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Abstract 
 

Phosphatidylinositol phosphates (PIPs) are signalling phospholipids with a diverse set of cellular 

functions.  The most important of these PIPs are phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) 

and phosphatidylinositol (3,4,5) trisphosphate (PI(3,4,5)P3).  These two are responsible for a number 

of cellular events which regulate cell growth, proliferation and apoptosis.  Deregulation of PIP levels 

disrupts these pathways and can therefore lead to uncontrolled cell growth and which can lead to 

tumourigenesis.  Control of PIP levels has been identified as a potential target for diagnosis and 

intervention in diseases including Alzheimer’s disease, cancer, and the genetic disorder Lowe 

Syndrome.   

The use of small molecules that bind PIPs has been shown by our group to interfere with protein-PIP 

interactions.  By preventing proteins from binding to PIPs, the effective concentration of the target 

PIP is reduced, proteins are not recruited to the membrane for activation and downstream signalling 

pathways are attenuated.  Therefore, in this project a series of small artificial receptors were 

synthesised and were shown to bind PI(4,5)P2 and PI(3,4,5)P3. The aim of this was to control their 

effective levels and manipulate their downstream signalling pathways. 

PI(4,5)P2-binding receptors were developed based on existing lead compounds established within 

our group.  Comparison of a receptor with only one binding motif with the established two motif 

receptor showed differences in affinity as well as specificity for the phospholipid target PI(4,5)P2 

over the headgroup IP3.  In cells, the effect of the receptors on the downstream signalling pathways 

was examined using phosphorylated Akt as an indicator of this pathway’s activation.  Two 

fluorescent receptors were designed and one of these was used as a novel PI(4,5)P2 detection tool 

on immobilised phospholipid.  Preliminary results show that this receptor may also be used to 

directly image PI(4,5)P2 in fixed cells. 

Novel PI(3,4,5)P3 receptors were designed with phosphate-binding motifs and a range of spacers.  

The specificity of each receptor was identified and binding affinities towards PI(3,4,5)P3 were 

established.  Inhibition of protein-lipid interaction and inhibition of PIP-metabolising enzymes were 

also studied. The effect of these new receptors in attenuating the Akt pathway in cancer cells was 

also investigated, and they were found to lack the efficacy of PI(4,5)P2-binding receptors. 

The ability of some of these artificial receptors to bind phospholipids in the cell and affect 

subsequent signalling pathways indicates that phospholipids are a viable additional drug targets for 

many diseases. 
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Chapter 1: Introduction 

1.1 Phosphatidylinositolphosphates 

Phosphatidylinositol phosphates (PIPs) are signalling molecules that consist of a long fatty acid tail 

(two hydrocarbon chains, one of which is saturated and the other polyunsaturated) which enables 

them to associate to cell membranes, and an inositol headgroup (a six-membered carbon ring) which 

resides in the cytosol.  The headgroup is phosphorylated on the 3-, 4-, and 5-positions in seven 

different combinations (see Figure 1.1).  These seven anionic phospholipids are a minor component 

of cell membranes, making up less than 1% of total lipids (1),(2); however they are vitally important 

in signal transduction and the regulation of membrane traffic (3). 

 

Figure 1.1: Seven phosphatidylinositol phosphates and the enzymes that interconvert them.  PIP-Ks 
(Phosphoinositide kinases) are indicated in purple and phosphatases are shown in blue (OCRL = 
Oculocerebrorenal Syndrome of Lowe, a 5-phosphatase; PTEN = Phosphatase and Tensin Homolog, a 
3-phosphatase; SHIP= SH2-domain containing Inositol 5-phosphatase). R1 = 1-octadecanoyl; R2 = 2 
(5Z-, 8Z-, 11Z-, 14Z- eicosatetraenoyl). 

Each PIP is mainly localised in a specific organelle- the main constitutive phosphoinositide pools are 

PI(4)P, which is present mostly in the Golgi, and PI(4,5)P2 which is predominantly localised at the 
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plasma membrane (3),(4). As well as being heterogeneously positioned throughout the cell PIPs have 

a diverse set of functions; each PIP has a different repertoire of interacting proteins and therefore 

their influence in the cell is widespread. 

 

1.1.1 PI(4,5)P2 and PI(3,4,5)P3  

The headgroup of PI(4,5)P2 is phosphorylated at the 4 and 5 positions as shown in Figure 1.2, with 

hydroxyl groups on the remaining carbons, while PI(3,4,5)P3 has an additional phosphate group at 

the 3-position.  The inositol rings are attached to diacylglycerol via a phosphodiester link.  Both of 

these phospholipids interact with proteins that possess PH (Pleckstrin Homology) domains. 

 

 

Figure 1.2: The structures of PI(4,5)P2 and PI(3,4,5)P3. R1 = 1-octadecanoyl; R2 = 2 (5Z-, 8Z-, 11Z-, 14Z- 
eicosatetraenoyl). 

 

PI(4,5)P2 is one of the most abundant phosphoinositides in the cell, existing at the inner leaflet of the 

plasma membrane.  It is known to have roles in diverse cellular functions such as motility, 

endocytosis, actin regulation, calcium release and survival signalling (5). PI(4,5)P2 is mainly generated 

by the 5-phosphorylation of PI(4)P which is the other major phospholipid component of cells (6).  

The 4-phosphorylation of PI(5)P can also form PI(4,5)P2, although this is a minor contribution due to 

the low levels of PI(5)P in the cell.  PI(4,5)P2 levels can be depleted by 3-phosphorylation to generate 

PI(3,4,5)P3, a process which is generally reversed by the 3-phosphatase PTEN (Phosphatase and 

Tensin Homolog), regenerating PI(4,5)P2 (Figure 1.3) (7).  Levels of PI(3,4,5)P3 are very low in resting 

cells, and increase only for a short amount of time in response to stimulus (3). 
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Figure 1.3: A signalling cascade is initiated by ligand binding to the extracellular domain of IGFR 
(insulin growth factor receptor).  After transphosphorylation of intracellular components the receptor 
recruits PI3K (phosphoinositide 3-kinase) to the membrane via IRS (adaptor protein Insulin Receptor 
Substrate).  PI3K  converts PI(4,5)P2 to PI(3,4,5)P3 which recruits a number of proteins to the 
membrane, including PDK1 and PDK2 (Phosphoinositide dependent kinases 1 and 2).  These kinases 
phosphorylate Akt at the Threonine 308 and Serine 473 positions respectively. Image reproduced 
from reference (8). 

 

The binding of ligands (including insulin) to the extracellular components of IGFR (insulin growth 

factor receptor, a type of receptor tyrosine kinase, RTK) initiates dimerisation of the receptors (9).  

This process allows the cytosolic components of the receptor to come into close proximity to each 

other, and trans-phosphorylation of several tyrosine residues occurs (10).  IRS-1 (insulin receptor 

substrate 1) interacts with these phosphorylated tyrosine residues via a PTB (phosphotyrosine 

binding) domain and is then phosphorylated by the cytosolic receptor component (11).  The p85 

(regulatory) subunit of PI3K (phosphoinositide 3-kinase) binds the phosphorylated tyrosine of IRS-1 

via its Src Homology 2 (SH2) domain (which specifically recognises pTyr residues in certain peptide 

sequences (12)).  When the p85 subunit binds IRS-1, PI3K is translocated to the membrane and there 

can phosphorylate PI(4,5)P2 to PI(3,4,5)P3 (13), (14). 

The PI(3,4,5)P3 thus generated recruits a number of proteins to the plasma membrane including Akt 

which is phosphorylated by PDK 1 and 2.  While PDK1 (phosphoinositide-dependent kinase 1) has 

been shown to phosphorylate Akt at the threonine 308 residue, mTORC2 (mammalian target of 

rapamycin complex 2, identified as PDK2 (13)) phosphorylates Akt at the serine 473 residue (15). 
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1.1.2 PI(4,5)P2- and PI(3,4,5)P3-interacting proteins 
Proteins interact with PIPs using specific PIP-binding domains; these bind via the inositol headgroup 

which is accessible at the membrane-cytosol interface.  Many different protein domains have so far 

been identified (see Figure 1.4), and these have two general binding mechanisms (16). 

 

 

Figure 1.4: Several protein domains which directly interact with certain PIPs have been identified.  
PIP-metabolising enzymes and downstream effectors of PIP signalling use these domains to bind their 
targets.  PH (Pleckstrin Homology) and PX (Phox homology) domains are used to bind a number of 
PIPs, while other domains have more specific interactions. BATS (Barkor autophagosome targeting 
sequence); FYVE (Fab1, YOTB, Vac1 and EEA1); GOLPH3 (Golgi phosphoprotein 3); P4M (PI(4)P 

bindingof SidM/DrrA); PTB (Phosphotyrosine binding); PROPPINs (-propellers that bind PIs); ANTH 
(AP180 N-terminal homology); ENTH (epsin N-terminal homology); C2 (conserved region-2 of protein 
kinase C); PDZ (postsynaptic density 95, disk large ,zonula occludens) DHR-1 (dock homology region 
1), SYLF (SH3YL1, Ysc84p/Lsb4p, Lsb3p and plant FYVE protein) .  Figure reproduced from reference 
(16).    

Although phosphoinositides have low abundance, they are highly charged (17) and can attract a 

diverse range of proteins to the plasma membrane.  They recruit proteins that have clusters of basic 

residues, which are protonated at physiological pH and therefore positively charged (18).  Other 

proteins possess complex folded domains which form three dimensional structures in which residues 

are aligned for maximum interaction with the phosphate groups of the target phospholipid (3),(19).  

As indicated in Figure 1.4, the PH (Pleckstrin Homology) domain is used to bind to various PIPs, and is 

present in a number of proteins. 

PLC (Phospholipase C) makes use of the PH domain to bind PI(4,5)P2.  PLC breaks the phosphodiester 

bond linking the headgroup to the fatty acid tails, generating inositol (1,4,5) trisphosphate (IP3) and 

diacylglycerol.  By co-crystallising the PH domain of PLC (PLC1-PH) with IP3 Essen et. al. (20) and 

Lemmon et. al. (21) both showed that the protein binds IP3 using a combination of electrostatic 
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interactions (via positively charged lysine residues) and multiple hydrogen bonds (between 

glutamine residues and hydroxyl groups; histidine and asparagine residues and phosphate groups).  

In addition, Lemmon et. al. determined the dissociation constant between isolated PLC1-PH 

domain and vesicles  containing PI(4,5)P2 to be 1.66 ± 0.80 µM (21) by means of isothermal titration 

calorimetry (ITC). 

The PH domain of GRP1 (General Receptor for Phosphoinositides) is known to bind with high affinity 

and selectivity to PI(3,4,5)P3.  Amino acid residues interact with PI(3,4,5)P3 via hydrogen bonding (in 

the case of tyrosine) and electrostatic interactions with protonated lysine residues.  In contrast to 

the PLC1-PH domain, the GRP1-PH domain possesses two lysine residues which are positioned to 

bind to the 3’-phosphate.  The binding affinity of GRP1-PH domain for IP4 was determined to be 

0.027 µM by means of ITC (22). 

The GRP1-PH domain has a much higher affinity (approximately 60 times higher) for IP4 than PLC1-

PH domain for PIP2 (22).  GRP1-PH domain has 11 total interactions with IP4 (22) while PLC1-PH 

domain has 9 interactions with IP3 (as well as a number of indirect interactions via hydrogen bonding 

with water molecules) (23).  IP4 is more negatively charged than IP3; in addition the GRP1-PH domain 

interacts via seven basic residues while PLC1-PH domain interacts via four basic residues.  The 

electrostatic attraction between IP4 and GRP1-PH domain should therefore be much stronger than 

that of IP3 and PLC1-PH domain (22),(23). 

These protein domains are commonly used as tools to probe and quantify their binding targets in in 

vitro assays (protein-lipid overlay assay (24), ELISA (enzyme-linked immunosorbent assay) (25)) and 

in microscopy techniques (26). 
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1.1.3 Phosphoinositides and disease 
The lipids PI(4,5)P2 and PI(3,4,5)P3 are upstream of several complex signalling networks, and their 

levels determine the activation of these pathways.  The lifecycle of the cell is controlled in this way 

and therefore it is no surprise that PI(4,5)P2 and PI(3,4,5)P3, and the proteins that act on them, have 

been implicated in a number of diseases including cardiac failure (27), Alzheimer’s disease (28), 

bipolar disorder (29) and several types of cancer (30), (31) (Table 1.5). 

Table 1.5: Enzymes that metabolise PI(4,5)P2 and PI(3,4,5)P3 have been linked to human diseases.  
Reproduced from reference (3). 

Enzyme Predominant 

Substrate 

Product Disease 

Class I PI(3)Kinase PI(4,5)P2 PI(3,4,5)P3 Cancer (15) 

3-Phosphatase PTEN PI(3,4,5)P3 PI(4,5)P2 Cancer (32),(33) 

5-Phosphatase SHIP2 PI(3,4,5)P3 PI(3,4)P2 Type 2 diabetes  

5-Phosphatase OCRL PI(4,5)P2 PI(4)P Oculocerebrorenal 

Syndrome of Lowe (34) 

Polyphosphoinositide 

phosphatase 

Synaptojanin 1 

PI(4,5)P2 and other 

phosphoinositides 

PI(4)P Bipolar disorder (5) 

 

PI(4,5)P2 is the substrate of several enzymes, among the most important are PLC; the 5-phosphatase 

OCRL1 (Oculocerebrorenal Syndrome of Lowe); and the previously mentioned PI3K(35),(36),(23).  

PI3K phosphorylates PI(4,5)P2 on the 3’-position to generate PI(3,4,5)P3.  In response to PI(3,4,5)P3, 

several proteins are recruited to the plasma membrane, including the kinases Akt and PDK1 (see 

Figure 1.2).  Akt is activated by phosphorylation at the serine 273 and threonine 308 positions, and 

by attracting effector proteins, initiates a large number of signalling cascades which control cell 

growth and proliferation (35).  PI(3,4,5)P3 is rapidly dephosphorylated by phosphatases including 

PTEN, and the 5-phosphatase SHIP (Src-homology 2-containing phosphatase).  PTEN effectively 

opposes the action of PI3K and negatively regulates downstream activation of the Akt pathway, 

regenerating PI(4,5)P2.  SHIP generates PI(3,4)P2 which also interacts with Akt (35),(37) and has a 

unique set of effectors and functions  (38). 
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Figure 1.6: The PI3K-Akt signalling pathway.  PI(4,5)P2 is phosphorylated to PI(3,4,5)P3, which recruits 
PDK1 and Akt to the plasma membrane.  PI3K is represented as heterodimeric subunits p85 and p110 
and regulates Akt-independent effectors SGK (serum and glucocorticoid-inducible kinase), RAC1 (Ras-
related C3 botulinum toxin substrate 1) and CDC42 (cell division control protein 42), and PKC (protein 
kinase C).  Akt phosphorylates a number of downstream proteins: MDM2 (Mouse double minute 2 

homologue), mTOR (mammalian target of Rapamycin), GSK3 (glycogen synthase kinase 3 ), NF- 

(nuclear factor ), FKHR (Forkhead in human rhabdomyosarcoma; also known as FOXO1, forkhead 
box protein 01), BAD (Bcl-2-associated death promoter).  These proteins control several aspects of 
the cell cycle, growth, translation, metabolism, DNA repair and apoptosis. Figure redrawn from 
reference (8).  

These enzymes carefully maintain the balance of phosphoinositides in the cell.  When the enzymes 

are downregulated or function improperly, the ratio of phosphoinositides changes.  This imbalance 

can cause over- or underactivation of the subsequent signalling pathways, leading to disease states. 

Overactivation of the PI3K-Akt pathway leads to uncontrolled cell survival and proliferation and is 

linked to many types of cancer (35),(31), (39),(8).  One of the most prevalent causes of PI3K 

overactivation is the mutation of the gene encoding PTEN resulting in loss of its function.  PTEN is a 

known tumour suppressor, and mutations are indicated in 80 % of patients with Cowden syndrome- 

a genetic disorder that predisposes individuals to multiple carcinoma and lesions (40).  Somatic 

mutations of PTEN are also known to occur and are found in many instances of skin, brain and 



31 
 

prostate cancers (30),(8).  PI3K is activated when insulin binds to insulin receptors.  Levels of 

PI(3,4,5)P3 increase and downstream effectors which control glucose transport and metabolism are 

activated (41).   Akt is recruited to the plasma membrane by PI(3,4,5)P3 and activated by 

phosphorylation, and subsequently returns to the cytosol and nucleus.  Akt phosphorylates a 

number of downstream effectors, and one of these pathways promotes the uptake of glucose and 

synthesis of glycogen (42).  In type II diabetes, tissues are insensitive to this pathway so that glucose 

uptake and glycogen synthesis are inhibited.  It has been proposed that a drug mimicking PI(3,4,5)P3 

could promote these processes and therefore be a novel method of treating diabetes (42). Excess 

PI(3,4,5)P3 in cells has also been linked to mood disorders and epilepsy, since drugs which treat 

these disorders inhibit PI(3,4,5)P3 synthesis and downstream effectors are not recruited to the 

plasma membrane (43),(44).  These disorders have been noted in individuals with PTEN mutations 

(45).  An excess of cellular PI(3,4,5)P3 can cause cancer and a range of neurological disorders, 

however a lack of PI(3,4,5)P3 could have an effect similar to type II diabetes.  Controlling PI(3,4,5)P3 

and its activation of Akt is therefore vital for treatment of a large number of diseases (5),(36).  

The action of PLC removes the inositol headgroup from the associated lipid, generating inositol 

(1,4,5) triphosphate (IP3) and DAG (diacylglycerol).  IP3 releases stores of intracellular calcium by 

interacting with IP3 receptors (46) therefore activating calcium signalling pathways.  Aberrant IP3 

signalling has been linked to diseases including bipolar disorder and epilepsy.  Studies of the 

mechanism of action of three drugs commonly used in the treatment of both bipolar disorder and 

epilepsy indicate these diseases may be caused by abnormally high levels of IP3 signalling (47).  

Although all three of the drugs tested have different uses and side effects, they all reduce levels of 

inositol and subsequently IP3 in cells.  One of these drugs (valproic acid) is also known to decrease 

cellular PI(3,4,5)P3 levels and is being tested for treatment of colon and breast cancer (43). 

The phosphatase OCRL1 removes the 5-phosphate from PI(4,5)P2, generating PI(4)P.  The gene for 

this enzyme is deleted in individuals with Lowe Syndrome, causing loss of function of the enzyme 

and elevated PI(4,5)P2(36).  Patients with this genetic disorder experience abnormalities in the eyes, 

brain and kidneys with symptoms including renal failure, mental retardation, cataracts, and 

behavioural problems; life span is shortened to less than 40 years (48).  Deregulation of PI(4,5)P2 

affects endocytosis, the polymerisation of actin cytoskeleton  and protein trafficking pathways; all of 

which are detected in Lowe syndrome sufferers. 

Until recently, attention has mainly been focused on manipulation of PIP levels by attempting to 

selectively activate or inhibit the interacting proteins and enzymes (39),(49),(50),(51). However the 

significance of PIPs themselves has led to these signalling molecules being identified as potential 
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druggable targets towards potential treatment of the wide range of diseases mentioned in Table 1.2 

(52),(36). 

1.2 Control of PIP-protein interactions 

PI(4,5)P2 and PI(3,4,5)P3 lie upstream of key signalling pathways.  They activate these pathways by 

recruiting effectors to the membrane, which then interact with kinases and other proteins which 

propagate signals to other parts of the cell (53).  Control of activation of these pathways is often 

achieved by inhibition of the downstream effectors, many of which are kinases.  However the Akt 

pathway activates a diverse set of signalling cascades, and development of inhibitors for every 

effector is time-consuming.  In addition, the signalling cascades are complex with activation 

occurring via several routes (54).  

The ability to regulate PIP-controlled signalling by inhibition of protein-lipid interactions would be 

extremely beneficial in the examination of the mechanisms of many diseases, and PI(4,5)P2 and 

PI(3,4,5)P3 themselves have been identified as potential targets for therapeutic intervention 

(36),(5),(55),(56).  In order to reduce the activation of downstream pathways, binding of effector 

proteins to PIPs must be prevented or reduced.  This can be achieved by using small molecules to 

compete for binding to either the protein or the lipid. 

Prevention of protein-PIP interactions has been shown to decrease the phosphorylation of Akt 

(which is often used as a measure of activation of this pathway).  Inositol (1,3,4,5,6) 

pentakisphosphate (IP5) was used to bind to the PH domain of Akt and thus stopped the recruitment 

of Akt to the plasma membrane- preventing its activation, which occurs only at the membrane (55).  

An inhibitor based on the structure of IP5 also effectively competed with PH domains and in addition 

directly inhibited PDK1 (57).  Recently it has been demonstrated that a small molecule inhibitor can 

be used to inhibit the interaction between PI(3,4,5)P3 and PI(3,4,5)P3-binding PH domains (56).  This 

family of inhibitors prevented the recruitment of Akt to the plasma membrane and induced 

apoptosis in cancer cells. 

Work carried out in our group has demonstrated that targeting the lipid PI(4,5)P2 instead of its 

interaction proteins is another successful method of blocking protein-lipid interactions.  By using a 

small molecule receptor with high affinity and selectivity for PI(4,5)P2, protein-lipid interactions were 

inhibited and Akt was not recruited to the plasma membrane.  A number of PI(4,5)P2-dependent 

processes were also inhibited, including transferrin endocytosis and formation of actin stress fibres 

(58). 
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1.3 Artificial and Biological receptors 

Small molecule artificial ‘receptors’ are often used to bind to biological species.  Although many 

means already exist for molecular recognition of biological molecules (for example, an antibody 

which recognises a specific protein; a protein which recognises a specific phosphoinositide), the use 

of synthetic receptors has many advantages.  They can be much more resistant to changes in 

temperature and pH than proteins, with a longer shelf life and higher stability.  Their structure is 

often more easily modified than that of proteins so that reporter groups such as fluorophores can be 

readily incorporated.  Many other properties can be tuned including lipophilicity which often 

enhances cell uptake.  Once inside the cell, artificial receptors can act on its native state without the 

need to overexpress any proteins. 

Synthetic receptors can use any of a large number of functional groups to bind their target.  By 

arranging several binding motifs around a molecular scaffold, these receptors can be designed and 

synthesised to achieve even stronger binding than protein domains, and selectivity can often be 

tuned to the target molecule.  Artificial receptors can be used to mimic their biological counterparts 

for the purpose of detection of their target molecule, as well as inhibiting protein-substrate 

interactions. 

Table 1.7 summarises a number of current artificial receptors for biological molecules.  Their 

applications vary from enzyme inhibition, to inhibition of protein-lipid interactions, to recognition of 

biomarkers of disease. 
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Table 1.7: Substrates and their biological and chemical receptors 

Substrate Biological receptor Chemical receptor 

Phosphorylated tyrosine 
residue of peptides. R1 
and R2= polypeptides. 
 

 
 

Src Homology 2 
(SH2) domains 

SH2 Domain Mimetic (59) 

 
 

Saccharides including TF 
antigen disaccharide (60). 
R = protein anchor. 
 

 
 

Lectins: 
carbohydrate-
binding proteins 

Boronolectins: Small peptides with boroxole side 
chains. R= any amino acid. (60) 

 
 

Insulin (61) 

 
 

Transmembrane 
insulin receptor 

Cucurbit[7]uril (62) 

 
 

ATP (as part of tRNA 
complex) (63) (64) 
 

 

tRNA synthetases AN2690 (63) (64) 
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1.4 Phosphate and polyhydroxy recognition by artificial receptors 

The recognition of anions such as phosphate in aqueous media is a challenging area (65).  It is 

extremely relevant to biological systems since over 70% of vital substrates and cofactors in vivo are 

negatively charged and many are phosphorylated (66).  Hence artificial receptors that interact with 

anionic species are potentially useful as tools to probe chemical species in the cell.   

There are several reasons why the recognition of anions in aqueous conditions remains a challenge.  

Firstly, in aqueous solution ions are surrounded by an organised layer of water molecules, arranged 

to minimise the effective charge.  In order to bind to anions, these solvation layers need to be 

disrupted.  Any receptor binding to an anion in water will therefore increase the overall entropy of 

the system as the ordered solvation layer is decreased.  Secondly, anions are generally larger than 

their isoelectronic cations.  The charge is diffused over a greater area; hence the charge density is 

lower, so electrostatic interactions are generally weaker.  While inorganic cations are generally small 

and spherical in shape, anions possess several different geometries.  It is therefore necessary to 

design different receptors based on the shape of the target anion, which can be beneficial for 

creating a receptor with selectivity for one anion over another.  Thirdly, many oxyanions are 

protonated at low pH.  This affects both the net charge and the hydrogen-bonding properties of the 

anion, so the pKa of the anion and the pH of the surrounding environment must be taken into 

account when anion receptors are designed. 

Receptors for anions can be separated into three broad classes: neutral, which depend mostly on 

hydrogen-bonding, dipole and - interactions; charged, which bind via electrostatic interactions; 

and metal-based, which make use of metal-anion coordination.  In other receptors, metal ions are 

coordinated but have roles other than binding, including structural or reporter functions.  Boronic 

acids are also increasingly being used as anion-binding motifs, since they are Lewis acids and can 

therefore accept pairs of electrons from Lewis bases. 

1.4.1 Neutral anion receptors 
Most neutral anion receptors use multiple hydrogen bonds and other weak interactions to bind to 

their targets.  Functional groups such as amides (67), thioureas (68) and ureas (69) are often 

employed as hydrogen bond donors and acceptors, and can be arranged around a scaffold to 

complement the structure of the target anion. 
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Figure 1.8: Selected examples of neutral receptors for anions  (70), (71), (72) . 

Figure 1.8 shows three examples of anion-binding receptors which interact with anion targets 

including phosphate via hydrogen bonding.  Hydrogen bond donor groups include thiourea and urea 

(Receptors 17 and 18) and amidourea (Receptor 18).  These receptors were shown to interact 

strongly with oxyanions including acetate and phosphate, however the binding studies in each case 

were not carried out in an aqueous environment.  Dimethylsulfoxide (DMSO) was used as solvent 

which is aprotic and therefore possesses no hydrogen bonding groups which would compete with 

the anions.  When carried out in protic or aqueous environments, receptors which make use of 

hydrogen bonding to interact with their target often have very low binding affinities. 

1.4.2 Charged anion receptors 
Polyamine compounds are often used in anion receptors.  They can act as hydrogen bond donors 

and since they are often protonated at physiological pH, possess a positive charge which can attract 

anions.  Ammonium (73),(74) and guanidinium (75),(76) functional groups are often used in this way 

to successfully bind anions.  Electrostatic interactions are less affected by the presence of polar 

water molecules and therefore these receptor-anion interactions often have a higher binding affinity 

than neutral receptors.  While hydrogen bonding interactions are linear and directional, electrostatic 

interactions are not, hence those receptors utilising charges are often even more pre-organised than 

their hydrogen-bonding counterparts.  The use of protonated amines and guanidiniums is 

advantageous because of the presence of hydrogen bond donors and positive charge, both 

properties which attract anions. 
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Figure 1.9: Polyamine receptors 20a-c bind phosphate anions and can differentiate between ATP, 
ADP and AMP (74).  Tripodal receptors 21a and 21b also bind phosphate anions via guanidinium 
groups (21a) and ammonium groups (21b) (76). Neutral forms of amines shown. 

Receptors 20a - 20c (Figure 1.9) were designed by Bencini et. al. in order to probe the effect of cavity 

size (i.e. distance between binding units) on selectivity of the receptors for polyphosphorylated 

targets (74).  Receptors 20a, 20b and 20c formed 1:1 complexes with monophosphate, diphosphate 

and triphosphate respectively, in aqueous conditions.  Interestingly, 20c which possesses the largest 

spacer length showed no binding interaction with the smallest anion, monophosphate.  This 

indicates that the anions need interactions from both binding units are necessary to overcome 

interference from competing water molecules. 

Trends observed in this work show that receptors with more protonated amines (and therefore 

more positively charged) bind their targets more strongly.  In addition, protonation of the anion (less 

negatively charged) decreases the binding affinity.  These protonation states, and therefore the 

binding constants between receptor and anion, are pH-dependent. 

Receptors 21a and 21b (Figure 1.9) were designed by Anslyn et. al. to bind selectively the second 

messenger IP3 (76).  By creating a cavity which complements the size of IP3 and using two 

guanidinium (21a) or ammonium groups (21b) to bind each phosphate, these receptors can bind IP3 

with high affinity.  The shape of the receptor confers selectivity; each pair of guanidinium or 
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ammonium groups are preorganised for maximum interaction with their target.  Both receptors bind 

IP3 with a higher affinity than other polyphosphates including ATP. 

The binding constants of 21a and 21b for IP3 were similar: Ka = 4.7 x 105 M-1 and 5.0 x 105 M-1 

respectively.  However upon addition of sodium chloride to the aqueous receptor, the binding 

affinity of 21b for IP3 decreased almost 10-fold, whereas that of 21a remained unaffected.  This 

outcome suggests that polyammonium-based receptors experience stronger nonspecific interactions 

(which can be overcome by the addition of counterions).  The positive charge on guanidinium groups 

is more delocalised and the addition of counterions has little effect on the binding of IP3 by 21a. 

1.4.3 Metal-based anion receptors 
A third class of anion receptors are those that contain metal ions.  The metal ions in these receptors 

can have a number of different functions:  

 they may coordinate to the target anion (77);  

 act as electrochemical reporters (e.g. in the case of ferrocenyl-containing receptors), as 

emissive or fluorescence quenching metal ions(78);  

 and they may be used as structural scaffolds, arranging the accompanying ligand around the 

preferred geometry of the metal ion (79).   

Such versatility means metal ions are commonly used in the design of anion receptors. 

Polyamine motifs are often used as ligands to chelate metal ions such as copper (II), zinc (II), 

cadmium (II) or nickel (II) (77), among others.  These d-block metal (II) ions are Lewis bases and 

therefore can accept a lone pair of electrons and form a dative bond with a Lewis acid such as an 

anion.  This makes them very useful components of anion receptors.  Figure 1.10 shows two ligands 

which are commonly used to chelate metal ions as part of anion receptors.   

 

Figure 1.10: Ligands commonly used to chelate metal ions which are often incorporated into anion 
receptors. Left =1,4,7,10-tetraazacyclododecane (cyclen); right = 2,2’-dipicolylamine (DPA) 

Van Eldik et. al. used receptor 22 (Figure 1.11) to bind to carbonate anions (80).  The negatively 

charged oxygen in the anion bound to the Lewis acid zinc, forming a 5-coordinate metal species.  The 
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zinc complex was found to catalyse the equilibrium between CO2 and HCO3
-, acting as a mimic for the 

enzyme human carbonic anhydrase (HCA).  

 

Figure 1.11: Receptor 22, a zinc (II) complex of cyclen, binds to the HCO3
- anion, mimicking the active 

site of the HCA enzyme. 

One of the first receptors that made use of the M2+-DPA motif was designed by Hamachi et. al. to 

bind phosphate anions in aqueous conditions (Figure 1.12)(81).  By appending two Zn2+-DPA 

moieties to anthracene, fluorescent receptors 23a and 23b were formed.  Both experienced 

fluorescence enhancement in the presence of a phosphorylated peptide, while the presence of other 

anions (sulfate, nitrate, acetate, chloride, and carbonate) elicited little or no response indicating 

selectivity towards phosphorylated species. 

 

Figure 1.12: The first fluorescence turn-on receptors designed by Hamachi et. al. to bind to 
phosphorylated peptides. 

 

Receptors 23a and 23b were later applied to a biological assay (Figure 1.13).  Both receptors 

experienced fluorescence enhancement upon binding to a phosphorylated peptide which is a 

substrate for the Protein Tyrosine Phosphatase-1B (PTP1B) - but they do not bind to the 

dephosphorylated peptide, and the fluorescence intensity is low (see Figure 1.13).  By monitoring 

the decrease in fluorescence intensity as the enzyme acts on the peptide, the enzyme activity can be 

monitored.  In this case the metal ion is part of the anion-binding motifs and the fluorescent 

reporter group is the linker between these. 
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Figure 1.13: Receptor 23 binds to a phosphorylated peptide with high fluorescence intensity.  Upon 
dephosphorylation the receptor no longer binds and fluorescence intensity is low.  This effect has 
been used by Hamachi et. al. to monitor the activity of this enzyme (82). 

The ability of these receptors to bind to phosphorylated peptides in water was an important step 

which allowed the receptors to be applied in a biological context.  It is important to note that 

although 23a and 23b are water-soluble, the receptors were not present in the reaction solution.  At 

each time-point, an aliquot of the reaction solution was taken and added to the receptor, and the 

fluorescence intensity was measured.  Further work was carried out with these dizinc-DPA 

complexes including sensing of polyphosphorylated compounds (pyrophosphate, ATP and ADP) and 

disruption of protein-protein interactions (83). 

In another application of zinc-DPA complexes, Hamachi et. al. appended four zinc-DPA groups to a 

pyrene-labelled dipeptide, with the aim of forming a cell-permeable complex with phosphorylated 

substrates. They found that the resulting zinc-DPA-phosphopeptide complexes showed enhanced 

uptake into HeLa cells relative to the uptake of the phosphopeptides alone (84).  The uptake was 

inhibited in the presence of pyrophosphate (H2P2O7
2-) which bound with high affinity to the zinc-DPA 

motifs, preventing formation of the zinc-DPA-phosphopeptide complex. 

