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Abstract

This thesis consists of work mainly performed within the Qatar Carbon-

ates and Carbon Storage Research Centre (QCCSRC) project, focusing on

the prediction of flow and transport properties in porous media. The di-

rect pore scale simulation of complex fluid flow on reservoir rocks is the

main topic of this work. A simulation package based on the lattice Boltz-

mann method has been developed to study single and multiphase flow as

well as thermal and solute dispersion in porous media. The simulator has

been extensively validated by comparing simulation results to reference so-

lutions. Various numerical experiments have been performed to study the

single/multiphase/solute dispersion flow in reservoir rocks. The simulator

successfully predicts various transport properties including single phase and

relative permeability, capillary pressure, initial-residual saturation, residual

cluster size distribution and dispersion coefficient. The prediction has been

compared to available experimental data and was generally found to be in

good agreement. The simulator is also ready for exploring the two-phase

dynamic problem with coupled and nonlinear physical processes including

the effect of wettability, surface tension and hysteresis.

To improve the efficiency of the lattice Boltzmann simulations, an opti-

mised collision model and corresponding parallel operation are proposed and

implemented. A sparse storage scheme which significantly reduces the mem-

ory requirement has been designed and implemented for complex porous

media. Due to the application of these optimisation schemes, it is possible

to perform simulations on large scale samples (Size >1024x512x512). The

optimised code shows very good and promising performance, and nearly

ideal scalability was achieved.
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1. Introduction

The rapidly increasing demand for fossil fuel pushes the petroleum industry

to get a deeper understanding of earth systems. To better understand the

earth system, we are interested in determining and predicting the transport

properties within the basic elements of earth systems, the rocks. In order

to determine, or predict the transport properties within the rocks, the un-

derlying microscopic physics should be properly understood. Therefore we

are keen to understand, simulate and predict pore-scale physics in porous

media. However, this is normally difficult. Firstly, the geometry of the rocks

can be highly heterogeneous and complicated. What’s more, the transport

phenomena inside are normally nonlinear and coupled. As an example, we

consider the flow of water and oil in the rocks. The transport properties of

some porous media have been determined by experiments in laboratories.

However, they are time-consuming and very costly. For example, the exper-

imental measurement of relative permeabilities takes a long time (several

months for a single rock core) and is therefore very expensive (costs are of

the order of several 105 USD) in commercial petrophysics labs. The quality

of measured data depends on the experience of operators. Some empirical

relations were proposed to estimate the transport properties within the rocks

[8, 9]. Due to the complexity of the structure, these empirical relations are

not always effective, especially for multi-phase and multi-component flows.

With the continuing development of the computer, numerical simulation

is rapidly becoming an alternative solution for this problem. Several com-

mercial enterprises already offer “digital rock physics” services as a com-

plement or even alternative to experimental permeability measurements

[10]. However, this problem is far from solved: the complex geometry of

some classes of porous media, such as carbonate rocks, makes it difficult

to model and predict the transport properties. Several numerical methods

have been proposed to determine the transport properties of porous media,
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including Finite Element Method (FEM)[11, 12], Finite Differential Method

(FDM)[13, 14] and Network Modelling [15, 16]. Network Modelling is an

attractive option as it uses a simplification of the actual pore space geom-

etry and therefore provides relatively simple numerical solutions [17, 18].

Network models work well for relatively simple rocks such as sandstone.

However, for more complex porous media, such as carbonates, which have

a very broad pore size distribution, the generation of network models is

difficult [19]. For this reason, calculation of the transport properties di-

rectly on pore space images obtained from X-ray microtomography (XMT)

has recently seen a tremendous development. The direct methods men-

tioned above, FEM and FDM, generally require extensive meshing to ob-

tain reasonable accuracy. They often are difficult to implement and are of

low efficiency. Moreover, multi-physics processes including multi-phase and

multi-component flow in complex geometries are very challenging for these

traditional CFD methods.

As a powerful alternative, the lattice Boltzmann method (LBM) has been

introduced as a novel CFD technique which is able to handle extremely com-

plex geometries without simplification [20]. The Navier-Stokes equations

with complicated boundaries can be solved accurately by the LB method.

These advantages match our requirement for the determination of transport

properties in the pore space of the rocks. The LB method is easy to im-

plement compared with other CFD algorithms. Most of the computation is

local and thus it is ideal for parallel implementation. Due to the statistical

physics background, it is easy to simulate multi-physics processes including

multi-phase and multi-component flow, evaporation, condensation as well as

cavitation. These advantages make the LB method an ideal numerical tool

to study flow properties in porous media. In this PhD study, I developed

a lattice Boltzmann method simulator for the transport phenomena associ-

ated with the flow of reservoir fluids, comprising concentrated brines, CO2

and hydrocarbons at the pore scale. It is able to determine the transport

properties in realistic rock geometries. This simulator is reliable, efficient

and accurate compared with other existing numerical methods, and more

importantly, has the capability of handling complex geometries. We will use

upscaling algorithms to predict flow properties at the core scale. We have

produced a working LB simulation code to help design CO2 re-injection
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operations in Qatari oil and gas fields. The code package is able to carry

out direct simulation on images from Micro-CT scanning for:

• Single phase flow in porous media

– Simulate single-phase flow within complex geometries.

– Calculate the absolute permeability of porous media.

– Visualise the pressure and velocity field.

• Multiphase/Multi-component flow in porous media

– Simulate multiphase/multi-component flow with viscosity and

density contrast, surface tension and wettability in porous media.

– Calculate the relative permeability of porous media with binary

immiscible fluids.

– Compute the capillary pressure of binary immiscible fluids in

porous media.

– Simulate drainage/imbibition cycles.

– Predict the initial-residual saturation and cluster size distribu-

tions at different reservoir conditions.

– Visualise pressure, velocity and wetting/non-wetting distribu-

tions.

• Thermal/solute dispersion in porous media

– Simulate coupled flow and thermal convection/diffusion in porous

media.

– Calculate dispersion coefficient of the porous media.

To obtain high accuracy and efficiency for the simulations of transport

phenomena associated with the flow of reservoir fluids, we proposed several

optimisation schemes to overcome several difficulties of the lattice Boltz-

mann method:

• Improve numerical stability of the lattice Boltzmann method for low

viscosity fluid flow simulations.

• Eliminate viscosity dependence of absolute permeability calculations.
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• Eliminate high spurious velocities in multi-phase and multi-component

lattice Boltzmann method simulations.

• Reduce significantly the computing time in 3D lattice Boltzmann sim-

ulations.

• Reduce constraints on the viscosity ratio and density ratio of immis-

cible binary fluid systems that can be simulated by the lattice Boltz-

mann method.

The basic fluid mechanics concepts and derivation of core equations of the

lattice Boltzmann are given in Chapter 3. Various different multiphase/multi-

component lattice Boltzmann models and thermal/solute dispersion lattice

Boltzmann models are discussed in Chapter 4-7. A special optimisation

scheme for pore scale LB simulation is given in Chapter 9. The code per-

formance is also studied in Chapter 9.
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2. Background and Literature

Review

A porous medium consists of pore space and a solid matrix. The pores are

generally interconnected, which allows the fluids to flow and mass trans-

fer to take place. The transport properties within a porous medium can

be determined accurately if the physical equations can be solved. How-

ever, since the geometry is often extremely complicated and the problems

in the porous medium are nonlinear and coupled [2], it is not practical to

achieve an analytical solution. The porous medium is normally simplified

as a homogeneous medium, and the parameters of the transport proper-

ties are measured by experiments in laboratories at the macroscopic scale.

The experiments are very time-consuming and costly. As computer power

develops, several numerical methods have been proposed as an alternative

solution for the estimation of transport properties within a porous medium.

Network modelling was first proposed by Fatt [15] to investigate the cap-

illary pressure. This method has been widely used to estimate the flow and

transport in porous medium in the past 20 years. It simplifies the pore space

into nodes that represent pore junctions and bonds that connect pore nodes.

This simplification keeps a certain amount of the geometry information at

the pore scale, including the connectivity and pore size distributions. At

the same time, it reduces the complexity of the geometry. A limitation of

the network modelling method is that the algorithm that separates the pore

space into pore junctions and bonds is not unique. The distinction between

the pores and the throats is not always clear in reality. This makes the

procedure of dividing somewhat arbitrary. The simplified network model

cannot always reflect the real geometry, and therefore this affects the accu-

racy of the estimation.
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More precise network models have been developed in the past 15 years

to improve the performance. Maximal ball algorithms were proposed to

construct the largest spheres centred on each void voxel that just fits in the

pore space [21]. A network model extracting process using the Maximal ball

algorithm was developed based on a 3D representation of the pore space,

obtained by micro-CT scanning tools. Flow and transport can be computed

within this idealised geometry [16].

Several conventional CFD techniques have also been used to study the

transport properties of porous medium. Adler et al.[14] used an alternating-

direction-implicit (ADI) finite differential method to study Newtonian flow

in 3D Fontainebleau sandstones with different porosities. Comparison be-

tween simulated permeability and experimental data was carried out; al-

though the general shape of the experimental permeability1 versus porosity2

curve was predicted in quite an accurate way, the calculated permeability

differs by, at most, a factor of 5 from the measured one. A regular mesh

can be used in the finite difference method, but accurate computation with

complicated boundaries requires an intensive mesh. Saeger et al.[12] used

the finite element method (FEM) to solve the Stokes equations in periodic

porous medium. The calculated permeability achieved reasonable agree-

ment with computed permeability given by other authors where the relative

difference was from 0.31% to 15% [22]. However, a very complicated irreg-

ular mesh needs to be used in finite element simulations for porous medium

which limits the use of this method.

