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Abstract

Similarly to how complex numbers provide a possible framework for extending scalar

signal processing techniques to 2-channel signals, the 4-dimensional hypercomplex

algebra of quaternions can be used to represent signals with 3 or 4 components.

For a quaternion random vector to be suited for quaternion linear processing,

it must be (second-order) proper. We consider the likelihood ratio test (LRT) for

propriety, and compute the exact distribution for statistics of Box type, which include

this LRT. Various approximate distributions are compared. The Wishart distribution

of a quaternion sample covariance matrix is derived from first principles.

Quaternions are isomorphic to an algebra of structured 4× 4 real matrices. This

mapping is our main tool, and suggests considering more general real matrix problems

as a way of investigating quaternion linear algorithms.

A quaternion vector autoregressive (VAR) time-series model is equivalent to a

structured real VAR model. We show that generalised least squares (and Gaussian

maximum likelihood) estimation of the parameters reduces to ordinary least squares,

but only if the innovations are proper. A LRT is suggested to simultaneously test for

quaternion structure in the regression coefficients and innovation covariance.

Matrix-valued wavelets (MVWs) are generalised (multi)wavelets for vector-valued

signals. Quaternion wavelets are equivalent to structured MVWs. Taking into ac-

count orthogonal similarity, all MVWs can be constructed from non-trivial MVWs.

We show that there are no non-scalar non-trivial MVWs with short support [0, 3].

Through symbolic computation we construct the families of shortest non-trivial 2× 2

Daubechies MVWs and quaternion Daubechies wavelets.



6

Table of contents

Abstract 5

List of Figures 9

List of Tables 10

List of Publications 11

Introduction 13

1 Quaternion Linear Algebra 18
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 An algebraic introduction . . . . . . . . . . . . . . . . . . . . 21
1.2.2 Algebraic significance . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.3 Matrix representation . . . . . . . . . . . . . . . . . . . . . . . 26

1.3 Quaternion matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.1 Representation as real matrices . . . . . . . . . . . . . . . . . 27
1.3.2 Left-linear quaternion matrix multiplication . . . . . . . . . . 31
1.3.3 The matrix product as a projection and ensemble . . . . . . . 33
1.3.4 Determinant, trace and norm . . . . . . . . . . . . . . . . . . 36
1.3.5 Special matrices and decompositions . . . . . . . . . . . . . . 37

2 Quaternion Probability Distributions 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Characteristic functions . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 (Proper) normal distribution . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Wishart distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.1 A review of literature related to the quaternion Wishart distri-
bution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Improper normal distribution . . . . . . . . . . . . . . . . . . . . . . 53
2.6 Characterisations of propriety and second-order propriety . . . . . . . 58



7

3 The Quaternion Vector Autoregressive Model 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Quaternion multivariate linear regression . . . . . . . . . . . . . . . . 64
3.3 Quaternion VAR as a structured real VAR . . . . . . . . . . . . . . . 70

3.3.1 Quaternion VAR parameter estimation . . . . . . . . . . . . . 72
3.3.2 Numerical evaluation . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Widely-linear quaternion VAR as a real VAR . . . . . . . . . . . . . . 80
3.5 Testing for VAR propriety . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Likelihood Ratio Testing for Quaternion-Structured Covariance Ma-
trices 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 The LRT for quaternion propriety . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Maximum likelihood estimators of covariance . . . . . . . . . . 88
4.2.2 The LRT statistic and its moments . . . . . . . . . . . . . . . 90

4.3 The distribution of statistics of Box type . . . . . . . . . . . . . . . . 92
4.3.1 Exact distribution . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.3 Numerical comparison of approximations . . . . . . . . . . . . 112

5 Quaternion Wavelets and Matrix-Valued Wavelets 120
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2 A review of literature on quaternion wavelet transforms . . . . . . . . 124

5.2.1 Different types of quaternion wavelet transform . . . . . . . . 124
5.2.2 Problems with existing quaternion wavelet constructions . . . 127

5.3 Matrix and vector multiresolution analyses . . . . . . . . . . . . . . . 132
5.4 Matrix-valued scaling filters . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.1 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.2 Vanishing moments . . . . . . . . . . . . . . . . . . . . . . . 141
5.4.3 The fast matrix-valued wavelet transform . . . . . . . . . . . . 142
5.4.4 Computing matrix-valued wavelet filters . . . . . . . . . . . . 143

5.5 Trivial matrix-valued scaling filters . . . . . . . . . . . . . . . . . . . 145
5.5.1 Orthogonal similarity . . . . . . . . . . . . . . . . . . . . . . . 145
5.5.2 Decomposition of filters . . . . . . . . . . . . . . . . . . . . . 146
5.5.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 148
5.5.4 Triviality of MVSFs of length L ≤ 3 . . . . . . . . . . . . . . 148

5.6 Daubechies matrix-valued scaling filters . . . . . . . . . . . . . . . . . 150
5.6.1 Triviality of Daubechies MVSFs of length L ≤ 4 . . . . . . . . 153

5.7 Matrix representation of quaternion and algebra-valued wavelets . . . 155
5.7.1 Quaternion propriety . . . . . . . . . . . . . . . . . . . . . . . 158
5.7.2 Orthogonal similarity for quaternions . . . . . . . . . . . . . . 159
5.7.3 The biquaternion Fourier transform . . . . . . . . . . . . . . . 160



8

5.8 Examples of non-trivial Daubechies MVSFs . . . . . . . . . . . . . . 161
5.8.1 The 2× 2 Daubechies MVSFs of length L = 6 . . . . . . . . . 162
5.8.2 The quaternion Daubechies MVSFs of length L = 10 . . . . . 165

5.9 On the use of MVWs in practice . . . . . . . . . . . . . . . . . . . . . 170

Conclusion 173

References 176

A Additional Results 193
A.1 A note on rotation invariance . . . . . . . . . . . . . . . . . . . . . . 193
A.2 Additional results on random variables of Box type . . . . . . . . . . 194
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Introduction

The quaternions H = {a+ bi + cj + dk : a, b, c, d ∈ R} are a four dimensional gener-

alisation of the two dimensional complex algebra C = {a+ bi : a, b ∈ R}. Similarly

to how complex numbers can describe both points and linear operations in the plane,

quaternions can describe both points and linear operations in three or four dimen-

sions.1 Historically, the development of quaternions runs parallel to the development

of real linear algebra and matrix theory. Thus they provided a framework for dealing

with vector quantities before the widespread popularisation of matrices and vector

calculus in mathematics and physics.

Since then, quaternions have continued to be studied in detail, and have inspired

the development of more general ‘hypercomplex’ geometric algebras, such as Clifford

algebras. In practical applications quaternions are most commonly used to represent

3D rotations or orientations.

More recently, the use of quaternions as a way of expressing and manipulating 3-

and 4-dimensional quantities has seen a resurgence. Examples of intrinsically vector-

valued signals — such as those collected by vector sensors — which have been treated

as quaternion-valued include those from 3D anemometers (Cheong Took and Mandic,

2009) , 3D geophones (Grandi et al., 2007; Sajeva, 2009), EEG (Javidi et al., 2011),

gyroscopes (Jahanchahi et al., 2013), colour images (Sangwine and Ell, 2000) and

multispectral images (Xu et al., 2012).

Various common signal processing and image processing algorithms have been

1The set of all possible linear operations in the plane can be generated from addition, com-
plex multiplication and complex conjugation. In the case of quaternions, addition and quaternion
multiplication from both the right and the left are sufficient.
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generalised to work in the quaternion domain. These include the singular value de-

composition (SVD) (Sangwine and Le Bihan, 2006) which can be used for blind source

separation of polarised waves (Le Bihan and Mars, 2004), e.g. Rayleigh wave extrac-

tion (Sajeva, 2009), and for video quality assessment (Zhang et al., 2009). This has

been extended to the quaternion polynomial SVD for convolutive mixtures (Menanno

and Le Bihan, 2010), and to quaternion MUSIC (Miron et al., 2006), which estimates

the direction of propagation and polarisation of the sources. The quaternion eigen-

value decomposition (the quaternion SVD of a Hermitian matrix) gives us quaternion

principal component analysis (Sangwine and Ell, 2000; Xu et al., 2012), which pro-

vides low-rank approximations to quaternion covariance matrices. This is also treated

by Vı́a et al. (2010a), along with quaternion versions of multivariate linear regression,

canonical correlation analysis and partial correlation analysis in a unified approach.

For quaternion-linear and real-linear modelling (and prediction and filtering) of

quaternion-valued time-series, various algorithms have been adapted, such as Yule-

Walker vector autoregressive modelling (a.k.a. Wiener filtering) (Navarro-Moreno

et al., 2013), recursive least squares (Jahanchahi et al., 2010), least means squared

(stochastic gradient descent) (Cheong Took and Mandic, 2009, 2010a,b), and affine

projection (Jahanchahi et al., 2013). We will take a step back from these approaches

— which are mostly adaptive and online — to consider the underlying basics of

quaternion VAR modelling and least squares parameter estimation in Chapter 3.

Other recent applications of quaternion signal processing include seismic velocity

analysis (Grandi et al., 2007), seismic waveform deconvolution (Menanno, 2010) and

block coding for wireless communications (Seberry et al., 2008; Wysocki et al., 2009).

This thesis hopes to provide a rigorous foundation for quaternion-based statis-

tical signal processing by clarifying its relationship to standard real statistical sig-

nal processing and collecting useful results on quaternion linear algebra and related

probability distributions. We then consider in detail two important signal process-

ing tools: vector autoregressive (VAR) time-series modelling and wavelet transforms.

VAR is the fundamental model for interacting short-memory stationary time-series.

We will focus particularly on orthogonal discrete wavelet transforms, which generate

a sparse representation for piecewise smooth signals, and can be computed in linear
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time through filtering and down-sampling.

As a vector space, H is isomorphic to R
4. If we wish to also preserve the multi-

plicative structure, H can be represented by real quaternion-structured matrices of

the form 



a −b −c −d

b a −d c

c d a −b

d −c b a




.

This representation is a ∗-algebra homomorphism of the quaternion algebra into the

matrix algebra R
4×4. It allows us to map problems from the quaternion domain (or

quaternion matrix domain) to the more familiar real matrix domain, where we can

exploit the extensive machinery of real linear algebra and real multichannel signal

processing. This allows for simple or even trivial proofs for some of the questions

that arise when working in the quaternion linear setting.

We wish to develop a statistical theory of quaternion-valued random variables.

One way to do this is to simply note that H
n is a vector space isomorphic to R

4n

and use the usual real theory on R
4n. This is the ‘improper’ approach which ig-

nores the multiplicative structure of quaternions. The natural ‘proper’ extension of

second-order statistical theory to quaternions requires that we restrict ourselves to

real covariance matrices which have quaternion structure. This restriction then al-

lows for algorithms based on quaternion linear transformations rather than real linear

transformations (Vı́a et al., 2010a). Real linear transformations can still be expressed

in the quaternion domain, where they are called widely-linear transformations. How-

ever, we argue that doing so often complicates matters unnecessarily.

Although quaternion signal processing has mostly been developed as a generalisa-

tion of scalar real signal processing, with the ability to process vector-valued signals

whilst making only minor adjustments to the underlying algorithms; we believe that

wherever possible a more informative approach is achieved by viewing quaternion

signal processing as a special case of real vector signal processing with structural as-

sumptions. This wider context clarifies the implicit assumptions and restrictions of

the quaternion domain, and the possible benefits. For example, this allows us to show
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that for quaternion VAR parameter estimation (and more general multivariate linear

regression) optimality of the least squares solution requires a propriety assumption

on the errors, in the absence of which the generalised least squares (maximum like-

lihood) solution offers better results. This philosophy is obviously harder to apply

in areas where the corresponding vector signal processing approach is not sufficiently

well understood (which may be the original motivator behind the use of quaternions).

Even then, it may lead to interesting questions about the general vector case. For

example, in our work on quaternion wavelets, we were drawn to prove various results

concerning the more general matrix-valued wavelets.

It is worth noting that the methods we have developed here can be generalised

to algebras other than the quaternions, e.g. Clifford algebras. This can either be

done by adapting them directly to the relevant structured real matrix representation,

or by decomposing the algebra into a direct sum of unstructured real, complex and

quaternion matrix algebras.2

This thesis is organised as follows.

In Chapter 1 we collect standard results on quaternions and quaternion linear

algebra which will be needed for later chapters, allowing this thesis to be mostly self-

contained. The vector space isomorphism and algebra isomorphism are introduced

and their properties examined. The relationship between quaternion left-linearity and

right-linearity is explained. We also note that every semi-simple finite-dimensional

real algebra can be constructed as a product of real, complex and quaternion matrix

algebras. The only original result in this chapter is that general quaternion multipli-

cation can be interpreted in the real domain in terms of ensemble averaging and in

terms of an orthogonal projection imposing quaternion structure.

In Chapter 2 we define the proper quaternion normal distribution (resolving

some inconsistencies in the literature) and point out its fundamental relationship

with quaternion linearity. The improper quaternion normal approach is also exam-

ined. Interpreting the quaternion sample covariance matrix in terms of an orthogonal

projection allows for a simple derivation of the quaternion Wishart characteristic

2The latter approach can be applied to any semi-simple real algebra (see Section 1.2.2).
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function. We also give a novel derivation of the quaternion Wishart density (See

Appendix B.1).

In Chapter 3 we define the (proper) quaternion VAR time-series model. We show

that quaternion VAR modelling is a type of structured real VAR modelling. We prove

that, for a quaternion general (left-)linear model with uncorrelated (right-)proper

vector errors, least squares and generalised least squares estimation are equivalent.

As a particular case of this new result, generalised least squares (and maximum

likelihood) estimation of the parameters of a quaternion VAR model reduces to least

squares estimation. The likelihood ratio test (LRT) for propriety of a VAR time-series

is given. This chapter is an extension of the author’s paper Ginzberg and Walden

(2013b).

Many likelihood ratio test statistics are of Box type, including the LRT for quater-

nion propriety of a multivariate normal sample. In Chapter 4 we find the exact

density (PDF) and distribution function (CDF) for an arbitrary random variable of

Box type. Using the LRT for quaternion propriety (which we re-derive using the

orthogonal projection interpretation) as an example, we compare a wide range of ap-

proximations which have been suggested for this distribution. A new F approximation

is also considered. This chapter is largely based on the author’s paper Ginzberg and

Walden (2011).

We show in Chapter 5 that previous examples of discrete quaternion wavelets

in the literature are either incorrect or trivial. Using the real matrix representation,

we note that quaternion wavelets are simply matrix-valued wavelets (MVWs) with

quaternion structure. The MVW transform treats a vector-valued signal holistically,

as opposed to independent scalar wavelet transforms of the components. We prove

some non-existence results for short non-trivial orthogonal MVWs, and by solving a

set of quadratic design equations symbolically through Gröbner bases, give the first

example of (a family of) non-trivial Daubechies MVWs. We also construct the (family

of) shortest non-trivial quaternion Daubechies wavelets. This chapter is largely based

on the author’s paper Ginzberg and Walden (2013a).
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Chapter 1

Quaternion Linear Algebra

1.1 Introduction

Quaternions were invented by William R. Hamilton in 1843 as a four dimensional

generalisation of complex numbers (Hamilton, 1866). They have since seen a variety

of uses, most notably to represent and manipulate 3D rotations and orientations in

engineering (Crassidis et al., 2007) and computer graphics (Shoemake, 1985), where

they avoid the gimbal lock problem of Euler angles, and the high redundancy of 3×3

special orthogonal matrices.

In signal processing, algorithms based on quaternions can be used to deal with

2, 3 or 4-channel data arising from vector-sensors. Although quaternions are non-

commutative, extending mathematical methods based on complex (or real) numbers

to quaternions can often be done with few (or no) adjustments.

Non-linear quaternion methods, such as quaternion neural networks (Buchholz

and Le Bihan, 2006), have been considered. However, signal processing algorithms

often boil down to a particular application of a linear algebra algorithm, such as

the SVD, linear equation solving or change of basis. Replacing real matrices with

quaternion matrices in these methods allows for conceptually simple joint processing

of 3 or 4 component signals, but also introduces a restriction to quaternion-linearity.

This in turn introduces the implicit symmetry assumption of quaternion propriety

for the data, which will be discussed in Chapter 2.
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As a preliminary to the study of quaternion signal processing, this chapter collects

important known results on quaternion linear algebra, which will be used in later

chapters. For the most part, the properties of complex and quaternion matrices are

the same. We point out the occasional differences, which require special attention.

For example, conjugation is an automorphism for C, but not for H.

The quaternion linear structure appears to be rare in practical applications,1 how-

ever we note that it is a crucial building block that allows for generalisation to a wide

range of algebraic structures. As we note in Section 1.2.2, the importance of studying

the algebra of quaternions comes in part from Frobenius’s theorem, which states that

R, C and H are the only (finite-dimensional) real algebras in which every non-zero

element has an inverse. When combined with the Artin-Wedderburn theorem, this

implies that every finite-dimensional semi-simple algebra can be written as the direct

sum of matrix algebras with real, complex or quaternion entries. This is true in par-

ticular for hypercomplex Clifford algebras. Thus, results which can be proved for real

complex and quaternion matrices can be immediately generalised to matrices with

entries in a Clifford algebra.

Although not as ubiquitous as complex numbers, Clifford algebras appear in

physics. Examples include the algebra of physical space C�3,0(R) used in classical

and relativistic physics and — in the form of Pauli spin matrices — in quantum

methanics,2 and the Minkowski space-time algebra C�1,3(R) used in special relativ-

ity3 (Baylis, 2004). For a recent review of Clifford algebra applications see Hitzer

et al. (2013), which includes uses of the conformal geometric algebra C�4,1(R)4 and

applications in image analysis.

The key results of this chapter, which we use extensively throughout the rest of

1With the exception of polarised waves, which are intrinsically two dimensional and thus satisfy
a stronger structure; and problems involving unit orientation/rotation quaternions, which are not
closed under addition.

2C�3,0(R) is isomorphic to the algebra of biquaternions (quaternions with complex coefficients)
and to the matrix algebra C

2×2.

3C�1,3(R) is isomorphic to the quaternion matrix algebra H
2×2

4C�4,1(R) is isomorphic to the complex matrix algebra C
4×4
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this thesis, are Theorem 1.26, which shows that the structured real representation of

quaternion matrices preserves the vector space, multiplicative and involutive struc-

ture; and Remark 1.33 which shows that when viewed as a (real-)linear operator on

R
4n, the real matrix representation is equivalent to the quaternion matrix viewed as

a linear operator on H
n.

A similar structured real representation exists for complex numbers. Unlike

quaternions, complex numbers are commutative. Thus, all algebraic manipulations of

equalities remain valid when we change the domain of the variables from R to C. This

will often make extending real methods to the complex domain seamless. Because

matrix multiplication is not commutative, treating complex numbers as structured

real matrices obscures this critical property and can be counterproductive. When

dealing with quaternions, this downside of the matrix representation is not present,

whilst the non-commutativity simultaneously makes it harder to intuitively and seam-

lessly replace the real domain with the quaternion domain directly. This makes the

general-purpose use of real representation techniques particularly attractive in quater-

nion signal processing. Obviously, quaternion-domain thinking can still be simpler at

times (e.g. when interpreting quaternions as rotations), and the isomorphism between

quaternions and quaternion-structured real matrices allows for changing between ap-

proaches.

In Section 1.3.3 we show that in general quaternion matrix multiplication can be

viewed as an ensemble average or an orthogonal projection of (unstructured) real ma-

trix products. This suggests two possible general methods for both interpreting and

implementing quaternion linear algorithms based on their real equivalent. Although

special cases of the result are implicitly key to existing proofs (e.g. Andersson et al.

(1983, Theorem 3)), we have not seen this general insight expressed in the literature.
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1.2 Quaternions

1.2.1 An algebraic introduction

In this section we give essential definitions and properties of quaternions. All proofs

are straightforward and will be omitted.

Definition 1.1. A real algebra A is a vector space over R with a multiplication

satisfying ∀x, y, z ∈ A, ∀a, b ∈ R

x(y + z) = xy + xz,

(y + z)x = yx+ zx,

(ax)(by) = (ab)(xy).

Definition 1.2. The quaternions are the four-dimensional real algebra

H = {a+ bi + cj + dk : a, b, c, d ∈ R} .

Let q = a+ bi + cj + dk ∈ H, q0 = a0+ b0i + c0j + d0k ∈ H; their product is defined by

qq0 = (aa0 − bb0 − cc0 − dd0) + (ab0 + ba0 + cd0 − dc0)i

+ (ac0 − bd0 + ca0 + db0)j + (ad0 + bc0 − cb0 + da0)k.
(1.1)

Remark 1.3. The multiplication table for the four basis elements 1, i, j, k is:5

· 1 i j k

1 1 i j k

i i -1 k -j

j j -k -1 i

k k j -i -1

Definition 1.4. Let q = a+ bi + cj + dk ∈ H.

5Entry=(basis element of row)·(basis element of column). For example, i · j = k
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The real and imaginary parts of q are given respectively by

�(q) = a

�(q) =





�i(q)

�j(q)

�k(q)



 =





b

c

d



 .

q is said to be real iff (if and only if) �(q) = 0, and (pure) imaginary iff �(q) = 0.

We identify the subalgebra of quaternions which are real with real scalars, so R ⊂ H.

Definition 1.5. The conjugate of q is

q̄ = a− bi− ci− dk.

Definition 1.6. The amplitude or norm of q is the euclidean norm on R
4, i.e.

|q| =
√
qq̄ =

√
a2 + b2 + c2 + d2.

Definition 1.7. q is said to be a unit quaternion iff |q| = 1.

Remark 1.8. q is a pure imaginary unit quaternion iff q2=-1

Proposition 1.9. Conjugation •̄ : H → H is a ring involution, i.e. for q, q0 ∈ H

¯̄q = q,

q + q0 = q̄ + q̄0,

qq0 = q̄0q̄.

Equipped with this involution, H is a ∗-algebra.6

6A ∗-algebra is an algebra with an algebra involution. All quaternion ring involutions are also
algebra involutions, i.e. for any λ ∈ R, they satisfy the additional condition λq = λq̄. The corre-
sponding involution on R is the identity function. (In fact, the identity function is the only involution
on R.)
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Definition 1.10. Let i0 be a pure imaginary unit quaternion. Then

q(i0) = i0qi
−1

0
= i0qī0 = −i0qi0.

Proposition 1.11. Let i0 be a pure imaginary unit quaternion. Then •(i0) : H → H

is a ring anti-involution, i.e.

�
q(i0)

�(i0)
= q,

(q + q0)
(i0) = q(i0) + q(i0)

0
,

(qq0)
(i0) = q(i0)q(i0)

0
.

The terms ‘involution’ and ‘anti-involution’ are often used interchangeably, since

the distinction is only relevant for non-commutative rings. Since anti-involutions are

ring automorphisms, they are also known as involutive automorphisms. For an exten-

sive treatment of quaternion involutions and anti-involutions, see Ell and Sangwine

(2007).

Proposition 1.12. H is a unital7 associative normed division algebra, i.e. for

q, q0, q1 ∈ H

q = 1q = q1,

q(q0q1) = (qq0)q1,

|qq0| = |q||q0|,

and if q �= 0 then it has a unique inverse

q−1 =
q̄

|q|2 .

Corollary 1.13. H is a division ring (a.k.a. a skew-field). It satisfies all the axioms

of a field except for commutativity of multiplication.

7All associative division algebras are unital.
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Multiplication between quaternions and real numbers however commutes. Indeed

the subalgebra R ⊂ H is the center of H.

Each of the subalgebras {x+ yi : x, y ∈ R}, {x+ yj : x, y ∈ R}, {x+ yk : x, y ∈ R}
is isomorphic to C. In fact, if i0 is an arbitrary pure imaginary unit quaternion, then

since i2
0
= −1, the subalgebra {x+ yi0 : x, y ∈ R} is isomorphic to C.

Remark 1.14. For any q = a+ bi + cj + dk we can write q = a+ yi0 where

y =
√
b2 + c2 + d2

i0 =





i if y = 0

y−1(bi + cj + dk) if y > 0
.

This gives us a way to extend the definitions of standard complex functions

f : C → C to quaternion functions f : H → H.

Example 1.15. Define

exp(q) = exp(a+ yi0) = exp(a)(cos(y) + sin(y)i0).

Note that generalising functions of more than one variable is not as straightfor-

ward, since i0 may then be different for each variable.

1.2.2 Algebraic significance

The following uniqueness theorems make H a particularly interesting algebraic struc-

ture to consider.

Theorem 1.16 (Frobenius’ Theorem, (Palais, 1968)). R, C and H are the only finite-

dimensional real associative division algebras up to isomorphism.

Definition 1.17. The direct sum of two matrices A ∈ A
m×m

1
, B ∈ A

n×n

2
is the

block-diagonal matrix

A⊕B =

�
A 0m×n

0n×m B

�
.
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The direct sum of two (matrix) algebras is correspondingly

A
m×m

1
⊕ A

n×n

2
=

�
A⊕B : A ∈ A

m×m

1
,B ∈ A

n×n

2

�
,

equipped with block matrix multiplication.

Consider also the following result.

Theorem 1.18 (Artin–Wedderburn theorem (Grillet, 2007)). A (Artinian) ring is

semisimple if and only if it is isomorphic to a direct sum8

A
n1×n1
1

⊕ · · · ⊕ A
ns×ns

s

of finitely many matrix rings over division rings A1, . . . .,As.

Combining Theorems 1.16 and 1.18 gives us the following:

Corollary 1.19. Every (finite-dimensional) real semi-simple algebra is isomorphic

to a direct sum

A
n1×n1
1

⊕ · · · ⊕ A
ns×ns

s

of finitely many matrix algebras where A1, . . . .,As ∈ {R,C,H}.

Remark 1.20. A sufficient condition for a finite-dimensional algebra to be semi-simple

is that it has no non-trivial nilpotent right-ideals.

In particular, as shown by Garling (2011, pp. 97–98), Clifford algebras (with non-

degenerate inner product) 9 are isomorphic to either A
n×n or A

n×n ⊕ A
n×n, where

A = R,C or H. Tian (1998) shows how to construct such isomorphisms explicitly.

8Direct sum and direct product are equivalent in this finite context.

9A typical Clifford algebra Cl(p, q) is generated by p grade 1 basis elements squaring to 1 and q
grade 1 basis elements squaring to −1, and is fully determined by the (non-positive-definite) inner
product �x, y� = �(xy) defined for linear combinations of grade 1 basis elements x, y. More general
Clifford algebras Cl(p, q, r) can be defined, with an additional r grade 1 basis elements which square
to 0. In such cases the inner product is degenerate in the sense that ∃x �= 0 : �x, x� = 0.
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1.2.3 Matrix representation

C is a two-dimensional real vector space with basis 1, i. Consider complex multipli-

cation by a+ bi as a linear operator on R
2 with basis 1, i, then its matrix is given by:

�
a −b

b a

�
. (1.2)

Such structured 2× 2 real matrices form a real algebra which is isomorphic to C.

Similarly, if we consider multiplication on the left by a quaternion q = a+ bi+ cj+dk

as a real linear operator on R
4 with basis 1, i, j, k, then we can see from (1.1) that its

matrix is 



a −b −c −d

b a −d c

c d a −b

d −c b a




. (1.3)

Such structured 4× 4 real matrices form a real algebra isomorphic to H.

These representations provide the crucial connection between operations per-

formed in the real, complex and quaternion domains. They allow us to view complex

and quaternion statistical theory as specialisations of real statistical theory, with

structured linear transformations and structured covariance matrices.10 We note in

particular that the quaternion matrix representation of a complex number is the direct

sum of two copies of its complex representation.

These isomorphisms can be generalised to matrices with complex or quaternion

entries. This will be covered in Section 1.3.1, and provides the main tool of quaternion

linear algebra.

10It is worth noting that the isomorphism used is not unique since R4×4 has many automorphisms,
namely similarity transformations M → PMP−1, or — if we wish to preserve the ∗−algebra struc-
ture — orthogonal similarity transformations. In addition, there are representations of quaternions
as structured 2× 2 complex matrices.
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1.3 Quaternion matrices

In this section we will present certain standard results on quaternion matrices which

will be of use in later sections. We show that to a large extent, we can manipulate

quaternion matrices as we would complex matrices. For a more comprehensive treat-

ment of quaternion linear algebra, see Davis (2009); Farenick and Pidkowich (2003);

Zhang (1997).

Consider a quaternion matrixQ = A+Bi+Cj+Dk ∈ H
m×n, whereA,B,C,D ∈

R
m×n. Let u,v ∈ H

n be quaternion (column) vectors and let q, q0 ∈ H. Then

Q(uq + vq0) = (Qu)q + (Qv)q0, but generally Q(qu + q0v) �= q(Qu) + q0(Qv), i.e.

Q is right quaternion linear, but in general not left quaternion linear. This motivates

us to view H
n as a right module over H, i.e. a “vector space” where quaternion scalars

multiply on the right. Quaternion matrices are then the (right-) linear operators on

H
n.

An alternate but equivalent theory can be developed by treating quaternion ma-

trices as left-linear operators. We will touch on this topic in Section 1.3.2.

1.3.1 Representation as real matrices

Definition 1.21. Define the real vector space isomorphism V : Hm×n → R
4m×n

V(A+Bi +Cj +Dk) =





A

B

C

D




.

Q ∈ H
n×n can be thought of as a (real-) linear operator on R

4n = V(Hn).
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Definition 1.22. Define �• : Hm×n → R
4m×4n by

�• : A+Bi +Cj +Dk �→





A −B −C −D

B A −D C

C D A −B

D −C B A




. (1.4)

Remark 1.23. For each choice of m,n ∈ N we define a different function named

�•. This abuse of notation is unambiguous since the dimensions of the quaternion

matrix implicitly determine which definition is used. This remark also applies to

Definition 1.21 and similar operators defined later in this thesis.

Definition 1.24. Let �Hm×n be the image of Hm×n under �•, i.e.

�Hm×n =










A −B −C −D

B A −D C

C D A −B

D −C B A




: A,B,C,D ∈ R

m×n






. (1.5)

Matrices in �Hm×n are said to have quaternion structure.

Similarly, matrices of the form

�
A −B

B A

�
, A,B ∈ R

m×n (1.6)

are said to have complex structure.

Remark 1.25. In terms of tensor products, we have H
m×n = R

m×n ⊗H and �Hm×n =

R
m×n⊗ �H. Obviously, we could use instead �H⊗R

m×n as a representation, i.e. m×n

block matrices with 4× 4 quaternion-structured blocks.11

As in Andersson et al. (1983); Kabe (1984), we can define a (proper) quater-

nion normal distribution by giving the real and imaginary parts a joint real normal

11We identify the abstract tensor product of two vector spaces with the vector space generated by
the Kronecker products of their elements (see Lemma 3.4).
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distribution with a quaternion-structured covariance matrix. We will consider the

quaternion normal distribution in detail in Section 2.3.

Theorem 1.26. Let Q ∈ H
m×n,R ∈ H

n×p, x ∈ R. Then

�QR = �Q �R (1.7)

�Q+R = �Q+ �R
�(xQ) = x �Q
�(QH) = �QT (1.8)

Proof. To prove (1.7), note that (1.1) holds when a, b, c, d, a0, b0, c0, d0 are replaced

by real matrices, and use block matrix multiplication on the right hand side. The

remaining equalities are straightforward to check.

Remark 1.27. The matrix transpose operator •T is an involution for Rn×n, and the

conjugate (Hermitian) transpose operator •H is an involution for Hn×n.

For square matrices, Theorem 1.26 can be summarised as:

Corollary 1.28. �• : Hn×n → �Hn×n ⊂ R
4n×4n is an isomorphism of real *-algebras.

In particular, note that for the n× n identity matrix In we have �In = I4n.

Corollary 1.29. Q is invertible iff �Q is invertible, also

�(Q−1) =
�
�Q
�−1

.

Definition 1.30. We denote by GLn(H) the set of invertible quaternion n × n ma-

trices.

Proposition 1.31. Let Q ∈ GLn(H), then
�
QH

�−1

= (Q−1)H

Proof. �(QH)−1 =
�
�QT

�−1

=
�
�Q−1

�T

= �(Q−1)H
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Remark 1.32. For complex matrices, •̄ is an anti-involution and •T is an involution.

This is no longer the case with quaternion matrices. Also, in general
�
Q̄
�−1 �= (Q−1)

and
�
QT

�−1 �= (Q−1)T . One way of thinking about this is that, •̄ maps between the

right-module and left-module of quaternions, and these happen to be the same in the

complex case due to commutativity.

Remark 1.33. �• and V preserve the linear operator structure associated with a matrix,

i.e. for Q ∈ H
m×n, v ∈ H

n

V(Qv) = �QV(v).

Proof. This is the first column of the matrix equality �Qv = �Q�v.

More generally Remark 1.33 holds when replacing v by V ∈ H
n×k. This suggests

a simple way of coding quaternion matrix multiplication using real matrix multi-

plication. In terms of computational complexity, the real-domain product �QV(V )

requires exactly the same operations as the quaternion-domain product QV . The

product �Q �V however requires four times as many operations. Storing a 4 × 4 real

matrix also uses four times as much memory as storing a quaternion. Thus, although

using real matrix algorithms with quaternion-structured inputs will typically yield

the desired results, the use of specialised quaternion algorithms (or equivalently com-

puting and storing only the first block column of quaternion-structured matrices) can

potentially quadruple efficiency.

It is noted in Andersson et al. (1983) that �• and V however do not preserve the

bilinear (sesquilinear) form structure associated with a matrix. Instead, for Q ∈
H

m×n, v,w ∈ H
n

�
�
vHQw

�
= V(v)T �QV(w). (1.9)

This is the top left corner of the matrix equality �vHQw = �vT �Q �w.

In particular, for v,w ∈ H
n we can write the real euclidean inner product as

�
�
vHw

�
= V(v)T V(w). (1.10)

Remark 1.34. By considering the subalgebra C
n×n = {A+Bi : A,B ∈ R

n×n} ⊆
Hn×n and noting that the first 2n × 2n block of the quaternion representation �• is
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the complex representation (1.6), we can obtain the equivalent complex versions of

all results in this section.

1.3.2 Left-linear quaternion matrix multiplication

In the above, we implicitly defined the product of two matrices Q ∈ H
m×n and

S ∈ H
n×p as P = QS with (i, j)th element pi,j =

�
n

�=1
qi,�s�,j.

Because quaternion multiplication is non-commutative, we can define an alter-

nate right multiplication P = Q ∗R S, where (i, j)th element of P is now given by

pi,j =
�

n

�=1
s�,jqi,�. With this new multiplication, Hn is a left module and quaternion

matrices are left-linear operators.

Proposition 1.35. Let Q ∈ H
m×n and S ∈ H

n×p. Then QS = Q̄∗RS̄ and Q ∗R S =

Q̄S̄.

Proof. By Proposition 1.9
�

n

�=1
q�,jsi,� =

�
n

�=1
s̄i,� ¯q�,j and

�
n

�=1
si,�q�,j =

�
n

�=1
¯q�,j s̄i,�

The two types of multiplication are related by the fact that conjugation •̄ defines

an isomorphism between the algebra H and the alternate quaternion algebra which

we would obtain by taking ∗R instead of the usual quaternion multiplication.12 This

implies in particular that our choice for the definition of matrix multiplication is made

without loss of generality.

Thinking of Q∗R as a real linear operator leads to the following alternate struc-

tured real matrix representation of quaternion matrices.

Definition 1.36. Define �•R : Hm×n → R
4m×4n by

�•R : A+Bi +Cj +Dk �→





A −B −C −D

B A D −C

C −D A B

D C −B A




. (1.11)

12Another way of interpreting the alternate left-linear matrix multiplication ∗R is to note that

Q ∗R S =
�
STQT

�T
, and work with row-vectors being multiplied by matrices on the right instead

of column vectors being multiplied by matrices on the left.
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Remark 1.37. �qR is the real matrix corresponding to multiplication by q on the right:

for λ, q ∈ H, �qR V(λ) = V(λq).13

More generally, let Q ∈ H
m×n and λ ∈ H. Then

V(Qλ) = �λIm
R

V(Q) (1.12)

Lemma 1.38. Let M ∈ R
4m×4n. Then M ∈ �Hm×n if and only if M�λIn

R

= �λIm
R

M

∀λ ∈ H.

Proof. For clarity, we omit the qualifiers ∀q ∈ H
n, ∀λ ∈ H which apply to all equalities

in this proof.

Let M : Hn → H
m be given by M(q) = V−1(M V(q)). M is real-linear, hence it

is quaternion linear iff it satisfies M(qλ) = M(q)λ. Now by (1.12)

V(M(qλ)) = M V(qλ) = M�λIn
R

V(q),

and again by (1.12)

V(M(q)λ) = �λIm
R

V(M(q)) = �λIn
R

M V(q)

Since equality must hold ∀V(q) ∈ R
4n, M is quaternion linear iff M�λIn

R

= �λIn
R

M .

Quaternion linearity of M is equivalent to the existence of Q ∈ H
m×n such that

M(q) = Qq,14 so that by Remark 1.33 M V(q) = �QV(q).

Remark 1.39. In Lemma 1.38 it is actually sufficient to consider λ ∈ {i, j, k} or even

just λ ∈ {i, j} instead of λ ∈ H.15

Taken individually, commuting with right multiplication by λ = i is equivalent

to C
i-linearity, as defined in Vı́a et al. (2010b) and similarly for other pure unit

13The matrix representation �qR was first introduced by Ickes (1970) and referred to as the ‘quater-
nion transmuted matrix’.

14To prove this, note that linear transformations are uniquely determined by their action on basis
elements, which is uniquely encoded by the columns of Q.

15This is due to the real linearity assumption and k = ij.
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quaternions.

Definition 1.40. We define the sum of two sets A,B as A+B = {a+ b : a ∈ A, b ∈ B},
and the product with a set as Ab = {ab : a ∈ A}.

Corollary 1.41. Let λ ∈ H. If M ∈ �Hm×n + �Hm×n�λIn
R

then M�λIn
R

= �λIm
R

M

∀λ ∈ H.

Proof. This follows immediately from Lemma 1.38.

1.3.3 The matrix product as a projection and ensemble

In the interest of brevity, within this section we introduce the notation λ0 = 1, λ1 = i,

λ2 = j, λ3 = λ1λ2 = k.

Definition 1.42. Let ĥ : R4m×4n → R
4m×4n be given by

ĥ(M ) =
1

4

3�

i=0

�λiIm
R

M �λiIn
RT

=
1

4
M − 1

4

3�

i=1

�λiIm
R

M �λiIn
R

Definition 1.43. For a pure unit quaternion η, let ĉη : R4m×4n → R
4m×4n be given

by

ĉη(M ) =
1

2
M +

1

2
�ηIm

R

M�ηIn
RT

Remark 1.44. ĥ = ĉk ◦ ĉj

Proof.

4ĉk
�
ĉj(M )

�
= 2ĉk

�
M +�jIm

R

M �jIn
RT

�

= M +�jIm
R

M �jIn
RT

+ �kIm
R

M�kIn
RT

+ �kjIm
R

M �kjIn
RT

= 4ĥ(M )
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We proceed to prove that ĥ is the orthogonal projection onto �Hm×n. ĉη on the

other hand is the orthogonal projection onto �Hm×n + �Hm×n�ηIn
R

, and this could be

proved in the same fashion.