More recently the zinc-DPA motif has been used by Gunning et. al. to develop a series of synthetic 

receptors that mimic the Src Homology 2 (SH2) protein domain (59).  SH2 domains are present in 

many kinases and signal transduction proteins, and bind specifically to phosphorylated tyrosine (pY).   

A library of small molecules was created with the aim of binding to the pY-containing peptide target, 

and thus inhibiting the protein-peptide interaction (the general structure of the library of 

compounds is shown in Figure 1.14).   Each of the receptors possessed two zinc-DPA motifs which 

bind strongly to phosphate esters, as well as a second binding motif which was varied.  The structure 

of the second binding site was based on amino acids which were capable of forming complementary 

hydrogen bonds and electrostatic interactions with the target peptide.  Firstly the receptors were 
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shown to bind to fluorescently labelled peptides containing pY residues, and high affinity 

interactions were demonstrated.  Six peptide SH2 domain targets were tested, and some receptors 

in the library (those which formed stronger electrostatic interactions with their targets) showed 

specificity for one peptide over the others.  Cytotoxicity testing showed the library of receptors to 

have a range of toxicities against various cancer cell lines, and the authors attribute this to activity of 

the receptors in the cells: the receptors bind to their peptide targets and inhibit pY peptide-SH2 

domain interactions. 

 

Figure 1.14:  General structure of the receptors generated in the library by Gunning et. al..  Zinc 
dipicolylamine (zinc-DPA) motifs target the phosphate of phosphotyrosine.  The R- group was 
optimised by the library with groups interacting with amino acids via electrostatic and hydrogen 
bonding interactions. 

 

Metal complexes of DPA continue to be popular for anion binding, and phosphate binding in 

particular. They have been used as chemosensors (81),(85), as protein domain mimetics (59), for 

disruption of protein-protein interactions (86), and as fluorescent sensors to monitor the progress of 

a biological reaction (87); and their use in these and other applications has been thoroughly 

reviewed (85),(87),(88).  
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1.4.4 Boronic acid-based artificial receptors 
Increasingly, boronic acids are also being used as anion recognition motifs.  As Lewis acids they can 

accept lone pairs of electrons from anions such as fluoride, forming a tetrahedral boronate (Figure 

1.15). 

 

Figure 1.15: Anions donate pairs of electrons to Lewis acid boron.  The neutral trigonal boronic acid 
becomes a tetrahedral boronate anion. 

 

This interaction has formed the basis of several anion sensors (two of which are shown in Figure 

1.16). 

 

Figure 1.16: Left, Receptor 24 recognises cyanide anions in aqueous solution (89); Right, receptor 25 
has been used as a fluoride detection sensor (90). 

 

Receptor 24 was used in a sensing ensemble for the detection of cyanide anions.  When 24 binds to 

the anionic fluorescent indicator 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) the 

receptor quenches the fluorescence of the indicator.  When cyanide anions (CN¯) are added they 

coordinate to the boronic acid of 24, creating a negative charge.  The indicator HPTS is released and 

the fluorescence is recovered.  This sensing ensemble is selective for cyanide over other anions 

tested (Cl¯, Br¯, F¯, NO2¯, CH3COO¯, NO3¯, I¯), none of which induced fluorescence recovery (89).   

Receptor 25 underwent fluorescence enhancement in the presence of fluoride anions.  When 

fluoride (F¯) was added, B-F-B bridges were formed which brought together two receptor molecules- 

enhancing - stacking and increasing the fluorescence.  In this way the authors were able to reliably 

detect F- concentrations as low as 0.1 ppm (90). 
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The most common use of boronic acids as recognition motifs is in the recognition of 1,2- and 1,3-

diols.  Carbohydrates are ubiquitous in biological systems and typically contain at least one diol 

motif; therefore artificial receptors for carbohydrates are of great interest.  Boronic acids are 

extremely useful in this aspect as they form stable cyclic esters with diols in a reaction that is highly 

specific. 

 

Figure 1.17: Reaction of phenylboronic acid 26 with ethylene glycol forms trigonal cyclic ester 28.  
The reaction of boronate 27 with ethylene glycol forms boronate ester 29.  The latter reaction is 
favoured at physiological pH. 

When boronic acids interact with 1,2-diols (aliphatic, aromatic or catechols) a 5-membered cyclic 

ester is formed (compounds 28 and 29 in Figure 1.17).  This strong, reversible interaction is favoured 

when the pH is above the pKa of the boronic acid.  The pKa of compound 26 is 8.8, while that of 27 is 

6.8.  Therefore at physiological pH compound 27 will undergo cyclisation in the presence of a diol, 

while compound 26 is less likely to do so. 

A common method of forming tetrahedral boron compounds similar to 27 is to incorporate an amine 

group adjacent to the boronic acid as shown in Figure 1.18.  The nitrogen can donate a lone pair of 

electrons to the boron, causing it to become tetrahedral sp3 hybridised.  These intramolecular dative 

bonds are a popular method of maintaining the tetrahedral boron to ensure the boronic acid is 

reactive at physiological pH (91). 
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Figure 1.18: “Wulff-type” boronic acids incorporate a methylamino group adjacent to the boronic 
acid.  By forming a dative bond from the nitrogen to the boron, the pKa of the boronic acid is lower 
and therefore interactions with diols are favoured at physiological pH. 

Anslyn et. al. have reported a number of boronic acid-based receptors for carbohydrates and 

oligosaccharides such as heparin.  Two of these are shown in Figure 1.19. 

 

 

Figure 1.19: Receptors 30 and 31 designed by Anslyn et. al. to bind carbohydrates(92),(93). 

 

Receptor 30 was used to bind various carbohydrates (92).  The boronic acid groups interacted with 

the diols present on many carbohydrates, forming cyclic esters.  The cadmium centre was present in 

order to coordinate to the nitrogen of the pyridine, which pulled the binding arms of the molecule 

together, creating a cavity that would fit the target molecules.  The receptor was shown to bind with 

good affinity to several carbohydrate substrates. 

Receptor 31 was designed to bind to heparin (93).  This target oligosaccharide is comprised of 

repeating units of sulfated monosaccharides (iduronic acid and glucosamine).  Receptor 31 

possesses positively charged ammonium groups which interact with sulfate, and boronic acids which 

form cyclic esters with diols commonly present in carbohydrates.  Using these two methods of 

interaction the receptor was shown to bind to heparin with good affinity.  More importantly 
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receptor 31 displayed good selectivity for heparin over other oligosaccharides which lacked the 

negative charge of heparin.  Using two modes of interaction enabled the authors to create a 

receptor with good affinity and selectivity, generating a chemical receptor that has potentially useful 

applications in molecular recognition of biomolecules (93).  

Due to their Lewis acid nature boronic acids and their cyclic counterparts- boroxoles- have also been 

shown to interact with the nucleophilic side chains of amino acids, including lysine, serine and 

histidine (94),(95),(96).  These side chains donate electrons to the boron and a dative bond is 

formed.  This binding property has been used in the synthesis of enzyme inhibitors.  Artificial enzyme 

substrates have been formed by incorporating boronic acid or boroxole moieties onto the natural 

substrate molecule.  When the substrate entered the enzyme active site, the boronic acid formed a 

strong bond to the amino acid residues (see Figure 1.20) (97).  This prevented the inhibitor from 

leaving the active site and in some cases disrupted the catalytic triad; the enzymes could no longer 

function (96). 

 

Figure 1.20:  Boronic acids can inhibit enzymes which rely on a serine residue in the active site.  Top: 
the first step in the mechanism of action of serine proteases.  Bottom: a boronic acid is appended to 
the peptide substrate and on entering the enzyme active site, the boronic acid forms a dative bond 
with the OH of the catalytic serine residue, inhibiting the enzyme (98). 

The most successful example of a boronic acid-based enzyme inhibitor is the proteasome inhibitor 

PS-341, now approved by the FDA and marketed as the anti-tumour drug Velcade (structure shown 

in Figure 1.21) (99).  This small molecule is based on a dipeptide motif and specifically inhibits the 

ubiquitin-proteasome pathway, leading to a buildup of intracellular proteins which promote cell 

death (100). 
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Figure 1.21: The proteasome inhibitor Velcade. 

Velcade functions by binding to a threonine residue in the active site of the 26S proteasome, 

forming a tetrahedral adduct with the side chain hydroxyl group (101).  Based on a dipeptide 

scaffold, it is selective for the 26S proteasome over serine proteases which favour tripeptide 

substrates.  
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1.5 Binding to Phosphoinositides and Inositol Phosphates using artificial 

receptors 

1.5.1 Binding to IP3 
There are very few examples of synthetic receptors for IP3, the headgroup of PI(4,5)P2.  Most of 

these use a tripodal 1,3,5-substituted phenyl scaffold (see Figure 1.22), creating a binding cavity 

which complements the size and shape of the inositol phosphate target.  These receptors are usually 

selective for inositol phosphates over other biological phosphates; however in many cases the 

selectivity between various inositol phosphates has not been examined.  Changing the binding motif 

can have large effects on the affinity of the receptors for IP3, while changing the scaffold can alter 

the selectivity. 

 

Figure 1.22: Four tripodal receptors for IP3 using various binding motifs.  Guanidinium and 
ammonium receptors 32 and 33 synthesised by Anslyn et. al. (76); zinc-DPA receptor 34 by Anh et. al. 
(102), (103), and imidazolium receptor 35 by Yoon et. al. (104).  

The receptors designed by Anslyn et. al. used the same type of interactions as the PLC1-PH domain 

to interact with IP3, namely charged primary amines similar to the protein’s lysine side chains, and 

guanidinium groups to mimic the arginine side chains (76).  Arranging these around a central 

benzene unit creates a cavity which complements the size of IP3, and the cationic binding motifs are 

placed such that they interact strongly with the anionic phosphate groups of IP3. 

By using indicator displacement assays (IDAs) to assess binding affinity these receptors were shown 

to bind strongly to IP3 (Ka = 4.7 x 105 M-1 for 32; Ka = 5.0 x 105 M-1 for 33) and the 
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hexaphosphorylated IP6.  Although other inositol phosphates were not tested, the receptors showed 

good selectivity for IP3 (32 and 33) and IP6 (32 only) over other anionic biological analytes including 

ATP and fructose diphosphate. 

 Ahn et. al. developed a receptor for IP3 and IP6 which comprised three metal-chelating 

dipicolylamine motifs (102), (103).  Using this metal-based phosphate binding motif produced 

receptors with a much higher affinity for inositol phosphates in aqueous solutions (Ka (IP3) = 4.6 x 108 

M-1 for 34). 

More recently Yoon et. al. designed two fluorescent IP3 receptors using imidazolium groups as the 

recognition motif (35 and 36); these receptors were thoroughly examined for selectivity between 

inositol phosphates.  The tripodal receptor 35 was shown to bind weakly to various inositol 

phosphates (IP4, IP5 > IP3, scyllo-IP3, IP6 > IP2, IP) with little selectivity observed.  However by 

changing the scaffold, receptor 36 (Figure 1.23) showed much stronger binding to IP3 than to any of 

the other inositol phosphates (104). 

 

Figure 1.23: Yoon et. al.’s fluorescent IP3-selective receptor (104). Ka (IP3) 35= not reported; Ka (IP3) 
36= 1.6 x 105 M-1. 

The careful arrangement of binding motifs around the central phenyl led to the development of a 

receptor with remarkable selectivity for IP3 over other inositol phosphates, which its tripodal 

counterpart lacks.   

Another early receptor that was designed to bind IP3 made use of a central ruthenium, around which 

cylen-appended N,N’-bipyridyl (bipy) ligands were assembled (105).  When zinc(II) was coordinated 

to the cyclen motifs, a receptor with six phosphate-binding motifs was generated.  By examination of 

the crystal structure of receptor 37 (see Figure 1.24) with the IP3 analogue cis,cis-1,3,5-
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cyclohexanetriphosphate (CTP3) the authors showed that the receptor was capable of binding to two 

CTP3 molecules simultaneously via the three phosphate groups. 

 

Figure 1.24: Receptor 37 designed by Kimura et. al. to bind IP3 (105). 

Due to the central ruthenium(bipy)3, this receptor showed emissive properties which were enhanced 

upon binding to CTP3 and IP3.  This enhancement was not observed on addition of mono- and di-

phosphates, showing that 37 is selective for triphosphorylated species. Interestingly, chiral guest 

molecule IP3 was shown to bind less strongly than achiral guest CTP3 due to the supramolecular 

orientation of the binding arms. 

Although few synthetic receptors for IP3 have been developed, many exist for carbohydrates such as 

glucose which are structurally similar to inositol (93),(92),(106).  It is well established that boronic 

acids are useful motifs for binding carbohydrates, since boronic acids form cyclic esters with 1,2-

diols.  It is therefore surprising that none of the synthetic IP3 receptors designed thus far make use of 

this interaction since IP3 possesses two adjacent hydroxy groups at the 2- and 3-positions. 
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1.5.2 Previous work towards IP3 receptors from our group  

 

Previously in our group work was carried out towards the design of a small artificial receptor which 

would bind to IP3 (107).  A series of molecules were designed which incorporated functional groups 

which would interact with the groups present on IP3 (Figure 1.25).  Neutral urea groups were chosen 

to interact with phosphate via hydrogen bonding.  Although neutral receptors which interact via 

hydrogen bonds often have poor affinity for anions in an aqueous environment, the binding affinity 

is often improved with the use of multiple urea motifs, especially when combined with other 

functional groups (69), (108).  A boronic acid motif was chosen to recognise the vicinal alcohol 

groups, due to the strong and specific nature of the boronic acid-diol interaction.  In addition, 

boronic acids are not naturally occurring functional groups and therefore have no competing 

counterpart in cells. 

These functional groups were connected via a range of spacers with varied length and flexibility, 

with some aromatic and some aliphatic. 

 

 

Figure 1.25: The structure of IP3.  Phosphate groups are present on the 1, 4 and 5 positions of the 
ring, with a hydroxy group on the other positions.  The phosphates of 4 and 5 (highlighted in green) 
were targeted using urea groups and the diol present on the 2,3 positions was targeted by boronic 
acid motifs. 

 

By synthesising the central bisurea compounds without the boronic acid groups present, the ability 

of the urea groups to bind vicinal phosphates (using the target molecule cyclohexane 1,2-

bisphosphate, CBP, as a model for IP3) was measured.  This was achieved using 1H NMR titrations in 

2:3 D2O,DMSO, following the changing chemical shift of the urea protons as the concentration of 

target molecule CBP was increased.  Bisurea compounds with aromatic groups directly adjacent to 
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the urea showed higher binding affinities than those directly attached to aliphatic linkers, with the 

4,4’-methylene biphenyl bisurea compound 47 (highlighted in red, Figure 1.26) possessing the 

highest binding affinity towards CBP (Ka around 10-fold higher than the compound with the second-

strongest binding affinity). 

 

Figure 1.26: The structures of the bisurea modules synthesised previously in our group.  The binding 
affinities of these compounds towards cyclohexane 1,2-bisphosphate were determined by 1H NMR 
titrations in 2:3 D2O, DMSO. 

 

The receptors were then synthesised with added diboronic acid components, to bind to the diol of 

IP3 (Figure 1.27).  Their ability to bind IP3 was indirectly analysed by means of a phosphatase assay.  

The 5-phosphatase OCRL dephosphorylates IP3, and the release of phosphate can be measured.  By 

binding to IP3 and sequestering it, the receptors reduce the enzyme turnover and the amount of 

phosphate release is reduced.  Receptor 54 possessed the lowest EC50, which suggests that it has the 

highest affinity towards IP3 (i.e. it requires less of receptor 54 to induce 50 % inhibition, than the 

other receptors). 
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Figure 1.27: Diboronic acid compounds 50-54 synthesised in our group as IP3 receptors.  Receptors 
were tested for ability to bind IP3 using a phosphatase assay; EC50 values indicated that compound 54 
had the highest binding affinity towards IP3, the substrate of 5-phosphatase OCRL. 

 

Receptors 50 – 53 were not further tested for ability to bind PI(4,5)P2.  Receptor 54 (later dubbed 

Pleckstrin Homology Domain Mimetic, PHDM, Figure 1.28) was demonstrated to bind most strongly 

to IP3 and was therefore chosen to be resynthesized and tested further with a series of in vitro 

assays and cellular studies (58).   
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Figure 1.28: PHDM and PI(4,5)P2, showing the proximity of the boronic acid to the vicinal alcohols, 
and of the urea to the phosphate groups. R1 = octadecanoyl. R2= 5Z, 8Z, 11Z, 14Z-eicosatetraenoyl. 

 

PHDM was identified as having high affinity for the lipid PI(4,5)P2 (Kd = 17.6 ± 10.1 µM) as well as the 

corresponding IP3 headgroup.  In addition it was shown to bind much more strongly to PI(4,5)P2 than 

to the other phosphoinositides, demonstrating considerable selectivity similar to that of the PLC1-

PH domain.  When considering that the PIPs are structurally very similar, this was a significant 

finding. 

 

The biological activity of PHDM was then studied in NIH3T3 cells.  After determining that the 

compound was not cytotoxic (up to 50 µM after 16 hours), cells which overexpressed GFP-tagged 

PLC1-PH domain were used to show that PHDM could compete effectively with this protein domain 

in the cell.  The GFP-PLC1-PH domain binds to PI(4,5)P2 and can be observed localised at the plasma 

membrane.  When the cells are treated with PHDM, the fluorescence is displaced to the cytosol in a 

dose- and time-dependent manner as PHDM binds to PI(4,5)P2 in place of the fluorescent protein 

domain.  Other PI(4,5)P2 dependent cellular processes including transferrin uptake and formation of 

actin stress fibres were disrupted by the presence of PHDM.  Taken together, these findings indicate 

that PHDM is capable of entering the cell, binding to PI(4,5)P2, and inhibiting protein-lipid 

interactions.  It is therefore a powerful tool for the study of PI(4,5)P2-dependent systems in the cell, 

and the many associated diseases. 

  



54 
 

1.5.3 Binding to PI(3,4,5)P3 

To date, no synthetic receptors have been developed specifically for either IP4 or PI(3,4,5)P3.  The 

receptors (32-34) previously mentioned which were designed to bind IP3 may also bind IP4 (and 

other inositol phosphates) however only receptors 35 and 36 were examined for inositol phosphate 

selectivity.  The zinc-DPA receptor 34 designed by Anslyn et. al. showed the highest binding affinity 

towards IP3, likely due to the strong interaction between the zinc (II) and the anionic phosphate 

groups. 

 

1.5.4 Previous methods used to design PI(3,4,5)P3 receptors 
 

One of the previous aims of this project included the use of a dynamic combinatorial library to 

generate a small library of receptors with the ability to bind PI(3,4,5)P3.  To this end, a small dynamic 

library of PI(3,4,5)P3 receptors was formed. Dynamic combinatorial chemistry is a high-throughput 

means of identifying strong host-guest interactions, and has been employed as a tool in drug 

discovery, successfully identifying inhibitors for a number of enzymes and lectins 

(109),(110),(111),(112). 

Dynamic combinatorial chemistry uses reversible interactions between monomers or ‘building 

blocks’ to generate a mixture of oligomers (113),(114) (Figure 1.29).  The reversible nature of the 

interaction means that the formation of the most thermodynamically stable oligomers will be 

favoured.  The library will reach an equilibrium state where the most stable oligomers will be 

present in higher amounts than those which are thermodynamically unstable.  Addition of a guest 

molecule that binds to the oligomers (in this case, PI(3,4,5)P3) will perturb the equilibrium, and the 

oligomer which binds most strongly to the templating molecule (generating the most 

thermodynamically stable host-guest complex) will be amplified at the expense of the other 

oligomers.  Therefore there will be a greater amount of the amplified receptor in the mixture, and 

less of the other oligomers. 
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Figure 1.29: Principles of a dynamic combinatorial library.  Monomers which reversibly react with 
each other form a mixture of oligomers.  This mixture will reach an equilibrium distribution under a 
specific set of conditions.  Upon addition of a templating molecule (which has the ability to bind to or 
interact with the oligomers), the equilibrium is perturbed, and the mixture will re-equilibrate.  The 
oligomer which binds most strongly to the templating molecule will form the most 
thermodynamically stable complex, and therefore this oligomer will form at the expense of the 
others. Area in blue represents a free energy profile.  Figure reproduced from reference (115). 

 

The use of a dynamic library to screen for strong host-guest interactions must be carried out 

following a specific set of guidelines (116),(117).  Briefly: 

1. Building blocks reversibly interact with each other.  Reversible covalent reactions (such as 

the formation of imines from aldehydes and amines) or specific noncovalent interactions 

(such as disulfide exchange or coordination chemistry) have been used in the past 

(112),(118),(119),(120). 

2. The library of monomers must be free to reversibly interact with each other under the 

conditions of the library.  For example, the use of imines is incompatible with aqueous 

conditions, since the presence of water will hydrolyse the oligomers and only a mixture of 

monomers will exist (118). 

3. The library then needs to be ‘frozen’ in order to analyse the components.  By quenching the 

reversible reaction (for example, irreversibly reducing imines to amines) the oligomers are 

then prevented from re-equilibrating so that their relative amounts may be quantified. 

4. Analysis of the library must provide information on the quantity of each oligomer present.  

High performance liquid chromatography (HPLC) is often used for this purpose, since the 

area under the peaks for each compound is proportional to its amount. A disadvantage of 

the use of HPLC is that libraries with more components are more difficult to separate 
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effectively, and therefore it becomes more difficult to accurately quantify peak size.  In 

addition, changes in peak size upon templating become more difficult to recognise (121). 

In order to generate receptors for PI(3,4,5)P3, a library was designed in which two phosphate-binding 

motifs would be joined by a spacer. Initial studies were carried out using a small library which would 

generate only four receptors, with the aim of expanding the library once proof of concept was 

established.  Zinc-DPA was chosen as the phosphate-binding motif since dizinc-DPA receptors were 

previously shown to bind strongly to polyphosphorylated molecules.  Four spacers with varied range 

and flexibility were chosen.  Reversible imine formation was chosen as the reaction which would 

form the library.  Imines form readily in anhydrous methanol, which PI(3,4,5)P3 is also soluble in.  

The reversible reaction is rapidly quenched by the addition of sodium borohydride, allowing the 

resulting secondary amines to be quantified. 

By allowing the primary amine to interact with the dialdehydes, an equilibrium mixture of imines 

was firstly established.  After quenching the library was analysed by HPLC and the distribution of 

products was shown to be reproducible. The zinc-DPA was then mixed with individual aldehydes 

under the same conditions in order to identify the peaks in the library mixture. 
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Figure 1.30: Left, four dialdehyde spacers and a primary amine attached to zinc-DPA, the phosphate 
recognition group.  Right, the resulting mixture of imine products.  Imines and diimines were 
observed in the equilibrium mixture (analysis by HPLC). 

 

In the next stage, model polyphosphate compounds were applied to the library to perturb the 

equilibrium and in theory create a templating effect.  Inositol hexakisphosphate (IP6) was 

investigated, however it was insoluble in the methanolic mixture.  Therefore after much 

optimisation the library was attempted in methanol with the template added under aqueous 

buffered conditions (final concentration of water present was 1 % v/v).  Although the presence of 

water disfavours imine formation, it was shown that addition of IP6 amplified the formation of one 

of the imine receptors.  The library was then repeated using pyrophosphate as a smaller templating 

agent, and amplification of a different peak was then observed. 
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Figure 1.31: Top, imine amplified by addition of IP6 to a dynamic library.  Bottom, imine amplified by 
the addition of pyrophosphate to the same library. 

 

The spacer of the receptor which was amplified by IP6 was strikingly similar to that of PHDM which 

was demonstrated to bind strongly to PI(3,4,5)P3.  Using this information and the structure of PHDM, 

it was decided that the design of the PI(3,4,5)P3 receptor would be based partly on the central 

spacer of PHDM, and include the zinc-DPA motifs incorporated into the dynamic library.  

In order to assess whether the amplified receptors were indeed the ones which bound most strongly 

to IP6 and pyrophosphate respectively, the individual receptors were synthesised.  To be tested in 

aqueous conditions the imines were reduced to secondary amines, in order to prevent imine 

hydrolysis.  Unfortunately the yields obtained of these products were extremely low, and scaled up 

reactions failed.  Although imine formation was demonstrated by 1H NMR spectroscopy, reduction 

by sodium borohydride was inefficient and isolation of the pure products was not possible.  The 

receptors which were amplified by IP6 and pyrophosphate were analysed using indicator 

displacement assays and both demonstrated strong binding affinities for their target molecules; 

however the receptor samples used were not of high purity.  The design of PI(3,4,5)P3 receptors was 

then continued using the information obtained from the libraries and receptors were synthesised 

using conventional methods.   
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1.6 Aims and objectives 
The overall aim of this project was to design and synthesise novel small molecule receptors for 

PI(4,5)P2 and PI(3,4,5)P3.  The receptors would be used to probe the signalling pathways dependent 

on these phospholipids by inhibiting protein-lipid interaction.  Therefore, the receptors would be 

tested for binding to their target PIP in a range of biochemical assays. 

This study built upon previous work by the Vilar and Woscholski groups, in which the compound 

known as ‘PHDM’ was found to bind to PI(4,5)P2 with good affinity and selectivity.  PHDM used a 

combination of boronic acid-diol and urea-phosphate interactions to bind its target and these 

functional groups were carried forward in the design of new PI(4,5)P2 receptors.  Two fluorescent 

receptors were designed with the aim of directly probing PI(4,5)P2, both in biochemical assays and in 

cells. 

Although no PI(3,4,5)P3 receptors have been reported to date, the features of PHDM and other 

receptors known to bind inositol phosphates were combined to develop new receptors with the 

correct features to bind this PIP.  These receptors possessed zinc(II)-dipicolylamine groups which are 

known to bind strongly to phosphates and, as discussed in the introduction, have been studied in the 

past in biological contexts.    

Therefore the objectives of this project were to be: 

1. Design and synthesis of novel PI(4,5)P2-binding receptors based on the structure of PHDM, 

including two fluorescent receptors. 

2. Design and synthesis of novel PI(3,4,5)P3-binding receptors using the phosphate-binding 

zinc(II)-dipicolylamine group. 

3. Evaluation of the binding affinity and specificity of each receptor for its target compared to 

other phosphoinositides, using indicator displacement assays. 

4. Assessment of the capacity of the receptors to compete with protein domains for binding to 

PI(4,5)P2 and PI(3,4,5)P3, using competitive enzyme-linked immunosorbent assays and 

phosphatase assays. 

5. Determination of ability to bind PI(4,5)P2 and PI(3,4,5)P3 in cells, by monitoring the 

phosphorylation of downstream effector Akt. 

6. Application of fluorescent receptors to directly detect PI(4,5)P2 in a series of biochemical 

assays, as well as in cells. 
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Chapter 2: Receptor design and Synthesis 

 

A series of receptors were designed to target phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) and 

phosphatidylinositol (3,4,5) trisphosphate (PI(3,4,5)P3).  Although very few synthetic PI(4,5)P2 and 

PI(3,4,5)P3-binding receptors have been previously reported (105),(104),(102),(76), binding to 

targets that contain diols (122),(123)and phosphates (124),(73) has been extensively studied.  By 

building on this knowledge, new synthetic receptors were developed for both PI(4,5)P2 and 

PI(3,4,5)P3. 

2.1 Designing new synthetic PI(4,5)P2 receptors   

Although PHDM shows many of the favourable characteristics required for a synthetic PI(4,5)P2 

receptor, it also has some drawbacks, the main one being poor solubility.  We aimed to improve the 

binding properties and physical characteristics of PHDM by small modifications to the original 

compound.  The receptors shown in Figure 2.1 were designed based on the recognition groups that 

proved successful for PHDM, namely methylamino boronic acid and urea groups (highlighted in red, 

see Figure 2.1).  By synthesising two types of receptor with one and two arms respectively we 

intended to explore the possible cooperative binding of the recognition groups.  We aimed to find 

out if the two-armed structure of PHDM is necessary for strong, specific interactions, or if one 

binding motif could be replaced by a reporter group (e.g. a fluorophore) without loss of binding 

affinity or specificity.  Fluorescent receptors were designed with the aim of directly imaging PI(4,5)P2 

both in cells and in in vitro assays.  Although the distance between the fluorophores and the boronic 

acid motifs made it unlikely that a change in fluorescence would be observed upon binding (i.e. that 

the fluorophore would act as an optical switch) our aim was to use these labelled receptors to probe 

cellular localisation of PI(4,5)P2. 
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Figure 2.1: The structures of receptors designed to bind PI(4,5)P2 



62 
 

2.2 Synthesis of PI(4,5)P2 receptors 

2.2.1 Receptor 3 

Receptor 3 was synthesised in three steps following the synthetic route shown in Schemes 2.2, 2.3 

and 2.4.  This protocol is analogous to the one used to synthesise PHDM (58).  An indirect reductive 

amination was carried out between 2-formylphenol boronic acid and mono-(di-tert-butoxycarbonyl, 

BOC) protected 1,4-methylenediamine using sodium borohydride as reducing agent.  The use of the 

2-substituted aldehyde ensured that the resulting secondary amine would be adjacent to the 

boronic acid on the phenyl ring, which is a requirement of the ‘Wulff-type’ boronic acids that bind 

well to adjacent alcohols (91). 

 

Scheme 2.2: A reductive amination was carried out to form compound 1.  This is the first step in the 
synthesis of PHDM and receptors 3, 4 and 5. 

Conditions were strictly anhydrous with 3Å molecular sieves present in the dry methanol to absorb 

any water generated during imine formation.  This assisted in driving the equilibrium towards 

formation of the product.  After the imine was reduced to a secondary amine the product was 

purified by extensive washing with water and petroleum ether which removed triethylamine and 

unreacted starting materials.  The BOC protecting group was then removed by trifluoroacetic acid 

(TFA, Scheme 2.3).  Analysis by 1H NMR spectroscopy showed that the singlet at 1.5 ppm 

(characteristic of the tert-butoxycarbonyl group) had disappeared, indicating that the deprotection 

was 100 % complete. 
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Scheme 2.3: In the second step of this synthetic route, the BOC protecting group was removed by TFA 
to yield primary amine 2.  

After removal of the solvent, 13C NMR spectroscopy indicated the presence of some remaining 

trifluoroacetic acid (characteristic TFA peaks observed at  = 159.7 and 113.4 ppm), probably present 

as trifluoroacetate counterions to the protonated amine.  Compound 2 was used without further 

purification.  The last step of the synthesis of compound 3 was carried out under similar conditions 

to that of PHDM.  To deprotonate the primary amine 2 was stirred in the presence of triethylamine 

for 30 minutes before being used in the next step.  Phenylisocyanate was reacted with the primary 

amine and form a urea which was directly attached to the phenyl ring (Scheme 2.4). 

 

Scheme 2.4: In the last step of compound 3 synthesis, phenylisocyanate was reacted with the primary 
amine to form a urea group. 

An excess of phenylisocyanate was used in order to ensure the reaction proceeded to completion.  

However this led to a complex mixture of products as indicated by TLC and 1H NMR.  Results from 

similar syntheses indicated that the formation of a bisurea side product was likely, with the 

isocyanate reacting with the secondary amine adjacent to the boronic acid.  Therefore for future 

reference, it is recommended that the secondary amine be protected with a protecting group such 

as fluorenylmethyloxycarbonyl (Fmoc) which is orthogonal to BOC- i.e. it is stable under acidic 

conditions but can be cleaved under basic conditions.  This will likely provide a higher yield. 

Receptor 3 was successfully purified by column chromatography.  1H NMR spectroscopy of the 

resulting product showed the presence of three singlets with equal integration (2H each) in the 

aliphatic region associated with benzylic protons, which correspond to the three CH2 groups present 

in 3. IR spectroscopy showed a strong peak at 1658 cm-1 consistent with a C=O stretch, which 

indicated the presence of the urea. The formulation and purity of receptor 3 was confirmed by 

elemental analysis. 
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2.2.2 Receptor 4 

Receptor 3 has only one “recognition arm” and therefore the binding to PI(4,5)P2 is likely to be 

weaker than with PHDM.  In order to compare the difference in binding affinity of receptors with 

one binding arm versus two arms, a symmetric analogue of PHDM was designed in which the central 

diphenyl spacer contained an oxygen molecule in place of the CH2.  The motivation to do this was to 

improve the water solubility of the resulting receptor without altering the recognition properties of 

PHDM.  Receptor 4 was synthesised using the same procedure used for PHDM, as shown in Scheme 

2.5. 

 

Scheme 2.5: The synthesis of receptor 4, an analogue of PHDM. 