The lattice Boltzmann method [23, 24] uses a different approach to simu-

late the fluid flow. The LB method describes the fluid system by interactions

of fictitious particle groups which reside on the lattice nodes. These particle

groups are much bigger than the real fluid molecules, but show the same

behaviour in density and velocity as the real fluid at the macroscopic scale.

A number of studies showed that the LB method can recover the Navier

Stokes equations at the macroscopic scale [25, 13, 26]. The LB method uses

a unique way to simulate the flow. While the conventional CFD method

1Permeability is a measure of the ability of a porous media to allow fluids to pass through
it.

2Porosity is a measure of the void spaces in a material.
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discretizes the governing equation in a top-down approach, the lattice Boltz-

mann method recovers the governing equations from the rules for discretized

models in a bottom-up approach.

Since all the operations are taking place on the lattice nodes in the LB

method, the lattice model is essential. Several lattice models were proposed

for the LB method [26, 27, 28]. d’Humieres et al. [27] and Chen et al. [26]

showed that in order to have isotropic relaxation of the stress tensor, the

grid should be formed in 4D and then be projected into 2D and 3D. The

grid in 2D and 3D used in this work was proposed by Qian et al.[29]. The

3D lattice model contains 19 velocities with the name D3Q19; the 2D lattice

model contains 9 velocities with the name D2Q9. They are the most used

lattice models in lattice Boltzmann simulations. Two limits of the lattice

Boltzmann method were proposed by Qian et al.[30] and Ladd [13]. They

showed that the lattice Boltzmann method can recover the Navier-Stokes

equations for low Mach number Ma and low Knudsen number Kn. This

means the grid spacing has to be much smaller than the characteristic length

(Kn << 1) and the fluid velocity should be much lower than the speed of

sound (Ma << 1).

In its simplest incarnation, the LB method uses particle distribution func-

tions which relax back to equilibrium using a single relaxation time (SRT)

model. This is known as the BGK approximation and will be detailed in

Chapter 3. To overcome the disadvantages of the BGK model, such as

numerical instabilities, multiple-relaxation-time (MRT) lattice Boltzmann

was developed by d’Humieres [31]. The main idea of MRT is using different

relaxation time parameters for different moments of macroscopic quantities.

The collision step is carried out in the momentum space which involves den-

sity, energy, momentum energy flux, diagonal and off diagonal components

of the stress tensor. The streaming step, in which the particles propagate to

the neighbouring nodes, is still done in velocity space as in the common LB

method. The MRT model can overcome several common defects of the LB

method such as fixed Prandtl number 3 (Pr=1 for common LBM) and fixed

3The Prandtl number Pr is a dimensionless number which describes the ratio of viscous
diffusivity to thermal diffusivity. It is defined as Pr =

Cpμ

k
, where Cp is the specific

heat, μ is the dynamic viscosity, k is the thermal conductivity
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ratio between the kinematic and bulk viscosities. The stability improvement

by using the MRT scheme would reduce the computational effort by at least

one order of magnitude while maintaining the accuracy of the simulations

[32]. The numerical stability of MRT has been studied by (Lallemand and

Luo 2000)[33] in detail. Their analysis showed that the MRT scheme led to

a large improvement of numerical stability compared with the single relax-

ation time LB model.

There are three multi-component LB models for multi-phase and multi-

component fluid simulations. The first multi-component LB model was

proposed by Gunstensen et al.[34] with the name colour gradient model.

Two components represent two types of fluid with their own distribution

functions, and follow their own evolution equation. They are named red

particles and blue particles. The collision step includes self-interactions and

cross-interactions with other types of particles. A colour function gradient

was introduced to calculate the surface tension between different phases [35].

To segregate the phases, mixing near the interface should be minimised. A

procedure called recolouring is proposed for this minimising process [36, 37].

This procedure is a very time-consuming step, and this model also has some

numerical stability problems for high density ratio and large surface tension.

We found that this model is capable of simulating immiscible binary fluids

with viscosity contrast but the same density (see Chapter 5).

The free energy model was developed by Swift et al.[38]. This model in-

cludes thermodynamic equilibrium functions of phases, and a term describ-

ing the surface tension is added to the equilibrium distribution function.

This allows the free energy model to specify the surface tension more easily

than other multiphase multi-component models. It is also a fully thermo-

dynamically consistent binary fluid lattice Boltzmann model. To reduce

spurious currents, Pooley et al. [39] proposed a modified distribution func-

tion for the free energy model, decreasing spurious velocities by an order

of magnitude compared to previous models. We found that the free energy

model is able to simulate binary fluid systems with viscosity contrast but

the same density (see Chapter 5).

A pseudo potential lattice Boltzmann model was developed by Shan and

27



Chen [40]. The principal characteristic of this model is an interaction force

between particles that is introduced to have a consistent treatment of the

equation of state for a non-ideal gas. Shan [1] reported that spurious ve-

locities are due to the lack of sufficient isotropy in the calculation of the

gradient term for the interaction force. Finite difference gradient opera-

tors with higher order of isotropy were proposed and spurious currents were

found to decrease significantly [1, 41, 42]. We found that the Shan-Chen

model is able to simulate a binary fluid system with density contrast, but

the viscosity of fluids must be the same (see Chapter 5).

A variety of studies on the transport properties of porous medium using

the LB method has been carried out. The absolute permeability of a recon-

structed geometry from Fontainebleau sandstone was calculated using the

lattice Boltzmann method by Jin [43]. The porosity of the sandstone sam-

ple was 39.8%. Good agreement with the empirical formula was obtained.

However, the permeability calculation was observed to be dependent on the

viscosity. The viscosity dependence poses a severe problem for computing

the permeability. Because the permeability is a characteristic of the physical

properties of the porous medium, it should only be related to the geome-

try of porous medium. This viscosity dependence can be reduced by using

the MRT scheme [44]. Pan et al.[45] used a Shan-Chen multi-component

lattice Boltzmann model to simulate multi-component flow in an idealised

porous medium which comprises spheres with identical radius. The capil-

lary pressure head was measured as a function of saturation. Acceptable

agreement with experimental data was obtained. The densities of the bi-

nary fluids were the same, and a small viscosity ratio of 1.8 was used in

the simulation. This value of the viscosity ratio is generally too low for

our systems containing oil, water and supercritical CO2 (the viscosity ratio

of water and supercritical CO2 is around 20). The efficiency of their code

seems to be rather low, as the biggest geometry computed is a domain of

1283 voxels. Ramstad et al.[46] used a color gradient lattice Boltzmann

model to simulate an immiscible binary fluid system with equal viscosity in

a Bentheimer sandstone where the geometry was taken from X-ray microto-

mography. Good agreement between the experimental data and simulated

relative permeability of the wetting phase was obtained. The simulation

under-predicts the relative permeability of the non-wetting phase at high
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wetting phase saturation. The viscosity and the density were kept the same

in this study.

Since 3D simulations normally require a large amount of computation,

the efficiency of the algorithm becomes essential. A number of different lat-

tice Boltzmann method implementation schemes were proposed to improve

the efficiency of the algorithm. A parallel implementation can significantly

improve the efficiency of the lattice Boltzmann method code. Several par-

tition strategies [47, 48, 49, 50] were proposed to divide the computation

domains into slices or boxes. These decomposition strategies are only effi-

cient when the workload is distributed homogeneously over the lattice [35].

Kandhai et al.[11] proposed a new approach based on the Orthogonal Re-

cursive Bisection (ORB) method. The ORB method can be used to generate

approximately balanced decompositions by taking into account the work-

load on each lattice point. It is found to be 12% to 60% more efficient

compared to conventional parallelization strategies.

A standard lattice Boltzmann method stores distribution functions for

both fluid nodes and solid nodes. This wastes a large amount of mem-

ory and computing time, since no operation is carried out on solid nodes.

A sparse data structure is required to reduce the memory and computing

source usage. Implementation schemes with the name SHIFT were pro-

posed to improve the efficiency of data storage in the computation [51].

The information of solid nodes is no longer stored in these schemes, and the

information regarding adjacent nodes is compressed to save memory. Nu-

merical tests were carried out on four rock samples with porosities ranging

from 10% to 38% to verify the performance of these schemes. The results

showed that the memory required is 36% to 82% smaller [51]. In this study,

a optimised sparse storage scheme based on SHIFT is proposed (Chapter

9). This scheme is easy to implement and the numerical experiments carried

out has proved that this scheme is of high efficiency.
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3. Methodology

Concepts of the lattice Boltzmann method and its extensions including

multiphase/multi-component, and thermal/solute dispersion will be intro-

duced in this chapter; numerical examples are given in the next chapter to

demonstrate the viability of the lattice Boltzmann method for the simula-

tion of transport properties in porous media at the pore scale.

3.1. Kinetic theory and the Boltzmann equation

The Boltzmann equation was introduced by Ludwig Boltzmann to describe

the behaviour of a real gas using a statistical distribution of the gas par-

ticles. The gas is composed of interacting particles that can be described

by classical mechanics. But because the number of particles is extremely

large (∼1023), a statistical treatment was introduced to describe the average

behaviour of the particles.