Lemma 1.45. Let M ∈ R
4m×4n and N ∈ �Hm×n + �Hm×n�ηIn

R

. Then

tr
�
NT ĉη(M )

�
= tr

�
NTM

�

Proof. Note that NT ∈ �Hn×m + �Hm×n�ηIm
R

. 16 Also note that η̄ = −η so �λIn
RT

=

−�λIn
R

. Using Corollary 1.41,

2 tr
�
NT ĉη(M )

�
= tr

�
NTM

�
− tr

�
NT �ηIm

R

M�ηIn
R
�

= tr
�
NTM

�
− tr

�
�ηIn

R�ηIn
R

NTM
�

= 2 tr
�
NTM

�

Lemma 1.46. Let M ∈ R
4m×4n and N ∈ �Hm×n. Then

tr
�
NT ĥ(M )

�
= tr

�
NTM

�
.

Proof. �Hm×n ⊆ �Hn×m + �Hm×n�ηIm
R

for η = j, k. Hence using Remark 1.44 and

applying Lemma 1.45 twice,

tr
�
NT ĥ(M )

�
= tr

�
NT ĉk(ĉj(M ))

�
= tr

�
NT ĉj(M )

�
= tr

�
NTM

�
.

Proposition 1.47. ĥ is the orthogonal projection of R4m×4n onto �Hm×n

Proof. By Lemma 1.38, for any M ∈ �Hm×n and i = 0, 1, 2, 3,

�λiIm
R

M �λiIn
RT

= �λiλ̄iIm
R

M = M .

16 Let A,B ∈ H
m×n. Then by Lemma 1.38

�
�A+ �B�ηIn

R
�T

= �AT −�ηIn
R �BT = �AH − �BH �ηIm

R

.
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Hence ĥ(M ) = M .

Now consider M ∈ R
m×n.

4�λ1Im
R

ĥ(M ) �λ1In
RT

=
n�

i=0

�λiλ1Im
R

M �λiλ1In
RT

= �λ1Im
R

M �λ1In
RT

+ �−λ0Im
R

M �−λ0In
RT

�−λ3Im
R

M �−λ3In
RT

+ �λ2Im
R

M �λ2In
RT

= 4ĥ(M ).

Multiplying the first and last expression by 1

4

�λ1In
R

on the right we get �λ1Im
R

ĥ(M ) =

ĥ(M ) �λ1In
R

. Similarly we can obtain �λ2Im
R

ĥ(M ) = ĥ(M ) �λ2In
R

. Hence by Re-

mark 1.39, ĥ(M ) ∈ �Hm×n. Thus, ĥ ◦ ĥ = ĥ and ĥ is a projection onto �Hm×n.

Now to prove orthogonality, since �N ,M� = tr(NTM ) is the scalar product on

R
4m×4n, it is sufficient to show that for any N ∈ �Hm×n,

�
N ,M − ĥ(M )

�
= 0,or

equivalently
�
N , ĥ(M )

�
= �N ,M�, which we know by Lemma 1.46.

Note from (1.4) that

�Q =
�
V(Q) V(Qi) V(Qj) V(Qk)

�
(1.13)

Consider X ∈ H
m×k, Y ∈ H

n×k. We wish to gain some insight on the quaternion

product XY H and its real representation. From (1.13) and (1.12) we have

�X �Y T = V(X)V(Y )T+V(Xi)V(Y i)T+V(Xj)V(Y j)T+V(Xk)V(Y k)T(1.14)

=
3�

i=0

�λiIm
R

V(X)V(Y )T �λiIn
RT

= 4ĥ(V(X)V(Y )T ). (1.15)

V(X)V(Y )T can be thought of as a “block matrix outer product”. Up to a

multiplicative factor of 4, through (1.14) we can think of �X �Y T as an ensemble average

of these products, taken over the ensemble of pairs {(Xλi,Y λi) : i = 0, 1, 2, 3}. On

the other hand (1.15) allows us to interpret quaternion multiplication in terms of the
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quaternion-structured projection of this “outer product”.

The results of this section suggest that it will often be possible to interpret algo-

rithms using quaternion matrices as real-valued algorithms which work on an artifi-

cial ensemble of observations, and/or as real-valued algorithms imposing an assumed

quaternion structure through projection(s).

1.3.4 Determinant, trace and norm

There are multiple possible definitions for quaternionic determinants, which have been

reviewed by Aslaksen (1996). We will use the Dieudonné determinant (Dieudonné,

1943).

Definition 1.48. Denote by |•|
C
the usual determinant for real and complex matrices.

The (quaternionic) determinant |•| : Hn×n → R of Q is17

|Q| =
��� �Q

���
1
4

C

. (1.16)

Remark 1.49. By Corollary 1.29, Q is invertible iff |Q| �= 0.

Remark 1.50. The determinant of a quaternion scalar (1× 1 matrix) is its norm.

Remark 1.51. The quaternionic determinant of a real matrix is the absolute value of

its real determinant, and hence does not generalise the real (or complex) determinant.

However, | • | and | • |C are equal for real symmetric positive semidefinite matrices.

Proposition 1.52 (Dieudonné (1943)). Let Q,R ∈ H
n×n. Then

|QR| = |Q| |R| ,

|QT | = |Q|. (1.17)

Corollary 1.53. Let Q ∈ H
n×n. Then

��Q̄
�� =

��QH
�� = |Q|.

17It can be shown that the determinant of a quaternion-structured matrix is always non-negative
by considering its singular value decomposition and the eigenvalue decomposition of the orthogonal
factors.
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Proof. Apply (1.17) followed by (1.16) and (1.8).

Proposition 1.54. Let Q ∈ H
n×n. Then

tr
�
�Q
�
= 4� tr(Q). (1.18)

Proof. This is immediate from (1.4) and the linearity of the trace.

The quaternion trace generalises the real and complex traces.

Corollary 1.55. Let Q,R ∈ H
m×n. Then

� tr(RTQ) = � tr(QRT ). (1.19)

Remark 1.56. In general tr(RTQ) �= tr(QRT ). Instead we have tr(RTQ) = tr(Q ∗R

RT ). This differs from the complex case. However, it still holds that

tr(RTQ) =
m�

i=1

n�

j=1

ri,jqi,j = tr(RQT ). (1.20)

Definition 1.57. The Frobenius or L2 norm of Q ∈ H
m×n is given by

||Q|| =
�

m�

i=1

n�

j=1

|qi,j|2
� 1

2

This generalises the usual real and complex Frobenius norm. Also note that by

Proposition 1.54

|| �Q||2 = tr
�
�QHQ

�
= 4 tr

�
QHQ

�
= 4||Q||2, (1.21)

1.3.5 Special matrices and decompositions

Definition 1.58. Q ∈ H
n×n is said to be

Normal iff QHQ = QQH

Unitary iff QHQ = QQH = In
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Hermitian iff QH = Q

Hermitian positive definite (QHPD) iff Q is Hermitian and vHQv > 0 ∀v ∈
H

n \ {0}

Upper (resp. lower) triangular iff qi,j = 0 ∀j < (resp. >)i.

Remark 1.59. All unitary matrices and all Hermitian matrices are normal.

Remark 1.60. Q is Hermitian (resp. QHPD) iff A is symmetric (resp. positive

definite) and B,C,D are skew-symmetric18.

Lemma 1.61. Let M ∈ GLn(H). Consider the map gM : Hn×n → H
n×n given by

Q �→ MHQM .

When restricted to the appropriate subset it is:

1. A bijection of Hn×n onto itself

2. A bijection of GLn(H) onto itself

3. A bijection of the space of n× n Hermitian matrices onto itself

4. A bijection of the space of n× n QHPD matrices onto itself

Proof.

1. g−1

M (Q) = gM−1(Q). Hence gM is invertible.

Let X ⊆ H
n×n. If ∀M ∈ GLn(H), gM (X) ⊆ X , then ∀M ∈ GLn(H),

gM−1(X) ⊆ X. Hence to prove that gM is a bijection for the set of matrice with

a certain property, it is sufficient to show that for arbitrary M , gM preserves

that property .

2. (gM (Q))−1 = gMH−1(Q−1).

3. gM (Q)H = gM (QH) = gM (Q).

18B is skew-symmetric iff BT = −B.
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4. Taking v = Mw gives wHgM (Q)w = vHQv > 0.

Definition 1.62. For Q ∈ H
n×n, a (right) eigenvalue-eigenvector pair is a pair

λ ∈ H, v ∈ H
n \ {0} satisfying

Qv = vλ.

Remark 1.63. We can define left eigenvalues in a similar fashion. The theory behind

left eigenvalues however is not immediately comparable to the complex case, and a

topic of current research (Davis, 2009).19

Theorem 1.64 (Quaternion Spectral Theorem). Let Q ∈ H
n×n. Then Q is normal

if and only if there exist U ,D ∈ H
n×n such that:

1. U is unitary, D is diagonal and Q = UHDU ,

2. the diagonal entries of D are in C and have non-negative imaginary part,

3. λ ∈ H is a (right) eigenvalue of Q iff ∃r ∈ H \ {0} : r−1λr is a diagonal entry

of D.

Proof. See Farenick and Pidkowich (2003) for the ‘only if’ statement.

For the ‘if’ statement,

QHQ = UHDHUUHDU = UHDHDU = UHDDHU = UHDUUHDHU = QQH .

Remark 1.65. More generally, we can perform a quaternion singular value decompo-

sition on any Q ∈ H
m×n (Le Bihan and Mars, 2004; Sangwine and Le Bihan, 2006).

Corollary 1.66. In Theorem 1.64 we have furthermore,

19Based on Section 1.3.2, the theory of right eigenvalues for right-linear transformations is equiva-
lent to the theory of left eigenvalues for left-linear transformations, but the theory of left eigenvalues
for right-linear transformations is not.
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• Q is Hermitian iff all entries of D are real.

• Q is QHPD iff all diagonal entries of D are real and positive.

Proof. By Lemma 1.61, Q is Hermitian (resp. QHPD) iff D is Hermitian (resp.

QHPD).

Lemma 1.67. Let Σ ∈ H
n×n be QHPD and Θ ∈ H

n×n be Hermitian. Then there

exist M ∈ GLn(H) and a diagonal matrix D with real entries such that

MHΣM = I

MHΘM = D.

Furthermore, if Θ is QHPD, then D has positive entries.

Proof. By Theorem 1.64 ∃ : V unitary, G diagonal with real positive entries, such

that Σ = V HGV . Let Q = G
1
2V .20 QH−1

ΘQ−1 is Hermitian (or QHPD) by

Lemma 1.61. By Theorem 1.64 ∃ : U unitary s.t. QH−1
ΘQ−1 = UHDU . Set

M = Q−1U−1.

Theorem 1.68 (Quaternion Cholesky Decomposition). Let Σ be QHPD. Then there

exists a unique upper triangular matrix T with positive real diagonal elements such

that Σ = THT .

Proof. The proof of Stewart (1998, Theorem 2.7) for the complex Cholesky decom-

position can be applied to the quaternion case without adjustments.

20G
1
2 is obtained by taking the square root of each real positive entry in the diagonal.
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Chapter 2

Quaternion Probability

Distributions

2.1 Introduction

In this chapter we provide the necessary definitions for a rigorous treatment of

quaternion-valued random variables. We will give the densities and characteristic

functions for the (proper) quaternion normal and Wishart distributions.

There are two main approaches to defining a quaternion normal distribution. The

improper approach defines a vector q to be quaternion normal iff the real vector

containing its components V(q) is real normal. Similarly to the complex case, the

quaternion covariance matrix fails to capture the full second order properties of an

improper quaternion random vector (i.e the real covariance matrix of V(q) cannot

be computed from the quaternion covariance matrix of q). Further information is

contained in three complementary quaternion covariance matrices. Thus a treatment

of improper distributions in the quaternion domain typically relies on augmented

quaternions and their covariance matrix, as we describe in Section 2.5. We are more

interested in the proper approach. A proper (a.k.a. H-proper) quaternion normal

distribution is a special case of the improper distribution where the complementary

covariance matrices are assumed to be 0 so that all second-order information is con-

tained in the quaternion covariance matrix. Vı́a et al. (2010a,b) show that using
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quaternion linear processing for partial least squares, principal component analysis,

multivariate linear regression or canonical correlation analysis is optimal for proper

quaternion random vectors, as opposed to the improper case where widely-linear

transformations are required.1

Working in H
n with widely-linear transformations is equivalent to working in R

4n

with real linear transformations. Working in the quaternion domain may still be

useful if the quaternion-linear part and/or the complementary parts of a real linear

transformation have meaningful interpretations for the problem at hand, since it helps

visualise and separate the corresponding four orthogonal subspaces of Rm×n. Widely-

linear complex modelling for example is popular for rotational processes because

the complex-linear and complementary parts correspond to counter-clockwise and

clockwise components (Rubin-Delanchy, 2008; Schreier, 2010). However, we have yet

to find a practical application of widely-linear quaternion signal processing where this

is the case.

Various sometimes inconsistent definitions and parameterisations of the proper

quaternion normal distribution have been suggested. In particular, we show that

right- and left-proper quaternion random vectors are conjugates. We choose to work

with the definition which best generalises the usual proper (a.k.a. circular) com-

plex normal distribution.2 This provides the foundation for later statistical work,

especially Chapter 4.

When quaternions are used to represent orientations they are restricted to have

unit norm, so distributions on the hypersphere S3 and multiplicative errors are a more

appropriate model than the quaternion normal distribution and additive errors. One

such distribution is the Bingham distribution (a.k.a. von Mises-Fisher distribution)

which was used by Glover and Kaelbling (2013) in a Kalman-like filter for orientation

tracking. We will not explore this avenue of research.

1Weaker assumptions than joint propriety are sufficient for partial least squares and multivariate
linear regression (Vı́a et al., 2010a, Table II). Also, even for improper data, when the sample size is
small proper models may be more efficient (Vı́a et al., 2010b, Figure 1).

2Arguably our choice of right-propriety instead of left-propriety is arbitrary. However, it is the
more common choice, possibly because of a preference for interpreting vectors as column vectors.
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We will present a novel first-principles derivation of the quaternion Wishart distri-

bution (the distribution of a quaternion sample covariance matrix), which we obtain

by adapting the method used by Goodman (1963) to derive the complex Wishart

distribution (see also Appendix B.1). We also discuss other derivations and generali-

sations in Section 2.4.1.

2.2 Characteristic functions

Definition 2.1. Let q be a quaternion random variable. Its characteristic function

is given by φq : H → C,

φq(θ) = E
�
exp

�
i�

�
θ̄q
���

.

Let q be a quaternion (column) vector random variable. Its characteristic function is

given by φq : Hn → C,

φq(θ) = E
�
exp

�
i�

�
θHq

���
.

Let Q be a m × n quaternion matrix random variable. Its characteristic function is

given by φQ : Hm×n → C,

φQ(Θ) = E
�
exp

�
i� tr

�
ΘHQ

���
. (2.1)

If Q is Hermitian, then it is enough to specify φQ(Θ) for Θ Hermitian.3

Proposition 2.2. Let q, q and Q be a quaternion random scalar, vector and matrix

respectively. Then

φq(θ) = φV(q) (V(θ)) , (2.2)

φq(θ) = φV(q) (V(θ)) , (2.3)

φQ(Θ) = φ �Q

�
1

4
�Θ
�

(2.4)

= φ�(Q),�i(Q),�j(Q),�k(Q) (�(Θ),�i(Θ),�j(Θ),�k(Θ)) , (2.5)

3This effectively gives us the joint characteristic function of
q1,1, q2,2, . . . , qn,n, 2q1,2, 2q1,3, . . . , 2q1,n, 2q2,3, . . . , 2qn−1,n.
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where the usual characteristic functions of real statistical theory are used on the right

hand side, and (2.5) is a joint characteristic function.

Proof. (2.2)-(2.3) follow from (1.10). (2.4) follows from Proposition 1.54. (2.5) can

be shown by expanding � tr
�
ΘHQ

�
in (2.1)

Since the quaternion characteristic function is directly related to the real charac-

teristic function, the same existence and uniqueness results apply.

2.3 (Proper) normal distribution

We will now consider (proper) quaternion random vectors which can be described

and manipulated by quaternion-linear transformations. This construction takes into

account the multiplicative structure of quaternions in addition to the real vector space

structure V(Hp) = R
4p.

A common way of constructing or generating real normal (a.k.a. Gaussian) ran-

dom vectors x0 ∼ N R(µ,Σ) is to first generate a vector of independent and identically

distributed (i.i.d.) standard normal random variables x and then take the linear (or

affine) combination x0 = Tx+ µ, where we factor Σ = TT T . The most straightfor-

ward way of constructing a standard complex normal random variable z ∼ N C(0, 1)

is to set z = 1√
2
(x+ yi) where x and y are i.i.d. real standard normal (N R(0, 1))

random variables.4 We can then construct a general (proper) complex normal random

vector z0 ∼ N C(µ,CCH) by taking

z0 = Cz + µ,

where z is a vector of independent N C(0, 1) random variables, C is a complex matrix

and µ is a constant complex vector. This leads to the usual definition of a (proper)

complex normal random vector (Goodman, 1963; Wooding, 1956).

The same process can be applied to quaternions. Define a standard quaternion normal

q ∼ NH(0, 1) as q = 1

2
(a+ bi + cj + dk) with a, b, c, d i.i.d. N R(0, 1). Then we can

4The normalisation ensures that E
�
|z|2

�
= 1.
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construct a general (proper) quaternion normal random vector q0 ∼ NH(µ,QQH)

by taking

q0 = Qq + µ,

where q is a vector of i.i.d. NH(0, 1) random variables, Q is a quaternion matrix and

µ is a constant quaternion vector. Any target covariance matrix Σ can be written

as Σ = QQH by Theorem 1.68. This desired link between quaternion (right-)linear

transformations and quaternion propriety is obtained by using the following definition.

Definition 2.3.

• Let µ ∈ R
p, Σ ∈ R

p×p symmetric positive definite. The real p-dimensional

normal distribution N R(µ,Σ) has density

fNR(µ,Σ)(x) = (2π)−
p

2 |Σ|−
1
2

C
exp

�
−1

2
(x− µ)TΣ−1(x− µ)

�
.

• Let µ ∈ C
p, Σ ∈ C

p×p Hermitian positive definite. The (proper) complex p-

dimensional normal distribution N C(µ,Σ) has density (Goodman, 1963, eqn.

(1.5))

fNC(µ,Σ)(x) = π−p |Σ|−1

C
exp

�
−(x− µ)HΣ−1(x− µ)

�
.

• Let µ ∈ H
p, Σ ∈ H

p×p QHPD. The (right proper) quaternion p-dimensional

normal distribution NH(µ,Σ) has density

fNH(µ,Σ)(x) =

�
2

π

�2p

|Σ|−2 exp
�
−2(x− µ)HΣ−1(x− µ)

�
. (2.6)

Proposition 2.4. q is distributed as NH(µ,Σ) iff V(q) is distributed as N R

�
V(µ), 1

4

�Σ
�
.

Proof. In (2.6), the term in the exponential is real, so we can apply (1.9). Finally,

|Σ|2 = 42p
���1
4

�Σ
���
1
2

C

and the real dimensionality is p0 = 4p.

Corollary 2.5. Let q ∈ H
n, q ∼ NH(µ,Σ) and M ∈ H

m×n. Then

Mq ∼ NH(Mµ,MΣMH).
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Proof. From Proposition 2.4, V(q) ∼ N R

�
V(µ), 1

4

�Σ
�
. From the real case �M V(q) ∼

N R

�
�M V(µ), 1

4

�M �Σ�MT

�
= N R

�
V(Mµ), 1

4

�(MΣMH)
�
. Apply Proposition 2.4.

Remark 2.6. For any unit quaternion u, q ∼ NH(µ,Σ) iff qu ∼ NH(µu,Σ).

Proof. This can be shown by applying a change of variables y = xu to (2.6),5 or

through Proposition 2.4 by applying Lemma 1.38 to the covariance matrix in the real

domain.

This invariance fully characterises quaternion propriety (Vı́a et al., 2010a, Lemma 9).

Since multiplication on the left by a quaternion is a special case of Corollary 2.5, a gen-

eral 4D rotation q �→ vqu, with u,v unit quaternions gives us vqu ∼ NH(vµu, vΣv̄).

Hence propriety is not a basis-dependent notion and in particular the basis element

1 plays no special role. This generalises the invariance under rotations q �→ uqū of

the 3D space of pure imaginary quaternions shown by Vı́a et al. (2010a).

Proposition 2.7.

• Let µ ∈ R
p, Σ ∈ R

p×p symmetric positive definite. The real p-dimensional

normal distribution N R(µ,Σ) has characteristic function

φNR(µ,Σ)(θ) = exp

�
θTµi− 1

2
θTΣθ

�
. (2.7)

• Let µ ∈ C
p, Σ ∈ C

p×p Hermitian positive definite. The (proper) complex p-

dimensional normal distribution N C(µ,Σ) has characteristic function (Wood-

ing, 1956, eqn. (20))

φNC(µ,Σ)(θ) = exp

�
�(θHµ)i− 1

4
θHΣθ

�
.

5And noting that (yū−µ)HΣ−1(yū−µ) = u(y−µu)HΣ−1(y−µu)ū = uū(y−µu)HΣ−1(y−µu).
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• Let µ ∈ H
p, Σ ∈ H

p×p QHPD. The (right proper) quaternion p-dimensional

normal distribution NH(µ,Σ) has characteristic function

φNH(µ,Σ)(θ) = exp

�
�(θHµ)i− 1

8
θHΣθ

�
. (2.8)

Proof. We will only prove (2.8). By Proposition 2.2 and Proposition 2.4

φNH(µ,Σ)(θ) = φNR(V(µ),
1
4
�Σ)(V(θ))

= exp

�
V(θ)T V(q)i− 1

8
V(θ)T �ΣV(θ)

�

= exp

�
�(θHµ)i− 1

8
�
�
θHΣθ

��

where we used (2.7), (1.10) and (1.9). Finally, note that since Σ is Hermitian, θHΣθ

is real.

The definition of quaternion normal distribution used by Andersson (1975) and

implicitly by Andersson et al. (1983); Møller (1986) is given in terms of V(q). Hence
the covariance parameter they choose is 1

4

�Σ. Kabe (1984) however chooses 1

8

�Σ as a

parameter instead.6 Both these definitions are equivalent to ours by Proposition 2.4.

Vakhania (1999) uses a left quaternion normal distribution. The difference flows from

their choice to treat Hn (and more general quaternion Hilbert spaces) as a quaternion

left module.7 The characteristic function of this left quaternion normal distribution

is given as

φNHLeft(µ,Σ)(θ) = exp

�
�(θHµ)i− 1

8
θTΣθ̄

�
. (2.9)

The right and left normal theories are equivalent, since the conjugate operator •̄ is

an isomorphism between the right and left modules, as we explained in Section 1.3.2.

This should allow a careful reader to use the theory of quaternion distributions on

6We find this choice rather unusual, as is their choice to parameterise the multivariate real normal
distribution in terms of 2Σ instead of Σ.

7The “scalar product” for the left module of quaternion column vectors is then given by �q, q0� =
qT q̄0.
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Hilbert spaces developed by Vakhania (1999) under either convention.

Proposition 2.8. q follows a (right) quaternion normal distribution NH(µ,Σ) iff q̄

follows a left quaternion normal distribution NHLeft(µ̄,Σ).

Proof. From (1.20) and (1.19), �(θTq) = �(qH θ̄) = � tr(q̄θH) = �(θH q̄). Hence

φq(θ̄) = φq̄(θ). Comparing (2.8) and (2.9), φNH(µ,Σ)
(θ) = φNH(µ,Σ)(θ̄) = φNHLeft(µ̄,Σ)(θ).

Cheong Took and Mandic (2011) also consider the quaternion proper normal dis-

tribution. They find that a p dimensional quaternion normal random vector is equiv-

alent to a 4p dimensional spherical real normal random vector, i.e. all components

are independent with equal variance. However, this result is incorrect for p > 1.

This is however the correct characterisation for quaternion normal random vectors

which are simultaneously right and left proper, implying 4D rotation invariance (see

Appendix A.1).

We believe that our definition and parameterisation for the quaternion normal

distribution are the most consistent with the usual complex normal distribution. It

also allows us to write Σ = E
�
(q − µ)(q − µ)H

�
for q ∼ NH(µ,Σ), so the covariance

parameter has its usual interpretation.

2.4 Wishart distribution

We are interested in the real (resp. complex/quaternion) distribution, denotedWR/C/H

p ,

of

W =
N�

i=1

viv
H

i
, (2.10)

where the vi are N i.i.d. samples from a N R/C/H (0,Σ) distribution.

Remark 2.9. We will be assuming in this section that the samples vi have mean zero.

If the mean is known, we may subtract it without loss of generality. If the mean is

unknown, let µ̂ = 1

N

�
N

i=1
vi. Then we have instead W =

�
N

i=1
(vi − µ̂)(vi − µ̂)H ∼

WR/C/H

p (Σ, N − 1). Again there is no loss of generality.
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Remark 2.10. The real/complex/quaternion sample covariance matrix is also Wishart

distributed. If W ∼ WR/C/H

p (Σ, N), then Σ̂ = 1

N
W ∼ WR/C/H

p

�
1

N
Σ, N

�
.8

We will prove that the sample covariance matrices considered here are the maxi-

mum likelihood estimators in Section 4.2.1.

Let vi ∼ NH(0,Σ) and let S =
�

N

i=1
V(vi)V(vi)T ∼ WR

4p

�
1

4

�Σ, N
�
. Then, as

we have shown in Section 1.3.3, we can interpret the quaternion product(s) in (2.10)

as a projection, so that �W = 4ĥ(S). We can also interpret �W as an ensemble

average of 4 real wishart matrices, obtained from the 4 ensembles of N samples

V(2vi),V(2vii),V(2vij),V(2vik).

Definition 2.11. W follows a Wishart distribution W ∼ WH

p
(Σ, N) iff �W = 4ĥ(S)

for some S ∼ WR

4p

�
1

4

�Σ, N
�
.

Remark 2.12. As with the real Wishart distribution, the quaternion Wishart distri-

bution can be defined for non-integer N .

Proposition 2.13.

• Let Σ ∈ R
p×p symmetric positive definite. The characteristic function of the

(real) Wishart distribution is (Muirhead, 1982, Theorem 3.2.3)9

φWR
p (Σ,N)(Θ) = |Ip − 2iΣΘ|−

N

2
C

. (2.11)

• Let Σ ∈ C
p×p Hermitian positive definite. The characteristic function of the

complex Wishart distribution is (Goodman, 1963)

φWC
p (Σ,N)(Θ) = |Ip − iΣΘ|−N

C
.

• Let Σ ∈ H
p×p QHPD. The characteristic function of the quaternion Wishart

distribution is

φWH
p (Σ,N)(Θ) =

����I4p −
i

2
�Σ�Θ

����
−N

2

C

. (2.12)

8In particular, if W ∼ WR/C/H

p (Σ, N) then E [W ] = NΣ so that E
�
1
N
W

�
= Σ

9Where Γ is replaced by 2Θ, due to our different way of defining the characteristic function for
a symmetric matrix (see footnote 3).
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Note that since the random matrices being considered are symmetric/Hermitian, we

restrict ourselves to Θ symmetric/Hermitian.

Proof. We will only prove (2.12). Let W ∼ WH

p
(Σ, N) then �W = 4ĥ(S) where

S ∼ WR

4p

�
1

4

�Σ, N
�
. So using (2.1), followed by Lemma 1.46 and (2.11).

φWH
p (Σ,N)(Θ) = φ�W

�
1

4
�Θ
�

= E

�
ei tr(

�ΘT 1
4
�W)

�

= E

�
ei tr(

�ΘT
ĥ(S))

�

= E

�
ei tr(

�ΘTS)

�

= φWR

4p( 1
4
�Σ,N)(

�Θ)

=

����I4p −
i

2
�Σ�Θ

����
−N

2

C

Note that the critical result used in the above proof is that ĥ is an orthogonal pro-

jection (through Lemma 1.46). The proof can be thus generalised to any structured

random matrix that can be constructed as the orthogonal projection of a real random

matrix with known characteristic function. This includes for example the complex

Wishart distribution, allowing a simpler proof than that of Goodman (1963). More

generally, as can be seen from Jensen (1988, p. 304), the maximum likelihood covari-

ance estimators for multivariate normal distributions with structured covariances will

fall into this category when the structure is linear for both the covariance and inverse

covariance.

Remark 2.14. The characteristic function of the improper quaternion Wishart distri-

bution10 can be obtained by simply replacing 1

4

�Σ in (2.12) with the covariance matrix

of V(q).

Theorem 2.15. Assume N > p− 1.

10The distribution of the quaternion sample covariance matrix of an improper quaternion normal
sample.
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• Let Σ ∈ R
p×p symmetric positive definite. The (real) Wishart density (Wishart,

1928) is

fWR
p (Σ,N)(W ) = C1|Σ|−N

2 |W |
N−p−1

2 exp

�
−1

2
tr
�
Σ−1W

��
.

• Let Σ ∈ C
p×p Hermitian positive definite. The complex Wishart density (Good-

man, 1963) is

fWC
p (Σ,N)(W ) = C2|Σ|−N |W |N−p exp

�
− tr

�
Σ−1W

��
.

• Let Σ ∈ H
p×p QHPD. The quaternion Wishart density is

fWH
p (Σ,N)(W ) = C3|Σ|−2N |W |2N−2p+1 exp

�
−2� tr

�
Σ−1W

��
. (2.13)

The normalisation constants are

C1 =

�
2

Np

2 π
p(p−1)

4

p�

m=1

Γ

�
N + 1−m

2

��−1

,

C2 =

�
π

p(p−1)
2

p�

m=1

Γ (N + 1−m)

�−1

,

C3 =

�
2−2Npπp(p−1)

p�

m=1

Γ (2(N + 1−m))

�−1

. (2.14)

Proof. We will only prove (2.13), (2.14). See Appendix B.1.

Note that for p ≤ N < 4p, the quaternion sample covariance matrix has a density

even though the corresponding unstructured real sample covariance matrix is singular

and does not.

2.4.1 A review of literature related to the quaternion Wishart distri-

bution

Kabe (1984, eq. (10)) gives the quaternion Wishart density (2.13), with Σ/2 as a
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covariance parameter, and sketches a proof11 using hypercomplex matrix calculus.

Andersson et al. (1983) describe it in terms of �Σ, �W with respect to the group in-

variant measure |W |−2p+1 dW , and give a proof using abstract results on group

invariance. Møller (1986) gives the density in terms of �Σ and the sample covariance

matrix 1

N

�W , but provides no proof.

The work of Loots et al. (2012) is very similar to ours.12 They choose the same

definition for the quaternion normal distribution and also make use of the real rep-

resentation to derive the quaternion Wishart characteristic function and density.13

Their Fourier inversion of the characteristic function relies on a series expansion in

zonal polynomials and on the hypergeometric function of a quaternion matrix ar-

gument. We believe that their derivation of the characteristic function relies on a

confusion between 1

4

�W and S due to notation.

Li and Xue (2010) derive the density of the quaternion Wishart distribution in

the very general singular non-central14 case.15 Again, the derivation is based on the

hypergeometric function of a quaternion matrix argument. It is worth noting that

their definition of a quaternion normal (column) vector corresponds to our (right)

quaternion normal distribution, but in their definition of a quaternion normal ma-

trix, the rows are left quaternion normal.16 Nonetheless, their quaternion Wishart

distribution still reduces to ours in the central non-singular case because the position

of the conjugate transpose is swapped in their version of (2.10).

11More specifically, it simply refers the reader to the proof of the complex case in Khatri (1965).

12We would like to point out that the author’s related work in this chapter dates from his 2011
transfer report and thus predates Loots et al. (2012).

13In both cases their findings agree with ours, with their Σ∗
0 corresponding to our 1

4
�Σ.

14The underlying multivariate normal samples may have a singular covariance matrix, they may be
correlated (with a known possibly singular real covariance which is corrected for when constructing
the Wishart matrix), and may have (possibly different) non-zero means (which are not corrected
for).

15They also consider the related quaternion matrix-valued F and beta distributions.

16The columns are restricted to having a real-valued quaternion covariance matrix. In other words,
their real vector version is real block spherical. Thus it is the rows, not the columns, which are to
be interpreted as individual samples.
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Andersson (1975) shows that covariance models defined by group invariance (un-

der an arbitrary subgroup of the group of orthogonal matrices) can be constructed

using just models with real, complex or quaternion structure, as in Corollary 1.19.

Thus the corresponding Wishart distributions can be mapped under an appropri-

ate isomorphism to collections of independent real, complex and quaternion Wishart

distributions. Jensen (1988) extends the classification result of Andersson (1975) to

include any linear constraints which translate to linear constraints on the inverse co-

variance matrix. In that case the decomposition may include simple Jordan algebras

of degree 2 17 in addition to real complex and quaternion matrix algebras. Another

generalisation, considered by Käufl (2012) (and references therein), combines group

invariance with graphical models and gives the corresponding Wishart distribution

as a generalised Riesz distribution. Andersson and Wojnar (2004); Wojnar (1999)

consider an even more general Wishart distribution, which can be applied to any set

of “covariance matrices” parametrised by an open proper convex homogeneous cone.

2.5 Improper normal distribution

For ease of exposition, we will again assume in this section that all normal random

vectors are zero-mean. All results can however be easily generalised.

Definition 2.16. We introduce the following notation for covariances

Σx,y = E
�
xyH

�

Σx = Σx,x = E
�
xxH

�
.

In particular, if x and y are real

Σx,y = E
�
xyT

�

Σx = Σx,x = E
�
xxT

�
.

17Up to isomorphism a simple Jordan algebra of degree 2 and dimension n has the basis
1, e1, . . . , en−1 with multiplication eiej = δi,j
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A general 2p-dimensional real normal distribution can be expressed as an improper

p-dimensional complex normal distribution (Schreier, 2010). The distribution of an

improper complex normal random vector z depends not only on the complex covari-

ance matrix Σz, but also on the complementary covariance matrix Σz,z̄ = E
�
zzT

�
.

The distribution is proper iff Σz,z̄ = 0, i.e. when z and z̄ are uncorrelated. A similar

approach is possible for quaternions.

Let a, b, c,d ∈ R
p be jointly normal real random vectors, and q = a+bi+cj+dk.

We can express the arbitrary 4p-dimensional real normal distribution of V(q) by an

improper quaternion normal distribution. Define the augmented vector

q =





q

q(i)

q(j)

q(k)




=





q

−iqi

−jqj

−kqk




= Ap V(q), (2.15)

where

Ap =





Ip iIp jIp kIp

Ip iIp −jIp −kIp

Ip −iIp jIp −kIp

Ip −iIp −jIp kIp




.

This matrix satisfies

ApA
H

p
= 4I4p.

Hence we have

Σq = ApΣV(q)A
H

p
(2.16)

ΣV(q) =
1

16
AH

p
ΣqAp. (2.17)

Remark 2.17. Other definitions are possible for the augmented quaternion vector q.
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For example, Cheong Took and Mandic (2010b) use





q

q̄

q̄(i)

q̄(j)




.

However, we believe that (2.15), which agrees with Vı́a et al. (2010a), is the most

elegant choice.

Note that for a pure imaginary unit quaternion η,

Σ(η)

x,y = −ηE
�
xyH

�
η = ηE

�
xηηyH

�
η = E

�
(−ηxη)(−ηyη)H

�
= Σx(η),y(η) .

Hence

Σq =





Σq Σq,q(i) Σq,q(j) Σq,q(k)

Σq(i),q Σq(i),q(i) Σq(i),q(j) Σq(i),q(k)

Σq(j),q Σq(j),q(i) Σq(j),q(j) Σq(j),q(k)

Σq(k),q Σq(k),q(i) Σq(k),q(j) Σq(k),q(k)





=





Σq Σq,q(i) Σq,q(j) Σq,q(k)

Σ(i)

q,q(i) Σ(i)

q Σ(i)

q,q(k) Σ(i)

q,q(j)

Σ(j)

q,q(j) Σ(j)

q,q(k) Σ(j)

q Σ(j)

q,q(i)

Σ(k)

q,q(k) Σ(k)

q,q(j) Σ(k)

q,q(i) Σ(k)

q




. (2.18)

Since all the blocks in (2.18) can be derived from the first row of blocks through

involutions, the second-order properties of q (or equivalently V(q)) can be described

by specifying the covariance Σq along with three complementary covariance matrices

Σq,q(i) = −E{qiqH i}

Σq,q(j) = −E{qjqH j}

Σq,q(k) = −E{qkqHk}.
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Proposition 2.18. The pdf for an improper quaternion normal distribution with

mean 0 and augmented covariance matrix Σq is

fNHImproper(0,Σq)
(q) =

�
2

π

�2p ���Σq

���
− 1

2
exp

�
−1

2
qHΣ−1

q q

�
.

Proof. Let x = V(q) be a 4p-dimensional real normal random vector. From (2.15)

and (2.16), qHΣ−1

q q = xTAH

p
ApΣ−1

x AH

p
Apx = xTΣ−1

x x. Also,
���Σq

��� =
��ApΣxAH

p

�� =
��AH

p
Ap

�� |Σx| = 44p |Σx|C.

We would like to stress that the improper quaternion distributions are equiv-

alent to conventional real normal distributions, and that quaternion widely-linear

processing in H
p is equivalent to conventional real-linear processing in R

4p. The

use of augmented quaternions and of the algebra isomorphism M �→ 1

4
ApMAH

p

between R
4p×4p and quaternion widely-linear transformations provides a notation

which may be convenient and insightful when comparing propriety to impropriety or

quaternion-linearity to real-linearity. This is because quaternion widely linear nota-

tion effectively separates real linear transformations into four orthogonal components

R
4m×4n = �Hm×n + �Hm×n�iIn

R

+ �Hm×n�jIn
R

+ �Hm×n�kIn
R
18 with meaningful interpre-

tations in the quaternion domain. Although augmented quaternion approaches may

for example aid in interpreting results obtained through real-linear processing when

the quaternion-linear component is physically meaningful, we believe that in general

it will be simpler to develop and use multichannel real-linear techniques, algorithms

and results in the familiar real matrix (or tensor) domain.

For a graphical representation of the relationship between the representations

behind the real structured and widely linear approaches, see the commutative diagram

Figure 2.1.

18Here we are treating R
4m×4n as a vector space. Note that �Hm×n�ηIn = �Hm×n, so the use of

involutions or quaternion scalar multiplication on the right is equivalent in this context.
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R
n×n

C
n×n �Cn×n

C

R
2n×2n

H
n×n �Hn×n �C2n×2n

C

R
4n×4n

AnR
4n×4nAH

n
H

4n×4n

I
2 ⊗

•

I
2
⊗

•

I
2
⊗

•

• ⊕ • (i)⊕ • (j)⊕ • (k)

∼

�•C

∼

�•

∼

1
4
An

• A
H
n

Figure 2.1: Commutative diagram containing the structured real (top three rows) and
augmented quaternion (fourth row) approaches to real/complex/quaternion linear
algebra. Hooked arrows represent injective real (∗-)algebra homomorphisms, whilst
arrows with ∼ represent real (∗-)algebra isomorphisms. Unlabeled arrows correspond
to the identity function. �•C denotes the complex representation (1.6).
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2.6 Characterisations of propriety and second-order propri-

ety

If we drop Gaussianity assumptions, we may still impose quaternion structure via

second-order propriety.

Definition 2.19. A random vector q ∈ H
n is second-order proper iff ΣV(q) ∈ �Hn×n.

We can generalise Proposition 2.4 to the second order properties of non-normal

random vectors.

Lemma 2.20. Let q ∈ H
n be a quaternion random vector. Then

E [V(q)] = V (E [q])

and

ĥ
�
ΣV(q)

�
=

1

4
�Σq.

In particular,

ΣV(q) =
1

4
�Σq

iff q is second-order proper.

Proof. The first equation holds because V is a linear operator. For the second note

that �• and ĥ are also linear operators, so that using (1.15)

�Σq = �E [qqH ]

= E

�
�qqH

�

= E
�
�q�qT

�

= E

�
4ĥ(V(q)V(q)T )

�

= 4ĥ
�
E
�
V(q)V(q)T

��

= 4ĥ
�
ΣV(q)

�

The last statement follows by Proposition 1.47.
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The “meaning” of propriety can be summarised by the following proposition.