In the final step (formation of the final di-urea product) amine 2 was reacted with diphenyl oxide 

4,4'-diisocyanate in DMF for 24 hours.  Addition of a few drops of water precipitated out a white 

solid.  After extensive washing, analysis by 1H NMR spectroscopy indicated this was indeed the 

product.  Although the many peaks observed in the aromatic region overlap and are therefore 

difficult to assign, the aliphatic region showed three singlets of equal integration (all 4H), which 

correspond to the benzylic CH2 groups.  The 13C NMR spectrum was also consistent with the 

proposed formulation.  Mass spectrometry showed the presence of the doubly charged product 

[M+2H]2+ at m/z = 397 a.m.u., and IR spectroscopy showed a strong peak at 1652 cm-1 which is 

consistent with the C=O stretch of the urea. The formulation and purity of compound 4 was 

confirmed by elemental analysis.  
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2.2.3 Receptor 5 

Direct imaging of PI(4,5)P2 is currently carried out using a number of methods.  One of these is 

overexpression of a GFP-fusion protein domain- PLC1 PH, which binds to PI(4,5)P2 (58), (125).  We 

set out to design a receptor with a fluorescent label that would be taken up into the cell and be 

capable of binding to PI(4,5)P2. In order to be able to detect PI(4,5)P2 in normal cells, a fluorescent 

tag was incorporated onto the same binding motif used in receptors 3 and 4. 

To this aim, the basic structure of receptor 3 was retained and fluorescein was added in place of the 

terminal phenyl group via a thiourea group.  To synthesise this, primary amine 2 was reacted with 

fluorescein isothiocyanate to generate receptor 5 as indicated in Scheme 2.6. 

 

Scheme 2.6: The synthesis of fluorescent receptor 5. 

 

After 24 hours of reaction, the product was precipitated with water and the compound was purified 

by recrystallisation in methanol.  The characteristic N=C=S stretch ( = 2035 cm-1) of fluorescein 

isothiocyanate was no longer present in the IR spectrum of the product and the formation of 

receptor 5 was confirmed by mass spectrometry, with [M+H]+ observed at m/z = 660 a.m.u..  The 1H 

NMR spectrum showed many overlapping peaks in the aromatic region with three distinct singlets 

appearing in the aliphatic region corresponding to three benzylic CH2 groups.  13C NMR spectroscopy 

correlated well with the expected product showing 16 quaternary, 15 CH and 3 CH2 carbon peaks 

(assigned by 135DEPT NMR spectroscopy, see Appendix section 9.1.3).   The formulation and purity 

of compound 5 was confirmed by elemental analysis.  
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2.2.4 Receptor BODIPY-PHDM 

 

We set out to design a symmetric PI(4,5)P2 receptor based on PHDM with the addition of a 

fluorescent tag for the purpose of direct PI(4,5)P2 imaging.  In order to preserve the binding 

properties of PHDM it was decided that such a fluorescent tag would be best placed para to the 

boronic acid, to minimise interference in the boronic acid-diol interaction and retain the flexibility of 

the linker.  The boron dipyrromethene (BODIPY) fluorophore was chosen due to the synthetic 

versatility of these compounds as well as the useful and tunable optical properties they confer 

(126),(127).  From the available starting materials, the synthetic route shown in Scheme 2.7 to a 

fluorescently tagged aldehyde was devised.  This would then be followed by a reductive amination 

to generate a BOC-protected amine, followed by deprotection and reaction with 4,4′-

methylenebis(phenyl isocyanate) as depicted in Scheme 2.8. 
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Scheme 2.7: Planned synthetic route to BODIPY aldehyde. 
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Scheme 2.8: Proposed synthetic scheme using BODIPY aldehyde to synthesise BODIPY-PHDM. 
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2.2.4.1 Synthesis of 10-(bromomethyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide, 6 

 

Compound 6 was synthesised according to a previously reported procedure (126).    Analysis by 1H 

NMR spectroscopy showed a broad peak with a shoulder in the aliphatic region, which integrated to 

12H; this was relative to two singlets at = 4.8 and 4.7 ppm, which when combined integrated to 2H 

and were assigned to the CH2-Br protons.  In the aromatic region a single peak integrated to 2H 

which corresponds to the pyrrole CH protons.  After isolation of the product crystals of 6 were 

obtained which were suitable for X-ray crystallographic analysis.  While most of the structure was in 

line with similar compounds, observation of the C-Br bond was disordered (see Appendix).  This 

suggested that the sample contained an impurity in which the CH2-Br was replaced by a methyl (CH3) 

group, although it was not possible to separate these.  The presence of the impurity was confirmed 

by mass spectrometry which contained a peak at m/z = 133 a.m.u., which corresponds to the doubly 

charged mass of the methyl structure. 

 

Figure 2.9: Structure of compound 6 as determined by X-ray crystallography. 

2.2.4.2 Synthesis of 3-(1,3-dioxolan-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenol, 7 

Since BODIPY compound 6 contains several reactive features, it was decided to protect the aldehyde 

of starting material 2-bromo-5-hydroxy benzaldehyde by cyclisation with ethylene glycol.  After 
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several attempts a protocol was optimised in which almost 100 % product formation was achieved.  

2-bromo-5-hydroxy benzaldehyde and ethylene glycol were reacted in the presence of a catalytic 

amount of para-toluene sulfonic acid (p-TsOH) under anhydrous conditions for 24 hours. Solid 

sodium bicarbonate was added to quench the p-TsOH, preventing hydrolysis of the cyclic ester.  1H 

NMR spectroscopy showed that the product was formed. The absence of a characteristic aldehyde 

peak between 10 and 11 ppm shows the starting material has been fully consumed, while the 

multiplets at 4.0 – 4.2 ppm corresponding to the cyclic 2CH2 protons indicate that the cyclisation has 

taken place. 

The protected aldehyde was then boronylated using a previously reported procedure for similar 

compounds (128).  Dioxane was chosen as the solvent instead of the reported DMSO due to its lower 

boiling point which facilitated solvent removal.  After 24 hours the catalyst and solvent were 

removed and the remaining dark solid was analysed firstly by 11B NMR spectroscopy which showed 

that the new boron-containing product had formed (Figure 2.10).  

 

Figure 2.10: Top blue 11B NMR spectrum shows reaction product.  Lower red spectrum shows the 

same sample with added starting material in order to assign the peaks.  Diboron pinacol ester = 

30.7 ppm; Boronylated product  = 22.2 ppm. 

 

Analysis by 31P NMR spectroscopy showed that the catalyst had been removed, since there was no 

visible phosphorus peak for [(Pd(dppf)Cl2] (31P NMR (162 MHz, d6-DMSO)  = 34.2 ppm).  

Recrystallisation from methanol afforded the product as a dark orange crystalline solid in 18 % yield. 

Analysis by 1H NMR spectroscopy showed the presence of a singlet at 1.33 ppm which integrated to 

12H and corresponded to the 4CH3 protons of the pinacol ester. 
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2.2.4.3 Attempted synthesis of 10-((3-(1,3-dioxolan-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)phenoxy)methyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide 

The next step in the synthesis of BODIPY-tagged aldehyde was coupling of compound 6 to the 

protected aldehyde via the phenolic OH as indicated in Scheme 2.11.  Although the compound 6 

sample contained an inseparable impurity, the reaction was attempted with this sample since it was 

assumed that the impurity would not react with the phenol. 

 

Scheme 2.11: Final step in the synthesis of fluorescently tagged aldehyde 

Unfortunately although several sets of reaction and purification conditions were attempted, it was 

not possible to obtain a pure sample of this product.  The progress of reactions was monitored using 

TLC (on silica, eluent = 5% CH2Cl2 and 95% n-hexane) as well as 1H NMR spectroscopy (by observing 

the shift of the characteristic singlet integrating to 12H which corresponds to the 4CH3 groups of 

pinacol).  In some cases a small amount of product formation was observed however attempts to 

isolate this failed.  It was decided that some reaction conditions would also be tested using 

commercially available bromoethylphthalimide, however unfortunately this compound also showed 

little reactivity towards the phenol.  A summary of the conditions investigated is shown in Table 

2.12. 
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Table 2.12: Showing the reaction and purification conditions investigated.  Some reaction conditions 
were also carried out with bromoethylphthalimide instead of compound 6. 

Conditions used Comments Purification 

Compound 6 

Solvent: DMF (anhydrous) 

Base: K2CO3 

Refluxed 24 hours under N2 

After 24 hours only a mixture of 

starting materials was observed 

by TLC. 

None attempted. 

Compound 6, 

bromoethylphthalimide 

Solvent: DMF (anhydrous) 

Base: Bu4NI, K2CO3 

Refluxed 24 hours under N2 

Using compound 6 formation of 

product was observed in small 

amount (< 5 %) by TLC and 1H 

NMR spectroscopy.  After leaving 

reaction a further 12 hours this 

had not increased. 

None attempted. 

Compound 6, 

bromoethylphthalimide 

Solvent: ACN (anhydrous) 

Base: K2CO3 and KI 

Refluxed for 72 hours under N2.  

Using bromoethylphthalimide 

formation of product was 

observed (5 – 10 %) by TLC and 1H 

NMR spectroscopy.  Could not 

isolate this by chromatography. 

Chromatography: 

On silica using hexane and 

increasing proportions of 

DCM. 

On activated alumina using 

hexane and increasing 

proportions of DCM.  

Bromoethylphthalimide only 

Solvent: None 

Base: K2CO3, 1,4-

diazabicyclo[2.2.2]octane 

(DABCO) 

Grinding solid phase reagents for 

6 hours. 

No product formation was 

observed by TLC or 1H NMR 

spectroscopy. 

None attempted. 

 

Due to low yielding reactions and lack of time it was reluctantly decided that attempts to synthesise 

this material would be suspended in order to begin further testing on the other receptors.  
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2.3 Designing new synthetic PI(3,4,5)P3 receptors 

To achieve maximum receptor-target interaction a PI(3,4,5)P3 receptor should possess binding 

motifs capable of binding to up to four phosphate groups.  Although boronic acids are capable of 

binding to phosphates via a dative bond between oxygen and boron, it was demonstrated that 

PHDM binds weakly to PI(3,4,5)P3 (58).  Therefore to design a receptor similar to PHDM that would 

target the more highly phosphorylated PI(3,4,5)P3, the boronic acid was substituted for a stronger 

phosphate-binding motif.  The success of Anh’s IP3/IP6 receptor (34, Figure 1.22) and later, the SH2 

domain mimetic (Figure 1.14) showed that zinc-DPA is a strong phosphate-binding motif capable of 

blocking protein-protein interactions (76),(102),(59).  Therefore it was chosen to replace the boronic 

acid in the PI(3,4,5)P3 receptors.  For the first PI(3,4,5)P3 receptor the central spacer and urea groups 

of PHDM (highlighted in red, see Figure 2.13) were retained and only the boronic acid binding motif 

was changed. 

 

 

Figure 2.13: Top: to create a receptor for PI(3,4,5)P3 the central section of PHDM was retained but 
the diol-binding motif was replaced by a phosphate-binding motif .  Bottom: structure of receptor 12 
as drawn in ChemBio3D with energy minimisation.  Distance between Zn ions 20.2 Å.  Distance 
between Zn ion and proximal urea proton 4.8 Å, 2.4 Å. 
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The second PI(3,4,5)P3 receptor excluded the central 4,4’-methylene diphenyl spacer and connected 

the two zinc DPA motifs via a single central urea group (receptor 14).  The three adjacent phosphate-

binding groups were spaced to maximise interaction with the three phosphates of PI(3,4,5)P3.  This 

smaller receptor was designed to test whether a large, nonpolar central spacer is a necessary 

module for PIP receptors.  It may be that the hydrophobic nature of the central spacer assists in 

anchoring the receptor to the membrane and that by removing this component, the more polar 14 

will not bind to PI(3,4,5)P3 lipids as strongly as 12. 

 

 

Figure 2.14: Receptor 14, a PI(3,4,5)P3 receptor designed with three adjacent phosphate-binding 
groups and without the spacers incorporated into receptors 4 and 12. Image drawn in ChemBio3D 
with energy minimisation carried out on structure.  Distance between Zn ions 11.9 Å.  Distance 
between Zn ion and proximal urea proton 5.1, 5.9 Å.   

Both of these receptors were designed to bind via a divalent metal ion which acts as a Lewis acid, 

accepting a lone pair of electrons from the oxygen of phosphates.  Zinc (II) is the metal ion most 

commonly used to bind phosphates and has been successfully incorporated into a synthetic receptor 

for IP3(102),(88). DPA preferentially coordinates to zinc over other metals including magnesium and 

calcium which are prevalent in biological systems (88),(129),(130).  In addition zinc is not redox 

active and therefore it is expected that in the reducing conditions of the cell the metal will maintain 

it’s +2 oxidation state, unlike other metal ions such as copper (II) which can be reduced to copper (I) 

(131). 
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2.4 Synthesis of PI(3,4,5)P3 receptors 

2.4.1 Synthesis of 1,1'-(methylenebis(4,1-phenylene))bis(3-(2-(bis(pyridin-2-

ylmethyl)amino)ethyl)urea), 11 

The first two steps in the synthesis of both the PI(3,4,5)P3 receptors were carried out following a 

previously reported procedure (132).  Bromoethylphthalimide and dipicolylamine were used in a 

two-step synthesis to yield DPA-ethylamine (amine 10) which was used to form compounds 11 and 

13. 

 

Scheme 2.15: Step 1 and 2 in the synthesis of both ligands for the PI(3,4,5)P3 receptors. 

Compound 9 was purified by chromatography using a small modification of the literature procedure 

(using silica with dichloromethane:methanol as eluent).  A beige solid was isolated in good yield and 

analysis by NMR spectroscopy and mass spectrometry showed this to be the pure product 9.  The 

next step was to remove the phthalimide which was done following a literature procedure resulting 

in 100% removal of the phthalimide group.  The literature procedure required that product 10 be 

purified by vacuum distillation.  Although this was carried out, the yield was very low.  After working 

up the primary amine as specified (without distillation), analysis by NMR spectroscopy and mass 

spectrometry indicated that the product was pure enough to be used in the next step directly.  

Therefore primary amine 10 was used without any further purification.  

 

Scheme 2.16: Formation of the final bis-DPA-bis-Urea ligand (compound 11). 

The final step in the synthesis of compound 11 was to react the primary amine with the same 

diisocyanate spacer that formed the central core of PHDM as shown in Scheme 2.16.  After stirring 

for six hours, the solvent was removed under reduced pressure to yield an orange oil.  When this 
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was washed with cold anhydrous acetone, a tan precipitate formed.  This was analysed by NMR 

spectroscopy and shown to be the desired product 11.  In d6-DMSO the protons of the urea group 

were present ( = 8.54 ppm;  = 6.11 ppm) and the singlet corresponding to the CH2 group between 

the two phenyl groups ( = 3.78 ppm) integrated to 2 protons relative to the CH2-pyridine singlet 

which had integration of 8 protons ( = 3.38 ppm).  The ESI(+) mass spectrum of the product showed 

the molecular peak at m/z = 735 a.m.u. ([M+H]+).  Compound 11 was shown to be pure by elemental 

analysis. 

2.4.2 Synthesis of zinc(II) complex 12  

 

 

Scheme 2.17: Addition of zinc acetate to ligand 11 forms complex 12. 

In order to prepare the di-zinc (II) complex 12 (see Figure 2.17), the ligand was reacted with two 

equivalents of zinc acetate.  1H NMR spectroscopy showed that the zinc had been chelated by the 

dipicolylamine. A singlet at  = 2.0 ppm corresponds to the CH3 groups of the acetate counterion and 

the integration (12H) shows that two equivalents of zinc acetate are complexed to the ligand.  In the 

free ligand the CH2 peaks vicinal to the pyridine in the dipicolylamine motif are free to rotate and are 

therefore both chemically and magnetically equivalent, resulting in a singlet at 3.38 ppm in the 1H 

NMR spectrum.  As the DPA coordinates to the metal, the structure becomes rigid.  The lack of free 

rotation of these CH2 groups means that the 1H NMR signal splits as the protons are no longer 

magnetically equivalent (a representative spectrum is shown in Figure 2.20) (133).  This splitting 

indicated the formation of the final dizinc complex 12.  Since ligand 11 was shown to be pure by 

elemental analysis, this was not carried out on compound 12. 
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2.4.3 Synthesis of 1,3-bis(2-(bis(pyridine-2-yl methyl)amino)ethyl)urea, 13 

In order to synthesise compound 13 the same primary amine starting material was used (amine 10).  

As for the previous synthesis, the initial workup yielded the amine sufficiently pure to proceed 

without further purification.  In order to form the urea 13, carbonyldiimidazole (CDI) was used. 

 

Scheme 2.18: The synthetic route to compound 13. 

Primary amine 10 was added to a solution of CDI in acetonitrile, and stirred for 48 hours to yield an 

orange oil which was purified by chromatography on silica. In some eluted fractions there remained 

some free imidazole mixed with the product as indicated by two singlets in the 1H NMR spectra at = 

7.7 ppm and =7.0 ppm with 1:2 integrations respectively.  Flash chromatography using reverse 

phase (C18) silica was found to efficiently separate the imidazole from the product.  The mixture was 

loaded onto a column equilibrated in 95% water containing 5% methanol.  This solvent system was 

used to elute the imidazole while the ligand remained on the column.  When the imidazole was 

removed the pure product was eluted using 95% methanol with 5% water.  Analysis of the product 

by 1H NMR spectroscopy confirmed that no imidazole remained and IR spectroscopy indicated the 

presence of the C=O stretch due to strong absorbance at 1592 cm-1.  Mass spectrometry also 

indicated that the desired product was present at m/z = 511 a.m.u. ([M+H]+). 

2.4.4. Synthesis of zinc complex 14  

 

Scheme 2.19:  Addition of zinc acetate to ligand 13 forms complex 14. 

Zinc(II) complex 14 was synthesised in the same way as complex 12 (Scheme 2.19).  Two equivalents 

of zinc acetate in methanol were added to the ligand.  After six hours, the solvent was removed and 
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the resulting solid was washed with acetone to yield the product as a pale yellow solid.  The splitting 

of the CH2 protons vicinal to the pyridine was again noted, consistent with the coordination of 

zinc(II) (Figure 2.20). 

 

 

Figure 2.20: The 1H NMR spectra of ligand 13 (top) and complex 14 (bottom) showing the aliphatic 
region.  The singlet at 3.8 ppm splits into a doublet of doublets on complexation. 
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Chapter 3: Evaluation of PI(4,5)P2 receptors 

Receptors 3 - 5 were designed to bind to PI(4,5)P2 in order to compete with PI(4,5P)2-binding 

proteins and reduce downstream signalling.  After synthesis the next stage was to assess how 

strongly the different receptors bind PI(4,5)P2, and evaluate receptor specificity using all seven PIPs.  

A series of assays of increasing complexity were employed to firstly evaluate whether or not the 

receptors bind PI(4,5)P2, then to establish if they are capable of binding in a competitive biological 

environment. 

3.1 Receptors tested: 

Receptors 3-5 possess the necessary binding motifs that target the chemical features of PI(4,5)P2. 

 

Figure 3.1: Receptor 3. 

 

 

Figure 3.2: Receptor 4. 

 

 

Figure 3.3: Receptor 5. 
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3.2 Receptors were used in Indicator Displacement Assays (IDAs). 

To evaluate binding of small molecule receptors to their targets, indicator displacement assays 

(IDAs) are commonly used (134),(135). Receptors bind to colourimetric dyes and this binding event 

alters the colour of the dye.  Upon the addition of a more strongly binding target analyte, the dye is 

displaced from the receptor and returns to its original colour, and this process can be monitored by 

UV-Vis spectroscopy.  IDAs are a useful method to determine which analytes bind to a receptor since 

any soluble molecule can be tested and binding affinities can also be calculated.  In this instance the 

aim is to assess whether receptors 3 and 4 bind to PI(4,5)P2 and its headgroup, IP3. 

3.2.1 Receptors 3 and 4 bind to Pyrocatechol Violet. 

Firstly, the receptors were titrated with an appropriate indicator, to ensure that upon binding the 

UV-Vis spectrum changes by a detectable amount, so that the subsequent binding of the analyte can 

be monitored in this way.  The indicator pyrocatechol violet (PV, structure shown in Figure 3.4) is 

often used due to its catechol moiety which is known to bind to boronic acids, causing a colour 

change (93), (136). 

 

Figure 3.4: the structure of indicator pyrocatechol violet (PV). 

A titration was set up to determine if the receptors under study bind to the indicator.  Increasing 

concentrations of receptor were mixed with pyrocatechol violet at a constant concentration.  The 

colour changed from yellow to red (Figure 3.5b), and this change was monitored by UV-Vis 

spectroscopy.  The peak at 440 nm represents unbound PV and the peak at 500 nm represents the 

receptor-PV complex.  The colour change as monitored by UV-Vis spectroscopy indicates that the 

receptors are both capable of binding to the dye. 
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a  

b  

Figure 3.5a Proposed binding mode between receptor 4 and PV.  The indicator PV is red in colour 
when bound to receptor 4.  Figure 3.5b: The titration was carried out in 100 mM HEPES buffer at pH 
7.4 using a constant concentration of PV (100 µM) and increasing the receptor concentration (0  
100 µM).  Free PV is yellow in colour and as the concentration of receptor 4 is increased the complex 
shown in Figure a forms, the solution turns red (left  right, assay carried out in triplicate). Receptor 
3-PV complex is the same colour as diboronic acid receptor 4-PV complex shown.  
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Figure 3.6: Binding of receptor 4 to PV was monitored by UV-Vis spectroscopy. Figure a:   The UV-Vis 
spectrum of 100 µM PV was monitored as receptor 4 concentration increased from 0  100 µM.  The 
intensity of the peak at 440 nm decreased, while the intensity at 500 nm increased. Figure b: 
Absorbance at 440 nm and 500 nm is plotted vs concentration of receptor 4. 

The extent to which the receptors bind PV must be quantified, since different receptors will bind 

with different affinities and stoichiometries.  In order to examine the stoichiometry of receptor-dye 

interaction, the method of continuous variation (commonly known as Job’s plots) was carried out.  

The ratio of mole fractions (mole fraction = X) of the receptor and dye are varied with constant total 

mole fraction.  The changing absorbance is plotted against the mole fraction of the receptor, and the 

maxima of the resulting plots indicate the ratio at which the maximum amount of receptor-PV 

complex is formed. 
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Figure 3.7: Determination of receptor-PV stoichiometry.  The fractional change in absorbance at 440 
nm is plotted against the mole fraction (X) of receptors 3 and 4.  Total concentration is constant at 50 
µM.  The maxima of the plots indicate the mole fraction at which the maximum amount of receptor-
PV complex has formed.  Error bars represent standard deviation of the mean of two independent 
repeats carried out in triplicate (n=2). 

Shown in Figure 3.7, the plot for receptor 3 has a maximum at X(receptor) = 0.5, X(PV) = 0.5 meaning 

it binds to PV with a 1:1 stoichiometry.  The plot for receptor 4 reaches a maximum at 0.4 which 

suggests a stoichiometry of 2:3, or a mixture of 1:1 and 1:2. The latter is more probable since 

receptor 4 has two boronic acid motifs available to bind the catechol of PV; in addition, PV is known 

to be able to bind to two boronic acid moieties (136).  This could give rise to both a 1:2 ratio in which 

the two boronic acids bind to two separate catechols, and a 1:1 or 2:2 ratio as shown in Figure 3.8, in 

which one diboronic acid receptor binds to one PV molecule, or two such receptors bind to two PV 

molecules. 

a      b  

Figure 3.8: Potential binding stoichiometries between receptor 4 and PV.  Figure a: Possible 1:1 
binding between the two catechol motifs of PV and the two boronic acids of receptor 4.  Figure b: 
Possible 2:2 binding between two PV moieties and two diboronic acids. 
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These stoichiometries are used to calculate the concentration of receptor-dye complex used in the 

next stage of the assay, so that excess dye is not present when the competing analyte is added. 

3.2.2 Addition of target analytes to IDA. 

In order to determine the binding constant between the receptors and their target analytes, the 

soluble headgroup IP3 was added to a constant concentration of the receptor-indicator complexes 

(made up according to the stoichiometry determined).  It was expected that the receptors would 

bind to the analytes and release the indicator, changing the colour of the solutions to that of free 

indicator.  Spectroscopically this would be reflected by a decrease in intensity of the 500 nm peak in 

the UV-Vis spectrum and an increase in the 440 nm peak.  However after addition of 2.5 equivalents 

of these analytes, no displacement was observed.  Other analytes were tested including D-fructose, 

D-glucose, glucose-6-phosphate and adenosine triphosphate; none of these were capable of 

displacing the indicator.  This means that under the conditions of the assay, the receptors bind to 

the indicator much more strongly than to any of the tested analytes. 
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Figure 3.9: IP3 does not displace PV from either of the receptor-PV complexes.  Increasing 
concentrations of IP3 were added to a 1:1 ratio of receptor 3 and PV (100 µM each) and a 2:3 ratio of 
receptor 4 and PV (50 µM receptor 4, 75 µM PV) in HEPES buffer at pH 7.4.  The absorbance of the 
peak at 500 nm is not reduced, indicating that IP3 is not binding to the receptors.  Error bars 
represent standard deviation of two independent repeats carried out in duplicate (n=2). 

3.2.3 IDA conditions were modified. 

The conditions of the assay were therefore altered in an attempt to observe the dye displacement 

that would indicate the receptors were binding their targets. 
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Several buffers were firstly tested, to ensure that this was not a source of interference.  While the 

receptors bound to PV in PBS and HEPES and subsequent colour change from yellow to red was 

observed, only a small amount of binding took place in Tris buffer, as the change in colour was much 

less.  Tris contains three hydroxymethyl groups which may form a 6-membered boronate ester in the 

presence of the boronic acid.  Therefore PBS and HEPES were used to test the assay conditions.   

Several examples of the use of boronic acid-based receptors in displacement assays use less polar 

methanolic conditions to enhance the binding between boronic acids and diols.  The proportion of 

methanol used ranges from 50 % methanol, 50 % HEPES buffer (10 mM, pH 7.4, (93)) to 100 % 

methanol, buffered to pH 7.4 with p-toluene sulfonic acid and diisopropylethylamine (136).  

Therefore the receptor-PV titration was repeated using 75 % methanol with 25 % HEPES buffer (pH 

7.4).  Upon addition of boronic acid-based receptors 3 and 4 to the pyrocatechol violet, the colour of 

the solution changed from dark yellow to deep turquoise-blue. 
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Figure 3.10: Receptor 4 binds to PV in methanolic conditions.  Figure a: The UV-Vis spectrum of PV 
changes upon addition of receptor 4 (0  100 µM) to pyrocatechol violet (50 µM) in 75 % methanol, 
25 % HEPES (10 mM, pH 7.4). Figure b: Showing the absorbance values plotted against concentration 
of receptor 4 for the spectra shown. 

These data show that receptors 3 and 4 bind to pyrocatechol violet in a mixture of methanol and 

HEPES buffer.  However in methanolic solution the addition of analytes led to the formation of a 

precipitate which prevented the use of UV-Vis spectroscopy to monitor the process.  Several sets of 

conditions for this assay were investigated (summarised in Table 3.11), however the addition of 

analyte caused precipitation in all cases. 
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Table 3.11: Methanolic conditions were attempted for displacement assays using receptors 3 and 4. 

Methanol Buffer pH Result 

50% 50% HEPES 7.4 Precipitation 

observed 

50% 50% PBS 7.4 Precipitation 

observed 

90% 10% HEPES 7.4 Precipitation 

observed 

90% 10% PBS 7.4 Precipitation 

observed 

100% p-TsOH/DIPEA 7.0 Precipitation 

observed 

 

The precipitation that occurs upon addition of analytes may indicate that the receptors do in fact 

bind to the analyte, forming the insoluble product observed.  However since this cannot be 

appropriately monitored by UV-Vis spectroscopy, another method of assessing the binding between 

receptors and PI(4,5)P2 was sought.  
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3.3 Receptor 5 binds PI(4,5)P2 

3.3.1 Emission properties of receptor 5 in presence of PI(4,5)P2 

Several receptors with boronic acid binding motifs have been used as chemical sensors.  Due to their 

particular structure some of these receptors can act as ‘switch-on’ or ‘switch-off’ probes for their 

targets which include fluoride and cyanide ions (89), (90).  In order to test whether receptor 5 would 

act in a similar way, the fluorescence intensity of the receptor was measured in the presence and 

absence of PI(4,5)P2-containing vesicles (1:1 molar ratio with Phosphatidylcholine, PC). 
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Figure 3.12: Fluorescence of receptor 5 does not change in the presence of PI(4,5)P2.  The 
fluorescence intensity of receptor 5 (5 µM in PBS) was measured in the presence of PC:PI(4,5)P2 (black 
circles; 100 µM PC with 100 µM PI(4,5)P2) and with PC alone (white circles, 100 µM PC).  Lipids 

prepared as vesicles, as described in Methods section. excitation = 485 nm. 
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Figure 3.13 The structure of the zwitterionic phospholipid phosphatidylcholine (PC).  R1 = 
octadecanoyl. R2= 5Z, 8Z, 11Z, 14Z-eicosatetraenoyl. 
 

The fluorescence intensity and max of receptor 5 are shown to be the same in the presence and 

absence of PI(4,5)P2 (Figure 3.12).  Since the fluorescent tag is not directly attached to the boronic 

acid of receptor 5, it is likely that any binding event- which would change the boronic acid into a 

boronate ester- would be too far removed from the fluorophore to affect its fluorescence 

properties. 

3.3.2 Receptor 5 binds immobilised PI(4,5)P2 

Lipids such as PI(4,5)P2 are commonly quantified using PI(4,5)P2-binding domains, such as the PLC1-

PH domain (see section 3.4.1, enzyme-linked immunosorbent assay).  Fluorescent receptor 5 has the 

potential to bind PI(4,5)P2; by allowing receptor 5 to bind the immobilised lipid, it may be used to 

detect PI(4,5)P2 by measurement of fluorescence intensity of bound receptor. 

PI(4,5)P2 was adsorbed onto a fluorescence microtiter plate and receptor 5 was allowed to bind.  The 

unbound receptor was removed by washing and the fluorescence intensity of the remaining, bound 

receptor measured. 
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Figure 3.14: Receptor 5 binds to increasing amounts of PI(4,5)P2.  After immobilising PI(4,5)P2 onto a 
fluorescence microtiter plate, receptor 5 (10 µM) is allowed to bind.  Assay carried out as described in 
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Methods section.  Error bars represent two independent experiments carried out in triplicate (n=2).  

excitation = 485 nm, emission = 525 nm. 

The control (no PI(4,5)P2) showed low fluorescence intensity, and for increasing amounts of PI(4,5)P2 

up to approximately 0.5 nmols, fluorescence intensity increases linearly.  At a higher concentration 

the increase is no longer linear.  As shown in Figure 3.13, receptor 5 is able to quantify increasing 

amounts of PI(4,5)P2 linearly up to 0.5 nmols.   
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3.4 Receptors compete with PLC1-PH domain for PI(4,5)P2 binding. 

In order to determine whether the receptors can successfully compete with protein domains to bind 

PI(4,5)P2, competitive ELISA (Enzyme-linked immunosorbent assays) were employed.  ELISA are 

routinely used to quantify the binding of protein domains to their targets, and PI(4,5)P2 has been 

quantified in this way using the PLC1-PH domain.   Introducing a PI(4,5)P2-binding receptor means 

the PLC1-PH domain has to compete with that receptor for binding sites.  As a consequence, if the 

receptor has high affinity for PI(4,5)P2 the amount of protein bound to the target decreases.   

3.4.1 Calibration of ELISA 

The detection of PI(4,5)P2 by PLC1-PH domain was carried out according to previously described 

methods (Figure 3.14) (58).  Firstly the binding of purified PLC1-PH domain to immobilised PI(4,5)P2 

was quantified.  To be able to quantify inhibition of protein-lipid interactions, the absorbance 

response of the assay must be directly proportional to the amount of bound detection protein.  

Therefore the assay was optimised so that the absorbance output of the assay was linearly 

proportional to the bound detection protein.  

 

 

Figure 3.15: The principles of a competitive ELISA.  1: A lipid-binding protein (conjugated to GST) 
binds to an immobilised lipid. An anti-GST antibody binds to the protein and upon addition of an 
artificial substrate (TMB) the conjugated horseradish peroxidase generates a colourimetric product.  
When the reaction is stopped the absorbance at 450 nm of the generated product is proportional to 
amount of protein present.  2: The receptor competes for lipid binding causing less protein to bind to 
the lipid, resulting in a reduction of the colourimetric output. 

 

To ensure that the assay had a linear response to increasing lipid, a single concentration of the 

detection protein domain GST-PLC1-PH was tested against increasing amounts of PI(4,5)P2.  This 

was followed by increasing the PLC1-PH domain while maintaining a constant amount of PI(4,5)P2.  

The results of this are shown in Figure 3.15. 
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Figure 3.16: Calibration of the ELISA assay.  a: the increasing absorbance at 450 nm is plotted against 

the increase in PI(4,5)P2 as detected using a constant concentration of PLC1-PH domain (50 nM).  
The absorbance becomes saturated at high lipid amounts, however the response is linear up to 125 
pmols PI(4,5)P2.  Absorbance is normalised by subtracting the absorbance of 0 M lipid.  b: the 

increasing absorbance at 450 nm is plotted against increasing concentration of PLC1-PH domain as 
added to a constant amount of PI(4,5)P2 (100 pmols).  The increase in absorbance is linear until 100 

nm PLC1-PH domain.  Absorbance is normalised by subtracting the absorbance of 0 M protein 
domain. Error bars represent standard deviation of two independent repeats carried out in triplicate 

(n=2).  Linear portion of each plot has been fitted. Apparent dissociation constant of PLC1-PH 
domain was calculated using the method outlined by Orosz and Ovadi (137).   