A function f(x, ξ, t) is introduced to describe the average distribution of

particles. It represents the number density of particles at time t and position

x with velocity ξ. We consider the gas in a control volume dV = [x, x+dx].

An external force F = ma is applied to the system. At time t, the number

of particles with velocity [ξ, ξ+ dξ] is dN = f(x, ξ, t)dξdV . After a time dt,

if there is no collision, the location of these particles will be x′ = x + ξdt,

the velocity will be ξ′ = ξ+adt. Therefore, we have the following equations:

f(x+ ξdt, ξ + dξ, t+ dt)dξdxV − f(x, ξ, t)dξdx = 0 (3.1)

or

∂f

∂t
+ ξ · ∇xf + a · ∇ξf = 0. (3.2)
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Collisions may result in a change of the velocity of particles, so that

the number of particles in the control volume [x, x + dx] × [ξ, ξ + dξ] and

[x′, x′ + dx]× [ξ′, ξ′ + dξ] (which means particles are within [x, x+ dx], and

the velocity of particles are within [ξ, ξ+dξ]) will not be the same any more.

A collision term Ω(f) is introduced to account for the change of distribution

of particles. For an ideal gas, the collision term can be described as:

Ω(f(ξ)) =

∫
[f ′f ′1 − ff1]B(θ, |V |)dθdεdξ1 (3.3)

where f(x, ξ, t) and f ′(x, ξ′, t) are the number densities before and after

the collision, respectively. V = ξ1 − ξ is the relative velocity between two

particles, θ is the angle between ξ1−ξ and the the line linking the centres of

two particles, ε is the projection angle of one particle over another, B(θ, |V |)
is a non-negative function related to the interactions between the particles.

Let us introduce ψ(ξ) as an arbitrary function of ξ. If we set ψ =

(1, ξ, |ξ2|), we can prove that:

∫
Ω(f)ψ(ξ)dξ = 0 (3.4)

Any function which satisfies equation 3.4 is called collision invariant [52].

3.2. H-theorem

The H-theorem was introduced by Boltzmann in 1872 to describe the in-

crease in the entropy of an ideal gas in an irreversible process. The H

function is defined as:

H(t) = lnf =

∫
flnfdξ∫
fdξ

=
1

n

∫
flnfdξ (3.5)

Boltzmann proved that the H function is a monotonically decreasing func-

tion with time:
∂H

∂t
≤ 0. (3.6)

When the H function reaches a minimum value (Equation 3.7), the system

reaches equilibrium:
∂H

∂t
= 0 (3.7)
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3.3. Maxwell distribution

Maxwell derived the probability equilibrium distribution for the speed of

gas particles in 1860. It gives us the probability of a particle’s speed being

near a specified value as a function of temperature, velocity, and mass.

f = n
1

(2πRgT )2/3
exp[−(ξ − u)2

2RgT
], (3.8)

where Rg is gas constant and T is the thermodynamic temperature.

3.4. Boltzmann-BGK equation

In 1954, Bhatnagar, Gross and Krook [53] introduced an approximate ex-

pression Ωf for the collision term Ω(f). They proved that a simplified

expression Ωf which replaces the collision term Ω(f) should satisfy the fol-

lowing two properties:

• For collision invariant ψ = (m,mξ, 12mξ
2), the equation

∫
ψΩfdξ = 0 (3.9)

should be satisfied.

• It should satisfy Boltzmann’s H-theorem:

∫
(1 + lnf)Ωfdξ ≤ 0 (3.10)

They obtained the simplified term with the idea that the collision will

lead the system to its equilibrium distribution feq. The rate of change is

proportional to the difference of feq and f . The scale factor ν is a constant:

Ωf = ν[feq(x, ξ)− f(x, ξ, t)] (3.11)

The Boltzmann equation is then simplified to:

∂f

∂t
+ ξ · ∇xf + a · ∇ξf = ν(feq − f) (3.12)
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Equation 3.12 is called the Boltzmann-BGK equation. Bhatnagar, Gross

and Krook also proved that Ωf satisfies the properties 3.9 and 3.10. The

equation includes a collision time τ = 1
ν , also called relaxation time, indicat-

ing the time interval between two collisions. The Boltzmann-BGK equation

is given as:

∂f

∂t
+ ξ · ∇xf + a · ∇ξf = −1

τ
(f − feq) (3.13)

The macroscopic fluid density, velocity and energy can be calculated from

the microscopic distribution function:

ρ(x, t) = mn(x, t) =
∫
f(x, ξ, t)dξ (3.14)

nu(x, t) =
∫
f(x, ξ, t)dξ (3.15)

nRgT (x, t) =
1
D

∫
(v − u)2f(x, ξ, t)dξ (3.16)

where m is the particle mass, D is the dimension of the space, ρ is the

macroscopic density and T is the temperature. By applying a Chapman-

Enskog expansion, the macroscopic equations for mass, momentum and

energy can be derived from the Boltzmann equation. The bulk viscosity is

derived as:

ν =
τRgT

m
(3.17)

The equation of state (EOS) relating pressure and density is given by:

p = ρRgT (3.18)

3.5. Single-phase lattice Boltzmann method

The lattice Boltzmann method (LBM) is a special discretization of the

Boltzmann-BGK equation. Discretization of space, velocity and time are

carried out in LBM. This procedure greatly simplifies the original Boltz-

mann equation. The location of particle distribution functions (PDFs) in

space is restrained on the nodes of the lattice grid, and the particle velocity

is simplified into a very limited number of lattice velocities. The number

of discrete velocities is not unique, but the LB model using this discrete

velocity model should be able to recover the macroscopic equations (in our

study, the Navier-Stokes equations). We take a 2D model as an example.
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This model, which is proposed by Qian et al. [29] is well known and widely

used. It contains 9 velocities and is known as D2Q9. In LBM, we assume

that all the particle distribution functions (PDFs) have the same uniform

mass (normally taken as 1 for simplicity). The lattice unit (lu) and time

steps (ts) are important length and time units in LBM. We only discuss

uniform mesh in this chapter (Δx = Δy).

Figure 3.1.: D2Q9 lattice and velocities

Figure 3.1 shows the discretized velocity space {ei}, (i = 0..8). The

lattice velocity can be written as:

e = e

[
0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

]
(3.19)

where e = Δx/Δy is the local lattice speed with a unit of lu · ts−1 (where

lu is the lattice unit for length, ts is the time unit in LBM). The relation

with the local speed of sound is given as cs =
e√
3
.

The continuous distribution functions associated with velocity are written

as fi(x, t), (i = 0..8). We can obtain the lattice Boltzmann equations for
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the D2Q9 model (Single Relaxation Time BGK) as:

fi(x+ eiΔt, t+Δt) = fi(x, t)− fi(x, t)− feqi (x, t)

τ
(3.20)

Collision of the particles can be considered as a relaxation process towards

equilibrium. The equilibrium distribution function for the D2Q9 model is

a truncated Maxwell-Boltzmann distribution (Equation 3.8) and is defined

as [29]:

feqi (x) = wiρ(x)[1 + 3
ei · u
e2

+
9(ei · u)2

2e4
− 3u2

c2
] (3.21)

where the weight coefficients for the D2Q9 model are:

wi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
4/9 i = 0

1/9 i = 1..4

1/36 i = 5..8

(3.22)

The macroscopic transport equations for mass, momentum and energy

can be derived from the Boltzmann equation using a Chapman-Enskog ex-

pansion [54]. The kinematic viscosity ν in the D2Q9 model is obtained

as:

ν = c2s(τ −
1

2
)Δt (3.23)

Note that τ > 1/2 for positive viscosity. Numerical difficulties can arise

as τ approaches 1/2. The pressure is given by the equation of state for an

ideal gas [6]:

P =
nRT

V
(3.24)

In single phase LBM, RT = c2s =
1
3 , so that the pressure can be computed

as:

p = ρc2s (3.25)

To implement a lattice Boltzmann simulation, four major steps should be

included in the code:

• Initialisation of distribution function fi(x, 0)
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• Collision step

f ′i(x, t) = fi(x, t)− fi(x, t)− feqi (x, t)

τ
(3.26)

• Streaming step

fi(x+ eiΔt, t+Δt) = f ′i(x, t) (3.27)

• Computation of macroscopic hydrodynamic quantities

ρ(x, t) =
∑

i fi(x, t) (3.28)

ρu(x, t) =
∑

i eifi(x, t) (3.29)

where f ′i(x, t) represents the value of the distribution function fi(x, t)

after collision.

3.6. Bounce-back Boundary Conditions

Bounce-back boundary conditions play a major role in the LBM simulation

due to their simplicity, versatility and powerful capability of dealing with

extremely complex boundaries. This boundary condition is usually used at

fluid-solid interfaces due to its correspondence to the no-slip condition. This

boundary condition is illustrated in Figure 3.2. The densities moving toward

the solid are bounced back into the fluid domain along reversed incoming

directions. In the D2Q9 model, as shown in Figure (3.1) the bounce-back

condition can be described in terms of equations as:

f2 = f4, f5 = f7, f1 = f3, f6 = f8 (3.30)

The standard bounce-back condition places the boundary on the lattice

nodes. Although mass and momentum are conserved, the accuracy is first

order, while LBM is of second order [54]. Inamuro [55] found that the er-

ror produced by single relaxation time LBM with bounce-back condition is

sufficiently small and of second order if the relaxation parameter τ is close

enough to 2. The bounce back conditions can be used without any influence

on the order of the LBM, if τ is chosen in the range (0.5,2). Bounce-back
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conditions in multi-relaxation-time LBM are always of second order and

not dependent on the selection of relaxation parameters [44]. Furthermore,

the bounce back condition is the most efficient one for arbitrarily complex

geometries [56]. Many researchers contributed to this ongoing discussion

[50, 57]. A second order scheme with the name half-way bounce back con-

dition was proposed by Ziegler [57]. In this boundary condition, the surface

is a solid boundary placed between two neighbouring lattice sites with the

same distance Δx/2. It is illustrated in Figure (3.2). This half-way bound-

ary condition has been implemented in our simulator.