Proposition 2.21. Given a zero-mean improper p-dimensional quaternion normal

random vector q ∼ NHImproper(µ,Σq) , the following statements are equivalent

1. q is proper.

2. ΣV(q) ∈ �Hp×p. (i.e. q is second-order proper.)

3. Σq,q(i) = Σq,q(j) = Σq,q(k) = 0p×p.

4. There exist M ∈ H
p×p and s ∼ NH(01×p, Ip×p) such that q = µ+Ms.

5. For any unit quaternion u, q − µ and (q − µ)u are identically distributed.

Proof. 1. ⇔ 2. by Proposition 2.4.

3. ⇒ 2. Is given in Vı́a et al. (2010a, Lemma 8). It can be shown directly by expand-

ing (2.17).

2. ⇒ 3. Can be shown by by expanding (2.16).

1. ⇔ 4. As we discussed in Section 2.3, this follows from Corollary 2.5 and Theo-

rem 1.68 by taking the Cholesky decomposition Σq = MMH .

3. ⇔ 5. Is equivalent to Vı́a et al. (2010a, Lemma 9), since u is a unit quaternion

iff u = ei0θ for some pure imaginary unit i0 and some θ ∈ R (see Example 1.15).

Alternatively, 2. ⇔ 5. follows from Lemma 1.38.

Part 5. of Proposition 2.21 gives us a geometric characterisation of propriety to

complement the constructive approach 4. and the structural approach 2.

Multiplying a real vector by a real scalar corresponds to scaling (and/or reflecting)

the underlying space R, so real-linear operators are invariant to such scaling. Multi-

plying a complex vector by a complex scalar rotates the underlying space C in addition

to scaling it. Complex-linear transformations and (zero-mean) proper complex dis-

tributions are precisely those that are invariant to such rotations. With quaternions

the geometric interpretation is less intuitive. Quaternion right-linear transformations

and (zero-mean) proper distributions are not invariant under all rotations q �→ vqu,

but only the subgroup of ‘right isoclinic’ rotations q �→ qu.
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One way of thinking about isoclinic rotations is to treat quaternions as a pair of

complex numbers through the Cayley-Dickson decomposition. Under an appropriate

choice of the basis i, j, k of the set of pure imaginary quaternions, 19 the isoclinic

rotation will rotate the two complex numbers by the same angle. The direction of

rotation may be inverted depending on whether the rotation is right or left isoclinic,

and whether we choose to decompose the quaternion as (a + bi) + (c + di)j or (a +

bi) + j(c− di).

One might think that it would be more interesting to consider full rotation invari-

ance instead of invariance under right isoclinic rotations. However, no 4D signal (or

nD signal with n ≥ 3) having correlated components can be invariant under general

4D (or nD) rotations. Indeed, the structure corresponding to full rotation invariance

(for n ≥ 3) is block sphericity. We show this in Appendix A.1.

19A basis rotation q �→ uqu−1 is an algebra automorphism of H and thus can be performed without
loss of generality.
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Chapter 3

The Quaternion Vector

Autoregressive Model

3.1 Introduction

The vector autoregressive (VAR) model is the fundamental model of linear multiple

time-series analysis. As noted by Lütkepohl (2006, p. 25), “Under quite general

conditions, every stationary, purely nondeterministic process [a process minus its

deterministic component] can be approximated well by a finite order VAR process.”

Another approach to modelling vector time series has been to use scalar complex

or quaternion AR processes. Complex-valued AR processes (Picinbono and Bondon,

1997) have been applied to temperature forecasting (Gu and Jiang, 2005), charac-

ter recognition (Nakatani et al., 1999) and shape recognition and extraction (Sekita

et al., 1992; Umeyama, 1997). A synthetic quaternion AR process was considered by

Cheong Took and Mandic (2010b),1 and adaptive (i.e. time-varying) quaternion AR

filters have been applied to short-term wind forecasting (Cheong Took and Mandic,

2009) and hand orientation modelling (Jahanchahi et al., 2013).

Navarro-Moreno et al. (2013) study the problem of linear prediction for stationary

quaternion-valued time-series. The method proposed corresponds to fitting an AR

1The process chosen had real coefficients however, so the components can be interpreted as an
ensemble of four independent realisations of a real AR process.
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model by solving the Yule-Walker equations. These are the models which we will cover

in this chapter. We will however choose to fit them through (forward) least squares,

and generalise them by allowing for multiple quaternion time-series. Through the

Yule-Walker equations, we will prove that VAR propriety defined through quaternion

linearity and innovation propriety is equivalent to VAR propriety defined through the

autocovariance matrix as in Chapter 2. This intuitive result underpins the validity of

their approach in the proper case.

Because of the structure imposed by quaternion (or complex) linearity, quaternion

(or complex) AR models are not appropriate for general vector signals. Widely-linear

approaches have been suggested to overcome this limitation. For example, Navarro-

Moreno et al. (2013) apply the AR model to 3D wind speed time-series and 4D wind

speed and air temperature time-series prediction, and find that the widely-linear

model outperforms the quaternion linear model. However, widely-linear VARs are

just reformulations of equivalent unstructured real VAR approaches.2

The value of quaternion linear modelling in this context is not the capacity to

write vector models as scalar models. It is a fourfold reduction in the number of real

parameters to estimate, which improves efficiency when the assumption of quaternion

linearity is (at least approximately) satisfied, and/or low sample size causes over-

fitting. This advantage persists when moving from scalar AR to VAR.

Baddour and Beaulieu (2002) simulate the fading of telecommunication signals

using complex-valued VAR processes.3 Complex VARs also appear in the eigensystem

VAR model (Krippner, 2010) whenever there are complex eigenvalues.4 We have not

found any application of quaternion VARs in the literature, but we believe that it is a

2Some differences in interpretation may nevertheless appear when using an improper quater-
nion formulation over a real VAR formulation. For example, the size of updates in the usual real
formulation of multivariate stochastic gradient descent is proportional to the estimation error in
the relevant component. In the widely-linear quaternion formulation of Cheong Took and Mandic
(2010b) however, the average estimation error across all components is used instead.

3The alternative real VAR approach is also proposed to allow for the improper case, avoiding
widely-linear formulations.

4However, these complex processes are improper and singular. The imaginary parts can be
computed deterministically from the real parts.
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model worth treating, since Corollary 1.19 implies that real complex and quaternion

VARs are the building blocks for AR models in arbitrary finite-dimensional real semi-

simple algebras, including Clifford algebras.

In this chapter, we define the proper quaternion vector autoregressive model, and

show that using the real matrix representation it can be treated as a real VAR model,

with quaternion structure assumptions imposed on the regression coefficients and the

innovation covariance. Thus proper quaternion VAR modelling is a special case of real

VAR modelling with linear structure constraints. A treatment of this general theory

can be found in Lütkepohl (2006, Sections 4, 5 and 9), covering parameter estimation,

asymptotic estimator distributions and hypothesis testing. We use this to develop a

likelihood ratio test for quaternion propriety which combines the regression coefficient

and innovation covariance assumptions.

For an unrestricted real VAR model generalised least squares (GLS) estimation

reduces to least squares (LS) estimation. In other words, the efficiency of LS estima-

tion is not degraded by anisotropic innovations. However, this is no longer true in

general when constraints (like quaternion structure) are imposed on the coefficients.

We prove that for proper quaternion VAR processes the result does hold. This implies

that LS estimation gives the Gaussian maximum likelihood and best linear unbiased

solution.

We will prove the equivalence between LS and GLS for a quaternion multivariate

linear regression (MLR) — the linear regression for a proper quaternion AR process

being a special case — and show that this requires an assumption of second-order

(right-) propriety of the errors for a left-linear model, and vice-versa. This new

optimality result is much stronger than the one given by Vı́a et al. (2010a).

Some of the material in this chapter was published in Ginzberg and Walden

(2013b), see p. 11.
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3.2 Quaternion multivariate linear regression

Proposition 3.1. Consider the standard real-valued (multiple) linear regression model

y = Xβ + e (3.1)

with error covariance matrix Σe. If there exists a matrix S such that ΣeX = XS,

then the LS estimator

β̂LS =
�
XTX

�−1

XTy (3.2)

and the GLS estimator

β̂GLS =
�
XTΣ−1

e X
�−1

XTΣ−1

e y (3.3)

are equal. We assume for simplicity that XTX, Σe and S are invertible.5

Proof. First note that

STXTΣ−1

e = (XS)TΣ−1

e = (ΣeX)TΣ−1

e = XTΣT

eΣ
−1

e = XT .

So we have

β̂GLS =
�
XTΣ−1

e X
�−1

ST−1

STXTΣ−1

e y

=
�
STXTΣ−1

e X
�−1

XTy

=
�
XTX

�−1

XTy

= β̂LS.

Remark 3.2. Zyskind (1967) shows that the existence of S is both necessary and

sufficient, and we can drop all invertibility assumptions in Proposition 3.1.

5Invertibility of XTX is equivalent to X having full rank (and dimension(y) ≥ dimension(β)).

XTΣ−1
e X is then also invertible since rank(X) = rank(Σ

− 1
2

e X).
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Proof. See Appendix B.2

Definition 3.3. Denote by vec : Rm×n → R
mn the operator which stacks the columns

of a matrix.

Lemma 3.4. Let ⊗ denote the Kronecker product.

Let U ∈ R
n×m,V ∈ R

m×�, and P ∈ R
�×k. Then

vec(UV P ) = [P T ⊗U ]vec(V ). (3.4)

Let U ∈ R
n×m,V ∈ R

�×k,P ∈ R
m×q, and M ∈ R

k×p, instead. Then

[U ⊗ V ][P ⊗M ] = UP ⊗ V M . (3.5)

Proof. We can see (3.4) as a definition of ⊗, in which case (3.5) follows by the asso-

ciativity of matrix multiplication. Alternatively, see e.g. Bernstein (2009, Proposi-

tions 7.1.6 & 7.1.9).

Remark 3.5. For λ ∈ H, �λIn = �λ⊗ In and �λIn
R

= �λR ⊗ In.

Lemma 3.6. Since �• ◦ V−1 = �V−1(•) : R4m×n → R
4m×4n is a real linear operator, we

can write it in matrix form as

vec( �Q) = Υ(m×n)vec (V(Q)) ,

where

Υ(m×n) =





In ⊗ I4 ⊗ Im

In ⊗�iR ⊗ Im

In ⊗�jR ⊗ Im

In ⊗ �kR ⊗ Im




=





�In
�Ini

R

�Inj
R

�Ink
R




⊗ Im ∈ R

16mn×4mn. (3.6)

Proof. This follows immediately from (1.13), (1.12) and Remark 3.5.
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Lemma 3.7. Let M ∈ H
k×m. Then

(I4n ⊗ �M )Υ(m×n) = Υ(k×n)(In ⊗ �M )

Proof. Consider an arbitrary Q ∈ H
m×n. Then

(I4n ⊗ �M )Υ(m×n) vec(V(Q)) = (I4n ⊗ �M ) vec( �Q)

= vec(�M �Q)

= Υ(k×n) vec(V(MQ))

= Υ(k×n) vec(�M V(Q))

= Υ(k×n)(In ⊗ �M ) vec(V(Q)).

Alternatively, Lemma 3.7 can be proven using (3.6) and Lemma 1.38. It is then

clear that the quaternion structure of �M is a necessary condition.

Theorem 3.8. Consider the quaternion multivariate linear regression (a.k.a. general

linear model)

Q = BW +E, (3.7)

were Q ∈ H
m×N ,W ∈ H

k×N are the observed quaternion response and regressor

matrices respectively, and E ∈ H
m×N is an error matrix whose columns are uncorre-

lated second-order proper quaternion random vectors with common covariance matrix.

Then the least squares estimator and generalised least squares estimator of the regres-

sion coefficients B ∈ H
m×k are equal and (assuming WWH invertible) given by

B̂ = QWH(WWH)−1. (3.8)
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Proof. Let y = vec(V(Q)), β = vec(V(B)) and e = vec(V(E)). Then

y = vec(V(BW )) + e

= vec
�
�B V(W )

�
+ e

= (V(W )T ⊗ I4m) vec( �B) + e

= (V(W )T ⊗ I4m)Υ
(m×k) vec(V(B)) + e

= Xβ + e,

where we define X = (V(W )T ⊗ I4m)Υ(m×k).

Let ΣE•,1 ∈ H
m×m be the common covariance matrix of the columns of E, and

let �M = ΣV(E•,1) =
1

4
�ΣE•,1 . Then Σe = IN ⊗ �M

Using the above, (3.5) and Lemma 3.7

ΣeX = (IN ⊗ �M )(V(W )T ⊗ I4m)Υ
(m×k)

= (V(W )T ⊗ �M )Υ(m×k)

= (V(W )T ⊗ I4m)(I4k ⊗ �M )Υ(m×k)

= (V(W )T ⊗ I4m)Υ
(m×k)(Ik ⊗ �M )

= XS,

where S = Ik ⊗ �M . Hence by Proposition 3.1, the LS and GLS estimators are equal.

Now to prove (3.8), let Ê = Q − B̂W . The LS estimator is the value of B̂

which minimises the sum of squared (absolute) errors, which is given by the squared

Frobenius norm ||Ê||2 = ||Q − B̂W ||2. By (1.21) 4||Ê||2 = || �̂E||2, so that we

may equivalently minimise || �Q − �̂B�W ||2. This is a structured real least squares

problem since we are restricted to �̂B ∈ �Hm×k. However, if we drop this restriction, it

becomes a standard real LS problem with solution �̂B = �Q�W T

�
�W �W T

�−1

(see e.g.

Lütkepohl (2006, pp. 71–72)). By Theorem 1.26 and Corollary 1.29 this is equal to

�•
�
QWH(WWH)−1

�
∈ �Hm×k and hence solves the original structured least squares

problem.

Remark 3.9. In practice, computing the LS estimator of B using a standard real LS
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algorithm on the real representation (such as �̂B = �Q/�W in Matlab) will be faster and

more numerically stable than using (3.8) explicitly. Even better, one may extrapolate

the rest of �̂B from its first row (which can be computed as V
�
B̂H

�T

= V
�
QH

�T
/�W ).

Note that in our proof of (3.8) we reduce the quaternion LS problem to a real LS

problem using the real representation �•. Similarly, Jiang and Chen (2007) reduce the

quaternion LS problem to a complex LS problem by using the complex representation.

The LS estimate is the choice of B̂ minimising the sum of (estimated) squared

errors ||Ê||2 = tr
�
ÊHÊ

�
, whereas the GLS estimate minimises

tr
�
V(Ê)TΣ−1

V(E•,1)
V(Ê)

�
. (3.9)

In the improper case, minimising tr
�
ÊHΣ−1

E•,1
Ê
�
instead of (3.9) — or equivalently

(by Theorem 3.8) using LS instead of GLS — effectively amounts to using the clos-

est quaternion-structured approximation to the true error covariance matrix. This

misspecification of the error covariance matrix will then lead to a loss of efficiency.

An interesting aspect of Theorem 3.8 is that (3.7) is left-linear in the parameter6

B whereas E is assumed to be right second-order proper.7 As we discussed in Sec-

tion 1.3.2, applying the quaternion conjugate •̄ to H maps left-linear operators to

right-linear operators and vice-versa, so in a quaternion right-linear version of The-

orem 3.8 we would need to assume that E is left second-order proper. The need for

propriety assumptions is in itself somewhat counterintuitive, since one might expect

that — as in the real case — each row of (3.7) could be treated independently as a

linear regression.

Vı́a et al. (2010a) interpret the parameter B in MLR as a real- or quaternion- lin-

ear transformation maximising the correlation between transformed regressors and

response. This allows them to fit MLR within a unified approach also covering

canonical correlation analysis and partial least squares. From this point of view,

6The ‘linear’ in ‘linear regression’ refers to linearity with respect to the parameter.

7This means that if we were to write the quaternion MLR (3.7) as a quaternion version of the
linear regression model (3.1), the product Xβ would actually have to be replaced by a left-linear
product X ∗R β, and the error vector e would be (right) second-order proper.
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right-propriety of the errors goes along with right-linearity of the transformation in

Theorem 3.8. They show that quaternion LS estimation is optimal in the following

sense:

Given the MLR (3.7) Let Y = V(Q) and X = V(W ). Then (3.7) becomes

Y = �BX + V(E). If we ignore the assumption of quaternion structure on �B then

this is a real MLR. Now if we treat the columns of W as random and assume they

are second-order proper and furthermore assume that the cross-covariance between

X and Y has quaternion structure, then the exact real MLR solution for �B has

quaternion structure. The real (or quaternion widely-linear) MLR then reduces to a

quaternion MLR (Vı́a et al., 2010b, Figure 1).

The projection interpretation of quaternion matrix multiplication from Section 1.3.3

sheds some light on the role played by the above assumptions. Assume for simplicity

that all variables are mean-adjusted. We can then interpret Σ̂X•,i = n−1XXT as

an estimator of the regressor covariance matrix (where each column X•,i of X is

treated as a sample) and Σ̂Y•,i,X•,i = n−1Y XT as an estimator of the cross covari-

ance between response and regressor (where each column Y•,i of Y is treated as a

corresponding sample). Now, ignoring structural assumptions, the real LS solution is

�̂B
R

= Y XT
�
XXT

�−1

= Σ̂Y•,i,X•,iΣ̂
−1

X•,i
.

Whilst from (3.8) using (1.15) the quaternion-linear LS solution is

�̂B
H

= �Q�W T

�
�W �W T

�−1

= 4ĥ
�
V(Q)V(W )T

�
(4n)−1(4n)

�
4ĥ

�
V(W )V(W )T

��−1

= ĥ
�
Σ̂Y•,i,X•,i

�
ĥ
�
Σ̂X•,i

�−1

.

This makes it clear that the difference between the real MLR and quaternion MLR

approaches is precisely that the latter forces quaternion structure on Σ̂Y•,i,X•,i and

Σ̂X•,i through orthogonal projection.
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Next, we will consider the quaternion VAR time-series model, and apply Theo-

rem 3.8 to VAR parameter estimation.

3.3 Quaternion VAR as a structured real VAR

Definition 3.10. Let A1, . . . ,Ap ∈ R
n×n, µ ∈ R

n, and let �t ∈ R
n be a sequence

of uncorrelated zero-mean random vectors with a common covariance matrix Σ� =

E{�t�Tt }. The process

yt = µ+A1yt−1 + . . .+Apyt−p + �t (3.10)

is a real VAR process ARR

n
(p).

Definition 3.11. Let A1, . . . ,Ap ∈ H
n×n, µ ∈ H

n, and let �t ∈ H
n be a sequence of

uncorrelated zero-mean second-order proper random vectors with a common covari-

ance matrix Σ� = E{�t�tH} ∈ H
n×n. Then the process

qt = µ+A1qt−1 + . . .+Apqt−p + �t

is a proper quaternion VAR process, i.e., proper ARH

n
(p).

Proposition 3.12. Let qt be the proper ARH

n
(p) process of Definition 3.11. Then

yt = V (qt) is the ARR

4n
(p) process

yt = V(µ) + �A1yt−1 + . . .+ �Apyt−p + V(�t). (3.11)

Furthermore, the innovations covariance is

ΣV(�) =
1

4
�Σ� ∈ �Hn×n. (3.12)

Conversely, consider an arbitrary ARR

4n
(p) process yt as in Definition 3.10. Then

qt = V−1(yt) is a proper ARH

n
(p) process if both the regression coefficients Ai and the

innovations covariance Σ� belong to �Hn×n
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Proof. (3.11) is immediate from Remark 1.33 and the (real) linearity of V . (3.12) is

given by Lemma 2.20. The converse is proved the same way.

By considering the real form V(qt) of a proper quaternion VAR process, we can

immediately translate standard definitions and theoretical results from real VARs to

quaternion VARs. For example, we can define qt to be stable (resp. stationary or

Gaussian) if and only if V(qt) is stable (resp. stationary or Gaussian). Then, as

in the real case (Lütkepohl, 2006, Proposition 2.1), every stable quaternion VAR is

stationary.

The particularity of the quaternion VAR is that we impose quaternion structure on

the parameters. Thus, to translate some results from real VARs to quaternion VARs,

we need to check (usually effortlessly) that the structure is preserved. For example,

any ARH

n
(p) process qt can be rewritten as a ARH

np
(1) process

�
qT

t
, . . . , qT

t−p+1

�T
,

even though the standard ARR

4np
(1) version of its ARR

4n
(p) representation will not

have quaternion structure due to the ordering of its components.

Theorem 3.13. The joint distribution of values from a stable proper ARH

n
(p) process

qt is second-order proper.

Conversely, for any stable ARR

4n
(p) process yt, qt = V−1(yt) is a proper ARH

n
(p)

process if its values are jointly second-order proper.

Proof. By considering the ARH

np
(1) process

�
qT

t
, . . . , qT

t−p+1

�T
, we may assume with-

out loss of generality that p=1. Let yt = V(qt). From Lütkepohl (2006, (2.1.18)&(2.1.22))

we can write

Σyt,yt−τ
=

∞�

i=0

Φτ+iΣV(�)Φ
T

i
,

where Φi ∈ R
4n×4n are the coefficients of the moving average representation of yt,

and are given by

Φi = �Ai

1
.

Hence Φi ∈ �Hn×n and Σyt,yt−τ
∈ �Hn×n. Finally note that pairwise second-order

propriety implies full second-order propriety.

For the converse, we may again assume without loss of generality that p = 1

by considering V−1

��
qT

t
, . . . , qT

t−p+1

�T�
. Second-order propriety implies Σyt,yt−τ

=
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1

4
�Σqt,qt−τ

∈ �Hn×n, and the Yule-Walker equations give us (Lütkepohl, 2006, p. 86)

A1 = Σyt,yt−1Σ
−1

yt
∈ �Hn×n.

We may assume without loss of generality that Σyt
is non-singular.8

Corollary 3.14. A Gaussian stable ARH

n
(p) process is proper in the sense of Defi-

nition 3.11 if and only if it9 is proper in the sense of Definition 2.3

Although Theorem 3.13 has been assumed implicitly by e.g. Navarro-Moreno et al.

(2013), we have not found a proof of it in the literature.

3.3.1 Quaternion VAR parameter estimation

Let qt be proper ARH

n
(p) as in Definition 3.11. Define

Q =
�
q1 . . . qN

�
∈ H

n×N

B =
�
µ A1 . . . Ap

�
∈ H

n×(np+1)

W =





1 1 . . . 1

q0 q1 . . . qN−1

q−1 q0 . . . qN−2

...
...

q−p+1 q−p+2 . . . qN−p





∈ H
(np+1)×N

E =
�
�1 . . . �N

�
∈ H

n×N

so that

Q = BW +E, (3.13)

8If Σyt is singular we may remove constant deterministic components from qt by applying a
quaternion eigenvalue decomposition to Σqt . If we do not remove these deterministic components

there may be superficially improper solutions in addition to the proper solution(s) A1 ∈ �Hn×n.

9or technically any finite subseries, since we have only defined the finite-dimensional quaternion
normal distribution.
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Let yt = V(qt). We can do the same with the real representation yt and define

B� =
�
V(µ) �A1 . . . �Ap

�
∈ R

4n×(4np+1)

Y = V(Q) =
�
y1 . . . yN

�
∈ R

4n×N

W � =





1 1 . . . 1

y0 y1 . . . yN−1

y−1 y0 . . . yN−2

...
...

y−p+1 y−p+2 . . . yN−p+1





∈ R
(4np+1)×N

E� = V(E) =
�
V(�1) . . . V(�N)

�
∈ R

4n×N ,

so that Y = B�W � +E�.

There are multiple ways of viewing the parameter estimation problem. Treating

it as a structured real VAR model we have Y = B�W � + E�. This would be the

approach of Lütkepohl (2006). Mapping (3.13) to the real domain directly we get

instead Y = V(Q) = V(BW ) + V(E) = �B V(W ) +E�. This is the approach used

in the proof of Theorem 3.8. Yet another interpretation comes from considering that

V(QH) = �W T V(BH)+V(EH). This is a real regression problem with an unstructured

parameter, but the correlation structure of V(EH) is harder to describe (due to our

choices of representation and notation).

Corollary 3.15. The LS and GLS estimators for the parameter B of a proper

ARH

n
(p) process are equal. If the process is Gaussian, then the maximum likelihood

estimator (MLE) is also equal to the LS estimator.

Proof. The LS and GLS estimators are equal by Theorem 3.8.

Under a Gaussianity assumption, the MLE of B is equal to the GLS estimator,

except that the covariance matrix ΣV(E•,1) =
1

4

�Σ� appearing in (3.9) is replaced by

its MLE (Lütkepohl, 2006, eqn. 5.2.17). Because we assume that the innovations

are proper, the covariance MLE is restricted to have quaternion structure (see also

Proposition 4.3). Since the LS estimator does not depend on ΣV(E•,1), replacing

ΣV(E•,1) with another quaternion-structured covariance matrix has no effect.
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Remark 3.16. When computing the MLE of a Gaussian ARH

n
(p) process, the first

p samples are treated as constants describing the initial state, rather than random

variables from a stationary process. This differs from the interpretation behind the

Yule-Walker approach.

Remark 3.17. For a scalar (ARH

1
(p)) quaternion autoregressive process, propriety of

the innovations covariance is equivalent to circularity ΣV(�) = σ2I4. In this case the

equivalence between LS and GLS estimation is obvious since Σe = σ2I4nN .

Let qt be an ARH

n
(p) process and consider the matrix-valued time-series �qt. Sim-

ilarly to Section 1.3.3, using (1.13), the four columns of this matrix form can be

interpreted as an ensemble of four ARR

4n
(p) time series V(qt),V(qti),V(qtj),V(qtk),

having shared regression parameters. (To be more precise, the constant term is dif-

ferent for each of the four time series, and is given by V(µ),V(µi),V(µj),V(µk)
respectively.) The first N columns of �E = �Q− �B�W are given by

V(Q)− �B V(W ) = Y −B�W �,

and the following three blocks of N columns are given by

V(Qi)− �B V(W i),

V(Qj)− �B V(W j),

V(Qk)− �B V(W k),

respectively, which are the corresponding matrices for V(qti),V(qtj) and V(qtk).

We can see from the above that treating the columns of �qt as an ensemble of real

ARR

4n
(p) observations and computing the ensemble least squares parameter estima-

tor (without imposing structural assumptions directly) gives us the desired structured

least squares solution. This ensemble-based approach can be generalised to any pro-

cess whose regression parameters are invariant under the action of a finite group.10

10Although quaternion propriety implies that the coefficients are invariant under the infinite group
of transformations of the form qt �→ qtu with u an arbitrary unit quaternion, we see that it is not
actually necessary to integrate over all unit quaternions.
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Other methods of parameter estimation can be considered. Navarro-Moreno et al.

(2013) show that a quaternion Durbin-Levinson algorithm can be used to efficiently

solve the Yule-Walker equations and compute parameter estimates from estimates of

the lagged covariances Σ̂qt,qt−τ
. This method assumes stability, so by Theorem 3.13

assuming 4Σyt,yt−τ
= �Σqt,qt−τ

will lead to a proper solution. For the widely-linear

case, this is simply a reformulation of the block Durbin-Levinson algorithm of Akaike

(1973). In the proper case, the quaternion-domain algorithm is still equivalent to

the block Durbin-Levinson algorithm, where the blocks are set to have quaternion

structure.11 In practice the proper Yule-Walker approach differs only through taking

ĥ(Σ̂yt,yt−τ
) as the autocorrelation estimator instead of Σyt,yt−τ

.

We will also consider a ‘naive method’, in which an unrestricted real LS estima-

tor for the parameters is computed, and then projected onto the nearest structured

solution using ĥ. Note that orthogonal projection onto a space containing the true

value always improves estimates. Indeed ∀M ∈ �Hm×n,M̂ ∈ R
4m×4n,

||M̂ −M ||2 = ||ĥ(M̂ )−M ||2 + ||M̂ − ĥ(M̂ )−M ||2.

3.3.2 Numerical evaluation

As an example, we will consider the quaternion linear but improper ARH

1
(1) process12

qt = a1qt−1 + �t,

11Taking account of this structure however allows for improvements to the algorithm which reduce
the number of required operations.

12As a consequence of Remark 1.14, every proper ARH

1 (1) process can be expressed as a pair of
uncorrelated realisations from a ARC

1 (1) process.
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where a1 = 0.7 + 0.5i and �t is an improper quaternion normal random variable with

covariance matrix

ΣV(�) =





1 0 0 0

0 γ 0 0

0 0 γ 0

0 0 0 γ




. (3.14)

We first set γ = 0.1 in (3.14). For various N , we generate a sample time-series of

length N+p = N+1 (allowing for a burn-in period of 10 000 samples to avoid initiali-

sation effects). We then estimate �a1 by �̂a1 using quaternion LS estimation, quaternion

GLS estimation, unstructured real LS estimation (which is equal to GLS), and the

naive LS method (the quaternion-structured projection of the real LS solution). The

estimation error is given by the L2 (or Frobenius) distance || �a1 − �̂a1||, which is equal

to 2|a1 − â1| (except in the unstructured real case where �̂a1 will not have quaternion

structure). We average the estimation error over 100 independent simulations to ob-

tain an approximate average error. The results are given in Figure 3.1. We see that

quaternion GLS marginally outperforms LS which in turn marginally outperforms

the naive method.

An ARR

4
(1) model has 16 real regression parameters in addition to 4 real mean

parameters and 10 degrees of freedom in the error covariance matrix. A proper

ARH

1
(1) model on the other hand has only 4 real regression parameters in addition

to 4 real mean parameters and 1 degree of freedom in the error covariance matrix.

We see that here reducing the number of parameters being estimated from 20 to 8

improves estimation accuracy by an amount comparable to an order of magnitude

increase in sample size.

In Ginzberg and Walden (2013b) we concluded that the loss of efficiency when

using LS instead of GLS for a quaternion VAR with improper error covariance was

minor in practice, especially when compared with the improvement obtained by re-

ducing the number of parameters through the assumption of quaternion structure.

This is confirmed by Figure 3.1 and will usually be true, however it is worth noting

that this is no longer true for cases of extreme impropriety. If the error covariance is
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Figure 3.1: Error in the estimation of �a1 for varying sample length N . From top to
bottom the methods used are real LS (squares), the naive projection of the real LS
(circles), quaternion LS (plain line) and quaternion GLS (dashed)
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singular, say

ΣV(�) =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0




,

then we can estimate the last row of �a1 exactly, which then gives us an exact estimate

for the whole of �a1. So in cases of extreme impropriety where ΣV(�) is near-singular,

one may get an arbitrarily large improvement from using the GLS estimator over the

LS estimator.

In Figure 3.2 we examine this effect by varying γ in (3.14) to change the degree

of impropriety. γ = 1 corresponds to propriety while very large or small values of γ

indicate high impropriety. We see that the GLS does indeed offer a large improvement

for highly improper errors, and no improvement when propriety holds (γ = 1). For

γ << 1, the resulting anisotropy in the steady state distribution of yt makes estimating

the first row of �a1 difficult for the real least squares algorithm, since the regressors

are small relative to the noise. This leads to large errors for the real LS and also by

extension for the naive method. We see that if not for this effect, the naive method

can provide a reasonably good approximation to quaternion LS, as we can see for

γ ≥ 1.

It is worth noting that, unlike typical linear regression, in the VAR context pa-

rameter estimation is not affected by the overall level of noise. Indeed, scaling of

the error covariance matrix leads to equal scaling of the process yt and thus of the

regressors (after mean-adjustment).

The approach in Navarro-Moreno et al. (2013) is based on Yule-Walker rather

than LS estimation of the regression coefficients, and they consider an example widely-

linear quaternion AR process. They also find that including improper errors decreases

the efficiency of the proper quaternion parameter estimates. However, we believe that

the mechanism for this effect is different in their example. Namely, we believe that

it is simply due to an increase in the overall impropriety of the process and thus an

increase in bias when the projection ĥ is mistakenly applied to the autocovariance

matrices.



Chapter 3. The Quaternion Vector Autoregressive Model 79

10
−4

10
−2

10
0

10
2

10
4

10
−3

10
−2

10
−1

10
0

10
1

γ (log scale)

er
ro

r (
lo

g 
sc

al
e)

Figure 3.2: Error in the estimation of �a for N = 100 and varying degrees of impropri-
ety controlled by γ. γ = 1 corresponds to propriety. From top to bottom the methods
used are real LS (squares), the naive projection of the real LS (circles), quaternion
LS (plain line) and quaternion GLS (dashed)
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3.4 Widely-linear quaternion VAR as a real VAR

Widely linear quaternion AR modelling has been used for example by Jahanchahi

et al. (2010) for wind forecasting.

Using the approach in Section 2.5 (see also Vı́a et al. (2010a)), and similarly to

improper complex signal processing (Schreier, 2010), a unified treatment of proper and

improper quaternion signals in the quaternion domain can be obtained by allowing

additional operations on the three involutions q(η) = −ηqη, η = i, j, k. However, as

was noted by Rubin-Delanchy (2008) for the complex case, improper quaternion AR

(or VAR) modelling is simply a more complicated reformulation of standard real VAR

modelling (see also Figure 2.1).

Definition 3.18. Let A1,B1.C1,D1, . . . ,Ap,Bp,Cp,Dp ∈ H
n×n, µ ∈ H

n, and let

�t ∈ H
n be a sequence of (possibly improper) uncorrelated zero-mean innovations with

common covariance ΣV(�). The process

qt = µ+A1qt−1 +B1q
(i)

t−1
+C1q

(j)

t−1
+D1q

(k)

t−1
+ . . .+Dpq

(k)

t−p + �t (3.15)

is a widely-linear quaternion VAR process, i.e., widely-linear ARH

n
(p).

Using the augmented quaternion formalism from Section 2.5, we may write

q
t
= An V(qt) = µ+A

1
q
t−1

+ . . .+A
p
q
t−p

+ �
t
,

where

A
�
=





A� B� C� D�

A(i)

�
B(i)

�
C(i)

�
D(i)

�

A(j)

�
B(j)

�
C(j)

�
D(j)

�

A(k)

�
B(k)

�
C(k)

�
D(k)

�




=

1

4
AnA

�

�
AH

n
.

It will usually be simpler to consider the ARH

4n
(p) representation

yt = V(qt) =
1

4
AH

n
q
t
= V(µ) +A�

1
yt−1 + . . .+A�

p
yt−p + V(�t),
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with coefficients given by

A�

�
= �A� + �B�

�iIn
R

+ �C�
�jIn

R

+ �D�
�kIn

R

.

This equation shows that the widely-linear quaternion VAR (3.15) is simply a refor-

mulation of the standard real VAR which draws attention to the orthogonal decom-

position R
4m×4n = �Hm×n + �Hm×n�iIn

R

+ �Hm×n�jIn
R

+ �Hm×n�kIn
R

.

Because there is no assumed structure in the ARR

4n
(p) representation of a widely-

linear ARH

n
(p) process, all results about real VARs can be applied directly, including

parameter estimation in the real domain.

Based on the ideas of Vı́a et al. (2010a), we can define Ck-proper ARH

n
(p) processes

as a structured subclass of widely-linear ARH

n
(p) processes. See Ginzberg and Walden

(2013b) for more details.

3.5 Testing for VAR propriety

When given a time-series, one may want to check whether a quaternion proper VAR

model is appropriate before imposing any parameter restrictions. In this section we

give the LRT for quaternion propriety of an ARH

n
(p) time-series. Since this is a

special case of the more general structured VAR testing problem, we simply apply

the results of Lütkepohl (2006, Sections 4 and 5 and Appendix C.7) and note that

propriety involves simultaneous parameter constraints on the regression parameters

and on the residual covariance matrix.

A different approach to the model selection problem was considered by Ujang

et al. (2013). They adaptively estimate both quaternion-linear and widely-linear

AR models (through stochastic gradient descent), and combine them by taking a

weighted average. The weights are adaptively tuned to favor the model with the

lower prediction error. This allows them to combine fast convergence and efficiency

for proper processes with the ability to model improper processes. The following

heuristic can then be used: When the algorithm puts a weight close to 1 on the

widely-linear model, then the process is believed to be improper. When it is the
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quaternion-linear model which has a weight close to 1, the process is believed to be

proper. Their approach has the advantages of being applicable to both stationary

and non-stationary signals, being online, and being based directly on the relative

performance of proper and improper models (for prediction).13 A disadvantage of

their approach compared to hypothesis testing is that the degree of certainty about

the presence of quaternion structure is hard to quantify.14

Proposition 3.19. Let us have an observation of length N +p from a stable ARH

n
(p)

process qt such that the errors V(�t) are i.i.d. with bounded fourth moment. Let

Σ̂H and Σ̂R be the (Gaussian) maximum likelihood estimators of the error covariance

ΣV(�) with and without propriety assumptions respectively. The (Gaussian) LR test

statistic T for testing H0: qt is proper against H1: qt is improper is given by

−2 ln(T ) = N(ln(|Σ̂R|)− ln(|Σ̂H|).

and −2 ln(T ) is asymptotically distributed as χ2

d
with d = 12n2p+6n2+3n degrees of

freedom under the null hypothesis H0.

Proof. In terms of the real representation yt = V(qt), propriety corresponds to linear

restrictions which reduce the number of free parameters in the regression coefficients

(excluding the mean) from (4n)2p to 4n2p, and the number of free parameters in the

error covariance matrix from 1

2
(4n)(4n + 1) to n + 2n(n − 1).15 The total reduction

in degrees of freedom is

d = (16n2p+ 8n2 + 2n)− (4n2p+ 2n2 − n) = 12n2p+ 6n2 + 3n.

By Lütkepohl (2006, Appendix C.7), including covariance matrix restrictions does

not fundamentally alter the standard results on LR testing which are applied to re-

13The latter is an important distinction since proper modelling may outperform improper mod-
elling when the true degree of impropriety and/or the sample size are small (Vı́a et al., 2010b, Figure
1).

14It may however still be possible to assign p-values based on Monte Carlo methods.

15Note that the diagonal elements of a quaternion covariance matrix are real.
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gression parameter restrictions. Thus, the proposition follows from Lütkepohl (2006,

Proposition 4.1).

By Corollary 3.15, the Gaussian MLE of the regression parameters B� under H0

is given by the structured LS estimator corresponding to the quaternion LS estimator

(3.7), which we denote by B̂�

H
, and which does not depend on ΣV(�). The MLE of B�

under H1 is given by the standard (unstructured) real LS estimator, which we denote

by B̂�

R
and also does not depend on ΣV(�). As in Lütkepohl (2006, (4.2.11)-(4.2.12)),

the Gaussian MLE of ΣV(�) under H1 is

Σ̂R =
1

N
Ê�

R
Ê�

R

T

,

where Ê�

R
= Y − B̂�

R
W �.

If we did not impose quaternion structure on Σ̂H, it would be similarly be given

by 1

N
Ê�

H
Ê�

H

T

, where Ê�

H
= Y − B̂�

H
W �. We can see from Lütkepohl (2006, (3.4.5))

that, for fixed B�, the Gaussian likelihood function of E� is the likelihood function

for a sample of N i.i.d N R
�
04n×1ΣV(�)

�
random variables. As we will show in Propo-

sition 4.3, under the assumption of quaternion structure, the MLE of a covariance

matrix is obtained by orthogonal projection of the unstructured MLE. Thus the MLE

under H0 is

Σ̂H =
1

N
ĥ
�
Ê�

H
Ê�

H

T
�
.

We now have all the necessary elements to compute the LRT.

