a node in the transmission line. This allows us to identify the field maxima

with high accuracy. To be more precise, the transition probability on resonance is P = sin2(Ωτ
2 ),
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Figure 4.6: We can use the molecules to create a field map of the standing wave inside the
transmission line. The microwaves are pulsed on for a short time (15 µs) with the power of the
microwaves set such that we apply a π-pulse when the molecules are at the centre antinode. We
then record the fluorescence as a function of the delay time when the microwaves are pulsed on.
We fit the model of equation 4.25 (red line) to the data (blue dots) which allows us to determine
the positions of antinodes to high accuracy. We can determine the wavelength in the resonator
from the fit to 8.99± 0.01 cm which agrees well with the expected wavelength at 3.335 GHz.

and since the Rabi frequency is proportional to the electric field, Ω = Ωmax cos [2π (z − z0) /λ].

Note that we set Ωmaxτ = π in the experiment. To account for the fact that the molecule possess

a finite velocity distribution we use an averaged Rabi frequency Ωaτ = qΩmaxτ = qπ with q < 1.

Figure 4.6 shows such a field map obtained using the molecules as probes. Here we used the

(1/2+, 1)− (1/2−, 1) transition and fit the function (red line)

S = S0 +A sin2

(
q
π

2
cos

(
2π (vt− vt0)

λ

))
(4.25)

to the data (blue dots), where we used z = vt, with v = 570 m s−1 determined from the exper-

iment. The offset S0, the amplitude A, the initial time t0, the wavelength λ and q are fitting

parameters. We determine the wavelength of the microwaves from the fit to be λ = 8.99±0.01cm

which agrees well with the expected wavelength at 3.335 GHz.

Once we know the positions of the field-maxima we record Rabi oscillations at each antinode

position to check if the power to drive a π-pulse varies along the transmission line. Note that

the most precise way to record a field map is to do a full power scan for each position along

the transmission line. We then fit to the Rabi oscillations and plot the power needed to drive a

π-pulse for each position. We found that it gave exactly the same result for the antinode posi-

tions as the much simpler and shorter version described above. The plot on the left of figure 4.7

shows a power scan of the microwaves for an interaction time τ = 15 µs at the centre antinode

and the frequency on resonance. The blue dots are the data and the red line is a fit using the

model S = S0 +A sin2(αx), where x is the independent variable proportional to the square root

of power, and S0, A and α are fitting parameters. The data fit well to this model. The right
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Figure 4.7: Left: When the molecules are at the centre antinode we apply a 15 µs microwave
pulse and record the fluorescence as the microwave power is scanned. We observe Rabi oscilla-
tions. Right: We repeat this measurement for each antinode and plot the power needed to drive
a π-pulse for each antinode. The solid line is the mean of all the data points and the two dashed
lines are the 1σ standard errors.

hand side of figure 4.7 shows the power needed to drive a π-pulse for each antinode. We can

clearly see that the microwave field has a uniform amplitude in the central region.

Note that the input coupler severely influences the reflection which can lead to distortions of

the standing wave close to the end of the plates. The field map thus also serves as an analysis

tool to check for any inhomogeneities along the transmission line. Only if a fit to the standing

wave reproduces the exact free space wavelength and the amplitudes to drive a π-pulse do not

vary significantly at different antinodes we proceed. Otherwise the plates are removed and the

coupling behaviour is inspected again with the vector network analyser.

Once we have roughly determined the resonance frequency we start to increase the microwave

pulse length which gradually narrows the resonance. For molecules travelling at 570 m s−1 the

interaction time is limited by the length of the plates (48 cm) to 840 µs. For such long interaction

times the resonance becomes narrow enough to resolve the Doppler splitting of 2∆fD (due to the

standing wave we observe two resonances which are split by twice the Doppler shift). By taking

the mean of the two centre frequencies we can extract the Doppler free resonance frequency.

Figure 4.8 shows such single pulse data for an interaction length of τ = 387 µs about the centre

of the transmission line. The red line is a fit using equation 4.11. For the fit we fix the interaction

time τ to the one used in the experiment. It is remarkable that the lineshape fits so well which

indicates that the linewidth is only limited by the interaction time and does not suffer from any

inhomogeneous broadening. The single pulse data also reveals that there is a small imbalance

between the two counter propagating waves of 8% which results in unequal amplitudes of the

lineshape.
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Figure 4.8: We apply a single long pulse of τ = 387 µs duration about the centre antinode
and record the fluorescence as a function of the microwave frequency. We fit equation 4.11 and
extract the centre frequency for each peak. The mean of the two centre frequencies gives the
Doppler free resonance frequency 3335479349± 7 Hz for the (1/2+, 1)− (1/2−, 1) transition.

4.3.2 Measuring the J = 1/2 Λ-doublet Using Ramsey’s Method of Separated

Oscillatory Fields

As mentioned in section 4.2.1 we know that Ramsey’s method provides us with an even narrower

resonance and makes our measurement less susceptible to systematic frequency shifts. We know

the exact positions of the antinodes and thus exactly when to pulse on the microwaves to drive

the two π/2 pulses, in order to benefit from the suppression of systematic shifts described in

the previous section. From our field map measurements we also know the exact power that is

needed to drive a π/2-pulse at each antinode.

The experimental sequence is illustrated in figure 4.9. For each molecular pulse we set the

microwaves to a specific frequency and pulse them on twice with a power set to drive a π/2-

pulse. The first pulse is applied when the molecules are near one of the antinodes and the

pulses are separated by a free evolution time T = nλ/(2v), where n is an integer, λ is the

wavelength of the microwaves and v is the velocity of the molecules. The detector then measures

the population in a single hyperfine component of the negative parity Λ-doublet state for the

specific microwave frequency. For the next molecular pulse we step the frequency and repeat the

measurement. The resulting Ramsey fringes for τ = 15 µs and a free evolution time of T = 428 µs

is shown in figure 4.10. The top plot in figure 4.10 shows a wide frequency scan and reveals

the Ramsey fringes modulated by an envelope which is determined by the single pulse duration

τ . The bottom plot is a narrower scan about the transition frequency and shows the cos2(δT )

oscillation. The solid line is a fit to the model aP2(δ) + b where a and b are constants and P2 is

given by equation 4.18. We set ∆φO = 0, τ and T to the values used in the experiment and thus

only leave the scale factor a the offset b and resonance angular frequency ω0 as fit parameters.

The model fits the data exceedingly well, demonstrating the exquisite degree of control achieved

in this experiment. From our single, long pulse measurement we know the transition frequency
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Figure 4.9: The experimental sequence for a Ramsey experiment. The molecules are produced
at time t = 0 with equal population in each Λ-doublet state. Molecules in the (1/2−, 1) state
get pumped into a dark state by the optical pumping laser which has the same frequency as
the probe laser. The molecules then enter the transmission line resonator. We apply a pulse of
microwaves (τ = 15µs) with a power set such that Ωτ = π/2 when the molecules are located
at an antinode well within the plates. The microwaves are blocked using a fast switch for a
time T = nλ/(2v) and are pulsed on again for a second π/2-pulse thereafter. We then detect
the population in the (1/2−, 1) state as a function of the microwave frequency via laser induced
fluorescence. Cheers to Dr. Smallman for drawing such a nice skimmer.

to better than 10 Hz which is much less than one fringe period. Hence we know which one of

these fringes is the central fringe whose centre is the resonance frequency. Additionally, we can

unambiguously determine the central fringe and thus the resonance frequency by repeating the

experiment for three different free evolution times T . Note that the phase of the standing wave

changes by π from one antinode to the next. This means that the fringe pattern gets inverted

for a free evolution time that corresponds to an odd number of antinodes. This means that for

a sequence of three Ramsey experiments with free evolution times that correspond to n, n + 1

and n+ 2 number of antinodes the n+ 1 fringes will be inverted with respect to the n and n+ 2

case. For three subsequent Ramsey experiments performed in such a particular way there is only

one unique frequency at which two fringe maxima line up with one minimum - the resonance

frequency. Figure 4.11 shows Ramsey data for the (1/2+, 1) − (1/2−, 1) transition, taken for
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Figure 4.10: The dots represent the population in the (1/2−, 1) state as a function of the
microwave frequency measured using Ramsey’s technique of separated oscillating fields. The
solid lines are a fit to the data using equation 4.18. Here, we measure the (1/2+, 1)− (1/2−, 1)
transition. Top: wide frequency scan for τ = 15 µs and a free evolution time of T = 428 µs
(5000 points per scan, averaged over 10 scans at a repetition rate of 10 Hz). The first π/2-pulse
is applied when the molecules are located at the third antinode and the second when they reach
the ninth antinode. Bottom: A narrower frequency scan for the same transition (500 points per
scan, binned, averaged 30 scans at a repetition rate of 10 Hz).

three different free evolution times. From the fits we can extract the transition frequencies for

each measurement which give the consistent results of 3335479389 ± 1 Hz, 3335479391 ± 2 Hz

and 3335479389± 2 Hz for a free evolution time of 458 µs, 380 µs and 302 µs, respectively.

4.3.3 Systematic Frequency Shifts Related to Magnetic Fields

Now we have measured the transition frequency, but we still need to check for potential, sys-

tematic frequency shifts. Here we discuss frequency shifts related to magnetic fields.

A magnetic field splits each F level into its (2F + 1), MF Zeeman sublevels. The (1/2±, 1)

levels thus split into three sublevels which are labelled MF = −1, 0, 1. As mentioned in chap-

ter 2.6 the J = 1/2 states are extremely insensitive to magnetic fields. Therefore all J = 1/2

transitions are extremely insensitive to magnetic fields. Earth’s magnetic field of 50 µT would

split the single pulse lineshape into two components separated by 1 kHz which is comparable to

the linewidth (see figure 4.8). A single-layer MuMetal shield is thus enough to reduce broadening

of the line due to magnetic fields to insignificant levels.
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Figure 4.11: We use three different free evolution times to identify the central fringe and thus
the transition frequency. Green: 458 µs Blue: 380 µs. Red: 302 µs.

The MF = ±1 components of the two parity states shift, in this approximation, by the same

amount. This means that the two ∆MF = 0 transitions, for example, should not shift at all.

This is similar to the magnetically insensitive transitions that are commonly used in atomic

clock experiments. A more precise treatment including higher order terms, however, reveals

a small parity dependent component of the Zeeman shift. The matrix elements of the entire

Zeeman Hamiltonian are given in [107] (and see chapter 2 for more details). Evaluating the

parity dependent terms for the (1/2+, 1)-(1/2−, 1) transition gives a Zeeman splitting for the

two π-components (∆MF = 0, magnetic field parallel to the polarisation of the microwaves) of

±36 Hz µT−1. We measured the ∆MF = 0 splitting by applying a magnetic field parallel to the

electric field and using long single microwave pulses (τ = 500 µs) to find the transition frequency.

The linewidth was thus narrow enough to reveal the Zeeman splitting for magnetic fields of the

order of 100 µT. The results of this measurement are shown in Figure 4.12. The linear fits to

the data give two Zeeman components shifted by ±23 Hz µT−1 which is about 40 % less than

expected. The discrepancy is probably due to uncertainty in the relevant parameters of the

effective Hamiltonian, since not all of them have been measured.

For linearly polarised microwaves and a small magnetic field, there is a symmetry in the split-

ting and amplitudes of the Zeeman sublevels, and therefore no systematic frequency shift of the

mean frequency. In a Ramsey experiment the lineshape consists the of a sum of two Ramsey

patterns proportional to cos2 (δT + ∆ωT ) + cos2 (δT −∆ωT ), where ∆ω is the Zeeman shift.

This is equivalent to 1 + cos (2δT ) cos (2∆ωT ). If the splitting is symmetric it does not lead to a

net phase shift of the fringes and thus to a systematic frequency shift. However, the amplitude

of the Ramsey fringes oscillates with cos (2∆ωT ) as the magnetic field is tuned. Circularly po-

larised microwaves preferably populate one MF sub-level which causes an asymmetric splitting

and unequal amplitudes of the Zeeman sub-levels. This results in a systematic frequency shift.

In the parallel plate transmission line, however, circular polarisation components are strongly

suppressed.

In order to investigate any magnetic field dependent frequency shifts we apply magnetic fields
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Figure 4.12: Zeeman splitting of the J = 1/2 Λ-doublet transition as a function of the applied
magnetic field (1G = 100 µT). The magnetic field is applied along y parallel to the polarisation of
the microwaves. Hence only the two ∆MF = 0 components can be addressed by the microwaves.
The fits yield a splitting of ±23 Hz µT−1.

as large as 50 µT and do not observe any frequency shift on the 1 Hz level. Note that such mag-

netically insensitive transitions can be extremely useful for precision measurements in molecules

or for preserving long-term coherence of molecular qubits [211].

4.3.4 Systematic Shifts Related to Electric Fields

The Stark interaction of CH has been presented in section 2.5. All the (1/2±, 0) and (1/2±, 1)

levels shift by exactly the same amount of ∆EpmS /h = ∓17.9 Hz/(V/cm)2. A plot of this

theoretical frequency tuning as a function of the applied electric field is shown in figure 4.13 on

the left. The transition frequencies thus shift quadratically by 2ES/h ≈ 36 Hz/(V/cm)2. To

measure the Stark shift we apply a DC voltage to one of the plates of the transmission line via

a bias tee and record the transition frequency obtained from a fit to long single pulse data. The

frequency shift as a function of the applied electric field magnitude is shown in figure 4.13. We

fit the quadratic function ∆f = a(x− b)2 + c (red line) to the data (blue dots), where a, b and c

are constants. The fit gives a Stark shift a of 32.98± 0.04 Hz/(V/cm)2. The small discrepancy

with the theoretical prediction might stem from a combination of a slightly larger plate spacing

and a smaller actual voltage on the plates. It should be pointed out that the main goal of this

measurement is not to reach high absolute accuracy but rather to measure the change in the

Stark shift upon reversing the applied field. If there is an unknown field in the interaction region

(e.g. due to patch potentials on the plates) in addition to the applied field, the Stark shift will

change when the applied field is reversed. We saw no such change. We can use this information

to set an upper limit to uncontrolled Stark shifts of ab2 = 0.1 Hz.
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Figure 4.13: Left: The Stark tuning of the Λ-doublet states. Note that in the low field limit all
the hyperfine levels (1/2±, 0, 1) shift by exactly the same amount of ∓17.9 Hz/(V/cm)2. Right:
Measured frequency shift of the (1/2+, 1)− (1/2−, 1) transition.

4.3.5 Velocity Dependent Frequency Shifts

The single pulse data revealed that the standing wave in the transmission line is not perfect, i.e.

there is a small imbalance between the two counter-propagating waves of approximately 8%. The

molecular beam pulse has a finite velocity distribution. When we use argon as a carrier gas the

FWHM of the pulse at the detector is typically ∆t = 90 µs which corresponds to a spatial length

of the pulse of ∆x = v∆t = 5.1 cm which is of a similar size to the distance between two minima

in the standing wave. The slowest molecules will therefore experience a considerably different

phase and magnitude of the electric field as compared to the ones in the centre of the pulse. We

can illustrate this effect by dividing the time-of-flight profile into 10 µs slices and plot the appar-

ent transition frequency as a function of the arrival time. Such a plot is shown in figure 4.14 on

the right. The blue dots are the transition frequencies we obtain by fitting to the Ramsey spectra

for each time-of-flight slice. The red line is a fit of ∆f = 1/(2πT ) (φim(kL+ kz0)− φim(kz0)),

where φim(z) is given in equation 4.21, L = vT and z0 = vt0 where t0 is the time at which the

first microwave pulse is applied. The velocity is related to the time of flight ttof via v = D/ttof,

where D is the distance between source and detector. In the fit, we have fixed the imbalance

factor ε to 0.08. We can clearly see that the model predicts the large frequency shifts due to the

change in phase at the nodes of the standing wave. This means that we need to gate the time-of-

flight profile narrowly about the most likely arrival time ttof so that we only use molecules that

are sufficiently close to the antinodes in the analysis. The part of the time-of-flight profile we

typically use is shown as the shaded area in figure 4.14. Such a plot is a very fast and easy way

to find potential timing errors. If we do not time the π/2 pulses such that the molecules are at

an antinode we see large gradients of the transition frequencies across the whole time-of-flight

profile.

If we gate narrowly about the most likely arrival time we can make use of the approxima-

tion 4.22 and expect a residual velocity dependent, systematic frequency shift ∆f ' εεz(v0/λ) ≈
0.04 Hz/(m/s), where ε = 0.08 is the imbalance factor and εz = 0.05 is the fractional error in

the position of the second antinode.
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Figure 4.14: Left: A typical time-of-flight profile from a Ramsey experiment. The interaction
with the microwaves distorts the profile slightly from the ideal Gaussian shape. The shaded
region is the typical gate we use when analysing the Ramsey spectra. Right: Velocity dependent
frequency shift due to the finite extent of the molecular pulse. This shows that it is necessary
to use only those molecules that are within an interval of t0±∆t, where t0 is the most probable
arrival time and ∆t = 0.02t0.

A second velocity dependent shift was introduced in section 4.2.1. This is the residual Doppler

shift due to the detuning of the π/2 pulses ∆fD,R = (1− 4/π) (v0/λ) (τ/T ) which is suppressed

by the imbalance factor ε = 0.08. For typical experimental parameters of ε = 0.08, τ = 15 µs

and T = 450 µs, we expect a shift of −0.01 Hz/(m/s).

We control these velocity dependent shifts by measuring all the frequencies for at least three

different velocities. Using krypton, argon and helium as carrier gases we obtain molecular beam

velocities of 415 m s−1, 570 m s−1 and 1710 m s−1. For each velocity and transition frequency we

produce a field map and measure the power needed to drive a π-pulse for each antinode. We

start at antinode three, for example, and record at least four Ramsey patterns using antinodes

six through nine for the second π/2 pulse. All these measurements agree within their uncer-

tainties and we take the weighted mean as the final result (figure 4.15 on the left). We then

repeat these measurements using antinode four and five to initialise the Ramsey sequence. The

mean transition frequencies for different starting antinodes, however, do not agree within their

uncertainties (see the right hand side plot in figure 4.15). For each carrier gas we took at least

three Ramsey spectra for each starting antinode. The left hand side plots in figure 4.16 show

Doppler shift data for the three different starting antinodes: three (blue), four (red) and five

(green) for the three J = 1/2 transitions. The solid lines are linear fits to the data. The right

hand side plots of figure 4.16 show the extrapolated zero-velocity frequencies for each starting

antinode. The error bars are the 1σ standard errors of the individual zero velocity frequencies

obtained form the linear fits. By extrapolating to zero-velocity the position dependent Doppler

shift disappears and all measurements agree within their uncertainties. The solid lines are the

weighted means of the extrapolated frequencies which give our final result. Table 4.1 gives an

overview of the final measured frequencies and the systematic and statistical errors for each

transition.
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Figure 4.15: Left: The transition frequencies for the (1/2+, 1)− (1/2−, 1) hyperfine line using
antinode three for the first π/2-pulse. The data agree for different free evolution times T . The
experiment using a free evolution equivalent to five antinodes was repeated twice which results
in a smaller errorbar. The data sets agree within their uncertainty and the solid line represents
the weighted mean. The dashed lines show the 1σ standard error. We repeat this experiment
for different starting antinodes (shown on the right). Right: A systematic frequency shift that
depends on which antinode we use for the first π/2 pulse.

4.3.6 Other Systematic Frequency Shifts

Blackbody radiation, for example, is long known to shift atomic hyperfine states whose control

is extremely important for atomic clocks [212]. For atoms the blackbody radiation acts like a

DC field that Stark shifts the hyperfine levels. Hence only the amplitude of the field is impor-

tant. Rotational and vibrational transitions in molecules are in the same range as the typical

emission spectrum of a black body at 300 K. Therefore, electric dipole allowed transitions are

possible. Typical absorption rates for light molecules are on the order of 1 s−1 and 10−3 s−1 for

rotational and vibrational transitions, respectively [213]. Shifts of rotational transitions due to

blackbody radiation are on the order of tens of mHz and a few mHz for vibrational transitions.

For our spectroscopy experiments at the Hz level this has no significance. These effects are

further suppressed by the fact that the energy density of the black body radiation is very small

at the Λ-doublet transition frequencies. However, experiments that aim to detect variations

of fundamental constants in the laboratory must perform spectroscopy on the 10−13 fractional

uncertainty level. Frequency shifts due to black body radiation thus can play a significant role

in such experiments.

To test for any systematic dependence on the microwave power we performed Ramsey exper-

iments with π/2-pulses as short as 4 µs. Hence we increased the power of the microwaves by a

factor of 16 and did not detect any change in the measured transition frequency at the 3 Hz level.

We could therefore rule out any systematic shifts related to the microwave power. Furthermore,

we investigated potential systematic shifts which depend on the frequency and power of the

probe laser, but these were negligible.

The use of a molecular beam and the associated low density prevents any collisional broad-

ening or density related systematic shifts on the current level of accuracy. An error budget for
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Figure 4.16: Left: Velocity dependence of the measured frequency for the three J = 1/2
transitions. Each data point is an average of at least three Ramsey experiments for each carrier
gas and starting antinode (the antinode we use for the first π/2-pulse). We use antinodes
three (blue), four (red) and (five) to initialise the Ramsey sequence. Each antinode gives a
slightly different slope. Right: All the extrapolated zero-velocity frequencies agree within the
1σ uncertainties of the linear fits to the Doppler data.
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(1/2+, 1)− (1/2−, 1) (1/2+, 0)− (1/2−, 1) (1/2+, 1)− (1/2−, 0)

Transition Frequency (Hz) 3335479356 3349192556 3263793447
Stark Shift (Hz/(V/m)2) 32.98(7) 32.98(4) 33.01(5)

Residual Electric Field (V cm−1) -0.07(1) -0.05(1) -0.05(1)
Error Due To Electric Fields (Hz) 0.2 0.1 0.1

Zeeman Splitting (Hz nT−1) 0.023(2) - -
Error Due To Magnetic Fields (Hz) 0 0 0

Error Due To Microwave Power (Hz) 0 0 0
Error Due To Laser Detuning (Hz) 0 0 0
Max. Doppler Gradient (Hz/(m/s)) 0.06(1) 0.05(1) 0.01(1)

Stat. Error of Zero Velocity Freq. (Hz) 3 3 3

Table 4.1: The error budget for the J = 1/2 measurements. All the systematic errors are
negligible on the current accuracy level of one part per billion. The final error bar is determined
by the 1σ standard error of the extrapolated zero-velocity Doppler fits.

each transition is given in table 4.1.

4.3.7 Summary

Let us quickly recall the measurement procedure to summarise the previous section. We use

a magnetically shielded transmission line resonator for microwaves to measure the J = 1/2

Λ-doublet of CH. For each transition we use a separate pair of plates cut to exactly the right

length to make sure that the resonance of the transmission line resonator occurs at the transition

frequency. This assures a well balanced standing wave for each measurement. The resonance of

the transmission line is more than 30 MHz wide which is 1000 times wider than a typical scan

used for a measurement. Hence variations of the microwave power within a narrow frequency

scan are negligible. A laser tuned to the A-X transition empties one of the doubled states

via optical pumping. We can typically pump out over 75% of the initial population in the

(1/2−, 1) or (1/2−, 0) state, depending on which transition we measure. The molecules then

enter the transmission line resonator where we drive the transition using either single long pulses

or two short pulses. We then measure the transferred population as a function of the microwave

frequency via laser induced fluorescence to determine the transition frequency. The single long

pulses are used to roughly determine the transition frequency and to perform systematic checks.

We measured the Zeeman splitting of the (1/2+, 1)− (1/2−, 1) transition and the Stark shift of

all three transitions. This allows us to set limits to systematic frequency shifts due to residual

magnetic and electric fields inside the interaction region. We repeat the Stark shift measurements

for each pair of plates.

Using single short pulses we probe the electric field inside the transmission line resonator with

the molecules and measure the wavelength of the microwave field. This allows us to determine

the exact position of the antinodes which is important for the subsequent measurements using

Ramsey’s method of separated oscillatory fields. We repeat this measurement for each transition.

There are in total eleven antinodes available for driving the π/2-pulses. The first and last two

are omitted to make sure we pulse the microwaves on when the molecules are well inside the
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Transition Frequency (Hz)

(1/2+, 1)− (1/2−, 1) 3335479356± 3
(1/2+, 0)− (1/2−, 1) 3349192556± 3
(1/2+, 1)− (1/2−, 0) 3263793447± 3

Table 4.2: The measured J = 1/2 Λ-doublet frequencies with 1σ uncertainties.

magnetic shield. We then measure the transitions using Ramsey’s technique and perform further

systematic checks. In particular, we apply magnetic fields to look for any additional phase shifts

in the Ramsey data. However, we do not observe any frequency shifts on the 1 Hz level for

magnetic fields as large as 0.5 G.

Furthermore, we test for systematic shifts that depend on the power of the microwaves by

using π/2-pulses as short as 4 µs. We do not observe any shift. We also do not observe any

frequency shifts that depend on the probe laser detuning.

However, we do measure a small Doppler shift whose gradient depends on which antinode

is used to apply the first π/2-pulse. After extrapolating to zero-velocity the results for the

different antinodes all agree and we take the weighted mean of the zero-velocity values as the

final frequencies. These final frequencies with their 1σ standard errors are given in table 4.2.

They are in agreement with the previous best laboratory measurements and with astrophysical

measurements, and are 300 times more precise than any of these.

4.4 Measuring the J = 3/2 Λ-doublet

The splitting between the (F2, J = 1/2) and (F1, J = 3/2) of CH is approximately 530 GHz which

corresponds to a temperature of 25 K. The molecular beam has a translational temperature

of 0.4 K. The rotational temperature is normally close to the translational temperature [214].

Assuming a thermal distribution of the molecular energies we expect a negligible fraction of the

molecules to populate the J = 3/2 state. In order to see if we can detect any CH molecules

in the J = 3/2 state we tuned the probe laser to the R11(3/2) line of the A-X transition.