The boundary condition can be integrated in the collision step. The

particles in the fluid domain will follow the collision law (Equation 3.26),

whereas the particles in the solid domain follow the bounce-back rule defined

in Equation (3.30).

Standard Bounce Back Half Way bounce back

Figure 3.2.: Bounce-back condition

3.7. Periodic Boundary Condition

The periodic boundary condition could be the simplest boundary condition

for LBM. In the periodic system, the fluid flowing out through one face

will re-enter into the opposite face of the domain. So the edges of the

simulation domain could be treated as if they are attached to the other

side of the domain. For the boundary nodes, their neighbouring nodes are

located at the opposite side of the boundary. (Fig 3.3)
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Figure 3.3.: Periodic boundary condition

Assuming that the length of computational domain is L, the periodic

boundary condition is described by the formula (taking the x direction as

an example, the derivation for the y direction is straightforward):

fi(0, y, z, t+Δt) = f ′i(L, y, z, t) (3.31)

fi(L, y, z, t+Δt) = f ′i(0, y, z, t) (3.32)

3.8. Fixed Pressure or Velocity Boundary

The fixed pressure or velocity boundary can be achieved by updating the

distribution function after the streaming step with an equilibrium distribu-

tion function that has the desired pressure/velocity.

Guo et al.[58] proposed another approach to apply a pressure/velocity

boundary. The distribution function after collision was decomposed into

two parts; equilibrium and non-equilibrium: f(x, t) = feq(x, t) + fneq(x, t).

The distribution functions of boundary points are updated using the non-

equilibrium distribution from the neighbouring points, and the equilibrium

distribution value computed using the desired pressure/velocity. He showed

that this scheme is numerically stable and of second order.
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3.9. Multi-Relaxation-Time (MRT) scheme for

the lattice Boltzmann method

MRT allows independent adjustment of bulk 1 and shear viscosities which

significantly improves the numerical stability for a low viscosity fluid. In

the single relaxation time LB model, the collision term is relaxed by a single

parameter τ , while it could be relaxed instead by a matrix Λ:

fi(x+ ciΔt, t+Δt)− fi(x, t) = −Λij [fj − feqj ], i = 1, 2, . . . , b (3.34)

The matrix Λ is a full matrix of constants. For the D2Q9 model, the

transformation matrix M is given as [33]:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.35)

The single relaxation time LB model can be obtained by specifying Λ as

a diagonal matrix with identical value:

Λij =
1

τ
δij (3.36)

The macroscopic quantities are calculated in the same way as in the

LBGK model. Instead of considering distribution functions, MRT employs

1Bulk viscosity, also called volume viscosity is important for simulations where fluid
compressibility is essential. It appears in the compressible Navier-Stokes equation:

ρ(
∂v

∂t
+ v · ∇v) = −∇ρ+ μ∇2v + f + μv

∇(∇ · v) (3.33)

where μv is the bulk viscosity. In the incompressible Navier-Stokes equation, this
term disappears because the divergence of the velocity of an incompressible fluid,
∇ · v, equals 0
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several moments corresponding to macroscopic quantities and their flux.

These quantities can be relaxed with different time scales. A matrix M

transforms the distribution functions fi from the distribution space to the

moment space:

m =M · f, f =M−1 ·m (3.37)

The moment space for the D2Q9 model is:

m = (ρ, e, e2, jx, qx, jy, qy, pxx, pxy)
T (3.38)

where e is the energy, jx, jy are the momenta in x and y directions, qx, qy are

energy fluxes and pxx, pxy is the stress tensor. The collision is carried out

in the moment space by multiplying the transformation matrix M ; the left

and right hand side of Equation 3.39 can be transformed into the moment

space as:

f ′i(x, t) = fi(x, t)− Λij [fj − feqj ] (3.39)

m′ = m− S[m−meq] (3.40)

where meq = Mf eq is the equilibrium equation in moment space. S =

MΛM−1 = diag(s1, s2, . . . , sb). The corresponding relaxation time for mo-

ment mi is s
−1
i . After the collision step, the moment m′ is transformed back

into distribution function space by multiplying M−1 for the streaming step

fi(x+ eiΔt, t+Δt) = f ′i(x, t) which will be carried out in the same way as

in the single relaxation time LB model.

The relaxation parameters and equilibrium functions of the moments are:

S = (0, se, se2 , 0, sq, 0, sq, sν , sν) (3.41)

meq = ρ(1,−2 + 3u2, α+ βu2, ux,−ux, uy,−uy, u2x − u2y, uxuy)T (3.42)

where α and β are adjustable parameters and may be chosen as α =

1, β = −3 [31]. The kinematic viscosity and volume viscosity are given by

ν = c2s(
1
sν
− 1

2)Δt (3.43)

ζ = c2s(
1
se
− 1

2)Δt (3.44)
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where cs is the local sound speed that equals 1/
√
3 in the single phase

LB model, sν and se are parameters given by users to set the kinematic

viscosity and volume viscosity.

3.10. Multi-component lattice Boltzmann models

3.10.1. The Shan-Chen pseudo potential model

We start with the standard LBM using the Bhatnagar-Gross-Krook (BGK)

collision term (see Chapter 3.5). In the lattice Boltzmann method (LBM),

fictional particle groups on lattice nodes with discrete velocities are used to

describe fluids. A distribution function fi(x) = f(x, ei) is used to describe

the occupation of each lattice site. Each lattice velocity ei on each lattice

node x has a distribution function fi(x).

We recall the evolution of the distribution functions is described by the

BGK collision terms in Chapter 3.5:

fi(x+ eiΔt, t+Δt) = fi(x, t)− fi(x, t)− feqi (x, t)

τ
+Ki. (3.45)

To incorporate a body force F, an extra term Ki is included in the LBGK

model. In this paper we use Guo’s force term [58]:

K = (1− 1

2τ
)wi[3

ei − u

e2
+ 9

ei · u
e4

ei] · F, (3.46)

and the Exact Difference Method (EDM) [59, 41]:

Ki = feqi (ρ,u+Δu)− feqi (ρ,u), (3.47)

where the term F is the body force vector and Δu = FΔt/ρ. The macro-

scopic velocity u is computed as

ρu(x, t) =
∑
i

eifi(x, t) +
ΔtF

2
. (3.48)

Macroscopic transport equations for mass, momentum and energy can be

derived from the Boltzmann equation using a Chapman-Enskog expansion

[54]. The kinematic viscosity ν in the D2Q9 model is obtained as
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ν = c2s(τ −
1

2
)Δt. (3.49)

An interaction force term between the particles is used to describe the in-

terparticle forces:

F(x, t) = −Gψσ(x, t)
8∑

i=1

ω(|ei|)ψσ̄(x+ eiΔt, t)ei, (3.50)

where σ and σ̄ denote the different fluid components. G is a parameter

determining the interaction strength F (x, t) between neighbouring particles.

It also determines whether the interaction is attractive or repulsive. To

simulate a binary immiscible fluids system, the value of G should be kept

positive so that a force will be generated to separate the fluids away from the

interface. ψσ is the effective number density which is taken as the component

density : ψσ = ρσ [40]. ω(|ei|) is a parameter related to the strength and

order of isotropy of the interaction forces, as shown in Table 3.1.

Order of
Isotropy ω(1) ω(2) ω(3) ω(4) ω(5) ω(6) ω(8)

4 1/3 1/12
6 4/15 1/10 1/120
8 4/21 4/45 1/60 2/315 1/5040

Table 3.1.: Weights that yield fourth, sixth and eighth order of isotropy
interaction forces [1]

To incorporate the interaction force, Shan and Chen proposed a force term

scheme which only shifts the equilibrium velocity [60]. However, this force

term scheme has been reported to be correct only if the relaxation time

τ = 1 [59, 42]. This unfavourable feature can be eliminated using Guo’s

force term or the Exact Difference Method [58, 61]. Both force terms have

been incorporated in the Shan-Chen LB model and found to be indepen-

dent of the equilibrium properties of τ ; the difference between the Shan-

Chen force term was shown to be on the order O(F 2) [59, 62, 63]. To avoid

the dependence of the equilibrium properties on the relaxation time, Guo’s

force term is used for the Free Energy and Colour Gradient Models whereas

the Exact Difference Method is used for the Shan-Chen model in this paper.
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Shan [1] studied the spurious currents phenomenon of the Shan-Chen model.

He concluded that spurious currents are due to insufficient isotropy of the

discrete gradient operator. For this reason, a new method of obtaining the

discrete gradient operator with higher order isotropy was proposed. How-

ever, more adjacent nodes are needed to calculate the gradient operator.