We will look at likelihood ratio testing for quaternion propriety and maximum

likelihood estimation in much more detail in the following chapter, where we consider

the problem of testing from an i.i.d. sample whether a multivariate normal distri-

bution is quaternion proper. Note however that the results in the next chapter are

not directly applicable to VAR modelling, since the (block-) Toeplitz structure of

the signal covariance matrix must be taken into account (in addition to any a-priori

specification of p).16

16Note that although general Toeplitz covariance structure cannot be described by group invari-
ance, circulant structure corresponds to circular shift invariance and can be. Thus it may be possible
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to use the results of the next section to obtain the exact distributions for propriety and other struc-
ture tests applied to VAR time-series, through circulant embedding. Alternatively, the results of
Wojnar (1999) could be used. However, covariance estimates will be rank deficient if n > 1 and no
assumption is made on p. This problem is left for future research.
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Chapter 4

Likelihood Ratio Testing for

Quaternion-Structured Covariance

Matrices

4.1 Introduction

This chapter looks at the basic problem of determining whether an i.i.d quaternion-

vector-valued sample is proper. As we noted previously, because the covariance struc-

ture of quaternion propriety arises naturally from the way quaternion multiplication

is defined, its presence begs for a treatment in the quaternion domain. Quaternion

linear methods will then outperform their real linear counterparts due to having fewer

free parameters. Conversely, the real domain is more appropriate when handling im-

proper data, since the full flexibility of real linearity is then required (or equivalently,

one may work with quaternion wide-linearity in the augmented quaternion domain).

Mistakenly assuming quaternion propriety will introduce bias, whilst failing to ac-

knowledge quaternion propriety will harm efficiency.

We will first describe the likelihood ratio test (LRT) for propriety of a multivariate

quaternion normal distribution. Following the spirit of Andersson et al. (1983), and

expanding on certain points for clarity, we show that because quaternion-structured

real covariance matrices are a subset of complex-structured real covariance matrices
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(see the third row of Figure 2.1), the LRT for quaternion propriety is the product of

the LRT for complex propriety and the LRT for quaternion propriety given complex

propriety.

Vı́a et al. (2011) give an augmented quaternion domain derivation, and link the

LRT to the information-theoretic Kullback-Leibler divergence. Vı́a and Vielva (2011)

introduce the locally most powerful invariant test as a better alternative to the LRT

when the amount of impropriety is small.

By computing the moments of the LRT, we show that it belongs to the general class

of random variables of Box type. Many common tests are of Box type, including e.g.

Wilks’ statistic for multivariate analysis of variance and its quaternionic counterpart

(Loots et al., 2012). Wojnar (1999) shows that under very general conditions, a LRT

between two nested covariance models is of Box type. As was pointed out by Jensen

(1991), the ten LRT statistics of Andersson et al. (1983) are of Box type.1 Any LRT

between nested group-invariance-based covariance structures can be obtained as a

product of these ten tests, similarly to our derivation for the quaternion propriety

LRT (Andersson, 1975). This also allows one to easily obtain the moments. Käufl

(2012) shows that the LRT between two nested invariant (Gaussian) graphical models

is of Box type. This includes as special cases testing (non-invariant) nested graphical

models, as well as the group invariance structures considered by Andersson (1975).

We derive the exact density (PDF) and distribution function (CDF) for general

random variables of Box type. These are given in terms of Meijer’s G-function, or

more generally Fox’s H-function. Because routine computation of the exact CDF

is impractical, we review many approximations which have been suggested in the

literature for random variables of Box type. Knowledge of the exact distribution

allows us to compare their accuracy for the LRT for quaternion propriety. A novel

approximation based on the Pearson system of curves (Craig, 1936), which consists

in fitting the moments of an F distribution exactly, is also suggested and found to

1Except technically the statistic for testing equality of covariances, which we must first multiply

by the constant

�
(N1+N2)

N1+N2

N
N1
1 N

N2
2

�δp

, where δ = 1, 2, 4 for the real, complex and quaternion cases

respectively.
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be extremely accurate. Simpler methods fitting a gamma or chi-squared distribution

are however more appropriate for large samples.

Some of the material in this chapter was published in Ginzberg and Walden (2011),

see p. 11.

4.2 The LRT for quaternion propriety

Let q = a + bi + cj + dk be a (possibly improper) p-dimensional quaternion normal

random vector with mean 0. Let q1, . . . , qN be an i.i.d. sample from the distribution

of q and let r1 = V(q1), . . . , rN = V(qN) be the corresponding i.i.d. 4p-dimensional

real-valued random vectors, ri ∼ N R(0p×1,Σr).

We shall assume that N ≥ 4p and denote the (unrestricted) maximum likelihood

estimator of Σr by Σ̂R, where

Σ̂R =
1

N

N�

�=1

r�r
T

�
∼ WR

4p

�
1

N
Σr, N

�
. (4.1)

Definition 4.1. Let PR denote the set of 4p×4p symmetric positive definite matrices.

Let PC ⊂ PR and PH ⊂ PR denote the set of symmetric positive definite matrices with

complex structure (1.6) and quaternion structure (1.5) respectively.

We are interested in testing whether q is proper, which by Proposition 2.4 is equiv-

alent to testing whether Σr has quaternion structure. In other words, we consider

the hypothesis test

H0: The 4p× 4p real covariance matrix Σr has quaternion structure. [H0: Σr ∈ PH

versus H1: Σr ∈ PR \ PH.]

Since PH ⊂ PC, we can break this down into two tests with nested hypotheses.

1. Test 1. HC

0
: The 4p×4p real covariance matrix Σr has complex structure. [HC

0
:

Σr ∈ PC versus HC

1
: Σr ∈ PR \ PC.]

2. Test 2. HH

0
: The 4p × 4p covariance matrix Σr with complex structure has

quaternion structure. [HH

0
: Σr ∈ PH versus HH

1
: Σr ∈ PC \ PH.]
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4.2.1 Maximum likelihood estimators of covariance

Let

z =

�
a+ ci

b+ di

�
.

Then Σr ∈ PR can be written as

Σr =

�
Σ�(z) Σ�(z),�(z)

Σ�(z),�(z) Σ�(z)

�
.

Σr ∈ PC is equivalent to complex propriety of z which is equivalent to C
j-propriety

of q as defined by Vı́a et al. (2010a). Also, PC = PR ∩
�
�Hp×p + �Hp×p�jIp

R
�

and

PH = PR ∩ �Hp×p. This section relies on the nestedness implied by the third row of

Figure 2.1, where �Hp×p + �Hp×p�jIp
R

was denoted �C2n×2n

C

.

Proposition 4.2. Let us consider the restriction of ĉj (Definition 1.43) to PR.

ĉj (Σr) =
1

2
Σr +

1

2
�jIp

R

Σr
�jIp

RT

(4.2)

=
1

2

�
Σ�(z) +Σ�(z) Σ�(z),�(z) −Σ�(z),�(z)

Σ�(z),�(z) −Σ�(z),�(z) Σ�(z) +Σ�(z)

�
, (4.3)

where

�jIp
R

=

�
02p −I2p

I2p 02p

�
.

Then Σ̂C = ĉj(Σ̂R) is the maximum likelihood estimator of Σr under HC

0
.

Proof. It is clear from (4.3) that Σ̂C has complex structure, and from (4.2) that it is

a convex combination of positive definite matrices and hence positive definite. Thus

Σ̂C ∈ PC.

We wish to maximise the normal likelihood function

(2π)−2pN |ΣC|−N/2 exp
�
− tr

�
Σ−1

C
Σ̂R

�
/2
�

(4.4)
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over ΣC ∈ PC. Since Σ̂C = ĉj(Σ̂R) and Σ−1

C
has complex structure,2 by Lemma 1.45

(4.4) is equal to

(2π)−2pN |ΣC|−N/2 exp
�
− tr

�
Σ−1

C
Σ̂C

�
/2
�
.

Since the sample covariance is the maximum likelihood estimator in the unstructured

real case, this is maximised over ΣC ∈ PR ⊃ PC by setting ΣC = Σ̂C. Since Σ̂C ∈ PC

this is also the restricted solution.

(See also Andersson et al. (1983, eqn. 12, Theorem 1).)

Proposition 4.3. Let us consider the restriction of ĥ (Definition 1.42) to PR. Then

Σ̂H = ĥ(Σ̂R) = ĉk(Σ̂C) is the maximum likelihood estimator of Σr under HH

0
.

Proof. By Proposition 1.47, Σ̂H has quaternion structure, and from (1.13) it is a

convex combination of positive definite matrices. Hence Σ̂H ∈ PH.

The rest of this proof is identical to the proof of Proposition 4.2, with C replaced

by H, ĉj replaced by ĥ and Lemma 1.45 replaced by Lemma 1.46.

(See also Andersson et al. (1983, eqn. 56, Theorem 3).)

Let us now consider how the above fits with the ideas of Section 1.3.3. As

we already discussed in Section 2.4, if we let Σ̂q =
�

N

i=1
qiqH

i
.Then since �qiqH

i
=

4ĥ
�
V(q1)V(qi)T

�

Σ̂H = ĥ(Σ̂R) =
1

4
�̂Σq.

Similarly, if we let

Σ̂z =
N�

i=1

ziz
H

i
,

then

Σ̂C =
1

2

�
�(Σ̂z) −�(Σ̂z)

�(Σ̂z) �(Σ̂z)

�
.

This is because a similar relationship exists between complex multiplication and the

projection onto complex-structured matrices.

2Corollary 1.29 also applies to complex structure by Remark 1.34
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Remark 4.4. If the mean µ of a sample ri ∼ N R(µ,Σr) is unknown, then the MLE

of µ is µ̂ = 1

N

�
N

�=1
r�, and the MLE of Σr is

Σ̂R =
1

N

N�

�=1

(r� − µ̂)(r� − µ̂)T ∼ WR

4p

�
1

N
Σr, N − 1

�
.

4.2.2 The LRT statistic and its moments

Proposition 4.5. The likelihood ratio (LR) for testing HH

0
versus HH

1
is

TH =

�
|Σ̂C|
|Σ̂H|

�N/2

.

Proof. The likelihood for a real normal sample is

(2π)−2pN |Σr|−N/2 exp
�
− tr

�
Σ−1

r Σ̂R

�
/2
�
.

The LR is the ratio of maximum likelihoods, so by Propositions 4.2 and 4.3 it is given

by
�
|Σ̂C|
|Σ̂H|

�N/2

·
exp

�
− tr

�
Σ̂−1

H
Σ̂R

�
/2
�

exp
�
− tr

�
Σ̂−1

C
Σ̂R

�
/2
� .

By Corollary 1.29, Σ̂−1

H
∈ �Hp×p, and by Remark 1.34, Σ̂−1

C
similarly has complex

structure. By Lemmas 1.45 and 1.46,

tr
�
Σ̂−1

H
Σ̂R

�
= tr

�
Σ̂−1

H
Σ̂H

�
= tr (I4p) = tr

�
Σ̂−1

C
Σ̂C

�
= tr

�
Σ̂−1

C
Σ̂R

�
,

so the exponential terms cancel.

Proposition 4.6. The LR for testing HC

0
versus HC

1
is

TC =

�
|Σ̂R|
|Σ̂C|

�N/2

.
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Proof. This proof is almost identical to the proof of Proposition 4.5, with C replaced

by R and H replaced by C. (Note that tr
�
Σ̂−1

R
Σ̂R

�
= tr (I4p). )

(See also Walden and Rubin-Delanchy (2009, p. 828).)

Corollary 4.7. The LR for testing H0 versus H1 is

T = TC · TH =

�
|Σ̂R|
|Σ̂H|

�N/2

. (4.5)

Proof. H0 and HH

0
are equal. Since P(Σ̂R ∈ PC \ PH) ≤ P(Σ̂R ∈ PC) = 0, the

maximum likelihood under HC

1
and under H1 are almost surely equal.3

Since T is a LR and PH ⊂ PR, we have 0 ≤ T ≤ 1. We reject the null hypothesis

for small values of T , or equivalently for large values of M = −2 log(T ).

From Andersson et al. (1983, Theorem 1), TC and Σ̂C are independent under HC

0
.

TH is a function of Σ̂C and hence TH and TC are independent. Now let us consider

the moments of T. By independence E{T h} = E{T h

C
}E{T h

H
}.

Proposition 4.8. Under H0 the LRT statistic T for H0 versus H1 has moments

E{T h} = K

� 3p
2 ��

j=1

Γ [N(h+ 1)− 4p+ 2j − 1]

Γ

�
N(h+ 1) +

2−j−� j−1
3 �

2

� , (4.6)

where �x� is the integer part of x, �x� is the smallest integer greater or equal to x,

and K does not depend on h.

Proof. See Appendix B.3.

Remark 4.9. By Remark 4.4, if the distribution of r had an unknown mean µ, then

Proposition 4.8 would still hold, with N replaced by N − 1.

As an immediate consequence of Proposition 4.8, we see that the LRT for quater-

nion propriety is of Box type (see Section 4.3.3 for details).

3Alternatively, we could argue that H1 and HC

1 are equivalent since PR \ PC and PR \ PH have
the same topological closure PR.
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4.3 The distribution of statistics of Box type

Box (1949) describes various approximations to the distribution of a random variable

M = −2 log(W ),

when the moments of W are products and ratios of gamma functions. W is typically

a LRT statistic.

Definition 4.10. A random variable 0 ≤ W ≤ 1 is said to be of Box type if

E
�
W h

�
= K

��
k

j=1
y
yj

j�
m

i=1
xxi

i

�h �
m

i=1
Γ (xi (1 + h) + ξi)�

k

j=1
Γ (yj (1 + h) + ηj)

∀h ∈ N, (4.7)

where K is such that E [W 0] = 1 i.e.

K =

�
k

j=1
Γ (yj + ηj)�

m

i=1
Γ (xi + ξi)

, (4.8)

and

m�

i=1

xi =
k�

j=1

yj (4.9)

xi > 0 ∀i

yj > 0 ∀j.

Remark 4.11. The assumption W ≤ 1 is redundant. (See Appendix A.2)

Box’s χ2 expansion, detailed in Section 4.3.2.2, and our derivation of the exact

distribution in Section 4.3.1 require the stronger assumption that (4.7) holds for all

h ∈ C where the gamma functions are defined. In other words, we will make the

additional assumption that the moment generating function of M = −2 log(W ) is
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given by4

φM(s) = E
�
esM

�
= K

��
k

j=1
(2yj)2yj�

m

i=1
(2xi)2xi

�−s �
m

i=1
Γ (xi(1− 2s) + ξi)�

k

j=1
Γ (yj(1− 2s) + ηj)

(4.10)

and is valid for s ∈ C except at a countable number of poles. In particular it is valid

on the half plane �(s) < s0 where s0 > 0 is the smallest pole.5

Remark 4.12. By analytic extension, the additional assumption will hold whenever

(4.7) or (4.10) holds for h or s on some interval.

Since W is bounded, the moments of W completely determine its distribution and

hence also completely determine the distribution of M . Hence by uniqueness of

characteristic functions, the additional assumption will hold whenever (4.10) is a

valid characteristic function on the imaginary axis.

To the author’s best knowledge, in all cases where random variables of Box type

are considered in practice, (4.10) holds. The following proposition gives yet another

way of checking (4.10).

Proposition 4.13. Assume W has moments given by (4.7) where m = k, xi = yi ∀i
and ηi > ξi > −xi ∀i.6 Then (4.10) holds and W is distributed as a product of powers

of independent beta random variables

m�

i=1

Xxi

i
, (4.11)

where Xi ∼ β(ξi + xi, ηi − ξi).

4we just use
�

xi −
�

yi = 0 and rearrange in order to match (4.10) and (4.7)

50 < E
�
Wh

�
≤ 1 ∀h > 0, so if s0 ≤ 0 we obtain a contradiction by taking h → −2s0 ≥ 0.

However, note that we do not necessarily have xi + ξi > 0 ∀i. Indeed there may hypothetically
be positive removable singularities if a pole in the numerator and the denominator match. Such
removable singularities would pose no theoretical problem.

6Note that one may need to reorder the parameters to satisfy this inequality.
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Proof.

E
�
Xxih

i

�
=

Γ(xi + ηi)Γ (ξi + xi(1 + h))

Γ(xi + ξi)Γ (ηi + xi(1 + h))
∀h ∈ C : �(h) > −ξi − xi.

Hence the moments of W and of (4.11) match and so does their distribution which is

uniquely determined by the moments.

See also Mathai et al. (2009, p.122) or Anderson (1958, p.203).

Definition 4.14. The degrees of freedom associated with W are

f = −2

�
m�

i=1

ξi −
k�

j=1

ηj −
m− k

2

�
. (4.12)

Remark 4.15. f ≥ 0. Also, f = 0 iff M has a mass at 0. (See Appendix A.2)

Proposition 4.16. The cumulants of M are

κ1 = 2

�
m�

i=1

xi log(xi)−
k�

i=1

yr log(yr)−
m�

i=1

xiψ (xi + ξi) +
k�

i=1

yrψ (yr + ηr)

�

κj =
m�

i=1

(−2xi)
jψ(j−1)(xi + ξi)−

k�

i=1

(−2yi)
jψ(j−1)(yi + ηi), j ≥ 2,

where ψ(x) = d log Γ(x)

dx
is the digamma function, and its derivatives ψ(j)(x) are polygamma

functions.

Proof. As in Jensen (1991), these are obtained directly by differentiating the cumulant

generating function log φM(s), since κj =
d
j
log φM (s)

dsj

���
s=0

.

Remark 4.17. κ1 = E [M ] is the mean, κ2 = Var(M) is the variance, κ3/κ
3/2

2
is the

skewness and κ4/κ2

2
is the excess kurtosis.
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Lemma 4.18. The following are well known properties of the gamma function

Γ(n) = (n− 1)! ∀n ∈ N, n > 0

Γ(z + 1) = zΓ(z)

Γ(z)Γ

�
z +

1

2

�
=

√
π21−2zΓ(2z) (4.13)

n−1�

k=0

Γ

�
z +

k

n

�
= (2π)(n−1)/2m1/2−nzΓ(nz). (4.14)

Proposition 4.19. If in (4.7) the xi and yj are rational ∀i, j, there is an alternate

parameterisation of (4.7) which satisfies m = k and xi = yj ∀i, j.

Proof. Write all xi, yj as fractions with a common positive denominator d ∈ N. Each

Γ (xi(1 + h) + ξi) = Γ
�
dxi

xi(1+h)+ξi

dxi

�
can be expanded into a product of dxi terms of

the form Γ
�

1

d
(1 + h) + ξi+k

dxi

�
using (4.14), and similarly for Γ (yi(1 + h) + ηi).

4.3.1 Exact distribution

We now proceed to show that both the PDF and CDF of random variables of Box type

can be given in terms of Fox’s H-function (or in simpler cases Meijer’s G-function).

Pham-Gia (2008) expresses the density of the generalised Wilks’ statistic in terms

of H-functions and G-functions. The density of an arbitrary product of independent

beta random variables is also given. Special cases had already been treated for small

dimensions, where the H function reduces to simpler functions. For example with

Votaw’s criterion7 (Consul, 1969) and with the likelihood ratio test for sphericity

(Consul, 1967). The exact densities of products of powers of independent gamma

and beta random variables are given as H functions by Mathai et al. (2009). More

generally, we will show that this can be done with random variables of Box type.

Note that the class of densities which can be expressed asH-functions is even more

general than Box type, since products and ratios of some random variables which are

7Votaw’s criterion is for testing whether the distribution of a p+q dimensional normal is invariant
under permutations of the first p or last q indices. It is thus a LRT for group invariance structure.
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not necessarily of Box type8 can be written as H-functions with equal ease, see Carter

and Springer (1977); Mathai et al. (2009); Springer and Thompson (1970).

Definition 4.20. Fox’s H-function is defined by the following Mellin-Barnes integral

(Carter and Springer, 1977)

Hm,n

p,q

�
z

�����
(a1, α1), . . . , (ap, αp)

(b1, β1), . . . , (bq, βq)

�

=
1

2πi

�

L

�
m

j=1
Γ(bj − βjs)�

q

j=m+1
Γ(1− bj + βjs)

�
n

j=1
Γ(1− aj + αjs)�

p

j=n+1
Γ(aj − αjs)

zsds, (4.15)

where the path of integration L is chosen such that the poles bj+k

βj

, j = 1, . . . ,m, k ∈ N

lie on the right and the poles aj−1−k

αj

, j = 1, . . . , n, k ∈ N lie on the left.

The parameters are 0 ≤ n ≤ p, 0 ≤ m ≤ q, αi, βj ≥ 0, ai, bj ∈ C.

Remark 4.21. (4.15) is an inverse Mellin transform.

Remark 4.22. The choice of branch cut of the logarithm in zs = es log(z) (z �= 0)

determines the choice of branch cut for the H function. We will however only need

to work with z ∈ [0,∞[ and the principal value of the logarithm.

Remark 4.23. In all our uses, we will have n = 0, m = q, and the path of integration

L will be a vertical line from γ − i∞ to γ + i∞.

Definition 4.24. Meijer’s G-function is a special case of the H-function

Gm,n

p,q

�
z

�����
a1, . . . , ap

b1, . . . , bq

�
= Hm,n

p,q

�
z

�����
(a1, 1), . . . , (ap, 1)

(b1, 1), . . . , (bq, 1)

�
.

Proposition 4.25. The following 3 expressions are equal for arbitrary c ∈ C, λ > 0

8With xi < 0 for some i
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(Carter and Springer, 1977),(Mathai et al., 2009, p.12)

Hm,n

p,q

�
z

�����
(a1, α1), . . . , (ap, αp)

(b1, β1), . . . , (bq, βq)

�

λHm,n

p,q

�
zλ

�����
(a1, λα1), . . . , (ap, λαp)

(b1, λβ1), . . . , (bq, λβq)

�
(4.16)

z−cHm,n

p,q

�
z

�����
(a1 + cα1, α1), . . . , (ap + cαp, αp)

(b1 + cβ1, β1), . . . , (bq + cβq, βq)

�
. (4.17)

Remark 4.26. All H functions with rational αi, βj can be written as G functions of

the form

dGm,n

p,q

�
zd

�����
a1, . . . , ap

b1, . . . , bq

�
.

Proof. This follows from the proof of Proposition 4.19 and (4.16).

The theory surroundingG andH functions is expressed most conveniently in terms

of Mellin transforms. We have however chosen to use equivalent Fourier transforms

for familiarity.

Theorem 4.27. Let M satisfy (4.10). Then the pdf of M is given by

fM(x) = KHm,0

k,m

��
m

i=1
(2xi)2xi

�
k

j=1
(2yj)2yj

e−x

�����
(y1 + η1, 2y1), . . . , (yk + ηk, 2yk)

(x1 + ξ1, 2x1), . . . , (xm + ξm, 2xm)

�
(4.18)

on x > 0. In particular when α = xi = yj ∀i, j and m = k This simplifies to

fM(x) =
Ke−

x

2

2α
Gm,0

m,m

�
e

−x

2α

�����
η1, . . . , ηm

ξ1, . . . , ξm

�
. (4.19)

The constant K is defined in (4.8).

Proof. To obtain (4.18), simply notice that the integral for inverting the characteristic

function of M

fM(x) =
1

2πi

�
+i∞

−i∞
e−sxφM(s)ds (4.20)
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is of the form of (4.15). (4.19) is then obtained by applying (4.16) with λ = 1

2α

followed by (4.17) with c = −N .

Remark 4.28. Applying Mathai et al. (2009, Theorem 1.1 p.4), the integral (4.20)

converges for x �= 0. Proposition A.2 gives the tail of the characteristic function as

φM(s) = O
�
|s|− f

2

�
. Hence if f > 2 the characteristic function will be absolutely

integrable and the density will be uniformly continuous on R. The condition f > 2

is consistent with the fact that the χ2

1
and χ2

2
densities are discontinuous at 0.

Since M = −2 log(W ), by change of variables we have

fW (x) =
2

x
fM(−2 log(x)).

In particular, when (4.19) holds

fW (x) =
K

α
Gm,0

m,m

�
x

1
α

�����
η1, . . . , ηm

ξ1, . . . , ξm

�
.

Theorem 4.29. Let M satisfy (4.10), and assume f > 0. Then the CDF of M is

given by

FM(x) = KHm+1,0

k+1,m+1

��
m

i=1
(2xi)2xi

�
k

j=1
(2yj)2yj

e−x

�����
(y1 + η1, 2y1), . . . , (yk + ηk, 2yk), (1, 1)

(x1 + ξ1, 2x1), . . . , (xm + ξm, 2xm), (0, 1)

�
.

(4.21)

In particular, when α = xi = yj ∀i, j and m = k this simplifies to

FM(x) = Ke−
x

2Gm+1,0

m+1,m+1

�
e−

x

2α

�����
η1, . . . , ηm, 1− α

ξ1, . . . , ξm,−α

�
. (4.22)

Proof. Choose some arbitrary γ < 0 and some arbitrary α0 > 0. Then integrating
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the PDF from 0 to x or using Lévy’s inversion formula (Loeve, 1977, p. 199) gives

FM(x) =
1

2πi

�
+i∞

−i∞

�
1

s
− e−sx

s

�
φM(s)ds

=
1

2πi

�
γ+i∞

γ−i∞

�
2α0e−sx

−2α0s
− 1

−s

�
φM(s)ds

=
2α0

2πi

�
γ+i∞

γ−i∞
e−sx

Γ(−2α0s)

Γ(1− 2α0s)
φM(s)ds− 1

2πi

�
γ+i∞

γ−i∞

1

−s
φM(s)ds.

The path can be shifted by γ since no poles are crossed. Consider the first integral.

It is of the form of (4.15) and hence it is equal to

2α0KHm+1,0

k+1,m+1

��
m

i=1
(2xi)2xi

�
k

j=1
(2yj)2yj

e−x

�����
(y1 + η1, 2y1), . . . , (yk + ηk, 2yk), (1, 2α0)

(x1 + ξ1, 2x1), . . . , (xm + ξm, 2xm), (0, 2α0)

�
.

By choosing α0 =
1

2
, this gives us (4.21).

By choosing instead α0 = α, (4.22) is obtained by applying (4.16) with λ = 1

2α

followed by (4.17) with c = −α.

Using (A.1), the tail of the second integrand is O
�
|s|−1− f

2

�
. Since f > 0, the integral

converges. Taking γ → −∞, the second integral goes to 0, hence it is equal to 0. As

with Remark 4.28, f > 0 ensures that the CDF will be uniformly continuous.9

Since M = −2 log(W ), by change of variables we have

FW (x) = FM(−2 log(x)).

In particular, when (4.22) holds

FW (x) = KxGm+1,0

m+1,m+1

�
x

1
α

�����
η1, . . . , ηm, 1− α

ξ1, . . . , ξm,−α

�
.

9The condition f > 0 is consistent with Remark 4.15
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4.3.1.1 Numerical evaluation of the exact distribution

As noted by Mathai (1973a), (4.21) and (4.18) are simply statements about the

moment generating function of M unless values of the G-function can be computed.

One possible method is to write the G-function as a sum of generalised hypergeometric

functions using Slater’s theorem, however this cannot be used in our case because the

Mellin-Barnes integral will have non-simple poles (Marichev, 1983, pp. 56-58 & 66-67).

A general algorithm for the numerical evaluation of Meijer’s G function by sum-

ming over the residues is described in Liakhovetski (2001).10 See also Cook (1981);

Springer (1987). Mathai (1973b) reviews various methods for computing the exact

distributions of products of independent beta or gamma random variables. Notable

amongst these is the “method of calculus of residues” which expresses the PDF (or

CDF) of W as a (possibly infinite) sum of terms of the form aixbi log(x)ci . This is

equivalent to expressing the distribution of M as a series of gamma distributions.

Dennis (1994) describes an algorithm to apply this method in general to products

of independent beta random variables. In essence, the method is equivalent to the

algorithm of Liakhovetski (2001).

Specific likelihood ratio tests for which this method has been applied include

Wilks’ criterion11 (Schatzoff, 1966), the complex Wilks’ criterion (Gupta, 1971), cir-

cular symmetry (Nagar et al., 2004), diagonality (uncorrelatedness) (Mathai and Kati-

yar, 1979), sphericity given diagonality (Mathai, 1979) and more (Mathai, 1972).

As noted in Schatzoff (1966), numerical evaluation of the series must be performed

to many extra significant digits, since it suffers from large cancellation errors.

Modern symbolic computation engines such as Maple, Mathematica and MuPad

(Matlab) have arbitrary-precision implementations of Meijer’s G-function. However,

this does not make numerical evaluation of the G-function trivial, since we have

encountered problems with each of these implementations. Maple(v13.0) improperly

applies Mathai et al. (2009, property 1.6 p. 12) (see Mathai et al. (2009, note 1.6))

10It assumes that the path of integration is a loop from −∞ to −∞. This is a valid choice of path
for 0 < x.

11When either p or q is even.
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for some values of the parameters. This relies on making the substitution

Γ(s− α)

Γ(s+ 1− α)
=

1

s− α
=

−1

α− s
= − Γ(α− s)

Γ(1 + α− s)

which moves the pole at α from one group to the other and hence changes the implied

path of integration. This leads to (4.22) being incorrectly evaluated to FM(x) − 1

instead of FM(x).

Matlab(v7.9)’s symbolic engine MuPad on the other hand, provides inaccurate re-

sults for m � 10, even when computation is performed to many extra significant

digits. Finally, Mathematica(v6.0.1) was found to be significantly slower than the

other options.12 To compute exact quantiles for Section 4.3.3, we have used Maple,

correcting for the misallocated residue at α when appropriate. Still, numerical inver-

sion of the G-function to obtain quantiles is impractically slow for large p.13 These

hurdles motivate us to consider approximations to the CDF in the next section.

4.3.2 Approximations

In this section we will describe various approximations to the distribution of M =

−2 logW . In Section 4.3.3 we will compare their accuracy by applying them to the

LRT for quaternion propriety.

4.3.2.1 Asymptotic distribution

Proposition 4.30. If for all i, j we let xi, yj → ∞, then M is asymptotically dis-

tributed as χ2

f
, where f is given by (4.12).

Proof. By applying Stirling’s approximation (A.2), we can show

Γ (xi(1 + h) + ξi)

xxih

i
Γ (xi + ξi)

= (1 + h)xi(1+h)+ξi(1 + o(1)),

12(∼ 50×) slower

13It is the author’s opinion that due to the importance of G-functions in symbolic computation,
software for its evaluation will improve promptly.
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and similarly for terms in yj, ηj. By taking a product of such terms, simplifying with

(4.9), and substituting h = −2s,

φM(s) = (1− 2s)−
f

2 (1 + o(1)).

Hence the characteristic function of M converges to the characteristic function of a

χ2

f
distribution. The proposition follows by Levy’s continuity theorem.

4.3.2.2 Box’s chi-squared series

Box (1949) obtains an asymptotic expansion of the distribution of ρM as a series of

χ2 distributions, for some arbitrary ρ ≥ 0. Gupta and Tang (1988) shows that the

asymptotic series also converges to the true distribution when the number of terms

taken tends to infinity, except in the right tail. Thus, the Box series can in principle

be used to compute (most of) the distribution to arbitrary precision.

Definition 4.31 (Bernoulli Polynomial). The Bernoulli polynomials Bn(x) are given

by

Bn(x) =
n�

k=0

�
n

k

�
Bn−kx

k ,

where Bn = Bn(0) are the Bernoulli numbers.

Bn =






1 if n = 0

1

2
if n = 1

0 if n > 1, n odd

(−1)
n

2+1 2·n!
(2π)n

ζ(n) if n > 1, n even

and ζ(z) is the Riemann zeta function. The first polynomials are B0(x) = 1, B1(x) =

x− 1

2
, B2(x) = x2 − x+ 1

6
, B3(x) = x3 − 3x

2

2
+ x

2
.
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Lemma 4.32 (Barnes (1899, p.121)).

log Γ(z + h) =

�
z + h− 1

2

�
log(z)− z +

1

2
log(2π) +

n�

j=1

(−1)j+1
Bj+1(h)

j(j + 1)zj
+R∗∗

n+1

(4.23)

where
��R∗∗

n+1

�� =

�����

� −n− 1
2+i∞

−n− 1
2−i∞

ζ(s, h)zsi

2s sin(πs)
ds

����� = O(|z|−n−1). 14

Theorem 4.33. Let

ωj =
(−1)j+1

j(j + 1)

�
m�

i=1

Bj+1 ((1− ρ)xi + ξi)

(ρxi)
j

−
k�

i=1

Bj+1 ((1− ρ)yi + ηi)

(ρyi)
j

�
, (4.24)

and let aj be the coefficient of tj in the series expansion of exp
��

n

j=1
ωjtj

�
. Then

fM(x) = ρKB

n�

j=0

ajfχ2
f+2j

(ρx) + O(x−n−1

0
), (4.25)

FM(x) = KB

n�

j=0

ajFχ
2
f+2j

(ρx) + O(x−n−1

0
), (4.26)

where

log(KB) = −
n�

j=1

ωj +O(x−n−1

0
).

Proof. This is a result of Box (1949). We present his derivation in Appendix B.4.

Remark 4.34. Typically, x0 is proportional to the sample size.

Remark 4.35. If m = k and α = xi = yj ∀i, j, then

KB = K(ρα)−
f

2 .

An asymptotic expansion will usually be a divergent series. If so, for fixed x0,

there is a finite number (O(x0)) of terms after which adding more terms decreases

14Whittaker and Watson (1927, pp.277-278) only give
��R∗∗

n+1

�� = O
�
|z|−n− 1

2

�
. However the

stronger result of Barnes (1899) is correct.
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the accuracy of the approximation. Indeed, (4.23) diverges when n → ∞, as pointed

out by Bayes (1763).

Gupta and Tang (1988) provide an efficient iterative scheme to compute the aj

from the ωj:15

a0 = 1

aj =
1

j

j�

i=1

iωiaj−i ∀j > 0.

This is essentially a reformulation of the classic iterative scheme for computing the

moments of a distribution from its cumulants. Gupta and Tang (1988) also show

that the series (4.25) (and hence also (4.26)16) is convergent as n → ∞ for fixed

x < 4πx0. The proof relies implicitly on the fact that φM(s) is an analytic function,

and as a result its asymptotic expansion can be differentiated term by term (Estrada

and Kanwal, 1994, Theorem 10 p. 25).

By choosing a suitable value for ρ, the terms in the series can be made to decrease

faster. As suggested by Box (1949), we will choose ρ such that ω1 = a1 = 0. Gleser

and Olkin (1975) points out that this corresponds to

ρ = 1− 1

f

�
m�

i=1

B2(ξi)

xi

−
k�

j=1

B2(ηj)

yj

�
. (4.27)

Numerical tests show that, roughly speaking, choosing a ρ larger than (4.27) will

lead to a slower decay in the coefficients, whereas choosing a smaller ρ will introduce

oscillations between positive and negative aj for small j, and thus potential loss of

numerical accuracy.

Another version of the χ2 expansion, used by Anderson (1958), is obtained by

further expanding KB and collecting terms of equal order. However, this greatly

15The formula is given twice, the first time there is a typo.

16We can write (4.25) as e−
x
2 times a power series in x, and convergent power series are uniformly

convergent on compact subsets of their disc of convergence. Thus (4.25) is uniformly convergent on
the range of integration [0, x].
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complicates the expansion when n is large. Box (1949) suggests either computing KB

exactly or approximating it by truncating the infinite sum in (B.8).

Another option would be to set KB so that

KB

n�

j=0

aj = 1. (4.28)

This was the choice made by e.g. Conradsen et al. (2003), who used a Box series with

n = 3 to approximate the distribution of the LRT for equality of two complex covari-

ance matrices.17 This simpler choice ensures that the approximate CDF (4.26) goes to

1 as x → ∞, and possibly defines a valid CDF.18 This is particularly important if we

wish to invert it numerically to find quantiles. Alternatively, Davis (1971) develops

an analytically inverted version of Box’s series for computing quantiles directly.

4.3.2.3 Bartlett adjustments

We wish to approximate the distribution of M by that of a random variable of the

form Cχ2

f
, where C is chosen so that the cumulants of Cχ2

f
match those of M up to

an error of order O(N−2).

Box’s constant is obtained by computing from (4.24)19

A1 =
2ω1

f

����
ρ=1

A2 =
4ω2

f

����
ρ=1

17This corresponds to the complex case of test (f) of Andersson et al. (1983)

18If there are some negative aj , we are taking a non-convex discrete mixture of χ2 distributions
and would need to prove that the pdf is non-negative. This will not be the case for example when
the last coefficient is negative.

19The criterion 0 < A2
1−2A2 isn’t given explicitly in Box (1949), but rather a heuristic distinction

is made between when A2 ≈ 0 and when A2 −A2
1 � 0
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Cbox =





1 + A1 if 0 < A2

1
− 2A2

(1− A1)
−1 otherwise

. (4.29)

Remark 4.36. Choosing Cbox = (1− A1)
−1 is equivalent to using Box’s χ2 series of

order O(N−2) with ρ given by (4.27)= 1− A1 and KB = 1.

A more accurate approximation is obtained by fitting the mean exactly (Jensen,

1991; Møller, 1986), i.e. choosing

Cexact =
κ1

f
.

Cbox = 1 + A1 and Cexact correspond to the Bartlett adjustments b1 and b3 of

Møller (1986) respectively. Their accuracy is compared numerically, along with a

more complicated Bartlett adjustment b2, the performance of which is in between

that of b1 and b3.

Møller (1986) claims that Cexact gives a O
�
N− 3

2

�
approximation to the density. It

is clear from Remark 4.36 that the Bartlett adjustments considered actually yield

O(N−2) approximations to the exact distribution. Barndorff-Nielsen and Hall (1988)

show that this is indeed the case under general conditions for Bartlett adjustments

of likelihood ratio criteria.

4.3.2.4 Box’s F approximation

Box (1949) improves on the χ2 approximation of section 4.3.2.3 by using the Pearson

system of curves along with asymptotic approximations. For A2 −A2

1
> 0, Box finds

that M is approximately distributed as b · F (f, f2) where

f2 =
f + 2

A2 − A2

1

(4.30)

b =
f

1− A1 − f1

f2

. (4.31)

Note that f2 need not be an integer, hence we are technically generalising the F
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distribution to non-integer parameters.

For A2 −A2

1
< 0, Box finds that M is approximately distributed as b · β(f

2
, f2

2
) where

f2 =
f + 2

A2

1
− A2

b =
f2

1− A1 +
2

f2

.

With these approximations, the first four cumulants are fitted up to an error of order

O(N−3).

A numerical study by Foerster and Stemmler (1990) establishes how large N must

be to obtain accurate F approximations in the test for equality of covariance matrices.

4.3.2.5 A new F approximation

As with the Cexactχ2 approximation, we can improve on Box’s F approximation by

fitting the first three cumulants exactly, i.e. by following the steps in Box (1949)

without taking asymptotic approximations. We first compute the exact value of

Box’s discriminant τ = κ1κ3

2κ
2
2
. Then if τ > 1 use a F distribution and if τ < 1 use a

beta distribution. For the bF (f1, f2) distribution, the fitted parameters are20

f1 =
4κ1 (κ2

1
κ2 − κ2

2
+ κ1κ3)

4κ1κ2

2
− κ2

1
κ3 + κ2κ3

(4.32)

f2 =
4κ2

1
κ2 − 8κ2

2
+ 6κ1κ3

κ1κ3 − 2κ2

2

(4.33)

b =
2κ1 (κ2

1
κ2 − κ2

2
+ κ1κ3)

2κ2

1
κ2 − 4κ2

2
+ 3κ1κ3

. (4.34)

20Assuming f2 > 6, so that the cumulants exist.
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For the bBeta
�
f1

2
, f2

2

�
distribution, we have

f1 =
4κ1 (κ2

1
κ2 − κ2

2
+ κ1κ3)

4κ1κ2

2
− κ2

1
κ3 + κ2κ3

f2 =
4κ2 (2κ1κ2 + κ3) (κ2

1
κ2 − κ2

2
+ κ1κ3)

(κ1κ3 − 2κ2

2
) (κ2

1
κ3 − 4κ1κ2

2
− κ2κ3)

b =
κ2

1
κ3 − 4κ1κ2

2
− κ2κ3

κ1κ3 − 2κ2

2

.