We detect a fluorescence signal which is only about four per cent of the one we get from the

J = 1/2 state. Neglecting the small difference in the transition dipole moment this corresponds

to a rotational temperature of about 8 K. To reach the same statistical uncertainty as for the

J = 1/2 measurements, we would need to average for at least 25 times longer, which is unrealistic.

We could have used one of the discharge sources which create a hotter beam and thus provide

more population in the J = 3/2 state. Then we would have to cope with large shot-to-shot

fluctuations, an increased velocity spread, a faster beam with large variations in the most likely

arrival time and thus the central velocity. We therefore decided to coherently drive population

from J = 1/2 to J = 3/2 with radiation near 530 GHz, which we call THz radiation or mm-

waves.
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Figure 4.17: A time-of-flight profile of CH in the J = 3/2 state with (blue) and without (red)
the THz radiation applied. The THz beam crosses the molecular beam orthogonally just before
the start of the transmission line resonator. We can increase the population in the J = 3/2 state
by a factor of nine corresponding to about 40% of the initial J = 1/2 population. The detection
laser is locked to the R11(3/2) line of the A-X transition.

The experimental details for driving this transition will be discussed in the following chapter.

All we need to know for the moment is that we replaced the pump laser beam with radiation from

an amplifier multiplier chain (AMC). We can now selectively populate either the (3/2+, 1) or

(3/2+, 2) state depending on which transition frequency we would like to measure. Figure 4.17

shows a time-of-flight profile of CH in the J = 3/2 state with (blue) and without (red) the

THz radiation applied. We can increase the signal in the J = 3/2 state by nearly one order of

magnitude.

The J = 3/2 state is approximately 1000 times more sensitive to magnetic fields as compared

to the J = 1/2 state. Hence we added a second magnetic shield that extends into the state

preparation region. This prevents Zeeman splitting of the lowest mm-wave transition which

improves the transfer efficiency. We further added magnetic field coils which permit applying

homogeneous magnetic fields in each direction. We can thus precisely measure the Zeeman

splitting and limit potential systematic frequency shifts.

As before the plates are cut to the right length and the coupling is checked with the vector

network analyser. We measured the FWHM of the transmission line resonance to be 75 MHz

which is about twice the size as in the J = 1/2 case. All the hyperfine components of the J = 3/2

state lie within only 20 MHz which allows us to use the same plates for all measurements.

Using the molecules we create a field map to determine the exact position of the antinodes

and measure the power needed to drive a π-pulse for each antinode in the same way as described

above. We then increase the length of the pulse until we can clearly identify the two Doppler

components. This gives us a rough estimate for the transition frequency. Analogous to the

J = 1/2 measurements we then use Ramsey’s technique to measure each of the four transition

frequencies.
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4.4.1 Systematic Shifts Related to Magnetic Fields

For small magnetic fields we can neglect the coupling of different F states and the Zeeman shift

is ∆E = giµBBMF , with the gi-factors for each state i given in table 2.1. For the states of

interest they are g(3/2±, 1) = 1.08 and g(3/2±, 2) = 0.648 which corresponds to a shift of the

energy levels ∆E/h = 15.1MF Hz nT−1 for F = 1 and ∆E/h = 9.07MF Hz nT−1 for the F = 2

state. The contribution of the rotation and the nuclear spin to the molecular g-factor is small

and thus can be neglected. Parity dependent effects are also small and shall be neglected.

From angular momentum selection rules it follows that the (3/2+, 1) − (3/2−, 1) transition

splits into a total of six lines (two π, two σ+ and two σ− transitions). The ∆MF = 0 lines

do not shift to first order. However, due to mixing of the hyperfine levels there is a quadratic

(second order) Zeeman shift of 0.119 Hz/(mG)2. The ∆MF = ±1 transitions shift linearly by

±1.5 kHz/mG.

The (3/2+, 2)− (3/2−, 2) transition splits into 12 components. For small magnetic fields there

are two lines that do not shift, two lines that shift quadratically with -0.11 Hz/(mG)2, four lines

that shift linearly with a positive gradient of 0.907 kHz/mG and four lines that shift with a

negative gradient of the same magnitude. A plot of the large and low field Zeeman tuning of

this transition is shown in figure 4.18 on the left.

The (3/2+, 1) − (3/2−, 2) and the (3/2+, 2) − (3/2−, 1) transitions split into a total of nine

lines, respectively, with the largest gradient being 1.5 kHz/mG. The frequency shifts of all the

components for large and small fields are shown in figure 4.18 on the right.

The Zeeman structure of these transitions is very complex and we thus need good control over

magnetic fields and ideally need to measure the residual magnetic fields in the interaction region

with high accuracy.

We generate magnetic fields along x and y using two pairs of magnetic field coils. Along z we

use a solenoid. The first step is to calibrate the magnetic field coils and check the homogeneity

of the field inside the magnetic shields. We perform both measurements with a fluxgate magne-

tometer (Bartington) and measure 0.079± 0.003 mG/mA along x, 0.145± 0.005 mG/mA along

y and 1.15 ± 0.01 mG/mA along z. The homogeneity of the magnetic field in the interaction

region is better than 2% for the x and y coils better than 3% for the solenoid along z. Note that

we had to remove the transmission line cavity in order to measure the magnetic fields. Copper

is diamagnetic with a magnetic susceptibility of 10−5. Therefore its influence onto the magnetic

field is small for the small magnetic fields we apply.

The first transition we investigated was the (3/2+, 2) − (3/2−, 2) transition near 701 MHz.

We used long single pulses of 780 µs duration and measured the splitting of the transition as a

function of the magnetic field. By reversing the applied magnetic field we measured the residual

magnetic field in a specific direction, averaged over the interaction region. The data are shown

in figure 4.19. Note that before we reverse the magnetic field we de-magnetise both shields to

make sure that no residual magnetic flux is pinned in the shields. We checked for systematic
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Figure 4.18: Left: The Zeeman tuning of the (3/2+, 2) − (3/2+, 2) transition for large (top)
and small magnetic fields (bottom). Right: The Zeeman tuning of the (3/2+, 1) − (3/2−, 2)
transition for large (top) and small magnetic fields (bottom).
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Figure 4.19: We use single, long pulses of 780 µs duration to find the transition frequency as
a function of the applied magnetic field for each direction of the magnetic field. Measuring the
change in the Zeeman shift upon reversal of the magnetic field sets an upper limit to uncontrolled
magnetic fields. Left: The Zeeman shift of the (3/2+, 2)− (3/2−, 2) ∆MF = 0 transition when
we apply a magnetic field along y (parallel to the polarisation of the microwaves). Right: The
Zeeman shift of the (3/2+, 2) − (3/2−, 2) ∆MF = ±1 transition when we apply a magnetic
field along x. We always measure the component that shifts to lower frequency. This is the
∆MF = +1 component for negative values of the field and the ∆MF = −1 for positive values.
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shifts related to the de-magnetisation procedure by measuring the transition frequency before

and after, but could not detect any change. However, we detected a small residual magnetisation

of the shields after we applied magnetic fields which can result in a systematic frequency shift.

The de-magnetisation procedure efficiently removed the residual magnetisation.

When we apply a field along y (parallel to the polarisation of the microwaves) we can only

drive the five π-transitions, three of which shift quadratically. This is shown in figure 4.19 on

the left. We fit a quadratic function of the form ∆f = a(B − b)2 + c to the data and infer a

quadratic Zeeman shift of a = −0.126± 0.008 Hz/(mG)2 which agrees well with the theoretical

prediction of -0.11 Hz/(mG). The offset of the parabola b amounts to 0.6 ± 1.5 mG which is

consistent with zero and gives a 1σ upper bound for the residual magnetic field in the interac-

tion region along y of 2.1 mG. To improve the upper bound we analyse single pulse data more

carefully. Any magnetic field present in the interaction region would broaden the lineshape. The

∆MF = 0 transitions of the (3/2+, 2)− (3/2−, 2) line shift, however, only to second order with

an applied magnetic field. Hence in order to get a better estimate for residual fields along y we

used single pulse data on the (3/2+, 2)− (3/2−, 1) transition. For this line the three ∆MF = 0

transitions possess large shifts of -605, 0, and 605 Hz/mG with relative amplitudes of (9:12:9).

We apply a single long pulse of 780 µs and record the lineshape. We then fit the lineshape from

equation 4.11 with the interaction time floating as a free fitting parameter and get 783± 21 µs

which is consistent with the time used in the experiment and with no broadening. The error in

the measured linewidth provides us with an upper limit to the broadening which we can use to

set an upper limit to the residual magnetic field. To be more precise we fit a model that consists

of three lines which are separated by the Zeeman shift and leave the magnetic field as a fitting

parameter. This yields a residual magnetic field of 0.38± 0.18 mG which is consistent with zero

and gives a 1σ upper bound of 0.56 mG for residual magnetic fields along y.

When we apply magnetic fields along x and z we drive the ∆MF = ±1 transitions which have

a large linear Zeeman shift. We measure the four components that shift with the same negative

slope and fit a linear model ∆f = aB + c for each sign of B (see figure 4.19 on the right).

The fit gives a linear slope of −0.934 ± 0.003 kHz/mG and a residual magnetic field along x

of 0 ± 0.03 mG. We observe a 3 % discrepancy between our measurement and the theoretical

prediction of 0.907 kHz/mG which is of the same size as the measured homogeneity of the mag-

netic field and the absolute accuracy of the magnetometer we used to calibrate the magnetic

field coils. When we apply a field along z we get a slope of 0.83 ± 0.1 kHz/mG with a residual

field of 0.05± 0.2 mG.

To determine the final frequencies we use Ramsey’s technique. However, the Zeeman structure

is complicated and higher order effects may lead to a systematic shift. Three ∆MF = 0 tran-

sitions of the (3/2+, 2) − (3/2−, 2) line, for example, all shift quadratically to lower frequency

which leads to a systematic frequency shift of the order of 10 Hz/(mG)2. Therefore, we need to

check if the transition frequencies measured using Ramsey’s technique shift with small applied

magnetic fields. We use exactly the same timing as in a single pulse experiment. The molecules
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Figure 4.20: We check for systematic frequency shifts in a Ramsey experiment by measuring
the transition frequency as a function of the applied magnetic field in x (left) and y (right). The
red lines are linear fits to the data to determine the maximum possible slope. By multiplying the
slope with the largest upper limit of the measured magnetic fields we determine the systematic
uncertainty due to residual magnetic fields.

thus probe exactly the same interaction region for which we know the residual magnetic field

very precisely. We then plot the transition frequency as a function of the magnetic field and find

the maximum possible gradient (df/dB) by fitting a linear model to the data. This is shown in

figure 4.20. To find upper limits to the gradient we take the slope of the linear fit and add or

subtract the 1σ error of the fit depending on the sign of the slope. For the (3/2+, 2)− (3/2−, 2)

transition we measure a maximum gradient of −1.7± 1.26 Hz/mG along x, −3.6± 0.5 Hz/mG

along y and −0.54±0.28 Hz/mG along z. Adding the (1σ) error bar to the slope and multiplying

it with the maximum upper limit for the magnetic fields gives an upper limit for systematic fre-

quency shifts due to residual magnetic fields of 0.1 Hz along x, 2 Hz along y and 0.2 Hz along z.

Adding these uncertainties in quadrature gives a total uncertainty due to uncontrolled magnetic

fields of 2 Hz. We assume the same systematic uncertainty for the (3/2+, 1) − (3/2−, 1) due to

the analogous Zeeman structure.

The (3/2+, 1) − (3/2−, 2) transition is substantially different from the (3/2+, 2) − (3/2−, 2)

transition with many more non-degenerate components and large Zeeman shifts. We therefore

repeated the Zeeman measurement for this line. For this transition we could not rule out gradi-

ents as large as 10 Hz/mG along x, 20 Hz/mG along y and 5 Hz/mG along z. Multiplying these

by the upper limits to the residual field gives a systematic uncertainty of 11 Hz. Because the

(3/2+, 2) − (3/2+, 1) transition resembles the Zeeman structure of the (3/2+, 1) − (3/2−, 2) we

assume the same systematic uncertainty.

4.4.2 Systematic Shifts Related to Electric Fields

Analogous to the J = 1/2 measurement we measure the Stark shift of the (3/2+, 2)− (3/2−, 2)

transition to rule out any systematic frequency shift due to stray electric fields or residual
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Figure 4.21: Left: Theoretical Stark shift of the two J = 3/2±, F = 2 states. The different
MF sublevels shift differently. The (F = 2,MF = 0) levels shift by ∓13.2 Hz/(V/cm)2 (blue),
the F = 2,MF = ±1 levels shift by ∓39.5 Hz/(V/cm)2 (red), the F = 2,MF = ±2 shift
by ∓118.9 Hz/(V/cm)2 (green). Λ ≈ 701.7 MHz. Right: The measured Stark shift of the
(3/2+, 2,MF = ±1) − (3/2−, 1,MF = ±1) transition. The measured Stark shift of 79.1 ±
0.3 Hz/(V/cm)2 agrees well with the theoretical prediction.

potentials on the plates. Note that contrary to the J = 1/2 transitions we need to account for

the hyperfine structure in the calculation of the Stark shift of the J = 3/2 levels (see chapter 2.5

for more details). The left hand side plot in figure 4.21 shows the Stark shift of the (3/2±, 2,MF =

±1) levels. The measurement of the Stark shift of the (3/2+, 2,MF = ±1)− (3/2−, 2,MF = ±1)

transition is shown in figure 4.21 on the right. A parabolic fit of the form ∆fS = a(E − b)2 + c

reveals a Stark shift of a = 79.1± 0.3 Hz/(V/cm)2 with an offset of b = −0.014± 0.016 V cm−1.

Multiplying the 1σ upper bound of the electric field (bmax = −0.03) with the measured Stark

shift gives a systematic uncertainty related to uncontrolled electric fields of 0.2 Hz.

4.4.3 Velocity Dependent Frequency Shifts

Also similar to the J = 1/2 measurement we get the final statistical error by repeating the zero-

field measurements for at least three different carrier gases. This permits controlling systematic

shifts which depend on the velocity of the molecules. We do not see a spatially varying velocity

dependence as in the case of the J = 1/2 measurement. The largest gradient we measure is

0.03 ± 0.01 Hz/(m/s). We get the final frequency of each transition by extrapolating to zero

velocity. The uncertainty of the fit is our final statistical error bar. Note that the 530 GHz

transition is also subject to a small Doppler shift which has to be accounted for when the carrier

gas is changed. This will be dealt with in more detail in the next chapter.

4.4.4 Other Systematic Effects

Analogous to the J = 1/2 measurement we checked for frequency shifts that depend on the

power of the microwaves and the probe laser detuning, but could not detect any shifts at the
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current accuracy level. An overview of the various effects that contribute to final error bar is

given in table 4.3.

4.4.5 Summary

There is hardly any initial population in the J = 3/2 Λ-doublets. We therefore, selectively

populate the 3/2+ doublet state in either the F = 1 or F = 2 hyperfine component using resonant

THz radiation. We typically transfer 40% of the initial (J = 1/2−, 1) population into the J = 3/2

state and proceed with the measurement of the transition analogous to the J = 1/2 case. The

J = 3/2 transitions are particularly sensitive to magnetic fields and we thus added a second layer

of magnetic shielding to prevent large systematic frequency shifts. We also added magnetic field

coils. This allowed us to apply uniform magnetic fields along each direction x, y and z. Using

long, single microwave pulses we measured the shifts of the J = 3/2 transitions as a function of

applied magnetic field in all three directions. Reversal of the applied magnetic field measures the

residual field in each direction, averaged over the interaction region. All the residual fields are

consistent with zero and the measurements provide upper limits to uncontrolled magnetic fields.

We then measure the transition frequencies using Ramsey’s technique as a function of applied

magnetic field and determine the largest gradients. Multiplying the gradients with the upper

limits of residual field in each direction provides us with a final systematic uncertainty. The

systematic uncertainty is negligible for the two ∆F = 0 transitions whereas for the two ∆F = 1

transition it contributes 11 Hz to the final measurement uncertainty. Similar to the J = 1/2

case we measure a small velocity dependence of the order of 0.03 Hz/(m/s) which we correct for.

The 1σ standard error of the zero-velocity frequency gives the final statistical uncertainty. The

final transition frequencies with the systematic uncertainties added in quadrature are given in

table 4.4.

4.5 Constraining Changes of α and µ

We can now combine these lab measurements with existing astronomical data to set bounds on

possible variations of α and µ. The astronomical spectra we use are from interstellar gas clouds

in our own galaxy where the density is typically 1019 times smaller than on Earth. Hence we

can constrain variations of fundamental constants with matter density. These clouds are highly

dynamic objects and the atoms and molecules within possess a complex velocity profile. This

leads, in general, to complicated spectra with many Doppler shifted components. For spectra

from very distant objects the redshift of spectral lines due to the expansion of the universe is

another factor that must be accounted for. This makes it necessary to compare at least two

spectral lines from each source to cancel the Doppler shift. In order to achieve high sensitivity

to changes in fundamental constants the two transitions should have very different sensitivity
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Transition Frequency (Hz)

(3/2+, 2)− (3/2−, 2) 701677682± 6
(3/2+, 1)− (3/2−, 1) 724788315± 16
(3/2+, 1)− (3/2−, 2) 703978340± 21
(3/2+, 2)− (3/2−, 1) 722487624± 16

Table 4.4: The measured J = 3/2 Λ-doublet transition frequencies with their 1σ uncertainties.

Figure 4.22: A false colour image of the giant molecular cloud W51 taken with the Spitzer
space telescope [216]. The infrared array camera detects radiation at a wavelength of 3.6, 4.5,
5.8 and 8 µm and is displayed as red colour. At this wavelength polycyclic aromatic compounds
(hot soot or dust) emit after being excited by strong ultraviolet radiation from massive hot stars.
Emission at 24 and 70 µm is shown in green.

coefficients, ideally of opposite sign. We spectra from six different interstellar gas clouds. In

two of these sources both, the J = 1/2 and J = 3/2 Λ-doublet transitions are observed together

and in the other four the J = 1/2 transition of CH is observed together with the ground state

J = 3/2 Λ-doublet transition of OH. The first time the J = 3/2 Λ-doublet of CH has ever been

measured was in the astronomical survey conducted by Ziurys and Turner in 1985 [202]. They

pointed both the 300 m dish at Arecibo and the 91 m telescope at NRAO, Greenbank towards

W51, a giant molecular cloud (84×114 pc) and active nursery for new massive stars. It is located

towards the Aquila constellation in the northern sky and lies along the Sagittarius arm of our

galaxy (Galactic coordinates: l = 49.5, b = −0.4). It is one of the most active star forming

regions in our galaxy, first discovered in a large radio survey conducted by Gart Westerhout in

1958 [215]. A false colour image of W51 from the Spitzer space telescope is shown in figure 4.22.

The mechanisms that lead to the rich chemical diversity in such clouds (over 120 different molec-

ular species have been detected so far) are only poorly understood. The molecules range in size

from 2-13 atoms and are mainly organic in nature. The CH molecule plays a central role in these

reaction dynamics [217]. Molecular spectra are also important for determining the temperature
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and the total gas density throughout the gas cloud. Hence, molecules are a convenient means

to obtain a better understanding of the physical conditions in these sources. Ziurys and Turner

aimed to get more precise measurements of the column densities of CH by measuring the excited

J = 3/2 state in addition to the J = 1/2 transitions. They succeeded in finding CH in W51 and

a number of other clouds including W43, W3 and OriB. The J = 3/2 data from W51 remains

the only published data set to date [202, 218].

They measured the J = 3/2 transitions at exactly the same location in the cloud as Genzel

and colleagues six years earlier which allows us now to compare these transition frequencies to

the frequencies we measured in the lab.

The astronomical spectra are plotted in terms of velocities. As a rule of thumb one can re-

member that for a wavelength of 1 mm a velocity of 1 km s−1 corresponds to 1 MHz. For the CH

(1/2+, 1) − (1/2−, 1) transition at a wavelength of 89.9 mm, 1 MHz corresponds to 89.9 km s−1.

The line widths of a typical astronomical spectrum of CH has a FWHM of approximately

10 km s−1. Astronomers can typically determine the centre of the line to an accuracy of 0.1 km s−1

which corresponds to a frequency uncertainty of 1 kHz for the J = 1/2 transitions. For our pur-

pose of testing the variation of fundamental constants the lab frequencies should be known to

higher accuracy than the astronomical measurements which was not the case until now.

In general, astronomers measure a Doppler shifted transition frequency f ′a = fa (1− vs/c),
where fa is the rest-frame transition frequency of the molecules, vs is the relative velocity be-

tween the molecules and the observer and c is the speed of light. The velocity profile of the source

is usually not known so the spectra are plotted with respect to a known nominal frequency fn.

This is usually the accepted value for the transition at the time of the measurement, is specified

in the publication and carries no uncertainty. The frequency measured at the telescope’s receiver

is then f ′a = fn (1− vm/c), where vm is the measured velocity determined from the data with

respect to fn. The two equations then give

1

c
(vm − vs) =

(
1− fa

fn

)
(1− ε) (4.26)

where ε = vs/c. By using the difference of two transition frequencies which have the same

velocity vs we can get rid of the Doppler shift. Any additional difference in the frequencies is

then due to a change in fundamental constants. This is of course only true if the two transitions

shift by a different amount due to variations in constants, i.e. they have different sensitivity

coefficients K. Suppose that the rest frequency in the molecular cloud deviates from the lab

frequency due to a change in the fine structure constant α by fa = fl (1 +Kα(∆α/α)), where fl

is the lab frequency for the transition. The difference in the measured velocities then is

1

c
(vm,1 − vm,2) =

∆v12

c
=

(
fl,2 (1 +K2,α (∆α/α))

fn,2
−
fl,1 (1 +K1,α(∆α/α))

fn,1

)
(1− ε) (4.27)
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We can see that ε is only a minute correction to ∆v12/c for non-relativistic speeds vs and we can

thus neglect it. We can further assume that Kfl,i/fn,i ≈ K because the sensitivity coefficients

are only known to about 1% accuracy and the ratio of fl/fn is known to a few parts per million

level or better. Rearranging the equation then yields the expression

∆α

α
=

1

(K2,α −K1,α) c

[
∆v12

c
+

(
f1,l

f1,n
−
f2,l

f2,n

)]
. (4.28)

Note that the total uncertainty in determining ∆α/α is governed by the uncertainty in deter-

mining ∆v12. The uncertainty in determining ∆v12 is typically 100% or more. The error in the

sensitivity coefficients, however is only a few per cent and thus negligible. For the case when the

uncertainties in the lab frequencies are small compared to the astronomical observations we can

write the total uncertainty in determining a variation in α as

δ

(
∆α

α

)
=
δ(∆v12)

c

1

K2,α −K1,α
(4.29)

In CH the transitions also depend on the electron-to-proton mass ratio µ. Everything that has

been derived so far is analogous for the case of µ-variation. To obtain bounds on the variation

it is common to assume that there is either a change in α or a change in µ but not in both

simultaneously. If instead we allow both constants to change, we obtain

∆α

α
= −∆µ

µ

Kµ,2 −Kµ,1

Kα,2 −Kα,1
+

1

Kα,2 −Kα,1

[
∆v12

c
+

(
f1,l

f1,n
−
f2,l

f2,n

)]
. (4.30)

All we now need to do is to extract ∆v12 from the astronomical spectra. There are currently only

two published spectra of the J = 3/2 transition available [202, 218]. They are both taken in W51

but with different telescopes. To accurately extract ∆v12 from the published J = 1/2 and J =

3/2 spectra we digitise them and fit Gaussian profiles to the spectra. We fit multiple Gaussians

to spectra that contain multiple velocity components or hyperfine components. Figure 4.23 on

the left shows the astronomical data (blue dots) and the multi Gaussian fits (red line) which

we use to find the centre of the lines. As mentioned by Ziurys and Turner the qualitative

similarity between the excited- and ground-state spectra in terms of the velocity distribution of

the CH molecules in W51 strongly indicates that both spectra stem from the same region in the

cloud [202]. This is very important because different parts of the cloud may possess different

velocities and thus different Doppler shifts. We digitise all the datasets and find that a function

consisting of the sum of three Gaussians fits the data best. We get the centre for each Gaussian

and find ∆v12. For the sensitivity coefficients we take the ones calculated by Kozlov [176] which

are reproduced in table 4.5. We calculate ∆α/α for each combination of hyperfine transitions

(single J = 3/2 and three J = 1/2) individually and take the weighted mean and standard

deviation of the individual results. Assuming that only one constant changes at a time this gives
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Figure 4.23: Examples of astronomical data we use to determine ∆v12. Left: Ziurys and
Taylor measured the (3/2+, 2)− (3/2−, 2) transition towards W51 [202]. We compare these data
to all three J = 1/2 transitions measured by Genzel and colleagues [203]. The peculiar lineshape
is further analysed by Turner [218]. He comes to the conclusion that the absorption feature in
the J = 1/2 spectra at about 60 km s−1 stems from a dense cloud in front of the cloud that
emits at 67 km s−1. Right: We also use data from Rydbeck and colleagues who recorded CH and
OH spectra in the Orion spiral arm features towards the continuum source Cassiopeia A. The
similar velocity profile indicates that both spectra originate from the same region in the cloud
and that OH and CH have similar velocities in the cloud.