This will increase the amount of message exchanges required in parallel

computing. Unfortunately, this method reduces the level of inherent paral-

lelism of the lattice Boltzmann method. In this paper, we use a fourth and

eighth order interaction force scheme [1] for the Shan-Chen multi-component

model.

3.10.2. The Free Energy Model

Swift et al. [38] developed a thermodynamically consistent binary fluid LB

model by introducing an equilibrium state associated with a free energy

functional, corresponding pressure tensors and chemical potentials. A cor-

rect choice of the collision rules ensures that the system evolves towards

minimisation of the free energy functional.

The thermodynamic properties of a binary fluid system can be described

by a Landau free energy functional

Ψ =

∫
V
(ψb +

κ

2
(∂αφ)

2)dv +

∫
S
ψsds, (3.51)

where ψb is the bulk free energy density and has the form

ψb =
c2

3
ρ ln ρ+

A

4
φ2(−2 + φ2). (3.52)

ψs is the surface energy density and has the form:

ψs = −3

2
σsign(

π

2
− θ)

√
cos(

α

3
− cos(

α

3
))φ (3.53)

A is a constant and was set as 0.04 in all simulations. σ is the surface

thension, θ is the equilibrium contact angle and α = cos−1(sin2 θ). φ is the

order parameter representing the concentration of components, defined as

φ =
ρa − ρb
ρa + ρb

. (3.54)

43



The hydrodynamics and thermodynamics of the binary fluids are described

by the Navier-Stokes equations and a convection-diffusion equation:

∂φ

∂t
+∇(φu) = μ∇2φ, (3.55)

where the parameter μ determines the diffusivity of the binary fluids system.

A new distribution function gi(x, t) is introduced to describe the con-

centration φ =
∑
i
gi and is related to the convection and diffusion. The

distribution function fi(x, t) is related to the fluid density and momentum

as usual.

The time evolution equation uses the Multiple-Relaxation-Time (MRT)

scheme and can be described as:

Collision Step: f ′i(x, t) = fi(x, t)−M−1SM(fi − feqi ), (3.56)

g′i(x, t) = geqi (x, t). (3.57)

Streaming Step: fi(x+ eiΔt, t+Δt) = f ′i(x, t), (3.58)

gi(x+ eiΔt, t+Δt) = g′i(x, t). (3.59)

Using an appropriate choice of the equilibrium distribution functions, it is

possible to reproduce the macroscopic equations in the continuum limit [38].

3.10.3. The Colour Gradient lattice Boltzmann Model

An immiscible fluid model developed from Lattice Gas Cellular Automata

was introduced by Gunstensen et al. [34]. The particles in this model are

coloured either red or blue and therefore it is normally called the colour gra-

dient method. The surface tension is introduced by adding a perturbation

to the collision operator while keeping the adherence to the Navier-Stokes

equations in homogeneous regions. A recolouring step is invoked after the

surface tension perturbation calculation in order to achieve zero diffusivity

of one colour into the other.

We use f ri , f
b
i and fi to denote the distribution functions of the red fluid, the

blue fluid and their combination respectively. A perturbation is computed
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to generate the surface tension. The surface tension can be expressed as

a local anisotropy in the pressure: the pressure measured normal to the

surface is larger than that tangential to the surface. The pressure in a

LBM is proportional to the density, so surface tension can be generated by

preferentially placing particles in directions normal to the interface rather

than tangential. Mass and momentum should be conserved. The colour

gradient C is defined as:

C(x, t) =
∑
i

ei
∑
j

(f rj (x+ eiΔt, t)− f bj (x+ eiΔt, t)). (3.60)

Perturbation of the populations gives

f ′′i (x, t) = f ′i(x, t) + σ|C(x, t)|((ei ·C)

C ·C − 1

2
), (3.61)

where σ is a parameter to set the surface tension.

An alternative optimised perturbation term for the Colour Gradient LB

model has been developed by Kehrwald [64] to improve the stability and

accuracy. A further improvement based on the MRT collision scheme was

proposed by Tölke et al. [65], reducing the spurious velocity, increasing the

numerical stability and removing the dependency on viscosity. A redistri-

bution of colour forces the particles to move towards the regions occupied

by particles of the same colour. This recolouring step enables us to achieve

separation of the fluids. It is carried out by the maximisation problem as

given in Equation 3.62, see [34]. Because the particles are forced to stay

with the particles having the same colour, the Colour Gradient model is

only able to simulate completely immiscible fluids.

W (f r
′′

i , f b
′′

i ) = max
fr′′

i ,fb′′

i

[
∑
i

(f ′′ri − f ′′bi)ei]. (3.62)

Subject to constraints:

ρ′′r =
∑
i
f r

′′

i = ρr, (3.63)

f r
′′

i + f b
′′

i = fi. (3.64)
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A general colour gradient lattice Boltzmann model can be summarised as:

• Single phase collision using MRT scheme.

• Add a surface tension perturbation to f ′i obtaining f
′′
i .

• Recolouring.

• Streaming.

In both the Free Energy model and the Colour Gradient model, only the

value of distribution functions of the nearest neighbour nodes are needed,

which keeps the inherent parallelism of the lattice Boltzmann method.

3.10.4. Optimised Colour Gradient lattice Boltzmann Model

An optimised Colour-Gradient approach was proposed by Ahrenholz et al.

[66] for multicomponent flow calculations. This model, which is based on

the Rothman-Keller/Gunstensen model [34], improves the numerical stabil-

ity and permits higher viscosity ratio and lower capillary number calculation

[66]. It uses only one full sized distribution function for the pressure, veloc-

ity field. Two extra LB equations of which the distribution function values

do not need to be stored are used to simulate the evolution of interface

movements along with the velocity. Additional terms to the equilibrium

moments in the MRT collision step are given to generate surface tension

while a recolouring algorithm was performed to limit the diffusion near the

interface.

We use ρr, ρb to indicate the densities of two components respectively. An

order parameter φ is defined as:

φ =
ρr − ρb
ρr + ρb

. (3.65)

The color gradient vector C of the phase field can be calculated using the

following equation [66]:

C(t, x) =
3

c2Δt

∑
i

wieiφ(t, x+ eiΔt), (3.66)
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where the weights wi are:

wi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1/3 i = 0

1/8 i = 1..6

1/36 i = 7..18

. (3.67)

The orientation of the interface can be obtained by using a normalised

gradient:

nα =
Cα

|C| . (3.68)

Two separate LB equations are used to compute the advection of density

fields of ρr, ρb, we give the equation of the red component as an example,

the LB equation for blue component can be obtained similarly [66].

gi(t+Δt, x+ eiΔt) = geqi (ρr(t, x), u(t, x)). (3.69)

The equilibrium distribution function geqi is:

geqi = wiρr(1 +
3

c2
ei · u) (3.70)

According to Equation (3.69), we know that in the collision step, only

the equilibrium distribution function, which can be computed locally, is

needed. As a result, it’s not necessary to store all the values of the distri-

bution functions, only the summation ρr =
18∑
i=0

gi needs to be stored. This

new approach, which is a simplified LB equation with Δt
τ = 1, decreases the

memory requirement and consequently improves the computing efficiency.

A recolouring scheme used in the original Colour gradient model [36] is

employed in this approach between collision and streaming step in order to

minimise the diffusion near the interface.

The contribution of surface tension to the moments can be computed

with the gradient of the phase field. The additional terms related to surface
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tension generation are given as [66]:

m1 = −σ|C|(n2x + n2y + n2z) = σ|C|, (3.71)

m9 =
1
2σ|C|(2n2x − n2y − n2z), (3.72)

m11 =
1
2σ|C|(n2y − n2z), (3.73)

m13 =
1
2σ|C|(nxny), (3.74)

m14 =
1
2σ|C|(nynz), (3.75)

m15 =
1
2σ|C|(nxnz). (3.76)

The method for adjusting the contact angle between fluid and solid is the

same as the original colour gradient LB model and can be found in [67].

The parameter selection of relaxation matrix, kinematic and bulk viscosity

calculation are performed as normal MRT-LBM [33].

3.11. LB method for Solute/Heat transfer

In this chapter, we introduce a solute/thermal LB scheme proposed by

Sukop et al. [6] and Yoshino et al. [68] to study thermal and solute trans-

port in porous media. A passive scalar approach was used to solve the

convection-diffusion equation. A second distribution function g with a sim-

pler equilibrium distribution was introduced to describe the evolution of the

solute concentration:

geqi = ωiρs(1 + 3ei · u) (3.77)

where the component ρs indicates the local concentration of the solute:

ρs =
a∑

i=0

gi (3.78)

The following LB equation is used to compute the evolution of the distri-

bution of solute:

gi(r + ciΔt, t+Δt)− gi(r, t) = − 1

τg
[gi(r, t)− geqi (r, t)] (3.79)
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The diffusion coefficient Ds is given by

Ds =
1

3
(τs − 0.5) (3.80)

As shown in [69] and [70] the governing equation at the macro scale can

be recovered by applying a Chapman-Enskog expansion to Equations 3.79

and 3.78:

∂ρs
∂t

= −ν∇ρs +DsΔρs (3.81)

3.12. Macroscopic governing equation

In this chapter, the relationship between the lattice Boltzmann equation and

Navier-Stokes equation is given. A series of partial differential equations in

terms of ρ,V , p, which describe the lattice Boltzmann equation in the limits

of Δx,Δt → 0, are derived to recover the mass and momentum conserva-

tion equations. Chapman-Enskog expansion has been widely used to derive

the macroscopic equation of the lattice Boltzmann method [71, 72, 67, 58],

Skordos introduced an approach based mainly on Taylor series analysis and

Chapman-Enskog expansion was only used in the derivation of the momen-

tum conservation equation [47]. The following macroscopic equation deriva-

tion for the D2Q9 lattice Boltzmann method is based on Skordos’s approach.