Kd
app = 270 ± 65 nM. 

 

As increasing PI(4,5)P2 amounts were probed with the PLC1-PH domain (Figure 3.15a), the response 

was linear until 125 pmols PI(4,5)P2.  The increase in response was not linear above this point.  

Having established the linearity range for different amounts of PI(4,5)P2, we employed a constant 

amount of PI(4,5)P2 (100 pmol) in the presence of increasing PLC1-PH domain concentrations.  As 

shown in Figure 3.15b this produced a linear response as increasing amounts of detection protein 

bound to the lipid on the plate surface.  Under the conditions tested this was observed to be linear 

at concentrations up to 80 nM.   

3.4.2 Receptors inhibit protein-lipid binding. 

The optimised conditions were then applied so that detection of PI(4,5)P2 was in the linear region, 

and the chemical receptors were tested for the ability to compete with the PLC1-PH domain. 

As the amount of receptors incubated with PI(4,5)P2 increased, the amount of protein domain 

detected is reduced (Figure 3.16).  Receptor 4 achieved 50 % inhibition of protein-lipid binding at a 

lower concentration than receptors 3 and 5.  Although the receptors are much smaller than the 

protein domains, they effectively compete with the protein domains for PI(4,5)P2 binding. 
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Figure 3.17: Receptors 3 (plot a), 4 (plot b) and 5 (plot c) bind to PI(4,5)P2.  The absorbance as a 
percentage of control (no receptor, set at 100 %) is plotted against increasing receptor concentration.  
Decrease in absorbance correlates to reduced amount of bound protein detected, indicating that 
receptor 3 (black circle) and receptor 4 (open circle) compete with the protein domain for binding 
sites.  Symmetric receptor 4 shows inhibition at a concentration 10-fold lower than monomeric 
receptor 3. Assay was carried out as described in Methods section with receptors pre-incubated with 

PI(4,5)P2, before detection with PLC1-PH domain as carried out previously.  PI(4,5)P2 amount  was 
100 pmols and protein was used at 50 nM concentration.  Error bars for a and b represent the 
standard deviation of the mean of three independent repeats carried out in triplicate (n=3).Error bars 
for c represent the standard deviation of the mean of two independent repeats carried out in 
triplicate (n=2). Apparent dissociation constant was calculated using the method outlined by Orosz 
and Ovadi (137).   

 Kd (Receptor 3) = 638 ± 120 µM; Kd (Receptor 4) = 87 ± 16 µM; Kd (Receptor 5) = 401 ± 59 µM (137). 

The results in Figure 3.16 show that all three receptors are able to prevent binding of the detection 

protein to the immobilised PI(4,5)P2, but also reveal that receptor 4 binds about 7-fold more 

potently than receptor 3.  Receptors 3 and 4 contain the same boronic acid and urea binding motifs, 

and the observed higher affinity of receptor 4 suggests that its two binding arms may be acting 

cooperatively, which greatly enhances the binding affinity. The lead molecule, PHDM, was 
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demonstrated to bind PI(4,5)P2 in a similar assay with  Kd = 17.6  ± 10.1 M (using the Cheng-Prusoff 

method) (58).  The IC50 of PHDM (approximately 10 M) was similar to that of receptor 4 (7 M).   

Receptor 5 possesses boronic acid and thiourea groups in the same motif as receptor 3, but with a 

fluorescent tag attached.  The apparent binding affinity of receptor 5 towards PI(4,5)P2 is calculated 

to be slightly higher than that of receptor 3.  Thiourea groups have been shown to interact with 

phosphates via hydrogen bonding with higher affinity than equivalent urea groups (138), which may 

be the origin of the stronger interaction of receptor 5 as compared to receptor 3.  Plot c also shows 

that the addition of a bulky fluorescent tag on the end of the molecule does not prevent the 

receptor from binding PI(4,5)P2. 

Taken together, these competitive ELISA results confirm that all three receptors bind to PI(4,5)P2.  

Receptor 4 with its two binding sites interacts with higher affinity than the monomeric receptors 3 

and 5.  Although the tested chemical receptors are much smaller in size than the PH domain of PLC 

(detection protein), they successfully competed with the protein for PI(4,5)P2 binding sites on the 

plate surface. 
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3.5 Receptors bind to PI(4,5)P2 and IP3 and result in reduced enzyme 

turnover 

Having shown that the chemical receptors were competing with the detection protein (PLC1-PH 

domain) for PI(4,5)P2, the ELISA experiments provided evidence that the receptors are interacting 

with their intended target molecule PI(4,5)P2.  However the ELISA was not suitable to evaluate the 

affinity of the receptors for the headgroup of the PI(4,5)P2 target, IP3.  Therefore we exploited the 

wider substrate specificity of the phosphoinositide phosphatase SopB to evaluate the specificity of 

the receptors. 

By competing with the enzyme (SopB) for PI(4,5)P2, the receptors would effectively restrict access to 

the substrate and thus turnover would be lowered.  Therefore binding of the receptors to the SopB 

substrates would be observed as an apparent inhibition of the SopB catalytic activity.  

3.5.1 Calibration of phosphatase assay using SopB with substrates PI(4,5)P2 and IP3. 

To this end a phosphatase assay was carried out using the enzyme SopB.  The activity of the purified 

enzyme SopB was firstly examined using both PI(4,5)P2 and IP3 as substrates (Figure 3.17).  

Phosphate release was measured using a phosphate detection reagent (139) which was calibrated 

against inorganic phosphate (see Methods). 
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Figure 3.18: Calibration of phosphatase assay conditions using SopB.  Increasing concentrations of 
substrate (a, 1:1 PC:PI(4,5)P2 (prepared as described in Method section); b, IP3) were incubated with 
2.4 µg/ml purified SopB at 37oC for 15 minutes, before the reaction was stopped by the addition of a 
phosphate detection reagent.  Purification of phosphatase is detailed in Method section.  Fitting is 
shown for linear portion of plots.  Error bars represent standard deviation of two independent 
repeats carried out in triplicate (n=2). Km and Vmax determined using GraFit version 6.0.12. 

SopB dephosphorylates PI(4,5)P2 with  Km = 13.2 ± 5.7 µM and Vmax = 0.4 ± 0.1; the rate of 

dephosphorylation is linear up to approximately 30 µM PI(4,5)P2.  Using IP3 as substrate, SopB has Km 

= 74.6 ± 9.3 µM and Vmax = 1.1 ± 0.1. The rate of reaction is linear until approximately 50 µM IP3. 
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3.5.2 Receptors 3 and 4 inhibit enzyme-substrate interaction 

Addition of the chemical receptors is expected to reduce the activity, so after choosing substrate 

concentrations in the linear range (Figure 3.17) the optimised conditions were used to test the 

ability of the chemical receptors to compete with SopB. 

In the presence of receptors 3 and 4, the binding between SopB and the phospholipid headgroup 

was inhibited.  The IC50 values were determined for the inhibition of the phosphatase SopB by 

receptors 3 and 4, with PI(4,5)P2 and IP3 as substrates. 

 

Figure 3.19: Increasing concentrations of receptor 3 inhibit the activity of the phosphatase SopB (2.4 
µg/ml).  Circles show data for the lipid substrate (1:1 PC, PI(4,5)P2; 30 µM), squares for the 
headgroup substrate IP3 (30 µM).  Substrates were incubated with receptor or vehicle control for 30 
minutes before phosphatase was added to initiate reaction.  All reactions were carried out at 37oC for 
15 minutes before stopping by addition of the phosphate detection reagent.  Data is shown as % of 
vehicle control. Error bars represent standard deviation of three independent experiments carried out 
in triplicate (n=3).  IC50 curves fitted using GraFit version 6.0.12. 

 

IC50 (PC:PI(4,5)P2)= 30.95 ± 18.97 µM; IC50 (IP3) = 54.94 ± 8.19 µM. 

 

Figure 3.18 shows that as increasing amounts of receptor 3 bind to the substrate the enzyme activity 

decreases.  Having demonstrated by ELISA that the receptor binds to PI(4,5)P2, it is assumed that the 

receptor is blocking access to the substrate and that this is the mechanism of inhibition (not that the 

receptor is directly interacting with the protein).  The IC50 value is approximately 2-fold lower for 

PI(4,5)P2 which indicates a slightly higher binding affinity of receptor 3 for the lipid rather than the 

headgroup. 
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Figure 3.20: Increasing concentrations of receptor 4 inhibit the activity of the phosphatase SopB (2.4 
µg/ml).  Circles show data for the lipid substrate (1:1 PC, PI(4,5)P2; 30 µM), squares for the 
headgroup substrate IP3 (30 µM).  Substrates were incubated with receptor or vehicle control for 30 
minutes before SopB (2.4 µg/ml) was added to initiate reaction.  All reactions were carried out at 
37oC for 15 minutes before stopping by addition of the phosphate detection reagent.  Data is shown 
as % of vehicle control. Error bars represent standard deviation of three independent experiments 
carried out in triplicate (n=3).  IC50 curves fitted using GraFit version 6.0.12. 

IC50 (PC:PI(4,5)P2)= 7.98 ± 1.58 µM µM; IC50 (IP3) = 48.64 ± 3.60 µM. 

Figure 3.19 shows that increasing concentrations of receptor 4 also inhibit the enzyme’s activity by 

binding to the substrates.  In this case the IC50 value for the lipid is much lower than that for the 

headgroup, indicating that the receptor shows a clear preference for the PI(4,5)P2 vesicles over the 

free IP3. 

Table 3.21: The calculated IC50 values of the inhibition of receptors 1 and 2, in reactions with 
substrates PC/PI(4,5)P2 vesicles and a solution of IP3. 

IC50 Substrate: PC/PI(4,5)P2 Substrate: IP3 

Receptor 3 30.95 ± 18.97 µM 54.94 ± 8.19 µM 

Receptor 4 7.98 ± 1.58 µM 48.64 ± 3.60 µM 

 

For comparison all the IC50 values obtained from phosphatase assays have been summarised in Table 

3.20.  Receptor 3 shows similar IC50 values for both substrates, indicating only approximately 2-fold 

preference for the lipid over the headgroup.  Receptor 4 shows a significantly higher affinity for the 

lipid with a 6-fold lower IC50 value than that of the free IP3.  These data seem to support the 

possibility of receptor 4 possessing positive cooperativity when binding to lipid headgroups.  After 

the first binding event the rest of the receptor is in close proximity to neighbouring PI(4,5)P2 
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headgroups since they are arranged on a membrane, which facilitates binding of a second PI(4,5)P2 

by the dimeric receptor.  This is in contrast to the IP3 which is free in solution and thus binding of 

one IP3 moiety does not facilitate binding of a second.  

3.5.3 Receptor 5 inhibits enzyme-substrate interaction. 

Receptor 5 was also tested for the ability to block protein-lipid interaction.  Since the binding affinity 

as tested by ELISA was similar to that of receptor 3 (and to preserve material for future cell and 

microscopy experiments) a single concentration was tested.  At 200 µM receptor 3 showed total 

inhibition of the phosphatase’s activity, so 200 µM of receptor 5 was tested against PI(4,5)P2 and IP3. 

 

Figure 3.22: Turnover of SopB is inhibited in the presence of 200 µM receptor 5.  Substrates were 
incubated with receptor or vehicle control for 30 minutes before SopB (2.4 µg/ml) was added to 
initiate reaction.  Lipid substrate (1:1 PC, PI(4,5)P2; 30 µM) and IP3 (30 µM) were incubated with 2.4 
µg/ml SopB at 37oC for 15 minutes prior to stopping by addition of phosphate detection reagent. 
Error bars represent standard deviation of two independent experiments carried out in triplicate 
(n=2). 

 

Figure 3.21 shows that with PI(4,5)P2 and IP3 as substrates, 200 µM of receptor 5 inhibits completely 

the activity of the phosphatase.  The same inhibition was observed using 200 µM receptor 3, 

suggesting these two receptors have similar efficacy. 
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3.6 Receptors bind with different affinities to each of the seven PIPs. 

As previously mentioned SopB is known to dephosphorylate all of the phosphatidylinositol 

phosphates and is therefore a useful tool for testing the specificity of receptors 3 and 4 towards 

different PIPs (58).  The phosphatase assay was carried out with each PIP as substrate.  The activity 

in the presence of receptor is plotted as a % of the activity of the vehicle control for each PIP (set at 

100%). 
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Figure 3.23: Binding specificity of receptor 3.  Each PIP is used as 1:1 PC, PIP mix at 30 µM, and 
receptor 3 (25 µM) was incubated with substrates for 30 minutes prior to reaction. Substrates are 
then incubated with SopB  (2.4 µg/ml) for 15 minutes at 37oC before the reaction was stopped by 
addition of phosphate detection reagent. Turnover was calculated for each PIP (Abs[+Enzyme] – 
Abs[-Enzyme]) with vehicle control and in the presence of receptor 3 at 25 µM. Activity is stated using 
turnover(+receptor) as a percentage of turnover(vehicle control). Error bars represent standard 
deviation of two independent experiments carried out in triplicate (n=2). 

Receptor 3 binds with highest affinity to PI(4,5)P2 at a concentration near the IC50 (Figure 3.22).  

Some inhibition is also observed for the monophosphorylated lipids PI(3)P, PI(4)P and PI(5)P as well 

as PI(3,4,5)P3.  The bisphosphorylated lipids PI(3,4)P2 and PI(3,5)P2 are not inhibited by receptor 3 at 

this concentration. 

These results suggest that the receptor has a distinct but modest selectivity for PI(4,5)P2 over the 

other PIPs. This may be due to the preferential binding of the boronic acid to the cis-diol (in the 2 

and 3 positions); combined with the urea interacting with the 4- or 5-phosphate.  The adjacent 

phosphate monoesters on PI(4,5)P2 have been shown to share bridging protons by hydrogen 
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bonding (2); this, combined with the difference in charge density between monophosphoinositides 

and bisphosphoinositides at a membrane surface is likely to change the orientation of the phosphate 

monoesters of PI(4,5)P2 relative to those of PI(4)P and PI(5)P.   
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Figure 3.24: Binding specificity of receptor 4.  Each PIP is used as 1:1 PC, PIP mix at 30 µM, and 
receptor 4 (10 µM) was incubated with substrates for 30 minutes prior to reaction. Substrates are 
then incubated with SopB (2.4 µg/ml) for 15 minutes at 37oC before the reaction was stopped by 
addition of phosphate detection reagent. Turnover was calculated for each PIP (Abs[+Enzyme] – 
Abs[-Enzyme]) with vehicle control and in the presence of diboronic acid receptor 4 at 10 µM. Activity 
is stated using turnover(+receptor) as a percentage of turnover(vehicle control). Error bars represent 
standard deviation of two independent experiments carried out in triplicate (n=2). 

Receptor 4 shows a definite selectivity for PI(4,5)P2 (Figure 3.23) which is consistent with the results 

from the similar molecule PHDM (58).  Unlike receptor 3, it shows very little or no inhibition of the 

other PIPs which suggests that the use of the dimeric structure over monomeric enhances selectivity 

for PI(4,5)P2.  Receptor 5 was not tested for selectivity in this assay to preserve material for cellular 

work, however it is expected that it will have a similar binding profile to receptor 3, due to the 

similarity in structure and PI(4,5)P2 binding (as established using the competitive ELISA) of these two 

molecules. 
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3.7 Receptors bind to ATP with low affinity 
Receptors 3 and 4 were designed to bind to diol and phosphate-containing molecules, including 

PI(4,5)P2 and IP3.  However there are many other diol and phosphate-containing molecules present 

in the cell which could interfere with the binding between our chemical receptors and their targets 

(93), (140), (92).  The most abundant of these is adenosine triphosphate (ATP) which exists in high 

concentrations in the cell.  ATP contains a purine connected to a ribose moiety which has three 

consecutive phosphate groups attached. 

 

Figure 3.25: Adenine triphosphate (ATP) contains a central ribose sugar which possesses a 1,2-diol 
which could interfere with the binding of receptors 3 and 4 to PI(4,5)P2. 

The central ribose has a 1,2-diol that has the potential to bind to the boronic acid and phosphates 

which could interact with the urea of the receptors via hydrogen bonding (Figure 3.24).  In order to 

test whether the receptors bind to ATP, a phosphatase assay was set up based on the ability of 

ATPase to remove a phosphate from ATP to generate ADP; this process can be followed using 

phosphate detection reagent. 

Increasing concentrations of ATP were tested to find the range where the response is linear.  Then, 

increasing concentrations of enzyme were tested against a single ATP concentration to ensure that 

the enzymatic response is linear (Figure 3.25).  A concentration in the linear region was chosen so 

that inhibition would be readily observed as a decrease in absorbance. 
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Figure 3.26: Calibration of ATPase assay.  a: Commercially available ATPase (0.15 g/ml) was 
incubated with increasing concentrations of ATP for 15 minutes at 37oC before the reaction was 
stopped with phosphate detection reagent.  The increase is linear until approximately 30 µM ATP 
(linear fit shown); above this concentration the enzyme reaches saturation. b: ATP (15 µM) was 
incubated with increasing concentrations of ATPase for 15 minutes at 37oC before the reaction was 
stopped by addition of phosphate detection reagent. The change in absorbance increases linearly up 
to 0.75 µg/ml ATPase. Error bars represent standard deviation of two independent experiments 
carried out in triplicate (n=2). 

Using the optimised conditions, receptors 3 and 4 were tested for binding to ATP in the ATPase 

assay.  In a similar fashion to the phosphatase assays, it is expected that the receptors binding to the 

substrate ATP would result in a subsequent inhibition of the ATPase activity (measured by 

phosphate detection reagent). 

Increasing concentrations of receptors 3 and 4 were added to ATP and preincubated for 30 minutes 

before addition of the enzyme to facilitate binding of the chemical receptors to ATP.  The reaction 

was stopped after 15 minutes by addition of the phosphate detection reagent.  The change in 

absorbance was plotted as a % of the vehicle control (2% DMSO v/v). 
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Figure 3.27: Receptors 3 and 4 inhibit ATPase reaction by a small amount. ATP (15 µM) was 
incubated with increasing concentrations of receptor for 30 minutes before ATPase (0.15 µg/ml) was 
added to initiate reaction.  Enzyme was incubated with the substrate for 15 minutes at 37oC before 
addition of phosphate detection reagent.  Activity is stated using turnover (+receptor) as a 
percentage of turnover (vehicle control). Error bars represent standard deviation of two independent 
experiments carried out in triplicate (n=2). 

A decrease in activity is observed in the presence of high concentrations of 3 and 4, although the 

reaction is not fully inhibited (Figure 3.26).  Receptor 3 (100 µM) reduces the activity to around 80% 

of the control while the same concentration of receptor 4 reduces activity to approximately 60%.  

These data suggest that the receptors do bind to ATP.  However even with an excess of receptors 3 

and 4 over ATP there is still at least 60 % activity which suggests that the binding affinity is not 

strong- in comparison, 100 µM of both receptors completely inhibited the activity of the SopB by 

binding to PI(4,5)P2 and IP3.  This suggests that the receptors could still be capable of binding to 

PI(4,5)P2 and IP3 even in the presence of ATP. 
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Figure 3.28: A single concentration of receptor 5 was tested for binding to ATP.  ATP (15 µM) was 
incubated with Receptor 5 for 30 minutes before ATPase (0.15 µg/ml) was added to initiate reaction.  
Enzyme was incubated with the substrate for 15 minutes at 37oC before addition of phosphate 
detection reagent.  Receptor 5 (500 µM) reduces the activity to approximately 45 % of the vehicle 
control. Error bars represent standard deviation of two independent experiments carried out in 
triplicate (n=2). 

A single concentration of receptor 5 was tested (Figure 3.27).  At this very high concentration (500 

µM) the activity of ATPase is reduced to approximately 45 % of the control. The relatively low 

inhibition observed indicates that the receptors bind to ATP but with low affinity.  
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3.8 Receptors have no direct effect on the enzymes SopB and ATPase. 

Small molecules that contain boronic acid motifs are known to inhibit certain types of enzyme (141), 

(142), (100).  The boron can accept lone pairs of electrons from nucleophiles, including the side 

chains of certain amino acid residues such as lysine, histidine and serine.  Enzymes which have any of 

these residues in their active site can potentially form a complex with boronic acids and the activity 

of the enzyme is therefore inhibited. 

The ELISA assays show that the receptors bind to PI(4,5)P2 and are capable of blocking protein-lipid 

interaction.  This is thought to be the mechanism by which the phosphatase reaction is inhibited, 

however to test if the receptors are directly inhibiting the enzyme an artificial substrate was used. 

When o-methyl fluorescein phosphate (OMFP) is dephosphorylated the fluorescent product OMF is 

generated (Figure 3.28).  By measuring the increase in fluorescence intensity, the progress of the 

reaction can be monitored.  If the receptors were directly inhibiting the enzyme, the rate of reaction 

would decrease.  However if the receptors are binding to the substrate, there should be no change 

in the reaction rate when OMFP is used, since there are no diol binding sites available for the 

receptors to bind. 

 

Figure 3.29: SopB removes the phosphate from OMFP to generate fluorescent OMF. 

Increasing concentrations of enzyme were tested against a single OMFP concentration to ensure 

that the reaction rate was not in the range of saturation (Figure 3.30). 
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Figure 3.30: SopB dephosphorylates OMFP to generate fluorescent OMF.  The fluorescence intensity 
of enzymatically generated OMF is plotted vs time for increasing enzyme concentrations (0  10.6 

g/ml).  OMFP (50 M) was added to initiate reaction and fluorescence intensity was monitored 
(Excitation 485 nm, Emission 525 nm). 

 

At high enzyme concentrations the increase in fluorescence intensity is linear for the first ten 

minutes, and starts to plateau after around 15 minutes.  Therefore the rate was calculated as the 

change in intensity over ten minutes. 
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Figure 3.31: Increase in fluorescence over 10 minutes increases linearly with increasing SopB 

concentration (up to 11.8 g/ml).  Substrate (50 µM) was added to the initiate reaction and 
fluorescence intensity was monitored (Excitation 485 nm, Emission 525 nm).  Control contained no 
enzyme in order to measure background hydrolysis of OMFP; this was subtracted from each data 
point. Error bars represent standard deviation of three independent experiments carried out in 
triplicate (n=3). 
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The rate of reaction increased linearly up to 11.8 µg/ml SopB (Figure 3.30).  Then the enzyme was 

tested against increasing concentrations of the substrate in order to determine the linear range 

(Figure 3.31). 
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Figure 3.32: Increase in fluorescence (over 10 minutes) vs substrate concentration.  Substrate was 

added to SopB (2.36 g/ml) to initiate reaction and fluorescence intensity was monitored (Excitation 
485 nm, Emission 525 nm). Error bars represent standard deviation of three independent 
experiments carried out in triplicate (n=3). Km and Vmax determined using GraFit version 6.0.12. 

 Km = 107.6 ± 11.0 µM, Vmax = 3.4 ± 0.1. 

The reaction rate was then measured in the presence of receptors 3 and 4 (100 µM each).  Controls 

were set up which contained no enzyme in order to calculate the rate of background hydrolysis of 

OMFP.  The latter was subtracted from the reaction rate of the enzyme. 
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Figure 3.33:  SopB is not inhibited by receptor 3 or receptor 4.  The rate of enzymatic hydrolysis of 

OMFP to OMF by SopB (2.36 g/ml) is unchanged in the presence of receptor 3 (100 M, squares) or 

receptor 4 (100 M, triangles).  OMFP (50 M) was added to initiate reaction and fluorescence 
intensity was monitored (Excitation 485 nm, Emission 525 nm).  Controls contained no enzyme in 
order to measure background hydrolysis of OMFP.  Error bars represent standard deviation of three 
independent experiments carried out in triplicate (n=3). 

As discussed above, at 100 µM, both receptors inhibited the dephosphorylation of PI(4,5)P2 and IP3.  

At the same concentration these receptors did not inhibit the dephosphorylation of OMFP.  Since 

OMFP lacks the diol motif, receptors are unlikely to bind strongly and therefore any inhibition 

observed would likely be due to the receptors directly interacting with the enzyme.  Since no 

inhibition is observed, it is assumed the receptors are not directly interacting with the enzyme 

(Figure 3.32). 
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The same process was repeated with ATPase.  Firstly, the activity of the enzyme on OMFP was tested 

by increasing first the enzyme concentration in the presence of 50 M OMFP, then by increasing the 

OMFP concentration in the presence of 0.15 g/ml ATPase (Figure 3.33). 
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Figure 3.34: Calibration of ATPase activity on the artificial substrate OMFP.  a: Increasing 

concentrations of OMFP were added to ATPase (0.15 g/ml) to initiate reaction.  Controls were set 
up for each concentration of OMFP without enzyme to monitor background hydrolysis of OMFP.  b: 

OMFP (50 M) was added to increasing amounts of enzyme.  For a and b, Excitation = 485 nm, 
Emission = 525 nm. Error bars represent standard deviation of two independent experiments carried 
out in triplicate (n=2). 

 

In order to test whether the receptors inhibit the enzyme, receptors 3 and 4 (100 M) were 

incubated with the enzyme before the OMFP was added to initiate the reaction.  Fluorescence 

intensity was monitored over 10 minutes. 
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Figure 3.35:  ATPase is not inhibited by receptor 3 or receptor 4. The rate of enzymatic hydrolysis of 

OMFP to OMF by ATPase (0.15 g/ml) is unchanged in the presence of receptor 3 (100 M, squares) 

or receptor 4 (100 M, triangles).  OMFP (50 M) was added to initiate reaction and fluorescence 
intensity was monitored (Excitation 485 nm, Emission 525 nm).  Controls contained no enzyme in 
order to measure background hydrolysis of OMFP. Error bars represent standard deviation of two 
independent experiments carried out in triplicate (n=2). 

 

The rate of dephosphorylation of OMFP was not affected by the presence of the receptors (3.34).  

These data confirm that, receptors 3 and 4 have no direct effect on the enzyme.  The receptors have 

only a negligible inhibitory effect on the reaction between ATP and ATPase which can be attributed 

to the low affinity binding of the receptors to ATP. 
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3.9 Summary: PI(4,5)P2 receptors 

3.9.1 Displacement assays using receptors 3 and 4 failed 

Although binding of the receptors to the dye PV was demonstrated (Figure 3.5), the addition of 

analytes proved problematic.  In aqueous buffered conditions the presence of IP3 induced no colour 

change (a change in colour would indicate that the receptors were binding to IP3), even when large 

excesses of IP3 over PV were present (Figure 3.9).  The assays were also attempted in methanol-

buffer mixtures (Figure 3.10) however addition of the IP3 induced a precipitate that prevented the 

use of UV-Vis to monitor the assay. 

3.9.2 Receptor 4 binds more strongly to PI(4,5)P2 than receptors 3 and 5 

By means of a competitive ELISA, receptors 3-5 were shown to bind to PI(4,5)P2 (Figure 3.16).  The 

presence of the receptors inhibits the interaction of the PLC1-PH domain with PI(4,5)P2 by blocking 

access to the lipid headgroup.  Monomeric receptor 3 binds with approximately 7-fold lower affinity 

than symmetric receptor 4, which may be due to the diboronic acid structure of receptor 4 which 

has two binding sites.  Interactions between boronic acid and diols are reversible, so when one of 

these bonds is hydrolysed, receptor 4 can still bind via the other boronic acid.  The free boronic acid 

will remain close to the PI(4,5)P2 layer and the likelihood of binding again to the lipid headgroup is 

high.  In contrast, if the bond between the boronic acid of receptors 3 or 5 and PI(4,5)P2 is 

hydrolysed, the receptor can diffuse away from the membrane surface into the bulk solution, where 

the probability of binding to the lipid headgroup is reduced.  Receptor 5 has a slightly higher binding 

affinity than receptor 3 which may be attributable to the presence of a thiourea (receptor 5) in place 

of a urea (receptor 3). 

3.9.3 Receptor 4 shows preference for PI(4,5)P2 over IP3; receptor 3 exhibits little 

preference 

Phosphatase assays using the enzyme SopB were used to compare the binding strengths of both 

receptors for PI(4,5)P2 as part of a membrane, and IP3 free in solution.  While receptor 3 showed a 

small preference for PI(4,5)P2 over IP3 (Figure 3.18), receptor 4 displayed a marked preference for 

the lipid over the headgroup (Figure 3.19).  This may be due to the symmetric nature of receptor 4 

which is more suited to binding two headgroups simultaneously, which is favoured when the 

headgroups are prearranged at a membrane rather than free in solution (see Figure 3.35). 
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Figure 3.36: A schematic representation of receptor 4 binding to two molecules of PI(4,5)P2 at the 
membrane, and to a single IP3 molecule in solution. 

3.9.4 Receptors 3 and 4 show good selectivity for PI(4,5)P2 over other PIPs 

The selectivity of receptors 3 and 4 was tested using SopB, which is able to dephosphorylate all PIPs, 

in a phosphatase assay.  Both receptors decreased the enzyme activity and therefore must have 

interacted strongly with PI(4,5)P2.  Receptor 3 showed a small amount of binding to the 

monophosphoinositides PI(3)P, PI(4)P and PI(5)P and also to PI(3,4,5)P3 (Figure 3.22).  Receptor 4 did 

not bind to any of the other PIPs (Figure 3.23).  Receptor 5 was not tested in this way due to lack of 

material, however it is expected that it will have similar specificity to receptor 3 due to its similar 

structure. 

3.9.5 Receptor 5 can detect PI(4,5)P2 

Although receptor 5 does not experience any change in fluorescence upon binding (Figure 3.12), the 

receptor can be used to probe immobilised PI(4,5)P2.  Figure 3.13 revealed that the increase in 

PI(4,5)P2 is observed as an increasing fluorescence intensity up to approximately 0.5 nmols.  

Although the detection limit of receptor 5 (0.1 nmol, Figure 3.13) is lower than that of PLC1-PH 

domain (approx. 30 pmol), the receptor shows potential as a future PI(4,5)P2 detection tool.  By 

increasing the affinity of the receptor for PI(4,5)P2, a lower detection limit may be achieved. 

3.9.6 Receptors 3-5 bind with low affinity to ATP 

ATP contains a central ribose which possesses a 1,2-diol, and phosphate groups (Figure 3.24).  These 

functional groups are known to interact with boronic acids and ureas, and therefore receptors 3-5 

have the potential to bind ATP. This was tested using a phosphatase assay employing ATP and 

ATPase.  The turnover of the enzyme remained high, even at high receptor concentrations, 

indicating that the receptors to not bind the substrate strongly (Figure 3.26).   
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3.9.7 Receptors do not directly inhibit SopB or ATPase 

Finally, both receptors were tested for the ability to inhibit the enzymes SopB and ATPase directly, 

by interaction with the enzyme rather than the substrate.  In the presence of receptors 3 and 4, the 

enzymatic reaction with an artificial substrate was unaffected, suggesting that the enzymes are not 

inhibited by the receptors (Figures 3.32 and 3.34). 
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Chapter 4: Evaluation of PI(3,4,5)P3 receptors 

Metal-based receptors 12 and 14 were designed to bind PI(3,4,5)P3 (Chapter 2.3).  Receptor 16 

(Figure 4.3) was designed and synthesised by Dr. K. Damodaran as an ATP-binding receptor.  Its 

structure suggests it may be able to bind one or more phospholipids so it was also tested.  Due to 

the presence of the two strongly phosphate-binding zinc-DPA motifs, it is possible they will also bind 

to other phosphorylated PIPs.  To examine which PIPs these receptors bind to and establish their 

affinity and selectivity, indicator displacement assays were employed.  Competitive ELISA were 

carried out using the PI(3,4,5)P3-binding GRP1-PH domain to evaluate the ability of the receptors to 

block protein-lipid interactions.  The ability of the receptors to compete with the enzyme PTEN was 

established by phosphatase assays. 

 

 

Figure 4.1: Receptor 12 

 

 

 

Figure 4.2: Receptor 14 

 

 

 

Figure 4.3: Receptor 16 
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4.1 Receptors were used in Indicator Displacement Assays (IDAs). 

Firstly, the binding of receptors to the seven phospholipids was explored.  As previously described, 

IDAs are a simple and effective method of determining binding affinity between receptors and 

analytes (143).  The ability of each receptor to bind the various PIPs was examined. 