Note that some values of the cumulants will yield invalid negative parameters. This

happens when the Pearson curve to be fitted is neither F nor β. For example, to

approximate the LRT for quaternion propriety of Section 4.2 with p = 4, N = 16,

a Pearson type IV distribution should be used. This problem will not arise if N is

sufficiently large. For the LRT for quaternion propriety for example, N ≥ 4.13p+0.5

is a sufficient condition.21 See Craig (1936) for more details on the Pearson system

of curves.

Remark 4.37. κ1 = E [M ], κ2 = Var(M) and κ3 can be calculated with Proposition

4.16.

Remark 4.38. Since M is asymptotically χ2

f
, when an F distribution is fitted, f2 → ∞

for large samples. We have found that for large f2, the implementation of the F CDF22

in GSL (Galassi et al., 2009) is more numerically accurate than the implementation

in Matlab. Hence we will use it in our numerical evaluation.

4.3.2.6 Gamma approximation

Jensen (1991) suggests approximating the distribution of M with a Γ(λ, θ) distribu-

tion

fΓ(λ,θ)(z) = θ−λΓ(λ)−1zλ−1e−
z

θ

21This conclusion was reached by a numerical study of all cases p ≤ 10 000, N ≤ 4p+2000. Note
that N ≥ 4p is assumed.

22More specifically, the implementation of the incomplete beta function, from which the F CDF
is computed.
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by fitting the first two cumulants exactly, i.e. choosing

λ =
κ2

1

κ2

(4.35)

θ =
κ2

κ1

. (4.36)

This approach amounts to treating the degrees of freedom in the χ2 approximation

as a free parameter.

4.3.2.7 Large deviation saddlepoint estimate

Consider the exponentially tilted23 random variable Ms with density

fMs
(x) =

esxfM(x)

φM(s)
.

Then

φMs
(t) =

φM(t+ s)

φM(s)
.

Thus Ms is also of Box type, with parameters

ξsi = −2xis+ ξi,

ηsj = −2yjs+ ηj.

The valid range of s is s < s0 where s0 > 0 is the leftmost pole of φM(s). Since

fM(x) = φM(s)e−sxfMs
(x), we can obtain an approximation to fM(x) by choosing a

suitable s and approximating the tilted density fMs
(x) instead.

Jensen (1991) chooses s such that x = E [Ms] . The tilted density is then approxi-

mated using the gamma approximation of Section 4.3.2.6. The approximate fM(x) is

then integrated (keeping s fixed) to get an approximation for FM(x). The corrected

23The exponentially tilted family is also called conjugate family of distributions. Note however
that there is no relationship with the use of the term in Bayesian statistics.
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formula, given in Jensen (1995) is

FM(x) ≈ φM(s)

�
1 +

sσ2

s

µs

�−λ

FΓ(λ,1) (µss+ λ) , (4.37)

where

µs = E [Ms] = x

σ2

s
= Var [Ms]

λ =
µ2

s

σ2
s

.

µs and σ2

s
can be calculated with Proposition 4.16. Solving µs = x for s must

in general be done numerically. Since σ2

s
= dµs

ds
> 0 the solution is unique and the

gradient is easily computable. Jensen (1991) suggests using the Newton-Raphson

method.

4.3.2.8 Lugannani & Rice saddlepoint approximation

The Lugannani & Rice saddlepoint approximation (truncated to two terms) is (Lu-

gannani and Rice, 1980)

FM(x) ≈ FN (0,1)(x
∗) + fN (0,1)(x

∗)

�
1

x∗ − 1

sσs

�
, (4.38)

where

x∗ = sgn(s)
�

2 (sx− log(φM(s))).

and, as in the previous section, s solves µs = x.

The distribution of M is asymptotically χ2

f
, not asymptotically normal. Hence

the Lugannani & Rice approximation will not converge to the true distribution for

large sample sizes. In the context of approximating the distribution to the Bartlett-

Nanda-Pillai trace statistic, Butler et al. (1992) discusses how this problem affects

various saddlepoint approximations.

Wood et al. (1993) generalise the Lugannani & Rice approximation so that we
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may use a non-normal first term. If we choose a Γ(k, 1) basis distribution,24 then

Wood et al. (1993) suggests taking λ = 4σ
6
s

κ3
2
s

. Let s∗ = 1 − λ

x∗ play the role of s in

tilting the gamma basis distribution. We must solve φΓ(λ,1)(s∗)e−s
∗
x
∗
= φM(s)e−sx.

The two real solutions can be expressed in terms of the multi-valued Lambert W

function (x∗ = −λLambertW(−e
x

λ
−1)). The larger real solution is chosen if x > µ0,

and the smaller real solution is chosen if x < µ0. Let µ∗
s∗ = x∗ and σ∗

s∗
2 = λ

(1−s∗)2

denote the mean and variance of the tilted gamma distribution respectively. Then

FM(x) ≈ FΓ(λ,1)(x
∗) + fΓ(λ,1)(x

∗)

�
1

s∗
− σ∗

s∗

sσs

�
. (4.39)

For applications of various types of saddlepoint approximations to some particular

test statistics of Box type, see e.g. Butler et al. (1992, 1993); Srivastava and Yau

(1989).

(4.37), (4.38) and (4.39) can all be inverted numerically to obtain approximate

quantiles. Alternatively, Maesono and Penev (1998) gives an asymptotic inversion of

the Lugannani & Rice approximation; however we have found its performance to be

poor.25

4.3.2.9 Monte Carlo method

The distribution of M can be approximated by an empirical CDF, which we obtain

by simulating M repeatedly. For fixed x, the empirical estimate of FM(x) obtained

from n simulations will be random and distributed as 1

n
Binomial(n, FM(x)).

When applying this method to the LRT for quaternion propriety, the moments

(4.6), which fully determine the null distribution ofW , and hence ofM , do not depend

on the true covariance matrix Σr. Hence we can assume without loss of generality

that Σr = I4p when simulating M . For each normal sample of size N the maximum

likelihood estimator Σ̂R is computed from (4.1). Σ̂H is then given by Proposition 4.3

24The choice of location and scale parameters does not influence the final outcome.

25 We believe that this is because it relies on having an accurate initial normal approximation.
Also, the initial normal estimate of the tilting parameter s may be outside the valid range.
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and Definition 1.42, andW by (4.5). Each simulated value ofM requires Np standard

normal samples. Note that because in this case the assumptions of Proposition 4.13

hold, we could instead simulate W as a product of only �3p/2� independent beta

random variables.

Walden and Rubin-Delanchy (2009) applies the Monte Carlo method to the LRT

for complex propriety. When comparing with the exact distribution — which we

obtain from Theorem 4.29 — we have found however that by using n = 30 000 sim-

ulations they achieved only a couple of digits of accuracy in computing the quantiles

of W .26

For large n the sample quantile x̂MC obtained by this Monte Carlo method will

be approximately distributed as N R

�
x, FW (x)(1−FW (x))

nfW (x)2

�
(Walker, 1968).27 Thus every

additional digit of desired accuracy requires that we increase the number of simula-

tions by a factor of 100.

More sophisticated Monte Carlo methods such as importance sampling may also

be used (Glynn, 1996).

4.3.3 Numerical comparison of approximations

Comparing (4.6) and (4.7) we see that the LRT for quaternion propriety T is a statistic

of Box type with

m = k = �3p/2� ,

xi = yj = N,

ξi = −4p+ 2i− 1,

ηj =
1

2
(2− j − �(j − 1)/3�) ,

26Sometimes only one digit, 0 digits for p = 6, N = 20, 4 digits when N = 1000

27Consider for example W ∼ χ2
9. Then the 99th percentile is x ≈ 21.666 and the distribution of

x̂MC is approximately NR
�
x, 785.53

n

�
. So in order to ensure that an an estimation error of more

than ±0.5 has a probability of occurring of less than 1% one would need over 20 000 simulations.
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and K in (4.6) is

K =

� 3p
2 ��

i=1

Γ (N + ηi)

Γ (N + ξi)
.

SinceW = T is of Box type and satisfies the assumptions of Proposition 4.13, all of

the results of Section 4.3 can be applied to compute the distribution of M = −2 log T.

In particular, the asymptotic distribution of M is χ2

f
with

f =
�3p/2��

i=1

(8p+ 4− 5i− �(i− 1)/3�)

= 3p(2p+ 1).

As expected from Wilks’ theorem (Young and Smith, 2005, p. 132), this is equal to

the difference between the number of free parameters in the covariance matrix under

H1, namely 2p(4p+ 1), and under H0, namely p(2p− 1).

Also, the Box Bartlett adjustment in this case is

CBox =
12N

12N + 1− 20p
.

In this section we will compare the accuracy of the various approximations de-

scribed in Section 4.3.2, by applying them to the LRT statistic for quaternion pro-

priety.

For a chosen combination of p and N we define the relative error of the approxi-

mation F≈(x) to FM(x) as

����
F≈(x)− FM(x)

min {FM(x), 1− FM(x)}

���� ,

where FM(x) is the exact CDF and F≈(x) is any of the approximate CDFs considered

in this section. The effect of the divisor is to make the error relate to the corresponding

tail probability, depending on whether x corresponds to a value in the left or right

tail. Since we will reject the hypothesis of propriety when M is larger than some

critical value, we will be most interested in the region around FM(x) = 0.95 and 0.99.
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The relative error at the 95th percentile for example is
���F≈(z0.95)−0.95

0.05

��� where F≈ is the

approximate CDF and FM(z0.95) = 0.95.

We have chosen not to include the Monte Carlo method in the figures, since

it would hinder readability and provide little insight. Indeed, for figures 4.1, 4.2,

4.3 and 4.4, the relative errors for the Monte Carlo method would simply be an

i.i.d. sequence of |Binomial(100 000, 0.05)− 5 000| /100 000 random variables.These

are approximately half-normal distributed as
��N R(0, 4.75 · 10−7)

�� and have a mean of

approximately 5.5 · 10−4.



Chapter 4. Likelihood Ratio Testing for Quaternion-Structured
Covariance Matrices 115

Label Description Line Style
Cbox χ2 approximation with Bartlett adjustment (4.29)
Fbox Box’s F approximation (4.30)-(4.31)
Fexact New F approximation (4.32)-(4.34)
Γ Γ approximation (4.35)-(4.36)
JLDE Jensen’s large deviation estimate (4.37)
L&RN Lugannani & Rice approximation (4.38)
L&RΓ Generalised Lugannani & Rice (4.39)

χ25
Box χ2 series of order O(N−5) (4.26),
with renormalisation (4.28)

MC 100 000 Monte Carlo simulations (Section 4.3.2.9) N/A

Table 4.1: Legend
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Figure 4.1: Relative errors of approximate CDFs at the 95th percentile for varying p
and N = 4p. For p ≥ 4, the new F approximation yields invalid parameter values.

Fitting lines to the curves in Figure 4.4, between N = 500 and N = 1000, we

obtain the following relative errors for the various approximations:
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Figure 4.2: Relative errors of approximate CDFs at the 95th percentile for varying p
and N = 5p.
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Figure 4.3: Relative errors of approximate CDFs at the 95th percentile for varying p
and N = 8p.
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Figure 4.4: Relative errors of approximate CDFs at the 95th percentile for p = 6 and
varying N .

Cbox: 8.91 · 102 ·N−2.03,

Γ: 1.26 ·N−2.04,

Fbox: 1.21 · 104 ·N−3.04,

Fexact: 3.85 · 10−1 ·N−2.99,

JLDE: 3.30 ·N−2.04,

L&RN : 3.02 · 10−6 ·N0.036,

L&RΓ: 4.46 · 10−2 ·N−2.05,

χ25: 7.37 · 107 ·N−5.34.
These agree closely with the theoretical order of the errors.

Surprisingly, using a gamma basis instead of the normal basis in the Lugannani

& Rice approximation does not improve the precision noticeably, except for large N

as seen in Figure 4.4. The Box χ2 series performs poorly for moderate N or large p.

This is also counterintuitive given its high order of approximation and non-negligible

complexity.

Box’s Bartlett adjustment provides an approximation so simple that it does not

require the use of a computer, but should only be used when the sample size is very

large. Our new F approximation on the other hand is extremely accurate, even for

small N . The gamma approximation is a simpler alternative with intermediate perfor-
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p N Cbox Γ Fbox Fexact JLDE L&RN L&RΓ χ25 MC

1 4 0.039774 0.797285 0.147933 0.980560 1.033382 0.996140 0.985760 0.305001 1.009
1 5 0.312620 0.902056 0.555284 0.997154 1.007755 0.979037 0.971145 0.822674 1.004
1 8 0.768796 0.975642 0.915373 1.000009 0.998012 0.989318 0.986453 0.992721 0.934
1 16 0.953481 0.995624 0.991747 1.000011 0.999662 0.999082 0.997682 0.999896 1.005
2 8 0.000247 0.631786 0.004430 0.981219 1.064562 0.991405 0.980947 0.003468 1.062
2 10 0.142918 0.887571 0.363418 0.998806 1.008592 0.978844 0.976115 0.482437 1.020
2 16 0.678962 0.979091 0.881933 0.999897 1.002074 0.997900 0.997594 0.971254 1.007
2 32 0.933936 0.996533 0.988992 0.999993 1.000379 0.999908 0.999728 0.999605 0.978
3 12 0.000002 0.554584 0.000146 0.979849 1.081944 0.988963 0.978544 0.000025 0.978
3 15 0.083270 0.905234 0.284950 0.998159 1.009231 0.989446 0.988778 0.286228 0.993
3 24 0.616741 0.984185 0.860928 0.999874 1.001752 0.999448 0.999374 0.940046 1.015
3 48 0.918455 0.997425 0.987029 0.999993 1.000282 0.999981 0.999929 0.999123 0.963
4 16 0.000000 0.511526 0.000005 NaN 1.092964 0.987269 0.976912 0.000000 0.973
4 20 0.049552 0.921868 0.229535 0.998152 1.008401 0.995224 0.995035 0.163298 0.968
4 32 0.560705 0.987543 0.840782 0.999898 1.001321 0.999793 0.999766 0.894254 0.974
4 64 0.903368 0.997983 0.985043 0.999994 1.000208 0.999994 0.999973 0.998249 1.051
6 24 0.000000 0.467119 0.000000 NaN 1.105843 0.984892 0.974666 0.000000 0.953
6 30 0.016723 0.944156 0.148510 0.998668 1.005919 0.998775 0.998744 0.048562 0.995
6 48 0.461552 0.991373 0.800892 0.999940 1.000832 0.999948 0.999941 0.767637 1.042
6 96 0.873663 0.998606 0.980953 0.999997 1.000131 0.999999 0.999993 0.994481 0.987
12 48 0.000000 0.428737 0.000000 NaN 1.119405 0.980828 0.970926 0.000000 0.996
12 60 0.000377 0.971059 0.035333 0.999528 1.002628 0.999895 0.999893 0.000832 0.991
12 96 0.249391 0.995573 0.688035 0.999981 1.000372 0.999995 0.999994 0.390801 1.014
12 192 0.788828 0.999284 0.968377 0.999999 1.000059 1.000000 0.999999 0.954162 1.031

Table 4.2: Approximate rejection probabilities (in %) for the the 1% level critical
region. Entries are 100(1 − F≈(z0))%, where FM(z0) = 0.99. NaN values indicate
that the parameters computed for Fexact were invalid.
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Figure 4.5: Relative errors of approximate CDFs for p = 4 and N = 32, for varying
x, or equivalently varying percentiles. The sharp dips correspond to points where F≈
and FM cross and the error changes sign.

mance. These three approximations are true distributions, and allow for immediate

computation of the CDF, PDF and quantiles, something which is not true of the

three saddlepoint approximations considered. Thus, we would recommend using one

of these three methods, depending on the sample size and the user’s preference for

simplicity.
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Chapter 5

Quaternion Wavelets and

Matrix-Valued Wavelets

5.1 Introduction

Wavelet transforms (Daubechies, 1992) are a tool for signal decomposition and anal-

ysis and have been succesfully applied to many signal processing problems in the past

two decades. We will consider in particular orthogonal wavelets. These are functions

ψ(t) whose translations and dilations 2−
j

2ψ(2jt−k), j, k ∈ Z generate an orthonormal

basis for the signal space (commonly L2(R,R)). The wavelet transform of a signal is

given by its coefficients in this basis. By putting upper limits on the size of dilations

j, linear subspaces of the signal space can be generated with varying granularity.

This produces a multiresolution analysis (MRA) and allows for scale-based signal de-

composition. Unless otherwise specified, the term ‘wavelet’ will refer to ‘orthogonal

wavelet’ throughout this chapter (and similarly for wavelet filter, scaling filter, scaling

function and MRA).

Scalar (real) wavelet techniques can be applied to vector-valued signals in L2(R,Rn)

by simply treating each component independently as a scalar signal. However, this

common ‘naive’ approach ignores potentially useful dependencies between compo-

nents. As with AR time-series modelling, one holistic approach to vector-valued

signals is to treat them as algebra-valued signals so that one may apply correspond-
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ing algebra-valued wavelets. For example, the complex Daubechies wavelets of Lina

and Mayrand (1995) can be used to analyse signals in L2(R,R2).

It is important not to confuse the wavelets required for the analysis of algebra-

valued signals with other types of wavelet also labeled as complex-, quaternion- or

Clifford-algebra-valued. The latter are typically designed for analysing real scalar

signals, and we will describe these briefly in Section 5.2.1,

Another approach to processing vector-valued signals holistically is given by matrix-

valued wavelets (MVWs). Through the vector space and algebra isomorphisms,

quaternion wavelets can be seen as special cases of MVWs having quaternion struc-

ture. We show in Section 5.7 that such an approach can be used for any real algebra.1

Thus most of the material in this chapter will be presented within the more general

framework of orthogonal MVWs.

More general types of MVW transform have also been considered in the literature,

such as biorthogonal MVWs (Agreste and Vocaturo, 2009b; Bacchelli et al., 2002;

Chen et al., 2006; Cui et al., 2009), m-band MVWs (Chen and Shi, 2008; Cui and

Zhang, 2008) and MVW packets (Chen and Shi, 2008). MVWs can also be considered

as a special case of generalised multiwavelets. Multiwavelet transforms can be applied

directly to vector-valued signals (since they require vectorisation of scalar signals),

and the matrix-valued and multiwavelet versions of the fast DWT algorithm differ

only in their choice of matrix-valued filters. Fowler and Hua (2002a) show however

that in practice this leads to very poor results, highlighting the need for wavelets

specifically designed for vector-valued signals.

Note that within the literature on MVWs, a plurality of alternate names for

them are used. These include the original name vector-valued wavelet (Xia and

Suter, 1996), multiple vector-valued wavelet (Chen et al., 2006), multichannel wavelet

(Agreste and Vocaturo, 2009a; Bacchelli, 2002), omnidirectionally balanced multi-

wavelet (Fowler and Hua, 2002a), and wavelet with a full rank (multi-)filter (Agreste

and Vocaturo, 2009b; Bacchelli et al., 2002). The name we have chosen to use (matrix-

valued wavelet) seems to be the most common (Walden and Serroukh, 2002; Xia, 1997;

1Assuming that orthogonality in the algebra is defined based on an involution which maps to
matrix transposition in the algebra’s matrix representation.
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Yu, 2011).

We will prove in Section 5.3 that two competing interpretations of MVWs — as

R
n×n-algebra-valued wavelets generating a matrix MRA of L2(R,Rn×n) and as a col-

lection of n vector-valued wavelets which jointly generate a vector MRA of L2(R,Rn)

— are fundamentally equivalent. In general, algebra-valued MRAs can be treated as

special cases of vector MRAs.

We define a n × n MVW to be trivial if it can be decomposed into independent

lower-dimensional MVWs (in some appropriate orthogonal basis of Rn). Every MVW

is then composed of one or more non-trivial MVWs. In particular, real and complex2

wavelets are the trivial examples of quaternion wavelets. Indeed, within the algebra-

valued framework, the naive approach corresponds to the special case where the

wavelet used is real-valued. He and Yu (2005); Peng and Zhao (2004) have constructed

quaternion wavelets. However, we show in Section 5.2.2 that all examples given are

either incorrect or trivial. In Section 5.8.2 we give the first example of a non-trivial

orthogonal quaternion wavelet.

We prove various results showing a lack of non-trivial MVWs: There are no non-

trivial matrix-valued scaling filters (MVSFs) of length L ≤ 3 and no non-trivial

Daubechies MVSFs of length L = 4 (i.e. with 2 vanishing moments) except for the

real scalar Haar and Daubechies filters respectively. We also show computationally

that there are no non-trivial quaternion Daubechies scaling filters of length L < 10

and there are no non-trivial 3 × 3 Daubechies MVSFs of length L = 6. For any

filter length, matrix Daubechies filters differ from their naive counterpart only by an

all-pass filter.

To construct a MVW, it is sufficient to specify an appropriate MVSF {Gk}. A

matrix-valued wavelet filter, matrix-valued scaling function and MVW can then be

computed from the MVSF. Constructing trivial MVSFs from non-trivial MVSFs is

simple, however constructing new non-trivial MVSFs is harder. Agreste and Vo-

caturo (2009b) develop a method for constructing biorthogonal MVSFs through a

multichannel lifting scheme, which leads to the explicit designs by Bacchelli et al.

2Note that as in Remark 1.14, quaternion wavelets can still be considered complex if the imaginary
unit is a pure unit quaternion other than i.
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(2002, Table 4.1) (2 × 2) and Agreste and Vocaturo (2009b, p. 4) (3 × 3). Fowler

and Hua (2002b) design biorthogonal wavelets by symbolically solving a set of design

equations, with explicit 2× 2 designs given by Hua and Fowler (2002, pp. 3–7).3 We

will use a similar approach for the orthogonal case. Another method worth men-

tioning, which allows for orthogonal constructions, is the spectral factorisation of

interpolatory vector subdivision schemes suggested by Conti et al. (2008).4 We will

construct examples of non-trivial MVSFs by symbolically solving a set of quadratic

design equations imposing orthogonality and vanishing moments. More specifically,

we obtain the family of non-trivial 2× 2 Daubechies MVSFs of length L = 6 and the

family of non-trivial quaternion Daubechies scaling filters of length L = 10.

Except for the cases mentioned above, the explicit constructions of compactly-

supported MVWs we have found in the literature are limited to toy examples. For

many of these, the author’s desire to obtain closed-form solutions for the matrix-

valued wavelet filter (as a function of the MVSF) narrows design possibilities. For

example Chen and Shi (2008); Chen et al. (2006) only consider filters of length L = 3

(which are trivial);5 the constructions of Cui et al. (2009); He and Huang (2012);

Walden and Serroukh (2002) focus on controlling the eigenvalues of the Fourier tran-

form of the scaling filter; and Cui and Zhang (2008)6 impose that certain products

of coefficients be symmetric matrices. As we noted in Ginzberg and Walden (2013a,

Section VII), a general algorithm for obtaining multiwavelet filters from multiscaling

filters can be applied to MVSFs, rendering these restrictions unnecessary.

Walden and Serroukh (2002) use a 2 × 2 MVW to compress four financial time-

series by interpreting them as a R2×2-valued time-series. Such use of the matrix MRA

interpretation of MVWs in practice is inappropriate as it amounts to independent

3The OBSA5-3 filter of Fowler and Hua (2002b) is trivial, but the OBSA7-5 filter is non-trivial.

4One difficulty with this approach is that to design MVSFs with additional properties, one must
find and impose corresponding constraints on the interpolatory filter to be factorised.

5Chen and Shi (2008) generalise the approach to m-band filters of length m+ 1.

6Note that the filter given by Cui and Zhang (2008, pp.180-181) only satisfies the necessary
condition (5.10) for parameter values α = tan

�
π

8

�
and α = −2 − tan

�
π

8

�
, both of which lead to

trivial filters.
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analysis of the matrix rows. Other applications of MVWs — which use the better

vector MRA interpretation — include the compression and denoising of colour images

with 3×3 MVWs (Agreste and Vocaturo, 2009a,b) and of 2D wind fields with a 2×2

MVW (Hua and Fowler, 2004; Westenberg and Ertl, 2005); and digital watermarking

of colour images with a 3× 3 MVW (Agreste and Vocaturo, 2009c).7

Some of the material in this chapter was published in Ginzberg and Walden

(2013a), see p. 11.

5.2 A review of literature on quaternion wavelet transforms

5.2.1 Different types of quaternion wavelet transform

With the exception of this section, within this chapter we are interested in quater-

nion wavelets which are quaternion-valued functions ψ ∈ L2(R,H), and in associated

quaternion wavelet transforms suited to analysing signals f ∈ L2(R,H) (or more

generally L2(Rm,H)). The continuous wavelet transform Wψ(f) is then given by

convolving the signal with dilated versions of the (mother) wavelet

Wψ(f)(a, b) =

� ∞

−∞
f(t)a−

1
2ψ

�
t− b

a

�
dt.

We are particularly interested in orthogonal wavelets, whose dyadic dilations a = 2j,

j ∈ Z and integer translations b = 2jk, k ∈ Z form an orthonormal basis for the

quaternion (left-)module L2(R,H). The DWT limits itself to these discrete values

of a and b and can be computed from a digital signal through convolutions with a

scaling filter and wavelet filter. We will also assume for simplicity that the wavelet

has compact support, or equivalently that the filters are of finite length.

The terms ’quaternion wavelet’ and ‘quaternion wavelet transform’ are however

used in the literature to refer to a number of different things. We will now discuss

these different approaches. One way in which they all differ from ours is that they

7These are signals which are 2D in ‘time’ (in this case (x, y) spatial position) in addition to being
2D or 3D in the number of components (in this case wind speed in x and y directions or red green
and blue colour intensity).
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are designed specifically to analyse signals in L2(R2,R) (or for some also L2(R2,H)).

Zhao and Peng (2007) define a continuous quaternion wavelet transform which

decomposes a signal L2(R2,H) according to orientation in addition to scale (or fre-

quency) and space (or time), i.e. the signal is analysed by convolving it with scaled

and rotated versions of a mother wavelet. Bahri et al. (2012) derive some theoretical

results for this type of QWT, but because of their use of a quaternion Fourier trans-

form (with kernel e
i+j+k√

3
ωt), these require additional ad-hoc commutativity assump-

tions.8 We will discuss other cases where the use of quaternion Fourier transforms is

problematic in Section 5.2.2.

The most widely used category of quaternion wavelet transforms are those general-

ising the dual-tree complex wavelet transform, similarly to how bivariate quaternion

Fourier transforms generalise the complex Fourier transform. For a review of the

dual-tree (and related) complex wavelet transform see Selesnick et al. (2005); Shukla

(2003). As noted by Selesnick et al. (2005, p. 131), the dual-tree complex wavelet

transform is 2× redundant for both real and complex signals (it is based on a wavelet

tight frame rather than a wavelet basis). It generates two real MRAs (of L2(R,R))

which are (approximate) Hilbert transforms of one another rather than a complex

MRA, and it is computed via two independent real wavelet transforms producing

the real and imaginary parts. The corresponding complex wavelet is (approximately)

analytic.

Chan et al. (2008) refer to the quaternion generalisation — which applies to signals

in L2(R2,R) — as the dual-tree quaternion wavelet transform, and show that the

coefficients of the dual-tree quaternion wavelet transform and a corresponding 2D

dual-tree complex wavelet transform are related by a simple linear transformation.

The advantage of the quaternion formulation over the complex pair formulation is

that, in their polar form, quaternion coefficients can be interpreted in terms of a

single shift-invariant amplitude and three phases, two of which vary with horizontal

and vertical shifts respectively. Another relationship with complex wavelets is that

8We believe that these additional assumptions will not hold in practice unless the quaternion
wavelet is trivial.
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the quaternion wavelet Ψ ∈ L2(R2,H) can be decomposed as

Ψ(x, y) = ψ(x)eπk/4ψ(y)e−πk/4, (5.1)

where ψ ∈ L2(R,C) is a complex wavelet.9 The most popular wavelets of this type

are the quaternion Gabor wavelets developed by Bayro-Corrochano (2006).

Dual-tree quaternion wavelets have been succesfully applied to greyscale images

for texture classification (Li et al., 2013), compression (Soulard and Carré, 2010)

(despite the 4× redundancy), speckle denoising (Liu et al., 2012) and optical flow

estimation (Bayro-Corrochano, 2006).

Closely related to the use of dual-tree quaternion wavelets is the hyperanalytic

wavelet transform (Olhede, 2007), which computes the real wavelet transform of each

component of the (hyper)analytic version of a signal f ∈ L2(R2,R). For the contin-

uous wavelet transform and the maximum overlap DWT,10 the use of the analytic

version of a real wavelet, of the analytic version of a signal or of the analytic version

of the real wavelet transform coefficients are equivalent. For the standard DWT the

three approaches are subtly different.

By using the Riesz transform to generalise the Hilbert transform to higher dimen-

sions (instead of using Hilbert transforms along the vertical and horizontal directions),

a different quaternion generalisation of the complex analytic signal — called mono-

genic signal — is obtained. The monogenic versions of real wavelets yield monogenic

quaternion wavelets for analysing L2(R2,R) or more generally Clifford wavelets for

L2(Rm,R) (Held et al., 2010). These monogenic wavelets exhibit rotation-invariance

of the wavelet coefficient amplitude when the real part is isotropic, in addition to the

shift-invariance offered by analytic wavelets.

A generalisation of monogenic wavelet analysis to vector signals such as color im-

ages has been suggested by Soulard et al. (2013), but relies on a reinterpretation of

9Note that (5.1) would yield a quaternion wavelet suitable for analysing quaternion signals if the
complex wavelet ψ were suitable for complex signals (and hence also quaternion signals). It could
still in a sense be considered trivial as a tensor product of trivial wavelets.

10The maximum overlap DWT (a.k.a. shift-invariant or cycle-spinning DWT) is a redundant
version of the DWT which does not downsample coarse-scale coefficients.
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marginal transforms. The use of redundant quaternion analytic or monogenic wavelets

in greyscale image analysis to obtain wavelet coefficients with amplitude-phase inter-

pretations is of a fundamentally different nature from the use of quaternions to en-

code pixel colour in colour image analysis. The latter allows for simple formulations

of geometric colourspace transformations (Ell, 2007), and can account for them in

e.g. image registration (Moxey et al., 2003).11 This latter use of quaternions is more

closely related to the type of quaternion wavelet considered in the rest of this chapter.

For an extensive bibliography on quaternion and Clifford-algebra-valued wavelet

(and Fourier) transforms, see the recent review paper by Brackx et al. (2013).

5.2.2 Problems with existing quaternion wavelet constructions

Quaternion wavelets are investigated by Bahri (2010) and He and Yu (2005) using two

different (but fundamentally equivalent) representations of quaternions as structured

matrices in C
2×2. They work predominantly in the frequency domain by making use

of quaternion Fourier transforms, however we will show that these are not a suitable

choices of Fourier transform for this task. The fundamental problem is that although

every pure imaginary unit quaternion generates a complex subalgebra of H (as we

noted in Section 1.2.1) — and can thus be used as an imaginary unit in a Fourier

kernel — H is not a complex algebra and hence there is no quaternion-valued Fourier

kernel which commutes with all quaternions. This problem can be solved by extending

H to the complex algebra of biquaternions (see Section 5.7.3).

Sangwine and Ell (2012) show that real matrix representations allow for a uni-

fied understanding of quaternion Fourier transforms and other hypercomplex Fourier

transforms, since in the real matrix domain they all use kernels of the form cos(ωt)In+

sin(ωt)M , differing only in their choice of ‘imaginary unit’ matrix M (which must

11Moxey et al. (2003) show that the quaternion correlation between two colour images can be
used for image registration when — in addition to a spatial shift — the image has suffered from a
colour space distortion (modeled as a rotation, scaling and translation of the colour basis) or has
been converted to greyscale.



5.2 A review of literature on quaternion wavelet transforms 128

satisfy M 2 = −In).12

To better compare and understand the complex-matrix-domain approaches of He

and Yu (2005) and Bahri (2010) we map them to the quaternion domain. In the

following φ ∈ L2(R,H) denotes a quaternion scaling function and {g�} denotes a

quaternion scaling filter.

He and Yu (2005, eqns. (1.7), (2.1), (2.2) and (3.1)) use the continuous quaternion

Fourier transform

φ̂HY (f) =

� ∞

−∞
e−i2πftφ(t)dt,

and the discrete quaternion Fourier transform

ĜHY(f) =
�

�∈Z

g� e
−i2πf�.

They claim that the two-scale dilation equation

φ(t) =
√
2
�

�∈Z

g�φ(2t− �) (5.2)

is given in the Fourier domain by

φ̂HY(f) =
1√
2
ĜHY

�
f

2

�
φ̂HY

�
f

2

�
. (5.3)

This is a standard result in the real and complex case. However in the quaternion case,

if the scaling function and scaling filter are non-trivial, then they will not commute

with the Fourier kernel and (5.3) will not hold. This creates problems for their

frequency domain design method. Three constructions are given:

Design 1 is simply the real Haar scaling filter g0 = g1 = 2−
1
2 . The two other

scaling filter designs however do not produce orthogonal MVWs because they are not

12In the quaternion case, n = 4. The extension to vector time is obtained by taking products of
such kernels. The case of two-sided quaternion Fourier transforms can be accommodated by using
imaginary units M1 ∈ �H for the left kernel and M2 ∈ �HR for the right kernel (with both kernels
appearing on the left in the real matrix domain and the signal appearing as a vector).
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orthogonal to their even shifts, i.e. they do not satisfy

�

�∈Z

g�ḡ�+2k = δk,0, (5.4)

(see also (5.11)).

Design 2 is given in the quaternion domain by

g0 =
3

4
√
2
(1 + j)

g1 =
1√
2

g2 =
3

4
√
2
(1− j).

In addition to the fact that this filter is trivial, we have

g0ḡ2 =
9

16
j �= 0,

which contradicts (5.4) and thus precludes orthogonality.

Design 3 is given by

g0 = 0

g1 =
1

8
√
2

�
2−

√
3j− 3k

�

g2 =
1√
2

g3 =
1

8
√
2

�
6 +

√
3j + 3k

�
.

In addition to the fact that this filter is also trivial,13 we have

g0ḡ2 + g1ḡ3 = g1ḡ3 = − 1

16

�√
3j + 3k

�
�= 0,

which again contradicts (5.4).

13It is complex with imaginary unit i0 = j+
√
3k

2 .
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Bahri (2010, eqns. (20) and (33)) uses the continuous quaternion Fourier transform

φ̂Bahri(f) =

� ∞

−∞
φ(t) e−k2πftdt,

and the discrete quaternion Fourier transform

ĜBahri(f) =
1√
2

�

�∈Z

g�e
−k2πf�.

Bahri (2010, eqn. (34)) claims that

φ̂Bahri(f) = ĜBahri

�
f

2

�
φ̂Bahri

�
f

2

�
.

However, the proof given for this equality incorrectly assumes commutativity between

e−kπf� and φ(2t− �), so it does not hold for non-trivial scaling functions.

Peng and Zhao (2004) use the biquaternion Fourier transform, which leads to

correct frequency-domain results (see Section 5.7.3). They obtain three symmetric

quaternion scaling filters by a method similar to the one we will use, i.e. by solving

the quadratic equations corresponding to the various design constraints. However, all

three constructions are trivial.

The first construction is given by

g0 = g3 = x+ yi0

g1 = g2 = (1/
√
2)− x− yi0,

where y = [(x/
√
2)−x2]1/2, x ∈

�
0, (1/

√
2)
�
is a free parameter and i0 is an arbitrary

pure imaginary unit quaternion.

The second construction is the symmetric complex Daubechies scaling filter of
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length L = 6 of Lina and Mayrand (1995, Eqn. (2.21)) (with complex unit i0).14

g0 = g5 = − 1

32
√
2

�
3 +

√
15i0

�

g1 = g4 =
1

32
√
2

�
5−

√
15i0

�

g2 = g3 =
1

16
√
2

�
15 +

√
15i0

�
.

The third construction is given by

g0 = g7 =
−155 +

√
1583470i0

8448
√
2

g1 = g6 = 3g0 +
1

16
√
2

g2 = g5 = g0 +
5

16
√
2

g3 = g4 = −5g0 +
10

16
√
2
.

In addition to being trivial,

g0ḡ6 + g1ḡ7 =
35

1056
�= 0,

which contradicts (5.4). This attempt by Peng and Zhao (2004) to produce a sym-

metric Daubechies quaternion scaling filter of length L = 8 failed because no such

filter exists. The authors did not notice the problem because only a subset of the

design equations was used in the derivation.

In the more general field of Clifford-valued wavelets, Askari Hemmat and Rahbani

(2010) give two constructions of C�4,0(R)-valued MVSFs. Case I is the real Haar filter.

Case II is both trivial and fails to be orthogonal.15

14Hence the filter has 3 vanishing moments even though the authors only imposed 2 in the design.

15Or rather, it fails to be orthonormal. After an appropriate rotation, it is equal to the direct sum
of the real Haar filter, a shifted version thereof and two scaled delay filters.
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5.3 Matrix and vector multiresolution analyses

L2(R,Rm×n) denotes the space of m × n matrix-valued functions defined on R with

values in R
m×n having finite Frobenius (a.k.a. L2) norm.

Within this chapter, it will often be helpful to think of matrices as column vectors

of row vectors, i.e. R
m×n = (R1×n)m and L2(R,Rm×n) = (L2(R,R1×n))m. We will

also tend to think of matrices as linear operators multiplying row vectors from the

right.

Similarly to Section 1.3.2, we could have alternatively proceeded by treating ma-

trices as row vectors of column vectors and as linear operators multiplying column

vectors from the left. The latter approach would have allowed for a treatment of

quaternions more consistent with the rest of the thesis, but would have required a

reversion of the order of operations in the various equations, making comparisons

with scalar wavelets and most MVW literature (e.g. Walden and Serroukh (2002))

less obvious. The two approaches are however equivalent, and the transpose operator

•T maps between them.

Definition 5.1. The symbol “inner product” of F1,F2 ∈ L2(R,Rm×n) is given by

�F1,F2�m×m
=

� ∞

−∞
F1(t)F

T

2
(t)dt.

The (usual) inner product is instead given by

�F1,F2� = tr
�
�F1,F2�m×m

�

We may similarly define these two types of inner product for matrices in R
m×n

and for (square-summable) sequences in �2(Z,Rm×n).

The inner product �•, •� is consistent with interpreting Rm×n as a mn-dimensional

vector space, and gives L2(R,Rm×n) a Hilbert space structure. The Frobenius norm

follows from this inner product, i.e.

||F || =
�
�F ,F �.
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(see also Definition 1.57)

Definition 5.2. A set V is a (left-)A-module for a ring A if it is closed under (left-

)A-linear combinations, i.e. for any x, y ∈ V , a, b ∈ A

ax+ by ∈ V.

The symbol inner product �•, •�
m×m

is consistent with interpreting R
m×n and

L2(R,Rm×n) as Rm×m-modules. With the exception of the case m = 1 — for which

the two inner products are equal — �•, •�
m×m

does not define a true inner product,

since it takes values in the algebra R
m×m which is not a field. However, it is bilinear

(sesquilinear) and symmetric in the sense that for A,B ∈ R
m×m and F1,F2,F3 ∈

L2(R,Rm×n)

�AF1,BF2�m×m
= A �F1,F2�m×m

BT

�F1 + F2,F3�m×m
= �F1,F3�m×m

+ �F2,F3�m×m

�F1,F2�m×m
= �F2,F1�Tm×m

.