First, we review the standard lattice Boltzmann equation using the D2Q9

model. To simplify the derivation, we assume that Δx = Δt = 1.

fi(x+ eiΔt, t+Δt) = fi(x, t) +
feqi − fi

τ
(3.82)

where feq is the equilibrium distribution function and can be computed by:

feqi (x) = ωiρ(x)[1 + 3ei · V +
9(ei · V )2

2
− 3V 2

2
] (3.83)

where the weights ωi = 4/9 for i = 0, 1/9 for i = 1, 2, 3, 4 and 1/36 for i =

5, 6, 7, 8. The equilibrium distribution conserves the mass and momentum
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locally:

8∑
i=0

fi =
8∑

i=0
feqi (3.84)

8∑
i=0

fiV =
8∑

i=0
feqi V (3.85)

(3.86)

The macroscopic quantities density ρ and velocity V can be computed

as:

∑
i
fi = ρ, (3.87)∑

i
eifi = ρV . (3.88)

Then, Equation 3.82 can be expanded into a Taylor series around the

point (x, t), which has the form:

Δt(
∂

∂t
+ ei · ∇)fi +

Δt2

2
(
∂

∂t
+ ei · ∇)2fi + · · · = fi − feqi

−τ (3.89)

The right-hand side of Equation 3.89 vanishes due to the mass and mo-

mentum conservation of equilibrium distribution functions (Equation 3.87,

3.88). Expanding the distribution functions and the time and space deriva-

tives in terms of the Kundsen number [73], ε:

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · · , (3.90)

∂t = ε∂1t + ε2∂2t + · · · , (3.91)

Substitution of Equation 3.90,3.91 to Equation 3.89 and considering the

terms O(ε) and O(ε2) we can perform a Chapman-Enskog expansion to

obtain the following equations:
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∂(
∑

i

fi)

∂t +∇ · (∑
i
eifi) + · · · = 0 (3.92)

∂(
∑

i

eifi)

∂t +∇ · (∑
i
eieifi) + · · · = 0 (3.93)

For Equation 3.92, we can easily convert it into an equation in terms of

ρ and V by using Equations 3.87, 3.88. The result is:

∂ρ

∂t
+∇ · (ρV ) = 0 (3.94)

which is the mass continuity equation. For Equation 3.93, a complica-

tion arises due to the pressure tensor term (
8∑

i=0
eieifi). To transfer the

pressure tensor in terms of ρ and V , an approximation of fi is made with

Chapman-Enskog expansion. The Chapman-Enskog expansion tells us that

the distribution function fi can be approximated with the equilibrium dis-

tribution function feqi to zero order [47]:

fi(x, t) = feqi (x, t) + f1i (x, t) (3.95)

where f1i is the correction term to first order and so on. By substituting

fi by f
eq
i , which is its zero order estimation, in Equation 3.89, the correction

term f1i can be expressed as:

f1i = −τΔt[∂f
eq
i

∂t
+ ei · ∇feqi ] (3.96)

The fi in Equation 3.93 is further replaced by feqi (x, t) + f1i (x, t) with

Equation 3.96 and combined with the formula of the equilibrium distribution

function feqi , which has been given in Equation 3.83. Then we can produce

an equation with ρ and V only, and take the x-direction as an example to

derive the momentum equation:

(ρVx)

∂t
+

(ρVxVx)

∂x
+

(ρVxVy)

∂y
=
∂p

∂x
− ν∇2(ρVx) + μ

∂(∇ · (ρV ))

∂x
(3.97)

where ν = 1
3(τ − 1

2), p = 1
3ρ and μ = 4

3ν. We find that Equation 3.97

is the momentum equation of the Navier-Stokes equation if the fluid is
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incompressible:

ρ(
∂V

∂t
+ V · ∇V ) = −∇p+ ν∇2

V + (
1

3
ν + μ)∇(∇ · V ) (3.98)

According to the derivation, we know that the kinetic viscosity ν and

pressure p can be computed by ν = 1
3(τ − 1

2) and p = 1
3ρ respectively.

Finally, we give a brief error analysis to illustrate that Equation 3.97 is of

second order to the Navier-Stokes equations. In Equation 3.93, fi has been

replaced by feqi , which is a zero order approximation. As only the derivative

of fi is needed, the substitution keeps the calculation of feqi + fi first order

while keeping the Taylor series in second order.
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4. Single phase flow in porous

media

The lattice Boltzmann method is able to handle extremely complex geome-

tries and is a promising method for flow calculations on porous media. In

this chapter, validation of single phase LB and flow calculation of reservoir

rocks are shown. The permeability of the reservoir rocks is predicted using

the LB code and compared to available experimental measurement data.

4.1. Introduction

For many scientific and industrial applications, it is important to know

the permeability of a particular porous medium, such as sandstone. One

important application is in the oilfield industry, where the production of

hydrocarbons is often limited by the permeability of the reservoir rock. Re-

cently, the lattice Boltzmann (LB) simulations have become available as a

method to calculate the permeability of complex three-dimensional geome-

tries. These simulations also give access to the full flow field at the pore

scale. For single phase flow, the LB flow field generated can then be used

to calculate hydrodynamic dispersion and displacement propagators in the

porous medium available from NMR experiments [7]. Heijs and Lowe were

among the first to use LB simulations to study flow through Fontainebleau

sandstone [74]. Auzerais et al. [75] used LB simulations to calculate the per-

meability of Fontainebleau sandstone. They used X-ray microtomography

(XMT) imaging and provided a direct comparison with laboratory measure-

ments. Kang et al. [76] developed a unified LB method for flow in multiscale

porous media. This model not only can simulate flow in porous systems of

various length scales but also can simulate flow in porous systems where

multiple length scales coexist. Simulations performed on a fractured porous

system show that this method gives very good overall permeability values
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for the whole fractured system. Although the list above is far from exhaus-

tive, the papers mentioned provide a good introduction to the subject. In

this study, we report on the calculation of the flow in a realistic complex

three-dimensional (3D) models of four rock samples. In section 4.2 and

4.3 we introduce several numerical verifications on problems for which the

analytical solution is available and the boundary condition is also studied.

The porous media and the quantities computed are described in section 4.4.

Results for the dependence of the permeability measurement on the system

size of the computational sub-sample are reported in section 4.5. There

we also investigate the effect of boundary conditions. We observe that for

different boundary conditions, the permeabilities of the larger sub-samples

are less dependent on the particular boundary conditions used than those

of the smaller sub-samples.

4.2. Verifications for the single-phase lattice

Boltzmann method

4.2.1. Poiseuille flow simulation and flux calculation in a

narrow channel

First, Poiseuille flow in a channel with two parallel solid surfaces was stud-

ied. This model can be regarded as a simplified pore structure in porous

media. Periodic boundaries are used in the flow direction. The analytical

velocity profile in a slit of width 2a is parabolic and is given by the Poiseuille

equation [77]:

u(x) =
G∗

2ν
(a2 − x2) (4.1)

where G∗ is a pressure gradient or a body force applied on the fluid,x is

the coordinate, u, ν is velocity and viscosity respectively. The flux across the

outlet can be computed by
∫
u(x)dx. We compute the flux across the outlet

of slits with different width by using the half-way and standard bounce-

back boundary conditions for the walls, while periodic boundary conditions

are used for the inlet and the outlet boundaries. The details of standard

and half-way bounce back boundary conditions will be explained in sec-

tion 4.3. The width varies from 3 to 21 lattice points. The simulated and
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analytical velocity profiles are shown in Figure 4.1. Excellent agreement

is obtained in the simulations for all widths. Even when the slit has only

one cell spacing for the fluid, the LBM code still gave excellent results for

the velocity estimation. This excellent agreement is due to the use of the

half-way bounce-back boundary condition for the walls along the flow di-

rection and the use of the Multiple-Relaxation-Time scheme (MRT). The

accuracy of the half-way bounce-back boundary condition is second order

[6], and the Poiseuille flow is a second order problem (analytical solution is

shown in Equation 4.1). Therefore LBM can predict the velocity field per-

fectly. The MRT scheme eliminates the viscosity dependence of the velocity

calculations. A standard lattice Boltzmann method simulation without the

MRT scheme introduced an error in the velocity ranging from 8%− 17.8%

depending on the viscosity of the fluid [44]. In our results in Figure 4.1,

accurate velocity fields can be obtained with arbitrary viscosity values.
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Figure 4.1.: Simulated velocity compared with analytical solution for differ-

ent channel widths of 21, 11, 5, 3 in lattice unit

The flux is calculated by integrating the velocity along y. The simulated

flux is calculated by summing up the velocity along the direction is perpen-

dicular to the flow direction. Since we know from our previous simulation

that the velocity profile is accurate, the calculation of the flux becomes a

procedure of numerical integration. A midpoint rule is used to calculate the

flux. Therefore, the more integration points we have, the higher accuracy

we can obtain. This analysis matches our numerical experiment (Fig.4.2).