Transition Kα Kµ fl fn
(1/2+, 1)− (1/2−, 1) 0.62 1.7 3335.479356 3335.481
(1/2+, 0)− (1/2−, 1) 0.63 1.69 3349.192556 3349.193
(1/2+, 1)− (1/2−, 0) 0.59 1.71 3263.793447 3263.794
(3/2+, 2)− (3/2−, 2) -8.44 6.15 701.677682 701.677
(3/2+, 1)− (1/2−, 1) -8.07 5.97 724.788315 724.788
(3/2+, 1)− (1/2−, 2) -8.66 6.32 703.978340 704.175
(3/2+, 2)− (1/2−, 1) -8.37 6.17 722.487624 722.303

Table 4.5: The sensitivity constants of the CH transitions, the current best lab frequencies fl
and the nominal frequencies fn used by the astronomers.
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Transition Kα Kµ fl fn(1972)

(3/2+, 2)− (3/2−, 2) -1.14 2.55 1667.358996 1667.35903
(3/2+, 1)− (1/2−, 1) -1.14 2.55 1665.401803 1665.40184
(3/2+, 1)− (1/2−, 2) -1.02 2.49 1720.529887 1720.52998
(3/2+, 2)− (1/2−, 1) -1.27 2.61 1612.23101 1612.23101

Table 4.6: The sensitivity coefficients for the OH transitions, the current best lab frequencies
fl and the nominal frequencies fn used by the astronomers

the final result of

∆α

α
= −2± 1.5× 10−7 and

∆µ

µ
= 4± 3× 10−7. (4.31)

If both constants change we can constrain the combination of a variation in α and µ by

∆α

α
= 0.49

∆µ

µ
+
(
−2± 1.5× 10−7

)
. (4.32)

It is not ideal that the data were taken with different telescopes with a time difference between

the measurements of six years. The limits we provide, however, clearly demonstrate the poten-

tial of this technique for obtaining tight constraints on variations in fundamental constants with

the benefit that systematic errors are heavily suppressed by comparing transitions in a single

molecular species.

The shortage of J = 3/2 data prompted us to investigate other species with similar velocity

profiles in the same and other clouds as well. It is known that clouds with CH usually contain

OH as well and that they are well mixed with very similar lineshapes and velocity components.

We identified 5 such sources in our galaxy. One of the spectra is shown in figure 4.23 on the right.

The OH lab frequencies and sensitivity coefficients we use are given in table 4.6. The results of

all of these data sets and their constraints are given in table 4.7. As shown in figure 4.23, in

each source there are multiple velocity components and/or hyperfine components. We therefore

get several different values for the velocity difference ∆v12. Their standard deviation is typically

several times the individual uncertainties of the fits. First of all this might simply be due to the

fact that the transitions were not observed simultaneously with the same receiver, beam size,

system temperature and velocity resolution. Violation of any of these conditions leads to shifts

in the line centres which are referred to as Doppler noise. For the data presented in table 4.7

we assume that these velocity shifts due to instrumental imperfections are of random nature.

We can circumvent these problems with dedicated measurements instead of using archival data.

However, for the case of CH-only data residual Doppler noise may still arise from kinetic tem-

perature fluctuations within the molecular cloud (the J=3/2 state lies 25 K above the J=1/2

state). If we compare CH spectra to other molecular spectra unavoidable Doppler noise is caused

by velocity gradients across the molecular cloud and/or by spatial segregation. The different

optical depths for different transitions is also a problem. Finally, the underlying velocity profiles
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Figure 4.24: The value of ∆α/α and its error bar for each velocity component used to in
table 4.7. The values 7-13 are all the possible combinations of CH and OH lines given in
references [225, 226].

may not be Gaussian.

All these effects, however, should vary randomly for different clouds. By averaging over a

statistically significant data sample we can minimise the influence of the Doppler noise. Other

systematic frequency shifts caused by external electric and magnetic fields and the cosmic black-

body radiation-induced Stark effect have been shown to be small (≈ 1 m s−1) [219].

Taking the weighted mean of all of these constraints we arrive at the final results of

∆α/α = (0± 0.7)× 10−7 and ∆µ/µ = (0.1± 1.4)× 10−7 (4.33)

with 3σ upper bounds of |∆α/α| < 2.1 × 10−7 and |∆µ/µ| < 4.3 × 10−7. All the data we used

to derive this result is plotted in figure 4.24. Unfortunately, current chameleon theories do not

predict any specific value for changes in fundamental constants as a function of the surrounding

matter density and we thus cannot constrain any of these theories yet. However, this work can

be regarded as a test of the Einstein equivalence principle of local position invariance.

4.5.1 Summary

By comparing our lab-based measurements of the Λ-doublet frequencies with astronomical spec-

tra obtained from interstellar gas clouds within our own galaxy we constrain the variation of

the fine-structure constant α and the electron-to-proton mass ratio µ with matter density. The

J = 1/2 and J = 3/2 transitions are highly sensitive to changes in such fundamental constants

and thus provide a sensitive means to constrain such variations. Furthermore, the two transitions

shift with different sign and amount with changes in α or µ which allows to cancel the Doppler

shift in a relative measurement. The shortage of J = 3/2 data prompted us to compare the CH

J = 1/2 transitions to the ground state Λ-doublet transitions of OH. The comparison of two dif-

ferent molecular species, however, is prone to systematic velocity offsets that stem from chemical
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and spatial segregation in the molecular cloud instead of a variation in fundamental constants.

The densities of CH and OH, however, are governed by similar gas-phase production and de-

struction mechanisms which lead to similar abundances in interstellar gas clouds and hence to

a similar Doppler profile of the emitted spectra. A recent survey in TMC-1 supports this argu-

ment showing that the CH and OH abundances are well correlated [227]. We could demonstrate

the high sensitivity of this method to variations in fundamental constants by setting the most

stringent upper limit on α variation with matter density to date.

4.5.2 Outlook

Note that the data presented in table 4.7 are not the only sources where CH has been detected.

However, we only used those for which the original spectra were presented in the publications.

Rydbeck and colleagues published an extensive survey of CH in our galaxy in 1976 in which they

list over 20 different galactic sources [221]. With new dedicated observations in these already

known sources we could improve our limits and reduce the influence of Doppler noise consid-

erably. Moreover, we could extend Rydbeck’s survey to search for CH lines from the J = 3/2

transitions that originate from the same sources to make use of the full sensitivity of CH to

variations in fundamental constants.

Recent data taken with the 100 m telescope at Effelsberg show that it has become possible to

determine the line centre of the (1/2+, 1) − (1/2−, 1) and the (1/2+, 1) − (1/2−, 0) transitions

with a precision of 0.003 km s−1 and 0.004 km s−1 which is nearly twenty times more accurate

than the data we used to provide the constraints above (figure 4.23) [226]. The accuracy of these

data also exceeds the previous best lab frequency values by a factor of three and seven, respec-

tively [228]. Hence with dedicated astronomical measurements, and assuming a three times worse

accuracy for determining the centre of the J = 3/2 transition, constraints below the 10−8 level

are possible using the new laboratory measurements presented above. This of course requires to

control the random Doppler noise on the same level.

Sakai and colleagues found a small velocity offset between two different hyperfine components

in a single CH spectrum [226]. Using our new measurements we can correct their value and

indeed the offset disappears.

It would be very interesting to find CH molecules at high redshift to probe for temporal varia-

tions of fundamental constants as well. A promising candidate for such a search would be the well

known absorbing system at redshift z ≈ 0.89 towards the radio source PKS 1830-211 [229, 230].

The microwave radiation stems from a high redshift (z = 2.507) quasar which passes through

a spiral galaxy at z ≈ 0.89. The galaxy acts as a gravitational lens and splits the image of the

quasar into two components and an Einstein ring. By analysing the radio spectrum Wiklind

and Combes realised that there is a large number of molecules present in this galaxy which

imprint their spectrum onto the broad emission of the quasar [231]. So far over 40 species have
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Source Redshift Molecules Detected

Cen A 0.002 CO, OH, NH3, CN, HCO+, HCN, N2H+, CS, H2CO, C3H2

3C293 0.045 CO, HCO+, HCN
4C31.04 0.060 CO, HCO+, HCN

PKS 1413+135 0.247 CO, HCO+, HCN, CN, HNC
B 1504+377 0.673 CO, HCO+, HCN, CN, HNC
B 0218+357 0.685 CO, NH3, H2O, HCO+, HCN, CS, H2CO, H2S

PKS 0132-097 0.765 OH
PKS 1830-211 0.886 > 40 species including CH

Table 4.8: Extra galactic sources for radio- and microwave spectra of molecules.

been detected in this system, including CH via the lowest mm-wave transition at 530 GHz [232].

A list of the extragalactic sources for molecular spectra following [232, 233] (excluding H2 and

CO, for which many more systems exist) is given in table 4.8. The intensity of the CH lines,

especially of the J = 3/2 transitions, is usually quite low (ten times weaker than OH lines)

which requires the use of large telescopes. The 100 m telescope at Effelsberg covers the entire

frequency range between the two Λ-doublets and thus is ideal for further studies. The 100 m

telescope of NRAO at Green Bank covers the frequency range from 0.29 to 2.6 GHz and is thus

suitable for measuring both transitions at moderate redshifts. The 300 m telescope at Arecibo is

also an option. An even larger radio telescope with a single 500 m dish is being built in China’s

Guizhou province. The construction of the expanded very large array in New Mexico will be

completed soon and provide very high sensitivity and resolution. By 2024 the square kilometer

array, built in Australia, New Zealand and South Africa is expected to be operational. It will

have a collecting area of 106 m2 and thus will provide unprecedented sensitivity to frequencies

between 0.07 and 10 GHz.

Other molecules that can provide multiple transitions with different sensitivity coefficients

should be considered as well. Methanol, has already been shown to be an excellent probe for

µ-variation which does not need any other molecular species to fix the Doppler shift.

Similar to CH the states in the OH molecule are Λ-doubled. All the hyperfine components of

the J = 3/2 ground state of OH have been measured to very high accuracy already [234] and

have been used to constrain a variation in the combined quantity gp(α
2/µ)1.849 at a redshift of

z ≈ 0.247 [235]. These measurements are however limited to the 10−4 level because the sensitiv-

ity coefficients of the individual hyperfine components are very similar. The closest other state

with a significantly different sensitivity coefficient lies too high in energy to be excited in cold

molecular clouds. It might be possible to find excited state OH in the warm (100 K) and dense

star-forming regions that surround protostars. However, the emerging spectra will be broad and

complicated. Kanekar and colleagues thus used the 21 cm line of hydrogen to calibrate the OH

spectra which increased their sensitivity to below the ppm level for a system at z = 0.765 [198].

Kozlov and Levshakov have recently proposed to use the tunneling and rotational transitions

of the hydronium ion (H3O+) to limit µ-variation [219]. Hydronium has already been detected
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in interstellar gas clouds and, similar to ammonia, possesses an inversion transition which is

very sensitive to variations in µ. The inversion occurs when the oxygen atom tunnels through

the plane of the hydrogen atoms which leads to an inversion splitting of the rotational lines.

However, in contrast to ammonia (1.3 cm−1) this splitting is very large (55.3 cm−1) and is thus

observed in the submillimeter-wave region. Furthermore, there are several transitions with oppo-

site sensitivity to µ. In contrast to ammonia the constraint is then based on only one molecular

species. Preliminary results constrain |∆µ/µ| < 2 × 10−7 in our own galaxy. With new high-

precision instruments such as ALMA, SOFIA, CCAT and others this can be improved even

further. However, the laboratory frequencies have to be improved as well. The isotopologues

of the hydronium ion possess similar sensitivities. Currently, however there are no laboratory

frequencies available for these ions.

Another potential candidate that provides three strong transitions at 27.6, 25.1 and 10.5 GHz

is the linear C3H molecule with large sensitivity coefficients that range from -5 to +19 [236].

This molecule has already been observed in the absorber system towards PKS 1830-211 but the

laboratory frequencies are not known for these transitions yet.

Molecular spectra in the microwave and far infrared provide a sensitivity to variations in fun-

damental constants that can surpass optical spectra by as much as three orders of magnitude.

Furthermore, molecules provide multiple transitions that shift by a different amount, or even in

opposing direction. Hence there is no need to compare spectra of different species which makes

this technique relatively immune to systematic errors. However, there are currently only very few

molecular spectra available from high redshift objects. Additionally, the laboratory frequencies

of particularly suitable molecules are often not known accurately enough in order to be useful

for tests of variations of fundamental constants. Our new measurements of the Λ-doublets of

the J = 1/2 and J = 3/2 states adds another molecule to the list of sensitive and abundant

species and will help to improve constraints. A search for new sources of CH spectra at high

redshift is no longer hindered any more by inaccurate lab frequencies. With new, high precision

telescopes such as the EVLA it will become possible to find CH at high redshift and use it to

tightly constrain variations of fundamental constants.

Finally it should be mentioned that it is widely recognised that abundances of molecules

can show significant variations within a molecular cloud as well as between one cloud and an-

other [226]. This is also why one has to be extremely cautious to compare more than one molec-

ular species to search for variations of fundamental constants. Understanding the origin of this

chemical segregation is currently an important topic in astrochemsitry. Furthermore, the most

abundant molecule H2 is difficult to observe and thus astronomers rely on other species to trace

its distribution through molecular clouds [237]. The CH Λ-doublet emission lines have long been

considered as a good tracer of H2, especially in translucent clouds where the densities are quite

low. However, until now the poor rest frequencies of CH limited its usability. With the new rest

frequencies provided by our measurement CH can now be used more reliably as a tracer for H2
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and will also help in elucidating an unexpected velocity offset between CH and CO which was

recently detected by a survey conducted by Chastain and colleagues [237].



Chapter 5

Measuring the Lowest

Millimetre-Wave Transition

Frequency of CH

Somewhere, something incredible is waiting to be known.

Carl Sagan

5.1 Introduction

This chapter describes a measurement of the frequency of the transition between the two F -

manifolds, i.e. from (F2, J = 1/2) to (F1, J = 3/2) (see level diagram of 4.1). As mentioned in

the previous chapter our molecular beam source produces CH molecules at a low translational

temperature of 0.4 K. The rotational temperature is similar. This means that only a small

fraction of the molecules populate the excited J = 3/2 state which lies about 25 K above the

ground J = 1/2 state. Therefore we populate the J = 3/2 state with radiation from an amplifier

multiplier chain (AMC) which enabled us to observe the J = 3/2 Λ-doublet transitions for the

first time directly in the lab (see previous chapter). We can use our setup, however, not only to

transfer population, but also to measure this lowest far-infrared transition of CH with unprece-

dented accuracy. This is especially interesting because new high-precision instruments such as

ALMA or the Herschel Space Observatory provide exceptional resolution in the far-infrared and

have very recently delivered the first CH spectra of the J = 1/2 − J = 3/2 lowest mm-wave

transition from the high redshift absorber PKS 1830-211 [232] and from sources in our own

galaxy [238–241]. Herschel has now run out of liquid helium to cool its detectors. However, the

new CCAT is currently being built in Chile and will provide extremely fast data acquisition rates

and thus is a perfect instrument to conduct large surveys to search for new sources for molecular
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spectra. Once new sources have been found the unrivalled sensitivity of ALMA can be used to

record high resolution spectra.

The first to directly measure any far-infrared transition of CH in the lab were Evenson, Radford

and Moran in 1971 using the absorption of a water vapour laser in an oxyacetylene flame. They

detected the pure rotational transition (J = 5/2, N = 2)− (J = 7/2, N = 3) at 2.5 THz [242]. In

1978, Hougen and colleagues succeeded to measure the (J = 1/2, N = 1)−(J = 3/2, N = 1) tran-

sition for the first time using optically pumped far-infrared lasers, a low-pressure methane/atomic

fluorine flame within the laser cavity and a strong magnetic field to Zeeman shift the molecules

into resonance with the far-infrared laser [243]. These measurements significantly improved the

indirect measurements of the Λ-doublet frequencies also. In 1983 Brown and Evenson extended

the work by Hougen et al. using the same method. They were able to derive precise molecular

constants from their measurements [244]. The uncertainties of these measurements were limited

by the accuracy of the then available gaussmeters to a few MHz. By the mid 1980s Evenson,

Jennings and Petersen developed a tunable far-infrared spectrometer by mixing two CO2 lasers

in a a so-called MIM (metal-insulator-metal) diode [245]. This technique provided a couple of

microwatts of far-infrared radiation which Davidson, Evenson and Brown used to measure the

CH lines with a tenfold improvement in accuracy. They measured the rotational transitions up

to N=5, however refrained from publishing their results because they could not detect the lowest

mm-wave transition. By 2000 new far-infrared sources such as the backward wave oscillator have

become available. Amano used such a source to measure the (J = 1/2, N = 1)−(J = 3/2, N = 1)

transition to accuracies that range from 30 to 100 kHz [246]. This stimulated Davidson et al. to

publish their results as well and to compile an accurate set of rotational transition frequencies

and molecular parameters for CH [247].

As mentioned earlier CH has also been detected in interstellar space via mm-wave transitions.

Ossenkopf, for example, recorded a high resolution spectrum of the (1/2+, 1)−(3/2−, 2) (notation

as in previous chapter (Jp, F )) transition in CH from the iris nebula (NGC7023) with a FWHM

of below 2 km s−1 using Herschel [241]. The centre of this line can be determined to better than

one part in a hundred to below 20 m s−1 which corresponds to a frequency uncertainty of approx-

imately 10 kHz. This is three times more precise than Amano’s lab measurement. This clearly

shows that even higher precision is needed to be able to use the lowest mm-wave transitions to

search for variations of fundamental constants.

5.2 Experimental Setup

A sketch of the setup used to measure the lowest mm-wave transition in CH is shown in figure 5.1.

We use an amplifier multiplier chain (AMC) to drive and measure this transition frequency. It

multiplies a low frequency input by a factor of 54. This low frequency input is generated by a

synthesizer which can easily be phase-locked to a relative frequency uncertainty of 10−12 using
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Figure 5.1: A sketch of the experimental setup used to measure the lowest mm-wave transition
in CH.

standard techniques such as the 10 MHz GPS phase lock described in the previous chapter. A

backward wave oscillator typically provides larger tunable frequency range and more output

power, but is much more difficult to frequency stabilise.

A plano-convex spherical teflon lens focuses the mm-wave beam which is launched by a diagonal

horn antenna to a beam waist of 5.3 mm. The mm-wave beam enters the vacuum chamber

through a quartz window. It should be noted that the only way to measure the output of

the AMC is the interaction of the radiation with the molecules. We thus have to trust the

manufacturer’s manual regarding the output power and mode size.

The region where the molecules interact with the mm-wave beam is magnetically shielded. We

use external magnetic field coils to measure the residual magnetic fields in the interaction region

of the THz radiation with the molecular beam.

5.3 Driving The Millimetre-Wave Transition

5.3.1 Matrix Elements

The theory for driving such a transition is very similar to the case of driving a Λ-doublet

transition. The only difference is a slightly different transition dipole matrix element and that

the electric field which is driving the transition stems from a Gaussian beam. We can write the

transition dipole matrix elements between the two states (d = 〈1 |d| 2〉) in terms of the Wigner
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rotation matrix D using a pure Hund’s case (a) basis as:

d = µe
〈
J,Ω, I, F,MF |(D00)∗| J ′,Ω′, I, F,M ′F

〉
=

= µe(−1)F+MF−Ω+I+F ′+1

(
F 1 F ′

−MF 0 M ′F

)√
(2F + 1)(2F ′ + 1)·

·

{
J F I

F ′ J ′ 1

}√
(2J + 1)(2J ′ + 1)

(
J 1 J ′

−Ω 0 Ω′

)
. (5.1)

As outlined in chapter 2 a Hund’s case (a) basis is not appropriate for CH. To account for

that we have to use the proper parity-symmetrised basis states (see chapter 2 for details). This

allows us to calculate the matrix elements for each MF component of the transition. The

obtained matrix elements are: (0.29µe, 0.33µe and 0.29µe) for the three MF components of the

(1/2−, 1,MF )−(3/2+, 2,M ′F ) line and (0.17µe and -0.17µe) for the two possible MF components

of the (1/2−, 1,MF )−(3/2+, 1,M ′F ) transition, where µe is the permanent electric dipole moment

of CH (µe = 1.46 D). We concentrate on these two hyperfine components because those are of

most relevance to the experiment.

5.3.2 The Millimetre-Wave Beam

The lens we use to collimate the mm-wave beam is a spherical-concave teflon lens, with a radius of

r = 12.7 mm. The thickness of the lens is 15.85 mm and the radius of curvature thus R = 13 mm.

The refractive index of teflon at 535 GHz is 1.435 [210]. The focal length of this lens in air is then

f = R/(n − 1) = 29.9 mm (back-focal length 11.9 mm). This results in a beam with a waist of

5.3 mm at the position of the molecules (beam waist at the horn apex: 1 mm, distance from lens

to horn apex: 21.2 mm, distance from horn to molecular beam: 239 mm). The output power of

the AMC at 535 GHz is 13 µW. The fractional power reflected at each surface is (n−1/(n+1))2,

where n = 1.4 is the refractive index of teflon and n = 2.1 is the refractive index of the quartz

window. The fractional power absorbed in a material of thickness l is e−αl, with α = 0.13 cm−1

for teflon and α = 0.1 cm−1 for quartz. We therefore deliver 7 µW of power to the molecular

beam in a beam whose waist is 5.3 mm. The electric field in a Gaussian beam of power P

and waist w is E0 =
√

4P/(πε0cw2) which for our beam parameters is 10.9 V m−1. The Rabi

frequency at the centre of the beam is Ω0 = d · E0/~. For the (1/2−, 1) − (3/2+, 2) transition

we thus get a Rabi frequency of Ω0 = 2π × 23.1 kHz for the MF = 1 to MF = 1 component and

Ω0 = 2π × 26.7 kHz for the MF = 0 to MF = 0 component. Molecules moving at the speed of

argon (570 m s−1) through the centre of the mm-wave beam interact for about τ = 2w/v ' 20 µs

which yields Ω0τ = 0.92π. So, by coincidence, the power of the mm-wave beam should just be

enough to drive a π-pulse.
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5.3.3 Lineshape

In the limit of small excitation, the transition probability scales as the square of the electric field

amplitude at the resonance frequency. The molecules experience a time-dependent electric field

E(t) = E0e
−v2t2/w2

e−iωt, where v is the speed of the molecules and ω is the oscillation frequency

of the electric field. The expected line shape is then the Fourier transform E(ω0) ∝ e−w2δ2/(4v2),

where δ = ω − ω0 is the detuning from the resonance angular frequency ω0. The transition

probability |E(ω0)|2 is a Gaussian function whose FWHM is ∆f =
√

2 ln 2 v
πw = 40 kHz. However,

we expect to drive a π-pulse which is not in the limit of small excitation. A numerical solution

of the Schrödinger equation gives also a Gaussian line shape with a slightly smaller FWHM

of 39 kHz.

We still need to account for the Doppler broadening due to the curved wave-fronts of the

Gaussian beam. The Doppler broadening is ∆fD = v
λ
w ln 4
R = 40 kHz, for R = 0.16 m. If we add

this in quadrature to the transit-time broadening of 40 kHz we expect a total FWHM of the line

shape of 57 kHz.

We can also include that into the numerical model. At time t, the molecules are at position

vt, where the k-vector of the mm-wave beam is at an angle vt/R, where R is the radius of

curvature. The Doppler shift is then ∆fD = v2t/(λR), with λ the wavelength of the mm-waves.

This can be included as a frequency chirp δD in the Schrödinger equation and also yields a width

of 57 kHz for molecules moving at 570 m s−1 and with a radius of curvature of the mm-wave

beam R = 0.16 m.

Finally we need to take account for the fact that the different MF components have slightly

different Rabi frequencies. This leads to a small decrease in the expected transfer efficiency.

Averaged over all three Rabi frequencies of the (1/2−, 1) − (1/2+, 2) transition we expect to

transfer 74% of the initial ground state population for the mm-wave beam intensity given above.

5.4 Results

The experiment is done in the following way. First we position the AMC box with its horn

output central and perpendicular to the molecular beam axis with the polarisation axis of the

electric field along y. We lock the detection laser to the R11(1/2) line of the A-X transition and

look for depletion of the fluorescence signal as the mm-wave frequency is scanned. We usually

detect a depletion of 10%. We then fix the mm-wave frequency to the transition frequency and

optimise the position of the box by minimising the signal. After that we add the lens at about

one focal length distance from the horn. We adjust the position of the lens using a three-axis

translation stage such that it minimises the signal which results in beam waist of w = 5.3 mm

at the position of the molecular beam. We then scan the mm-wave frequency again to check
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if the transition frequency has changed due to small changes in angle of the mm-wave beam.

After this optimisation procedure we can typically transfer 40% of the initial J = 1/2 population

as shown in figure 5.2 on the right for the (1/2−, 1) − (3/2+, 2) transition. The blue dots are

the data and the red line is a Gaussian fit. The fact that we cannot reach the full expected

transfer efficiency of 74% can be attributed to a lower mm-wave beam power. The fit yields

a FWHM of 59 ± 0.6 kHz. This agrees well with the expected width of 57 kHz presented in

the previous section. The small discrepancy might be due to a slightly smaller beam waist as

expected. Figure 5.2 on the left shows the depletion signal without a magnetic shield in the

interaction region. We can clearly see that the transition splits due to the Zeeman effect into

five components. As explained in chapter 2 the, J = 1/2 levels do not shift to first order,

whereas the (3/2+, 2) components shift by 9.07MF Hz nT−1. The fact that we measure a value

that is close to the ideal expected linewidth we conclude that magnetic fields are suppressed to

insignificant levels. Broadening due to the Zeeman effect is thus negligible.

After we have optimised the depletion and found the transition frequency we lock the detection

laser to the R11(3/2) line of the A-X transition to detect the increase in signal as the mm-wave

frequency is scanned. This is shown in the lower panel of figure 5.2.

In order to measure the transition frequency we need to perform systematic checks as well.

Although we do not measure any excessive broadening of the lineshape we need to consider

systematic shifts due to the Zeeman effect. We measure a magnetic field component along z

of 13 nT with the components along x and y at least ten times smaller. The linear Zeeman

splitting in this field is only 120 Hz. Furthermore, this linear splitting should not shift the line

centre, because for a linearly polarised mm-wave beam, the shifted components are symmetric

about the line centre (as shown in figure 5.2).

To verify this we apply an external field along x, y and z using external field coils.1 When

we applied fields of approximately 1 G along x and y we could not detect any frequency shifts.

When we applied a field along z we measured a quadratic shift. We fit a parabola of the form

∆f(x) = a(x− b)2 + c to the data and extract a quadratic shift of a = −0.093± 0.005 kHz/A2

where A is the current through the solenoid along z in ampere. The offset b = 0.04 ± 0.46 A

yields an 1σ upper limit to magnetic field related shifts of ab2 = 0.04 kHz. The data and fit are

shown in figure 5.3.