 

4.1.1 Receptors bind to anionic dye. 

Pyrocatechol violet (PV) was chosen as the indicator for the IDAs due to its large bathochromic shift 

upon binding to metal complexes (144).  All three receptors bind to PV changing the colour from 

yellow to blue-green, a process which was readily monitored by UV-Vis spectroscopy (see Figure 4.4 

and Appendix, Figure 9.13). 
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Figure 4.4: Receptor 12 binds to PV. Figure a: The changes in the UV-Vis spectrum of PV (constant 

concentration at 50 M) upon addition of increasing concentrations of receptor 12 (0 – 400 M).  
Titration was carried out in HEPEs buffer (100 mM) at pH 7.4.  As the receptor concentration 
increases, the peak at 640 nm increases in intensity and at the one at 440 nm decreases in intensity. 
Figure b: a plot of change in absorbance of the peak at 640 nm vs. receptor concentration. Figure c: 
Far left, a 1:2 mixture of receptor 12 and PV. Vials 1-6 contain increasing concentrations of IP4.  Upon 
binding IP4 to the receptor the dye is released, returning to its original yellow colour.  Dye 
concentration in all samples was 100 µM and receptor concentration was 50 µM.  IP4 concentrations: 
1= 0 µM, 2 = 6.25 µM, 3 = 12.5 µM, 4 = 25 µM, 5 = 50 µM, 6 = 100 µM.  
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For the next stage of the assay, stoichiometric ratios of the receptor-dye complexes were required, 

so that no excess receptor was present; if this was the case then upon addition of the analyte, the 

colour change would not be proportional to the displacement of the dye.  To determine the 

stoichiometry of receptor-PV interaction, Job’s plots (continuous variation plots, Figure 4.5) were 

carried out with all three receptors with PV. 
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Figure 4.5: Job’s plot for receptors 12 (plot a), 14 (plot b) and 16 (plot c) and PV. Change in 
absorbance is plotted against the mole fraction of receptor as the ratio of receptor to dye is varied 

Total concentration is 100 M and assay was carried out in 100 mM HEPES, pH 7.4. Error bars 
represent standard deviation of three independent experiments carried out in triplicate (n=3). 
Indicated stoichiometry is shown in Table 4.6. 
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Table 4.6: Maxima of Job’s Plot for each receptor:dye complex and indicated stoichiometry 

Receptor Maximum of Job’s Plot Stoichiometry (Receptor: dye) 

12 X(12) = 0.3 1:2 

14 X(14) = 0.3 1:2 

16 X(16) = 0.5 1:1 

 

The maxima of the plots indicated the receptor-PV stoichiometry for each receptor and results are 

summarised in Table 4.6.  The dizinc-DPA based receptors each bound to two PV moieties.  Receptor 

16 had a 1:1 binding ratio to PV however no information was obtained on the mechanism of this 

interaction.  The zinc-DPA motif may interact with the sulfate group while the boronic acid binds to 

the catechol, or only one of these interactions may be the source of binding. 

4.1.2 Inositol phosphates and phosphoinositides bind to receptors. 

To measure the ability of the receptors to bind to inositol phosphates and phosphoinositides, these 

polyphosphates were added to a solution of the receptor-dye complex.  The receptor-dye complexes 

are blue-green in buffered aqueous conditions; when polyphosphates were added the dye was 

released by the receptor and returned to its original yellow colour (see Figure 4.7).  This process was 

monitored by UV-Vis spectroscopy. 

By using displacement assays we can compare the binding of each receptor to all the PIPs, and 

therefore evaluate the selectivity of the receptor.  These were added to a solution of each receptor-

PV complex, and the magnitude of displacement was measured.  Analytes which bind more strongly 

will displace the PV from the receptor-PV complex and the absorbance at 640 nm will decrease.  The 

phospholipid phosphatidylserine (PS) was included as due to its anionic nature it could potentially 

also bind the receptors. 
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Figure 4.7: The binding specificity of receptor 12. Absorbance at 640 nm was measured upon addition 

of each PIP (1:1 PC, PIP; 25 M) to a 1:2 mixture of receptor 12 (25 µM) and PV (50 µM).  Background 

(absorbance of 50 µM free PV) has been subtracted to give Absorbance. This assay shows that 
receptor 12 binds to PI(3,4)P2 and PI(3,4,5)P3 most strongly. Error bars represent standard deviation 
of three independent experiments carried out in triplicate (n=3). 

 

The specificity plot (Figure 4.8) shows that receptor 12 binds preferentially to PI(3,4,5)P3 and 

PI(3,4)P2, suggesting that the receptor binds via the 3- and 4- phosphates present in both of these 

PIPs.  Although dizinc complexes are known to interact strongly with polyphosphates, in this case the 

distance between the two zinc-DPA motifs makes it more likely that the two adjacent phosphates 

are interacting with one zinc-DPA and one urea, respectively. 
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Figure 4.8: The binding specificity of receptor 14. Absorbance at 640 nm was measured upon addition 

of each PIP (1:1 PC, PIP; 25 M) to a 1:2 mixture of receptor 14 (25 µM) and PV (50 µM).  Background 

(absorbance of 50 µM free PV) has been subtracted to give Absorbance. This assay shows that 
receptor 14 binds to polyphosphorylated PI(3,4)P2, PI(3,5)P2, PI(4,5)P2 and PI(3,4,5)P3 equally. Error 
bars represent standard deviation of three independent experiments carried out in triplicate (n=3). 

 

Receptor 14 shows very little binding to monophosphorylated PIPs (Figure 4.9).  While it binds to bis- 

and tris-phosphorylated PIPs, it exhibits little selectivity between each of them.  Since receptor 14 

has two flexible linkers about the central urea, it is plausible that these arms can move to 

accommodate the target polyphosphate.  In contrast, receptor 12 has a more rigid core which 

restricts movement of the zinc-DPA motifs, preventing the receptor from interacting strongly with 

some of the PIPs. 
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Figure 4.9: The binding specificity of receptor 16. Absorbance at 640 nm was measured upon addition 

of each PIP (1:1 PC, PIP; 25 M) to a 1:2 mixture of receptor 16 (25 µM) and PV (25 µM).  Background 

(absorbance of 25 µM free PV) has been subtracted to give Absorbance. This assay shows that 
receptor 16 binds to PI(3,4,5)P3 most strongly. Error bars represent standard deviation of two 
independent experiments carried out in triplicate (n=2). 

 

Receptor 16 shows preferential binding to PI(3,4,5)P3 (Figure 4.10).  This is probably due to the ability 

of both the Zn-DPA and boronic acid groups to strongly bind phosphates, as well as the hydrazide 

linker which can interact via hydrogen bonding.  Although the boronic acid was expected to be 

capable of binding to 1,2-diols the results show that the binding to diol-containing PI(4,5)P2 is weak.  
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4.2 Receptors compete with GRP1-PH domain for PI(3,4,5)P3 binding. 

In order to test whether the receptors were capable of competing with the protein domain currently 

used for detecting PI(3,4,5)P3, competitive ELISA were employed in the same manner as for the 

evaluation of PI(4,5)P2 binding (see Chapter 3).  However instead of the PLC1-PH domain which 

selectively binds PI(4,5)P2, the PI(3,4,5)P3-specific GRP1-PH domain was used (See Methods section 

8.8). 

4.2.1 Calibration of PI(3,4,5)P3 detection using the GRP1-PH domain probe 

Prior to testing the binding characteristics of the chemical receptors the optimal binding conditions 

of PLC1-PH domain for PI(4,5)P2 were established.  The assay was optimised to respond linearly to 

changes in both the lipid (Figure 4.11a) and the protein domain (Figure 4.11b).  
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Figure 4.10: Calibration of ELISA.  Figure a: Absorbance at 450 nm increases as increasing 
concentrations of lipid are bound by the PI(3,4,5)P3-binding domain GRP1-PH domain (100 nM). 

Background (absorbance at 0 M lipid) subtracted to give  absorbance at 450 nm. Figure b: 
Absorbance at 450 nm increases as increasing concentrations of GRP1-PH domain detect a single 

concentration of PI(3,4,5)P3 (50 pmols). Background (absorbance at 0 M protein) subtracted to give  
absorbance at 450 nm.  Error bars represent standard deviation of two independent repeats carried 
out in triplicate (n=2). Apparent dissociation constants were calculated using the method of Orosz 
and Ovadi (137). 

Kd
app = 769 ± 177 nM. 

The data presented in Figure 4.11a shows that the lipid could be linearly detected up to 100 pmols 

of PI(3,4,5)P3 by 100 nM GRP1-PH domain; and that 50 pmols of PI(3,4,5)P3 exhibit a linear response 

with up to 250 nM protein domain (Figure 4.11b).  Therefore conditions using 50 pmols of PI(3,4,5)P3 

and 65 nM GRP1-PH domain were chosen to ensure that any inhibition by the receptors would be 

observed as a proportional decrease in colourimetric response in the following experiments. 
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4.2.2 Receptors inhibit protein-lipid binding. 

Competitive ELISAs were set up in order to test the ability of receptors 12, 14 and 16 to inhibit 

protein-lipid interactions.  PI(3,4,5)P3 -receptor mixtures were adsorbed onto the ELISA plate 

surface.  The protein domain was then added to compete with the receptors, and the amount of 

bound protein was detected with enzyme-linked antibodies.  The calculated apparent dissociation 

constant of GRP1-PH domain was used to determine the dissociation constant of each receptor for 

PI(3,4,5)P3. 
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Figure 4.11: Receptors 12 (a), 14 (b) and 16 (c) bind to PI(3,4,5)P3.  Absorbance at 450 nm is plotted 
as a percentage of the control (no receptor present).  As concentration of receptor increases, the 
amount of protein detected decreases, suggesting that the receptor is successfully competing with 
the protein.  PI(3,4,5)P3 is used at 50 pmols and GRP1-PH domain at 65 nM.  Assay was carried out 
using procedure described in Method section. Error bars represent standard deviation of three 
independent experiments carried out in triplicate (n=3). Apparent dissociation constant was 
calculated using the method outlined by Orosz and Ovadi (137).   
Kd

app (Receptor 12) = 43.1 ± 3.6 μM. 
Kd

app (Receptor 14) = 50.8 ± 4.1 μM. 
Kd

app (Receptor 16) = 193.9 ± 71.7 µM. 
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Figure 4.12: Receptor 16 does not bind to PI(4,5)P2.  Absorbance at 450 nm is plotted as a percentage 

of the control (no receptor present).  PI(4,5)P2 is used at 100 pmols and PLC1-PH domain was 50 nM.  
Assay was carried out using procedure described in Method section. Error bars represent standard 
deviation of two independent experiments carried out in triplicate (n=2). 

 

As Figure 4.11 shows, from all the tested compounds receptor 12 inhibits the protein-lipid 

interaction to the greatest extent, followed closely by 14.  Both these receptors reduce the level of 

protein detected down to background levels.  In contrast, receptor 16 initially binds strongly but only 

reduces the detected protein to around 30 % of the control, indicating that the GRP1-PH domain, at 

65 nM concentration, is still able to compete with the larger concentration of receptor and bind to 

the lipid.  Since it contains a boronic acid motif, receptor 16 was also tested for binding to PI(4,5)P2 

(which has been shown to bind to boronic acid-containing receptors) using the same procedure used 

to test receptors 3, 4 and 5 (Section 3.4.2).  However as shown in Figure 4.13, even at high 

concentrations receptor 16 was unable to block protein-lipid interactions; this correlates with the 

lack of PI(4,5)P2 binding previously indicated by the IDA (Figure 4.10). 

This pattern shows that the dizinc compounds are more effective than receptor 16, which contains 

only one zinc-DPA motif.  In receptors 12 and 14 the two zinc-DPA groups seem to act cooperatively, 

which is a more effective way of competing with a protein domain that possesses only a single 

binding site.  Although the boronic acid is capable of interacting with phosphates, this is not a strong 

bond and is easily broken. 
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Since phosphate is present in cells at high concentrations, the ability of these receptors to bind 

PI(3,4,5)P3 in the presence of phosphate was examined.  To this end, phosphate (KHPO4) was used to 

compete with PI(3,4,5)P3 for receptor binding.  It was expected that if the receptors interacted well 

with phosphate anions in solution, they would no longer to bind PI(3,4,5)P3 and therefore the 

binding of GRP1-PH domain would be uninhibited. 

Competitive ELISAs were carried out using the same conditions as Figure 4.12 except for washing 

with PBST (phosphate buffered saline with Tween-20) instead of TBST.  Inhibition of protein-lipid 

binding by receptors 14 and 16 was greatly reduced (Figure 4.14). 
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Figure 4.13: Binding of receptors 12 (a), 14 (b) and 16 (c) is decreased in the presence of phosphate.  
Absorbance at 450 nm is plotted as a percentage of the control (0 M receptor present). PI(3,4,5)P3 is 
used at 50 pmols and GRP1-PH domain at 65 nM.  Assay was carried out using procedure described 
in Method section, except PBST was used in every washing step instead of TBST.  Error bars represent 
standard deviation of two independent experiments carried out in triplicate (n=2). 
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As shown in Figure 4.13, the presence of phosphate decreases the inhibition observed for all 

receptors.  Receptor 12 alone is still able to bind PI(3,4,5)P3 and prevent the GRP1-PH domain from 

binding.  However the IC50 value has shifted and to inhibit protein-lipid binding by 50 % in the 

presence of phosphate requires around 10-fold more receptor 12 than under phosphate-free 

conditions. 

The ability of receptors 14 and 16 to inhibit protein-lipid binding is removed completely in the 

presence of KHPO4.  The receptors must therefore bind to the phosphate in solution, allowing the 

GRP1-PH domain to bind the immobilised PI(3,4,5)P3.  Therefore it is possible that in cells (which 

contain high concentrations of phosphate and many phosphorylated species) receptors 14 and 16 

will be unable to bind PI(3,4,5)P3, or block protein-lipid interactions.  
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4.3 Phosphatase assay: PI(3,4,5)P3 substrate 

Receptors 12, 14 and 16 have been shown by indicator displacement assays to directly bind 

PI(3,4,5)P3; competitive ELISAs were then employed to show that the receptors could block the 

interaction between lipid headgroups and protein domains.  In a cellular environment downstream 

effectors such as Akt would be prevented from binding the lipid, and this should therefore attenuate 

the downstream signalling pathway.  By reducing available PI(3,4,5)P3 the receptors act as mimetics 

of PTEN, an enzyme which reduces PI(3,4,5)P3 levels at the plasma membrane.  The enzyme PTEN is 

a 3-phosphatase and dephosphorylates the 3’-position of PI(3,4,5)P3 generating PI(4,5)P2. 

The chemical receptors can bind PI(3,4,5)P3, blocking access to the lipid and lowering the amount of 

PI(3,4,5)P3 that is available to downstream effectors.  By sequestering PTEN’s substrate the 

receptors can also act as an inhibitor of dephosphorylation.  To examine this, a phosphatase assay 

was carried out in the presence of the receptors. 

4.3.1 Calibration of PTEN dephosphorylation of PI(3,4,5)P3. 

The dephosphorylation of PI(3,4,5)P3 by PTEN can be monitored by use of the phosphate detection 

reagent used previously.  In order to be able to observe inhibition of this reaction by the chemical 

receptors, the assay was calibrated in order to determine the concentrations of enzyme and 

substrate which provided a linear response.  

The response of the purified PTEN to increasing concentrations of PI(3,4,5)P3 was determined; then 

the enzyme concentration was increased for a given substrate concentration (Figure 4.15). 
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Figure 4.14: Calibration of phosphatase assay using PI(3,4,5)P3 and PTEN.  Figure a: Increasing 
concentrations of PC:PI(3,4,5)P3 (1:1 ratio prepared as described in Methods section) were incubated 

with 126.9 g/ml purified PTEN for 20 minutes at 37oC before the reaction was stopped by addition 
of phosphate detection reagent.  Purification of PTEN is detailed in Methods section.  Figure b: 
Increasing concentrations of PTEN were incubated with 30 µM PI(3,4,5)P3 for 20 minutes at 37oC 
before the reaction was stopped using phosphate detection reagent. Error bars represent standard 
deviation of two independent experiments carried out in triplicate (n=2).  Linear fit shown. 

 

4.3.2 Receptors 12, 14 and 16 reduce PTEN turnover 

The next aim was to show that when binding to lipids in this way, the chemical receptors would 

inhibit the action of enzymes by blocking access to the substrate.  To examine this, the receptors 

were incubated with PI(3,4,5)P3 before the application of the enzyme PTEN.  The plots in Figure 4.16 

show that the enzyme is inhibited by all three receptors to varying degrees.  Receptor 12 has the 

lowest IC50 of 8.5 µM while receptors 14 and 16 both show IC50 of approximately 20 µM. 
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a b  

c  

Figure 4.15: Inhibition of the phosphatase activity of PTEN (126.9 µg/ml) by receptors 12 (a), 14 (b) 
and 16 (c).  Receptors were incubated with mixed 1:1 PC-PI(3,4,5)P3 (30 µM) vesicles for 15 minutes, 
followed by addition of the enzyme.  After 20 minutes at 37oC the enzyme reaction was stopped by 
addition of phosphate detection reagent.  Turnover in the presence of receptor was stated as a 
percentage of the turnover of a control containing no receptor. Error bars represent standard 
deviation of two independent experiments carried out in triplicate (n=2). 
Receptor 12 IC50 = 8.5 ± 0.7 µM;  
Receptor 14 IC50 = 20.8 ± 1.5 µM;  
Receptor 16 IC50 = 19.9 ± 2.1 µM. 
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4.4 Zinc-based receptors inhibit PTEN directly 

To test whether the receptors directly inhibit PTEN, the artificial substrate OMFP was employed 

(Figure 3.29).  The increase in fluorescence due to enzymatic dephosphorylation was monitored over 

25 minutes in the presence of receptors 12, 14 and 16 and compared to the rate of increase of 

fluorescence in the absence of receptors (vehicle control). 
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Figure 4.16: Receptors 12, 14 and 16 (15 µM) inhibit enzyme activity.  The increase in fluorescence 
intensity over time as PTEN (84.6 µg/ml) dephosphorylates OMFP (50 µM).  Reaction carried out with 
no receptor (Control) and in the presence of 15 µM 12, 14 and 16. Error bars represent standard 
deviation of two independent experiments carried out in triplicate (n=2). 

 

As shown in Figure 4.17, the rate of OMFP hydrolysis is reduced in the presence of all three 

receptors.  Since the OMFP substrate possesses a terminal phosphate it was thought that the 

receptors may be inhibiting the reaction by binding to the substrate.  Therefore different substrate 

concentrations were used to test whether the inhibition was due to substrate binding or a direct 

effect on the protein.  If the inhibitory effect is overcome by addition of large excesses of OMFP 

(more than 10x receptor concentration), it is likely that the inhibition is due to the receptors binding 

to the substrate.  Conversely, if the inhibition is independent of concentration then the effect is 

probably due to direct inhibition of the enzyme. 

The rate of dephosphorylation (change in fluorescence intensity over time) was measured for four 

different concentrations of OMFP, with the receptor and enzyme concentrations remaining 

constant.  Since divalent metal ions are known to inhibit some phosphatases, free zinc (II) was also 

tested (IC50 of zinc towards PTEN was determined to be 13.6 ± 1.3 µM, see Appendix Figure 9.11).  It 

is possible that the zinc present in receptors 12, 14 and 16 is the origin of inhibition of PTEN activity. 
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Figure 4.17: Rate of dephosphorylation of OMFP over 10 minutes, expressed as % of control for 
increasing OMFP concentrations.  All receptors and zinc used at 15 µM each, PTEN used at 84.6 
µg/ml.  Error bars represent standard deviation of two independent experiments carried out in 
triplicate (n=2). 

The data in Figure 4.18 show that all the receptors appear to inhibit the enzyme activity.  The same 

pattern of inhibition is observed at all substrate concentrations, indicating that the inhibition is 

independent of substrate concentration.  If the mechanism of inhibition was via the receptors 

binding to the substrate, this effect would decrease as substrate concentration increased. Therefore 

the receptors must be directly inhibiting the enzyme. 

All three receptors show similar levels of inhibition to zinc (II).  However the inhibition does not 

appear to be independent of the ligands.  Receptors 12 and 14 possess two equivalents of zinc (II) 

each and yet show the same amount of inhibition as one equivalent of free zinc (II), and as receptor 

16.  If the receptors were releasing their chelated zinc (II) into solution it would be expected that 15 

µM receptors 12 and 14 would have twice the inhibitory effect of 15 µM free zinc (II). 

This could be due to one of two reasons.  Firstly, that the zinc (II) is existing in equilibrium between 

being free in solution, and coordinated by DPA.  Therefore partial inhibition is observed due to the 

free zinc (II).  Secondly, that the coordinated zinc is inhibiting the enzyme via a free coordination 

site.  Therefore only one receptor molecule (containing two coordinated zinc (II)) is required for 

inhibition. 
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4.5 Summary: PI(3,4,5)P3 receptors 

4.5.1 Receptors 12, 14 and 16 show variable specificity 

Indicator displacement assays indicated that receptor 12 showed binding specificity towards 

PI(3,4)P2 and PI(3,4,5)P3 (Figure 4.8).  This pattern suggests the receptor binds both the phosphates 

on the 3- and 4- positions of these lipids.  The PH domain of Akt has similar selectivity, binding also 

to PI(3,4)P2 and PI(3,4,5)P3, therefore this receptor is a potential mimetic of the Akt-PH domain.  

Receptor 14 showed a preference for polyphosphorylated PIPs, but no selectivity between these 

(Figure 4.9).  The small distance between the zinc-DPA motifs and the flexible nature of the linker 

between these is likely to contribute to its promiscuous binding. 

Receptor 16 bound preferentially to PI(3,4,5)P3, showing only weak interaction with other PIPs 

(Figure 4.10).  Although it was expected that 16 would bind with good affinity to PI(4,5)P2 due to the 

possibility of forming a cyclic boronate ester this was not the case.  This is likely due to the nature of 

the boronic acid group: receptors 3, 4 and 5 all have methyl-amino groups adjacent to the boronic 

acid which form a tetrahedral boronate, which is known to interact more strongly with diols at 

physiological pH (122), (145) than the trigonal boronic acid.  Receptor 16 does not have this 

functional group next to the boronic acid. 

4.5.2 Dizinc receptors fully inhibit protein-lipid interaction in phosphate-free conditions 

Competitive ELISA showed that receptor 12 bound strongly to immobilised PI(3,4,5)P3, blocking the 

PH domain of GRP1.  Receptor 14 showed slightly lower affinity binding; however both of these 

receptors were capable of completely blocking protein-lipid interaction at high concentrations.  

Receptor 16 also displayed strong PI(3,4,5)P3 binding although even at higher concentrations this 

receptor was unable to completely inhibit protein-lipid binding.  This receptor showed no binding to 

PI(4,5)P2 when tested using this method, even at high concentrations. 

When phosphate buffer was used instead of Tris buffer, the larger phosphate concentrations 

competed with the lipid for receptor binding sites.  Receptors 14 and 16 were unable to inhibit 

protein-lipid interactions under these conditions, while the IC50 of receptor 12 was reduced by 

around 10-fold.  Since cells typically contain many phosphorylated species it is unlikely that 

receptors 14 and 16 will bind their targets.  Receptor 12 shows more resilience in the presence of 10 

mM phosphate, since some protein-lipid inhibition is still observed. 

4.5.3 Receptors inhibit dephosphorylation of PI(3,4,5)P3 and OMFP by PTEN 

Phosphatase assays using PTEN showed that these receptor were potent inhibitors of the 

dephosphorylation of PI(3,4,5)P3, in particular receptor 12 which had the lowest IC50.  However, the 
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use of the artificial substrate OMFP showed that the zinc present in the receptors was having a 

direct inhibitory effect on the enzyme.  Therefore the mechanism of the inhibition is not clear- it 

may be that the receptors do indeed bind the substrate, while the zinc simultaneously inhibits the 

enzyme.  A small variation in the IC50 values would seem to indicate that receptor-PI(3,4,5)P3 binding 

is responsible for part of the inhibition.  However in reactions carried out with the artificial substrate 

OMFP, the pattern of inhibition was the same at all OMFP concentrations.  This suggested that the 

enzyme is inhibited directly, since any substrate-binding inhibition would be overcome at higher 

substrate concentrations. 

4.5.4 Metal ions inhibit a number of phosphatases 

Divalent metal ions can interact with proteins in several ways as detailed in a review by Meggers 

(146).  Firstly, their versatile geometry can direct the shape of ligands and form uniquely shaped 

inhibitors that can fit into the active site of an enzyme and act as a competitive inhibitor.  One 

example of this is the vanadyl complex VO-OHpic which is a potent and selective inhibitor of PTEN 

(IC50 = 35 nM ± 2.0 nM) (147) over other phosphatases.  The vanadium is chelated by two 3-

hydroxypicolinate ligands and the resulting complex fits well into the active site of PTEN, but not 

other similar phosphatases; the resulting complex is much more potent and selective than merely 

delivering the vanadate to the active site of the enzyme.  Secondly, metals can interact directly with 

amino acid residues present in the active sites of enzymes.  This is a common mode of action 

affecting enzymes which possess active site residues such as cysteine or histidine, since the sulfur or 

nitrogen in the side chains of these residues can coordinate to metal ions.  Several metal ions 

including zinc are known to inhibit protein tyrosine phosphatases and many inhibitors have been 

designed with metal cores (148).  Both the enzymes PTEN and SopB both contain the sequence 

CX(5)R (147), and it is likely that the cysteine residue coordinates to the zinc ion of the receptors. 

That receptors 12, 14 and 16 inhibit phosphatases limits their usefulness in enzymatic assays.  

Instead of mimicking the function of PTEN, they have been shown to inhibit that important tumour 

suppressor, with no more potency than free zinc itself.  However they have also been demonstrated 

to bind to PIPs by means of IDAs and competitive ELISA.  Receptor 12 was shown to bind most 

strongly to PI(3,4,5)P3 with specificity similar to that of the Akt-PH domain (22); in addition it was 

also able to bind PI(3,4,5)P3 in a competitive phosphate-containing environment.  Receptor 16 

showed specificity towards PI(3,4,5)P3 only, similar to the GRP1-PH domain (22).  Therefore as PH 

domain mimetics receptors 12 and 16 may yet prove useful in binding studies using non-enzymatic 

methods such as ELISA. 
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Chapter 5: Evaluation of receptors in cancer cells 

Receptors 3-5 and 12, 14 and 16 have all been shown to inhibit protein-lipid interaction, therefore it 

is expected that firstly, PI(4,5)P2-binding receptors will inhibit the activity of PI3K and reduce the 

amount of PI(3,4,5)P3 generated; and secondly that PI(3,4,5)P3-binding receptors will prevent the 

recruitment of Akt to the plasma membrane. The level of Akt phosphorylated on serine residue 473 

(pSer 473) was used as a marker of interaction of the receptors with endogenous PI(4,5)P2 and 

PI(3,4,5)P3.   

5.1 PI3K-Akt signalling pathway 

As shown in Figure 5.1, the activated form of Akt regulates several downstream pathways which 

control cell growth and proliferation and inhibit apoptosis.  Therefore when this pathway is 

overactivated (for example, when PTEN is mutated and cannot regulate the action of PI3K) cell 

growth is uncontrolled and tumours can form (31), (5), (30).  This is a notorious pathway involved in 

many types of cancer and efforts have been focused on reducing the activation of the PI3K-Akt 

pathway, mainly by inhibiting the action of PI3K. 

 

Figure 5.1: A schematic of the Akt pathway.  Activation of receptor tyrosine kinases activates PI3K, 
which catalyses the phosphorylation of PI(4,5)P2 to PI(3,4,5)P3.  The latter recruits Akt to the plasma 
membrane where it is phosphorylated twice on the Serine 473 and Threonine 308 positions.  
Phosphorylated Akt regulates several downstream signalling pathways which control a number of 
cellular processes including cell survival and proliferation (35).  In several types of cancer the pro-life, 
anti-apoptotic signalling pathway of Akt is overactivated causing tumour formation (31). 
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In previous studies it was established that PHDM was able to enter cells and bind to PI(4,5)P2 (58).  

This binding had a number of effects on PI(4,5)P2-dependent cellular functions: PHDM inhibited 

transferrin endocytosis, actin fibre formation, and reduced the number of mitochondria by 

approximately 40 % (58).  PHDM also reduced the phosphorylation of Akt by binding PI(4,5)P2 and 

inhibiting the synthesis of PI(3,4,5)P3 by PI3K.  This prevented Akt from being recruited to the 

membrane and therefore it was not phosphorylated.  The levels of phosphorylated Akt were probed 

by Western blot and were shown to decrease with increasing PHDM concentrations (personal 

communication, Dr. L. Mak). 

Since receptors 3-5 and 12, 14 and 16 have been shown to bind to PI(4,5)P2 or PI(3,4,5)P3 by in vitro 

assays, they were all tested for the ability to inhibit the phosphorylation of Akt.  It was expected that 

by binding to these phospholipids the receptors would be capable of reducing Akt phosphorylation. 
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5.2 Stimulation with insulin activates PI3K-Akt pathway in HCT116 cells 
 

Since the phosphorylation of Akt was to be stimulated by the addition of insulin, the response of the 

cells to different concentrations of insulin was analysed.  It was expected that the receptors would 

reduce the phosphorylation of Akt, therefore a concentration of insulin was chosen where this effect 

could be observed as a decrease in intensity under the conditions of the experiment.  Therefore, 

cells were starved overnight before treatment with various concentrations of insulin. 

 

Figure 5.2: Increasing concentrations of insulin stimulate phosphorylation of Akt.  HCT116 cells were 
starved overnight and stimulated with increasing concentrations of insulin (15 mins, 37 oC).  Cells 
were lysed and proteins separated using SDS-PAGE.  After transferring to nitrocellulose membrane, 
the proteins were probed with pSer 473 or pan-Akt antibody.  Data shown is representative of two 

independent experiments.  Starred concentration (0.25 gml-1) was used to stimulate cells in later 
experiments. 

 

Figure 5.2 shows that as the concentration of insulin increases, the intensity of the phosphorylated 

Akt band of the Western blot also increases.  The increase in intensity is linear up to around 0.5 

µg/ml insulin, after which the band becomes saturated.  Therefore in order to be able to observe a 

decrease in intensity after application of the receptors, it was decided that the cells would be 

stimulated with 0.25 µg/ml insulin. 
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5.3 Receptors 3 – 5 decrease amount of phosphorylated Akt in HCT116 cells 

After determining the concentration range where Akt phosphorylation increases linearly with rising 

insulin concentrations, receptors 3-5 were applied to serum-starved HCT116 endothelial cells, before 

stimulating the cells with insulin.  In addition, increasing amounts of insulin were applied to cells 

containing vehicle control to ensure that the presence of 2 % DMSO did not affect the response of 

the cells to the concentration of insulin used. 

After the cells were lysed and proteins separated by SDS-PAGE the proteins were transferred to 

nitrocellulose membrane by Western blot, and these membranes were probed with antibodies 

detecting the phosphorylated serine 473 residue of Akt.  The amount of total Akt was also 

determined by probing with pan-Akt antibody. 

 

 

Figure 5.3:  Increasing concentrations of receptors 3 and 4 reduce the phosphorylation of Akt on 
serine 473.  HCT116 cells were starved of serum overnight, before incubation with vehicle (part a) or 
receptor 3 and 4 (part b). This was followed by stimulation with insulin (concentrations as indicated). 
Cells were lysed and proteins separated using SDS-PAGE.  After transferring to nitrocellulose 
membrane, the proteins were probed with pSer 473 or pan-Akt antibody.  Data shown is 
representative of two independent experiments. Part a: HCT116 cells were incubated with DMSO (2 
% v/v, 15 mins, 37 oC), which was followed by stimulation with insulin (concentrations as indicated). 
Part b: Starved HCT116 cells were incubated with receptors 3 and 4 for 15 minutes at 37 oC. The cells 
were then stimulated with insulin (0.25 µg/ml, 15 mins, 37 oC). The appropriate control (lane 2) on 
part a is highlighted with a star, and the concentration of insulin employed is in the linear range.   
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Figure 5.4:  Increasing concentrations of receptor 5 reduce the phosphorylation of Akt on serine 473. 
HCT116 cells were starved, treated with receptor 5 and insulin and analysed for phosphorylated Akt 
content as described in Figure 5.3. Data shown is representative of two independent experiments. 

 

Figures 5.3 and 5.4 show that increasing the concentration of receptors 3, 4 and 5 decreases the 

level of phosphorylated Akt in cells, while the total Akt remains unaffected.  This suggests that the 

Akt pathway is inhibited in the presence of these receptors, since the phosphorylation of Akt is an 

indicator of the activation of this pathway.  Receptor 4 is more potent than receptors 3 and 5, which 

is consistent with its higher affinity and specificity towards PI(4,5)P2.  These results are consistent 

with the data obtained for the original PHDM molecule which was also shown to interrupt various 

PI(4,5)P2 controlled cellular processes.   
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5.4 Receptors 12, 14, 16 have no effect on phosphorylated Akt level in 

HCT116 cells 

Receptor 12 has been shown to bind to PI(3,4)P2 and PI(3,4,5)P3 which are also the targets of Akt, so 

this compound has potential to block phospholipid-Akt interactions and reduce Akt phosphorylation.  

Receptors 14 and 16 bind to other phospholipids as well, however since PI(4,5)P2 is the main 

phosphoinositide component of the plasma membrane (1),(3) it is supposed that these receptors 

have a high probability of interacting with PI(4,5)P2.   As shown by receptors 3-5 in Figures 5.3 and 

5.4, the presence of PI(4,5)P2 –binding receptors decreases phosphorylated Akt levels, presumably 

by inhibiting the synthesis of PI(3,4,5)P3. 

 

Figure 5.5: Increasing concentrations of receptors 12, 14 and 16 have little effect on the 
phosphorylation of Akt on serine 473. HCT116 cells were starved of serum overnight before 
incubation with receptor for 15 minutes at 37oC. After stimulation with insulin (0.25 µg/ml, 15 mins, 
37oC) cells were lysed and proteins separated using SDS-PAGE.  After transferring to nitrocellulose 
membrane, the proteins were probed with pSer 473 or pan-Akt antibody. Data shown is 
representative of two independent experiments. Lane two (*) indicates vehicle control (DMSO only). 