By considering matrices of the form λIm, λ ∈ R it is clear that every R
m×m

module is also a real vector space. The following stronger result shows that the two

notions are to a large extent interchangeable.

Proposition 5.3. Every (left-)Rm×m-module V is of the form V = Sm, where S

is a real vector space. Conversely, if S is a real vector space, then V = Sm is a

(left-)Rm×m-module.

Proof. See Appendix B.5 or Ginzberg and Walden (2013a, Proposition 1).

We will use the following notation

Definition 5.4. Given a matrix (or matrix-valued function) F , let F (i,•) denote its

ith row. Given a set V , let V (i,•) =
�
F (i,•) : F ∈ V

�
.
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Definition 5.5. δi,j denotes the Kronecker delta

δi,j =

�
1 if i = j

0 if i �= j

Definition 5.6. A (finite or countable) sequence Fk ∈ V forms a R
m×m-orthonormal

basis for the (left-)Rm×m-module V iff

�Fi,Fj�m×m
= δi,jIm ∀k, l,

and for every F ∈ V there exists a sequence Ak ∈ R
m×m such that

F =
�

k

AkFk

Remark 5.7. Rm×m-orthogonality is stronger than vector-space orthogonality (�•, •�)
and corresponds to orthogonality of the rows, i.e. �F1,F2�m×m

= 0m×m iff ∀i, j�
F (i,•)

1
,F (j,•)

2

�
= 0.

Proof.
�
F (i,•)

1
,F (j,•)

2

�
is the (i, j)-entry of �F1,F2�m×m

.

A MRA defines nested spaces of finer and coarser-scale signal approximations.

When the signal space considered is L2(R,Rn×n), as in e.g. Walden and Serroukh

(2002); Xia and Suter (1996), the following definition arises:16

Definition 5.8. A (orthogonal n×n) matrix MRA (MMRA) is a sequence of closed

sub-Rn×n-modules Vj ⊂ L2(R,Rn×n), j ∈ Z satisfying

1. Vj ⊂ Vj−1 ∀j ∈ Z.

2.
�

j∈Z Vj is dense in L2(R,Rn×n) and
�

j∈Z Vj = {0n×n}.

3. F (t) ∈ V0 ⇔ F (t− k) ∈ V0 ∀k ∈ Z.

4. F (t) ∈ Vj ⇔ F (2jt) ∈ V0 ∀j ∈ Z.

16Note that Xia and Suter (1996) refers to our notion of matrix MRA as vector MRA.
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5. There exists Φ ∈ V0 such that its integer translates Φ(t − k), k ∈ Z form an

orthonormal basis for V0.

Φ is a (n× n) scaling function, and we say that Φ generates the matrix MRA.

Remark 5.9. Given an n × n scaling function Φ, the n × n MMRA it generates is

unique. However, {Vj} is also generated by OΦ(t− k) for any orthogonal matrix O

and k ∈ Z. This ambiguity can be resolved by assuming that
�∞
−∞ Φ(t)dt = In and

that Φ has compact support [0, L− 1] for some L > 1.

If the signal space considered is L2(R,Rn) — or equivalently L2(R,R1×n) for ease

of comparison — then the following definition arises (Chen and Cheng, 2007):

Definition 5.10. A (orthogonal n-dimensional) vector MRA is a sequence of closed

linear spaces Vj ⊂ L2(R,R1×n), j ∈ Z satisfying

1. Vj ⊂ Vj−1 ∀j ∈ Z.

2.
�

j∈Z Vj is dense in L2(R,R1×n) and
�

j∈Z Vj = {01×n}.

3. f(t) ∈ V0 ⇔ f(t− k) ∈ V0 ∀k ∈ Z.

4. f(t) ∈ Vj ⇔ f(2jt) ∈ V0 ∀j ∈ Z.

5. There exist φ1, . . . ,φn ∈ V0 such that their integer translates φi(t− k), k ∈ Z,

i = 1, . . . , n form an orthonormal basis for V0.

The φi are vector scaling functions, and we say that they generate the vector MRA.

Proposition 5.11. An n × n matrix-valued function Φ generates a MMRA {Vj}
if and only if its rows Φ(i,•) generate a VMRA {Sj}. Furthermore, we then have

Vj = Sn

j
.

Proof. For the “if” case, by Proposition 5.3 we can write Vj = Sn

j
. For the “only

if” case, set Vj = Sn

j
(the uniqueness of this construction then follows from the “if”

case). We need to show that closedness and conditions 1 to 5 are satisfied by Sn

j
iff

they are satisfied by Sj. For conditions 1, 3 and 4 this is trivial.
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For closedness, note that the norms in L2(R,Rn×n) and L2(R,R1×n) are related by

||F ||2 =
�

n

i=0
||F (i,•)||2. For condition 2, this implies that a sequence Fk ∈

�
j∈Z S

n

j
=��

j∈Z Sj

�n

converges to F iff for each i the sequence F (i,•)
k

converges to F (i,•).

For condition 5, this follows from Remark 5.7 and

F (t) =
�

k∈Z

AkΦ(t− k) ⇔ ∀i, F (i,•)(t) =
�

k∈Z

n�

j=1

ai,j,kΦ
(j,•)(t− k),

where ai,j,k is the (i, j)-entry of Ak.

The (a) MVW associated with a MMRA Vj is a function Ψ ∈ L2(R,Rn×n) such

that its integer translates Ψ(t− k), k ∈ Z form a R
n×n-orthonormal basis of

V−1 � V0 =
�
F ∈ V−1 : �F ,Φ(t− k)�

n×n
= 0n×n ∀k ∈ Z

�
,

the orthogonal complement of V0 in V−1. Then 2
j

2Ψ(2−jt − k), j, k ∈ Z form a

R
n×n-orthonormal basis of L2(R,Rn×n) since

�
j∈Z (Vj−1 � Vj) =

�
j∈Z Vj is dense

in L2(R,Rn×n). Similarly to the proof of Proposition 5.11, the rows of Ψ form an

orthonormal basis of L2(R,R1×n).

In a theoretical setting, whether to use a vector or matrix MRA formulation is

largely a matter of taste. MMRAs allow us to think of MVWs as Rn×n-algebra-valued

wavelets. This conveniently leads to formulas and notation which are very similar to

the familiar real and complex cases. However, it is the vector MRA which describes

the correct practical application of MVWs, and the use by e.g. Walden and Serroukh

(2002) of MMRA in a practical setting should be considered inappropriate.

Consider a matrix-valued signal F ∈ L2(R,Rn×n). An arbitrary DWT coefficient

(a coefficient in the wavelet basis) is given by

WΨ(F )(2j, 2jk) =
�
F , 2

j

2Ψ(2−jt− k)
�
= 2

j

2

� ∞

−∞
F (t)ΨT (2−jt− k)dt.

Hence each row WΨ(F )(2j, 2jk)(i,•) depends only on the corresponding row F (i,•),

and a DWT (or continuous wavelet transform) of a matrix-valued signal is equivalent
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to n independent vector-valued transforms of its rows (see also Appendix B.6).

If we instead consider the vector-valued signal vec(F )T ∈ L2(R,R1×n
2
), a truly

holistic analysis can be obtained by using an appropriate n2×n2 MVW. The matrix-

valued approach corresponds in this latter context to using the n2×n2 MVWΨ(t)⊗In.

Although treating a n2-dimensional signal as n×n-matrix-valued is inappropriate,

one may choose to treat an n-dimensional signal f ∈ L2(R,R1×n) as n × n-matrix-

valued. This can be done by setting F (i,•) = δi,1f , i = 1, . . . , n17 or alternatively by

setting F (i,•) = f , i = 1, . . . , n as done by Fowler and Hua (2002a). Such approaches

handle vector-valued signals without requiring an explicit theory of vector MRA.

Remark 5.12. Generalising the Karhunen-Loève transform to the matrix algebra case

leads to similar issues. See Appendix A.3.

5.4 Matrix-valued scaling filters

Let Φ be a n × n scaling function associated with a MMRA {Vj}. Φ ∈ V0 ⊂ V−1,

hence it satisfies the two-scale dilation equation

Φ(t) =
√
2
�

k∈Z

GkΦ(2t− k). (5.5)

We call the sequence of n×n matrices {Gk} the matrix-valued scaling filter (MVSF).

We will assume that {Gk} is of the form . . . ,0n×n,G0, . . . ,GL−1,0n×n, . . . , where

L is the finite length of the filter.18 This is equivalent to assuming that Φ has compact

support [0, L− 1] as per Remark 5.9 (Strang and Nguyen, 1996, pp. 185-186).

For a MVW Ψ, since Ψ ∈ V−1 � V0 ⊂ V−1 we have

Ψ(t) =
√
2
�

k∈Z

HkΦ(2t− k). (5.6)

17Compare this row-embedding with the column-embedding of Xia (1997, p. 9), where the MVW
transform is effectively performed independently on each component as a type of redundant multi-
wavelet transform.

18This assumption is made without loss of generality for finite-length filters. Most results will
remain valid for filters of infinite-length in �2(Rn×n) (i.e. such that

�
k∈Z

||Gk||2 < ∞).
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We call {Hk} the matrix-valued wavelet filter.

The matrix Fourier transform which we will use is simply a scalar Fourier trans-

form applied to each entry, i.e.

Φ̂(f) =

� ∞

−∞
Φ(t)e−i2πftdt (5.7)

Ĝ(f) =
�

k∈Z

Gke
−i2πfk.

In the frequency domain (5.5) becomes

Φ̂(f) =
1√
2
Ĝ

�
f

2

�
Φ̂

�
f

2

�
. (5.8)

The assumption
�∞
−∞ Φ(t)dt = In from Remark 5.9 is given in the frequency

domain by Φ̂(0) = In. Since Φ(t) has compact support, Φ̂(f) is continuous. By

iterating (5.8) we obtain in the limit

Φ̂(f) =
∞�

m=1

Ĝ (f/2m)√
2

. (5.9)

Note that by convention the product expands from left to right. (5.9) allows us

to compute the scaling function from the filter coefficients. In practice, values are

computed on a dyadic grid by truncating the infinite product after finitely many

terms, as explained by Walden and Serroukh (2002, Appendix A). Thus we may

concentrate on designing the filter {Gk}. This amounts to choosing n2L real scalar

values for the coefficient entries.

In the remainder of this section we will give necessary conditions for {Gk} to be

a valid MVSF, and also express further design conditions in terms of Gk. These lead

to a system of quadratic (and linear) equations in n2L real variables which we solve

in Section 5.8 to produce novel MVWs.

Unlike the scalar case, filter lengths may a-priori be odd or even. In order to easily

cover both cases by a single equation, we define L� to be the even length of a filter of
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length L, i.e.

L� =

�
L if L is even

L+ 1 if L is odd

We may think of a filter {Gk} with odd length L as a filter with even length L� = L+1

satisfying GL�−1 = 0n×n.

Setting f = 0 in (5.8) gives us the scaling equation

Ĝ(0) =
L
�−1�

k=0

Gk =
√
2In. (5.10)

Fowler and Hua (2002a) refer to the property (5.10) as “omnidirectional balancing”.

It is the condition which sets MVWs apart from standard multiwavelets.19 Walden

and Serroukh (2002) noted that (5.10) implies that the filter {Gk} preserves constant

signals.

We intend to work with {Gk} with no a-priori knowledge of Φ or {Vj}. Thus, we
must check that Φ (and by extension {Vj}) is well-defined through (5.9).

Corollary 5.13. Let {Gk} be a finite-length filter satisfying (5.10). Then the infinite

product (5.9) converges uniformly on compact sets.

Proof. This is an immediate corollary of Heil and Colella (1996, Proposition 5.2),

since
�

Ĝ(0)√
2

�∞
= I∞

n
= In.

5.4.1 Orthogonality

Proposition 5.14. Orthonormality of {Φ(t− k)} implies

L
�−1−2m�

k=0

GkG
T

k+2m
= δm,0In, m = 0, . . . , (L�/2)− 1. (5.11)

19For standard multiwavelets, one eigenvalue of Ĝ(0)/
√
2 is equal to 1, and all other eigenvalues

are strictly less than 1 in absolute value.
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Proof. Using (5.5)

δm,0In = �Φ(t),Φ(t+m)�
n×n

=
�

k∈Z

�

�∈Z

Gk

�√
2Φ(2t− k),

√
2Φ(2t+ 2m− �)

�

n×n

GT

�

=
�

k∈Z

�

�∈Z

δk,�−2mGkG
T

�

=
�

k∈Z

GkG
T

k+2m

(5.11) is a necessary (but not sufficient) condition for orthogonality of {Φ(t− k)}.
A sufficient (but not necessary) condition is given by

Proposition 5.15. Let {Gk} be a finite length filter satisfying (5.10) and (5.11). If

det
�
Ĝ(f)

�
�= 0 for |f | ≤ 1

4
, then Φ(t) defined by (5.9) is a matrix-valued scaling

function for a MMRA.

Proof. This is a reformulation of (Xia, 1997, Theorem 3.4) (See also He and Yu (2005,

Theorem 2.2)) which requires that inf |f |< 1
4
|λ(f)| > 0 for all eigenvalue functions λ(f)

of Ĝ(f). All eigenvalues are non-zero iff their product, the determinant, is non-zero.

This remains true in the infimum limit since

|λ(f)| ≤ ||Ĝ(f)|| ≤
L�

k=1

||GL|| < ∞.

det
�
Ĝ(f)

�
is a finite trigonometric polynomial. Hence it is continuous and

inf
|f |< 1

4

���det
�
Ĝ(f)

���� = 0 ⇔ ∃f ∈
�
−1

4
,
1

4

�
: det

�
Ĝ(f)

�
= 0.

Unlike Cui et al. (2009); He and Huang (2012); Walden and Serroukh (2002), we

will not focus on satisfying this technical sufficient condition in our MVSF designs.
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We will instead check the sufficient condition after obtaining explicit formulas for our

MVSF constructions. In all cases it was satisfied. Because we will construct only

Daubechies MVSFs, we will see in Remark 5.32 that this is actually unnecessary.

5.4.2 Vanishing moments

Definition 5.16. The MVSF {Gk} has A vanishing moments iff

L−1�

k=0

(−1)kkdGk = 0n×n, d = 0, . . . , A− 1. (5.12)

As in the scalar case, an alternate formulation of the vanishing moment condition

(5.12) is that

Ĝ(f) = (1 + e−i2πf )AĴ(f) (5.13)

for some filter {Jk} of length L− A. Having A vanishing moments for the MVSF is

equivalent to the ability of (linear combinations of shifted versions of) the scaling filter

to reproduce (matrices of) polynomials of order A (Bacchelli et al., 2002, Theorem

3.1). Vanishing moments are also desirable because they are related to the smoothness

of Φ: Having A vanishing moments is a necessary (but not sufficient) condition for

the existence of an A-fold derivative d
AΦ
dt

A ∈ L2(R,Rn×n) (Micchelli and Sauer, 1997,

Theorem 5.1).

Proposition 5.17. Every MVSF has at least one vanishing moment.

Proof. Let X =
�

k∈Z(−1)kGk. Then using (5.11)

2InI
T

n
+XXT =

�
�

k∈Z

Gk

��
�

k∈Z

Gk

�
+

�
�

k∈Z

(−1)kGk

��
�

k∈Z

(−1)kGk

�T

= 2
�

k∈Z

�

�∈Z

�
1 + (−1)k+�

�
GkG

T

�

= 2
�

m∈Z

�

k∈Z

GkG
T

k+2m

= 2
�

m∈Z

δm,0In

= 2In.
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Hence XXT = 0n×n, the trace of which implies X = 0n×n.

(see also Walden and Serroukh (2002, eqn. (2.5)).)

5.4.3 The fast matrix-valued wavelet transform

Most of the results in this section can also be found in Xia and Suter (1996, Section V).

However, our conventions differ, so we reformulate them here for clarity. The J th

level DWT of a vector-valued signal f ∈ L2(R,R1×n) decomposes it into a linear

combination

f(t) =
�

k∈Z

sJ,k2
−J/2Φ(2−Jt− k) +

�

j≤J

�

k∈Z

wj,k2
−j/2Ψ(2−jt− k), (5.14)

where sJ,k,wj,k ∈ R
1×n are called respectively the scaling and wavelet coefficients.

This decomposition is directly related to the notion of vector MRA, since it follows

the decomposition of L2(R,R1×n) into the orthogonal subspaces VJ and Vj−1 � Vj,

j = J, J − 1, . . ..

We will assume that f(t) ∈ V0, and that we are given the 0th level scaling coef-

ficients s0,k. Often, for a discrete or discretely sampled signal, one will simply set

s0,k = f(k) instead. Also, for signals of finite-length T , we will assume that periodic

boundary conditions are imposed, i.e. s0,k = s
0,k mod T

. This induces periodicity in

the wavelet and scaling coefficients, allowing for a non-redundant transform.

Proposition 5.18. The coefficients sJ,k and wj,k in (5.14) can be obtained through

the fast wavelet transform (a.k.a. Mallat’s pyramid algorithm) by iteratively comput-

ing

sj+1,k =
2k+L−1�

�=2k

sj,�G
T

�−2k

wj+1,k =
�

�∈Z

sj,�H
T

�−2k
. (5.15)

The original signal s0,k can then be recovered through the reconstruction algorithm
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which iteratively computes

sj−1,k =
�

�∈Z

(sj,�Gk−2� +wj,�Hk−2�) . (5.16)

Proof. See Appendix B.6

Note that the fast MVW transform differs from the fast multiwavelet transform

(of a vectorised scalar signal) only in the choice of filters.

For matrix-valued signals F ∈ L2(R,Rn×n), the same algorithm applies, with

sj,k,wj,k replaced by matrix coefficients in R
n×n. This is however equivalent to inde-

pendent transforms of the rows (see Appendix B.6).

Although the scaling and wavelet functions are important for interpreting MRA

and the transform coefficients, only the filters {Gk} and {Hk} are required to compute

a DWT.

5.4.4 Computing matrix-valued wavelet filters

In the scalar case (n = 1) it is well known that a wavelet filter {hk} can be computed

from a scaling filter {gk} by the simple quadrature mirror relationship

hk = (−1)k+1gL−1−k. (5.17)

Xia and Suter (1996) note that in order for the construction (5.17) to be valid for

matrix-valued filters, Ĝ(f) should commute with Ĝ
�
f + 1

2

�
for all values of f . This

condition will hold in the case of 2 × 2 MVSFs with complex structure – and more

generally for trivial filters which are orthogonally similar to a direct sum of filters for

which it holds – but is very restrictive in the general matrix case.

Chen et al. (2006, Corollary 1) give a procedure for the computation of matrix-

valued wavelet filters from MVSFs of length L ≤ 3. We will show however, that these

are all cases where (5.17) is applicable in Corollary 5.28.
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Yu (2011) suggests the general construction

Ĥ(f) = e−2πf iP

�
f +

1

2

�
UH(f),

based on a frequency-by-frequency polar decomposition GH(f) = U (f)P (f), where

U (f) is unitary and P (f) is Hermitian positive semi-definite. However, this con-

struction will in general lead to a matrix-valued wavelet filter of infinite length.

The method we will use for matrix-valued wavelet filter computation is paraunitary

completion of the polyphase matrix, as suggested by Xia and Suter (1996). This

method is applicable to generalised multiwavelets, of which both multiwavelets and

MVWs are special cases (Keinert, 2003, Corollary 10.2).

In Ginzberg and Walden (2013a, Section VII) we describe the paraunitary com-

pletion method in detail, and by using the formulation of Keinert (2003, Theorem 9.2)

we note that the resulting matrix-valued wavelet filter will have length at most L�.

In practice we will perform paraunitary completion using the

projection factorization function from themwMatlab toolbox by Keinert (2004).

This function supports both numeric and symbolic computation. We present our Mat-

lab code for matrix-valued wavelet filter computation using

projection factorization in Appendix C.1.

Remark 5.19. For a given MVSF there are infinitely many possible choices of matrix-

valued wavelet filter (and hence of MVW). Any two such filters {Hk} and {Jk} are

related by

Ĥ(f) = Ô(2f)Ĵ(f) (5.18)

for some paraunitary Ô(f). Conversely, if {Jk} is a valid matrix-valued wavelet filter

for a given MVSF, then so is {Hk} defined by (5.18).20

Proof. The existence of Ô(f) is a reformulation of (Keinert, 2003, Theorem 10.1),

and the converse follows from Xia and Suter (1996, Proposition 1).

20Note in particular that O(f) may be taken to be a constant orthogonal matrix.
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5.5 Trivial matrix-valued scaling filters

We will consider in this section methods for constructing new MVSFs, which we label

‘trivial’, from existing MVSFs. Excluding trivial and orthogonally similar MVSFs

from our later constructions of Daubechies MVSFs will allow us to significantly reduce

the number of free parameters.

5.5.1 Orthogonal similarity

Definition 5.20. Two filters {Gk} and {Jk} are orthogonally similar iff there exists

an orthogonal matrix O such that

Gk = OJkO
T , ∀k ∈ Z. (5.19)

We will refer to maps of the form M �→ OMOT and of the form {Jk} �→ {OJkOT},
where O is an orthogonal matrix, as orthogonal similarity transformations (OSTs).

OSTs account for n(n−1)

2
degrees of freedom in the design of MVSFs.

Proposition 5.21. If {Gk} is an MVSF of length L with A vanishing moments, then

any orthogonally similar filter {OGkOT} is also an MVSF of length L with A van-

ishing moments. If furthermore the matrix-valued scaling function Φ associated with

{Gk} generates a MMRA {Vj}, then the matrix-valued scaling function associated

with {OGkOT} generates the MMRA {VjOT}, where VjOT =
�
FOT : F ∈ Vj

�
.

Proof. This mostly follows from the fact that an OST is a ∗-algebra automorphism of

R
n×n. For example, it is clear that {OGkOT} has A vanishing moments by applying

the OST to both sides of (5.12). By (5.9), the scaling function corresponding to
�
OGkOT

�
is OΦ(t)OT , which is orthogonal to its integer shifts since

�
OΦ(t− k)OT ,OΦ(t− l)OT

�
n×n

= O �Φ(t− k),Φ(t− l)�
n×n

OT = δk,lIn.
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Finally, consider an arbitrary F (t) =
�

k∈Z AkΦ(t− k) ∈ V0. Then

F (t)OT =
�

k∈Z

�
AkO

T
� �

OΦ(t− k)OT
�
.

Hence {OΦ(t− k)OT} is an orthogonal basis for V0OT .

Orthogonal similarity is an equivalence relation, and hence it makes sense to work

on filters ‘up to (or modulo) orthogonal similarity’. The following helps us with

choosing a representative filter.

Lemma 5.22. Every M ∈ R
n×n is orthogonally similar to a matrix of the form

D +A, where D is diagonal and A is anti-symmetric, (i.e., A = −AT ).

Proof. M = S + B where S = 1

2
(M + MT ) is symmetric and B = 1

2
(M − MT )

is anti-symmetric. By the real spectral theorem S = ODOT for some orthogonal

matrix O and diagonal matrix D. M is orthogonally similar to OTMO = D +A

where A = OTBO = −OTBTO = −AT is anti-symmetric.

Corollary 5.23. Given a filter {Gk}, we may assume up to orthogonal similarity

that G0 = D +A for some diagonal matrix D and anti-symmetric matrix A.

Note that Corollary 5.23 will usually not be sufficient to select a unique represen-

tative element from an equivalence class of orthogonally similar matrices, since for

example OSTs whereO is a permutation matrix preserve diagonal and anti-symmetric

matrices. However, when all diagonal entries of D are different, assuming that they

appear in decreasing order does fix a unique representative element.

5.5.2 Decomposition of filters

Consider a diagonal n× n scaling function

Φ(t) =
n�

i=1

φn(t) =





φ1 · · · 0
...

. . .
...

0 · · · φn



 .



Chapter 5. Quaternion Wavelets and Matrix-Valued Wavelets 147

Then each φi is a scalar scaling function. The vector MRA {Vj} generated by Φ sim-

ply contains vectors of functions, the ith entry of which belongs to the scalar MRA

generated by φi. The MVSF {Gk} will also be a diagonal direct sum of scalar scaling

filters, and the matrix wavelet transform of a vector signal will be given by indepen-

dent scalar wavelet transforms of its components. Such an approach clearly does not

offer a holistic alternative to the naive use of scalar wavelets (which corresponds to

the special case where all the φi are equal, i.e. Φ(t) = φ(t)In).

This is true more generally of any MVSF which can be split into a direct sum

of lower-dimensional components, since the signal space can then also be split into

corresponding subspaces being analysed independently.

Definition 5.24. A filter (resp. scaling function or wavelet) is trivial21 iff it is

orthogonally similar to the direct sum of two (or more) filters (resp. scaling functions

or wavelets), i.e. to a block-diagonal filter (resp. scaling function or wavelet).

Theorem 5.25. Every filter {Gk} is orthogonally similar to a direct sum of non-

trivial filters, i.e.

Gk = O

�
m�

i=1

J (i)

k

�
OT , (5.20)

where O is an orthogonal matrix and each {J (i)

k
}, i = 1, . . . ,m is non-trivial (m ≥ 1).

Proof. The theorem holds for non-trivial filters by taking m = 1. All scalar (1 × 1)

filters are non-trivial, hence the theorem holds for n = 1. We proceed by strong

induction on n. Every trivial (n+1)× (n+1) filter is orthogonally similar to a direct

sum of filters, each of which is of size at most n × n. We may assume that each of

those filters in turn is orthogonally similar to a direct sum of non-trivial filters. Since

direct sums of orthogonal matrices are orthogonal, and the product of two orthogonal

matrices is orthogonal, this completes the proof.

Remark 5.26. Let each {J (i)

k
} in (5.20) be a ni × ni MVSF of length Li

22 with Ai

21One may wish based on convention to refer to trivial (resp. non-trivial) filters as ‘non-simple’
(resp. simple) instead.

22In the sense that J (i)
k

= 0ni×ni for k < 0 and for k ≥ Li
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vanishing moments. Then Gk is a n×n MVSF of length L with A vanishing moments

where

n =
m�

i=1

ni

L = max
i

Li

A = min
i

Ai.

Proof. This follows from Proposition 5.21.

Despite Remark 5.26, trivial filters may satisfy some desirable properties which

are absent in the filters from which they are assembled. One such example is the

‘symmetric-antisymmetric’ condition, which implies that all the matrix entries are

linear-phase (see Fowler and Hua (2002b); Ginzberg andWalden (2013a, Section IV.A)).

5.5.3 Computational complexity

An advantage of trivial filters is that their wavelet transforms can be computed

through lower-dimensional transforms (in the appropriate basis of Rn), and this re-

quire less computation than a general implementation of non-trivial filters.

Multiplication of a vector by a general n × n matrix requires n2 multiplications

and n(n − 1) additions. For a block-diagonal matrix this can be broken down into

lower-dimensional products, and in the extreme case where the matrix is diagonal,

only n multiplications and 0 additions are required.

Compared with (block-)diagonal filters, trivial filters will however generally require

changing the signal to and from the basis of Rn in which the filter is block-diagonal.

The number of operations in each case is given in Table 5.1. Asymptotically for large

n the computational complexity when using a non-trivial filter is O(n2), wherease for

a trivial filter it is O(maxi n2

i
).

5.5.4 Triviality of MVSFs of length L ≤ 3

Proposition 5.27. Every non-scalar MVSF of length L = 3 is trivial.
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filter type multiplications additions
diagonal nLNγ n(L− 1)Nγ
highly trivial 2nN + nLNγ 2(n− 1)N + n(L− 1)Nγ
trivial 2nN +

�
m

i=1
n2

i
LNγ 2(n− 1)N +

�
m

i=1
ni(niL− 1)Nγ

non-trivial n2LNγ n(nL− 1)Nγ

Table 5.1: Number of operations required for a n × n matrix wavelet transform
when the scaling and wavelet filters are diagonal, diagonal up to orthogonal similarity
(highly trivial), block-diagonal up to orthogonal similarity (trivial) or non-trivial.
Here L is the length of the filters, N is the length of the signal, and 1 ≤ γ =
(2− 21−J) < 2 where J ≤ log

2
(N) is the number of transform levels computed.

Proof. (5.10) is

G0 +G1 +G2 =
√
2In.

Proposition 5.17 and (5.12) imply

G0 −G1 +G2 = 0n×n.

Subtracting the latter from the former we have

G1 = 2−
1
2In. (5.21)

Hence

G2 = 2−
1
2In −G0. (5.22)

These allow us to express (5.11) in terms of G0 only. Adding twice the equation for

m = 1 to the equation for m = 0 we have

G0G
T

0
+ 2−1In + (2−

1
2In −G0)(2

− 1
2In −G0)

T + 2G0(2
− 1

2In −G0)
T = In,

which simplifies to

G0 −GT

0
= 0n×n.

G0 has no antisymmetric part, and hence by Corollary 5.23, up to an OST, G0 is

diagonal. By (5.21) and (5.22), G1 and G2 are then also diagonal.
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Corollary 5.28. Every n× n MVSF of length L ≤ 3 is of the form

Gk = O (dkIm ⊕ d2−kIn−m)O
T ,

where O is an orthogonal matrix, 0 ≤ m ≤ n, and {dk} are the coefficients of the

scalar Haar filter, i.e. d0 = d1 = 2−
1
2 and dk = 0 otherwise.

Proof. This follows from Proposition 5.27. There are no truly odd-length scalar scal-

ing filters, and the only scalar scaling filter with length L = 2 is the Haar filter. By

Remark 5.26 this implies that the only scalar scaling filters which can be components

of a diagonal MVSF of length L ≤ 3 are {dk} and {d2−k} = {dk−1}. The order of

these diagonal elements can be fixed without loss of generality, since permutation

matrices are orthogonal.

Corollary 5.29. The only n× n MVSF of length L = 2 is the matrix Haar filter

G0 = G1 =
1√
2
In.

Proof. This follows immediately from Corollary 5.28, since {Gk} is invariant under

OSTs. It can also be shown directly from Proposition 5.17, (5.12) and (5.10).

Corollary 5.28 implies that the (orthogonal) MVSFs of length L ≤ 3 found in the

literature are either trivial (e.g. Walden and Serroukh, 2002, Design 1 and Design 2(i));

or incorrect (e.g. Chen et al., 2006, Example 2).23

5.6 Daubechies matrix-valued scaling filters

Definition 5.30. A MVSF of length L = 2A with A vanishing moments is a Daubechies

MVSF. Corresponding matrix-valued wavelets (resp. scaling functions or wavelet fil-

ters) are Daubechies matrix-valued wavelets (resp. scaling functions or wavelet filters).

23The filter given by Chen et al. (2006, Example 2) does not satisfy (5.10) and generates a
multiwavelet suitable for the analysis of scalar signals rather than a matrix-value wavelet.
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Definition 5.30 reduces to the usual Daubechies wavelets of Daubechies (1988) in

the scalar case, and also generalises the complex Daubechies wavelets of Lina and

Mayrand (1995) (see Section 5.7).

Proposition 5.31. In the frequency domain, every n × n Daubechies MVSF {Gk}
of length L is of the form

Ĝ(f) = Û (f)ĝ(f),

where {gk} is the24 scalar Daubechies scaling filter of length L, Û (f) is a (normalised)

paraunitary matrix (i.e. Û (f)Û (f)H = In), and Û (0) = In.

Proof. Let G(z) be the z-transform of the scaling filter {Gk}, i.e.

G(z) =
�

k∈Z

Gkz
−k.

Note that Ĝ(f) = G(e2πf i) and that filter convolution is equivalent to polynomial

multiplication in the z-transform domain. In particular, setting m = k − �,

�

�∈Z

�

k∈Z

GkG
T

k+�
z−� =

�
�

k∈Z

Gkz
−k

��
�

m∈Z

Gmz
m

�

= G(z)G(z−1)T .

Orthonormality of {Gk} with respect to its integer shifts would be written in the z-

transform domain as G(z)G(z−1)T = In. Since for any Laurent polynomial J(z) the

even coefficients are given by 1

2
(J(z) + J(−z)), orthonormality of {Gk} with respect

to its even shifts (5.11) can be written in the z-transform domain as25

1

2

�
G(z)GT (z−1) +G(−z)GT (−z−1)

�
= In.

Let Q(z) = zL−1G(z)GT (z−1). Then the above can be written as a polynomial equa-

24Except for L = 2, there are multiple Daubechies scaling filters of a given length. We may
however choose {gk} to be any particular one, e.g. the minimum phase filter.

25Note that setting z = e2πf i this gives us in particular the Fourier-domain characterisation of

MVSF orthonormality Ĝ(f)Ĝ(f)H + Ĝ
�
f + 1

2

�
Ĝ

�
f + 1

2

�H
.
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tion

Q(z)−Q(−z) = 2zL−1In.

The left hand side is twice the odd coefficients ofQ(z), and hence this equation implies

that the polynomials in the off-diagonal entries of Q(z) contain only even powers of

z. A polynomial containing only even powers is a symmetric function, and hence

its roots come in pairs r,−r. By (5.13), a MVSF {Gk} of length L is a Daubechies

MVSF iff each entry of G(z−1) has L

2
roots at −1. Hence each entry of Q(z) must

have L roots at −1. The off-diagonal entries must then also have L roots at 1 for a

total of 2L roots. The entries of G(z−1) have degree at most L − 1 and hence the

entries of Q(z) have degree at most 2(L − 1) < 2L. Since 0 is the only polynomial

having more roots than its degree, this implies that the off-diagonal entries of Q(z)

must be 0, i.e. Q(z) is diagonal.

The diagonal entries of Q(z) satisfy the design equations found in the original

derivation of the scalar Daubechies wavelets (Daubechies, 1988, Section 4.B), where

it is shown that there exists a unique minimum-degree solution. HenceQ(z) = q(z)In,

where q(z) = zL−1g(z)g(z−1) and g(z) is the z-transform of the (a) Daubechies scaling

filter {gk} of length L.26

Let U (z) = 1

g(z)
G(z). Then

U (z)U (z−1)T =
zL−1

zL−1g(z)g(z−1)
G(z)G(z−1)T

=
1

q(z)
Q(z)

= In.

Finally set z = e2πf i.

A paraunitary filter is a filter which preserves for each frequency the total signal

power across all channels, generalising the concept of a scalar all-pass filter. In partic-

ular, a paraunitary filter applied to white noise will not affect its statistical properties.

26Since the minimum-degree solution for Q(z) has degree 2(L− 1), this implies that G(z−1) must
have degree L− 1. Hence there are no MVSFs with A vanishing moments of length L < 2A.
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Proposition 5.31 is a generalisation of the fact that, for a given filter length, different

scalar Daubechies scaling filters differ only by an all-pass filter.

We may obtain a corresponding Daubechies matrix-valued wavelet filter by set-

ting Ĥ(f) = Û (f)ĥ(f), where {hk} = {(−1)kgL−k−1} is the corresponding scalar

Daubechies wavelet filter. Note however that this wavelet filter may have infinite

length, unlike the length L wavelet filter constructed in Section 5.4.4. With this

choice of wavelet filter, the DWT obtained using a Daubechies MVW differs from

the DWT obtained using the corresponding scalar Daubechies wavelet only through

a pre-filtering of the input by the paraunitary filter Û (f) at each step.

Remark 5.32. If the sufficient condition of Proposition 5.15 holds for a scalar Daubechies

scaling filter, then Proposition 5.31 implies that it holds for all Daubechies MVSFs

of same length.

Proof. For each f , Û (f) is unitary and hence
���det

�
Ĝ(f)

���� = |ĝ(f)|n.

5.6.1 Triviality of Daubechies MVSFs of length L ≤ 4

Proposition 5.33. Every non-scalar Daubechies MVSF of length L ≤ 4 is trivial.

Proof. By Proposition 5.27 we need only prove the case L = 4.

(5.10) and (5.12) give us

G0 +G1 +G2 +G3 =
√
2In (5.23)

G0 −G1 +G2 −G3 = 0n (5.24)

−G1 + 2G2 − 3G3 = 0n. (5.25)

This system simplifies to

G1 = 2−3/2In +G0 (5.26)

G2 = 2−1/2In −G0 (5.27)

G3 = 2−3/2In −G0. (5.28)



5.6 Daubechies matrix-valued scaling filters 154

(5.26) is obtained by adding 1

2
times (5.25) and subtracting 5

4
times (5.24) from 1

4

times (5.23). (5.27) is obtained by adding 1

2
times (5.24) to 1

2
times (5.24). (5.28) is

obtained by adding 3

4
times (5.24) and subtracting 1

2
times (5.25) from 1

4
times (5.23).

(5.26)-(5.28) allow us to write (5.11) in terms of G0 only. Adding 2−1/2 times the

equation for m = 0 to 21/2 times the equation for m = 1 gives us

2−
1
2In =

�
4 · 2− 1

2 − 2 · 2 1
2

�
G0G

T

0
+
�
2 · 2− 1

2−3 + 2−
1
2−1 + 2

1
2−3

�
In

+
�
2−

1
2−

3
2 − 2−

1
2−

1
2 − 2−

1
2−

3
2 + 2

1
2−

1
2 + 2

1
2−

3
2

�
G0

+
�
2−

1
2−

3
2 − 2−

1
2−

1
2 − 2−

1
2−

3
2 − 2

1
2−

3
2

�
GT

0
,

which simplifies to

G0 = GT

0
.

G0 has no antisymmetric part, and hence by Corollary 5.23, up to an OST, G0 is

diagonal. By (5.26)-(5.28), G1, G2 and G3 are then also diagonal.

Corollary 5.34. Every n× n Daubechies MVSF of length L = 4 is of the form

Gk = O (dkIm ⊕ d3−kIn−m)O
T ,

where O is an orthogonal matrix, 0 ≤ m ≤ n and {dk} is the scalar Daubechies

minimum phase (a.k.a. extremal phase or minimum delay) scaling filter of length 4:

d0 =
1 +

√
3

4
√
2

; d1 =
3 +

√
3

4
√
2

; d2 =
3−

√
3

4
√
2

; d3 =
1−

√
3

4
√
2

,

and dk = 0 otherwise.

Proof. Similarly to the proof of Corollary 5.28, this follows from Proposition 5.33

because this Daubechies filter and its time-reversed (maximum phase) version are the

only scalar Daubechies filters of length L = 4.
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5.7 Matrix representation of quaternion and algebra-valued

wavelets

Let A denote an arbitrary n-dimensional real ∗-algebra with involution •̄. We may

treat L2(R,A) as a (left-)A-module, with symbol ‘inner product’

�f1, f2�A =

� ∞

−∞
f1(t)f2(t)dt.

Definition 5.35. An (orthogonal) A-valued-MRA is a sequence of closed sub-A-

modules Vj ⊂ L2(R,A), j ∈ Z satisfying

1. Vj ⊂ Vj−1 ∀j ∈ Z.

2.
�

j∈Z Vj is dense in L2(R,A) and
�

j∈Z Vj = {0}.

3. f(t) ∈ V0 ⇔ f(t− k) ∈ V0 ∀k ∈ Z.

4. f(t) ∈ Vj ⇔ f(2jt) ∈ V0 ∀j ∈ Z.

5. There exists φ ∈ V0 such that its integer translates φ(t − k), k ∈ Z form an

A-orthonormal basis for V0.

φ is an A-valued scaling function, and we say that φ generates the A-valued-MRA.

Every n-dimensional real algebra A is a vector space isomorphic to R
n. We may

thus define a vector space isomorphism V∗ : A → R
1×n. In the case of quaternions

(A = H), for consistency we take V∗(•) = V(•̄)T .
Every such vector isomorphism defines a unique algebra isomorphism �•∗ : A →

�A∗ ⊆ R
n×n by letting �a∗ be the linear transformation V∗(b) �→ V∗(ba). Note that here

we choose to think of matrices as multiplying row vectors on the right. In the case of

quaternions we have �•∗ = �•.
Also for consistency with the quaternion approach, we may assume without loss

of generality that V∗(1) = (1, 0, 0, . . . , 0), so that V∗(x) = V∗(1)�x∗ is the first row of

�x∗.
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�•∗ will be a ∗-algebra isomorphism iff the involution •̄ satisfies

�̄x∗
= �x∗T . (5.29)

This can however be assumed: For an algebra A without an a-priori ∗-algebra struc-

ture, we will define •̄ to be the unique involution satisfying (5.29).