To control frequency shifts that depend on the velocity of the molecules we measure the

transition frequency using three different carrier gases. We use krypton, argon and neon for

these measurements, with velocities of 420 m s−1, 570 m s−1 and 800 m s−1, respectively. A plot

of the transition frequency as a function of the velocity is shown in the left panel of figure 5.4.

We made this measurement twice for two different angles (red, blue) of the mm-wave beam.

We fit a linear model to the data which reveals a frequency shift of −0.049 ± 0.002 kHz/(m/s)

1The well calibrated magnetic field coils used in the previous chapter do not extend into the state selection
region. We thus added external coils, outside the vacuum chamber. Note that these external field coils are very
efficient in magnetising the shields. Thus, before changing the applied magnetic field one has to de-gauss the
shields.
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Figure 5.2: Left: The (1/2+, 1) − (3/2−, 2) measured by scanning the mm-wave frequency
while the detection laser is locked to the R11(1/2) line of the A-X transition. The transition
is split into five components by the Zeeman effect because of the ambient magnetic field in the
lab. The red line is a fit that consists of five Gaussian functions. Right: The same spectrum but
with a magnetic shield screening the interaction region. Please note the different scan range.
The FWHM of the transition is 59 kHz which agrees well with the expected linewidth presented
in the previous section. Bottom: We lock the detection laser to the R11(3/2) line of the A-X
transition and detect an increase in signal as the mm-wave frequency is scanned across the lowest
mm-wave transition (1/2−, 1)− (3/2+, 2).
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Figure 5.3: Measurement of the Zeeman shift of the (1/2−, 1)− (3/2+, 1) transition to control
magnetic field related frequency shifts. We apply currents as large as 20 A through an external
solenoid. We fit a parabola to the data and extract a limit for residual magnetic fields along z
which allows us to constrain magnetic field related frequency shifts.
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Figure 5.4: Left: We measure the transition frequency as a function of the velocity by changing
the carrier gas. We use krypton, argon and neon which yield 420 m s−1, 570 m s−1 and 800 m s−1,
respectively. The difference between red and blue is a slightly different angle of the mm-wave
beam with respect to the molecular beam (we moved the AMC box). Right: We repeat this
measurement for each angle and thus get four extrapolated frequencies (only two are shown
in the left panel). The weighted mean of all four extrapolated zero-velocity frequencies yields
the final transition frequency (solid line). The ±1σ error is shown as dashed lines. The final
frequency is 532723889.3± 0.7 kHz

Transition Frequency (kHz)

(1/2+, 0)− (3/2−, 1) 536795569.5± 0.6
(1/2+, 1)− (3/2−, 1) 536781856.3± 0.6
(1/2+, 1)− (3/2−, 2) 536761046.3± 0.6
(1/2−, 0)− (3/2+, 1) 532793274.6± 0.6
(1/2−, 1)− (3/2+, 2) 532723889.3± 0.6
(1/2−, 1)− (3/2+, 1) 532721588.6± 0.6

Table 5.1: Final transition frequencies of all six components of the lowest mm-wave (J = 1/2−
J = 3/2) transition. The uncertainties are slightly smaller than the individual measurements
quoted above because there are more measurements than independent frequencies.

for the data shown in red and −0.040 ± 0.002 kHz/(m/s) for the data shown in blue. The

gradients correspond to an angle of about 2.5◦ between the molecular beam and the mm-wave

beam. The extrapolated zero velocity transition frequencies with the 1σ uncertainties of the

linear fits are shown in the right panel of figure 5.4. The solid line is the weighted mean of the

four extrapolated frequencies with the ±1σ standard error shown as dashed lines. Together with

the Λ-doublet transition frequencies from the previous chapter we can now provide improved

frequencies for all six lines of the lowest mm-wave transition in CH. We have also measured

the (1/2−, 1) − (3/2+, 1) transition in the same way to be 532721588.5 ± 1.4 kHz. The final

frequencies are given in table 5.1.

5.5 Summary

We measured the lowest mm-wave transition between the (N = 1, J = 1/2) and the (N = 1, J =

3/2) states in CH to unprecedented accuracy using a molecular beam and resonant mm-waves
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Figure 5.5: Difference between the results of Amano [246] and our results. The difference
for each transition frequency is shown. The transitions are labelled (F p, F ′p), where no prime
denotes the J = 1/2 state and the prime the J = 3/2 state. The error bars are entirely due
to the uncertainty in Amano’s measurement. Our results differ from Amano’s by as much as
3.6 standard deviations. Taking the weighted mean (solid blue line) we find a difference of
79 ± 15 kHz indicating an uncontrolled systematic error in those previous measurements (1σ
standard error shown as dashed lines).

in combination with laser induced fluorescence detection. Compared to the previous best values

for these transitions provided by Amano [246] our results are between 50 and 150 times more

precise. Our measurements differ from Amano’s by as much as 3.6 standard deviations. A plot

of the difference between the transition frequencies obtained by Amano and our measurements

is shown in figure 5.5. Taking the weighted mean of all the differences we find a discrepancy of

79± 15 kHz. This indicates an uncontrolled systematic error in those previous measurements.

In our measurement systematic frequency shifts are negligible apart from a small velocity

dependence. We control these velocity shifts by measuring the frequencies for three different

carrier gases.

5.6 Outlook - The Sensitivity of the Lowest Millimeter-Wave

Transition to Variations in Fundamental Constants

It has been shown by de Nijs and colleagues that the mm-wave transitions, similar to the Λ-

doublet transitions, are sensitive to variations in fundamental constants. The sensitivity coeffi-

cients to variations in α and µ are Kα = 1.57 and Kµ = −0.22 [248]. Note that there is a small

differential sensitivity for transitions that start from different parity states in the J = 1/2 ground

state. The new, sensitive telescopes that have and will become available are ideal instruments

to look for CH at high redshift. Using ALMA, for example, Muller and colleagues recorded the

very first spectrum of CH at a redshift of z = 0.89 [232]. These measurements together with new

radio astronomical data of the Λ-doublet transitions in the J = 1/2 and/or the J = 3/2 state
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from the same cloud would be an ideal way to test for variations in fundamental constants, to

very high precision.



Chapter 6

A Microwave Trap for Polar

Molecules

[...] we never experiment with just one electron or atom or (small) molecule. In thought

experiments, we sometimes assume that we do; this invariably entails ridiculous

consequences[...]

Erwin Schrödinger

6.1 Introduction

The statistical uncertainty in a measurement of frequency f , can be described by

σ ∝ 1

Q
√
N
, (6.1)

where Q is the quality factor of the transition, given by Q = f/(∆f), with ∆f the width of

the transition and N is the total number of detected events (e.g. detected photons per shot

over a given period of time). For the Λ-doublet measurements, for example, ∆f is limited by

the interaction time to ∆f ' 1/τ = 2 kHz, N ' 10 000 s−1 gives a statistical uncertainty of

σ = 6 × 10−9t−1/2. This is only true in the absence of any other noise sources, for example of

electronic noise or laser scatter. We can infer that by increasing the interaction time we can

increase the quality factor and thus decrease the statistical uncertainty linearly. So to improve

any frequency measurement which is not limited by spontaneous decay it is beneficial to increase

the interaction time with the electromagnetic field in order to decrease the linewidth ∆f . This

is, of course, the basic idea behind an atomic fountain which achieves interaction times of the

order of one second. For frequency measurements in molecules this is very challenging due to

the lack of efficient cooling techniques. Although one can decelerate molecules to rest using
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Stark decelerators the molecules remain relatively hot. Once released from the decelerator, they

quickly expand which decreases the number of molecules available for the measurement drasti-

cally. Nonetheless, efforts are under way to measure the inversion doublet transition frequency

in ammonia to very high precision in a molecular fountain [55].

It has recently been shown that direct laser cooling of molecules is possible [72, 249–251]. This

technique, however, will be limited to a few molecular species only [71]. It has recently been

suggested that laser cooling of a slow, effusive buffer gas beam could be sufficient to build a

fountain of YbF molecules [252]. This could improve the sensitivity of a measurement of the

electric dipole moment of the electron by three orders of magnitude. The final temperature in

laser cooling experiments is, however, still too high (≈ 200 µK) to explore the rich physics of

long-range and anisotropic dipole-dipole interactions between polar molecules. In order to cool

a gas of polar molecules to ultra cold temperatures (below 1 µK) for a large variety of different

molecular species it is thus necessary to find a very general and very efficient cooling technique.

A large variety of molecules can be produced with temperatures in the range of 10 mK to 1 K

either by decelerating a supersonic beam [81] or by capturing the low velocity tail of an effusive

buffer gas cell [81, 82, 214]. Collisional cooling in a trap is the natural extension and can serve as

such a very general cooling technique. Evaporative cooling, for example, led to the observation

of Bose-Einstein condensation [58, 253], degenerate Fermi gases [59] and the realisation of the

first quantum simulator using ultracold atoms in an optical lattice [67]. This technique relies

on the selective removal of the most energetic particles from the trap. The remaining particles

thermalise through elastic collisions which results in an overall colder and denser sample. This

process is highly efficient and yields very low temperatures. It has recently been demonstrated

that this technique is not only limited to atoms, but can also be applied to diatomic molecules.

In particular, a sample of hydroxyl radicals (OH) has been cooled by microwave-forced evapora-

tive cooling in a magnetic trap [90]. The cooling typically reaches an end when inelastic collisions

start to heat the sample and lead to unintended trap loss.

Another collisional cooling technique is sympathetic cooling, i.e. one can overlap a cold sam-

ple of molecules with ultracold laser-cooled atoms and let them thermalise. Sympathetic cooling

is commonly used in cold atom and ion research [254–257]. To sympathetically cool molecules

with ultracold atoms the rate of elastic collisions must be sufficiently high. Hence it is of great

advantage to overlap the atoms and molecules in a trap so they can interact for a long time.

The first trapped sample of diatomic, polar (heteronuclear) molecules was created by direct

loading of CaH molecules into a magnetic trap inside a cryogenic buffer gas cell [76]. The CaH

molecules were produced via laser ablation and cooled via collisions with cold helium buffer gas

inside a copper cell (held at 0.3 K). The copper cell was located inside the bore of two supercon-

ducting magnet coils in anti-Helmholtz configuration. Molecules with their magnetic moments

oriented anti-parallel to the magnetic field (in a weak-field-seeking state) could thus be trapped

in the field-free region in the centre. The trap depth is determined by the magnetic moment of

the molecules (≈ 1µB) and the magnetic field strength. By applying 3 T this results in a trap
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depth of 2 K.

Similar to magnetic trapping, polar molecules can be confined in an electric field minimum gen-

erated by a quadrupole electrode geometry. Only molecules with their permanent electric dipole

moment oriented anti-parallel to the electric field (in a weak-field-seeking state) are trapped.

The molecules gain potential energy in an applied electric field, i.e. they possess a positive

Stark shift. The trap depth is governed by the Stark interaction and is typically of the order

of 0.3 to 1 K for typical electric field strengths achievable in the lab (100 kV cm−1). The first to

demonstrate trapping of polar molecules (ND3) using electrostatic fields were Bethlem and col-

leagues in the year 2000 [258]. Note that trapping does not necessarily mean having a potential

energy minimum at a single location in space. In 2007 a storage ring for polar molecules has

been demonstrated that is able to confine molecules to a circular orbit on which the molecules

can travel a distance of up to a mile [259, 260].

The great advantages of the magnetic and electrostatic traps are that they are relatively easy

to implement and yield deep potential wells of the order of 1 K which is ideally suited to capture

molecules from a buffer gas cell or a Stark decelerator. The great disadvantage, however, is that

these traps only work for molecules which are not in their ground state.

The absolute ground state of an atom or molecule is always lowered by an external perturba-

tion, i.e. an atom or molecule in its ground state will be attracted by a field maximum. If the

molecules are trapped in an excited state inelastic collisions can eject the molecules from the

trap by de-exciting them to the lower-lying ground state. These traps are therefore not suit-

able to achieve cooling via collisions with a cold buffer gas or evaporation. For some particular

molecules, as in the case of the OH radical, the elastic to inelastic cross-section happens to be

very large and collisional cooling can even be achieved if the molecules are trapped in an excited

state.

A much more general way to achieve collisional cooling is to trap the molecules in their abso-

lute ground state, which prevents a potential loss due to inelastic collisions in the first place. As

mentioned already earlier, the ground state of a polar molecule is high-field-seeking. This means

that its potential energy decreases as the electric/magnetic field increases, i.e. it possesses a neg-

ative Stark shift. Using static electric or magnetic fields it is, however, not possible to create an

electric field maximum in free space (in three dimensions), because the largest electric/magnetic

field is near the electrodes/magnets. It can even be shown that there exists no combination of

static electric, magnetic and gravitational fields that can produce a stable trap for ground state

atoms or molecules [261]. In two dimensions such a field maximum can be created. In a cylin-

drically symmetric trap the atoms or molecules can be confined radially but not axially or vice

versa. Fast switching between these two configuration can confine the molecules in their ground

state near the trap centre. Such traps are commonly known as ac traps. The basic principle

of an ac trap is similar to a Paul trap for charged particles which was invented by Wolfgang

Paul and Hans Dehmelt who were awarded the Nobel Prize in Physics in 1989 “for the devel-

opment of the ion trap technique”. Compared to electrostatic traps, ac traps are very shallow.
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Such traps provide depths of a few mK and a trapping volume of approximately 10−3 cm3 [87].

Molecules confined in an ac trap are subject to a micromotion at the switching frequency (small

amplitude) superimposed on a low frequency macromotion (large amplitude). Tokunaga and

co-workers could show that collisions with ultracold atoms lead to unstable trajectories and thus

to considerable trap loss before the molecules are cooled [91].

Strong optical light fields have also been demonstrated to trap molecules [262]. Such traps

are commonly used in cold atom research and rely on the electric dipole interaction of atoms or

molecules with strong laser light that is far detuned from a resonance. The use of a free-space

laser beam allows to trap atoms or molecules in their ground state. The trapping potential arises

from the interaction of the (induced) dipole moment with the intensity gradient of a strong, fo-

cused laser beam. Since the light is very far detuned from any resonance, optical excitations

to untrapped states can be kept extremely low. Typical trap depths are below 1 mK and the

trapping volume is 10−5 cm3 [263]. The small volume and trap depth makes it very difficult to

load large samples of polar molecules from a molecular beam into such traps. However, with

high power fibre lasers available nowadays this situation might change. These lasers provide

exceptionally high power (500 W) and mode quality which could allow one to couple the light

into an optical cavity. This can increase the trap volume and can lead to very deep traps of the

order of (0.1 K).

An alternative approach to an optical trap for ground state atoms has been demonstrated in

Chris Westbrook’s group in 1994 [264]. They used a spherical microwave cavity tuned near the

ground state hyperfine transition of caesium. This created a magnetic field maximum in the

centre of the cavity in which the atoms could be confined. Due to technical difficulties, however,

they could not trap the caesium atoms in their absolute ground state. Nonetheless, Spreeuw and

colleagues could demonstrate the basic working principle of such a microwave trap for ground

state atoms or molecules. DeMille and co-workers took this idea further and pointed out that

one could use the same principle to trap molecules in their absolute ground state [265]. The large

wavelength of the microwaves results in a large trap volume (1 cm3) and the ac Stark interac-

tion with low lying rotational transitions in molecules can lead to very deep traps (≈ 1 K). To

reach such large trap depths one must amplify high power microwaves (2 kW) in a resonator to

reach electric field strengths of order of 3 MV m−1. DeMille proposed to use a Fabry-Pérot type

resonator, the open geometry of which allows for easy trap loading and overlapping with ultra-

cold atoms. The molecules are trapped in their high-field-seeking ground state which should, in

principle, eliminate inelastic collisions during evaporative or sympathetic cooling. The polari-

sation of the molecules in the strong electric field leads to extraordinary large elastic collision

cross-sections due to the long-range dipole-dipole interaction [265].

More detailed calculations at a later stage, however, showed that under certain circumstances

the presence of a microwave field can lead to considerable inelastic collisions between atoms and

molecules [266] and molecules and molecules [267, 268]. A strong microwave field (µE0 ≈ hB)

close to a rotational transition at f ≈ 2B, where µ is the permanent electric dipole moment, E0
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is the electric field strength of the microwaves and B is the rotational constant of the molecules

produces a dressed state, i.e. a superposition of multiple rotational states. The strong dipole-

dipole interaction then induces inelastic (state-changing) collisions mediated by the microwave

field.

Molecule-molecule and molecule-atom systems can also undergo chemical reactions, even at

ultracold temperatures and the reaction rate can increase with increasing dipole-dipole interac-

tions [268].

From all these traps presented above we decided that the most favourable candidate for reach-

ing ultracold temperatures through collisional cooling is the microwave trap. Although the

microwave field induced collisional losses may be a disadvantage, the problem can be minimised

by operating the trap with a large detuning from resonance. DeMille proposed the idea of a

microwave trap nine years ago, but nobody has actually built a working version yet. However,

a lens and a decelerator using microwaves have recently been used to manipulate the motion of

ammonia molecules [269, 270].1 A decelerator based on an open Fabry-Pérot resonator for mi-

crowaves has also been suggested, but has not been realised yet [272]. In the group of Takamasa

Momose at the University of British Columbia in Vancouver, an alternative approach to deceler-

ate molecules using microwaves has been realised. Instead of using normally conducting copper

as in [269] they have built a prototype decelerator based on a closed cylindrical, superconducting

cavity which operates at cryogenic temperatures [273]. The possibility to use superconducting

mirrors in an open geometry for trapping will be discussed in more detail in section 6.7.1.

Our efforts to build and characterise a microwave trap have been stimulated by DeMille’s

original paper and David Glenn’s efforts to built such a trap [265, 274].

6.2 Initial Design Considerations and Basic Working Principle

The very first restriction in terms of designing the microwave cavity was that it should be gen-

eral (for many species) and deep (provide a trap depth of the order of 1 K). We also restricted

ourselves to the use of ohmic (not superconducting) materials, although using superconducting

material might be a very attractive future development for microwave traps. The use of normal

conducting metals requires high input power (2 kW) as will be discussed later more quantita-

tively. Such power levels are commercially available through travelling wave tube or klystron

amplifiers commonly used for satellite communication. These amplifiers can typically operate

in the frequency range of 2− 18 GHz. This, therefore, limits also the frequency range at which

we can operate a microwave trap. Note also that the trap volume is approximately V ' (λ/2)3

which should not exceed 1 cm3. The large mode of low frequency traps would lead to a smaller

electric field strength and thus decreases the trap depth. Furthermore, the trap for the molecules

1It is worth noting that Hill and Gallagher showed the deflection of a molecular beam of CsF molecules with
resonant microwaves already in 1975 [271].
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would be considerably larger than the typical size of a magneto-optical trap for atoms we plan

to use for sympathetic cooling experiments. Hence we decided to use a Ku-Band klystron (CPI-

VKU7791J) which generates up to 2 kW of microwave power between 14 and 14.5 GHz. We

preferred to use a klystron because they typically deliver a higher CW-output power than trav-

elling wave tube amplifiers. The microwave trap setup should also be open, for easy trap loading

with molecules and/or atoms and good optical access. Furthermore, it should be compact and

compatible with our existing setup that produces ultracold lithium atoms for sympathetic cool-

ing experiments.

The basic working principle of the trap is that the microwave field couples low lying rotational

levels in polar molecules. The energy shift of level |i〉 of a polar molecule in the presence of an

oscillating electric field E(t) = E0ε̂ cos(ωt) is given by second order perturbation theory as

∆E = −
∑
j

∣∣〈j ∣∣−1
2E0d · ε̂

∣∣ i〉∣∣2
~ωij − ~ω

−
∑
j

∣∣〈j ∣∣−1
2E0d · ε̂

∣∣ i〉∣∣2
~ωij + ~ω

(6.2)

where ~ωij is the transition energy and d is the dipole moment operator. Here we have to

sum over all states |j〉 that have a non-zero transition matrix element with state |i〉. Although

perturbation theory is strictly only valid for small electric fields (µE0 < hB, with µ the perma-

nent electric dipole moment of the molecule, E0 the electric field strength and B the rotational

constant in units of frequency) it illustrates the important features and basic principles of the

microwave trap. If we assume state |i〉 to be the rotational ground state, its energy will decrease

in an electric field (will be trapped) if the microwave field is red-detuned from the transition

frequency (∆ = ω − ωij < 0). If the frequency of the microwave trap is blue-detuned (∆ > 0),

the sign in equation 6.2 changes, the ground state will become low-field-seeking and thus will not

be trapped. From equation 6.2 we can also infer that by tuning the microwave frequency closer

to the transition frequency we can increase the trap depth. For optical traps this is usually not

such a good idea because it leads to an increased scattering rate and thus to rapid heating due

to fast spontaneous decays. Rotational states on the other hand have very long spontaneous

decay lifetimes, which can exceed the trap lifetime and thus allows to operate the trap very

close to resonance. The trap depth for strong fields close to frequencies ω/(2π) ≈ B can be

approximated by the DC Stark shift to ∆E ' − (µ/2)E0 [265], where µ is the dipole moment of

the molecule. As will be discussed in more detail later we can typically achieve electric fields of

E0 = 3 MV m−1 in a high power microwave cavity which results in a trap depth of approximately

0.4 K per Debye of dipole moment (for µE0 ≥ hB).

A more rigorous treatment of the microwave trap using the dressed state formalism and in-

cluding more than one state can be found in [265, 274]. As the ground state decreases in energy

with increasing electric field a multi-photon transition will become possible between the ground

and excited states which gives rise to avoided crossings. This means that if a molecule adiabat-

ically follows the energy curve through such an avoided crossing it will be lost from the trap.
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DeMille and co-workers, however, could show that by using circularly polarised microwaves one

can circumvent this problem. In such a case the absorption of one or multiple photons can only

occur if the angular momentum selection rules are obeyed. For the very simple case of 1Σ, rigid

rotor molecules with quantum numbers J (total angular momentum) and M (the projection of

the total angular momentum onto the internuclear axis), for example, these selection rules forbid

any multiphoton transitions from the ground |J = 0,M = 0〉 state.

From these consideration we can infer that the trap geometry should be open for easy access,

provide a large electric field of about 3 MV m−1, operate at the highest frequency available from

high power amplifiers, and provide circularly polarised microwaves. An open Fabry-Pérot res-

onator can fulfil all these requirements. Because of the importance of such resonators in masers

and later in lasers, this type of resonator has been extensively studied experimentally and the-

oretically. Schawlow and Townes initially proposed using Fabry-Pérot interferometers, as they

called them, for infrared and optical masers [275]. Fox and Li then provided the first extensive

theoretical description, most of which we are still using today [276, 277]. The importance of

such resonators in maser and laser science has led to the fact that this topic has become subject

of numerous textbooks. Saleh and Teich, for example, provide a very nice general introduc-

tion [278] and a great overview especially for the microwave and mm-wave domain is provided

by Goldsmith [210].

A simple open resonator, or cavity, is comprised of two highly reflective mirrors each having

a radius of curvature (R1, R2 respectively) separated by a length L. Electromagnetic radiation

confined between two such mirrors will reflect multiple times and interfere. Only waves whose

round-trip phase change is an integer multiple of 2π will interfere constructively and form a

standing wave. This leads to the well known frequency spectrum of a Fabry-Pérot cavity. If we

monitor the transmitted power as a function of the frequency we measure discrete, narrow peaks

separated by the free spectral range FSR = c/(2L). The width of the individual peaks depends

on the quality of the mirrors, i.e. their reflectivity. Dielectric mirrors that are used nowadays

for cavities in the optical domain are very lossy at microwave frequencies. Hence we use metal

mirrors. The reflectivity r of a metal mirror can be determined by [279]

r =
1− kδ cos θi
1 + kδ cos θi

, (6.3)

where k = 2π/λ is the wave number, θi is the angle of incidence, δ =
√

2/(2πfµ0σ) is the

skin depth for non-magnetic (µr = 1) good conductors (εr = 1) with µ0 = 4π × 10−7 the

permeability of free space, f the frequency of the microwaves and σ is the DC conductivity of

the metal.2 The highest bulk conductivity of all the elements is that of silver. It surpasses

that of copper by about 5%. Bulk silver mirrors would be expensive and silver plating of a

2An electromagnetic field induces an AC current density on the surface of the conductor. This current density
decreases exponentially with increasing depth from the surface. The depth below the surface at which the current
density has decreased to 1/e of its original value is defined as the skin depth δ.
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substrate usually introduces extra losses on the few per cent level [280]. So we decided to use

copper instead. Using the recommended resistivity σ = 1/ρ = 5.8 × 107 S m−1 (International

Annealed Copper Standard, IACS) of copper at 293 K from [281] a frequency of 14.5 GHz and

normal incidence (θi = 0) the skin depth is δ = 0.55 µm which corresponds to a reflectivity

r = 0.999666. Note, however, that surface effects can have significant impact on the reflectivity

and lead to considerable discrepancies of the actual surface resistance compared to the one

calculated from the conductivity of the bulk material. This discrepancy typically becomes worse

for higher frequencies, especially for copper [282]. Furthermore, a layer of copper oxide on the

surface reduces the conductivity typically by about 8% [280]. It could also be shown that a

surface roughness of the order of the skin depth can reduce the surface conductivity by up to

15% [283]. Hence care must be taken when machining and preparing the mirrors.

For any wave to be a stable mode in a cavity, i.e. the distribution of the electromagnetic field

inside the cavity is not changing over time, the mirrors must obey the condition:

0 <

(
1− L

R1

)(
1− L

R2

)
< 1 . (6.4)

We limit ourselves to the lowest order modes in such a cavity (fundamental modes) which are

commonly denoted as TEMm=0,n=0,q modes. These modes have the lowest loss in a cavity and

have the smallest size and thus produce the largest electric field.