 

The changes in phosphorylated Akt levels that were shown with receptors 3-5 (Figures 5.3 and 5.4) 

were not observed on addition of receptors 12, 14 and 16.  One explanation for this lack of effect 

could be that due to the highly polar nature of the zinc complexes, they may not cross the plasma 

membrane efficiently enough to have an effect.  Therefore an experiment was set up in which the 

ligands were incubated with the cells, followed by an ionophore compound which is known to 

transport zinc into cells.  It was hypothesised that the ligands would form zinc complexes inside the 

cell, and there they would have the potential to bind to phosphoinositides and block protein-lipid 

interaction. 
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Figure 5.6: Compounds 11, 13 and 15 have little effect on phosphorylation of Akt when incubated 
separately to zinc pyrithione.  HCT116 cells were starved of serum overnight before incubation with 
ligand (100 µM) or vehicle control (30 mins, 37 oC). The medium was removed by aspiration and 
replaced with fresh medium to which sodium pyrithione (50 µM) or zinc pyrithione (50 µM) was 
added, and incubated at 37 oC for 15 minutes.  After stimulation with insulin (0.25 µg/ml, 15 mins, 37 
oC) the cells were lysed and proteins separated using SDS-PAGE.  After transferring to nitrocellulose 
membrane, the proteins were probed with pSer 473 or pan-Akt antibody.  Data shown is 
representative of two independent experiments. 

 

As shown in Figure 5.6 above, application of the ionophore zinc pyrithione has an insulin mimetic 

effect on cells, increasing the levels of phosphorylated Akt.  The control compound sodium 

pyrithione shows no activation of phosphorylated Akt and confirms that the zinc ion, and not the 

pyrithione ligand, is the source of this effect. 

In the presence of ligands 11, 13 and 15 the phospho Akt levels are comparable to the vehicle 

control.  No decrease in phospho Akt is observed which would indicate that the zinc complexes are 

binding to PI(4,5)P2 or PI(3,4,5)P3; however the activation observed in the presence of zinc 

pyrithione has also been reduced.  This suggests that the ligands are interacting with the zinc once 

inside the cells, however they do not appear to be capable of binding PI(4,5)P2 or PI(3,4,5)P3 

intracellularly.   



139 
 

5.5 Summary: 
Receptors 3, 4 and 5 were capable of reducing the levels of phosphorylated Akt with potency that 

directly reflected the binding strength of each receptor for PI(4,5)P2.  Receptor 3 which had the 

strongest binding affinity for PI(4,5)P2 exhibited the most potent effect on the level of 

phosphorylated Akt.  At 50 µM this receptor reduced phosphorylated Akt levels almost completely, 

which is comparable to the effectiveness of original compound PHDM (personal communication, Dr. 

L. Mak).  The binding affinity of receptors 4 and 5 for PI(4,5)P2 were approximately 5 – 7 fold lower 

than that of receptor 3; this lower binding affinity was reflected in cells where receptors 4 and 5 

required almost 10-fold higher concentrations to achieve similar reduction of phosphorylated Akt. 

Addition of receptors 12, 14 and 16 had no observed effect on phosphorylated Akt levels.  

Considering that this might be due to a lack of uptake of the metal complexes, rather than lack of 

efficacy, the metal-free ligands (compounds 11, 13 and 15) were employed.  Cells were exposed to 

these compounds before a zinc ionophore was added.  The ionophore delivered zinc into the cells 

and when zinc pyrithione was used alone an increase in phosphorylated Akt level was observed- 

consistent with the insulinomimetic effect of zinc.  In the presence of compounds 11, 13 and 15 no 

such increase was observed, indicating that the metal-free ligands are capable of forming a complex 

with zinc inside the cells, preventing cells from its insulinomimetic effect.  However, no decrease in 

phosphorylated Akt was observed, indicating that the zinc complexes are not competing with Akt for 

binding to PI(4,5)P2 or PI(3,4,5)P3 once inside the cell.   

Another possibility is that the generation of PI(3,4,5)P3 in cells is too transient to be affected by the 

receptors.  Activation of PI3K increases PI(3,4,5)P3 levels very rapidly, and Akt is recruited to the PH 

domain in this time.  However the action of PTEN and other phosphatases is also rapid, so that 

PI(3,4,5)P3 levels increase only transiently.  It may be that the receptors do not bind quickly enough 

to the membrane to be effective against Akt.   
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5.6 Probing PI(4,5)P2 in NIH3T3 cancer cells 
 

Examination of pSer 473 levels indicated that receptor 5 was able to reduce levels of phosphorylated 

Akt in HCT116 cells.  This fluorescent receptor was then used to probe the distribution of PI(4,5)P2 in 

NIH3T3 cells by microscopy. 

As shown in Figure 5.4, a high concentration of receptor 5 is required to observe changes in levels of 

phosphorylated Akt.  Therefore a lower concentration was chosen for imaging purposes, enabling 

the receptor to be directly imaged without disturbing the signalling pathways which are activated by 

phosphorylated Akt. 

 

5.6.1 Receptor 5 is taken up by live cells 
 

Having established that receptor 5 binds to PI(4,5)P2 and is capable of crossing the cell membrane, 

we next examined its cellular localisation by fluorescence microscopy.  Firstly, a solution of the 

receptor was added to live cells, which were then costained with DAPI and fixed before mounting 

onto microscopy slides. 
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Figure 5.7: Receptor 5 accumulates in the cytosol of live cells.  NIH3T3 cells were starved of serum 
overnight, and the next day fresh starvation medium containing receptor 5 (10 µM) was added.  After 
15 minutes the medium containing receptor 5 was removed and the cells were washed thoroughly 
with PBS.  After co-staining with DAPI the cells were fixed.  DAPI is shown in blue and fluorescein in 
green. 

 

The images show that the receptor accumulates in small, highly localised areas within the cytosol 

(selected areas are indicated with white arrows).  Although the majority of PI(4,5)P2 is at the plasma 

membrane, this would appear as a continuous perimeter around the cells.  Instead, there are small 

bright areas of fluorescence observed which may be endosomes or other small organelles.  It is 

possible that upon addition of receptor 5, the cells begin to internalise the receptor and this is the 

cause of the localisation that is observed. 
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5.6.2 Addition of receptor 5 to fixed cells 
 

One benefit of using a fluorescent receptor is that accumulation of the compound into fixed cells can 

be monitored over time.  After fixing cells with 4 % PFA, cells were incubated with receptor 5 (10 µM 

in PBS) over an increasing amount of time.  The cells were thoroughly washed and after DAPI 

staining the fluorescence intensity of the coverslips was scanned. 
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Figure 5.8: Accumulation of receptor 5 in fixed cells over time.  NIH3T3 cells starved overnight before 
fixing.  The cells were then incubated with 10 µM receptor 5 in PBS for increasing times, and the 

fluorescence intensity of the coverslip was scanned and averaged (ex = 485, em = 525). After 
removal of the coverslip the fluorescence intensity of the empty wells was also measured and 
subtracted. Error bars represent standard deviation of two experiments perfomed in duplicate (n=2). 

 

Figure 5.8 shows that the receptor passes into cells within the first 10 minutes of incubation.  After 

this time accumulation of the receptor increases more slowly. 
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5.6.3 Receptor 5 accumulates in fixed cells 
Next, the receptor was added to cells which had already been fixed by 4 % PFA.  After fixation the 

cells were incubated firstly with a solution of receptor 5 (10 µM, 2% v/v DMSO), then washed and 

incubated with DAPI. 

 

 

 

Figure 5.9: Receptor 5 accumulates in fixed cells.  NIH3T3 cells were starved of serum overnight, and 
the next day fixed.  Cells were then incubated with receptor 5 (10 µM, 15 minutes) and co-stained 
with DAPI.  DAPI is shown in blue and fluorescein in green. 
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Figure 5.9 shows higher fluorescence intensity in a perimeter around the cells (indicated with white 

arrows), and none of the spots of high intensity which were observed in Figure 5.7.  In order to 

identify this area of high intensity as the plasma membrane, co-staining experiments are required.  If 

the fluorescence due to receptor 5 co-localises with that of plasma membrane markers, then the 

receptor can be positively identified as accumulating at the plasma membrane.   

In addition, much of the receptor is also visible in the nucleus of the cells.  PI(4,5)P2 is known to 

localise in both the plasma membrane and the nucleus, so it is possible that the receptor is 

accumulating in these locations due to binding its target phospholipid  (26),(149). 

 

The images of cells in Figure 5.9 resemble those obtained by Mak et. al. which  show accumulation 

of the PI(4,5)P2-binding probe (PLC1 PH domain) at the plasma membrane with very low 

fluorescence intensity in the cytoplasm (58).  However, while receptor 5 is also present in some 

areas of the nucleus (Figure5.11), the PLC1-PH domain was not observed inside the nucleus. 
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Figure 5.10: Receptor 5 accumulates in fixed cells and is present in the nucleus.  NIH3T3 cells were 
starved of serum overnight, and the next day washed and fixed.  Cells were then incubated with 
receptor 5 (10 µM, 15 minutes) and co-stained with DAPI. Fluorescence channels are shown 
separately.  DAPI is shown in blue (left) and fluorescein in green (right).  Selected areas indicate high 
intensity DAPI stain and low intensity fluorescein stain. 

 

By examining the distribution of fluorophores separately (shown in Figure 5.10), it is observed that 

although the receptor was observed in the nucleus it did not co-localise with DAPI.  Bright blue spots 

on the DAPI images coincide with dark spots on the FITC image. 
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This is consistent with work previously carried out by Stallings et. al., where the nucleus was stained 

with DAPI, the PLC1-PH domain was expressed as a GFP (green fluorescent protein) conjugate, and 

PI(4,5)P2 was detected using an anti-PI(4,5)P2 antibody (150).   PI(4,5)P2 is observed in the areas 

which are not strongly stained by DAPI. 

 

Receptor 5 has been shown to localise both in the nucleus and in a perimeter around the cell which 

could be the plasma membrane.  These are the same areas where PI(4,5)P2 and the PI(4,5)P2-binding 

PLC1-PH domain have been shown to localise (Figure 5.10).  This suggests that the receptor may be 

binding to PI(4,5)P2 in fixed cells.  If this receptor is shown to bind PI(4,5)P2, it could be used in the 

future as a PI(4,5)P2 imaging agent similar to GFP-conjugated binding domains and fluorophore- 

conjugated antibodies. 

 

5.7 Summary 
Firstly receptor 5 was incubated with live cells, which were then co-stained with DAPI and fixed.  The 

resulting images showed that the receptor did not accumulate at the plasma membrane, but was 

observed in small localised areas of the cytoplasm.  PI(4,5)P2 has a role in endocytosis, so it is 

possible that the receptor co-localises with PI(4,5)P2 and is then internalised into an endocytic 

vesicle; these are then transported away from the membrane causing the resulting image of the cell 

to possess small areas of fluorescence as observed in Figure 5.7. 

Measuring the fluorescence intensity of fixed cells after exposure to receptor 5 for increasing 

amounts of time indicated that around 50% of the receptor accumulated in the cells in the first ten 

minutes of incubation. After fixing with PFA, receptor 5 was incubated with the cells, followed by 

DAPI staining.  The images obtained showed that the receptor accumulated in the nucleus of the 

cells and in a perimeter around the cytosol, which may be the plasma membrane.  Since PI(4,5)P2 

exists mainly at the plasma membrane the visibility of this component would be in line with  

expectations (18).  It is also known that PI(4,5)P2 exists in the nucleus where it has signalling 

functions that are distinct from those of plasma membrane PI(4,5)P2 (149).   

Although further work with this receptor is required, the images obtained are a good indication that 

receptor 5 is co-localising with PI(4,5)P2 in the nucleus and also possibly at the plasma membrane. 

 After application of receptor 5 to live cells, co-staining with plasma membrane markers.  

 After application of receptor 5 to live cells, co-staining with endosome markers would 

indicate whether the receptor is indeed being taken up in this way. 
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 When receptor 5 is applied to fixed cells, addition of PI(4,5)P2-binding protein domains (e.g. 

GST-PLC1 PH domain and subsequent addition of fluorescent anti-GST antibody), may 

enable us to observe whether receptor 5 is displaced from the plasma membrane by the 

more strongly-binding protein domain.  If the fluorescence of receptor 5 is displaced from 

the plasma membrane to the cytosol, it would indicate that receptor 5 is interacting 

specifically with PI(4,5)P2. 

 This may also be achieved by the use of a combination of receptors 4 and 5, since receptor 4 

has a much higher affinity for PI(4,5)P2 than receptor 5. 
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Chapter 6: Summary & Conclusion 
 

The phosphoinositides PI(4,5)P2 and PI(3,4,5)P3 are key players in cell signalling pathways, the most 

important being the Akt pathway.  The amount and localisation of these PIPs are tightly controlled, 

and their deregulation has been linked to a number of diseases including cancer and Lowe Syndrome 

(151),(34).  The ability to manipulate PIP levels has been identified several times as a potential 

therapeutic measure.  Chemical perturbation of PIP levels can affect downstream events such as 

phosphorylation of Akt.  Previously, PIP levels in cells have been manipulated by selective inhibition 

of the enzymes which generate them.  For example, PI(3,4,5)P3 levels can be reduced by inhibition of 

PI3K (54), or increased by inhibition of PTEN (147). 

The aim of this project was to use synthetic receptors which bind to PI(4,5)P2 and PI(3,4,5)P3 to 

inhibit protein-phospholipid interactions.  In this way the effective concentration of the free PIP can 

be reduced.  Small molecule receptors were designed to bind to PI(4,5)P2 and PI(3,4,5)P3 were 

synthesised (Chapter 2).  The PI(4,5)P2 receptors 3, 4 and 5 used boronic acid and urea functional 

groups to bind to their target; receptor 4 was a symmetric analogue of receptor 3, with two binding 

‘arms’; and receptor 5 had a similar structure to receptor 3 but incorporated a fluorescein moiety 

(Figures 3.1, 3.2, 3.3).  The PI(3,4,5)P3 receptors made use of the zinc-DPA functionality which is well-

known to bind strongly to phosphates.  Receptor 12 used a similar central spacer to that of lead 

molecule PHDM, to attempt to replicate the success of that compound.  The boronic acid groups 

were replaced with two phosphate-binding Zn-DPA motifs in order to better target PI(3,4,5)P3 over 

other PIPs (Figure 4.1).  Receptor 14 also possessed two Zn-DPA motifs however these were linked 

only by two short alkyl chains and a urea group (Figure 4.2).  Receptor 16 which was originally 

designed as an ATP receptor was made up of a Zn-DPA motif linked via a hydrazide to a boronic acid.  

Due to the presence of the boronic acid, receptor 16 was tested for binding to PI(4,5)P2 which has a 

diol motif, since these two functional groups are known to interact (Figure 4.3). 

The binding of receptor 4 to PI(4,5)P2 is assumed to be with 1:2 stoichiometry.  When the PI(4,5)P2 

molecules are arranged at a membrane, a single receptor can bind two adjacent headgroups.  

Although the two phospholipids are separate and distinct molecules, they are prearranged such that 

the receptor can interact with more than one headgroup at a time.  Receptors 3, 4 and 5 were all 

shown by competitive ELISA to inhibit the interaction between PI(4,5)P2 and the binding domain 

PLC1-PH.  It was observed that receptor 4 binds to PI(4,5)P2 with much higher affinity than 

receptors 3 and 5 (Figure 3.16). 
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This pattern was reflected in the results of the phosphatase assay, where the dephosphorylation of 

PI(4,5)P2 by SopB was inhibited by receptors 3, 4 and 5.  It was observed that receptor 4 had a much 

lower IC50 value than receptor 3 (Figures 3.18, 3.19).  The fact that receptor 4 shows much higher 

inhibitory effect than receptor 3 is consistent with the model of a cooperative effect, in which one 

binding event increases the likelihood of a second.  In addition receptor 4 has displayed selectivity 

for the membrane-bound PI(4,5)P2 over IP3, which is free in solution (Figure 3.19).  This also lends 

weight to the evidence of a cooperative effect between the two binding arms: if the receptor had 

high affinity for PI(4,5)P2 due to its overall structure, this would also be the case for IP3.  It has been 

previously demonstrated by James et. al. that receptors with two boronic acids (and possessing an 

appropriate spacer) exhibited cooperativity in binding saccharides with more than one cis-diol, 

resulting in strong 1:1 binding (152).  These diboronic acids had a distinctly higher binding affinity 

than monoboronic acids.  This work also demonstrated the importance of using an appropriate 

spacer, since not all of the diboronic acids displayed enhanced affinity for the saccharides. 

The ability of receptors 3, 4 and 5 to bind PI(4,5)P2 inhibits protein-lipid interactions.  In cells, this is 

thought to affect downstream processes including the synthesis of PI(3,4,5)P3 by PI3K, and 

subsequent recruitment of Akt to the plasma membrane, which is required for Akt phosphorylation.  

These downstream effects can be measured by probing the levels of phosphorylated Akt in cells 

using specific antibodies.  Receptor 4, which had the highest binding affinity for PI(4,5)P2, was shown 

to completely prevent phosphorylation of Akt when incubated with HCT116 cells at 50 µM (Figure 

5.3), the conventional PI3K inhibitor LY294002 has also been shown to completely prevent 

PI(3,4,5)P3 synthesis also at 50 µM (153).  Therefore receptor 4 has similar potency to this 

compound; although other PI3K inhibitors are commonly used which are much more potent such as 

Wortmannin (IC50 in neutrophils 5 nM, (154)). Receptors 3 and 5 required almost 10x higher 

concentration to achieve the same inhibition as receptor 4 (Figures 5.3 and 5.4), which is consistent 

with their lower binding affinities as determined by competitive ELISA (Figure 3.16).  Manipulation of 

PIP levels has thus far been achieved by inhibition of PIP-metabolising enzymes, however the results 

presented in Section 5.3 show this can be achieved in cells by directly interacting with the 

phospholipids.  In order to be certain that the reduction in pSer 473 is not due to direct inhibition of 

PI3K by receptors 3, 4 and 5, assays of PI3K activity in the presence of these receptors are currently 

being carried out. 

Receptor 5 was used to quantify the amount of PI(4,5)P2 adsorbed onto a microtiter plate (Section 

3.3).  This has been previously achieved by the use of the PI(4,5)P2-binding PLC1-PH domain in an 

overlay assay or an ELISA (Figure 3.15).  However the use of a single reagent such as receptor 5 has 
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many advantages over protein domains.  Conventional PI(4,5)P2 quantification by overlay assay (24) 

or ELISA (25) requires the expression and purification of the appropriate protein, followed by 

application of one or more antibodies and a substrate reagent which is then used to detect the 

bound protein.  However PI(4,5)P2 detection by a small molecule such as receptor 5 is a single step 

process which requires only the fluorescent receptor to be synthesised and purified.  The linear 

range of detection of adsorbed PI(4,5)P2 by receptor 5 (up to 0.5 nmols, Figure 3.13)) was higher 

than that achieved by the PLC1-PH domain in an ELISA (up to 0.25 nmols, Figure 3.15).  To improve 

this detection limit the use of a two-armed fluorescent receptor (such as the attempted BODIPY-

PHDM receptor described in section 2.1), which in theory should have a higher binding affinity 

(closer to that of receptor 4), is proposed. 

Receptor 5 was also used to probe PI(4,5)P2 in cells.  On application of the receptor to fixed cells, it 

was observed to accumulate at the plasma membrane (Figure 5.9) and in the nucleus (Figure 5.10) 

where most PI(4,5)P2 is known to localise.  The images obtained were consistent with those of Mak 

et. al. (58) and Stallings et. al. (150) which also showed the presence of PI(4,5)P2 at the plasma 

membrane and in the nucleus where DAPI was absent. Having shown receptor 5 to be capable of 

binding and quantifying PI(4,5)P2 it is assumed that the observation of fluorescence at the plasma 

membrane is due to the receptor binding the PI(4,5)P2 present there. Receptor 5 has potential as a 

small molecule PI(4,5)P2 detection tool that can be readily used on fixed cells.  Currently, PI(4,5)P2 is 

often visualised using a detection protein (such as GST-PLC1-PH domain) which is then detected by 

a fluorophore-conjugated antibody (58),(26).  However this method requires permeabilisation of the 

membrane with a detergent so that the protein and antibodies can enter the cell; receptor 5 has the 

advantage of crossing the plasma membrane without the need for detergent and the membrane 

remains intact. 

As introduced in Section 1.4 metal complexes, especially Lewis acids such as zinc(II), are often used 

as receptors for anions including phosphate.  The zinc-DPA motif has in particular been incorporated 

into receptors for biologically relevant phosphorylated species.  Receptors 12, 14 and 16 were 

developed using this binding motif on different molecular scaffolds.  Each of these receptors 

displayed different selectivity for the various PIPs (Figures 4.8, 4.9 and 4.10), with receptor 12 

displaying similar selectivity to Akt by binding PI(3,4)P2 and PI(3,4,5)P3 most strongly, and receptor 

16 mimicking GRP1 by binding PI(3,4,5)P3 with highest affinity. 

The aim of this work was to use these metal complexes not only for recognition of PI(3,4,5)P3, but 

also to inhibit protein-lipid interactions in the same way as PHDM: by mimicking PI(3,4,5)P3-binding 

protein domains.  Inhibition of protein-PI(3,4,5)P3 interactions has been demonstrated by Miao et. 
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al., who developed small molecules capable of inhibiting the binding of PI(3,4,5)P3-binding domains 

(56).  These small molecules (PITs) targeted the PH domains, preventing association with PI(3,4,5)P3.  

Akt recruitment was inhibited with IC50 values between 13 and 30 M and as a consequence 

phosphorylation of Akt was reduced, resulting in apoptosis. 

Receptors 12, 14 and 16 were shown to bind with good affinity to PI(3,4,5)P3  and in this way the 

interaction between PI(3,4,5)P3 and the binding protein GRP1 was inhibited (Figure 4.12).  These 

receptors inhibit with IC50 between 10 and 28 M, a similar range to the family of PI(3,4,5)P3- PH 

domain interaction inhibitors known as PITs.  Therefore it was assumed that they would have the 

potential to induce apoptosis as demonstrated by Miao et. al. using the PITs (56). 

The zinc(II) complexes were shown to directly inhibit PTEN, with similar efficacy to that of free zinc 

(Figures 4.16, 9.11).  Firstly it was proposed that the receptors could be binding to the substrate 

OMFP via the phosphate group.  However the inhibition was demonstrated to be independent of the 

substrate concentration, indicating that the receptors do not interact strongly with OMFP.  This is 

consistent with results obtained in the IDA which show that all three of the receptors bind poorly to 

monophosphorylated species (Figures 4.8, 4.9 and 4.10); although competitive ELISA in the presence 

of phosphate (Figure 4.12) indicates that at high concentrations, the phosphate will interact with the 

receptors.  It was then concluded that the receptors were directly interacting with the enzyme, 

resulting in inhibition. 

The main mechanism of binding of these receptors to their target is the interaction of phosphate 

groups with zinc.  If the zinc was not part of the receptor, no binding would take place.  The 

differential binding of the three receptors to the seven PIPs demonstrated in IDAs (Figures 4.8, 4.9, 

4.10) and the inhibition of protein-lipid binding shown in competitive ELISA (Figure 4.12) are strong 

indications that the zinc remains chelated to the DPA.  Since the ELISA was carried out under similar 

conditions to the phosphatase assay, it is unlikely that the zinc has been removed from DPA.  The 

IC50 of zinc for PTEN was determined as approximately 13 M (Figure 9.11); when 15 M of each 

receptor was applied to the enzyme, almost 50 % inhibition was observed in each case (Figure 4.18).  

Therefore if only free zinc were capable of inhibiting the enzyme, 50 % of the zinc would need to be 

removed from chelation of receptors 12 and 14, and 100 % from receptor 16. This demonstrates that 

the enzyme may be inhibited by the zinc even as the metal is chelated by DPA. 

Zinc is known to inhibit phosphatases including PTP-like phosphatases, and the IC50 of zinc chloride 

was determined for PTEN, SopB and ATPase (Figure 9.11) (148),(155).  However, zinc-DPA complexes 

have been previously used to monitor dephosphorylation by PTP1B (compounds 23a and 23b, Figure 
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1.13) and as protein mimetics (SH2 domain mimetic, Figure 1.14), although interestingly neither of 

these were used in the presence of a functioning enzyme.  These zinc-DPA complexes were 

employed solely as sensors for their phosphorylated targets (82),(59).  Having developed receptors 

12, 14 and 16 which have differential selectivity for certain PIPs, these compounds can be used in 

conjunction with non-enzymatic techniques such as those previously mentioned (Figures 1.13 and 

1.14) as well as indicator displacement assays or ELISA. Since PTEN is closely involved in the 

metabolism of PI(3,4,5)P3 it would be extremely difficult to distinguish between the PI(3,4,5)P3-

binding (PTEN mimetic) and phosphatase inhibiting (PTEN inhibitor) effects of these receptors in the 

presence of the enzymes. 

After establishing that receptors 12, 14 and 16 inhibited protein-PI(3,4,5)P3 interactions, they were 

examined for ability to reduce the phosphorylation of Akt in cells.  Even at high concentrations, the 

zinc(II) complexes caused no reduction in the level of phosphorylated Akt.  This is either due to the 

receptors not being taken up by the cells, or to the receptors not inhibiting protein-PI(3,4,5)P3 

interactions.  The latter may be due to the different selectivities displayed by each receptor in the 

IDAs (Figure).  In addition to binding to PI(3,4,5)P3, receptor 12 also binds PI(3,4)P2; receptor 14 

binds all diphosphorylated PIPs and although receptor 16 bound only to PI(3,4,5)P3 under the IDA 

conditions, it is also known to bind strongly to ATP (personal communication, Dr. K. Damodaran) 

which is present in high concentrations in the cell.  Competitive ELISA in the presence of phosphate 

showed that the binding of receptors 14 and 16 to PI(3,4,5)P3 was blocked in the presence of 

phosphate, while that of receptor 12 was reduced (Figure 4.14). 

In order to test the former, the ligands 11, 13 and 15 were applied to the cells, followed by zinc 

pyrithione.  Zinc pyrithione is commonly used as an ionophore which can carry zinc across cell 

membranes.  The aim of this was to form metallo-receptors 12, 14 and 16 in situ, following a 

procedure developed by Aoki et. al. in which a zinc cyclen complex was formed inside cells (156).  

The results obtained showed that the level of phosphorylated Akt was similar to the control.  This 

may indicate that the complexes were formed (since the insulinomimetic effect of zinc was negated 

in the presence of ligands) but since no inhibition was observed, it is unlikely that the receptors are 

binding PI(3,4,5)P3 in cells.  It is possible that the receptors are binding nonspecifically to one or 

more of the many phosphorylated species in the cell.  Another explanation could be that the zinc 

complexes are binding PI(3,4,5)P3 (reducing phosphorylated Akt) as well as inhibiting PTEN 

(increasing PI(3,4,5)P3 and therefore increasing phosphorylated Akt). These two modes of action 

have opposing (but not necessarily equal) effects on the level of phosphorylated Akt.  From the 

current data, the activity of these zinc-based receptors in cells remains inconclusive.  By firstly 
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inhibiting PTEN with the much more potent VO-OHpic (50) and then applying the receptors (as zinc 

complexes or as ligand/zinc pyrithione separately), more information might be obtained.  The 

enzyme would be strongly and selectively inhibited, so any binding of the receptors to PI(3,4,5)P3 

should be readily observed as a decrease in phosphorylated Akt levels. 

 

Further work 
 

Further work on design of a molecule to inhibit protein-PI(4,5)P2 interactions would include 

development of receptor 4, which showed strong and specific interactions.  This work showed that 

using a single binding motif reduced the affinity for PI(4,5)P2 as well as the selectivity for the 

phospholipid over IP3. Therefore a receptor using three sets of binding arms, arranged around a 

tripodal scaffold as used by Anslyn et. al. could lead to even stronger binding affinity.  In addition 

one of the benzyl positions may be appended to a fluorophore to create a fluorescent PI(4,5)P2 

probe with strong binding affinity. 

 

Figure 6.1: Possible tripodal receptor type based on PHDM. 
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In addition, the ability of the receptors to bind phosphate could be enhanced by addition of 

functional groups that bind to phosphate with higher affinity than that of the urea.  Thiourea and 

guanidinium groups have both been shown to interact with anions more strongly than urea groups, 

and the urea group could be replaced with either of these (Figure 6.2 A and B).  The secondary 

amine group could also be further functionalised, for example with the side chain of arginine (Figure 

6.2 C). 

 

Figure 6.2: Possible next generation of PI(4,5)P2 receptors.  A: Urea is replaced with neutral thiourea, 
which interacts with phosphate more strongly than urea.  B: Urea is replaced with positively charged 
guanidinium groups, which could strongly increase the affinity for negatively charged PIPs.  C:  PHDM 
could be functionalised with the side chain of arginine which possesses a guanidinium group, to 
increase the phosphate-binding potential of the receptor.  D: PHDM may also be functionalised with 
zinc-DPA motifs, known to bind phosphate with very high affinity.  This should be approached with 
caution due to the side-effects of the presence of zinc demonstrated in this thesis. 

 

Incorporation of a positive charge in the form of the guanidinium groups would very likely increase 

the affinity of the receptor for phosphorylated targets (since the hydrogen bonding interactions and 

then supplemented with electrostatic interaction), however this may have some negative effects.  
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Firstly, the use of functional groups which bind phosphate very strongly may increase the affinity of 

the receptor for all phosphorylated PIPs, resulting in loss of selectivity.  Secondly, incorporation of a 

charged moiety could reduce its cell permeability.   

Another motif which could be added to the receptor is zinc-DPA (Figure 6.2D).  Although zinc-DPA 

motifs are known to bind phosphate with very high affinity, this work has demonstrated that the 

presence of zinc can have unintended consequences such as inhibition of CX5R type phosphatases 

including PTEN. 

 

 

Figure 6.3: Functionalisation of PHDM with a reporter group (e.g. fluorophore, ferrocene, biotin) at 
the secondary amine. 

 

Receptor 4 was also shown to have a much higher affinity for PI(4,5)P2 over IP3.  Since the original set 

of compounds (Figure 1.26) were tested for binding to IP3 and not PI(4,5)P2, it may be beneficial to 

revisit these compounds as PI(4,5)P2 receptors.   

Receptor 16 was isolated from a dynamic library of zinc-DPA and boronic acid components which 

were designed to bind to ATP via the phosphate and diol groups.  Replacing the zinc-DPA component 

with another boronic acid would create a dynamic library of diboronic acid compounds (Figure 6.4).  

Addition of IP3 or PI(4,5)P2 as a templating molecule could accelerate the formation of the most 

strongly-binding diboronic acid product.  The library is quenched by a change in pH, which is 

compatible with the use of biological phosphorylated molecules.  Even a small library would give 

some information on structure-activity relationship that would be beneficial for the design of future 

PI(4,5)P2 receptors.  
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Figure 6.4: Reversible formation of a hydrazone analogue of PHDM.  This reaction is suitable for 
application in a dynamic library, with a number of dialdehydes (highlighted in red above).  The library 
would select for the receptor which binds most strongly to the target (PI4,5)P2 or IP3). 

The use of this library would also provide some information on the role of the urea groups in binding 

PI(4,5)P2 and IP3.  In a hydrazone library the urea groups would be replaced with hydrazides, which 

have a lesser ability to hydrogen bond than urea (since they possess only one hydrogen bond donor 

group versus two of urea (157)).  If these receptors failed to bind PI(4,5)P2 and IP3 with the same 

affinities as the urea-containing molecules, it would indicate that the presence of a phosphate 

binding group with strong interactions with phosphate is a vital component of receptors targeting 

PI(4,5)P2 and IP3. 

The PI(4,5)P2-binding receptors have been shown to attenuate the phosphorylation of Akt.  Having 

established that the receptors bind PI(4,5)P2 in vitro (and therefore prevent downstream proteins 

and enzymes from binding) it is suggested that this is the mechanism by which phosphoAkt is 

reduced.  However in order to ensure that the receptors are not acting as PI3K inhibitors (which 

would also reduce phosphoAkt in cells) in vitro assays are currently being carried out.  Unlike the 

phosphatase enzymes which dephosphorylate OMFP, PI3K does not have an artificial substrate that 

can be used to assess whether the receptors are interacting with the PIP or the enzyme.  However 

since PI3K can also phosphorylate PI and PI(4)P (receptors 3 and 4 do not bind PI(4)P), these will be 

used as control substrates.  It is expected that the phosphorylation of PI(4,5)P2 will be reduced in the 

presence of receptors 3 and 4.  If the phosphorylation of PI and PI(4)P are unaffected in the presence 

of receptors 3 and 4, then it can be assumed that the receptors are not directly inhibiting the 

enzyme.  Enzymatic products (PI(3)P, PI(3,4)P2 and PI(3,4,5)P3) can be extracted using standard 

techniques such as the Bligh and Dyer method, and then quantified by means of ELISA or overlay 

assay. 



157 
 

 

Figure 6.5: Experiments underway to determine the effect of PHDM and receptors 3 and 4 on PI3K.  If 
the receptors directly act on PI3K, all three of the above reactions will be inhibited.  However if the 
receptors do not directly interact with PI3K, only the third reaction (phosphorylation of PI(4,5)P2 to 
PI(3,4,5)P3) will be disrupted. 