Lemma 5.36. Any two algebra representations �•∗,�•� : A → R
n×n, of an n-dimensional

real algebra A satisfy �•� = M�•∗M−1 for some M ∈ GLn(R). If furthermore �•∗ and

�•� are ∗-algebra representations, then M is orthogonal.

Proof. Let e1 = (1, 0, 0, . . . , 0) and define V∗ : a �→ e1�a∗ and V� : a �→ e1�a�. These

are both vector space isomorphisms, and hence V� ◦ V∗−1 is an automorphism of R1×n,

i.e. V�(•) = M V∗(•) for some M ∈ GLn(R).

�•∗ (resp.�•�) can in turn be obtained from V∗ (resp. V�) as described above. Hence

for a ∈ A, �a� is the linear transformation

x �→ V�
�
V�−1(x)a

�
= x �→ M V∗ �V∗−1(M−1x)a

�
,

and �a� = M�a∗M−1.

If �•∗ is a ∗-algebra representation, then

V∗(a)V∗(a)T = e1�a∗�a∗TeT

1

= e1
�aā∗eT

1

= e1(aā)Ine
T

1

= aā.

Hence V∗ is an isometry. Similarly, V� is also an isometry, and hence V� ◦ V∗−1 is an

isometry and M is orthogonal.

Proposition 5.37. Let A be an n-dimensional real algebra and let φ ∈ L2(R,A) be a

scaling function generating an A-valued MRA {Sj}. Then the rows of its matrix rep-

resentation �φ(t)
∗(i,•)

, i = 1, . . . , n generate the n-dimensional vector MRA {V∗(Sj)}.
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Proof. The topologies on L2(R,A) and L2(R,R1×n) = L2(R,V∗(A)) are equivalent,

since by choosing •̄ appropriately, V∗ is an isometry (see the proof of Lemma 5.36).

Also, �•, •�
A
- and ��•∗,�•∗�

n×n
-orthogonality (and hence orthogonality of the rows)

are equivalent. It remains to show that (right-)A-linear combinations of φ(t − k)

correspond to real linear combinations of the �φ(t)
∗(i,•)

. This follows from

V∗

�
�

k∈Z

akφ(t− k)

�
=

�

k∈Z

V∗ (ak) �φ(t− k)
∗
=

�

k∈Z

n�

i=1

V∗ (ak)1,i
�φ(t− k)

∗(i,•)
.

Corollary 5.38. Let A by a n-dimensional real algebra and let φ ∈ L2(R,A) be a

scaling function generating an A-valued-MRA {Sj}. Then its matrix representation

�φ(t)
∗
generates the n× n MMRA {V∗(Sj)n}.

Proof. This follows from Proposition 5.37 and Proposition 5.11.

Definition 5.8 is a special case of Definition 5.35, with A = R
n×n, i.e. a MMRA

is an R
n×n-algebra-valued-MRA. Corollary 5.38 however shows that algebra-valued

scaling functions (resp. wavelets or filters) can be seen as a special case of matrix-

valued scaling functions (resp. wavelets or filters). The proof of Proposition 5.37 also

shows that conversely, if the rows of �φ(t)
∗
generates a vector MRA, then φ generates an

A-valued-MRA. In other words, the matrix-valued scaling functions (resp. wavelets)

corresponding to A-valued scaling functions (resp. wavelets) are precisely those with

the corresponding matrix structure, i.e. those in L2(R, �A∗).

Note that { �Sj

∗
} will not be a MMRA (except for A = R), since it is a (left-

)�A∗-module and not a (left-)Rn×n-module. Because �A∗ and V∗(A) are isomorphic

as vector spaces, the structured matrix MRA of L2(R, �A∗) generated by the matrix

representation of an A-valued scaling function and the vector MRA of L2(R,V∗(A))

are however equivalent. For example, the quaternion fast wavelet transform can

be written as both the vector and matrix versions of (5.15)-(5.16), with the former

parsimoniously computing only the first row of �H-valued coefficients appearing in the

latter. This is enough to infer the remaining rows and requires the same computations

as a quaternion-domain algorithm. The same applies to general real algebras.
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Definition 5.39. An A-algebra-valued scaling filter {gk} is trivial iff, under some
∗-algebra representation �•∗, its matrix-valued image { �gk∗} is trivial.

This definition does not depend on choice of �•∗ by Lemma 5.36.

Corollary 5.40. Let A be an n-dimensional real semi-simple algebra and furthermore

assume that A is not simple, i.e. not isomorphic to R
√
n×

√
n, C

√
n

2×
√

n

2 , or H
√

n

4×
√

n

4 .

Then (under an appropriate choice of involution on A) every A-valued filter is trivial.

Proof. By Corollary 1.19 there exists a block-diagonal algebra representation of A in

R
n×n. Define the involution on A to be the one induced by the involution •T on R

n×n,

so that this is a ∗-algebra representation.

5.7.1 Quaternion propriety

Corollary 5.41. The wavelet transform coefficients sJ,k, wj,k of a quaternion DWT

are jointly left-proper (resp. second-order left-proper) if and only if the signal s0,k is

left-proper (resp. second-order left-proper).

Proof. The wavelet transform (5.15) consists entirely of quaternion left-linear opera-

tions, and the same is true of the inverse wavelet transform (5.16). Hence this follows

from Corollary 2.5 (resp. Corollary 1.28).

Corollary 5.41 holds in particular for the noise component in a ‘signal + noise’

model.

Note that we refer to left-propriety in Corollary 5.41 whilst the rest of this thesis

concentrates on right-propriety and right-H-modules. One way of inverting the hand-

edness of results would be to take the matrix transpose of all MVW-related definitions,

as mentioned previously. More simply however, if the isomorphism used to interpret

the quaternion DWT as a vector DWT is taken to be V(•)T instead of V∗(•) = V(•̄)T ,
then by Proposition 2.8 the resulting transform will preserve right-propriety instead

of left-propriety.

Note that quaternion proper i.i.d. Gaussian noise is both right-proper and left-

proper. In this case, by considering the equivalent real vector formulation, it is clear
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that any orthogonal transformation (including the DWT corresponding to a non-

quaternion-structured 4 × 4 MVW) will also output i.i.d. noise and thus preserve

both right- and left-propriety.

5.7.2 Orthogonal similarity for quaternions

For the design of quaternion scaling filters, Lemma 5.22 is unhelpful, since every

matrix in �H is the sum of a diagonal matrix (corresponding to the real part) and an

antisymmetric matrix. This section describes an alternative strategy for selecting a

representative element amongst orthogonally similar quaternion scaling filters.

By Remark 1.14, we can write any quaternion in the form q = a+(b2+c2+d2)1/2i0,

where i0 is a pure unit quaternion. Since we can rotate i0 onto i, another way of

interpreting Remark 1.14 is the following.

Remark 5.42. Let q = a + bi + cj + dk. Then there exists a unit quaternion u such

that

uqū = a+ (b2 + c2 + d2)1/2i. (5.30)

Proof. For example, we can take

u = exp

�
b(−dj + ck)

2(b2 + c2 + d2)
1
2 (c2 + d2)

1
2

�
.

u ∈ H is a unit quaternion iff �u is an orthogonal matrix,27 and hence for any unit

quaternion u the 3D rotation q �→ uqū is an OST.

Lemma 5.43. Let q0, q1 ∈ H. Then there exists a unit quaternion u such that

�j(uq0ū) = �k(uq0ū) = �j(uq1ū) = 0

27This follows from Definition 1.6 and Theorem 1.26 since |u|2 = uū = 1 ⇔ �u�uT = I4.
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Proof. By Remark 5.42 there exists a unit quaternion v such that �j(vq0v̄) = �k(vq0v̄) =

0. Let

w = exp

�
−1

2
tan

�
�j(vq1v̄)

�k(vq1v̄)

�
i

�
.

Then wvq0v̄w̄ = vq0v̄ and �j(wvq1v̄w̄) = 0. Setting u = wv completes the proof.

Note that a quaternion filter (or function) is orthogonally similar to its conjugate,

since �̄q = O�qOT with

O =





1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




,

even though O /∈ �H.28 This implies that the set of right- and left- quaternion scaling

filters are equal.

As we already mentioned, a quaternion filter is trivial iff it is real or complex (with

respect to some imaginary unit i0), since �R and �C are respectively the diagonal and

the block-diagonal matrices in �H.

5.7.3 The biquaternion Fourier transform

Biquaternions are an 8-dimensional real algebra isomorphic to Cl3,0(R) (and to Cl0,2(C))
obtained by allowing the coefficients a, b, c, d of a quaternion to be complex-valued,

thus introducing a new imaginary unit which commutes with i, j, k.

Frequency-domain interpretation of matrix-valued filters and functions relies on

the matrix-valued Fourier transform (5.7). This can also be applied to the special

case of quaternion-structured MVWs. The matrix Fourier transform can then be

interpreted as a biquaternion Fourier transform, by extending �• to a representation

of biquaternions in C
4×4.

For complex wavelets the usual complex Fourier transform is not directly equiv-

alent to the Fourier transform for complex structured 2 × 2 real matrices, which

28It is not clear to us whether more generally given a MVSF {Gk}, {GT

k
} will also be a valid

MVSF.
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transforms the real and imaginary parts independently. However both approaches

are valid.

5.8 Examples of non-trivial Daubechies MVSFs

Like Fowler and Hua (2002b); Hua and Fowler (2002); Peng and Zhao (2004), we

will design the scaling filters {Gk} by directly solving a set of polynomial design

equations. Our method is implemented in Appendix C.2 as a Maple worksheet. We

will consider in particular Daubechies MVSFs, but the approach can be used for any

design constraints which can be expressed as polynomial equations.

For an n × n Daubechies scaling filter of length L, the polynomial system is

composed of L + 1 matrix equations, and hence n2(L + 1) (scalar) equations. These

are respectively n2 linear equations from the single matrix scaling equation (5.10),

n2A = n2L

2
linear equations from the vanishing moment conditions (5.12), and n2L

�

2

quadratic equations from the necessary orthogonality conditions (5.11).

The n2L unknowns in this system of equations can be reduced to n2L− n(n−1)

2
by

Corollary 5.23, or to nL unknowns when working with an n-dimensional real algebra.

If the MVSF is assumed to have quaternion structure, then the number of unknowns

can be further reduced to 4L− 3 by Lemma 5.43.

We first solve the linear equations in the system. This leaves us with a system of

quadratic equations with fewer unknowns. This set of polynomials is pre-processed

by computing a lexicographic Gröbner basis. This is a particular set of polynomials

which has the same (complex) roots as our original system (because it generates the

same ideal), but can be more readily solved. Lebrun and Selesnick (2004) give a

detailed introduction to Gröbner bases, and use them in a similar approach to design

multiwavelets.

To obtain a Gröbner basis, first an ordering of the unknowns is chosen, and this

induces a lexicographic ordering of monomials.29 The lexicographic Gröbner basis

29If the unknowns are ordered as x1 > x2 > . . ., then the lexicographic monomial ordering is given
by xi1

1 xi2
2 xi3

3 · · · > xi1
1 xi2

2 xi3
3 · · · if i1 > j1; or if i1 = j1 and i2 > j2; or if i1 = j1, i2 = j2 and i3 > j3;

etc.
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can then be computed by a procedure similar to Gaussian elimination, eliminating at

each step the largest monomial (in the lexicographic ordering) from all but one of the

remaining polynomials. The polynomial obtained at the last step will contain only

the smallest monomials and hence only the smallest unknowns. Once this polynomial

is solved, the remaining unknowns can be obtained by a kind of back-substitution. We

simply use the Groebner:-Basis command in Maple for Gröbner basis computation.

Note that in order to avoid the presence of the irrational constant
√
2 from (5.10)

in the system of equations, and thus limit polynomial coefficients to the field of

rational numbers and accelerate computation, we will use the entries of {
√
2Gk} as

our unknowns instead of the entries of {Gk}.30

5.8.1 The 2× 2 Daubechies MVSFs of length L = 6

Solving the design equations corresponding to the 2× 2 Daubechies MVSF of length

L = 6,31 we obtain — in addition to the trivial diagonal solutions — the following

non-trivial family of solutions.

30Under some authors’ conventions, {
√
2Gk} is defined as the scaling filter, rather than {Gk}.

31This corresponds to setting the parameters to n = 2, L = 6, Nvm = 0, Nvmplus = 3,
cstr = false, qstr = false and sym = false in Appendix C.2.
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G5 =
1

32
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�
x2 + 2x− 3 y

−y x2 − 2x− 3

�
, (5.31)

where32

y =
√
−x4 + 10x2 + 15,

and x is a free parameter. Since y must be real, the free parameter is limited to

|x| ≤
�
5 + 2

√
10 ≈ 3.3652.

The filter obtained by replacing x with −x is the time-reversal {G5−k}, which is

orthogonally similar to {Gk}, with

O =

�
0 1

−1 0

�
.

Thus we may restrict ourselves without loss of generality to x ≥ 0.

y reaches its minimum (y = 0) for x =
�
5 + 2

√
10, giving the trivial diagonal

scaling filter {d5−k⊕dk}, where {dk} is the scalar minimum-phase Daubechies scaling

32We may choose the positive square root without loss of generality since replacing y with −y

gives an orthogonally similar filter with O =

�
1 0
0 −1

�
.
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filter of length L = 6 (Daubechies, 1992, Table 6.1). Setting x = 0 in (5.31) we obtain

(the real matrix representation of) the symmetric complex-valued Daubechies filter

of length L = 6 of Lina and Mayrand (1995, p. 222).

y reaches its maximum (y = 2
√
10 ≈ 6.3246) for x =

√
5, giving the filter

G0 =
1

16
√
2

�
1−

√
5

√
10

−
√
10 1 +

√
5

�

G1 =
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16
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�
5− 3

√
5

√
10

−
√
10 5 + 3

√
5

�
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√
2

�
5−

√
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√
10

√
10 5 +

√
5

�
.
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�
. (5.32)

The matrix-valued wavelet filter corresponding to (5.31), was then obtained through

the Matlab implementation in Appendix C.1 of the method described in Ginzberg and

Walden (2013a, Section VII) (see also Section 5.4.4). It is given by



Chapter 5. Quaternion Wavelets and Matrix-Valued Wavelets 165

H0 =
1

176
√
2

�
−11 + 9

√
5 10

√
2 + 11

√
10

10
√
2− 11

√
10 −11− 9

√
5

�
,

H1 =
1

176
√
2

�
55− 27

√
5 −30

√
2− 11

√
10

−30
√
2 + 11

√
10 55 + 27

√
5

�
,

H2 =
1

88
√
2

�
−55 + 9

√
5 10

√
2− 11

√
10

10
√
2 + 11

√
10 −55− 9

√
5

�
,

H3 =
1

88
√
2

�
55 + 9

√
5 10

√
2 + 11

√
10

10
√
2− 11

√
10 55− 9

√
5

�

H4 =
1

176
√
2

�
−55− 27

√
5 −30

√
2 + 11

√
10

−30
√
2− 11

√
10 −55 + 27

√
5

�

H5 =
1

176
√
2

�
11 + 9

√
5 10

√
2− 11

√
10

10
√
2 + 11

√
10 11− 9

√
5

�
. (5.33)

For the filters (5.32) and (5.33) we computed the corresponding frequency re-

sponses (Fourier transforms) Ĝ(f) and Ĥ(f), the absolute values of which are shown

in Figure 5.1. The scaling function Φ(t) and wavelet Ψ(t) were computed accord-

ing to (5.9) and (5.6), using the method described by Walden and Serroukh (2002,

Appendix A), and are shown in Figures 5.2 and 5.3.

Our attempt to design a 3 × 3 Daubechies MVSF of length L = 6 produced no

non-trivial solutions.

5.8.2 The quaternion Daubechies MVSFs of length L = 10

We show in Ginzberg and Walden (2013a, Proposition 7) that there are no odd-length

MVSFs with symmetry. Similarly,

Remark 5.44. There are no complex or quaternion scaling filters of odd length.

Proof. Let {gk} be a scaling filter of length L. By the last equality of 5.11, we have

g0gL−1 = 0, which implies that g0 = 0 or gL−1 = 0 since H (resp. C) is a division

algebra.



5.8 Examples of non-trivial Daubechies MVSFs 166

0 0.25 0.5
0

0.5

1

1.5

f
|Ĝ
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Figure 5.1: Absolute entries of the frequency responses Ĝ(f) (full line) and Ĥ(f)
(dashed line) for the 2 × 2 Daubechies MVSF (resp. wavelet filter) of length L = 6
with parameter choice x =

√
5.
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Figure 5.2: Entries of the scaling function Φ(t) for the 2 × 2 Daubechies MVSF of
length L = 6 with parameter choice x =

√
5. ©IEEE. Reprinted with permission.
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Figure 5.3: Entries of the wavelet Ψ(t) for the 2 × 2 Daubechies MVSF of length
L = 6 with parameter choice x =

√
5. ©IEEE. Reprinted with permission.

By Proposition 5.27 there are no non-trivial quaternion scaling filters of length

L ≤ 3 and by Proposition 5.33 there are no non-trivial quaternion Daubechies scaling

filters of length L = 4.

A 4× 4 MVSF {Gk} is block-diagonal with 2× 2 blocks iff its entries are roots of

L−1�

k=0

�
g2
3,1,k

+ g2
4,1,k

+ g2
3,2,k

+ g2
4,2,k

+ g2
1,3,k

+ g2
2,3,k

+ g2
1,4,k

+ g2
2,4,k

�
.

If this polynomial belongs to the ideal generated by the design equations, then all

solutions must be roots and thus all solutions are block diagonal. This sufficient con-

dition for the non-existence of non-trivial solutions can be checked as follows: Once

a (not necessarily lexicographic) Gröbner basis is found for the design equations, any

polynomial can be reduced to normal form by taking the remainder of (multivari-

ate) polynomial division with respect to the elements of the basis. A polynomial

belongs to the ideal generated by the design equations iff its normal form is 0. See

Appendix C.2 (9).

Through the above computational procedure, we have shown that there are no

non-trivial quaternion Daubechies scaling filters of lengths L = 6 and L = 8,33 i.e.

33The parameters in Appendix C.2 were set to n = 4, L = 6, Nvm = 0, Nvmplus = 3, cstr =
false, qstr = true and sym = false (resp. n = 4, L = 8, Nvm = 0, Nvmplus = 4, cstr = false,
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the only quaternion Daubechies filters of length L ≤ 8 are the corresponding real and

(for L = 6, 8) complex Daubechies filters.

The shortest non-trivial quaternion Daubechies scaling filters are obtained for

L = 10, and these are discussed next. All non-trivial solutions are symmetric and

can be parameterised (up to orthogonal similarity) as

g0 = g9 =
1

256
√
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(y1 + y2i)
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2
− 25y1 + 175)i− 5y3k

�
,

where x is a free parameter and

y1 =
√
70 cos(x)

y2 =
√
70 sin(x)

y3 = 2y−1

2

�
60y2

2
− 8y2

2
y1 + 350y1 − 2975.

The range of x is 1.0995 � x � 2.1764, so that 60y2
2
− 8y2

2
y1 + 350y1 − 2975 ≥ 0 and

y3 is real. The two extreme values of x lead to y3 = 0, and the resulting filters are

the two different symmetric complex Daubechies filters of length 10.

qstr = true and sym = false).
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If we choose x = π/2, then y1 = 0, y3 =
√
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The quaternion wavelet filter corresponding to (5.34), was obtained by applying

the Matlab implementation in Appendix C.1 of the method described in Ginzberg and

Walden (2013a, Section VII) to the matrix representation { �gk}. It is anti-symmetric

and given by
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. (5.35)

The (absolute) frequency response of the scaling and wavelet filter entries is shown

in Figure 5.4. Quaternion scaling and wavelet functions were computed from (5.34)

and (5.35) using the method of Walden and Serroukh (2002, Appendix A(b)), and

are shown in Figure 5.5.
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Figure 5.4: Absolute entries of the frequency responses Ĝ(f) (full line) and Ĥ(f)
(dashed line) for the quaternion Daubechies scaling filter (resp. wavelet filter) of
length L = 10 with parameter choice x = π

2
. Note that the axes have different scales.

Subscripts refer to the quaternion-structured matrix representation based onGk = �gk,
Hk = �hk.

5.9 On the use of MVWs in practice

As we mentioned in Section 5.4.3, the fast MVW transform is identical to the fast

multiwavelet transform of a vectorised scalar signal, but for the choice of matrix-

valued filters. Although multiwavelet filters behave poorly when used on vector sig-

nals (Fowler and Hua, 2002a), there is no such problem with using MVW filters on

vectorised scalar signals. MVWs are balanced (generalised) multiwavelets, i.e. unlike

unbalanced multiwavelets they do not require the use of pre- or post-processing filters.

Also, through matrix MRA, the theory of MVWs is more similar to that of scalar

wavelets.

Despite the above advantages, it is the author’s opinion that the framework of

MVWs is not well suited to the design of multiwavelets. The design condition (5.10),

which applies to MVWs but not multiwavelets, greatly restricts possible construc-

tions. For example, Strang and Strela (1994) construct a multiwavelet of length

L = 3 with A = 2 vanishing moments. By Corollary 5.28 (or more generally foot-

note 26 p. 152) this cannot be achieved with MVWs. Heuristically, whilst MVWs of
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Figure 5.5: Quaternion Daubechies scaling and wavelet functions of length L = 10,
with parameter x = π

2
. Note that the axes have different scales. Subscripts refer to

the quaternion-structured matrix representation Φ(t) = �φ(t), Ψ(t) = �ψ(t). ©IEEE.
Reprinted with permission.

length L are comparable to real or complex wavelets of length L, it may be fairer to

compare multiwavelets of length L with real wavelets of length nL.

As we mentioned in the Introduction to this chapter, MVW transforms have

been applied to compression and denoising of colour images (Agreste and Vocaturo,

2009a,b), and of wind field data (Hua and Fowler, 2004; Westenberg and Ertl, 2005).

Westenberg and Ertl (2005) show superior denoising performance for MVWs com-

pared to the naive use of scalar wavelets. However, as they note, this may be due

to the use of vector-thresholding in the first case and scalar-thresholding in the lat-

ter, rather than the choice of wavelets. We show in Ginzberg and Walden (2013a)

that our quaternion Daubechies wavelet (Figure 5.5) could outperform the corre-

sponding real Daubechies wavelet for compressing a synthetic quaternion orientation
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time-series. However, further analysis has revealed that although the quaternion

Daubechies wavelet outperformed the minimum-phase real Daubechies wavelet of

length L = 10, it was in turn outperformed by the least-asymmetric real Daubechies

wavelet of length L = 10. It is visually clear from Agreste and Vocaturo (2009a, Fig-

ure 2) that the compressed versions of the standard colour test image Lena obtained

by MVW transform are of significantly poorer quality than those which would be

obtained using a naive approach.

We know from Appendix A.1 that, with the exception of complex wavelets, the

naive component-wise approach is the only one which is invariant under OSTs (and

hence under rotation of the signal space and wavelets). We conjecture that in typical

applications34 MVWs will not outperform real wavelets unless they are tailored to

take advantage of specific (and anisotropic) properties of interchannel correlation

in the type of signal being processed. In Ginzberg and Walden (2012) (available

in Appendix E) we adaptively optimise all free parameters of the family of 3 × 3

Daubechies MVWs of length L = 6 (all of which are trivial) to compress the colour

image Lena. However, no significant improvement is obtained over the naive approach

if we allow both methods to take advantage of instantaneous interchannel correlation

through a simple rotation of the wavelet coefficient basis.35 Although vector MRA and

MVWs arguably provide the correct theoretical framework for wavelet-based analysis

of vector-valued signals, further research is required to determine which combinations

of signal and MVW (including algebra-valued wavelets) — if any — will lead to

significant practical benefits compared to the naive use of real wavelets.

34In certain less typical applications, such as watermarking or — as noted by Walden and Serroukh
(2002) — encryption, it is plausible that the mixing of channels obtained through the use of MVWs
is in and of itself valuable. Indeed Agreste and Vocaturo (2009c) show superior performance of MVW
based watermarking compared to real wavelet based watermarking for certain kinds of attack.

35We optimise the rotation of the wavelet coefficient basis using a modified SIMPLIMAX algo-
rithm. One could instead use principal component analysis on the RGB colourspace for a similar
result. Robinson (2001) applies the latter approach to machine vision.
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Conclusion

The set of n×n covariance matrices (or equivalently multivariate normal distributions)

which are invariant under the action of some group36 can be conveniently interpreted

as belonging to some semi-simple real algebra. This is a major motivation for the

study of statistics in algebras other than R. Since all semi-simple real algebras can

be constructed from the simple algebras of real, complex and quaternion matrices,

these are important special cases.

As real and complex linear algebra are well studied, we turned our attention

to the use of quaternion linear algebra in statistics. Despite quaternions’ lack of

commutativity, we note that quaternion matrices can in most respects be manipulated

similarly to complex matrices. One particularly useful tool for handling quaternion

matrices is the (∗-)algebra isomorphism between n×n quaternion matrices and 4n×4n

quaternion-structured real matrices.

Two of the most basic statistical problems involving quaternions are ‘how to test

whether the interpretation of a sample as being quaternion-valued is proper’ and ‘how

to fit a quaternion multivariate linear regression (a.k.a. general linear model)’.

The former problem can be answered by the likelihood ratio test for quaternion

structure in a sample covariance matrix. We have shown that the distribution of this

LRT is given by a product of independent beta random variables and is of Box type.

Multiple suggested approximations to this distribution were shown to be acceptably

accurate. In addition, the exact distribution (CDF and PDF) of a general random

variable of Box type was derived in closed form in terms of Meijer’s G-function (and

Fox’s H-function). This exact distribution can be applied to many commonly (and

36More specifically, a subgroup of the orthogonal group.
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less commonly) used likelihood ratio tests, especially tests for covariance structure,

and by extension group invariance.

Analysing quaternion multivariate linear regression we have shown that in addition

to the usual assumption of i.i.d. vector errors, one must assume propriety of the errors

to ensure that the ordinary least squares estimator is equal to the generalised least

squares estimator (which is also the best linear unbiased estimator and the Gaussian

maximum likelihood estimator). This result is applicable in particular to least squares

estimation of the coefficients of a quaternion VAR process. More generally, group

invariance for a real VAR process can be modeled by interpreting it as an A-valued

process with a semi-simple algebra A. The A-linear least squares parameter estimator

will then be the best linear unbiased estimator if the common covariance of the

innovations is also group invariant.

In our last chapter, we considered algebraic extensions to yet another linear signal

processing tool: wavelet transforms. This was done through the theory of matrix-

valued wavelets, which generalise wavelet transforms and multiresolution analysis to

vector signals in L2(R,Rn). We elucidated the fundamental equivalence of three mul-

tiresolution analysis frameworks, based on vector-valued, matrix-valued and algebra-

valued signals respectively. Since every finite-dimensional real algebra has a ma-

trix representation, we may reduce the study of algebra-valued wavelets to special

cases of matrix-valued wavelets. In particular, quaternion wavelets are equivalent to

quaternion-structured 4× 4 MVWs.

In the design of MVWs, the degrees of freedom offered by orthogonal similarity

transformations can be isolated by working ‘up to’ or ‘modulo’ orthogonal similarity.

We have made an important distinction between trivial wavelets — which operate

independently on orthogonal subspaces of Rn — and non-trivial wavelets, from which

all matrix-valued wavelets can be constructed. Many examples of MVWs in the lit-

erature are orthogonally similar to a direct sum of scalar wavelets, and hence trivial.

By symbolically solving a system of quadratic equations, we obtained the scaling fil-

ters corresponding to the shortest non-trivial 2×2 and quaternion-valued Daubechies

wavelets.

MVWs are a promising approach to holistic processing of vector-valued signals.
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However, more research is needed to understand how and for which type of signal

the additional degrees of freedom available in the design of MVWs can be effectively

used to improve performance over the naive use of scalar wavelets component-wise.

This may require MVWs to be chosen adaptively for each signal.

Whilst some generalisations of univariate statistical tools to vector signals —

such as multivariate linear regression, multivariate analysis of variance, multiple-

input multiple-output filters and vector autoregression — are well established and in

frequent use, others — such as hypercomplex Fourier transforms and MVW trans-

forms — are somewhat niche and not fully understood.37 Replacing the real numbers

used in univariate algorithms with another algebra (especially the division algebras C

and H or commutative algebras) often requires only minor modifications. Interpreting

vector-valued signals as algebra-valued can thus be an attractive approach to vector

signal processing.

Methods based on real algebras should, in this author’s opinion, be studied when-

ever possible within a wider context of vector methods. This can be achieved with

matrix representations, and in many cases reduces problems to familiar real linear

algebra. In particular, widely-linear methods can be simpler in their real-linear

form. The ad-hoc use of algebra-based methods for vector signal processing may

not be appropriate, and the wider context clarifies the implicit constraints imposed

by such methods. Where there is additional signal structure imposed by known

group-invariance, the use of algebras is however clearly justified.

A majority of methods in statistical signal processing are linear and based on the

second-order properties of a signal. They can hence be generalised to algebra-valued

signals and account for group-invariance. A general and comprehensive approach to

algebra-valued signal processing would be an interesting objective for future research.

37Note that vector autoregression, discrete MVW transforms and 1D discrete hypercomplex
Fourier transforms are special cases of multiple-input multiple-output filtering.
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Mathématique de France, 71(171-180):95, 1943.

T. Ell. Hypercomplex color affine filters. In IEEE International Conference on Image

Processing. ICIP 2007, volume 5, pages 249–252, 2007.



REFERENCES 181

T. A. Ell and S. J. Sangwine. Quaternion involutions and anti-involutions. Computers

& Mathematics with Applications, 53(1):137–143, 2007.

R. Estrada and R. P. Kanwal. Asymptotic analysis: a distributional approach.
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J. Lebrun and I. Selesnick. Gröbner bases and wavelet design. Journal of Symbolic

Computation, 37(2):227–259, 2004.



REFERENCES 185

C. Li, J. Li, and B. Fu. Magnitude-phase of quaternion wavelet transform for texture

representation using multilevel copula. IEEE Signal Processing Letters, 20(8):799–

802, 2013.

F. Li and Y. Xue. The density functions of the singular quaternion normal matrix

and the singular quaternion Wishart matrix. Communications in Statistics - Theory

and Methods, 39(18):3316–3331, 2010.

G. V. Liakhovetski. An algorithm for a series expansion of the Meijer G-function.

Integral Transforms and Special Functions, 12(1):53–64, 2001.

J.-M. Lina and M. Mayrand. Complex daubechies wavelets. Applied and Computa-

tional Harmonic Analysis, 2(3):219–229, 1995.

Y. Liu, J. Jin, Q. Wang, and Y. Shen. Phase-preserving speckle reduction based on

soft thresholding in quaternion wavelet domain. Journal of Electronic Imaging, 21

(4):043009–1–043009–11, 2012.

M. Loeve. Probability Theory I. Springer, 4th edition, 1977.

M. T. Loots, A. Bekker, M. Arashi, and J. J. Roux. On the real representation of

quaternion random variables. Statistics, to be published, 2012.

R. Lugannani and S. Rice. Saddle point approximation for the distribution of the sum

of independent random variables. Advances in Applied Probability, 12(2):475–490,

1980.

H. Lütkepohl. New introduction to multiple time series analysis. Birkhäuser, 2006.
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Appendix A

Additional Results

A.1 A note on rotation invariance

Lemma A.1. Let A be a unital real algebra, n ≥ 3 and M ∈ A
n×n. Then M =

RTMR for all rotations R ∈ SO(n) of Rn if and only if M = λIn for some λ ∈ A.

Proof. If M = λIn then because R ∈ SO(n) ⊆ R
n×n ⊆ A

n×n, and A is a real

algebra, λ commutes with R.

For the converse, fist assume n = 3 and consider the rotations

R =





0 −1 0

1 0 0

0 0 1



 and R =





1 0 0

0 0 −1

0 1 0



 .

These give us

M =





m2,2 −m2,1 −m2,3

−m1,2 m1,1 m1,3

−m3,2 m3,1 m3,3



 =





m1,1 −m1,3 m1,2

−m3,1 m3,3 −m3,2

m2,1 −m2,3 m2,2



 .

In particular m1,1 = m2,2 = m3,3 and m1,2 = −m2,1 = −m1,3 = m2,3 = m1,3 = −m3,2

(and hence m1,3 = 0). This is our required result.

For n > 3 proceed by induction. The (n − 1) × (n − 1) submatrix obtained by
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deleting the first row and column is invariant under SO(n− 1) ∼= I1 ⊕ SO(n− 1) ⊂
SO(n), and similarly for the submatrix obtained by deleting the second row and

column or the last row and column. Hence these submatrices are of the form In−1α,

In−1β and In−1γ respectively and α = β = γ = λ.

Lemma A.1 applies in particular to block partitioned matrices, by taking A =

R
m×m. Consider two random vectors u,v in R

n. Their joint second-order properties

are given by the covariance matrix Σ ∈ R
2n×2n of (u1, v1, . . . , un, vn). Σ can be

partitioned into n2 2× 2 blocks. If n ≥ 3 then the joint second-order properties will

be invariant under rotations of Rn if and only if Σ is block-diagonal, i.e. ui and vi are

both uncorrelated with uj and vj for all i �= j. In other words, second-order rotation

invariance in dimensions n > 2 is equivalent to block sphericity, as opposed to the

case n = 2 where it is equivalent to complex structure. Thus, rotation invariance

in dimensions n ≥ 3 implies lack of correlation.1 In particular, a Gaussian signal

taking values in R
n, n ≥ 3 cannot be rotation-invariant unless its components are

independent.

A.2 Additional results on random variables of Box type

Proposition A.2. Let E
�
W h

�
be given by (4.7). Then for h → ∞

E
�
W h

�
= C7h

−f

2 (1 + o(1)) (A.1)

where C7 is some positive constant.

Proof. Substitute Stirling’s approximation

Γ(t+ 1) =
√
2πh

�
t

e

�t

(1 + o(1)) (A.2)

1Consider for example a time-series x(t) ∈ R
n. Then taking u = x(t1) and v = x(t2) shows that

xi(t1) is uncorrelated with xj(t2) for i �= j for every t1, t2.
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into equation (4.7), and simplify with (4.9). This yields (A.1) with

C7 = (2π)
m−k

2

m�

i=1

�
x
ξi− 1

2
i

(Γ (xi + ξi))
−1

� k�

j=1

�
y
−ηj+

1
2

j
Γ (yj + ηj)

�
.

Remark A.3. Proposition A.2 holds for complex h when |h| → ∞, as long as | arg(h)| <
π − � for some � > 0.

Corollary A.4. If the moments of W are given by (4.7) then ||W ||∞ = 1.

Proof.

||W ||∞ = lim
h→∞

E
�
|W |h

� 1
h

= lim
h→∞

C
1
h

7
exp

�
−f

2h
log(h)

�

= 1.

Remark A.5. ||W ||∞ = 1 implies W ≤ 1 almost surely.

Lemma A.6. Let W be a random variable such that 0 ≤ W ≤ 1. Then

lim
h→∞

E
�
W h

�
= P(W = 1)

Proof. Let 0 < � < 1 be arbitrary, then

E
�
W h

�
= E

�
W h11W≤1−�

�
+ E

�
W h111−�<W

�

≤ (1− �)hP (W ≤ 1− �) + P (1− � < W ) .

Hence taking h → ∞ and then � → 0+

lim
h→∞

E
�
W h

�
≤ lim

�→0+
P (1− � < W ) = P (W = 1) .
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Also

E
�
W h

�
= E

�
W h11W �=1

�
+ E

�
W h11W=1

�
≥ P (W = 1) .

Hence

lim
h→∞

E
�
W h

�
= P (W = 1) .

Corollary A.7. f > 0, except for the degenerate case where f = 0 and W has a

mass at 1.

Proof. When f < 0, (A.1) implies P (W = 1) = limh→∞ E
�
W h

�
= ∞ > 1, and when

f = 0 it implies P (W = 1) = limh→∞ E
�
W h

�
= C7 > 0.

A.3 A note on the matrix Karhunen-Loève transform

Navarro-Moreno et al. (2012, 2013) consider the problems of estimating and testing

for the presence of a (possibly random) continuous-time quaternion-valued signal

measured with additive noise. No propriety assumptions are made and the approach

is widely-linear. For the purpose of obtaining a Karhunen-Loève (KL) expansion (the

continuous-time equivalent to principal component analysis), the quaternion problem

is reduced to the scalar real case by concatenating the four quaternion components

in time. Note that the approach can be viewed as a real vector generalisation of the

scalar KL transform.

This is the same trick used previously by Xia (1997) for the more general matrix

KL expansion. Note that as with the competing notions of matrix-valued and vector-

valued multiresolution analysis discussed in section 5.3, the matrix KL expansion de-

fined in Xia (1997) and its vector counterpart are largely equivalent. The equivalence

is not immediately obvious because of three subtleties. Firstly, one needs to assume

that the eigen-matrix-values found are diagonal. This can be done without loss of

generality from Xia (1997, Theorem 5.1). Secondly, note that in an eigen-matrix-

function with diagonal eigen-matrix-values, each row is an eigen-vector-function with

corresponding scalar eigenvalue. Thirdly note that the covariance matrix used is the
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sum of the covariance matrices which would be obtained for each row of the signal

taken independently. Because of this the matrix KL transform, as it is formulated,

cannot be expressed as a parallel implementation of multiple vector KL transforms.

It provides a single basis of vector-valued functions that can decorrelate each of the

vector-valued signals given by the rows of the matrix-valued signal, wherease applying

seperate transforms would in general produce a different basis for each row.

Another point worth noting is that although it is claimed that the matrix KL

transform fully decorrelates a signal, this is based on a weak notion of orthogonality,

so that the coefficients corresponding to one row of the matrix-valued signal may still

be correlated to the coefficients corresponding to a different row, i.e. each of the

vector-valued signals is decorrelated, but they are not jointly decorrelated.
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Appendix B

Proofs

B.1 Proof of Theorem 2.15

Proof. We will adapt to the quaternion case the proof given in Goodman (1963)

for the complex Wishart distribution. This relies on computing the characteristic

function corresponding to (2.13) and comparing it with the characteristic function

given in Proposition 2.13.

Consider the integral

ck(Σ
−1,Θ) =

�

QHPD

|W |k exp
�
−2� tr

�
Σ−1W

�
+ i� tr (ΘW )

�
dW ,

where we will be assuming that Σ is QHPD,Θ is Hermitian and k > −1. we integrate

over the space of quaternion Hermitian positive definite matrices using the Lebesgue

measure

dW =
p�

i=1

�
dwi,i

p�

j=i+1

dwi,j,1dwi,j,idwi,j,jdwi,j,k

�
. (B.1)

Let D1 be diagonal with positive real diagonal elements and Di be real diagonal.

Write D = D1 + iDi. Note that we will use the notation •1, •i, •j, •k as an abbre-

viation to �(•), �i(•), �j(•) and �k(•) respectively. i, j, k and i, j, k are not to be

confused.

We will first consider ck
�
1

2
D1,−Di

�
.
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Remark B.1. Note that Goodman (1963) only looks at real diagonal elements here

where he should consider complex ones too.