We have to keep in mind that the cavity should fit into our ultracold lithium setup in which we

can test the basic working principle with ultracold lithium atoms. This will also be the setup in

which we will aim to sympathetically cool molecules with ultracold lithium atoms. We can cool

the atoms in a standard magneto optical trap to ultracold temperatures. The atoms can then

be transferred into a magnetic trap (magnetic field coils in anti Helmholtz configuration) which

is mounted on a translation stage. This movable trap can transport the atoms into a science

chamber in which we plan overlap the magnetic trap with the microwave trap. A picture of the

setup is shown in figure 6.1. The height of the science chamber is chosen such that large magnetic

field gradients needed to tightly confine the atoms can be achieved. This severely restricts the

length of the microwave cavity. Hence we set the length of the cavity to accommodate three

antinodes at 14.5 GHz which corresponds to approximately 34 mm. We want the waist of the

fundamental Gaussian mode to be in the centre which demands R1 = R2 = R. The waist of this

mode is determined by the radius of curvature of the mirrors and the length of the cavity L to:

w0 =

√
λz0

π
with z0 =

L

2

√
2
R

L
− 1 . (6.5)
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Movable Magnetic Trap

MOT Chamber

Science Chamber

Figure 6.1: The lithium setup has been developed by Aisha Kaushik, Rich Hendricks, Sean
Tokunaga and Jakob Stack. A cloud of cold, laser-cooled lithium atoms can be transferred
between the MOT chamber and the science chamber by using a strong magnetic trap, which
is fixed to a motorised translation stage. The microwave trap will be mounted in the science
chamber.

Hence small cavities comprised of mirrors with a small radius of curvature produce a tight focus

in the centre of the cavity. The size of the mode at the position of the mirrors (z = ±L/2) is:

wm = w(L/2) = w0

√
1 +

(
L

2z0

)2

(6.6)

If the mode size at the mirror surface is comparable to the size of the mirrors, some of the

microwave power will be lost per round trip. This so-called diffractive loss due to the finite size

of the mirrors per round trip is:

αd = 2e
− D2

4w2
m , (6.7)

where D is the diameter of the mirrors. As will be explained later, loss per round trip directly

translates into lower intra-cavity field and thus lower trap depth. The loss due to the finite

size of the mirrors should therefore be small compared to the losses due to the finite reflectivity

of the mirrors αr = 2 (1− r) = 6.58 × 10−4. We need to allow for a gap between the mirrors

in order to load atoms or molecules into the trap as well. We fixed this distance d = L −
2
(
R−

√
R2 −D2/4

)
≥ 5 mm. For our cavity we use a radius of curvature of R = 73 mm and

a diameter of the mirrors of D = 85 mm which yields a diffraction loss of αd = 2.6 × 10−6 and

a gap between the mirrors of d = 7 mm for a cavity length of L = 34.34 mm. The resonance

frequency for such a cavity is given by:

fc =
c

2L

[
p+

m+ n+ 1

π
cos−1 (1− (L/R))

]
(6.8)
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where p is the number of antinodes in the cavity. For generality we include the frequencies of the

transverse modes (m and n) as well. Note that in contrast to optical cavities the Gouy phase

term can be of considerable size and has to be included in further calculations. The wavelength

resonating in the cavity is thus λc = c/fc).

In the experiment we typically measure the reflected or transmitted power of the cavity as a

function of the frequency. Assuming we measure in transmission the line shape we expect is a

Lorentzian of the form [278]

It
Ii

=
t1t2

1−√r1r2

1

1 + 4
√
r1r2

(1−√r1r2) sin2(φ/2)
(6.9)

where It and Ii are the transmitted and incident light intensities, t1 and t2 are the transmission

coefficients of the mirrors, r1 and r2 the reflection coefficients of the mirrors and φ the phase

shift imparted on the wave by a single round trip. The transmission reaches its maximum at

φ/2 = π and the FWHM of the resonance peak is:

∆f =
c

2LF
with F =

π(r1r2)1/4

1−√r1r2
(6.10)

where we have defined the finesse of the cavity F and assumed high reflectivity mirrors. We can

measure the width of a transmission peak ∆f and the frequency at which the cavity resonates

f . The ratio f/∆f is known as the quality factor Q of the cavity which is related to the

finesse by Q = 2LFfc/c. For the parameters presented above (L = 34.34 mm, R = 73mm,

r1 = r2 = 0.999666) we expect a quality factor Q0 = 31291. This is often referred to as the

unloaded quality factor of the cavity. We need to lower the reflectivity of one mirror to couple

power into the cavity which lowers the quality factor. This is known as the loaded quality factor

Ql.

By measuring the width and the resonance frequency we can determine the total round-trip

losses of the cavity. The quality factor is also related to total internal energy in the cavity. To be

more precise it is defined as the resonance angular frequency times the ratio between the total

stored energy inside the cavity U to the total power loss. Hence the width of the resonance is a

direct measure of the total energy that is stored in the electromagnetic field inside the cavity. If

we are constantly feeding power into the system and a steady state is reached the total power

lost must be equal to the input power Pi. The quality factor in this steady state is thus

Q = 2πf
U

Pi
. (6.11)

The total stored energy in the cavity is related to the electric field inside the resonator of volume

V via:

U =
1

2
ε0

∫
V
|E|2dv. (6.12)
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The electric field in a standing wave Gaussian beam in cylindrical coordinates is:

E(r, z, t) = E0
w0

w(z)
e−r

2/w2
eikρ

2/(2R)e−iφeiωt cos(kz). (6.13)

The total stored energy in a resonator of length L = qλ/2 becomes:

U =
1

8
ε0E

2
0πw

2
0L. (6.14)

If we plug this into equation 6.11 the quality factor becomes

Q =
f

∆f
=
π2fε0E

2
0w

2
0L

4Pi
(6.15)

which gives us an expression for the electric field inside the cavity:

E0 =

√
4PiQ

π2fε0w2
0L

=

√
8PiF
π2ε0cw2

0

. (6.16)

A small waist, large input power and high reflectivity mirrors therefore maximise the electric

field inside the cavity.

A common way in the literature to express the quality factor is in terms of the losses per round

trip. The loss per round trip due to finite resistivity (reflectivity) of the mirrors is αr = 2(1− r).
The quality factor of this ideal cavity is then given by:

Q0 = 2π
2L

c/fc

1

αr
. (6.17)

Note that for long cavities the factor 2L/(c/fc) is simply the number of antinodes. For short

cavities whose size is comparable to the wavelength the Gouy phase term is large and the exact

value for fc must be used. Equation 6.17 is a very useful way to express the quality factor because

now we can add other potential losses in the cavity and check how they affect the quality factor.

As mentioned earlier already we need to lower the reflectivity of one mirror so that we can couple

power into the cavity. This effectively introduces an additional loss αc. The resulting quality

factor is known as the loaded quality factor:

Ql = 2π
2L

c/f

1

αr + αc
. (6.18)

When the loss introduced by the coupling equals the losses in the cavity αc = αr the cavity is

said to be critically coupled, meaning that 100% of the input power is coupled into the cavity.

At this point the quality factor is half of its unloaded value Q0. Note that we assumed that all

the loss in the cavity is due to the finite resistivity in the mirrors. This also means all the input

power is finally dissipated as resistive heat in the mirrors. For an input power as large as 2 kW

this leads to significant heating of the mirrors and an efficient cooling scheme for the mirrors is
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thus obligatory.

For a mirror diameter of D = 85 mm the losses due to the finite size of the mirrors is αd =

2.6× 10−6 and thus can be neglected.

The surface roughness of our mirrors can be another source of loss. This can considerably affect

the surface conductivity of the mirrors and thus their reflectivity. This effect was first studied

by Samuel Morgan in 1949 [284]. He found that the presence of regular grooves or scratches

whose dimensions are comparable to the skin depth can increase the surface resistance by up to

60 %. Measurements performed by Hernandez and colleagues could confirm this although to a

somewhat smaller, but still significant level [283]. Incoherent scattering (diffusive reflection) from

a mirror that has a surface roughness leads to an effective reduction in the mirror reflectivity.

The reduction factor is similar to the one derived from electron or X-ray diffraction where it is

known as the Debye-Waller factor:

r = r0e
−2ε2rmsk

2
, (6.19)

where εrms is the root-mean-square roughness of the surface. This scattering affects the reflectiv-

ity if the lateral correlation length λc of the surface roughness is of the order of the wavelength,

specifically λck > 4π2 [285]. Such a large scale variation is not expected if the mirrors are fabri-

cated using a modern CNC lathe.

Since most experiments were done at atmospheric pressure, the absorption of microwaves by

water vapour must be considered. Zhevakin and colleagues gave a comprehensive analysis of

the absorption of electromagnetic radiation in the atmosphere [286]. At a wavelength of 2 cm

they measured an absorption coefficient of 0.01 dB/km for a water density of 7.5 g m−3. This

corresponds to a round trip loss of about αw ' 10−7 which is negligible. Note, that at a later

stage of the experiment, we also measured the width of the transition under vacuum and did

not detect any change.

Therefore the main loss we expect is due to the finite surface resistance of the copper mirrors,

which is expected to deviate from the ideal bulk conductivity due to non-ideal surface conditions.

Assuming that we can achieve the perfect surface conductivity as calculated from the bulk dc

conductivity and assuming critical coupling we can now calculate the expected electric field in-

side such a cavity: using Ql = Q0/2 = 15646, Pi = 2 kW, w0 = 14.3 mm a resonance frequency

of f = 14.5 GHz and a cavity length of L = 34.34 mm the electric field is E0 = 3.8 MV m−1.

6.3 Aperture Coupling a Fabry-Pérot Resonator

We decided to use a single aperture, drilled into the centre of one mirror to couple microwave

power into the cavity. We deliver the high power microwaves through a rectangular waveguide

which is attached centrally to the back of one mirror. The size and wall thickness of the hole

then determine the amount of power which is coupled into the cavity. We did not pursue the
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idea of antenna coupling because of the high power requirement which would necessarily lead

to discharges close to the antenna-mirror interface. Coupling into the cavity via an array of

sub-wavelength holes has also been suggested [265, 274]. This, however, requires elaborate safety

measures which come with handling free-space high power microwave beams. Furthermore, an

array of coupling apertures prevents effective cooling of the mirrors, which is crucial due to the

large resistive heating.

The theory describing the diffraction of electromagnetic waves by a circular hole (small com-

pared to the wavelength) in a perfectly conducting screen has been developed by Hans Bethe

in 1944 [287]. A nice introduction to this theory can also be found in chapter 9.5 of Jackson’s

book [279] or chapter 4.13 in Collin’s book [288]. This theory is based on the simple principle

that the hole can be modelled as an effective dipole, i.e. an electric dipole perpendicular to the

plane of the hole and a magnetic dipole in the plane of the hole. A rectangular waveguide propa-

gates a TE10 mode, which has no component of the electric field in the direction of propagation.

This means the electric dipole of the hole cannot be excited, i.e. the coupling is governed by the

transverse magnetic field (Hx, where x is along the long side of the waveguide) in the waveguide

and the magnetic dipole of the hole. The dipole moment of the hole is [279]:

Pm,x = αmHx =
4r3

3
Hx , (6.20)

where αm is the magnetic polarisability of the hole, r is the radius of the aperture and Hx, to a

first approximation, is the transverse magnetic field that would be present in the absence of the

hole. However, because we are dealing with large coupling to a cavity we need to include the

fields that are transmitted and reflected by the hole as well. Mongia and Arora deal with this

problem in detail [289]. The interested reader will find the books by Collin [288, 290] also very

useful. The magnetic dipole moment can then be written as

P = αm (Hi +Hr −Hc) (6.21)

where Hi = Hx = 2A sin(πx/a) cos(k0z) is the incident magnetic field from the waveguide, with

A its amplitude, a the long dimension of the waveguide and k0 is the guided wavenumber in the

waveguide. Hr is the reflected magnetic field produced in the waveguide by the radiating dipole,

and Hc is the cavity field. We can use equation 4.124 from Collin’s book to get Hr:

Hr = −2iPµ0ω

ab
, (6.22)

where µ is the permittivity of free space, ω the angular frequency and a and b are the long and

short dimension of the waveguide, respectively. For the field inside the cavity Hc we can consult

chapter 7.9 in Collin’s book where he deals with the excitation of a cavity of arbitrary geometry.

In particular the final result is given in equation 7.131a. The field in the cavity is Hc = hnHn
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where Hn is the TEM003 mode we want to excite and hn is given by:

hn =
k2

0PHn

k2
n − k2

0(1 + 1−i
Qn

)
, (6.23)

where kn is the wavenumber for the particular mode we want to excite, k0 is the wavenumber

in the waveguide and Qn is the quality factor for mode n. We can see that the reflected field

depends on the magnetic dipole moment which depends on the reflected field. We are therefore

looking for a self-consistent solution. We can now plug the standard expression for a TEM00

mode of a Fabry-Pérot cavity into equation 6.23.3 Assuming that the hole is in the centre (ρ = 0)

and at z = −L/2, hn becomes:

hn =
ik2

0P

k2
n − k2

0(1 + 1−i
Qn

)

w0

wm
Hx, (6.24)

where wm = w(z = −L/2) is the waist size at the position of the mirror. The cavity field Hc at

the position of the aperture then becomes:

Hc =
−k2

0P

k2
n − k2

0(1 + 1−i
Qn

)

4

πw2
mL

= c1P, (6.25)

where c1 is a constant.

Now we have expressions for all the fields we need for equation 6.21. Assuming that the

amplitude of the incident wave A = 1, Hi(x = a/2) = 2 we get the final expression for the dipole

moment:

P =
2αm

1 + 2iαm
ab − αmc

. (6.26)

In the experiment we measure the reflected power relative to the incident wave as function of

the frequency. So we can plug the expression obtained for the dipole P back into 6.22 to get the

expression for the reflected field relative to the incident wave (assumed to have an amplitude of

1):

Hr = 1− 4i

2i+ πw2
mL

4αm
− 4ab

πw2
mLkg

k2
0

k2
n−k2

0

(
1+ 1−i

Q

) (6.27)

Note that until now we have neglected the finite wall thickness of the hole. Ralph Levy suggests

that one can account for the finite thickness of the aperture by treating the hole as a waveguide

below the cut-off frequency [291]. This effectively changes the polarisability αm of the aperture

to:

αm,t = αme
− 2πAmt

λc

√
1−(λcλ )

2

, (6.28)

3Hn = Hx
w0
wz

exp
[
−ρ2/w(z)2

]
cos(knz + knρ

2/(2R(z)) − φ(z)), where φ is the Gouy phase. Note, that if you

want to use equation 6.23, Hn has to be properly normalised such that
∫
V
|Hn|2dV = 1, where V is the volume of

the cavity. Here we can make use of the fact that the cavity is tuned to resonance (kL = nπ).
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Figure 6.2: Left: Theoretical reflected power (normalised to the input power) as a function
of the microwave frequency for different coupling hole radii (wall thickness 1.5 mm). The size
of the coupling aperture affects the FWHM of the resonance and the slightly affects frequency
at which the cavity resonates. A hole with radius r = 2.6 mm critically couples the cavity.
The lineshape resembles the familiar Lorentzian function. Right: The phase 1/π arg(Hr) of the
reflected field as a function of the microwave frequency for the critically coupled hole radius
of 2.6 mm. The phase is an extremely sensitive measure for the coupling. For perfect critical
coupling the change in phase at the resonance frequency is exactly π. We see that r = 2.6 mm
still slightly undercouples the cavity.

where λ is the free space wavelength, λc = 3.412r is the cut-off wavelength, and for the case

when t/r > 0.2, and the factor Amt = 1.0064t + 0.0819r. These equations allow us to plot the

reflected power (|Hr|2) and the phase as a function of the frequency and the coupling aperture

radius and are shown in figure 6.2. Figure 6.3 shows how the quality factor, the reflected power,

and the intra-cavity field vary with the hole radius. As expected, the Q-factor decreases as the

hole size increases because the hole represents a source of loss out of the cavity. The fractional

reflected power also decreases as the hole size increases because a bigger hole transmits more

of the incident power. When r = 2.6 mm, the cavity is critically coupled, meaning that all the

power is coupled into the cavity. This happens when the transmission through the hole is equal to

the sum of all the other losses. Since the losses are doubled at this point, the Q-factor has fallen

to half of its maximum value. If the hole size is increased any further, the reflected power starts

increasing again, while the Q-factor continues to fall. The intra-cavity electric field depends on

the transmission through the hole and on the Q-factor and is maximised when r = 2.395 mm.

For this hole size 11% of the incident power is reflected.

6.4 Experimental Setup - The First Prototype

Our first prototype cavity was designed to accommodate five antinodes. We realised at a later

stage that the space in the ultracold lithium science chamber is very limited and a shorter cavity

(three antinodes) was necessary. This is also why the previous calculations were presented for a

cavity which accommodates three antinodes.

We use a vector network analyser (VNA) for all the measurements (Agilent 8722ES). This
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Figure 6.3: Left: The quality factor decreases as the aperture radius is increased. The red
dashed line marks the quality factor and radius at which the electric field in the cavity reaches its
maximum. The black dashed line shows the quality factor and hole radius at critical coupling.
Right: Fractional reflected power (blue) and the electric field inside the cavity (red) as a function
of the hole radius.

device allows to completely characterise an unknown microwave circuit by measuring its S-

parameter matrix [292]. This matrix has four elements S11, S21, S12 and S22. The VNA measures

the reflected or transmitted signal relative to the incident signal, and the S parameters give these

ratios of the incident to either the reflected or transmitted signal. S11 measures the ratio of the

reflected to the incident signal and S21 measures the ratio of the transmitted to the incident

signal, if the structure is excited by port 1. S12 and S22 are the same ratios, if the structure

is excited by port 2. Modern VNAs house their own signal generator to excite the circuit,

directional couplers, bridges and splitters to separate the forward and reflected signals. The

difference between a scalar and vector network analyser is that a VNA can not only measure

the magnitude of a reflected or transmitted signal but also its phase. The detection system is

typically also more elaborate and more sensitive. A good introduction to the basics of a vector

network analyser can be found on the web [293].

A sketch of the entire first prototype cavity is shown in figure 6.4. It consists of two spherical

mirrors with a radius of curvature of R = 73 mm. The material we use for the mirrors is

oxygen-free copper (OFC103) which is rated to a DC bulk conductivity of 101% IACS. So we

expect a finesse of F = 9461 and an unloaded quality factor of Q0 = 51330. The mirrors

are machined in our workshop on a CNC lathe. Both mirrors have a recess in the back to

accommodate a standard UBR 140 flange of a WG 18 waveguide. The wall thickness of these

first mirrors at the position of the hole was 2.25 mm. Both mirrors are fixed into precision holders

made from aluminium. One of the holders is attached to a translation stage which is equipped

with a differential micrometer. The translation stage is bolted to an aluminium plate. The

second mirror and its aluminium holder is rigidly attached to the aluminium plate as well. The

angular alignment of the mirrors with respect to each other is checked with a vernier caliper to an

accuracy of better than 0.5×10−3 rad. We attach the waveguides to the mirrors and connect the

system to the VNA via standard N-type or SMA to waveguide adapters. The first spectrum we

recorded is shown in figure 6.5. We drilled only a very small hole (hole radius r = 1.25 mm, wall
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Figure 6.4: Our first prototype cavity. The two copper mirrors are mounted in precision
aluminium holders. The alignment and cavity length is measured with a vernier caliper. One
of the mirrors is mounted on a translation stage. Both mirrors share the same aluminium base
plate. The base plate is fixed to a breadboard. We excite the cavity via one port of a vector
network analyser through a waveguide directional coupler. By drilling a small aperture in the
second mirror we can measure in transmission.

thickness t = 2.25 mm) into one of the mirrors to extract the unloaded quality factor and excited

the cavity using port 1 of the VNA. We measured the cavity field with an antenna inside the

cavity. The antenna was connected to port 2 of the VNA and its coupling was chosen to be very

small so that the influence of the antenna on the cavity mode is kept to a minimum. The VNA

also allows to record the phase as a function of the microwave frequency which is shown in the

right panel of figure 6.5. We fit a Lorentzian line shape (L(f) = a(w2/4)/
[
(f − f0)2 + (w2/4)

]
)

to the field magnitude data. The fit yields a FWHM of w = 0.371 MHz which corresponds to

an unloaded quality factor of Q0 = 40419 (finesse F = 7462). This is about 20% lower than

the ideal unloaded quality factor for this geometry. Hence the surface resistance was slightly

higher, which is not surprising since we neither etched away the surface oxide layer nor polished

the mirrors to get a better surface finish. At a later stage we removed the oxide layer in an

acetic acid bath and could improve the quality factor to 46000 and thus to within 8% of the

ideal quality factor. Recently we found that by etching away the top layers and applying a soft

polish we can prepare mirrors that possess a reflectivity very similar to the one calculated from

the dc-conductivity of the bulk material. Figure 6.5 on the right shows that the phase of the

microwaves changes by π when the microwaves are scanned throught the resonance. A wide

transmission spectrum of an undercoupled cavity with a slightly larger aperture, i.e. 40 % of

the incident power is coupled into the cavity, is shown in figure 6.6.

We wanted to see if we can indeed critically couple the cavity with only a single coupling hole.

Therefore, we continuously increased the size of the coupling hole and measured the reflected

power. Note that care must be taken when drilling the hole since sharp edges and remaining

burr can affect both coupling and the quality factor. We thus decided to use electrical discharge

machining instead of drills. We machined a hole with a radius of r = 1.95 mm into the mirror and

measured the reflected power (S11 parameter) with the VNA. Reflection measurements are more

challenging than transmission measurements because the cavity does not produce a Lorentzian
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Figure 6.5: Left: A transmission spectrum of a very weakly coupled cavity (hole radius r =
1.25 mm, wall thickness t = 2 mm). We excite the cavity using port 1 of the VNA and record the
power inside the cavity with a probe antenna which is connected to port 2 while the frequency is
scanned. We fit a Lorentzian line shape (red line) to the data (blue dots). The antenna couples
only very weakly to the cavity field as indicated by the small amplitude of the peak which is
normalised to the input power. Right: The phase of the microwave field as the frequency is
scanned.
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Figure 6.6: Wide frequency spectrum of an undercoupled cavity (40 % of the incident power
is coupled into the cavity) of length 35.3 mm. We use a small aperture in the second mirror to
measure in transmission. The spectrum shows that it is possible to excite higher order transverse
modes in the cavity. The number of higher order modes depends on the size of the aperture.

dip on a flat background. The resonance is superimposed by an interference pattern produced by

the non-ideal waveguide system we use to couple the microwaves into the cavity. Each element,

the cables of the VNA, the coaxial coupler and the waveguides produces reflections (especially

at the connections) which give rise to a complicated interference pattern. We blocked the cavity

so that the resonance disappears and recorded the standing wave. We then subtracted this

background from the measurement with the cavity unblocked. As we found out later this can

lead to an over- or underestimation of both the coupling and the quality factor by as much as 10%.

If the cavity is on resonance there is no standing wave (the cavity is impedance matched). By

subtracting the standing wave we artificially shift the zero-level which appears as an increase in

coupling. The background subtraction thus caused a systematic error in extracting the coupling

from a reflection measurement. One can solve this problem by taking the mean of the standing
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wave as the real zero value, relative to which one must measure the fractional reflected power.

It is also possible to eliminate the standing wave by calibrating the VNA up to the point of the

cavity with one- and two-port networks that have known characteristics. We terminate the end

of the waveguide with a short and a load for example and thus can remove the standing wave

by calibrating the VNA. For these early measurements, however we did not have the proper

equipment to perform such a calibration.

We fit a Lorentzian to the reflection measurements and can extract the coupling for a given

hole radius. For a reflection measurement it is convenient to rewrite equation 6.27 in terms of

the coupling coefficient K and the unloaded quality factor Q0. Following [294] we can write the

fractional reflected power (|Hr|2) as

|Hr|2 = 1− 4K

(1 +K)2

ω2
0

(
1 +K2

)
/ (2Q0)2

(ω − ω2
0)2 + ω2

0 (1 +K)2 /(2Q0)2
, (6.29)

which is a Lorentzian dip in the reflected power of amplitude 4K/(1 + K)2. The microwave

angular frequency is ω and the resonance angular frequency is ω0. If K < 1 the cavity is said

to be undercoupled and if K > 1 it is overcoupled. This definition of K allows us to relate the

loaded to the unloaded quality factor by Ql = Q0/(1 +K). For the phase we get the expression:

φ(Ω) = tan−1

(
2KQ0Ω

1−K2 + Ω2Q2
0

)
, (6.30)

where Ω = (ω/ω0)− (ω0/ω). This allows us to extract both K, Q0 and the loaded quality factor

Ql from either a magnitude or a phase measurement. Figure 6.7 shows such a measurement. The

left panel shows a magnitude measurement and the right panel shows a phase measurement. By

fitting equation 6.29 (red line) to the data (blue dots) we can extract Q0 = 37121±119 from the

magnitude measurement. In the right panel of figure 6.29 we fit equation 6.30 (red line) to the

data (blue dots) and thus can extract Q0 = 41242± 446 from the phase measurement. For the

coupling factor we get K = 0.05395± 0.0001 and K = 0.0523± 0.0004 from the magnitude and

phase measurements, respectively. The disagreement between the two measurement methods is

due to the background subtraction which can affect the quality factor of the magnitude mea-

surement in reflection. However, the unloaded quality factor from the phase measurement agrees

well with the transmission measurement of the minimally coupled cavity shown in figure 6.5.

A coupling factor of K = 0.0523 corresponds to a fractional power coupled into the cavity of

4K/(1 + K)2 = 0.19. By increasing the coupling into the cavity we have also decreased the

quality factor by about 5.4% to Ql = Q0/(1 +K) = 39192.