Receptor 5 showed promise as a tool for detection of PI(4,5)P2 in vitro as well as in fixed cells.  To 

further characterise the activity of this receptor in live cells it would be beneficial to carry out the 

experiments detailed in section 5.7.  Firstly, the cells should be co-stained in order to identify which 

compartments the receptor accumulates in.  In addition, to positively identify that receptor 5 was 

binding to PI(4,5)P2 at the plasma membrane of fixed cells, the GST-PLC1-PH domain could be 

applied at the same time.  The PH domain would be expected to displace the receptor, and the 

fluorescence would therefore be diffused in the cytoplasm rather than accumulated at the plasma 

membrane.  It would be interesting to carry out the same experiment using receptor 4 as the 

displacing molecule. 

While PI(4,5)P2 is constitutively present in the plasma membrane of cells, PI(3,4,5)P3 is present only 

for a short time after stimulation, and the total amount of PI(3,4,5)P3 is still very low overall.  When 

seeking to attenuate the Akt pathway, PI(4,5)P2 could be a better target for small molecule receptors 

than PI(3,4,5)P3.  By reducing the amount of PI(4,5)P2 available to proteins, the amount of PI(3,4,5)P3 

generated is lower, and hence the activity of the Akt pathway is reduced. 

However, receptor 12 showed promise as a mimic of the Akt-PH domain.  Its ability to bind PI(3,4)P2 

and PI(3,4,5)P3 in competitive conditions (such as in the presence of Mg2+ or ATP) could be 

determined by competitive ELISA.  In addition, the use of enhanced DPA motifs which possess 

acetamido groups adjacent to the nitrogen of the pyridines (158) would provide additional 

coordination sites for the zinc (II), preventing the metal from binding amino acid residues at enzyme 

active sites.  This could prevent or reduce the ability of zinc to inhibit phosphatases, so compounds 

of this type would be more useful as substrate-binding receptors.  
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Chapter 7: Synthesis 

7.1 Materials and Reagents 

2-Formylphenyl boronic acid was purchased from Sigma-Aldrich and recrystallized from ethanol 

before use.  1-(N-BOC-aminomethyl)-4-(aminomethyl)benzene, sodium borohydride, 

phenylisocyanate, 4,4'-bis(isocyanatophenyl)oxide, triethylorthoformate, 1-(2-pyridinyl)-N-(2-

pyridinylmethyl)methanamine, N-(2-Bromoethyl)phthalimide, fluorescein isothiocyanate, 4,4′-

methylenebis(phenyl isocyanate), 1,1’-carbonyldiimidazole, zinc acetate were all purchased from 

Sigma-Aldrich and used without further purification.  Hydrazine monohydrate was purchased from 

Alfa Aesar.  

Powdered molecular sieves (3Å) were purchased from VWR and activated by heating at 200oC for 30 

minutes under vacuum.  Celite was purchased from Sigma-Aldrich.  TLC plates (Silica gel 60, 

aluminium back) were purchased from Merck.  Reversed-phase TLC plates (C18 silica, glass back) 

were purchased from Sigma-Aldrich.  Sodium bicarbonate, hydrochloric acid (12M) and sodium 

hydroxide were purchased from VWR. 

Prepacked C18 silica cartridges used for reverse-phase chromatography were purchased from Buchi 

and used as part of Buchi Isocratic Pump System.  Modules used: Pump Controller, C-610; Pump 

Manager, C-615; Pump Module C-601 with 4-way Injection/Purge device. 

7.2 Solvents 

Anhydrous triethylamine, anhydrous dichloromethane and anhydrous dimethylformamide were 

purchased from Sigma-Aldrich as Sure-Seal products and handled under nitrogen atmosphere 

without further purification.  Glacial acetic acid was purchased from Sigma-Aldrich.  Trifluoroacetic 

acid was purchased from VWR.  Methanol was purified by Innovative Technology Inc. PureSolv 

solvent purification system. 

HPLC grade methanol and water were purchased from VWR.  Reagent grade petroleum ether (40-

60) and acetonitrile were purchased from VWR and used without further purification.  Reagent 

grade dichloromethane and methanol were purchased from Sigma-Aldrich and used without further 

purification.  Deuterated solvents (CDCl3, MeOD, d6-DMSO) were purchased from Sigma-Aldrich. 
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7.3 Analysis 
1H NMR spectra were recorded at 400 MHz on Bruker Avance 400 Ultrashield instruments. 13C NMR 

spectra were recorded at 101 MHz on Bruker Avance 400 Ultrashield instruments or at 500 MHz on 

Bruker Avance 500 Ultrashield at 298 K unless otherwise specified.  NMR are referenced to 

tetramethylsilane (TMS) as standard.   1H NMR spectra are assigned where unambiguous with the 

aid of HMQC and COSY experiments (both carried out on Bruker Avance 400 Ultrashield instruments 

except where specified), and 13C are assigned as C, CH, CH2 or CH3 according to data from 135DEPT 

experiments.  Coupling constants (J) measured in Hertz. 

Mass spectra were obtained by J. Barton at Imperial College on a Micromass LCT Premier 

instrument. 

IR were recorded on a Perkin Elmer Spectrum 100 FT-IR instrument. 

Elemental analyses were performed by A. Dickerson at the University of Cambridge. 

Crystal structure was resolved by A. White at Imperial College London. 
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Synthesis of (2-(((4-(((tert-

butoxycarbonyl)amino)methyl)benzyl)amino)methyl)phenyl)boronic acid, 1  

(58) .  

 

Synthesised following previously reported procedure(58).  A flask containing activated 3 Å molecular 

sieves and 2-formylphenyl boronic acid (672 mg, 4.48 mmol) was purged and filled with nitrogen.  A 

solution of 1-(N-BOC-aminomethyl)-4-(aminomethyl)benzene (1.12 g, 4.48 mmol) in anhydrous 

methanol and triethylamine (6.20 ml, 44.8 mmol)  was added.  The reaction mixture was stirred 

vigorously at 40 oC for two hours.  After cooling to room temperature solid sodium borohydride (508 

mg, 13.4 mmol) was added, and the reaction was stirred for a further two hours at room 

temperature.  After this time the crude reaction mixture was filtered through celite and 

concentrated under reduced pressure until approximately 5 ml reaction mixture remained. The 

crude was treated with triethylorthoformate (2.23 ml, 13.4 mmol) and three drops of glacial acetic 

acid with stirring at room temperature for six hours.  The solvent was then removed under reduced 

pressure to yield an off-white solid which was washed with petroleum ether, water, and again with 

petroleum ether and dried to yield protected amine 1 as a white solid (1.48 g, 3.99 mmol, 89 %). 

1H NMR (400 MHz, CDCl3): 7.49 (d, 1H, ArH, J= 4.8), 7.40 (dd, 4H, ArH, J= 7.3, J= 25.8), 7.24-7.16 (m 

br, 1H, ArH), 7.09 (m br, 1H, ArH), 4.27 (s, 2H, CH2), 3.99 (s, 2H, CH2), 3.87 (s, 2H, CH2), 1.47 (s, 9H, 

3CH3).  13C NMR (101 MHz, CDCl3): 156.3 (C), 150.1 (C), 139.3 (C), 139.0 (C), 129.9 (CH), 128.8 (CH), 

127.8 (CH), 127.5 (CH), 126.3 (CH), 122.8 (CH), 78.2 (C), 52.8 (CH2), 48.1 (CH2), 43.6 (CH2), 28.7 (CH3).  

One quaternary carbon not observed.  ESI-MS m/z: 371 ([M+H]+ 100 %), 393 ([M+Na]+ 5 %).  HRMS: 

Observed [M+H]+, 371.2144. C20H28N2O4B requires 371.2412, Δ 0.5 ppm.  IR: νmax/cm-1: 3327, 1686, 

1365, 1168. 
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Synthesis of (2-(((4-(aminomethyl)benzyl)amino)methyl)phenyl)boronic acid, 

2 (58).  

 

Synthesised following previously reported procedure(58).  A solution of compound 1 (0.24 g, 0.65 

mmol) in dichloromethane was cooled in an ice bath.  When the solution had reached 0 oC, 

trifluoroacetic acid (3.74 ml, 39.9 mmol) was added dropwise to the stirred solution.  After one hour 

at 0 oC the ice bath was removed and the reaction mixture stirred at room temperature for a further 

24 hours.  After this time the solvent was removed under reduced pressure, and analysis by 1H NMR 

spectroscopy showed 100 % removal of the BOC protecting group.  The product appeared as 

colourless oil after drying on a high vacuum for 24 hours. Analysis by 13C NMR spectroscopy showed 

the presence of some remaining trifluoroacetic acid.  This was allowed to remain and the product 

was used directly in the next step of the synthesis of compound 3 (0.25 g, 0.65 mmol). 

1H NMR (400 MHz, MeOD):  7.70 (s, br, 1H, ArH), 7.66-7.57 (m, 4H, ArH), 7.53-7.46 (m, 3H, ArH), 4.33 

(s, 2H, CH2), 4.29 (s, 2H, CH2), 4.20 (s, 2H, CH2).  13C NMR (101 MHz, MeOD): 159.7 (TFA, COOH), 

156.2, 150.1, 139.3, 139.0, 133.1, 130.5, 129.4, 128.9, 127.9, 126.9, 113.4 (TFA, CF3) 49.9, 48.7, 40.8.  

ESI-MS m/z: 395 (100 %), 271 ([M+H]+ 45 %).  HRMS: Observed [M+H]+, 271.1564. C15H20N2O2B 

requires 271.1618, Δ 19.9 PPM.  IR: νmax/cm-1: 3024, 1661, 1379, 1129.   
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Synthesis of (2-(((4-((3-

phenylureido)methyl)benzyl)amino)methyl)phenyl)boronic acid, 3. 

 

Primary amine 2 (227 mg, 0.84 mmol) was dissolved in anhydrous dichloromethane and stirred with 

anhydrous triethylamine (0.42 ml, 4.2 mmol) for 30 minutes.  A solution of phenylisocyanate (100 

mg, 0.84 mmol) in anhydrous dichloromethane was added dropwise over ten minutes to the amine 

solution.  The reaction was left to stir at room temperature for 24 hours under a nitrogen 

atmosphere.  The solvent was then evaporated under reduced pressure, yielding an off-white gum.  

After chromatography on silica using 1 % methanol in dichloromethane, the fractions were analysed 

by TLC and those containing single spots of Rf = 0.25 were combined and the solvent evaporated 

yielding a yellow oil.  The oil was left under reduced pressure overnight to remove solvents, and 

water (20 ml) was added which initiated a white precipitate.  The precipitate was filtered and dried 

to yield compound 3 (218 mg, 0.56 mmol, 67 % yield). 

1H NMR (400 MHz, d6-DMSO): 8.92 (d, 2H, J = 5.2), 8.59 (t, 1H, J = 7.1), 8.06 (t, 2H, J = 7.1), 7.85 (d, 

1H, J = 6.0), 7.51 (dd, 4H, J = 4.6), 7.44 – 7.35 (m, 3H), 4.31 (s, 2H), 4.20 (s, 2H), 4.06 (s, 2H).  13C NMR 

(500 MHz, d6-DMSO): 155.7 (C), 155.2 (C), 142.0 (C), 140.4 (C), 139.1 (C), 137.0 (C), 133.6 (CH), 129.2 

(CH), 128.6 (CH), 128.2 (CH), 127.3 (CH), 125.8 (CH), 125.6 (CH), 121.8 (CH), 121.0 (CH), 119.8 (CH), 

117.6 (CH), 49.3 (CH2), 49.2 (CH2), 42.5 (CH2).  ESI-MS m/z: 413 ([M+Na]+, 5 %), 491 (100 %).  IR: 

νmax/cm-1: 1658, 1598, 1511, 1232, 1202. Microanalysis: Observed: %C, 61.57; %H, 6.16; %N, 9.98. 

C22H24BN3O3·2.1H2O requires: %C, 61.87; %H, 6.66; %N, 9.84. 
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Synthesis of ((((((((((oxybis(4,1-

phenylene))bis(carbonyl))bis(azanediyl)bis(methylene))bis(4,1 -

phenylene))bis(methylene))bis(azanediyl))bis(methylene))bis(2,1 -

phenylene))diboronic acid, 4. 

 

Amine 2 (90 mg, 0.33 mmol) was dried under vacuum and the flask was refilled with nitrogen.  

Anhydrous DMF was added (10 ml), followed by anhydrous triethylamine (457 µl, 3.3 mmol). A 

solution of diphenyl oxide 4,4'-diisocyanate (38 mg, 0.15 mmol) in anhydrous DMF (1 ml) was added 

dropwise to the vigorously stirred reaction mixture.  After stirring at room temperature for 48 hours 

the DMF was evaporated under reduced pressure until approximately 5 ml remained.  Upon 

dropwise addition of water (20 ml) a white precipitate formed.  The precipitate was filtered and 

washed with water (3 x 10 ml) and dichloromethane (3 x 10 ml).  Receptor 4 was yielded as a white 

solid (105 mg, 0.13 mmol, 89 % yield). 

1H NMR (400 MHz, d6-DMSO): 7.50-7.40 (m, 10H, ArH), 7.34 (d, 4H, ArH, J = 9.2), 7.21-7.18 (m, 4H, 

ArH), 7.10-7.07 (m, 2H, ArH), 6.91 (d, 4H, ArH, J = 9.2), 4.43 (s, 4H, CH2), 3.99 (s, 4H, CH2), 3.88 (s, 4H, 

CH2).  13C NMR (500 MHz, d6-DMSO, 388 K):  155.5, 151.5, 149.4, 138.7, 138.2, 135.5, 129.5, 128.5, 

127.6, 126.0, 122.4, 120.1, 119.6, 118.8, 114.8, 52.3, 47.5, 42.5. ESI-MS m/z:  397 ([M+2H]2+, 100 %).  

IR: νmax/cm-1 1652, 1551, 1498, 1217.  Microanalysis: Observed: %C, 63.99; %H, 5.49; %N, 10.04. 

C44H50B2N6O9 requires %C, 63.78; %H, 6.08; %N, 10.14. 
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Synthesis of (2-(((4-((3-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-

xanthen]-5-yl)thioureido)methyl)benzyl)amino)methyl)phenyl)boronic acid, 5  

 

Amine 2 (24 mg, 0.064 mmol) was dried well under vacuum, and then stirred in anhydrous DMF with 

triethylamine for 30 minutes under nitrogen atmosphere.  A solution of fluorescein isothiocyanate 

(FITC, 25 mg, 0.064 mmol) in DMF was added, and the reaction was stirred for 16 hours under 

nitrogen.  The solvent was removed under reduced pressure, leaving a red-orange oil.  After addition 

of water (10 ml) an orange solid precipitated.  This solid was washed extensively with water (3 x 10 

ml) and petroleum ether (3 x 10 ml) and recrystallized from hot methanol to yield pure receptor 5 

(30 mg, 0.046, 72 % yield). 

1H NMR (400 MHz, d6-DMSO): 7.94 (s, 1H), 7.68-7.46 (m, 2H), 7.39-7.11 (m, 6H), 7.01-6.75 (m, 4H), 

6.66 (s, 1H), 6.09-6.04 (m, 2H), 5.97 (s, 1H), 2.89 (s, 2H, CH2), 2.73 (s, 2H, CH2), 2.41 (d, 2H, CH2, J = 

6.3). 13C NMR (101 MHz, d6-DMSO): 168.8 (C), 167.3 (C), 160.2 (C), 156.2 (C), 155.2 (C), 154.3 (C), 

152.3 (C), 151.6 (C), 150.1 (C), 145.8 (C), 143.5 (C), 141.5 (C), 139.4 (C), 137.4 (C), 136.5 (CH), 131.0 

(CH), 129.9 (CH), 129.6 (CH), 128.7 (CH), 127.7 (CH), 127.4 (CH), 126.8 (CH), 126.3 (CH), 125.5 (CH), 

124.4 (CH), 122.8 (CH), 122.3 (C), 121.8 (CH), 113.1 (CH), 109.6 (C), 102.7 (CH),  52.9 (CH2), 48.1 (CH2), 

43.6 (CH2).  ESI-MS m/z: 330 ([M+2H]2+, 100 %) 660 ([M+H]+, 15 %).  HRMS: Observed [M+H]+ 

660.1981. C36H31N3O7SB requires 660.1976,  =  0.8 ppm.  IR: νmax/cm-1 3059, 1678, 1594, 1256, 

1177.  Microanalysis: Observed: %C, 62.24; %H, 5.14; %N, 4.46. C36H32BN3O8S.H2O requires %C, 

62.16; %H, 4.93; %N, 6.04.  
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Synthesis of 10-(bromomethyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-

dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide, 6  (126).  

 

Compound 6 was synthesised according to a literature procedure (126).  Bromoacetyl chloride (170 

µl, 2.0 mmol) and 2,4-dimethylpyrrole (400 µl, 3.9 mmol) were dissolved in anhydrous DCM (10 ml) 

and stirred under nitrogen.  The reaction was monitored by TLC (silica; hexane, ethyl acetate 10:1) 

and after two and a half hours the reaction appeared to be complete.   A solution of boron 

trifluoride diethyl etherate (8 ml, 7.5 mmol) in anhydrous DCM (5 ml) and triethylamine (4 ml, 28.7 

mmol) was added dropwise over 30 minutes, and the reaction was further stirred for a further four 

hours.  The solvent was removed under reduced pressure yielding a black oily residue.  The product 

was isolated by gravity chromatography on a silica column using hexane and ethyl acetate as eluent 

(10:1 [Lit, 6:1]) Rf = 0.3.  The product was then purified by recrystallization from ethyl acetate and 

was obtained as a dark pink solid (299 mg 0.88 mmol, 22 % yield). 

1H NMR (400 MHz, CDCl3): 6.11 (s, 2H, ArH), 4.81, 4.70 (both s, CH2Br and CH3), 2.57 & 2.55 (both s, 

combined 12H, CH3).  13C NMR (101 MHz, CDCl3): 156.5, 141.1, 122.5, 113.4, 37.2, 15.9, 15.5, 14.8. 

ESI-MS m/z: 133 ([C14H17BF2N2+2H]2+, 100%); 340, 342 ([M+H]+, 10%). 
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Synthesis of 4-bromo-3-(1,3-dioxolan-2-yl)phenol, 7.  

 

2-bromo-5-hydroxy benzaldehyde (1 g, 5.0 mmol) and ethylene glycol (3.5 ml, 50 mmol) were 

dissolved in anhydrous toluene in the presence of p-TsOH (5 mol %).  The reaction mixture was 

refluxed for 24 hours with a Dean-Stark trap.  After the addition of triethylorthoformate (3.5 ml, 5.0 

mmol) the solution was further refluxed and 30 minutes later solid sodium bicarbonate was added 

(4.2 g, 50 mmol).  After 30 minutes the solution was cooled and solids filtered off.  The solvent was 

removed under reduced pressure and the ethylene glycol removed by drying well under vacuum for 

16 hours.  The product was obtained as pink-orange oil in high yield (1.20 g, 4.95 mmol, 99 % yield).  

The product was used without further purification. 

1H NMR (400 MHz, MeOD): 7.37 (d, 1H, ArH, J = 8.9), 7.06 (d, 1H, ArH, J = 3.1), 6.74 (dd, ArH, 1H, J = 

3.1, J = 8.7), 5.97 (s, 1H, ArCH), 4.17-4.10 (m, 2H, CH2), 4.06-4.01 (m, 2H, CH2).  13C NMR (101 MHz, 

MeOD): 156.9 (C), 137.4 (C), 133.2 (CH), 117.6 (CH), 114.6 (CH), 110.9 (C), 102.2 (CH), 65.1 (CH2). IR: 

νmax/cm-1 3510, 2895, 1467, 1289, 1101.   
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Synthesis of 3-(1,3-dioxolan-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenol, 8. 

 

A solution of protected aldehyde 7 (1.2 g, 4.95 mmol) was dissolved in dioxane, along with 

potassium acetate (1.5 g, 15 mmol) and Pd(dppf)Cl2 (204 mg, 0.25 mmol) was degassed by bubbling 

with nitrogen for 30 minutes followed by three freeze-pump-thaw cycles.  Diboron pinacol ester (1.9 

g, 7.5 mmol) was added and the solution heated at 80 oC under nitrogen atmosphere for 24 hours.  

After cooling, the solution was filtered through celite and the solvent removed under reduced 

pressure.  The dark solid was extracted with methanol yielding an orange-brown solid.  This solid 

was washed with water (3 x 10 ml) and diethyl ether (3 x 10 ml) leaving an orange solid which then 

recrystallised from methanol.  This was analysed by 1H NMR and 11B NMR spectroscopy and shown 

to be the product (260 mg, 0.89 mmol, 18 % yield). 

1H NMR (400 MHz, (CD3)2CO): 7.61 (d, 1H, ArH, J = 8.4), 7.14 (d, 1H, ArH, J = 2.2), 6.84 (dd, 1H, ArH, J 

= 8.3, J = 2.3), 6.35 (s, 1H, ArCH), 4.08-4.03 (m, 2H, CH2), 3.98-3.93 (m, 2H, CH2), 1.33 (s, 12H, CH3). 

13C NMR (101 MHz, (CD3)2CO): 205.5, 159.6, 146.5, 137.3, 115.0, 112.6, 101.8, 83.0, 64.7, 24.3. 11B 

NMR: 22.38. 
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Synthesis of N-phthalimido-N',N'-bis(2-pyridylmethyl)ethylenediamine, 9 

(132).  

 

Compound 9 was prepared according to a literature procedure(132). Potassium carbonate (11.53 g, 

83.0 mmol) and potassium iodide (4.62 g, 28.0 mmol) were added to a solution of 1-(2-pyridinyl)-N-

(2-pyridinylmethyl)methanamine (5.00 ml, 28.0 mmol) in acetonitrile (50 ml), followed by N-(2-

Bromoethyl)phthalimide (7.08 g, 28.0 mmol).  The reaction mixture was refluxed for 24 hours.  After 

this time the mixture was filtered and the solid removed under reduced pressure to yield dark brown 

crystalline solid.  The solid was dissolved in dichloromethane, and the organic solution was washed 

with water (3 x 20 ml), with a saturated solution of sodium bicarbonate in water (3 x 20 ml) and 

finally with water (3 x 20 ml).  The organic solvent was removed and to the resulting red solid was 

added hydrochloric acid (25 ml, 2M).  The acidic solution was washed with dichloromethane (3 x 20 

ml) and then basified by addition of solid sodium bicarbonate (5 g).  A brown solid precipitated out 

and was extracted using dichloromethane (2 x 50 ml).  The dichloromethane was evaporated and a 

brown crystalline solid remained.  The product was isolated by chromatography on silica using 

dichloromethane and methanol (95:5) as eluent (Rf = 0.8) [Lit: 95:5 ethyl acetate and chloroform].  

Compound 9 appeared as a tan solid (3.65 g, 9.82 mmol, 35 %). 

1H NMR (400 MHz, CDCl3): 8.45 (d, 2H, PyH, J= 4.87), 7.79 (m, 4H, ArH), 7.43 (td, 2H, PyH, J= 7.7, J= 

1.8), 7.35 (d, 2H, PyH, J= 7.9), 7.17-7.12 (m, 2H, PyH), 3.86 (m, 6H, PyCH2 and CH2), 2.87 (t, 2H, CH2, 

J= 5.9).  13C NMR (101 MHz, CDCl3): 168.2 (C), 159.4 (C), 149.1 (CH), 136.6 (CH), 134.8 (CH), 132.1 (C), 

123.4 (CH), 122.9 (CH), 122.5 (CH), 59.9 (CH2), 51.1 (CH2), 36.0 (CH2).  ESI-MS m/z: 373 (100%, 

[M+H]+), 395 (15%, [M+Na]+).  HRMS: Observed [M+H]+, 373.1657. C22H20N4O2 requires [M+H]+ 

373.1665; Δ 2.1 ppm.  IR: νmax/cm-1 2817 (C-H), 1710 (C=O), 1394, 781, 722. 
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Synthesis of N,N-di(2-pyridinylmethyl)ethylenediamine, 10 (132).  

 

Compound 10 was synthesised following a literature procedure (132).  Hydrazine monohydrate (0.14 

ml, 2.73 mmol) solution was added to a solution of 9 (1.02 g, 2.73 mmol) in absolute ethanol.  The 

mixture was refluxed for three hours, over which time a dense white precipitate formed.  The 

ethanol was removed under reduced pressure.  Hydrochloric acid (12 M, 0.85 ml) was added to the 

resulting white solid.  This acidic solution was stirred at room temperature for 24 hours.  The acid 

was removed under reduced pressure and to the resulting yellow oil a solution of sodium hydroxide 

was added.  The pH was raised to 14 with aqueous sodium hydroxide (20 ml, 15 % w/v) and the 

aqueous solution was then extracted with dichloromethane (3 x 80 ml).  The organic solvent was 

evaporated to yield compound 10 as yellow oil, which was used without further purification (257 

mg, 1.06 mmol, 39 % yield). 

1H NMR (400 MHz, CDCl3): 8.53 (m, 2H, PyH), 7.65 (td, 2H, PyH, J= 6.1, J= 2.0), 7.50 (dt, 2H, PyH,  J= 

7.9, J= 1.1), 7.15 (ddd, 2H, PyH, J= 7.6, J= 7.4, J= 1.2), 3.85 (s, 4H, PyCH2), 2.79 (t, 2H, CH2, J= 6.1), 

2.66 (t, 2H, CH2, J= 6.1).  13C NMR (101 MHz, CDCl3): 159.6 (C), 149.2 (CH), 137.0 (CH), 123.2 (CH), 

122.6 (CH), 54.5 (CH2), 53.4 (CH2), 52.6 (CH2).  ESI-MS m/z: 243 ([M+H]+ 100%). HRMS: Observed 

[M+H]+, 243.1069. C14H19N4 requires 243.1610; Δ 0.4 ppm. IR: νmax / cm-1: 3354 (N-H), 2826 (C-H), 

1590, 1433, 759.  
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Synthesis of 1,1'-(methylenebis(4,1-phenylene))bis(3-(2-(bis(pyridin-2-

ylmethyl)amino)ethyl)urea), 11.  

 

Anhydrous triethylamine (30 µl, 0.42 mmol) was added to a solution of 4,4′-methylenebis(phenyl 

isocyanate) (51.7 mg, 0.21 mmol) in anhydrous dichloromethane under a nitrogen atmosphere.  A 

solution of compound 10 (100 mg, 0.42 mmol) in anhydrous dichloromethane was added dropwise 

at room temperature, and the reaction mixture was stirred overnight under nitrogen.  The solvent 

was then removed under reduced atmosphere and the orange oil was washed with cold acetone (3 x 

10 ml), aqueous sodium hydroxide (3 x 5 ml, 0.1M) and acetone again (3 x 10 ml).  The remaining oil 

was dried under vacuum for 24 hours to obtain compound 11 as a beige solid (105 mg, 0.14 mmol, 

68 % yield). 

1H NMR (400 MHz, d6-DMSO): 8.54 (s, br, 2H, NH (urea)), 8.48 (d, 4H, PyH, J= 4.5), 7.72 (td, 4H, PyH, 

J= 7.6, J= 1.9), 7.59 (d, 4H, PyH, J= 7.6), 7.28 (d, 4H, ArH, J= 8.6), 7.23 (m, 4H, PyH), 7.05 (d, 4H, ArH, 

J= 8.6), 6.11 (t, br, 2H, NH (urea) J= 5.6), 3.78 (s, 8H, PyCH2), 3.77 (s, 2H, ArCH2Ar), 3.24 (m, 4H, CH2), 

2.56 (t, 4H, CH2, J= 6.3).  13C NMR (101 MHz, d6-DMSO): 158.9 (C), 156.9 (C), 148.1 (CH), 137.3 (C), 

135.7 (CH), 134.6 (C), 128.9 (CH), 123.6 (CH), 122.41 (CH), 119.2 (CH), 59.7 (CH2), 54.0 (CH2), 40.1 

(CH2), 37.1 (CH2).  ESI-MS m/z: 735 ([M+H]+ 10 %), 757 ([M+Na]+ 30 %), 368 ([M+2H]2+ 100 %).  HRMS: 

Observed [M+H]+, 735.3895. C43H46N10O2 requires 735.3883, Δ 1.6 ppm.  IR: νmax / cm-1: 3315 (br, N-H 

str), 2932, 1591, 1543, 1309, 1231. Microanalysis: Observed %C, 68.21; %H, 6.47; %N, 18.01; 

C43H46N10O2.2H2O requires %C, 68.60; %H, 6.43; %N, 18.60. 
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Synthesis of dizinc complex 12 

 

Compound 11 (187 mg, 0.26 mmol) was dissolved in methanol (10 ml).  To this solution was added 

two equivalents of zinc acetate (112 mg, 0.51 mmol) in methanol (10 ml), and the mixture was 

heated at 40 oC for 16 hours.  The methanol was then removed under reduced pressure and the 

resulting yellow solid was washed with diethyl ether (3 x 10 ml) and dried under vacuum.  Analysis 

by 1H NMR spectroscopy showed that the singlet corresponding to the aliphatic protons vicinal to 

the pyridine had shifted and split into a doublet of doublets, indicating that complexation had taken 

place between the dipyridyl and the zinc.  In addition, the 1H NMR spectrum of the complex 

possessed a 12-proton singlet in the aliphatic region which corresponds to the acetate counterion.  

Receptor 12 was obtained as an orange solid (295 mg, 0.26 mmol, 100 % yield). 

1H NMR (400 MHz, d6-DMSO):  8.76 (d, 4H, PyH, J = 4.7 Hz), 8.03 (t, 4H, PyH, J = 7.8), 7.59-7.53 (m, 

8H, PyH), 7.23 (d, 4H, ArH, J = 9.0 Hz), 6.98 (d, 4H, ArH, J = 9.0 Hz), 4.30 (dd, br, 8H, PyCH2 J = 15.0 Hz, 

J = 55.5 Hz), 3.82 (s, 2H, ArCH2Ar), 3.29 (t, 4H, CH2, J = 6.7 Hz), 2.82 (t, 4H, CH2, J = 6.7 Hz), 1.98 (s, 

12H, CH3 (OAc)).  13C NMR (101 MHz, d6-DMSO): 179.6 (C), 156.7 (C), 155.1 (CH), 148.2 (CH), 140.5 

(C), 137.2 (C), 135.9 (CH), 128.7 (CH), 124.5 (CH), 123.9 (CH), 57.1 (CH2), 54.1 (CH2), 40.1 (CH2), 35.2 

(CH2), 21.7 (CH3). IR: νmax / cm-1: 3287, 1509, 1557, 1392, 1311. 
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Synthesis of 1,3-bis(2-(bis(pyridine-2-yl methyl)amino)ethyl)urea, 13.  

 

Compound 10 (1.45 g, 6.0 mmol) was stirred in anhydrous acetonitrile (10 ml) with anhydrous 

triethylamine (830 µl, 6.0 mmol) for 30 minutes.  Then this mixture was added dropwise under 

nitrogen atmosphere to a solution of 1,1’-carbonyldiimidazole (434 mg, 3.0 mmol) in anhydrous 

acetonitrile.  The reaction mixture was stirred at room temperature for 48 hours.  The solvent was 

removed under reduced pressure and the crude dissolved in dichloromethane (20 ml).  The organic 

solution was washed with water (3 x 10 ml) and then dried over sodium sulphate.  The solvent 

evaporated to yield orange oil.  Compound 13 was isolated by chromatography on silica gel, using 3 

% methanol in chloroform as eluent (Rf = 0.2).  Where traces of imidazole eluted with compound 13, 

the imidazole was removed by reverse-phase chromatography.  The mixture (100 mg) was loaded 

onto a pre-packed column containing C18 silica gel, pre-equilibrated with a mobile phase of 95 % 

water and 5 % methanol (HPLC grade).  After washing for five minutes (25 ml eluent passed through 

column at 5 ml/min) analysis by TLC showed that the imidazole had been eluted.  The mobile phase 

composition was then changed to 5 % water and 95 % methanol and after 1-2 minutes the pure 

product 13 was obtained as pale yellow oil (2.54 g, 4.98 mmol, 83 % yield). 

1H NMR (400 MHz, CDCl3):  8.48 (d, 4H, PyH, J = 5.0), 7.57 (td, 4H, PyH, J = 7.8, J = 2.0), 7.42 (d, 4H, 

PyH, J = 7.8), 7.10 (m, 4H, PyH), 6.25 (s, 2H, NH), 3.78 (s, 8H, PyCH2), 3.27 (q, 4H, CH2, J = 5.4), 2.63 (t, 

4H, CH2, J = 5.9).  13C NMR (101 MHz, d6DMSO): 159.7 (C), 158.4 (C), 149.3 (CH), 136.9 (CH), 123.0 

(CH), 122.4 (CH), 60.2 (CH2), 54.7 (CH2), 37.8 (CH2). ESI-MS m/z: 256 (100 % [M+2H]2+), 511 (45 % 

[M+H]+), 533 (55 % [M+Na]+). HRMS: Observed [M+H]+ 511.2953. C29H35N8O requires 511.2934, Δ 3.7 

ppm.  IR: νmax / cm-1: 3115, 2931, 2837, 1592, 1434. 
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Synthesis of dizinc complex 14. 