Let T = (ti,j)i,j be the upper triangular matrix with real positive elements on the

diagonal that arises from the Cholesky decomposition of W , i.e. W = THT .

wi,j =
i�

k=1

t̄k,itk,j ∀i ≤ j (B.2)

In particular

wi,i =
i�

k=1

|tk,i|2 ∀i

The jacobian matrix between dW given in (B.1), and

dT =
p�

i=1

�
dti,i

p�

j=i+1

dti,j,1dti,j,idti,j,jdti,j,k

�
(B.3)

is lower triangular if we take that ordering (i.e. the ordering obtained by expanding

the products in (B.1) and (B.3) without commuting.). Indeed, if i ≤ j then (B.2)

shows that wi,j only depends on tk,i, tk,j, k = 1, . . . , i and the last term is

t̄i,iti,j =





t2
i,i

if i = j

ti,iti,j,1 + ti,iti,j,ii + ti,iti,j,jj + ti,iti,j,kk if i < j

(so �(wi,j) doesn’t depend on �(ti,j) etc.)

∂wi,i

∂ti,i
= 2ti,i ∀i

∂wi,j

∂ti,j
= ti,iI4 ∀i < j

Hence the jacobian (determinant) is

����
∂W

∂T

���� = 2p
p�

i=1

t1+4p−4i

i,i
.
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(1 contributed from i = j and 4(p− i) from i �= j.)

|W |k = |T |2k =
p�

i=1

t2k
i,i

tr (DW ) =
p�

j=1

j�

i=1

dj,j |ti,j|2

ck

�
1

2
D1,−Di

�
=

�

QHPD

|W |k exp (−� tr (D1W )− i� tr (DiW )) dW

=

�

QHPD

|W |k exp (− tr (DW )) dW

=

�

Triang
+
2p

p�

j=1

t1+2k+4p−4j

j,j
exp

�
−

p�

j=1

j�

i=1

dj,j |ti,j|2
�
dT

=
p�

j=1

�
Lj,j

j−1�

i=1

Li,j

�
,

where, using the Gamma pdf and characteristic function

Lj,j =

� ∞

0

t2k+4p−4j

j,j
e−dj,jt

2
j,j2tj,jdtj,j

=

� ∞

0

uk+2p−2je−dj,j,1ue−idj,j,iudu

= Γ(1 + k + 2p− 2j)d−1−k−2p+2j

j,j,1
(1 + i

dj,j,i
dj,j,1

)−1−k−2p+2j

= Γ(1 + k + 2p− 2j)d−1−k−2p+2j

j,j
,
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Li,j =

�

H

e−dj,j |ti,j |2dti,j

=

�� ∞

−∞
e−dj,jt

2
i,j,1dti,j,1

�4

=

�
2

� ∞

0

e−dj,j,1ue−idj,j,iu
1

2
u− 1

2du

�4

=

�
Γ

�
1

2

�
d
− 1

2
j,j,1

�
1 + i

dj,j,i
dj,j,1

�− 1
2

�4

= π2d−2

j,j
.

The product gives

ck

�
1

2
D1,−Di

�
=

p�

j=1

�
Γ(1 + k + 2p− 2j)d−1−k−2p+2j

j,j

j−1�

i=1

π2d−2

j,j

�

= πp(p−1)

p�

j=1

d1−k−2p

j,j
Γ(1 + k + 2p− 2j)

= πp(p−1) |D|1−k−2p

C

p�

i=1

Γ(−1 + k + 2i)

= ck(I,0)

����
1

2
D1 −

i

2
Di

����
C

,

and in particular

ck(D1,0) = ck(I,0) |D1|1−k−2p ,

where

ck(I,0) = πp(p−1)2p(1−k−2p)

p�

i=1

Γ(−1 + k + 2i).

We wish for some invertible M to calculate the jacobian (determinant) |J(M )| =���∂gM (W )

∂W

���. By Lemma 1.61, the map gM : W → MHWM is a bijection on the space

of QHPD matrices. Because the map is linear, its jacobian is a function of M only.
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ck
�
gM (Σ)−1, gMH−1(Θ)

�

= ck
�
gMH−1(Σ−1), gMH−1(Θ)

�

=

�

W∈QHPD

|W |k exp
�
−2� tr

�
M−1Σ−1MH−1

W
�
+ i� tr

�
M−1ΘMH−1

W
��

dW

=

�

gM−1 (W )∈QHPD

��MHgM−1(W )M
��k

· exp
�
−2� tr

�
Σ−1gM−1(W )

�
i� tr (ΘgM−1(W ))

�
J
�
M−1

�−1

dgM−1(W )

=

�

gM−1 (W )∈QHPD

��MHM
��k |gM−1(W )|k

· exp
�
−2� tr

�
Σ−1gM−1(W )

�
i� tr (ΘgM−1(W ))

�
J(M )dgM−1(W )

= |J(M )|
��MHM

��k ck
�
Σ−1,Θ

�
(B.4)

By Theorem 1.64, there exist U unitary and D1 diagonal with real positive ele-

ments s.t. Σ = UHD1U . (B.4) gives

ck
�
gU (I)

−1,0
�
= |J(U )|

��UHU
��k ck (I,0) = |J(U )|ck

�
gU (I)

−1,0
�

Hence J(U ) = 1. Hence

ck
�
Σ−1,0

�
= ck

�
gU (D1)

−1,0
�

= ck
�
D−1

1
,0

�

= πp(p−1)2p(1−k−2p) |D1|−1+k+2p

p�

i=1

Γ(−1 + k + 2i)

= ck (I,0) |Σ|−1+k+2p (B.5)

Using Lemma 1.67 (slightly modified), there is an invertible M and a diagonal

matrix Di with real diagonal entries s.t. Σ−1 = MHM and 1

2
Θ = MHDiM . (By
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using these equations to define Σ and Θ, M can be made arbitrary.) This gives

ck
�
Σ−1,0

�
= ck

�
gMH−1(I)−1,0

�

=
���J

�
MH−1

���� |Σ|k ck(I,0).

Comparing with (B.5) gives

���J
�
MH−1

���� = |Σ|2p−1 = |M |2−4p

|J(M )| = |M |4p−2

(This jacobian calculation is general for M invertible)

ck
�
Σ−1,Θ

�
= ck (gM (I), gM (Di))

=
���J(MH−1

)
���
���M−1MH−1

���
k

ck(I,Di)

=
��MHM

��1−k−2p

����I − i

2
Di

����
1−k−2p

C

ck(I,0)

=
��� �MT �M

���
1−k−2p

4

C

���� �I − i

2
�Di

����

1−k−2p
4

C

ck(I,0)

=

���� �M
T �M − i

2
�MT �Di

�M
����

1−k−2p
4

C

ck(I,0)

=

�����Σ
−1 − i

2
�Θ
����

1−k−2p
4

C

ck(I,0)

Consider a random QHPD matrix W with density

�
ck(Σ

−1,0)
�−1 |W |k exp

�
−2� tr

�
Σ−1W

��
. (B.6)
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Its characteristic function is then given by

ck (Σ−1,Θ)

ck(Σ−1,0)
= |Σ|1−k−2p

�����Σ
−1 − i

2
�Θ
����

1−k−2p
4

C

=

���� �I − i

2
�Σ�Θ

����

1−k−2p
4

C

. (B.7)

If we choose k = 1 − 2p + 2N then N > p − 1 implies k > −1, (B.7)=(2.12) and

(B.6)=(2.13) completing the proof.

B.2 Proof of Remark 3.2

Proof. It is well known that (for constant X), β̂GLS is the best linear unbiased es-

timator (BLUE). Now from Zyskind (1967, Theorem 2) either of the following two

conditions (quoted verbatim) are necessary and sufficient for the simple linear LS

estimator β̂LS to be the BLUE estimator β̂GLS.

1. A matrix S exists satisfying the relation ΣeX = XS, and further, for Σe

non-singular, a matrix R exists satisfying Σ−1

e X = XR.

2. A matrix R exists such that Σ+

eX = XR. (Note that when Σe is non-singular

Σ+

e = Σ−1

e ).

Here •+ indicating the Moore-Penrose generalized inverse. However from Zyskind

(1967, p. 1099), ΣeX = XS for some S if and only if Σ+

eX = XR for some R.

Putting this together with 2. we see that 1. can be reduced to the simple requirement

that a matrix S exists satisfying the relation ΣeX = XS.
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B.3 Proof of Proposition 4.8

Proof. Test 1 corresponds to test (a) in Andersson et al. (1983). Changing p to 2p in

Andersson et al. (1983, eqn. 101) gives

E{T h

C
} = K0

2p�

j=1

Γ ([N(h+ 1)− 2p− j + 1] /2)

Γ ([N(h+ 1)− j + 2] /2)
,

where K0 does not depend on h. Applying (4.13) we can write

Γ

�
[N(h+ 1)− 2p− 2k + 1]

2

�
Γ

�
[N(h+ 1)− 2p− 2k + 2]

2

�

=
√
π22p+2k−N(h+1)Γ [N(h+ 1)− 2p− 2k + 1]

and

Γ

�
[N(h+ 1)− 2k + 2]

2

�
Γ

�
[N(h+ 1)− 2k + 3]

2

�

=
√
π 22k−1−N(h+1)Γ [N(h+ 1)− 2k + 2] .

Hence

E{T h

C
} = K1

p�

j=1

Γ [N(h+ 1)− 2p− 2j + 1]

Γ [N(h+ 1)− 2j + 2]
,

while, from Andersson et al. (1983, eqn. 103)

E{T h

H
} = K2

p�

j=1

Γ [N(h+ 1)− p− j + 1]

Γ
�
N(h+ 1) + 3

2
− j

� ,

where K1 and K2 do not depend on h. So E{T h} = E{T h

C
}E{T h

H
} takes the form

K
p�

j=1

Γ [N(h+ 1)− 2p− 2j + 1] Γ [N(h+ 1)− p− j + 1]

Γ [N(h+ 1)− 2j + 2] Γ
�
N(h+ 1)− j + 3

2

� .

This expression can be simplified by canceling terms and reordering. Even and odd

p can be considered separately. �p/2� of the Γ [N(h+ 1)− 2j + 2] terms cancel with
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Γ [N(h+ 1)− p− j + 1] terms. The remaining numerator terms of the product can

be juxtaposed and the remaining denominator terms interspersed to form a monotone

pattern. Finally by inverting the order of the product in the numerator we obtain

(4.6).

B.4 Proof of Theorem 4.33

Proof. What follows is a slight rewording of the derivation by Box (1949). First

the cumulant generating function of ρM is expanded along the imaginary axis using

Lemma 4.32.

log φM(ρti) =
k�

i=1

log Γ (yr + ηr)−
m�

i=1

log Γ (xi + ξi)

+2itρ

�
m�

i=1

xi log(xi)−
k�

j=1

yj log(yj)

�

+
m�

i=1

log Γ (ρxi(1− 2ti) + (1− ρ)xi + ξi)

−
k�

i=1

log Γ (ρyr(1− 2ti) + (1− ρ)yr + ηr)

= log(KB)−
f

2
log(1− 2ti)

+
n�

j=1

ωj(1− 2ti)−j +R∗∗∗
n+1

(t)

where

log(KB) = log(K) +
1

2
(m− k) log(2π)− f

2
log(ρ)

+
m�

i=1

�
xi + ξi −

1

2

�
log(xi)−

k�

i=1

�
yi + ηi −

1

2

�
log(yi)

= −
n�

j=1

ωj +R∗∗∗
n+1

(0) , (B.8)
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ωj =
(−1)j+1

j(j + 1)

�
m�

i=1

Bj+1 ((1− ρ)xi + ξi)

(ρxi)
j

−
k�

i=1

Bj+1 ((1− ρ)yi + ηi)

(ρyi)
j

�
(B.9)

and R∗∗∗
n+1

(t) = O
��

x0

√
1 + 4t2

�−n−1
�

with x0 = mini,j(xi, yj). This leads to an

asymptotic expansion of the characteristic function

φM(ρti) = KB

n�

j=0

aj(1− 2ti)−
f+2j

2 +R∗∗∗∗
n+1

(t)

= KB

n�

j=0

ajφχ
2
f+2j

(t) +R∗∗∗∗
n+1

(t),

where aj is the coefficient of tj in the series expansion of exp
��

n

j=1
ωjtj

�
, and

R∗∗∗∗
n+1

(t) = O
��

x0

√
1 + 4t2

�−n−1
�
.

The asymptotic series for the pdf and CDF can now be obtained through term-

by-term integration of the characteristic function.

B.5 Proof of Proposition 5.3

Proof. Let F (i,•) ∈ V (i,•). Let M ∈ R
m×m have (j, i)-entry equal to 1 and all other

entries 0. Then F (i,•) = (MF )(j,•) ∈ V (j,•). Hence V (i,•) = V (j,•) = S ∀i, j and

V ⊆ Sm. Let F ∈ Sm. For i = 1, . . . ,m, choose Fi ∈ V such that Fi

(i,•) = F (i,•) ∈
S = V (i,•) and let Mi ∈ R

m×m have (i, i)-entry equal to 1 and all other entries 0.

Then F =
�

m

i=1
MiFi ∈ V , and so Sm ⊆ V . Hence V = Sm. Linearity of S = V (1,•)

follows directly from that of V . For the converse, note that for any M ∈ R
m×m and

F ∈ Sm, (MF )(i,•) is a linear combination of the rows of F .

B.6 Proof of Proposition 5.18

We will prove the matrix-valued version of Proposition 5.18, given below. Proposi-

tion 5.18 follows by setting S(i,•)
j,k

= δi,1sj,k and W (i,•)
j,k

= δi,1wj,k. Note that in this

proof the matrix subscripts •j,k do not indicate matrix (j, k) entries.
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Proposition B.2. Given a signal

F (t) =
�

k∈Z

S0,kΦ(t− k) ∈ V0 ⊂ L2(R,Rn×n),

the coefficients SJ,k and Wj,k in the decomposition

F (t) =
�

k∈Z

SJ,k2
−J/2Φ(2−Jt− k) +

�

k∈Z

J�

j=0

Wj,k2
− j

2Ψ(2−jt− k) (B.10)

can be obtained through the fast wavelet transform (a.k.a. Mallat’s pyramid algorithm)

by iteratively computing

Sj+1,k =
2k+L−1�

�=2k

Sj,�G
T

�−2k

Wj+1,k =
2k+L−1�

�=2k

Wj,�H
T

�−2k
.

The original signal S0,k can then be recovered through the reconstruction algorithm

which iteratively computes

Sj−1,k =
�

�∈Z

(Sj,�Gk−2� +Wj,�Hk−2�) .

Proof. By (5.5)

Sj+1,k =
�
F (t), 2−

j+1
2 Φ(2−j−1t− k)

�

n×n

=

�
F (t),

�

m∈Z

Gm2
− j

2Φ(2−jt− 2k −m)

�

n×n

=
�

m∈Z

�
F (t), 2−

j

2Φ(2−jt− 2k −m)
�

n×n

GT

m

=
�

m∈Z

Sj,2k+mG
T

m
.

Finally, note that Gm = 0n×n except for 0 ≤ m ≤ L−1 and set � = m+2k. Similarly,
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by (5.6) one obtains Wj+1,k.

For the reconstruction, first note that Ψ(2−jt − k) ∈ Vj−1 � Vj and hence is

orthogonal to all functions in Vi, i ≥ j. Thus Ψ(2−it−k) is orthogonal to all functions

in Vj−1 for all i < j. From (B.10)

Sj−1,k =
�
F (t), 2−

j−1
2 Φ(2−j+1t− k)

�

n×n

=
�

�∈Z

Sj,�

�
2−

j

2Φ(2−jt− �), 2−
j−1
2 Φ(2−j+1t− k)

�

n×n

+
�

�∈Z

j�

i=0

Wi,�

�
2−

i

2Ψ(2−it− �), 2−
j−1
2 Φ(2−j+1t− k)

�

n×n

=
�

�∈Z

�
Sj,�

�
2−

j

2Φ(2−jt− �), 2−
j−1
2 Φ(2−j+1t− k)

�

n×n

+Wj,�

�
2−

j

2Ψ(2−jt− �), 2−
j−1
2 Φ(2−j+1t− k)

�

n×n

�
.

Now, using (5.5)

�
2−

j

2Φ(2−jt− �), 2−
j−1
2 Φ(2−j+1t− k)

�

n×n

=
�

m∈Z

Gm

�
2−

j−1
2 Φ(2−j+1t− 2�−m), 2−

j−1
2 Φ(2−j+1t− k)

�

n×n

=
�

m∈Z

G�δ2�+m,k

= Gk−2�.

Similarly, from (5.6) we deduce

�
2−

j

2Ψ(2−jt− �), 2−
j−1
2 Φ(2−j+1t− k)

�

n×n

= Hk−2�.

Hence substituting the above we obtain

Sj−1,k =
�

�∈Z

(Sj,�Gk−2� +Wj,�Hk−2�) .
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Appendix C

Computer Code

C.1 Matlab code for wavelet filter computation

function [G,H] = G2GH(G)

% INPUT: A matrix−valued scaling filter G (as a n*n*L array)

% OUTPUT: A matrix−valued scaling filter G

% and a corresponding matrix−valued wavelet filter H

% (as n*n*L(+1) arrays)

[G,H]=polyphase2GH(G2polyphase(G));

end

function P = G2polyphase(G)

% OUTPUT: A 2n*2n polyphase matrix P of class mpoly

% INPUT: A n*n*L array G representing a matrix−valued scaling filter

[n,m,L]=size(G);

if mod(L,2)==1

G(:,:,L+1)=zeros(n);

L=L+1;

end

% Write the n*2n top half of the polyphase matrix as a mpoly object P1
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Pg=zeros(n,2*n,L/2);

if isa(G,'sym')

Pg=sym(Pg);

end

for k=1:L/2

Pg(:,:,k)=[G(:,:,2*k−1),G(:,:,2*k)];
end

P1=mpoly(Pg,0,'polyphase',2,2);

% Compute the projection factorisation of the polyphase matrix

% using the mw package by Fritz Keinert.

% http://orion.math.iastate.edu/keinert/book.html

F=projection factorization(P1);

% Compute the full 2n*2n polyphase matrix from the factorisation by

% unitary completion of the constant coefficient.

lf=length(F);

P=[eye(n),eye(n);−eye(n),eye(n)]/sqrt(2);
for k=2:lf

P=P*F{k};
end

end

function [G,H] = polyphase2GH(P)

% INPUT: A 2n*2n polyphase matrix P of class mpoly

% OUTPUT: A n*n matrix−valued scaling filter G and wavelet filter H

% as n*n*L(+1) arrays

P=P.coef;

L=2*size(P,3);

n=size(P,1)/2;

G=zeros(n,n,L);

if isa(P,'sym')

G=sym(G);

end

H=G;

for k=1:L/2

G(:,:,2*k−1)=P(1:n,1:n,k);
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G(:,:,2*k)=P(1:n,n+1:2*n,k);

H(:,:,2*k−1)=P(n+1:2*n,1:n,k);
H(:,:,2*k)=P(n+1:2*n,n+1:2*n,k);

end

end

C.2 Maple code for the design of scaling filters



!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

C.2 Maple code for the design of scaling filters 213



!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!333)))!333)))

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!111)))!111)))

!      !      

!666)))!666)))

!      !      

!222)))!222)))

!555)))!555)))

!      !      

!      !      

!      !      

!      !      
!      !      

!      !      

!      !      
!444)))!444)))

!      !      

!      !      

!      !      

!777

777111

444222

222999

111!

!rrruuueee
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!888)))!888)))
!      !      

!      !      

!      !      

!      !      

!      !      

!111000)))!111000)))

!      !      

!777)))!777)))

!999)))!999)))

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      
!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!      !      

!111111)))!111111)))

!      !      

!      !      

!      !      

!      !      

111

fffaaalllssseee

fffaaalllssseee

fffaaalllssseee
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!      !      

!      !      

!111333)))!111333)))

!      !      

!      !      

!      !      

!      !      

!      !      
!      !      

!111444)))!111444)))

!111222)))!111222)))

!777)))!777)))

!      !      

!111111)))!111111)))

!      !      
!      !      

!      !      

!      !      

!      !      

666444
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!777)))!777)))
!      !      

!      !      

!111444)))!111444)))

!111111)))!111111)))

"""SSSYYYMMMMMMEEETTTRRRIIICCC"""

"""SSSYYYMMMMMMEEETTTRRRIIICCC"""

"""SSSYYYMMMMMMEEETTTRRRIIICCC"""

"""SSSYYYMMMMMMEEETTTRRRIIICCC"""

"""DDDIIIAAAGGGOOONNNAAALLL"""

"""DDDIIIAAAGGGOOONNNAAALLL"""
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!777)))!777)))
!      !      

!      !      

!111444)))!111444)))

!111111)))!111111)))

"""DDDIIIAAAGGGOOONNNAAALLL"""

"""DDDIIIAAAGGGOOONNNAAALLL"""

"""BBBLLLOOOCCCKKK      DDDIIIAAAGGGOOONNNAAALLL"""

"""BBBLLLOOOCCCKKK      DDDIIIAAAGGGOOONNNAAALLL"""

"""BBBLLLOOOCCCKKK      DDDIIIAAAGGGOOONNNAAALLL"""

"""BBBLLLOOOCCCKKK      DDDIIIAAAGGGOOONNNAAALLL"""

"""BBBLLLOOOCCCKKK      DDDIIIAAAGGGOOONNNAAALLL"""

"""BBBLLLOOOCCCKKK      DDDIIIAAAGGGOOONNNAAALLL"""

"""BBBLLLOOOCCCKKK      DDDIIIAAAGGGOOONNNAAALLL"""

"""BBBLLLOOOCCCKKK      DDDIIIAAAGGGOOONNNAAALLL"""

"""SSSYYYMMMMMMEEETTTRRRIIICCC"""

"""SSSYYYMMMMMMEEETTTRRRIIICCC"""
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!      !      

!      !      

!111555)))!111555)))
!      !      

!      !      

!111444)))!111444)))

!      !      

!777)))!777)))

!      !      

!111111)))!111111)))

"""SSSYYYMMMMMMEEETTTRRRIIICCC"""

"""SSSYYYMMMMMMEEETTTRRRIIICCC"""
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!111666)))!111666)))

!      !      

!111555)))!111555)))
!      !      

!777)))!777)))

!      !      

!      !      

!      !      

!      !      

!111444)))!111444)))

!      !      

!111111)))!111111)))

!      !      

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

000...

C.2 Maple code for the design of scaling filters 220



221

Appendix D

Permission to use IEEE

Copyrighted material

Comments/Response to Case ID: 003BD3BB

ReplyTo: Copyrights@ieee.org

From: Jacqueline Hansson

Date: 02/15/2013

Subject: Re: Copyright query

Send To: "Walden, Andrew T" <a.walden@imperial.ac.uk>

cc: "Ginzberg, Paul" <paul.ginzberg05@imperial.ac.uk>

Dear Andrew Walden,

It's my understanding that your PhD student or any PhD student will only

use portionsof their elsewhere published works in their t heses. If that

is true and he is referenicing his sources properly and indicating IEEE

copyright, there is no probem with Statement being used in his thesis.

Sincerely,
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+1 732 562 1746(fax)

e-mail: j.hansson@ieee.org

IEEE Fostering technological innovation

and excellence for the benefit of humanity.
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Hi,

I am the supervisor of a PhD student who has published (with me) 3 papers

in IEEE Transactions on Signal Processing resulting from his thesis work.

Imperial College London are asking students to include the following in

their thesis which he is currently completing:

[1] �The copyright of this thesis rests with the author and is made available

under a Creative Commons Attribution Non-Commercial No Derivatives licence.

Researchers are free to copy, distribute or transmit the thesis on the condition

that they attribute it, that they do not use it for commercial purposes

and that they do not alter, transform or build upon it. For any reuse or

redistribution, researchers must make clear to others the licence terms

of this work'

In the IEEE Copyright form we signed for each of the 3 papers it says

[2] �Authors/employers may reproduce or authorize others to reproduce the

Work, material extracted verbatim from the Work, or derivative works for
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provided that the source and the IEEE copyright notice are indicated as
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Andrew Walden
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Andrew Walden
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ADAPTIVE ORTHOGONAL MATRIX-VALUEDWAVELETS AND COMPRESSION OF
VECTOR-VALUED SIGNALS

P. Ginzberg and A. T. Walden

Department of Mathematics, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK.

(e-mail: paul.ginzberg05@imperial.ac.uk and a.walden@imperial.ac.uk)

ABSTRACT

Wavelet transforms using matrix-valued wavelets (MVWs)
can process the components of vector-valued signals jointly,
and thus offer potential advantages over scalar wavelets. For
every matrix-valued scaling filter, there are infinitely many
matrix-valued wavelet filters corresponding to rotated bases.
We show how the arbitrary orthogonal factor in the choice
of wavelet filter can be selected adaptively with a modified
SIMPLIMAX algorithm. The 3×3 orthogonal matrix-valued
scaling filters of length 6 with 3 vanishing moments have
one intrinsic free scalar parameter in addition to three scalar
rotation parameters. Tests suggest that even when optimis-
ing over these parameters, no significant improvement is ob-
tained when compared to the naive scalar-based filter. We
have found however in an image compression test that, for
the naive scaling filter, adaptive basis rotation can decrease
the RMSE by over 20%.

Index Terms— multichannel wavelet, vector-valued
wavelet, matrix-valued wavelet, basis rotation, SIMPLIMAX,
compression, scalar thresholding

1. INTRODUCTION

The naive approach for applying wavelet-based methods
to vector-valued data is to transform each component in-
dependently with a scalar wavelet transform. An n × n
matrix-valued wavelet (MVW) is a type of wavelet which is
specifically designed to jointly transform the components of
n-vector-valued signals [6, 14]. The coefficients of a matrix-
valued scaling filter (MVSF) or matrix-valued wavelet filter
(MVWF) are n × n matrices. The increased number of de-
grees of freedom offered by such filters allows one, for exam-
ple, to build finite impulse-response (FIR) MVSFs which are
orthogonal, symmetric, and have high vanishing moments,
such as the quaternion (4× 4) construction in [7].

In a search of the MVW literature, we have come across
only four explicit MVW designs of practical interest. [4] de-
vised a procedure based on multichannel lifting to construct

Paul Ginzberg thanks the EPSRC (UK) for financial support.

biorthogonal MVWs, and gives coefficients for the 2×2 case.
A 3×3 example based on the same method is given in [2]. [8]
construct two examples of biorthogonal MVWs by solving a
set of design equations symbolically. The construction from
[2] has been applied to the compression, denoising [1] and
watermarking [3] of colour images. The construction from
[8] has been applied to the compression and denoising of 2-D
vector wind fields [9, 13]. In addition to these, the authors
have constructed 2 × 2, and quaternion (4 × 4) orthogonal
MVWs [7].

One characteristic which all these constructions share is
that they contain free parameters which must be specified. In
[8], the free parameters are chosen such that the scaling and
wavelet filters resemble ideal lowpass and highpass filters as
closely as possible. In [2, Fig. 7] the performance for a few
parameter choices are compared. In this paper, we develop a
method which allows us to systematically select the free pa-
rameter in the orthogonal 3 × 3 construction based on [7],
in order to optimise its performance for signal compression.
Since the optimisation can be performed for a specific sig-
nal, this can be considered as a method for implementing an
adaptive wavelet transform. However, whilst the adaptive op-
timisation of the wavelet filter for a given scaling filter can be
done in a computationally efficient manner, we will use brute
force (trying a large number of parameter values) to optimise
the scaling filter.

In Section 2 we introduce MVWs. In Sections 3, 4 and 5
we classify the three types of free parameters. These are, re-
spectively, an arbitrary orthogonal similarity transformation
of the scaling filter, an intrinsic parameter in the scaling filter
design, and an arbitrary rotation of the wavelet filter which
controls the wavelet coefficient basis. We suggest an algo-
rithm for the adaptive optimisation of the latter in Section 6.
Section 4 describes the set of all 3× 3 orthogonal MVSFs of
length 6with 3 vanishing moments. In Section 7 we systemat-
ically test the effects of parameter choices for these filters on
a test image, which leads to some insights on MVW design.

2. MATRIX-VALUEDWAVELETS
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A (discrete) MVW transform decomposes a vector-valued
signal f(t) ∈ L2(R,R1×n) into a linear combination

f(t) =
�

k∈Z

sk2
-J/2Φ(2-J t-k) +

�

k∈Z,j<J

wj,k2
-j/2Ψ(2-jt-k)

(1)
of the translations and dilations of a matrix-valued (MV)
scaling function Φ(t) ∈ L2(R,Rn×n), and a MV wavelet
function Ψ(t) ∈ L2(R,Rn×n), with coefficients sk,wj,k ∈
R

1×n.
Φ andΨ satisfy the dilation equations

Φ(t) =
√
2
�

k∈Z

GkΦ(2t−k), Ψ(t) =
√
2
�

k∈Z

HkΦ(2t−k),

where {Gk} and {Hk} are n × n matrix-valued sequences,
called the matrix-valued scaling filter (MVSF) and matrix-
valued wavelet filter (MVWF) respectively.

MVWs are a type of generalized multiwavelet. Indeed,
the MVW transform can be implemented as a fast multi-
wavelet transform. There is however no need for vector-
ization, pre-filtering or post-fitlering steps since the sig-
nal is already in vector form. MVSF coefficients satisfy
2−

1
2
�

k∈Z
Gk = In. This sets them apart from standard

multiwavelets, for which the sum has one eigenvalue equal
to 1, and all other eigenvalues strictly less than 1 in absolute
value.

In this paper, we will deal only with orthogonal MVWs,
i.e. MVWs for which the basis of L2(R,R1×n) used in the
decomposition (1) is orthonormal. Also, we will only deal
with MVSFs {Gk} having finite length L, i.e. Gk �= 0n×n

only for 0 ≤ k < L. Particular attention will be given to the
case n = 3 and L = 6.

3. ORTHOGONAL SIMILARITY
TRANSFORMATIONS

Definition 1 Two filters {Gk} and {Jk} are orthogonally
similar iff

Jk = OGkO
T , ∀k ∈ Z (2)

for some orthogonal matrix O, (i.e.,OOT = In).
The map {Gk} �→ {OGkOT } is called an orthogonal

similarity transformation (OST).

OSTs preserve orthogonality, filter length and vanishing mo-
ments [7].

For a given MVSF {Gk}, we can generate a whole fam-
ily of MVSFs {OGkOT } by taking OSTs. It is convenient to
group MVSFs into such orthogonally similar families, which
can be described by an arbitrarily chosen representative ele-
ment.

Given a scaling and wavelet filter pair {Gk}, {Hk}, we
will apply any OST to both filters, to obtain a valid scaling
and wavelet filter pair {OGkOT }, {OHkOT }.

Let O(3) denote the set of 3× 3 orthogonal matrices and
SO(3) = {O ∈ O(3) : det(O) = 1} denote the set of 3 × 3
rotation matrices. Then O(3) = SO(3) ∪ (−SO(3)). How-
ever, for any Gk,O ∈ R

3×3, (−O)Gk(−O)T = OGkOT .
Hence, we only need to consider OSTs with rotations O ∈
SO(3).

We can parameterise the rotations O ∈ SO(3) using 3
Euler angles (θ1, θ2, θ3) ∈]−π, π]× [0, π]×]−π, π]. Given a
MVSF {Gk}, we will want to select an optimal MVSF within
the family of orthogonally similar filters that it generates, by
choosing appropriate values for the parameters θ1, θ2, θ3.

If we wish to select these parameters before observing the
signal to be compressed (i.e. non-adaptively), and the prop-
erties of the unknown signal are a-priori invariant under ro-
tations (e.g. the coordinate system used for the signal is un-
known and arbitrary), then the choice of OST is irrelevant and
we may arbitrarily set θ1 = θ2 = θ3 = 0, (O = I3).

4. INTRINSIC PARAMETERS

After considering OSTs, there may still be additional free pa-
rameters in the design of the MVSF. For the set of 3 × 3
MVSFs of length 6 with 3 vanishing moments there is one
such free parameter, denoted x�.

We can describe the set of all orthogonal 3× 3MVSFs of
length 6 with 3 vanishing moments as follows:

There are two naive filters. One is given by {gkI3}, where
{gk} is the scalar minimum phase Daubechies scaling filter,
and the other by its time-reversal {g5−kI3}.

The non-naive filters are either orthogonally similar to








gk 0 0
0
0

Jk(x)








 , (3)

or to its time-reversal, where gk is as above, and Jk is the non-
trivial 2× 2MVSF construction of length 6 with 3 vanishing
moments, given in [7] with free parameter 0 ≤ x ≤ C =
[5 + 2

√
10]1/2;

We treat the non-naive filters as a single family, parame-
terised by −1 ≤ x� ≤ 1 as follows: If 0 ≤ x� ≤ 1 then
select (3)., with x = Cx�. If −1 ≤ x� < 0 then take the
time-reversal of (3) with x = −Cx�.

5. BASIS SELECTION AND ROTATION OF THE
WAVELET FILTER

For a given MVSF {Gk}, a corresponding MVWF {Hk} can
be computed using the method described in [10, Thm. 10.2,
Coroll. 9.2] (see also [7]). However, the choice of MVWF
for a given MVSF is not unique. Indeed, any filter of the
form {RHk} where R is an orthogonal matrix is also valid.
Hence, we may wish to optimise the choice ofR.
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Consider the matrixW whose rows are given by the var-
ious wavelet coefficients wj,k obtained from (1). (We as-
sume that in practice the signal being transformed is finite
and discrete, so that there are only finitely many wavelet co-
efficients.) Then the matrix of wavelet coefficients obtained
by using {RHk} as our wavelet filter instead of {Hk} (and
hence RΨ instead of Ψ) will simply be WRT . In other
words, choosingR is equivalent to selecting the orthonormal
basis under which we will encode the wavelet coefficients.

When applying the MVW transform to images (or more
generally using transforms with more than one time dimen-
sion or wavelet packet transforms) the effects of rotating the
wavelet filter or rotating the wavelet coefficient basis are sub-
tly different due to further filtering being applied after the
wavelet filter. Thus, treating this situation in its full gener-
ality requires that we consider two separate rotation parame-
ters R. We will avoid this complication resulting from the
non-commutative interaction between vertical and horizon-
tal transform components by considering only the problem
of finding an optimal rotation of the wavelet coefficient basis.
This is the more tractable rotation to optimise, since rotated
wavelet coefficients can be obtained without recomputing the
MVW transform.

For certain applications, such as those based on vector
thresholding, the choice of basis is irrelevant. We can then
arbitrarily choose R = In. In the context of compression
by scalar thresholding however, selecting an appropriate basis
can significantly improve performance. When n = 3, since
choosing R = −I3 will not affect results, we again need
only consider R ∈ SO(3), parameterised by three Euler an-
gles θ̃1, θ̃2, θ̃3. (Since inversions and permutations of the axes
will not affect results, we could decide to restrict the 3D range
of (θ̃1, θ̃2, θ̃3) by a factor of 24. This is done by “quotienting
out” the rotation group of the cube from SO(3).)

6. MODIFIED SIMPLIMAX ALGORITHM

Let τp : R
m×n → R

m×n denote the hard scalar thresh-
olding operator which sets the 100p% smallest entries of a
wavelet coefficient matrix W to 0. We wish to minimise
the L2 distance between the original signal and the signal re-
constructed from the thresholded coefficients. We call this
quantity the root mean squared error (RMSE). Since the or-
thogonal wavelet transform is an isometry, this is given by
RMSE =

����τp(WRT )−WRT
����
2
, where ||•||2 denotes the

Frobenius norm. The problem of minimizing this quantity
over R ∈ O(3) can be solved by a simpler orthogonal vari-
ant of the SIMPLIMAX algorithm used in factor analysis, as
hinted at in [11, p. 578]. The algorithm is based on [5, Case II]
and proceeds as follows:

Start from an initial guessR0 and recursively setRk+1 =
UkV T

k
Rk, where Uk and Vk are obtained from the sin-

gular value decomposition Mk = UkDkV T

k
of Mk =

RkW T τp(WRT

k
). The RMSE decreases at each iteration,

until convergence.
Like many non-convex optimisation routines, this proce-

dure suffers from the fact that it may converge to a local min-
imum. To mitigate this problem, random initial guesses are
used in addition to the default choice R0 = In. In our ap-
plications, we computed the RMSE for 2000 random R, and
selected the best 4 rotations as additional random starting val-
uesR0.

Uniformly distributed random rotations are generated us-
ing the rotation-invariant (Haar) measure [12].

Remark 1 The same algorithm can be applied with quanti-
zation operators other than τp.

7. NUMERICAL RESULTS AND INTERPRETATION

We will take as our signal f the well known 512 × 512 test
colour image Lena in 24-bit RGB format.

We considered 56 values of x� and (due to computational
time constraints) 100 OSTs (O = I3 and a further 99 uni-
formly distributed random OSTs). For each combination of
x� and O, we computed the full MVW transform of the im-
age and optimised the choice of wavelet coefficient basis ro-
tation R through the modified SIMPLIMAX algorithm. The
relative RMSE, rRMSE = RMSE ||W ||−1

2 , was computed
after thresholding p = 90% of wavelet coefficients.

The naive filter built from the minimum phase scalar
Daubechies scaling filter of length 6 gives an rRMSE of
8.75%. When O = R = I3, the lowest rRMSE is obtained
for the diagonal MVSF corresponding to x� = −1 and equals
8.74%. To remove the influence of our choice of represen-
tative element amongst orthogonally similar wavelets, we
average results over the 100 OSTs. Then the lowest average
rRMSE obtained from non-naive filters is 8.82%, for x� = 0.
Hence the unoptimised MVSFs are generally underperform-
ing relative to the naive filter. We see from Fig. 1 that even
after optimising the choice of both O and x�, the decrease
in rRMSE relative to the naive filter is less than 2%. Again
x� = 0 is optimal.

Optimisation overR on the other hand can provide a sig-
nificant improvement in performance at a much lower compu-
tational cost. This optimisation is however particularly effec-
tive for the naive filter, leading to a 12.9% decrease in rRMSE
to 7.62%. Again, MVSFs underperform.

Experiments on the 512 × 512 images mandrill, peppers
and airplane give qualitatively similar results to Fig. 1, except
for different ranges of rRMSE. The values for the naive filter
before and after optimisation are given in Table 1.

We believe that optimisation overR is particularly effec-
tive for the naive filters because the phases of the filters ap-
plied to each component match, leading to better alignment
of the large wavelet coefficients across the 3 columns ofW .
This explanation is consistent with the fact that optimisation
over R is more effective for x� = 0 and x� = ±1, values at
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Fig. 1. Relative RMSE after setting p = 90% of coefficients
in the MVW transform of Lena to 0, for varying x� and var-
ious degrees of optimisation. From top to bottom, the dash-
dotted curve is for no optimisation (averaged over OSTs), the
dotted curve is after optimising O, the dashed curve is af-
ter optimising R (averaged over OSTs), the full curve is af-
ter jointly optimising both O and R. The horizontal lines
correspond to the naive minimum-phase filter, before (square
markers) and after (round markers) optimisation ofR.

which two out of the three filter dimensions will have match-
ing phases, in some sense. Lack of proper alignment of the
wavelet coefficients is also problematic for applications based
on vector thresholding, and may be at the root of the overall
disappointing performance of the non-naive 3 × 3 wavelets.
Although symmetric (zero phase) MVWs exist for n = 2, 4,
currently no example exists for odd n.

Optimisation of R is useful because the distribution of
wavelet coefficients in R

3 is anisotropic. Indeed, for naive
wavelet filters, the wavelet coefficients which encode a sharp
edge between two uniformly coloured regions will lie along
a line through the origin. One of the reasons for the lesser
effectiveness of basis selection for MVWs may be that they
do not exhibit this behavior. If we treat the anisotropy as el-
lipsoidal, then the major and minor axes provide a heuristic
choice of basis. In other words we may choose R such that
W TW = RTDR, withD diagonal. This heuristic can also
be used as a starting guess for the SIMPLIMAX algorithm.
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