We next increased the coupling aperture in small steps and measured the coupling and quality

factor for each aperture radius. The result of these measurements are shown in figure 6.8. We

can clearly see that for larger hole diameters the experiment deviates considerably from the ideal

case shown as the solid red line. We attribute this to an additional loss due to the presence of

a hole in the centre of the mirror and to the background subtraction error. This also means
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Figure 6.7: Left: The fractional reflected power (normalised to the input power) as a function
of the frequency. The solid red line is a fit of equation 6.29 to the data (blue dots). Right:
The phase of the microwave field as a function of the frequency. The red line is a fit using
equation 6.30 to the data (blue dots).
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Figure 6.8: Left: As the hole diameter is increased the reflected power decreases. The blue
dots are the data and the red line is a plot of |Hr|2, where Hr is defined in equation 6.27. The
wall thickness of the hole is set to t = 2.25 mm and Q0 = 41000 is the measured unloaded
quality factor. Right: Measurement of the quality factor as function of the hole size (blue dots).
The ideal, theoretical quality factor extracted from a fit to |Hr|2 is shown as a red line.

that the loaded quality factor at critical coupling is not half of the unloaded quality factor as in

the ideal case, but less (see the right panel of figure 6.8). For the geometry presented above we

couple over 90% into the cavity at a quality factor which is a quarter of the unloaded quality

factor.

In order to minimise the aperture radius needed for critical coupling we built another cavity

with a reduced wall thickness of t = 1.5 mm. In this cavity we could couple 93% of the incident

power into the cavity with a loaded quality factor of Ql = Q0/2.49. In our final version of the

cavity we aim to reduce the wall thickness even further.

6.4.1 Cooling the Mirrors

All the input power is finally dissipated as resistive heat in the mirrors. We thus need to cool the

mirrors. By cooling the mirrors with liquid nitrogen, instead of water, we benefit from the fact

that the resistivity of the copper mirrors decreases as the temperature decreases. This increases
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the quality factor which allows us to lower the input power while keeping the intra-cavity field at

the same level. To investigate the effect of cooling on the quality factor and coupling we designed

cooling blocks for the cavity and a small vacuum chamber to prevent condensation on the mirrors.

It is also at this point that we realised that we needed to shorten the cavity length so that the

trap is compatible with our existing lithium setup. Hence from now on all the data is taken with

a cavity whose mirrors have a radius of curvature of R = 73 mm and a diameter of D = 85 mm

which results in a length of 34.34 mm for a cavity that can accommodate three antinodes at a

resonance frequency of 14.5 GHz. The diffraction losses for this geometry are αd = 2.6 × 10−6.

The waist in the centre is w0 = 14.3 mm. The ideal quality factor assuming a surface resistivity

equal to the dc resistivity of the bulk material of 1.72 × 10−8Ω m−1 is Q0 = 31300 (finesse

F = 9420). Without any further chemical treatment or polishing the maximum achieved quality

factor we measured was 28300 which is about 10% lower than in the ideal case. This geometry

allows a gap of 7 mm between the mirrors, which is large enough for loading molecules and/or

atoms.

The electrical resistivity of an ideal, chemically pure metal is caused by scattering of the

electrons either by phonons and/or by collisions with the metal atoms themselves, i.e. the

resistivity is inversely proportional to the mean free path of the electrons in the material. This

intrinsic resistivity goes to zero for T → 0 K. To first order (the change in temperature is not

too large) a linear approximation can be used

ρi(T ) = ρ0 [1 + α (T − T0)] , (6.31)

where ρi(T ) is the intrinsic resistivity at a temperature T , ρ0 is the resistivity at the initial

temperature T0 and α is the so-called material specific temperature coefficient of resistance. For

low temperatures, however, the resistivity is dominated by impurities or defects in the metal and

becomes nearly constant with temperature. Following Matthiessen’s rule the two contributions

to the total resistivity can be added together [281]:

ρ(c, T ) = ρ0(c) + ρi(T ), (6.32)

where we assume that the resistivity due to impurities ρ0(c) is a linear function of the concen-

tration c of the type of impurity. A more precise expression for the intrinsic, ideal resistivity of

a metal as a function of the temperature is given by the Bloch-Grüneisen formula [281]:

ρi(T ) =
C

mΘ

(
T

Θ

)5 ∫ Θ/T

0

z5ez

(ez − 1)2dz, (6.33)

with T the temperature, C = 1.62 × 10−3 a normalisation constant chosen such that ρi(T =

293) = 1.72 × 10−8 Ω m, m = 63.5 is the relative atomic mass of Copper in atomic mass units,

Θ = 310.8 K is the Debye temperature of copper [281]. The value of ρ0(c) determines what
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Figure 6.9: A plot of equation 6.32 using equation 6.33 for three different RRR values. C is
chosen such ρi(T = 293) = 1.72 × 10−8 Ω m, Θ = 310.8 K and m = 63.5 is the relative atomic
mass of Copper in atomic mass units.

is known as the RRR (residual resistivity ratio) value of copper (RRR =ρ(c, 273 K/ρ(c, 4 K)).

The RRR values of copper vary from several tens (telephone wire) to several thousands (ultra

high purity, annealed copper). A typical value for good oxygen-free copper lies in the several

hundreds. A plot of equation 6.32 using 6.33 for three different RRR values is shown in figure 6.9.

From this graph we can infer that we do not need to use very high purity copper because the

resistivity at 77 K hardly changes for copper with an RRR = 100 or RRR = 400. Assuming we

have material with an RRR = 100 we can increase the conductivity of the mirrors by a factor

of 7.6 and thus the reflectivity of the mirrors by
√

7.6 = 2.7 by cooling the mirrors to 77 K. The

finesse and quality factor thus increase by a factor of 2.7. This would allow us to lower the input

power by the same amount which relaxes the cooling requirements. The ultimate case for using

superconducting mirrors will be discussed in section 6.7.1.

To investigate the effect cooling has on the quality factor we attached cooling blocks to the

cavity and put the setup under a rough vacuum (10−2 mbar). A sketch of this setup is shown

in figure 6.10. We connected the cooling blocks via flexible tubing to a dewar filled with liquid

nitrogen. By producing a small overpressure in the dewar we created a continuous flow of

liquid nitrogen through the whole system to assure good cooling without creating too much

turbulence which could produce vibrations. We monitored the temperature of the mirrors with

thermocouples that were attached to the back of the mirrors at two different locations. To feed

microwaves into the vacuum chamber we simply bolted a waveguide against a quartz window. A

second waveguide on the vacuum side coupled to the air-side waveguide via an evanescent wave

through the window and was bolted to the back of one mirror. A 3 mm thick window leads to a

transmission loss of about 20% of the input power. For this proof-of-principle experiment this

loss does not cause any problems. For the final high-power version, however, such high losses

can not be tolerated.

Figure 6.11 shows how the fractional reflected power of an undercoupled cavity changes as

the temperature is reduced from 293 K to 77 K. The cavity is undercoupled to minimise the
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Figure 6.10: A sketch of the setup we used to measure the quality factor and coupling as a
function of the temperature.

influence of the hole in this measurement. We also reduced the number of points per frequency

scan and did not average the spectra to reduce the influence of vibrations on the measurement

(i.e. to keep the scanning time to a minimum). With this change in temperature, the quality

factor increased by a factor of 1.9 and the fractional power coupled into cavity increased by a

factor of 1.2. The discrepancy of 30% between the expected increase in quality factor of 2.7 and

1.9 can be attributed to the fact that the surface resistivity is higher than the resistivity of the

bulk material. In fact it is common to measure the surface resistivity of a material by measuring

the quality factor of a (closed) cavity (see [295] and the references therein, for example). We can

include the higher surface resistivity into equation 6.32 by assuming an effectively lower RRR

value of the surface. This higher resistivity corresponds to an RRR of about 10 and an extra

loss per round trip of αsurf = 1.5× 10−4.

Machining of the bulk copper material leads to a local deformation of the lattice structure, also

known as work hardening. This can increase the defect density and the number of dislocations

in the lattice structure of the metal. Machining can also lead to the formation of new grain

boundaries. Electrons might scatter at these grain boundaries which increases the resistivity.

Furthermore, impurities are introduced into the copper lattice when it is machined. In general,

such a worked surface layer can lead to large deviations of the actual surface conductivity from

the ideal surface conductivity, which is derived from the bulk dc conductivity. It also influences

the low temperature behaviour of metals [296, 297]. This, in addition to the expected increased

resistivity due to the surface roughness mentioned earlier, can explain why we observe a lower

improvement factor. This deviation increases even further for very low temperatures and high

frequencies when the mean-free-path of the electrons becomes comparable to the skin depth.
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Figure 6.11: Left: The fractional reflected power measured as a function of the frequency for
two different temperatures (293 K, 77 K). Right: The measured quality factor (blue dots) as a
function of the temperature. The red solid line is a fit using equations 6.32 and 6.33 assuming a
worse copper quality RRR ≈ 10 due to the influence of the surface conditions on the conductivity.
This models the non-ideal surface conditions as an effective deterioration of the copper quality.

This effect is known as the anomalous skin effect.

To chemically etch away the machined layers Thorp suggests a mixture of phosphoric acid,

nitric acid and acetic acid [296]. This chemical treatment should be followed by annealing (heating

to high temperature 790 ◦C) in a hydrogen atmosphere which reduces the oxygen content in the

copper and removes the dislocations in the metal lattice. Finally, electro-polishing may be used

to reduce the macroscopic surface roughness. This should make it possible to obtain the ideal

quality factor as calculated from the bulk dc resistivity for both room temperature and at 77 K.

For the final ultra-high vacuum version we plan to treat the copper this way to improve the

quality factor even further.

6.5 Finite-Difference Time-Domain (FDTD) Simulation of the

Cavity

We could not explain why the quality factor at critical coupling was less than half of the uncou-

pled quality factor. This means that there is an additional loss which depends on the hole size.

This loss is not due to an increase in the coupling, but seems to be an additional diffraction loss

which increases as the coupling aperture increases. In particular, we wanted to understand if

the shape or size of the mode changes with increasing hole diameter, because this could affect

both the volume and depth of the trap.

We therefore started to simulate the cavity numerically using software which is based on the

finite-difference time-domain (FDTD) method. The basic mathematical model behind FDTD

methods goes back to a seminal paper by Courant, Friedrichs and Lewy from 1928 in which the

authors introduced the idea of the finite difference scheme to solving differential equations [298].

One replaces the differential quotients of Maxwell’s equations by difference quotients defined

on a mesh of finite density. Kane Yee took this idea further and used this approximation to
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discretise Maxwell’s equations in the time and spatial domains [299]. One then solves the equa-

tions numerically and derives the distribution of the electric and magnetic fields at each time

step. Although this method is straightforward and easy to implement (directly follows from

the differential form of Maxwell’s equations) the development of FDTD methods was hindered

by the need to discretise the simulation space on sub-wavelength scales, with very small time

steps. Therefore, even small problems required large amounts of computer memory and time.

By the 1990s computer memory became cheap enough and FDTD has since become a standard

technique for solving Maxwell’s equations for arbitrary structures.

First we tried an open source software package developed by the group of Prof. Joannopoulos

at MIT called MEEP (for MIT Electromagnetic Equation Propagation). This is a very power-

ful software package which can yield transmission and reflection spectra, the resonant modes,

frequencies and field patterns in nearly arbitrary structures. However, it can only produce trans-

mission and reflection spectra by Fourier transformation of the response to a short excitation

pulse. A cavity, however, is continuously fed with input power. In order for power to be built up

in the cavity the field needs to bounce on the order of 104 times between the mirrors. The short

excitation pulse, however, decayed before enough power could build up. Furthermore, it only

supports lossy materials in the resonant mode solver which is not able to deliver any information

about the S-parameters of the system. We therefore abandoned the use of MEEP and looked

for an alternative.

We found two commercial solutions to be suitable for our purposes. One was the RF Mod-

ule of COMSOL Multiphysics and the other CST Microwave Studio. The first is not based

on FDTD but rather on finite element modelling which works in the frequency domain only.

Furthermore, COMSOL requires more in-depth knowledge whereas Microwave Studio is quite

easy to use. We thus decided to use Microwave Studio which provides both a powerful frequency

and time domain solver. Both software solutions need to run on designated high-performance

workstations or even on a computer cluster. Our first trials on a normal computer failed due

to the lack of memory which is needed to store the fields at each mesh cell and at each point

in time. Figure 6.12 shows the actual model used in the simulations. The length of the cavity

is set such that three antinodes fit into the cavity at a resonance frequency of 14.5 GHz. We

excite the structure through a waveguide port and record the S11 parameter and electric fields

as a function of the frequency for a series of different aperture sizes. We then fit a Lorentzian

function to each S-parameter plot and extract the coupling and quality factor for each aperture

radius. The fractional reflected power as a function of the aperture radius is shown in the left

panel of figure 6.13 (blue dots). We compare this to the analytical model presented in section 6.3

and find good agreement. In the right panel of figure 6.13 we compare the simulated quality

factor (blue dots) to the quality factor predicted by the analytical model. We can clearly see a

discrepancy. At critical coupling the quality factor has decreased by a factor of three which is

similar to what we observed in the measurements. The aperture therefore introduces an extra

loss which is not accounted for in our analytical model. In the left panel of figure 6.14 the simu-
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Figure 6.12: A central cut through the model drawn in Microwave Studio with a logarithmic
plot of the electric field inside the cavity. The aperture radius is 2.2 mm with a wall thickness
of 1 mm. We excite the structure through a waveguide port (frequency domain solver) and
the software calculates the field at each mesh cell until a steady-state criterion is met. We
can also monitor the reflected field magnitude (S11 parameter). The software solves the linear
equation system for a single frequency at a time until the relative residual has reached the
specified size (10−9 in this case). One can decrease the simulation time considerably by enabling
the broadband frequency sweep option. This uses as few frequency samples as required for
reaching a stop-criterion. We set this stop-criterion by the S-parameter error threshold to 0.01.
This means that if the S-parameter does not change by more than 0.01 between two successive
frequency samples the simulation stops. Defining symmetry planes reduces the computation
by a factor of 4. We find that for the most accurate results one needs to check the adaptive
tetrahedral mesh refinement option. The mesh is then adaptively optimised for each frequency
sample. A single S-parameter scan (10 MHz about the resonance frequency) with the electric
field calculated at the resonance frequency takes then about 2 hours on an Intel Xeon 3 GHz
(12 cores) workstation with 64GB of RAM.

lated quality factor is plotted as a function of the fractional reflected power. We can clearly see

that when the fractional reflected power drops below 10% (most of the incident power is injected

into the cavity) the Q-factor starts to fall more rapidly. It is therefore not ideal to operate the

cavity at critical coupling but rather with a slightly smaller hole that corresponds to a fractional

reflected power of 10%. In the right panel of figure 6.14 the frequency shift of the resonance as

a function of the hole radius is shown. Compared to the analytical model the simulation (blue

dots) predicts a stronger dependence between the resonance frequency and the hole size, and it

predicts an offset of about 26 MHz (solid red line).

Microwave Studio can also calculate the fields inside the cavity. Figure 6.15 shows a cut
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Figure 6.13: Left: The reflected power normalised to the input power (fractional reflected
power) as a function of the aperture radius as predicted by the simulation (blue dots) and the
analytical theory (red line). Right: The quality factor as a function of the aperture radius
extracted from the simulations (blue dots) and the analytical theory (red line).
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Figure 6.14: Left: The quality factor plotted against the fractional reflected power as predicted
by the simulation. The intra-cavity field does, not peak at critical coupling but for a slightly
under-coupled cavity. Right: The cavity resonance frequency shifts as the hole radius increases.
Compared to the analytical model the simulations show a stronger dependence and a constant
offset of about 26 MHz

through the actual model drawn in Microwave Studio. The central plane shows the electric field

calculated in the centre of the cavity. We can also compare the contour-plots of the electric field

for different hole sizes to look for any differences and anomalies that could explain the rapid

decrease in the quality factor for large coupling apertures. A comparison of the electric field for

an aperture radius of 1.1 mm and 2.2 mm for the two waveguide axes is shown in figure 6.16.

The electric field values are plotted on a logarithmic scale so that even small variations in the

field magnitude can be seen. The comparison shows that a larger aperture leads to a larger

mode, especially along the short axis of the waveguide. A larger mode leads to an increase in

diffraction losses and thus to a decrease in the quality factor. Figure 6.16 shows the effect of the

hole size on the mode even more clearly. Here we plot the normalised field across the antinode

in the centre (x = 0) of the cavity along y and z. Especially along the short waveguide axis the

aperture causes higher order diffraction maxima to appear, the relative size of which depends

on the aperture radius. This causes higher diffraction losses for larger hole sizes, which explains
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Figure 6.15: Top: A contour plot of the electric field in the centre of the cavity (along the
long waveguide axis at y = 0) for a hole radius of 2.23 mm and a wall thickness t = 1 mm. The
contours are plotted relative to the field maximum. The dashed contour shows the 1/e radius
(waist) of the electric field. Bottom: The electric field in the centre of the cavity, along the short
waveguide axis (z = 0).

why the quality factor for critical coupling is somewhat smaller than half the unloaded quality

factor. We therefore need to operate at a slightly smaller aperture size in order to maximise the

intra-cavity field. This leads to a reflection of about 10% of the incident power. The klystron

amplifier has a built-in circulator which can handle this amount of reflected power.

To compare the simulations with measurements we have recently built a high precision cav-

ity. A photograph of the mirrors and the assembled cavity is shown in figure 6.18. This cavity

consists of two mirrors which are separated by a high precision spacer. Every time we increase

the aperture size, we have to disassemble the cavity. The high precision spacer ensures that

changes in the cavity length and alignment of the mirrors with respect to each other are kept to

a minimum. We increase and measure the aperture with a wire eroder to an accuracy of better

than 5 µm. We can also measure the exact shape of the mirrors and the wall thickness of the
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Figure 6.16: Top: Logarithmic contour plot of the electric field in the centre of the cavity,
along the long axis of the waveguide for two aperture sizes. Bottom: Logarithmic contour-plot
of the electric field in the centre of the cavity, along the short axis of the waveguide for two
aperture sizes. Each contour-plot is normalised to the maximum field value inside the cavity.

aperture with a high precision profilometer to an absolute accuracy of better than 10 µm. Pre-

liminary data in this setup show striking agreement between measurement (fractional reflected

power and quality factor as a function of aperture size) and simulations.

6.6 The Final Ultra High Vacuum Version of the Microwave

Trap

Ultimately the lifetime of the molecules in a trap will be limited by collisions with background

gas molecules. An estimate for the trap lifetime τl due to background gas collisions is τl ≈ 10−8/p

seconds where p is the background pressure in mbar (1 mbar = 100 Pa). To achieve trap lifetimes
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Figure 6.17: Top: Simulated normalised electric field magnitude across the centre of the cavity
and along the long axis of the waveguide (x = 0, y = 0) for two different aperture sizes. The
blue dots are the data and the red line is a Gaussian fit. The fit yields a beam waist radius
w0 = 1.47 cm (r = 2.2 mm) and w0 = 1.46 cm (r = 1.1 mm). Gaussian beam theory predicts a
waist of 1.43 cm for this geometry. Bottom: The normalised electric field magnitude across the
centre of the cavity and along the long axis of the waveguide (x = 0, z = 0) for two different
aperture sizes. We can clearly see that the aperture causes diffraction to the sides of the main
peaks. The relative size of these side peaks increases as the hole size increases.

Figure 6.18: Left: Two cavity mirrors, one mounted in the high precision spacer. Middle:
The assembled cavity with the directional coupler attached to the input mirror. Right: The
assembled cavity on top of the high power load and next to the klystron amplifier.
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of the order of one minute we therefore need to operate the microwave trap in ultra-high vacuum

conditions (< 10−9 mbar). This is our first constraint for the final version. We chose a 8.0”

spherical octagon vacuum chamber from Kimball Physics (MCF800-SphOct-G2C8) to house the

microwave trap. As mentioned earlier we plan to test the microwave trap with ultracold lithium

atoms first. The atoms are delivered by a movable magnetic trap from a separate chamber. The

trap depth and thus the number of atoms critically depends on the magnetic field gradient and

thus on the separation of the magnetic field coils. We therefore need to minimise the height of

the vacuum chamber. A spherical octagon combines good optical access, large internal volume

and minimum height. The external dimensions of the trap are thus determined by the size of the

spherical octagon. As pointed out earlier, all the power we inject into the cavity will ultimately

be lost through resistive heat in the mirrors. Hence efficient cooling under ultra-high vacuum

conditions is obligatory. We plan to use liquid nitrogen to cool the mirrors, because it increases

the conductivity and thus relaxes the input power requirements, which again relaxes the cooling

requirements. The latent heat of evaporation of liquid nitrogen (the amount of energy needed to

induce the phase-change from liquid to gas) is L = 200 kJ kg−1 and the density is ρ = 0.8 kg l−1.

To dissipate P = 1 kW of microwave power in the mirrors we need to achieve a liquid nitrogen

flow of F = P/(Lρ) = 22.5 l h−1. To achieve efficient cooling the liquid needs to be evaporated

on the hot surface which produces about 260 l min−1 (16 m3 h−1) of nitrogen gas which has to

be removed from the cooling area without causing any significant overpressure in the cooling

blocks which will reside inside the vacuum chamber to reduce heat transfer from ambient air. We

need excellent thermal contact between the cooling blocks and the mirrors, without sacrificing

on the alignment of the mirrors with respect to each other and to the waveguide which feeds the

cavity with microwaves from the klystron amplifier. Furthermore, we need to keep the overall

geometry open so that we have good optical access to the atoms and molecules. The cooling

process should not generate excessive noise or vibrations on the mirrors and be very effective in

removing the heat from the mirrors. The cooling with liquid nitrogen also demands for thermal

breaks to the vacuum chamber to prevent heat transfer to the cooling blocks and mirrors. The

vacuum feedthrough for the microwaves must be low loss and compatible with the ultra-high

vacuum and high power requirements. After exiting the vacuum chamber the waveguide must

turn through 90◦, so that the magnetic field coils that transport the atoms into the trap can slide

over the chamber without needing to increase the distance between the coils. The waveguide is

connected to one of the mirrors and thus needs a thermal break to prevent condensation and

heat transfer.

The technical drawings of the final design are shown in figures 6.19 and 6.20. The heart of the

setup consists of the two cooling blocks and the two cavity mirrors which are connected to the

top flange of the vacuum chamber via two thin-walled stainless steel tubes. Note that stainless

steel (316) and copper have very similar thermal expansion coefficients, which makes sure that

no cracks develop where the steel tube is connected to the copper cooling block. This is also

crucial to maintain ultra-high vacuum conditions when cooling to low temperatures. The two
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cooling blocks are connected via hollow legs so that a constant flow of liquid nitrogen through the

whole system can be achieved. The cooling blocks have a total internal volume about 300 cm3

which allows us, in principle, to operate the trap for about one minute at full power without

refilling. However, we plan to continuously supply liquid nitrogen through a tube that goes into

the bottom cooling block.

The mirrors sit on the cooling blocks and are positioned with precision dowel pins. This assures

good axial alignment of the two mirrors. The tilt and yaw of the mirrors is set by the alignment

of the cooling blocks with respect to each other and must be better than 10−3 radian. The

cavity length is also pre-defined by the cooling blocks and cannot be changed. The microwaves

are fed into the cavity through a waveguide system which consists of two parts: A standard

WG 18 waveguide is connected to a short custom-built, silver plated invar waveguide. The invar

waveguide sits in an adapter flange which is welded into the rotatable DN160CF flange of the

vacuum chamber after the silver plating. The standard waveguide is then welded to the custom-

built one to form a good vacuum seal. The thermal conductivity of invar is about forty times

lower than that of copper (standard waveguide material) and thus serves as a thermal break

between the cooling block and the room-temperature waveguide system. In order to minimise

electrical losses the invar waveguide is plated with a thin layer of silver (the thickness should be

several skin depths). Nearly all the parts have been manufactured in our workshop and we are

currently only waiting for the silver plating of the invar waveguide to be completed. Once this is

done the parts will be assembled in a custom-made support structure to assure good alignment

of the individual parts and brazed together in a vacuum furnace in a single manufacturing step.

The mirrors are machined on a CNC lathe in our workshop. We measure the profile and

the wall thickness of the mirrors with micrometer accuracy. Only if they have a smooth profile

without any defects we proceed. The mirrors are cleaned and electro-polished to remove the

work hardened top-layer of the mirrors and to improve the surface finish. The mirrors are then

annealed in our vacuum furnace to release stress in the material and to decrease the defect

density. We also plan to inspect the surface roughness with an electron microscope and measure

it with a white-light interferometer, to select the ones with the best surface finish. The mirrors

are then mounted on the cooling blocks and the alignment is checked. First we will test the

cavity in a separate chamber for its ultra-high vacuum compatibility and we will then mount it

in the ultracold lithium setup, where we will trap ultracold lithium atoms.

6.7 Future Directions - A Superconducting Cavity

As discussed in the previous sections, the conductivity, and thus the reflectivity, of the mirrors

increases as the temperature is lowered. In metals such as copper, silver or gold the electrical

resistance eventually levels off to a constant value which is determined by impurities in the metal

lattice. Some materials, however, undergo a phase transition below a certain critical temperature
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Figure 6.19: Top: A 1:4 scale drawing of the ultra-high vacuum assembly. Bottom: A 1:3
drawing of a central cut through the chamber. The cavity and cooling blocks are attached to
the top flange of the vacuum chamber via two thin-walled stainless steel tubes. This provides
the thermal break necessary to keep external heat transfer from the outside to a minimum. The
mirrors are located with precision dowel pins to provide good axial alignment and can be removed
from the setup without the need to disassemble everything. The angular alignment of the mirrors
with respect to each other is predefined by the alignment of the cooling blocks and must be better
than 10−3 radians. The waveguide that feeds the cavity with high power microwaves from the
klystron consists of two parts: First, a room-temperature part which combines a standard WG-18
waveguide bend with an ultra-high vacuum compatible, high power waveguide window which is
glued into the flange of the standard waveguide. This standard waveguide is connected (welded)
to a custom-built silver-plated invar waveguide which is bolted to the cooling block through the
DN10CF service flanges. This assures good electrical contact of the waveguide to the cavity. A
waveguide bore in the cooling block then guides the microwaves to the cavity mirror.
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Tc, at which the dc electrical resistance suddenly vanishes. The first to observe such a phase

transition was Heike Kamerlingh Onnes from Leiden University. He was awarded the Nobel prize

in physics “for his investigations on the properties of matter at low temperatures which led, inter

alia, to the production of liquid helium”. Onnes could show that the resistance of pure platinum

and gold wires decreased with temperature and reached a constant value for temperatures as

low as 1.15 K. He attributed this finite resistivity to a small amount of impurities which remain

even in pure gold. He therefore turned his attention to mercury which he hoped to purify to

higher degree than gold. After a “painstaking” purification process he succeeded to show that

the resistance of mercury disappears for low temperatures, but to his surprise not gradually but

very abruptly. He immediately realised that mercury must have undergone a phase transition

to a previously unknown state which he called superconductivity.