When the channel spacing is only one cell, although we can predict the ve-

locity accurately, the error in the flux calculation is 50%. However, when

the channel is 3 lattice sites wide, the error in the flux calculation decreases
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dramatically to 5%, which is an acceptable accuracy. This is an important

observation for permeability calculations in larger systems. The error will

continue to decrease as the width of channel increases. We can obtain very

good results with a width bigger than 30.
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Figure 4.2.: Error of simulated flux of a slit

4.2.2. Flow through A Pipe

A simple 3D cylindrical tube model with a grid of 60x60x60 is studied with

our code. Figure 4.3 shows the geometry of the pipe model. The porosity is

dependent on the radius. The fluid velocity has a parabolic profile similar

to Poiseuille flow. The analytical solution for this laminar Poiseuille flow is

[2]:

Q =
πR4

8η

∂P

∂x
(4.2)
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Figure 4.3.: The pipe model

where η is the dynamic viscosity, R is the radius of the tube and ∂P
∂x is

the pressure gradient. The permeability κ is computed by applying Darcy’s

law:

κ =
πR4

8A
(4.3)

where A is the cross-sectional area. The calculated permeability from our

code and Keehm’s paper (using single relaxation time LB)[2] are shown in

Figure 4.4. Good agreement with the theoretical prediction is obtained by

both our code and Keehm’s results. Relative errors in the percentage of the

analytical solution with increasing radius of the tube are shown in Figure

4.5. The results show the trend of error decreasing from 40% to around 5%

with tube radius increasing. This is because a big radius gives a finer mesh

on the boundaries. Our code also gives a lower error of 2%− 5% compared

with Keehm’s method. These better results are probably due to the use of

the MRT scheme.

Another interesting result can be observed in Figure 4.5: the error ob-

served in a simulation with an integer radius is bigger than that for a non-

integer radius. This reduction of error is due to the boundary condition.

The input file of the boundary is a binary matrix with 0 and 1 that repre-

sents pore nodes or solid respectively. If the radius is one half larger than an
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integer value, the actual boundary will be located between the pore nodes

and solid nodes. This introduces an effective half-way bounce-back bound-

ary condition [78]. Otherwise, a standard bounce-back boundary condition

(SBB) is used. We have already seen that half-way bounce-back boundary

conditions have a second order accuracy which is one order higher than the

standard bounce-back boundary condition. This numerical experiment sug-

gests that the use of half-way bounce-back boundary conditions allows more

accurate calculation of the permeability. We can also learn from these sim-

ulation results that boundary conditions affect the permeability calculation

significantly[78].
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Figure 4.4.: Simulated permeability from our code, Keehm’s paper[2] and

the theoretical prediction as a function of tube radius, both are

in lattice units
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Figure 4.5.: Relative error in percentage of the analytical solution with the

radius of the tube. My results are shown as black star points,

Keehm’s results[2] are shown as blue triangle points

4.2.3. Simulation of flow in fibrous porous media

A porous media with rectangular periodic arrays of cylinders with elliptical

cross section [79] is investigated to evaluate the performance of our code.

The square packing configuration for rows of elliptical fibres is shown in

Figure 4.6. The LBM simulation domain is shown in Figure 4.7. Periodic

boundary conditions are applied in x, y and z directions. The porosity is

determined by the parameters Lx,Ly, a, b. An analytical formulation of the

permeability K is derived by Phelan et al. [80]:

K =
2Ly

Lx

1∫ Ly/2
−Ly/2

h3

3

(4.4)

where h is a function of the y-coordinate, as shown in Figure 4.7. It in-

dicates the distance between the cylinder and the computational boundary.

To evaluate our simulated permeability with this theoretical prediction, a

dimensionless permeability K∗ is defined as:
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K∗ =
4K

ab
(4.5)

Figure 4.6.: Geometry of fibrous porous media
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Figure 4.7.: LBM simulation domain

The permeability for a single cylinder with periodic boundary conditions

is calculated using a 150x150 2D mesh in the simulation. The results are

compared with Keehm’s LB results [2] and the analytical solution. It can

be seen from Figure 4.8 that good agreement with the analytical solution

is obtained. For porous media with a low porosity (less than 23%), the

prediction of the permeability from both Keehm’s and our results showed a
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big error (up to 47% for my results, 80% for Keehm’s results). This is due

to the lack of fine mesh between adjacent cylinders.
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Figure 4.8.: Simulated dimensionless permeability of arrays of cylinders with

elliptical cross sections

4.3. Boundary conditions at the solid nodes: a

note of warning

To study flow in porous media at the pore scale using LB simulations,

it is very important to use appropriate boundary conditions for fluid-rock

interactions. Wall boundary conditions in the LB method were originally

taken from the lattice gas (LG) method. For example, the bounce-back

scheme is used at the walls to obtain no-slip velocity conditions. In the

bounce-back scheme, when a particle distribution streams to a wall node, it

scatters back to the node it came from. Because for a node near a boundary,

some of its neighbouring nodes may be located outside the flow domain, the

distribution functions from these non-fluid nodes are therefore unknown

after each streaming process. The bounce-back scheme is a simple way

to fix these unknown distributions on the wall nodes. It was found that

the bounce-back condition is only first order in numerical accuracy at the

boundaries [81, 82, 83]. However, if the location of the wall is placed halfway
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between the wall node and the first adjacent fluid node, it can be shown that

the method is second order. These results were proven both by numerical

experiments and by the analytical solution of the LBGK equation for a

Poiseuille flow in 2D [84, 85]. However, even with the half-way bounce-

back boundary condition, the Poiseuille profile shows deviations from the

analytical solution, i.e., it is still a parabola but with a shift at the boundary.

The bounce-back boundary condition mimics boundaries that move with

a speed that depends on the relaxation time τ . In the general case, the

precise location of the wall at the zero slip velocity lies somewhere between

the wall node and the neighbouring fluid node and can be determined by

the eigenvalues of the linearised collision operator [83]. This unfavourable

dependence of relaxation time τ can be removed using the MRT scheme.

The effective wall is located at exactly halfway between the wall node and

the neighbouring fluid node [44].

4.3.1. A brief review of some second order boundary

conditions

A solution to these numerical errors are the so-called second order bound-

aries, for which the desired location of the non-slip boundaries is determined

by extrapolating the distribution function from the last fluid points.

Inamuro et al. [86] proposed a method in which the unknown distribu-

tion functions are assumed to be an equilibrium distribution function with

a counter slip velocity, which is determined so that the fluid velocity at the

wall is equal to the wall velocity. The limitation of this method is that it

can handle only flat boundaries and has problems with nodes at the corners.

Noble et al. [87] introduced a method to calculate the particle distri-

bution at the boundaries from the velocity boundary conditions and the

particle distributions of the neighbouring fluid nodes (utilising conservation

of mass and momentum). They seek an answer to the question: know-

ing the velocity of the fluid at the boundaries, can an appropriate particle

distribution be found such that imposing this distribution provides the pre-

scribed velocity condition? This hydrodynamic approach seeks to maintain

a specified velocity profile on the boundaries. Moreover, the density at the
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boundary becomes a computed quantity. Since the density is related to the

pressure through the isothermal equation of state, the algorithm they pro-

pose supplies the pressure boundary condition. However, this method also

has the drawback that it can be applied only to simple geometries, such as

flat boundaries.

Chen et al.[88] enforced the condition of correct flux of momentum near

the wall as an extra condition. In this approach, the lattice Boltzmann

scheme is regarded as a special finite difference of the kinetic equation for

fi in the Boltzmann equation for the discrete velocity distribution. These

authors proposed boundary conditions as an extrapolation scheme, to allow

the boundary nodes to evolve following the lattice Boltzmann relaxation

dynamics. This is achieved by assuming that there is an additional layer of

nodes inside the wall beyond the boundaries. The distribution functions of

these additional nodes are calculated before the streaming operation using a

second order extrapolation based on the distributions on the boundary layer

and the neighbouring layer inside the fluid. After this extrapolation, the

streaming step is carried out for all nodes. The collision step for the bound-

ary (wall) nodes is done by enforcing the velocity (or pressure) boundary

conditions for the equilibrium distribution functions.

Verberg and Ladd [89] proposed a continuous bounce-back boundary con-

dition to incorporate solid-fluid boundary conditions on length scales smaller

than the grid spacing. They assumed that the population densities are

uniformly distributed throughout the volume of the Wigner-Seitz cell sur-

rounding each node. For each node, a real numbered parameter is then

introduced, which represents the fluid volume associated with that node.

The distributions that stream to a solid node are reflected with rules that

depend on this fluid fraction parameter.

Martys et al. [90] adopted a boundary condition in which the distribution

of particles going out from the wall are set equal to their complementary

incoming velocity distributions. This sets the normal velocity to zero. The

remaining directions (in the plane of the wall) then have their distribution

functions set to the average of the incoming directions, thus setting the tan-

gential velocity to zero. During the collision step, the collision operator is
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applied to the boundary nodes as well as to the fluid nodes, and the result-

ing distribution functions are then propagated normally in the next cycle

[82]. This scheme might be a relatively simple solution to implement for

lattice Boltzmann simulations of flow in porous media.

For practical simulations, however, the bounce-back condition is very at-

tractive, because it is a simple and computationally efficient method for

imposing no-flow conditions on irregularly shaped walls, such as in porous

media. However, since bounce-back conditions do not give an accurate ve-

locity, errors can be introduced in the results, such as a permeability that

depends on the fluid viscosity [91].