 

Compound 13 (347 mg, 0.70 mmol) was dissolved in methanol (5 ml).  To this solution was added 

zinc acetate (299 mg, 1.40 mmol) in methanol (15 ml), and the mixture was heated at 40 oC for six 

hours.  The methanol was removed under reduced pressure to yield a beige solid, which was washed 

with cold acetone (3 x 5 ml).  The resulting off-white solid was filtered and dried under vacuum.  

Analysis by 1H NMR spectroscopy showed the splitting of the singlet that corresponds to the 

aliphatic protons vicinal to the pyridines, an indication that the zinc had formed a complex with the 

dipyridyl motif (614 mg, 0.70 mmol, 100%). 

1H NMR (400 MHz, CDCl3):  8.52 (d, 4H, PyH, J = 5.0), 7.97 (td, 4H, PyH, J = 1.7, J = 7.8), 7.50 (t, 4H, 

PyH, J = 6.6), 7.46 (d, 4H, PyH, J = 7.8), 4.14 (dd, 8H, PyCH2, J = 16.0, J = 75.1), 3.12 (t, 4H, CH2, J = 

6.6), 2.66 (t, 4H, CH2, J = 6.6), 1.83 (s, 12H, CH3 (OAc)).13C NMR (101 MHz, CDCl3): 148.5 (CH), 143.7 

(C), 140.5 (CH), 140.7 (C), 124.5 (CH), 124.2 (CH), 34.7 (CH2), 56.9 (CH2) 53.3 (CH2), 23.1 (CH3). IR: νmax 

/ cm-1: 3287, 2925, 2062, 1569, 1392.  Microanalysis: Observed %C, 48.02; %H, 5.57; %N, 11.93. 

C37H46N8O9Zn2.2H2O requires: %C, 48.64; %H, 5.52; %N, 12.27. 
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Chapter 8: Biochemical assays 

 8.1 Materials 
96-well fluorescence plates, Costar 

96-well microtitre plates, Brand PureGrade 

All PIPs, IP3 and IP4, Cell Signals 

anti pan-Akt antibody (mouse monoclonal), Cell Signalling 

anti-GST antibody (HRP conjugate), AbCam 

anti-pAkt  antibody (p-Serine 473, rabbit monoclonal) , Novagen 

ATP and ATPase, Sigma-Aldrich 

Bovine serum albumin, Sigma-Aldrich 

Fatty acid free Bovine serum albumin, Sigma-Aldrich 

Bradford reagent, Sigma-Aldrich 

Centrifugation filters, Millipore 

DAPI, Merck 

Glutathione Sepharose 4B beads, G.E. Healthcare 

Goat anti-mouse antibody, BioRad 

Goat anti-rabbit antibody, BioRad 

LB broth and LB agar, Merck 

Mammalian cell media, Sigma-Aldrich 

MaxiSorp ELISA plates, Thermo Scientific 

Milk powder, Merck 

OMFP, Sigma Aldrich 

ProLong Gold Antifade reagent, Invitrogen  

TMB ELISA substrates, Thermo Scientific 

Tween-20, Sigma-Aldrich 
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8.2 Buffers and Reagents 
Bacterial lysis buffer: 2 mM EDTA, 1% Triton, 2mM DTT, 100 µg/ml trypsin inhibitor (from 

soyabean), 10 mM benzamidine-HCl, 2 mg/ml lysozyme, 0.5 mM AEBSF, 50 mM TrisHCl, pH 7.4. 

GST affinity column equilibration buffer: 140 mM NaCl, 2.7 mM KCl, 50 mM TrisHCl, pH 7.4. 

GST affinity column washing buffer 1: 140 mM NaCl, 2.7 mM KCl, 2mM DTT, 50 mM TrisHCl, pH 7.4. 

GST affinity column washing buffer 2: 500 mM NaCl, 2.7 mM KCl, 2mM DTT, 50 mM TrisHCl, pH 7.4. 

GST affinity column elution buffer: 20 mM Glutathione, 250 mM NaCl, 2 mM DTT, 100 mM TrisHCl, 

pH 7.4. 

Phosphate detection reagent: 6 mM Malachite green oxalate, 19 mM ammonium molybdate, 77 

mM bismuth (III) citrate, 17% (v/v) concentrated HCl.  Reagent is 2x as required to stop enzyme 

reactions. 

PBST: 140 mM NaCl, 2.7 mM KCl, 0.1 % Tween-20, 100mM KHPO4, pH 7.4. 

TBST: 140 mM NaCl, 2.7 mM KCl, 0.1 % Tween-20, 100 mM TrisHCl, pH 7.4. 

ELISA blocking buffer: 3% w/v Essentially fatty acid free BSA in PBST or TBST, pH 7.4. 

Cell growth medium: HCT116 cells grown in McCoy’s 5A medium with glutamine and supplemented 

with 10% FCS.  NIH/3T3 cells grown in DMEM supplemented with 10% BCS. 

Cell starvation medium: DMEM low glucose medium, serum-free. 

Mammalian cell lysis buffer:  62.5 mM TrisHCl, pH 6.8, 2 % w/v SDS, 10 % v/v Glycerol, 50 mM 

Dithiothreitol, 0.01 % w/v Bromophenol blue. 

Western blot blocking buffer:  TBST with 5 % w/v milk powder 

Primary antibody dilution buffer:  TBST with 5 % w/v BSA 

Enhanced Chemiluminescence (ECL) detection solution: 1.25 mM luminol, 200 M p-coumaric acid, 

100 mM TrisHCl, pH 8.5.  Hydrogen peroxide 30 % solution was added immediately prior to use (3.1 

l for 10 ml solution). 

Buffer pH was adjusted using NaOH and HCl.  
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8.3 Methods 

8.3.1 Calibration of phosphate detection reagent 
The phosphate detection reagent was made up as described (based on literature formulation (58)) 

and calibrated using inorganic KHPO4 in MilliQ water before being used in the assay.  The phosphate 

detection reagent (100 µl per well) was added to increasing concentrations of phosphate (100 µl per 

well) in a standard 96-well microtitre plate.  Absorbance was measured at 625 nm after five minutes. 
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Figure 8.1: Calibration of phosphate detection reagent with increasing phosphate. Increase in 
absorbance at 625 nm of the phosphate detection reagent (100 µl) in the presence of increasing 
concentrations of KHPO4 in MilliQ water (100 µl). Absorbance at 0M KHPO4 was subtracted to give 

Absorbance.  Inset: the concentration range (µM) in which the response of the dye to phosphate is 
linear.  Linear fit shown. Error bars represent standard deviation of three independent repeats carried 
out in triplicate. 
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8.3.2 Calibration of protein detection 
Protein concentration was determined using the Bradford method (159).  Bradford reagent (200 µl, 

used as provided by manufacturer) was added to standard solutions of bovine serum albumin (BSA, 

20 µl) in a standard 96-well microtitre plate.  Absorbance was measured at 595 nm. 
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Figure 8.2: Calibration of Bradford reagent against BSA with linear fit.  Bradford reagent (200 µl) was 
added to standard solutions of BSA (20 µl, 0  0.6 mg/ml) and absorbance was measured at 595 

nm. Absorbance at 0 mg/ml BSA was subtracted to yield Absorbance. Error bars represent standard 
deviation of two independent repeats carried out in triplicate. 
 
This standard plot was used to determine protein concentration. 
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8.3.3 Protein expression and purification 

Akt-PH domain, PLC1-PH domain, SopB and PTEN were expressed as GST-fusion proteins according 

to the following protocol optimised by our group (58). 

Plasmid DNA containing ampicillin resistance gene was added to DH5α E. Coli cells on ice (1 µl).  

After incubating on ice for 30 minutes the cells were heat shocked by incubating at 42 oC for 90 

seconds, and were then returned to ice for two minutes.  The cells were then spread onto agar 

plates containing ampicillin (Amp concentration = 100 µg/ml).  The plates were incubated at 37 oC 

for 16 hours after which time bacterial colonies were observed.  Single colonies were picked using a 

sterile tip and added to 10ml sterilised LB broth containing ampicillin each (100 µg/ml).  After 

incubating for 16 hours at 37 oC the cloudy mixtures were added to 1L sterilised LB broth also 

containing ampicillin (100 µg/ml).  The bacteria were allowed to grow until the optical density at 600 

nm was in the range 0.5-0.6.  Fresh ampicillin was then added (to a final concentration of 200 µg/ml) 

and expression was induced using isopropyl -D-1-thiogalactopyranoside (IPTG, 1ml, 1M).  The 

mixtures were incubated with shaking at 18 oC.  After 24 hours the bacteria were collected by 

centrifugation at RCF = 4684g (4600 RPM) for 15 minutes.  The supernatant was removed and the 

pellets frozen at -20 oC before purification. 

The pellets were thawed and resuspended in lysis buffer (50 ml buffer per 1L LB preparation), and 

stirred for one hour at 4 oC.  The cells were then lysed using a manual homogeniser followed by 

sonication (five cycles of one minute sonication followed by two minutes rest on ice).  Cell debris 

was removed by centrifugation at RCF = 30753g (11500 RPM) and 4 oC for 60 minutes.  The 

supernatant was then filtered onto a glutathione sepharose column (pre-equilibrated with column 

equilibration buffer, 20 ml) using a 0.45 µm syringe filter.  After washing with buffers 1 and 2 (20 ml 

each), elution buffer containing fresh glutathione was added (5 ml) and incubated with the column 

at 4 oC overnight.  After 16 hours the fractions were collected and protein concentration determined 

using Bradford assay.  Fractions containing protein were combined and the protein was 

concentrated by ultracentrifugation (PH domains, 30 kDa filter; SopB and PTEN 80 kDa filter).  The 

concentration of protein was determined by Bradford assay, and the purity was determined by 

staining on SDS-PAGE gel. Proteins were diluted x2 with glycerol and stored at -80 oC until required. 

  



179 
 

8.3.4 Phosphatase assays  

To measure the activity of the phosphatases SopB and PTEN, and of ATPase, two methods were 

used.  The first method is an endpoint assay which uses phosphoinositides, inositol phosphates and 

ATP as substrates, and measures the amount of phosphate released over a set period of time.   This 

is achieved by adding the phosphate detection reagent (calibrated against phosphate, Section 8.3.1) 

to the enzyme reaction which is stopped due to the acidic pH of the reagent.  The second method is 

a continuous assay which uses the artificial substrate OMFP.  OMFP is dephosphorylated to generate 

fluorescent OMF, and the fluorescence intensity can be measured continuously. 

8.3.4.1 Phosphate release endpoint assay  

Phosphate release assays were carried out for PTEN (substrate PC:PI(3,4,5)P3), SopB (substrates IP3 

and all seven PIPs as PC:PIP mixtures) and ATPase (substrate ATP) by using a slight modification of a 

standard protocol (139),(160). 

8.3.4.1 Sample preparation: lipid substrate 

The phosphoinositide substrates were presented as 1:1 molar ratio of PIP and phosphatidylcholine 

(PC).  The stock lipids were stored in chloroform.  To make up samples the required amounts of PIP 

and PC were mixed in a glass vial (3ml size) and the solvent removed under flowing nitrogen for one 

hour.  When the solvent was removed a film of lipid was observed.  Water was then added to make 

solutions up to the required concentration and upon vortexing the mixture became cloudy.  After 

bath sonication for 10 minutes the solutions were clear, and were used thus as substrate solutions.  

Fresh vesicle solutions were made up immediately before use and stored on ice until required. 

8.3.4.2 Phosphatase activity  

In each case, the substrate solutions were incubated with enzyme in a 96-well plate for 15 minutes 

at 37 oC (100mM Tris, pH 7.4, 4 mM MgCl2; total volume 100 µl per well using MilliQ water).  The 

reaction was stopped by addition of a phosphate detection reagent based on malachite green (100 

µl per well).  Control wells included the same concentration of substrate, and the enzyme was added 

after the phosphate detection reagent (so that no reaction could take place, but that all the 

components were accounted for when the absorbance was read).  Colour was allowed to develop 

for five minutes and absorbance was read at 625 nm.  Turnover of the enzyme was calculated as the 

absorbance of the reaction wells minus absorbance of enzyme control wells (Absorbance at 625 

nm).  Each substrate was tested for linearity of response against the corresponding enzyme and vice 

versa. 
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8.3.4.3 Inhibition of phosphatase activity 

For each assay, concentrations of enzyme and substrate were chosen which provided a linear 

response to the phosphate detection reagent (see Table 8.1).  Receptors were incubated with a 

constant concentration of substrate  for 30 minutes before addition of constant amount of enzyme 

(total volume 100 µl, 100 mM Tris pH 7.4, 4 mM MgCl2, 2 % v/v DMSO where required).  Controls 

were included which contained the relevant amount of receptor and substrate, and the enzyme was 

added after the phosphate detection reagent so that no reaction could take place.   Absorbance was 

read at 625 nm and the turnover of the enzyme was the absorbance of the reaction wells minus 

absorbance of enzyme control wells (Absorbance at 625 nm).  Turnover was plotted as % of vehicle 

control.  IC50 values were calculated using 4-parameter fitting with GraFit version 6.0.12. 

 

Table 8.1: Enzyme and substrate concentrations used in phosphate release assay IC50 measurements. 

Enzyme Enzyme Concentration Substrate Substrate 

Concentration 

SopB 2.4 µg/ml PC:PI(4,5)P2 30 µM 

SopB 2.4 µg/ml IP3 30 µM 

ATPase 0.15 µg/ml ATP 15 µM 

PTEN 126.9 µg/ml PC:PI(3,4,5)P3 30 µM 
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8.3.4.4 Continuous phosphate release assay  

This assay was carried out according to a previously described method (161).  Ortho-

methylfluorescein phosphate (OMFP) was used as an artificial substrate for SopB, PTEN and ATPase.  

When the phosphatases act on OMFP they generate OMF which is fluorescent.  OMFP stocks were 

made up to 20 mM in DMSO and stored at -20 oC. 

OMFP (in MilliQ water with 2 % DMSO) was added to enzyme solutions to initiate the reaction (total 

volume 100 µl, final concentrations 100 mM Tris and 4 mM MgCl2, constant 2 % v/v DMSO) in 96-

well fluorescence microtitre plates.  Increase in fluorescence was measured (ex = 485 nm, em = 

525 nm) over time.  Control solutions contained no enzyme in order to determine the background 

level of fluorescence due to OMFP hydrolysis to OMF.  Rate of reaction was calculated as the change 

in fluorescence intensity over 10 minutes. 

8.3.4.5 Enzyme inhibition- continuous phosphate release assay 

Enzyme inhibition using a single concentration of receptors 3, 4, 12, 14 and 16 was tested using the 

following method.  Receptors were added to the buffered enzyme solution (concentrations indicated 

in Table 8.2; final concentrations 100 mM Tris, 4 mM MgCl2, pH 7.4, 2 % v/v DMSO) and incubated at 

room temperature for 15 minutes.  OMFP (50 µM) was then added to initiate the reaction and the 

fluorescence intensity was monitored over 30 minutes. 

Table 8.2: Receptor and enzyme concentrations for inhibition assay using OMFP substrate.  Receptors 
were incubated with enzyme and upon addition of OMFP (50 µM) fluorescence intensity was 
measured for 30 minutes. 

Inhibitor Receptor concentration (final 

concentration in 100 µl) 

Enzyme Enzyme concentration (final 

concentration in 100 µl) 

Receptor 3 100 µM SopB 2.36 µg/ml 

Receptor  4 100 µM SopB 2.36 µg/ml 

Receptor  3 100 µM ATPase 0.15 µg/ml 

Receptor  4 100 µM ATPase 0.15 µg/ml 

Receptor 12 15 µM PTEN 84.6 µg/ml 

Receptor 14 15 µM PTEN 84.6 µg/ml 

Receptor 16 15 µM PTEN 84.6 µg/ml 

 

To calculate IC50 values, increasing concentrations of zinc chloride and receptors 12, 14 and 16 were 

added to the enzymes (enzyme concentrations as Table 8.2, 100 mM Tris, 4 mM MgCl2, pH 7.4, 2 % 

v/v DMSO) in a 96-well fluorescence microtitre plate and incubated at room temperature for 15 

minutes.  OMFP was added to initiate the reaction and fluorescence intensity was measured over 30 
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minutes.  Rate of reaction was calculated as change in fluorescence intensity over 10 minutes. IC50 

values were calculated using 4-parameter fitting with GraFit version 6.0.12. 

 

8.3.6 Detection of immobilised PI(4,5)P2  

Fluorescent receptor 5 was used to detect immobilised PI(4,5)P2 using the following method.  

Increasing amounts of PI(4,5)P2 were coated onto the bottom of a 96-well ELISA plate (MaxiSorp) by 

incubating in methanol (50 µl) overnight at 4 oC.  After 16 hours the methanol was allowed to 

evaporate at room temperature for one hour.  The lipid was washed with TBST (3 x 200 µl, pH 7.4).  

Receptor 5 (50 µl, 5 µM, 2 % v/v DMSO) in methanol was then incubated for one hour at room 

temperature, and unbound receptor was removed by washing the wells with TBST (3 x 200 µl, pH 

7.4).  The fluorescence intensity of the plate was measured (ex = 485, em = 525 nm). 
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8.3.7 Enzyme-linked immunosorbent assay (ELISA) 

Lipids were coated onto the bottom of a 96-well ELISA plate (MaxiSorp) by incubating in methanol 

(50 µl) overnight at 4oC.  After 16 hours the methanol was allowed to evaporate at room 

temperature for one hour.  The wells were then washed with buffer (PI(4,5)P2 system used PBST; 

PI(3,4,5)P3 system used TBST; washed 3 x 200 µl, 5 minutes each).  The lipid was incubated with a 

solution of blocking buffer containing the relevant lipid-binding protein domain as GST fusion 

protein.  After one hour at room temperature the wells were again washed with buffer (200 µl, 3 x 5 

minutes each).  The wells were then incubated with a solution containing buffer and HRP-conjugated 

anti-GST antibody (1:10,000).  After a further round of washing (3 x 200 µl, 5 minutes each) a 

solution of TMB reagent (100 µl per well) was added and allowed to develop for five minutes, 

turning blue in colour.  The reaction was then stopped by addition of sulfuric acid (100 µl per well, 

2M) and the absorbance of the resulting yellow solutions was measured at 450 nm. 

ELISA assays were optimised by analysing the linear response of increasing lipid against a single 

concentration of protein, and increasing protein against a single lipid concentration.  In this way we 

can be sure that decrease in absorbance at 450 nm is linearly proportional to inhibition. 

 

8.3.7.1 Determination of binding affinity of receptors towards PI(4,5)P2 and PI(3,4,5)P3: 

Competitive ELISAs were carried out according to the protocol above, but with the following 

modification. 

Receptor-lipid mixtures were made up in methanol (containing constant concentration of 2% DMSO 

or H2O).  The mixtures were laid onto the plate overnight at 4oC and the solvents were allowed to 

evaporate at room temperature the next day.  The ELISA protocol above was then followed exactly 

from (including) the first washing step. 

Receptors 3, 4, 5 and 16 (increasing concentrations) were incubated with PI(4,5)P2 (100 pmols) 

which was probed with the PLCδ1-PH domain (50 nM); receptors 12, 14 and 16 (increasing 

concentrations) were incubated with PI(3,4,5)P3 (50 pmols) which was probed with GRP1-PH domain 

(65 nM, expressed and purified by Dr. Lok Hang Mak, Woscholski group). 
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8.3.8 Cell culture 

HCT116 wild type cells and NIH/3T3 cells were cultured in 10 cm sterile plates in a humidified 

incubator at 37oC with 5% CO2 atmosphere.  Cells were handled in a laminar flow hood.  HCT116 

cells were grown in McCoy’s 5A medium supplemented with glutamine and 10% serum.  NIH3T3 

cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10 % serum.  

When cells reached approximately 80% confluency the medium was removed by aspiration, and the 

cells washed with sterile PBS (1 x 10 ml).  Trypsin (1 ml, 0.25%) was added to detach the cells which 

were then resuspended in medium and split 1:10 (NIH3T3) or 2:10 (HCT116) three times per week or 

as required into fresh medium. 

8.3.8.1 Determination of phospho-Akt  

HCT116 cells were grown on 6 cm plates until 80% confluency.  The cells were starved overnight in 

starvation medium containing no serum (in incubator at 37oC with 5% CO2 atmosphere), and before 

experiments were carried out the medium was replaced with fresh starvation medium.  Solutions of 

receptors were added to the medium (using up to 2 % (v/v) DMSO) and incubated for 15 minutes 

before stimulation with insulin for a further 15 minutes.  Where compounds were solutions in 

DMSO, controls contained the same volume of DMSO (2 % v/v).  Cells were then washed three times 

with cold PBS and detached using lysis buffer (300 µl), and the lysate boiled for 5 minutes at 95oC. 

8.3.8.2 Western blot 

Cell lysate (20 µl) was run on SDS gels (stacking gel 5 % polyacrylamide, running gel 10 %) at 200 V 

for 45 minutes, along with protein ladders.  The gels were then transferred onto nitrocellulose 

membrane using 200 V and 350 mA for 60 minutes at 4oC.  The membrane was washed twice with 

TBST and blocked using milk powder (5 % w/v) in TBST for one hour at room temperature.  After 

washing three times with TBST (5 mins each, with gentle agitation) the membrane was incubated 

overnight (minimum 16 hours) with primary antibody (1:5000 dilution) in TBST with 5 % (w/v) BSA at 

4oC.  The membrane was washed another three times with TBST and incubated with secondary 

antibody (1:2000 dilution) for one hour at room temperature in TBST with milk powder (5 % w/v) 

before a further three washes were carried out.  The blot was incubated in ECL detection solution for 

2 minutes prior to imaging by chemiluminescent detection. 

8.3.8.3 Fluorescence microscopy 

NIH/3T3 cells were cultured as described.  In preparation for experiment, cells were split into 24-well 

plates containing coverslips and grown in a humidified incubator at 37oC and 5 % CO2 atmosphere 

until approximately 80 % confluent.  Cells were starved overnight in serum-free medium before 

experiments were carried out. 
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8.3.8.4 Sample preparation- live cells 

Medium was removed by aspiration and fresh starvation (serum-free) medium was added to the 

cells before procedures were carried out.  Receptor 5 was added to the medium and incubated for 

15 minutes at 37oC before the medium was removed.  The cells were washed with PBS (3 x 500 µl) 

before paraformaldehyde (PFA) was added (300 µl, 4 %, 15 mins, room temperature).  After removal 

of PFA the wells were washed with PBS (3 x 500 µl).  A solution of 4',6-Diamidino-2-Phenylindole 

(DAPI) in blocking buffer (200 µl, 1:1000 DAPI in 3 % BSA in PBS) was incubated (10 minutes, room 

temperature), and after this time the wells were washed with PBS (3 x 500 µl). 

8.3.8.5 Sample preparation- fixed cells 

Medium was removed by aspiration and fresh starvation (serum-free) medium was added to the 

cells before procedures were carried out.  The cells were washed twice with PBS before 

paraformaldehyde (PFA) was added (300 µl, 4 %, 15 mins, room temperature).  After removal of PFA 

the wells were washed with PBS (3 x 500 µl).  Receptor 5 was added to the medium and incubated 

for 15 minutes at room temperature before the medium was removed.  After washing with PBS (3 x 

500 µl) cells were incubated with DAPI (200 µl, 1:1000 DAPI in 3 % BSA in PBS, 10 mins, room 

temperature) and after this time the wells were washed with PBS (3 x 500 µl). 

8.3.8.6 Imaging cells 

Coverslips were mounted onto glass slides using ProLong Gold Antifade and sealed with nail varnish.  

Cells were observed using a Nikon TE 2000 fluorescence microscope using a 100x lens.  DAPI filter 

excitation wavelength range was 340 – 380 nm and emission wavelength 435-485 nm.  FITC filter 

excitation wavelength range was 465 – 495 nm and emission wavelength 515 – 555 nm.  Images 

were digitised using Hamamatsu CCD camera for each fluorophore and combined using IPLab 

software (Version 3.65 with Multiprobe extension).  Images shown were all taken with the same 

exposure time (DAPI, 20 ms; FITC, 300 ms). 
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Chapter 9: Appendix 

9.1 2-dimensional and 135DEPT NMR 

9.1.1 13C and 135 DEPT, Compound 3 

 

 

Figure 9.1: Top, 13C spectrum of compound 3 (red) overlaid with 135DEPT of 3 (blue). Bottom, 

expansion benzylic protons showing two CH2 peaks close together at 49.3 and 49.2 ppm.  Spectra 

indicate the presence of six C, eleven CH and three CH2 carbons. 
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9.1.2 13C and 135DEPT, Compound 4 

 

Figure 9.2: Top, 13C NMR spectrum of compound 4 taken at 388 K. Bottom, 135DEPT of compound 4 

taken at 298K.  The two spectra do not overlap due to difference in acquisition temperature.  

However the 13C spectrum is observed to have seven more peaks in the aromatic region (seven 

removed peaks correspond to quaternary C, remaining eight are CH2 carbons) than the 135DEPT 

spectrum.  Three peaks are present in the benzylic region of the 13C spectrum and correspond to three 

negative peaks in the same region of the 135DEPT spectrum.  
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9.1.3 13C and 135DEPT, Compound 5 

 

Figure 9.3: 13C NMR (red) and 135DEPT (blue) of compound 5.   
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9.1.4 1H-1H COSY, compound 11 

 

Figure 9.4: Expansions of 1H-1H COSY crosspeaks for compound 11.  Protons are assigned where 

unambiguous. 
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9.1.5 1H-13C HMQC, Compound 11 

 

Figure 9.5: Expansions of 1H-13C HMQC crosspeaks for compound 11.  Carbons are assigned to 

connected protons. 
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9.1.6 13C NMR, 135-DEPT Compound 11 

 

Figure 9.6: 13C NMR (red) overlaid with 135DEPT (blue).  Negative peak at 40.4 ppm indicates the 

presence of a CH2 peak (HL) which overlaps with the solvent, and is therefore obscured in 13C NMR.  

DMSO possesses two CH3 groups which produce positive peaks in 135DEPT spectroscopy. 
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9.1.7 Compound 11 and 12: Comparison of 1H NMR 

 

Figure 9.7: Benzylic protons of compound 11 are observed as a singlet (blue spectrum).  Upon 
coordination of DPA to zinc the singlet splits and shifts (compound 12, red spectrum). 
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9.1.8 1H-13C HMQC, Compound 12 

 

Figure 9.8: 1H 13C HMQC of complex 12. 
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9.1.9 1H-1H COSY, Compound 13 

 

Figure 9.9: Expansions of 1H-1H COSY crosspeaks for compound 13.  Protons are assigned where 

unambiguous. Urea proton (HH) not observed. 
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9.1.10 1H-13C HMQC, Compound 13 

 

Figure 9.10: 1H-13C HMQC expansions for compound 13.  Carbons are assigned to connected protons. 
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9.1.11 Compounds 13 and 14: Comparison of 1H NMR 

 

Figure 9.11: Benzylic protons of compound 13 are observed as a singlet (blue spectrum).  Upon 
coordination of DPA to zinc the singlet splits and shifts (compound 14, red spectrum). 
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9.2 Crystal structure data for compound 6 

 

Figure 9.12: Structure of compound 6 as determined by X-ray crystallography. 

Data for 6: 

Empirical formula: (C14 H16 B Br F2 N2)0.53,(C14 H17 B F2 N2)0.47 

Formula weight 304.12 

Temperature 173 K 

Diffractometer, wavelength OD Xcalibur 3, 0.71073 Å 

Crystal system, space group Monoclinic, P2(1)/n 

Unit cell dimensions a = 9.9860(2) Å  = 90° 

 b = 12.3363(2) Å  = 108.603(3)° 

 c = 11.8813(3) Å  = 90° 

Volume, Z 1387.19(6) Å3, 4 

Density (calculated) 1.456 Mg/m3 

Absorption coefficient 1.628 mm-1 

F(000) 624 

Crystal colour / morphology Red tablets 

Crystal size 0.35 x 0.31 x 0.08 mm3 

 range for data collection 3.22 to 32.70° 

Index ranges -15<=h<=13, -18<=k<=17, -11<=l<=17 

Reflns collected / unique 15276 / 4685 [R(int) = 0.0251] 

Reflns observed [F>4(F)] 3750 

Absorption correction Analytical 

Max. and min. transmission 0.880 and 0.648 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4685 / 6 / 188 

Goodness-of-fit on F2 1.052 

Final R indices [F>4(F)] R1 = 0.0402, wR2 = 0.1049 

R indices (all data) R1 = 0.0551, wR2 = 0.1128 

Largest diff. peak, hole 0.458, -0.218 eÅ-3 

Mean and maximum shift/error 0.000 and 0.000 
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Bond lengths [Å] and angles [°] for Compound 6. 

 

B(1)-F(13) 1.3924(15) 

B(1)-F(14) 1.3965(16) 

B(1)-N(2) 1.5447(17) 

B(1)-N(12) 1.5464(18) 

N(2)-C(3) 1.3547(16) 

N(2)-C(6) 1.4008(15) 

C(3)-C(4) 1.401(2) 

C(3)-C(15) 1.492(2) 

C(4)-C(5) 1.3868(19) 

C(5)-C(6) 1.4340(17) 

C(5)-C(16) 1.5033(19) 

C(6)-C(7) 1.4018(17) 

C(7)-C(8) 1.3965(16) 

C(7)-C(17') 1.4955(17) 

C(7)-C(17) 1.4955(17) 

C(8)-N(12) 1.4033(15) 

C(8)-C(9) 1.4325(17) 

C(9)-C(10) 1.379(2) 

C(9)-C(19) 1.5001(19) 

C(10)-C(11) 1.406(2) 

C(11)-N(12) 1.3520(16) 

C(11)-C(20) 1.488(2) 

C(17)-Br(18) 1.8551(13) 

 

F(13)-B(1)-F(14) 109.31(10) 

F(13)-B(1)-N(2) 110.49(11) 

F(14)-B(1)-N(2) 109.94(10) 

F(13)-B(1)-N(12) 110.48(10) 

F(14)-B(1)-N(12) 109.86(11) 

N(2)-B(1)-N(12) 106.73(10) 

C(3)-N(2)-C(6) 108.59(10) 

C(3)-N(2)-B(1) 125.64(11) 

C(6)-N(2)-B(1) 125.67(10) 

N(2)-C(3)-C(4) 108.95(12) 

N(2)-C(3)-C(15) 123.14(13) 

C(4)-C(3)-C(15) 127.90(13) 

C(5)-C(4)-C(3) 108.71(12) 

C(4)-C(5)-C(6) 106.23(11) 

C(4)-C(5)-C(16) 123.46(12) 

C(6)-C(5)-C(16) 130.25(12) 

N(2)-C(6)-C(7) 119.90(10) 

N(2)-C(6)-C(5) 107.50(10) 

C(7)-C(6)-C(5) 132.59(11) 

C(8)-C(7)-C(6) 121.56(11) 

C(8)-C(7)-C(17') 119.17(11) 

C(6)-C(7)-C(17') 119.26(11) 

C(8)-C(7)-C(17) 119.17(11) 

C(6)-C(7)-C(17) 119.26(11) 

C(7)-C(8)-N(12) 120.05(11) 

C(7)-C(8)-C(9) 132.43(11) 

N(12)-C(8)-C(9) 107.52(10) 
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C(10)-C(9)-C(8) 106.35(12) 

C(10)-C(9)-C(19) 123.53(13) 

C(8)-C(9)-C(19) 130.12(12) 

C(9)-C(10)-C(11) 108.80(12) 

N(12)-C(11)-C(10) 108.87(12) 

N(12)-C(11)-C(20) 123.05(13) 

C(10)-C(11)-C(20) 128.08(13) 

C(11)-N(12)-C(8) 108.46(11) 

C(11)-N(12)-B(1) 125.93(11) 

C(8)-N(12)-B(1) 125.38(10) 

C(7)-C(17)-Br(18) 110.63(8) 
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9.3 Binding of receptors 12, 14 and 16 to PV 
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Figure 9.13:  Addition of increasing concentrations of receptors 12, 14 and 16 to pyrocatechol violet 

(PV, 100 M in HEPES buffer, 100 mM pH 7.4) induced a colour change which was monitored by UV-
Vis spectroscopy.  The peak observed at 640 nm corresponded to the receptor-PV complex. Error bars 
represent standard error of triplicate repeats performed in triplicate (n=3). 
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9.4 IC50 determination of zinc inhibition of PTEN, SopB and ATPase. 
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Figure 9.14: Increasing concentrations of zinc inhibit activity of the enzymes PTEN, SopB and ATPase.  
OMFP (50 µM) added to initiate reactions and fluorescence intensity was monitored over 10 minutes 

(ex = 485 nm, em= 525 nm).  PTEN 84.6 µg/ml; SopB 2.36 µg/ml; ATPase 0.15 µg/ml. Rate of 
hydrolysis of OMFP without enzyme has been subtracted for each concentration of ZnCl2.  Error bars 
represent standard deviation of two independent experiments carried out in triplicate. IC50 values 
determined using GraFit version 6.0.12. 

PTEN, IC50 = 13.6 ± 1.3 µM;  SopB, IC50 = 14.1 ± 1.1 µM;  ATPase IC50 = 28.9 ± 4.4 µM [Lit: 22 µM 
(155)]. 