Meissner and Ochsenfeld discovered that superconductors expelled applied magnetic fields in

1933. Heinz and Fritz London were able to explain this effect theoretically and thus gave the first

phenomenological description of superconductivity. By 1950, Vitaly Ginzburg and Lev Landau,

provided a profound phenomenological description of superconductivity. The explanation of what
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happens on the microscopic level, however, remained elusive until 1957 when John Bardeen, Leon

Neil Cooper and John Robert Schrieffer explained the superconducting current by assuming that

the electrons form pairs (Cooper pairs) via interactions with phonons [300]. Ginzburg, Landau,

Bardeen, Cooper and Schrieffer would sooner, or later, receive the Nobel prize in physics for

their contributions to explain superconductivity. More and more materials were investigated

and by the end of the 1980s Bednorz and Müller realised that certain semiconducting oxides

became superconducting at temperatures as high as 35 K. This stimulated great interest and led

to the first samples that became superconducting at liquid nitrogen temperatures by 1987 using

a compound of yttrium, barium copper and oxygen (YBCO).

For ac fields the situation is slightly different. Similar as for the case of a normal conductor

the surface resistance is related to the conductivity of the bulk material by

Rsurf =
1

λLσ
, (6.34)

where the typical length scale is not the skin depth, but the London penetration depth λL =√
me/(µ0nce2), with me the electron-mass, µ0 the vacuum permeability, nc the density of the

cooper pairs and e the elementary charge. In general a current in a superconductor is carried by

both Cooper pairs and unpaired electrons. At 0 K all electrons in the material are condensed

into Cooper pairs. As the temperature increases the density of Cooper pairs decreases to zero as

the critical temperature is approached. Our aim here is to describe the temperature dependence

of the surface resistance.

The conductivity therefore consists of a normal conducting part σn and a superconducting

part σs. The unpaired electrons obey Ohm’s law and the corresponding current density Jn is

Jn = σnE0e
−iωt, (6.35)

where, σn is the normal conductivity of the material, E0 is the amplitude of the electric field which

is oscillating at an angular frequency ω. Halbritter found an expression to describe the normal

part of the ac resistance as a function of the temperature [301]. Below the critical temperature

normal, free electrons are created by thermal breakup of Cooper pairs. He described this break-

up process similar to a semiconductor by introducing a gap parameter ∆(T ) which is half of

the energy gap between the BCS ground state of the electrons and the free, normal state of the

electrons:

σn ∝ e
−∆(T )
kBT , (6.36)

Now to the superconducting part σs. Cooper pairs move without resistance through the su-

perconducting material, but they possess a small inertial mass. An alternating driving field

leads to a constant acceleration and deceleration of the Cooper pairs (mev̇ = −2eE0e
−iωt). By
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integration we get the velocity and thus the current density:

Js = ncev = nce

∫
−2eE−iωt0 dt = i

2nce
2

meω
E0e

−iωt = iσsE0e
−iωt (6.37)

The total current density is then

J = Jn + Js = σE0e
−iωt, (6.38)

with the complex conductivity σ = σn + iσs. The surface resistance is then given by [302]

R surf = Re

(
1

λL(σn + iσs)

)
=

1

λL

σn
σ2
n + σ2

s

' 1

λL

σn
σ2
s

. (6.39)

Equation 6.39 shows that the surface resistance of a superconductor for ac fields depends on the

normal conductivity of the bulk material. We can rewrite the last expression of equation 6.39 by

using σs = 1
µ0λLω

and arrive at the final expression for the surface resistance of a superconductor,

often denoted as RBCS, as a function of the microwave frequency and the temperature:

RBCS(ω, T ) ∝ λ3
Lω

2e
−∆(T )
kBT . (6.40)

For temperatures T/Tc < 1/2 we can approximate ∆(T ) ' 1.76kBT . The important results

therefore are: the surface resistance scales with the cube of the London penetration depth, with

the square of the microwave frequency and decreases exponentially with temperature.

Similar to normal conductors, the resistance will reach a small residual value Rres, which is

independent of the temperature and determined by the density of impurities and lattice distor-

tions. Frozen-in magnetic flux in the bulk material can also contribute to this value. Hence the

total surface resistance is:

Rsurf = RBCS +Rres (6.41)

Both parts RBCS and Rres can be as low as a few nΩ compared to mΩ for normal, ohmic materials

such as copper.

6.7.1 High Q Superconducting Cavities

From the very beginning of linear particle accelerators rf cavities have been used to accelerate

electrons and protons to very high velocities. These cavities are made from copper and water

cooled to remove the heat dissipated in the cavities. The need to generate large electric fields to

accelerate particles close to the speed of light means that accelerators based on copper cavities

can only be used at a very low duty cycle to prevent melting of the copper due to the large

resistive heating. Therefore it is advantageous to use superconducting ones. The low dissipation
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in the superconducting cavity walls allows to the accelerator to operate continuously. Super-

conducting cavities face a physical limitation: the microwave magnetic field must stay below

the critical field at which superconductivity breaks down (200 mT for niobium). This limits the

maximum acceleration fields to 50 MV m−1, while normal conducting copper cavities reach up

to 150 MV m−1. Niobium is used because it has the largest critical temperature of all elements

(Tc = 9.2 K), and is available in large quantities at high purity. Although certain alloys can

have very high critical temperatures, their rf properties at large electric and magnetic fields are

worse or they can not be manufactured in large quantities. Promising materials such as Nb3Sn

(Tc = 18 K) or MgB2 (Tc = 40 K) are currently under investigation by many research groups.

Such accelerator cavities could in principle be adapted to decelerate or guide polar molecules

in their high-field seeking ground state. The manufacturing process is well established, and the

geometry of such accelerator cavities is already ideally suited for molecular beam experiments.

They can accommodate a vacuum tube, the electric field has a maximum along the beam axis

and is homogeneous. By operating at higher frequencies (20 GHz) one can decrease the size

of the cavities and thus create a very compact decelerator with an unprecedented phase-space

acceptance. The molecules climb a potential hill due to the Stark effect which is large due to

a strong interaction with the molecular dipole moment. In order to dissipate the gained energy

one can simply modulate the input power.4

In the atomic physics community the group of Jean-Michel Raimond and Serge Haroche at

ENS in Paris have pioneered the use of superconducting microwave cavities to study the light-

matter interaction at the most fundamental level. They started with a free-space millimeter-wave

beam in 1977 to drive transitions between two sodium Rydberg levels [303] and gradually up-

graded their interaction region to gain better and better control over the interaction. By 1982

they had built a room temperature cavity for radiation at 162 GHz with a quality factor of

Q = 10000 [304] and finally built their first superconducting cavity in 1983 using niobium [305].

This allowed them to observe the intriguing effect that the mere presence of two highly reflecting

mirrors can change the spontaneous emission lifetime of atoms. Since 1983 the group in Paris

has perfected the production of high-Q superconducting cavities in order to study the interaction

of light and matter at the most fundamental level. By 2007 they succeeded in building a cavity

that can store light for up to 130 ms which corresponds to a finesse of 4.6× 109 the highest that

has ever been achieved in any frequency domain [306]. This persistent approach to perfection

culminated in Serge Haroche being awarded the Nobel Prize in Physics in 2012.

The group in Paris uses a Fabry-Pérot cavity which they operate at a frequency of 51 GHz.

This frequency is too high for our purposes because we need to be red-detuned from the closest

rotational transition, which for most molecular species we use in our lab is in the 20 - 40 GHz

range. From equation 6.40 we know that by operating at a lower frequency we decrease the

surface resistance quadratically. However, it should be pointed out that the finesse of the cavity

presented in [306] is not limited by the conductivity but rather by diffraction loss, i.e. due to

4Note the quality factor should not be too high because decay of the electric field would take too long.
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the finite size of the mirrors. They achieve the above stated maximum finesse at a temperature

of 0.3 K. Unfortunately, we have no means of reaching such low temperatures. Typical closed-

cycle cryocoolers possess 3 W of cooling power at 4.2 K. By using a traditional helium bath

cryostat we can reach about 2.2 K by decreasing the pressure above the helium bath. This way

up to 30% of the helium evaporates and cools the remaining liquid. Going below the Λ-point

results in large helium loss rates and is thus not an option (we do not have a helium recovery

system). The latent heat of vaporisation of liquid helium is 21 kJ kg−1 and has a density of

ρ = 0.12 kg l−1. If we want to dissipate an input power of 2 W we would need about 3 l h−1 of

liquid helium.

In this temperature range the finesse will mainly be limited by the surface resistance RBCS

of the mirrors. Assuming the exponential dependence on the temperature measured by Kuhr

and colleagues [306] and an increase in conductivity by (51/15)2 ≈ 12, due to the ratio of the

frequencies, we could achieve a finesse of 7.3 × 108 at T = 2.2 K and 2.56 × 107 at T = 4.2 K.

This corresponds to an increase in finesse of about 30000 or 1000 in finesse compared to the

copper cavity at 77 K. In order to achieve a comparable intra-cavity field we therefore need to

couple 30 mW or 1 W into the cavity.

Note that this is for the ideal case that we indeed benefit from the full increase in conductivity

by operating at lower frequency. Furthermore, by operating at such low frequencies we need

about twice the mirror size to keep the diffraction losses small. However, the Paris design is

a nearly closed cavity (the spacing between the mirrors is encompassed by an aluminium ring)

which reduces the diffraction losses considerably and increases the finesse by nearly a factor of

100 as demonstrated in [307]. We on the other hand need optical access to detect the molecules,

once they are trapped. We might be able to carefully image the molecules through small aper-

tures in such rings. Furthermore, the Paris group has no coupling apertures in their latest version

of the cavity. Such coupling irises are detrimental to the surface quality and reduce the finesse

by as much as a factor of 400, even for a very small aperture that corresponds to a coupling of

below 1% [306–309]. Hence we need to find new ways to critically couple such a cavity.

In view of all these complications we decided to pursue the copper version, but the super-

conducting version remains a very interesting option. Especially because it would perfectly

complement a cold effusive or hydrodynamically enhanced buffer gas which operates already at

4 K.

A very interesting aspect of this cavity is that one can get access to a regime at which the

molecules are strongly coupled to the cavity field. This means that the cavity can influence

the way the molecules scatter the microwave radiation. This is a very intriguing effect and can

be used to cool the centre of mass motion of the molecules in the trap, also known as cavity

cooling. This cooling scheme, opposing to traditional laser cooling, does not rely on a closed

transition. The effect is based on Doppler cooling but due to preferential scattering, in contrast

to preferential absorption. The cavity affects the off-resonant (large detuning) scattering of the

molecules in the cavity field and one can exploit this effect to cool the molecules to very low
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temperatures [310, 311]. Although the momentum kick of a scattered microwave photon is very

small, one can make up for it by increasing their number. For optimum cooling conditions the

cavity must be detuned from the injected field by ∆ = κ/
√

3, where κ = 1/τ is the cavity decay

rate (Q = ωτ) [312]. A characteristic momentum damping rate is given by

β ≈ −3
√

3

2

∣∣∣∣U0α

κ

∣∣∣∣2 ωr (6.42)

with

U0 = − ωcχ

2ε0V
α =

√
P

2κ~ωp
ωr =

~k2

2mp
(6.43)

where ωc is the angular frequency of the cavity, χ is the polarisability of the molecules, V is

the cavity volume, P is the power injected into the cavity, ωp is the angular frequency of the

photons, k is the wavenumber of the microwave photons and mp is the mass of the particles.

The great advantage of using molecules in microwave fields is that their polarisability χ can

be extremely large even for a very large detuning from a resonance (χ ≈ 1054πε0Å3). If we

operate the cavity at about 19.5 GHz the polarisability for the CaF molecule for example is

about χ = 50000 4πε0Å3. For a cavity volume of about 1 cm3, assuming that we can critically

couple 1 W into a cavity that has the same unloaded Q as the group in Paris, the decay rate

would be κ = 50 Hz (adjusted for the lower resonance frequency and coupling) and for a mass

of the CaF molecule of 59 amu we get an average cooling rate β = 50 mHz. The typical time

the molecules have to spend in the cavity to experience a large cooling force is of the order of

1/β = 20 s. Therefore, cavity cooling could only work once the molecules are trapped already.

Note that U0 is known as the coupling constant. It has the dimension of a frequency and

describes the optical potential created by a single photon and the shift of the cavity resonance

due to the presence of a particle (the change in refractive index). Although this is very small

for a microwave cavity (U0 ≈ 30 × 10−9 Hz) we can compensate for that by a large number of

photons |α|2 and a high quality factor (small κ), such that |U0|α � κ and enter the regime of

strong coupling. Although this is extremely challenging one can get extremely efficient cooling

to below the photon-recoil limit.

6.8 Trap Loading

Before concluding this chapter we discuss how we plan to load the microwave trap with molecules.

As a first step we will test the basic working principles by trapping ultracold lithium atoms,

which we can already produce in a magneto-optical trap and transport into the microwave trap

using a moveable magnetic trap. In the science chamber we overlap the microwave trap with

the magnetic trap, ramp down the magnetic trap and increase the microwave trapping field. A
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similar scheme works of course also for molecules that possess a magnetic moment.

Recent results show that laser cooling and slowing for certain molecules (SrF, YO, CaF) is

possible [72, 249, 251, 313]. This is also the most promising loading technique for the microwave

trap. With laser cooling, molecules can be cooled to the Doppler temperature TD = ~Γ/(2kB) ≈
0.2 mK, where Γ ≈ 2π10 MHz is the damping rate. Laser cooling relies on specific selection rules

that allow for quasi-closed transitions. One such selection rule demands that the lower state is a

rotationally excited state (N = 1) which is low-field-seeking in a red-detuned microwave trap. In

order to trap the molecules in their ground state one needs to transfer the molecules via optical

pumping or resonant microwaves (π-pulse) to the ground state. Note, that for the same reason

that laser cooling uses the first rotational ground state (parity selection rule) optically pumping

via an excited electronic state into the ground state is forbidden. However, the presence of the

microwave fields breaks this selection rule. This is therefore a very convenient way to accumulate

the molecules over time. The fact that the molecules are already cold relaxes the requirements

for the trapping fields considerably. This means that the input power for the copper cavity can

be lowered to a few watts. For the superconducting cavity we could work at 4 K which is the

temperature at which buffer gas sources operate and use just a few mW of input power. Once

the molecules are trapped, the temperature is low enough and the density high enough that

evaporative cooling could be used to cool the sample to quantum degeneracy.

Laser cooling will always be limited to very few species which possess Franck-Condon factors

near unity. For other molecules, especially polyatomic molecules, direct loading into a deep trap

is also possible. Slow buffer gas beams with an effusive velocity distribution and a most probable

velocity of 40 m s−1 have been demonstrated already [314]. The low velocity tail of such a beam

can be filtered using an electric or magnetic guide [82, 89] and accumulated in the microwave

trap via optical pumping. The molecules confined in such a way will still be too hot (≈ 1 K)

for evaporative cooling. However, electro-optic cooling, single photon cooling schemes [88, 89,

315], sympathetic cooling with ultracold atoms, or even cavity cooling can be used to cool the

molecules to temperatures where evaporation becomes effective.

Loading the trap from a Stark-decelerated supersonic beam is also possible. Molecules with

low-lying Λ or Ω-doublets are preferred for Stark deceleration because the mixing of these levels

leads to a large linear Stark shift which simplifies the deceleration. The requirement that the

microwave trap is red-detuned from the closest transitions rules out most of the species that

have been Stark decelerated already. However, ammonia (NH3) is an attractive candidate.

Ammonia molecules have been decelerated already [316] using a traditional Stark decelerator

and by using a closed cylindrical microwave cavity [270]. By axially aligning the cavity with the

Stark decelerator one can use the microwave fields as the last stages of a Stark decelerator and

trap the molecules in the centre. The molecules can be focused through a small aperture in one

of the mirrors. Alternatively one can simply attach the Stark decelerator as close as possible to

the microwave cavity (orthogonally oriented to the Stark decelerator) and let the molecules fly

into the trapping region. The molecules can be pumped into the high-field-seeking ground state
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with a resonant microwave pulse which is spatially overlapped with the trapping field.

Alternatively one can use a microwave decelerator to decelerate the molecules in their high-

field-seeking ground state. One could even conceive trapping the molecules at the end of the

microwave decelerator. Such decelerators are typically closed cylindrical cavities which makes

the detection and further cooling challenging. Therefore a separate open Fabry-Pérot type cavity

as a trap for good optical access would ideally complement such a decelerator.

In 2007 Matthews and colleagues proposed that one could produce molecules at zero velocity

by dissociating a suitable precursor molecule. A supersonic beam of precursor molecule (NO2

or H2S for example) is initially cooled in expansion. Further downstream the molecular beam

intersects a resonant laser beam which dissociates the molecule. One can break the O2 bond of

NO2 molecule, for example, which results in an atomic and a molecular fragment. The recoil of

the oxygen atom can decelerate and even stop the NO fragment [317]. Zhao and colleagues and

later Trottier and colleagues could show that one can indeed decelerate and stop molecules in a

molecular beam via photodissociation [85, 318]. This technique can be a relatively simple way

to load and test the microwave trap.

6.9 Conclusion and Outlook

In this chapter, the development of a new kind of trap for ground-state polar molecules has been

presented. From a general overview of the various, existing trapping techniques we concluded

that collisional cooling is most likely to work in a microwave trap which obviates the problem of

inelastic collisions. Furthermore, the trap provides a deep trapping potential for a large variety

of molecules.

This was followed by a theoretical description of the basic working principle of an open Fabry-

Pérot resonator for microwaves and an analytical model for coupling the cavity using an aperture

was compared to first measurements. We found that at critical coupling the quality factor was

lower than expected. We therefore investigated the coupling and intra-cavity fields by performing

FDTD simulations using Microwave Studio and could show that the aperture influences the

mode inside the cavity and leads to extra losses. By operating the cavity slightly below critical

coupling we can circumvent this problem. We demonstrate that it is possible to couple over

90% of the injected power into the cavity by only using a single coupling aperture and still

retain the high finesse needed for a deep trapping potential. We could further show that the

quality factor increases when the mirrors are cooled with liquid nitrogen. Non-ideal surface

conditions, however, influenced the low-temperature behaviour which led to a discrepancy of

30% between the expected and measured quality factor. We have identified ways to improve

the surface quality of the cavity mirrors which will allow us to reach near-perfect quality factors

at room temperature and at 77 K for our final version. We have built a high precision cavity

which we are currently using to compare measurements (coupling and quality factor as a function
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of the aperture size) with the predictions of the FDTD simulations. Preliminary results show

striking agreement. We have also designed a final ultra-high vacuum compatible, high power

version of the cavity which is currently built and assembled in our workshop. The alternative

approach of using a superconducting cavity has also been discussed. The use of such a cavity,

especially in combination with a laser-cooled molecular beam from a cryogenic buffer gas cell,

is a very promising future direction to reach very high densities of trapped polar molecules at

low temperatures. Once the molecules are confined, the microwave trap is the ideal starting

point for secondary cooling processes such as sympathetic or evaporative cooling which can cool

the molecules to quantum degeneracy. Some specific ways to load the trap have briefly been

discussed as well.

We are currently testing the high-power stability of the cavity and finishing the new high

precision measurements of the coupling and quality factor as a function of the aperture size.

Once the ultra-high vacuum version is completed we will test the microwave trap with ultracold

lithium atoms while a suitable molecular beam apparatus for trap loading is being developed.

This will most likely consist of a cryogenic buffer gas beam of either CaF or SrF molecules which

can be slowed and cooled using laser light.



Chapter 7

Towards a Magneto-Optical Trap for

Polar Molecules

One has to do something new in order to see something new.

Georg Christoph Lichtenberg

7.1 Introduction

With laser cooling techniques one can routinely cool an atomic gas from hundreds of kelvin to

below a few µK within a few milliseconds. The momentum of a single photon (pph = ~k) is

relatively small (1eV/c = 5.3× 10−28 kg m s−1) compared to the momentum of an atom moving

at thermal speed (pa ≈ 10−23 kg m s−1). When an atom absorbs a photon that is resonant with

one of its electronic transitions it recoils from the impact of the photon and slows by ~k/m. We

therefore, typically need to scatter approximately 104 − 105 photons to slow an atom to rest.

Some atoms possess specific transitions which, after excitation, decay back to the initial state

only. The atom can go through the same absorption and emission cycle again using the same

laser. Molecules, however, can vibrate and rotate and thus possess a more complex internal

structure. Once a molecule has been excited by the laser beam it can decay to many possible

vibrational and rotational states in the ground electronic state. Therefore, in general, one can

only scatter a few photons before the molecule is optically pumped into a dark state which

cannot be addressed by the same laser.

However, there are exceptions. In his paper of 2004, Di Rosa pointed out that for some

carefully selected molecules it might be possible to scatter enough photons to cool them to sub-

millikelvin temperatures [71]. He identified three criteria a molecule must meet: it must have

a strong transition (short excited state lifetime) which allows high scattering rates, a highly

diagonal Franck-Condon matrix (the potential curves of the ground- and excited state must be

215
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very similar) and no intermediate electronic state to which the molecule could decay. Ideally the

Franck-Condon overlap between the lowest vibrational state of the first electronically excited

state and the lowest vibrational state of the ground electronic state should be close to unity.

Therefore, if the molecule is excited with a resonant laser beam the probability for it to return

to the same vibrational state in the ground electronic state is close to unity. Di Rosa suggested

a number of molecules that meet these criteria: BeH, MgH, CaH, SrH, BaH, NH, BH, AlH, AlF

and AlCl. For most of these molecules one still needs to close leaks to one or two vibrational

states in the ground electronic state and to other rotational states. Furthermore, the hyperfine

structure needs to be addressed as well. In 2008 Stuhl and co-workers took Di Rosa’s idea a

step further. The decay to rotationally excited levels in the ground electronic and vibrational

state must satisfy the total angular momentum selection rule ∆J = 0,±1. This means that for a

Franck-Condon factor of unity and without hyperfine structure one needed already three lasers

to address the three rotational branches. Stuhl et al. pointed out that if the angular momentum

of the ground state J ′′ is greater than the angular momentum of the excited state J ′ then two of

these three decay channels are forbidden [319]. If one chooses a molecule which has no nuclear

spin one can also get rid of hyperfine splitting. Stuhl and colleagues identified TiO and TiS in

their ground states and metastable FeC, ZrO, HfO, ThO and SeO as good candidates. They

first concentrated their efforts on TiO but later switched to YO which allows higher scattering

rates, has a better Franck-Condon factor and a superior dipole moment of 4.5 D. Recently, they

could show laser cooling of the transverse temperature of a beam of YO molecules to about 2 mK

which is still a factor of 20 higher than the Doppler limit of 116 µK.

The first to show that laser cooling of molecules can indeed work was the group of DeMille at

Yale in 2010 [72]. They cooled the transverse temperature of a molecular beam of SrF molecules

from 50 mK kelvin to a few millikelvin by scattering about 1000 photons [72]. They also demon-

strated the slowing of a beam of SrF molecules using radiation pressure two years later [250].

Recently, the slowing and cooling of a CaF beam from a few kelvin to a few millikelvin has

been demonstrated in our lab [251]. When slowing a molecular beam using radiation pressure, the

laser beam counter-propagates to the molecular beam. This means that the laser frequency must

be detuned by the Doppler shift. As the molecules slow down the velocity and thus the Doppler

shift changes. Zhelyazkova and colleagues tackled this problem by chirping the frequency of the

lasers. The standard technique used for slowing atoms is to shift the atomic resonance with a

spatially varying magnetic field, i.e. by using a Zeeman slower. The ground states of CaF and

SrF are 2Σ states. The first excited rotational state thus splits into two spin-rotation compo-

nents with a total angular momentum of J = 1/2 and J = 3/2. Each doublet is again split due

to the interaction of the fluorine nuclear spin with the unpaired electron. One must address all

these levels to keep the molecule in the cycling transition. In a magnetic field each hyperfine

state splits into a number of Zeeman sub-levels, each of which tunes differently in a magnetic

field. It is thus extremely challenging, if not impossible, to use a Zeeman slower. In this regard

a magneto-optical trap seems very challenging as well.
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However, if one uses a molecule that has no fine-structure (singlet states), no orbital angular

momentum (Σ states) and, no or only small hyperfine structure one can circumvent all these

problems and, in principle, build a Zeeman slower and a magneto-optical trap.1

Let us summarise the conditions for a simple laser cooling scheme for diatomic molecules: a

strong transition (excited state lifetime of < 100 ns), Franck-Condon factor of the main transi-

tion (A(v′ = 0)−X(v′′ = 0)) close to unity, no unpaired spin (singlet states), no orbital angular

momentum (Σ ground state), no (or small) hyperfine structure. By browsing through the list

provided by Di Rosa [71] we find NH, BH, AlH, AlF and AlCl to be suitable candidates. We can

add ScF, CS and BeO to this list, although only very limited spectroscopic data is available for

these molecules which makes them unattractive. The dipole moment of AlH is too small to be

useful. So is the dipole moment of NH in its ground-state. The transitions for AlF and AlCl are

both in the deep UV at 227.5 and 261.5 nm respectively. We do not have any lasers available

to access these transitions. This leaves the 11BH molecule whose A-X transition is at 433.4 nm.

BH is a very simple molecule with only six electrons and thus has been subject of considerable

theoretical and experimental interest since 1931 (see [320] and references therein). We can find

all the transition frequencies needed in the literature [321, 322] and also some information on

how to produce a molecular beam [320, 323].

It has a reasonable dipole moment of 1.3 D [324]2 and an upper state lifetime between 127

and 159 ns [325–328]. The ground state of BH is a 1Σ+ and the first excited state is 1Π. For

the specific case of a A1Π ← X1Σ+ transition the parity selection rule that restricts the ro-

tational branching is fulfilled for J ′ = J ′′ = 1. This is due to the orbital angular momentum

in the excited state which leads to a Λ-doubling of the J ′ = 1 state into two closely spaced

opposite parity states. Luh and Stwalley constructed RKR (Rydberg-Klein-Rees [103–105]) po-

tentials using the spectroscopic data obtained by Johns and co-workers [321] and calculated the

Franck-Condon factors [329]. A plot of the RKR potentials for the ground- and first electronically

excited state is given in figure 7.1. The relevant Franck-Condon factors (fv′v′′) are f00 = 0.9987,

f01 = 0.27 × 10−3, f02 = 0.9827 × 10−3 and f03 = 0.2335 × 10−7. This means that we could

scatter 3700 photons with one repump laser and nearly 5× 107 photons with two repump lasers.

A schematic, showing the laser cooling scheme for BH is given in figure 7.2.

Although ground state BH has no spin or orbital angular momentum, the boron and hydrogen

nuclei carry a nuclear spin of I = 3/2 and I = 1/2 respectively. The interaction of the nuclear

spins with the rotation of the molecule leads to a small splitting of the J ′′ = 1 level that we

plan to use for laser cooling. The interaction of the nuclear electric quadrupole moment of the

boron nucleus with the electric field gradient (mainly produced by the electrons) leads to a small

1Note that even for such a toy-model molecule a standard atomic MOT will not work because of dark Zeeman
sub-levels in the ground-state. These dark levels have to be re-mixed by either modulating the polarisation of the
laser beams or by applying a time-varying electric field, as was pointed out by Stuhl and co-workers [319].

2The effective electric dipole moment due to the large rotational constant µeff = −µ(∂Estark/∂E) obtainable
in an electric field of 300 kV cm−1 is only 0.2 D. This is unfortunate and might not be enough to study strong
dipole-dipole interactions at low temperatures. However, the simple structure of BH makes it very valuable as a
toy-model molecule to explore new cooling techniques.



Towards a Magneto Optical Trap for Polar Molecules 218

2 3 4 5 6 7 8 9 10
30 000

20 000

10 000

0

10 000

20 000

0.1

0.

0.1

R a0

E
n
er

g
y

c
m

1


E
n
er

g
y

a
.u

.

Figure 7.1: The binding energy as a function of the internuclear distance R for the two
electronic states X1Σ+ and A1Π of BH [329]. The horizontal lines show vibrational energies.
The vertical grid line shows the equilibrium internuclear distance re = 2.33 a0 of the ground-
state with a0 the Bohr radius. The inset shows the two potentials on top of each other (ground
state in blue, excited state as the red dashed line). This shows the striking similarity of the
two potential curves which leads to a Franck-Condon factor near unity for the v′′ = 0 − v′ = 0
transition.
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splitting of the J ′′ = 1 into three components F1 = 1/2, 3/2 and 5/2. The size of the splitting

is governed by the electric quadrupole coupling constant eqQ = −6.6 MHz [330] (calculated,

see [107] for details). There is also a small contribution from the nuclear magnetic dipole mo-

ment of the boron nuclei to this splitting. In addition, the magnetic dipole moment associated

with the hydrogen nuclear spin I = 1/2 leads to a small splitting of each F1 level. This leads to

a total of 6 levels with quantum numbers (F = F1 ± 1/2). All the splittings are similar to the

natural linewidth of the A-X transition and thus can be addressed by a single laser frequency.

A level diagram, showing the hyperfine splitting of the J ′′ = 1 state is shown in the lower panel

of figure 7.3. The top panel shows the rotational lines of the A-X transitions relevant to our

experiment.

The scattering rate for an ideal two-level system is given by [331]

R =
I/Isat

1 + I/Isat + 4(δ/Γ)2
Γ/2 , (7.1)

where I is the laser intensity, δ is the detuning from the resonance frequency, Γ is the spontaneous

decay rate of the excited state and Isat = πhcΓ/(3λ3) is the saturation intensity for the transition

(1.7 mW cm−2). The fact that we do not have an ideal two-level system but need to close two

vibrational leaks means that the maximum scattering rate of Γ/2 is reduced to an effective

scattering rate Γeff = ΓNe/(Ne + Ng) ≈ 1
3Γ, where Ne and Ng is the number of excited and

ground states respectively.3. The number of scattered photons we need to slow the molecules to

rest is

nph =
mv

h/λ
, (7.2)

which amounts to 5500 photons, assuming m = 12 amu, a speed of 420 m s−1 (supersonic beam

using krypton) and λ = 433 nm. By cooling the valve to 120 K we can decrease the speed of

the supersonic beam to about 260 m s−1. Alternatively, by using xenon as a carrier gas and

cooling the valve to 170 K we can reduce the velocity to about 200 m s−1. For a beam of BH

molecules travelling at 200 m s−1 we can reduce the number of photons we need to scatter to

slow the molecules to rest to about 2600. This means that by closing the leakage to v′′ = 2

only we should be able to slow the molecules to rest (assuming that we can trust the calculated

Franck-Condon factors of Luh and Stwalley). Compared to CaF, SrF or YO, where at least 12

frequencies are needed, the laser cooling scheme for BH is very attractive. The largest possible

deceleration force one can exert on a particle of mass m using scattering of resonant laser light

is

Fmax = mamax = ~kΓeff. (7.3)

3The total number of ground-state MF levels we can address and transfer to the A state is 16. Assuming we
are using two repump lasers we get 48 levels in total (3 × 16 for each vibrational state). The total number of
excited states is 20 (the F1 splitting is larger due to the orbital angular momentum in 1Π state and we therefore
can only connect to one F1 level). This gives an effective scattering rate of Γeff = (20/68)Γ ≈ Γ/3
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doubling in the excited state the parity selection rule needed to restrict the rotational branching
is met for J ′ = J ′′ = 1, i.e. for all Q transitions. Bottom: The splitting of the J ′′ = 1 level of
the ground X1Σ+(v′′ = 0) level is due to the interaction of the nuclear moments of boron and
hydrogen with the rotation of the molecule. The frequencies were calculated by Mike Tarbutt
using the hyperfine constants provided in [330] (all frequencies are in MHz). The larger splitting
is due to the electric quadrupole moment of the boron (11B) nucleus (I = 3/2) which couples to
the rotation and leads to three F1 states. Each F1 state is again split due to the interaction with
the hydrogen nuclear spin (I = 1/2). Note that we get the analogous splitting in each J ′ = 1
parity state. The splitting is, however, much larger (≈ 100 MHz) due to the interaction of the
nuclear spin with the orbital angular momentum.
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For an effective scattering rate of Γeff = Γ/3, with Γ = 2π × 7 MHz the time to slow the

molecules to rest is given by t0 = v/amax = 2.3 ms with the corresponding stopping distance

z0 = v2/(2amax) = 0.49 m. Note that this is for the worst case scenario for a beam with a

velocity v = 420 m s−1. If we can reduce the velocity to 200 m s−1 the time to slow the molecules

reduces to t0 = 1.1 ms and the stopping distance to z0 = 0.11 m.

It is also possible to use a Zeeman slower to keep the molecules in resonance with the laser

beam as they slow down. The excited state is a 1Π state and the interaction of the orbital

angular momentum with an applied magnetic field thus large. According to [107] the Zeeman

shift in the J ′ = 1 level is given by

∆EZeeman = gLµBB
Λ2

J(J + 1)
MJ , (7.4)

with gL = 1, µB the Bohr magneton and B the applied magnetic field strength. Ignoring the

small hyperfine splitting the MJ = ±1 levels thus shift by 7 GHz T−1. Therefore, at a field

of 0.14 T, the Zeeman shift is equal to the Doppler shift of molecules moving at 420 m s−1. The

molecular g-factor of the ground electronic state is close to zero (Λ = 0). A small Zeeman shift

comes from the nuclear magnetic moments of boron and hydrogen, but this is almost 2000 times

smaller than the Zeeman shift of the excited state.

The prospect of laser cooling a supersonic beam using a Zeeman slower and a magneto-optical

trap to either the Doppler temperature TD = hΓ/(2kB) = 30 µK or even to the recoil temperature

Tr = (h/λ)2/(2mkB) = 4 µK seemed so appealing to us that we started to investigate molecular

beam sources for BH molecules.

7.2 A Molecular Beam of BH Molecules

BH molecules were first produced by Lochte-Holtgreven and van der Vleugel in 1931. They used

a discharge tube filled with BCl3 and H2 and could record the very first spectra of the A-X

transition [332]. This production technique was used until Bauer, Herzberg and Johns produced

BH via flash-photolysis of a parent molecule in 1964. They used borine carbonyl (H3BCO) as a

precursor and recorded the first absorption spectra of BH [333]. Bauer and colleagues prepared

the borine carbonyl by mixing one part of diborane B2H6 with three parts of CO in a glass bulb:

“the bulb was allowed to stand for one or two weeks at room temperature to allow the equilibrium

to be established” [333]. Johns, Grimm and Porter used flash-photolysis of borine carbonyl and

diborane in a gas cell [321]. Dufayard and Nedelec produced BH molecules by an rf discharge of

10% diborane in helium in a spectroscopy cell [327]. Gustafsson and Rittby bombarded diborane

with high energy electrons in a static gas cell [328] and Pianalto and colleagues used a microwave

discharge through a mixture of diborane and helium in a quartz tube [334]. Douglass, Nelson

and Rice produced BH by excimer photolysis (193 nm, 20 mJ) of borine carbonyl in a reaction
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cell [325]. Fernando and Bernath simply used a hollow cathode discharge. The hollow cathode

was made of B4C and a discharge through argon gas produced BH molecules even without any

H2 added to the argon [322]. Gilkison, Viteri and Grant were the first to produce a supersonic

beam of BH molecules by photodissociation of diborane in 2004. They seeded 5% diborane in

3 bar of H2 and expanded it through a solenoid valve. The output of an excimer laser (193 nm,

50 mJ) was focused into the supersonic expansion right in front of the nozzle exit [335]. This is

exactly the same method we used for producing CH, apart from the different precursor. They

also found that a significant flux could be produced via dc-discharge of diborane [336]. They

used both a continuous discharge nozzle and a pulsed dc-dielectric discharge similar to the one

used by Even and Lavie [123].

Diborane is extremely flammable, forms explosive mixtures in air, can ignite spontaneously at

room temperature, and is highly toxic. Short term exposure causes lung congestion (it hydroly-

ses to boric acid), burns, kidney and liver damage and ultimately death (LC50 (rat): 40 ppm).

Therefore, it is not a pleasant precursor to work with. Although it is straightforward to syn-

thesize, we preferred to order it diluted (1%) in argon in a gas bottle.4 Diborane is unstable

and decomposes to produce hydrogen and higher boranes, so its shelf life is limited. Elaborate

safety precautions must also be taken. After all the safety equipment had been installed, we

could finally try to create a molecular beam.

The single photon absorption cross section of diborane at 193 nm is only 4.4× 10−20 cm2 which

is about 100 times smaller compared to bromoform [337, 338]. The absorption cross-section de-

creases exponentially to zero for longer wavelengths [337, 339]. Therefore, it is necessary to

operate at the shortest wavelength possible. The quantum efficiency for the reaction

B2H6 + hν → 2(BH3)∗ (7.5)

has been measured to be 0.06 [337]. It may, in fact, be higher than this, because fast secondary

reactions of the excited BH3 with other photolysis products to higher boranes prevents the

measurement of the primary BH3 products [340]. The secondary dissociation

(BH3)∗ → BH + H2 (7.6)

(BH3)∗ + hν → BH + H2 (7.7)

are likely reaction paths for the production of BH. The small absorption cross-section means

that we need a high intensity to saturate the BH production. One advantage is that diborane

is light and a gas which prevents clustering in the supersonic expansion. In combination with

the fact that there might be a single photon reaction path via excited BH3, the dissociation of

diborane is an attractive way for to make a highly intense molecular beam of BH.

After little optimisation of the source parameters we were able to detect our first BH signal

4Note that a higher concentration might lead to a more intense molecular beam, but the rather restrictive
health and safety regulations in the UK limits us to use a concentration below 1%.
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Figure 7.4: Left: A frequency scan over the R(0) line of the A1Π(v′ = 0) ← X1Σ+(v′′ = 0)
transition of BH. We can clearly identify the three hyperfine components corresponding to the
F1 = 3/2, 1/2 and 5/2 states of the A1Π excited state. We fit three Gaussian profiles (red line)
to the data (blue dots). The fit yields a FWHM of 53, 44 and 57 MHz with relative amplitudes
of approximately 1/6, 2/6 and 3/6. Right: Time-of-flight profile of the molecular beam. We fit
a Gaussian profile (red) to the data (blue dots). The central arrival time of 1360 µs corresponds
to a velocity of 570 m s−1 and the FWHM of 93 µs to a transverse temperature of 0.4 K

using a focused excimer beam operated at 193 nm with a pulse energy of 100 mJ. A spectrum of

the R0 line near 433.4 nm (692.454 923 THz) is shown in figure 7.4. The intensity of the beam

source is similar to that of the CH source. However, to convert the number of photons per shot

into a number of molecules we would need to measure the signal as a function of the probe

laser intensity. For the beam presented in figure 7.4 the field plates from the CH measurement

were still in place. This restricts the solid angle of the molecular beam and thus reduces the

molecular flux we measure by about a factor of three. Assuming similar parameters as for CH

we can assume a molecular flux of 3× 109 sr−1 per pulse.

As pointed out in the introduction to this chapter, a simple scheme for laser cooling molecules

requires the lower state of the quasi-cycling transition to be a rotationally excited state. The

rotational constant of BH in the electronic ground-state is B = 12.021 cm−1 (360 GHz) which

corresponds to a temperature of 17 K [324]. The first rotationally excited state lies approximately

2B above the ground state. This means that for our cold supersonic beam which has a tem-

perature of 0.4 K, we expect very little population in that state. We therefore need to transfer

population from the ground-state into the first rotationally excited state by driving the mm-wave

transition. The amplifier-multiplier chain we used to drive population from the J = 1/2 to the

J = 3/2 state in CH can provide the necessary radiation.

The setup we use to drive and measure this transition is exactly the same as for the measure-

ment of the lowest mm-wave transition in CH, presented in chapter 5. The mm-wave beam is

collimated with a teflon lens, enters the vacuum chamber through a quartz window and intersects

the molecular beam at right angle. The interaction region is shielded from ambient magnetic

fields with a single layer mu-metal shield. We lock the detection laser to the F1 = 5/2 peak of the

R(0) line of the A1Π(v′ = 0)← X1Σ+(v′′ = 0) transition and record the fluorescence as a func-

tion of the mm-wave frequency. Such a depletion spectrum is shown in figure 7.5. We fit three
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Figure 7.5: Spectrum of the J = 0−J = 1 rotational transition of BH. We lock the probe laser
to the R(0) line of the A1Π(v′ = 0)← X1Σ+(v′′ = 0) transition (to the largest F1 = 5/2 peak).
We then record the fluorescence as the frequency of the mm-waves is scanned. The structure
is part of the hyperfine structure of the rotationally excited (J=1) state. When the mm-waves
are resonant with the molecules, they get pumped into the rotationally excited state (J ′′ = 1)
and the fluorescence in the probe region decreases. This way we can transfer nearly 40% of the
ground-state population into the first, rotationally excited state. We fit three Gaussian profiles
(red line) to the data (blue dots).

Gaussian profiles (red line) to the data (blue dots). The fit yields three resonance frequencies at

708309751±37 kHz, 708310100±15 kHz and 708310220±54 kHz. They correspond to excitation

of the (J ′′ = 1, F1 = 5/2, F = 2, 3), (J ′′ = 1, F1 = 1/2, F = 1) and (J ′′ = 1, F1 = 1/2, F = 0)

states respectively. Comparing this to the calculated level diagram in figure 7.3 we observe a

small discrepancy. The F1 = 5/2−F1 = 5/2 splitting is smaller than expected, and the splitting

of the F1 = 5/2 state is larger than expected. This means that the hyperfine constants calculated

by Sauer and colleagues [330] are not accurate enough to predict the small hyperfine structure of

BH to this level of precision. With the precise measurement of this rotational transition we can

measure these molecular constants of BH for the first time and to very high accuracy. Figure 7.5

also shows that we can transfer nearly 40% of the initial ground-state population into the J ′′ = 1

rotationally excited state. Similar to the CH measurement we are limited to a transfer efficiency

of 40% due to the low output power of the AMC. Unfortunately the output power drops to a

minimum of about 1 µW at exactly the frequency we need. We have now replaced the quartz

window with a teflon window which should reduce the Fresnel losses by about 15-20% percent.

7.3 Measuring the Franck-Condon Factors of the A-X Transition

We cannot expect the Franck-Condon factors Luh and Stwalley calculated to be accurate on the

10−4 level. Such high accuracy is necessary to determine the number of repump lasers needed for

laser cooling. Douglass, Nelson and Rice measured the ratio of the Einstein emission coefficients

A01/A00 = 0.0051 ± 0.0007 which gives rise to a leakage to v′′ = 1 of about 0.5%. This means

that even with one laser it should be possible to scatter about 200 photons. As we can infer
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Figure 7.6: The setup we use to measure the Franck-Condon factors of the A1Π → X1Σ+

transition in BH. The molecules are excited with a resonant laser beam. The fluorescence light
emitted by the molecules is composed of different spectral components with relative intensities
determined by the Franck-Condon factor. To analyse the relative magnitude of each spectral
component, i.e. to measure the Franck-Condon factors, we use various bandpass filters in front of
the photomultiplier tube (Signal PMT). We use a beamsplitter to direct part of the fluorescence
light onto a reference PMT which allows us to normalise the signal for each molecular beam
pulse. The measurement is insensitive to variations in the molecular beam or laser intensity.

from the calculated Franck-Condon factors by Luh and Stwalley, it seems that the leakage to

v′′ = 2 is larger than the leakage to v′′ = 1. To verify this and to make sure which and how many

repump lasers we need we are currently measuring the Franck-Condon factors to an accuracy of

better than 10−4.

Recently, the Franck-Condon factors of the YbF molecule have been measured in our group

[341]. We use a very similar technique to measure the Franck-Condon factors of BH. A sketch

of the setup is shown figure 7.6. The fluorescence emitted by the molecules is collimated and

directed onto a beamsplitter cube which divides it into two components. Each component is

focused, spatially filtered and detected by a photomultiplier tube (PMT). A bandpass filter

(FWHM of 10 nm) centered at 430 nm in front of the reference PMT is used to reduce ambient

background light. We use bandpass filters centred at 430 nm, 480 nm, 530 nm and 600 nm in the

signal arm to analyse the different spectral components of the A1Π(v′ = 0)→ X1Σ+(v′′ = 1, 2, 3)

fluorescence light. We measure the transmission through all optical elements and calibrate the

signal PMT at each wavelength. This allows us to measure the relative sensitivity of our detection

system at each wavelength. The probe laser is modulated (on/off) between subsequent beam

pulses to subtract any remaining background light. Each filter is used in random order and

orientation. By using the ratio of the signal and reference the measurement is immune to

fluctuations in the molecular beam or laser intensity. Preliminary data runs show that we can

reach a relative sensitivity of 10−4 after 30 minutes of averaging. We are still taking the final

data sets at the moment but preliminary data reveals that one repump laser will not be enough

to slow BH to rest. This is unfortunate, but with only three frequencies in total, the prospect

of using a Zeeman slower and to create a magneto-optical trap makes BH still a very interesting
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candidate for laser cooling.

7.4 Conclusion and Outlook

In this chapter the prospect for direct laser cooling of BH molecules has been discussed. The

highly diagonal Franck-Condon factors and the absence of large hyperfine structure makes it

possible to laser cool BH with minimal experimental effort. The ground electronic state is

insensitive to magnetic fields, whereas the excited state can be tuned using modest magnetic

fields. This allows us to use a Zeeman slower and build a magneto-optical trap for BH. For other

molecules such as SrF, CaF or YO the large number of levels involved in the cooling process

precludes such a straight-forward approach. With a maximum of three laser frequencies we

will be able to slow and cool BH molecules to the Doppler temperature of 30 µK or even to the

recoil temperature of 4 µK. The large rotational constant of 360 GHz means that we can not fully

polarise the molecules in typical electric fields obtainable in the lab (µeff = 0.2 D in 300 kV cm−1).

This might be to small to study strong dipole-dipole interactions at low temperatures. However,

the possibility to laser cool molecules from a supersonic beam to such low temperatures and

the prospects of building a magneto-optical trap were so appealing to us that we started to

investigate ways to create BH. It turns out that both production and detection techniques are

very similar to what we were using for CH. Analogous to CH we could produce BH via photo-

dissociation of a precursor molecule (diborane). This allowed us to realise a supersonic beam of

BH molecules in relatively short time.

A necessary precondition for laser cooling is that the lower state of the cooling cycle is a

rotationally excited state. Due to the large rotational constant and the low temperature of

the molecular beam we could not detect any population in the first rotationally excited state

J ′′ = 1. However, we could demonstrate the coherent population transfer from the ground to the

first rotationally excited state using resonant mm-waves. Finally, the setup we use to measure

the Franck-Condon factors of BH to determine the exact number of repump lasers has been

presented.

Once the Franck-Condon measurement is completed we will start investigating cycling on the

Q(1) transition. Without repump lasers we should already be able to scatter on the order of 100

photons. To prevent optical pumping into dark MF levels we will need to add a magnetic field

which re-mixes these dark Zeeman levels back into the cooling cycle. At the same time we can

develop the laser system necessary for closing the vibrational leaks. Once we can lock all lasers

to the right frequencies we aim to counter-propagate the laser beams with the molecular beam

to demonstrate laser slowing. This will keep us busy until the construction of the Zeeman slower

will be completed. Once we have achieved laser-slowing we can capture the BH molecules in a

magneto-optical trap. This will allow to cool the molecules to the recoil temperature of 4 µK.

This will also be the ideal starting point to explore new sub-Doppler cooling schemes for polar
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molecules. We could investigate cavity cooling, single-photon cooling or electro-optical cooling.

Furthermore, we can transfer the molecules into their absolute ground state and confine them

in an optical dipole trap. We can then initiate forced evaporative cooling which could allow us

to reach quantum degeneracy.



Chapter 8

Conclusions and Future Directions

[...]Then felt I like some watcher of the skies

When a new planet swims into his ken;

Or like stout Cortez when with eagle eyes

He star’d at the Pacific - and all his men

Look’d at each other with a wild surmise -

Silent, upon a peak in Darien.

John Keats

In this thesis I described a number of advances in cold molecule physics. The lowest-lying Λ-

doublet transitions of CH are exceptionally sensitive to variations in fundamental constants such

as the fine-structure constant α or the electron-to-proton mass ratio µ. To be able to use CH

as a sensitive probe for such variations new laboratory measurements of these transitions were

needed. We therefore investigated the optimum method for producing an intense, pulsed, super-

sonic beam of cold CH molecules. We have investigated four different sources for CH based on a

dc discharge, dc discharge-reaction, laser ablation and photodissociation. The photodissociation

of bromoform yielded an intense beam with 3.5× 109 CH molecules per steradian per shot in a

single quantum state with an exceptional shot-to-shot stability. This beam has a translational

temperature of 400 mK and a velocity that is tuneable between 400 and 1800 m s−1 and is thus

ideally suited for high resolution spectroscopy experiments.

Using a novel spectroscopic method we could measure the lowest-lying Λ-doublet transitions

of the (F2, J = 1/2) and (F1, J = 3/2) states of CH to unprecedented accuracy. By comparing

these new laboratory measurements to radio-astronomical observations, we could test the hy-

pothesis that fundamental constant may differ between the high and low density environments

of the Earth and the interstellar medium of the Milky Way. We found no variation and set upper

limits of |∆α/α| < 2.1× 10−7 and |∆µ/µ| < 4.3× 10−7.

We could also measure the lowest mm-wave transition in CH to unprecedented accuracy. These

228
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transitions are also sensitive to variations in fundamental constants.

With new dedicated astronomical measurements, especially of the excited F1, J = 3/2 Λ-

doublet and at high red-shift it will become possible to measure temporal and/or spatial drifts

in fundamental constants with exceptional sensitivity, free from common systematic errors. The

new laboratory measurements are also of great importance to astronomers who use CH as a

tracer for other atoms or molecules and to reveal the gas and reaction dynamics in such clouds.

With our new measurements we could already remove the systematic velocity offset between

different hyperfine components found by Sakai and co-workers [226].

I have also described the development of a novel type of trap for polar molecules. Trapping

the molecules is essential for further cooling to ultracold temperatures. The trap uses a high

intensity microwave field in a Fabry-Pérot resonator which will enable us to create a very deep

trap for molecules in their absolute ground state. A prototype resonator allowed us to deter-

mine the optimum geometry and coupling conditions to maximise the electric field inside the

resonator. The final ultra-high vacuum compatible high power version is currently being assem-

bled in our workshop and will be tested with ultracold lithium atoms. The trap is applicable

to a large variety of polar molecules, straightforward to load and an ideal means to accumulate

molecules. Once the molecules are trapped further cooling, either sympathetically via collisions

with ultracold atoms, evaporation, cavity cooling or electro-optical cooling will be possible.

Finally, I presented the development of a cold supersonic beam of BH molecules. This molecule

appears to be particularly well-suited to direct laser cooling due to its favourable rotational struc-

ture and Franck-Condon factors. The laser cooling concept is described, and a first spectroscopic

investigation of the relevant molecular structure is presented. We are currently measuring the

Franck-Condon factors to determine the exact number of re-pump lasers needed for efficient

laser-cooling. We will then use a Zeeman slower to slow the molecules from a supersonic beam

and add magnetic field coils to investigate a magneto-optical trap for polar BH molecules.
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