Another source of error in the numerical quality of LB simulations, arises

from the finite-size effects due to an insufficient number of lattice points

compared to the mean free path of the fluid particles. These Knudsen-like

effects depend on both the relaxation parameter (which controls the mean

free path) and on the lattice resolution. The accuracy of the results increases

with increasing grid resolution, and decreasing relaxation parameter (vis-

cosity).

A linear dependence of the permeability on the viscosity was found in

simulations of flow in porous media that implement the SRT bounce-back

boundary conditions [92, 93, 94]. This viscosity dependence, however, be-

comes weak with increasing grid resolution. For MRT-LBM calculations,

the permeability was found independent of the viscosity [44]. In this study,

a MRT collision term is used and the viscosity is chosen as ν = 1/6.

4.4. Materials and methods

4.4.1. Bentheimer sandstone

The data sets used in this study were extracted from the image of a cylindri-

cal core of beadpack, LV60 sandpack, Bentheimer sandstone and Portland

carbonate obtained by X-ray microtomography (XMT) at the European

Synchrotron Research facility in Grenoble and Imperial College London.

The scanning were done by reserchers in these two institutions. The XMT
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image consists of voxels arranged in a three-dimensional lattice. The sizes,

resolutions and petrophysical parameters of the sample is given in Table 8.1.

A 3D volume rendering of the Bentheimer sandstone is shown in Figure 4.9.

Table 4.1.: Petrophysical parameters

Sample size (in pixels) Resolution porosity permeability

Beadpack 512x256x256 5.0μm 0.357 2624.53 mD
Sandpack LV60 512x256x256 7.249μm 0.323 62000 mD
Bentheimer sandstone 512x256x256 4.9μm 0.23427 4755 mD
Portland carbonate 512x256x256 9.0μm 0.0917 355mD

Figure 4.9.: 3D volume rendering of the XMT image of the Bentheimer sand-
stone used in this study.

In the image data, each voxel corresponds to a byte-value, which stores

a greyscale value [0-255] that represents the attenuation of the rock at that

point in space. This value is proportional to the density of the material:

the higher the value, the denser is the system. Typically, the pore space has

low attenuation values. The permeability and porosity of these particular

samples of rock have not been measured experimentally. However, a perme-

ability of 2 Darcy and a porosity of 22% are typical values for Bentheimer

sandstones [95]. Using this estimated rock porosity, it is possible to deter-

mine a threshold in the greyscale, to discriminate between pores and rock,

and byte-rate the XMT image to generate a binary (0 pore site, 1 rock site)

representation of the rock and the pore space, as illustrated in Figure 4.10.

This representation can then be directly loaded into the lattice Boltzmann
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code, and used as the rock matrix (solid boundary) for the simulations. We

also define the void fraction φ in a rock sample as the number of “fluid”

lattice points (i.e. the lattice points which are not on a solid obstacle) di-

vided by the total number of lattice points. The void fraction is related to

the porosity of the rock, which can be characterised experimentally (e.g. by

mercury porosimetry).
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Figure 4.10.: 2D slice of a subsample (1283) of the Bentheimer sandstone
used in this study. Figure (a) is the greyscale image from
XMT data, and figure (b) is its bit-map representation using
the value 90 for the threshold.

4.4.2. Conversion from lattice units to physical units

Length and time can be converted from physical units into lattice units in

the following way. The unit of length is given by the lattice resolution δx.

The unit of time, δt, can be derived from the kinematic viscosity. We define

μ to be the kinematic viscosity in lattice units and μmKs the kinematic

viscosity in mKs (SI) units. Considering that the kinematic viscosity has

the dimensions of length squared over time, we have

μmKs = μ δx2/δt. (4.6)

The kinematic viscosity in lattice units can be calculated using Equation

3.23.

For example, if we take the XMT resolution for the Bentheimer data as

the lattice spacing, i.e. δx=4.9μm, and the kinematic viscosity of water,
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μmKs=10−6 m2s−1, using equation (4.6) with μ = 1/6 (sμ = 1), we have

δt=4 μs.

4.4.3. Calculation of rock permeability

The permeability of a porous medium can be calculated from the empiri-

cal Darcy’s law. This well known relation states that the flow rate, J , is

proportional to the force driving the fluid, the coefficient of proportionality

being the permeability of the medium, K, divided by the dynamic viscosity

of the fluid μ. Darcy’s law can be written as

J = −K
μ
(∇P − ρg), (4.7)

where J is the flow rate per unit area of cross section (flux), K is the

permeability, ∇P is the pressure drop between inlet and outlet, ρ is the

fluid density, g is body force (for example gravity), and μ is the dynamic

viscosity of the fluid (related to the kinematic viscosity by μ = νρ). By

measuring (or calculating) the flux for different pressure drops (or body

force values), and using equation (4.7), the permeability K can be derived.

The permeability has dimensions of an area, and it is measured in units of

Darcy. Converted to SI, one Darcy becomes about 9.869 ·10−13 m2, and the

calculated permeability can be converted from lattice units [l.u.] to Darcys

using the following expression

K[Darcy] = K[l.u.]
δx2

0.9869
(4.8)

where δx is the lattice spacing in microns.

4.4.4. Computational details

To estimate the single phase permeability of the sample, we impose a flow

in the positive z direction of the rock with periodic boundary condition ap-

plied in the flow direction. The flow is driven only by a body force g (i.e.

no pressure drop is explicitly present). This choice is due to the fact that it

is difficult to explicitly introduce a pressure difference in lattice Boltzmann

simulations. A pressure difference could in principle be simulated by intro-

ducing a density gradient in the fluid, but having density differences in an
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incompressible fluid is not consistent. However, we would like to point out

that this approach is used by several authors, and that it gives results in

good agreement to the ones obtained by using a body force. A correspon-

dence between the body force, g, and the pressure drop, ∇P , can be defined

using the following equation,

∇P =
(Pi − Po)

L
= gρ (4.9)

where Pi and Po are the pressures at the inlet and outlet respectively, L is the

distance between inlet and outlet, and ρ is the fluid density. Equation (4.9)

can be used to compare the simulations with experiments, in which usually

a pressure drop is used to drive the fluid flow. Using the unit of length and

time, and the value of the kinematic viscosity, as described in subsection

4.4.2, we have

∇P = g
δx

δt2
ρ [Pa/m] (4.10)

where ρ can be taken as the density of water at room temperature (103

Kg/m3), and g is in lattice units.

Each simulation is run until the steady state is achieved (i.e. until the

average flux is constant in time). Then the flux across each slice in the

xy-plane (perpendicular to the direction of the flow) is calculated according

to

J(z) =
1

nx ny

nx,ny∑
x,y=1

v(x, y, z), z = 1, ..., nz (4.11)

where x, y and z denote the coordinates of a lattice site, and nx, ny and nz

are the system sizes (in lattice points).

For spatially periodic media, the pressure can be decomposed into a spa-

tially periodic component Pper(x) and a linear component ∇Px, where ∇P
is the average pressure gradient and x is the position vector. Please note

that a medium which is laterally sealed is spatially periodic along the two

transversal axes. For more details, see [96].
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4.5. Results

4.5.1. Validation of Darcy’s law

Because of mass conservation and fluid incompressibility, the flux in each

longitudinal slice parallel to the main flow direction (z-axis) should be con-

stant. However, small compressibility effects are observed in our lattice

Boltzmann simulations, resulting in a variation of the values of J(z) of Ben-

theimer sandstone with z, as shown in Figure 4.11. The compressibility

0 20 40 60 80 100 120
z

1.55e−04

1.60e−04

1.65e−04

1.70e−04

1.75e−04

J(
z)

Figure 4.11.: Flux, J(z) of Bentheimer sandstone, across each cross-
sectional area perpendicular to the forcing—and main flow—
direction (z-axis) with body force g=0.0001. The flux is ex-
pressed in lattice units.

effects depend on the fluid velocity, and hence these differences increase

with increasing flow driving force. To take into account these fluctuations,

we calculate the average flux, J̄ , as

J̄ =
1

nz

nz∑
z=1

J(z). (4.12)

In Figure 4.12 we plot the average flux, J̄ , as a function of applied force, g,

in a 1283 lattice sites sample of the Bentheimer.

Note that the linear behaviour (with zero intercept) predicted by Darcy’s

law is verified for low forcing, but deviations are observed if the forcing is

too high. For high forcing, the mean fluid velocity starts to approach the
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Figure 4.12.: Average flux, J̄ of Bentheimer sandstone, as a function of
applied force, g, to verify the linear behaviour predicted by
Darcy’s law (Eq. 4.7). The dotted line is the linear fit re-
stricted to the data which is in the linear regime. Both flux
and force are expressed in lattice units. The error bars are cal-
culated as standard deviation over the number of slices along
the force direction.

speed of sound, cs=
1√
3
, and compressibility effects become important. The

permeability can be calculated from the slope of the plotted line in the re-

gion where linear behaviour is observed.

In Figure 4.13, we show the standard deviation of the average flux J̄ , as a

function of the force applied, g. Please note that the standard deviation of

the flux increases almost linearly with the force applied, for forces smaller

than 0.004. Above this value, the dependence is much stronger. This is

probably due to the following two issues: the first is the compressibility of

the fluid; the second is the use of simple bounce-back boundary conditions,

see Section 4.3.

We find good agreement between the calculated values of the flux as a

function of applied force and the linear behaviour predicted by Darcy’s law.

This is an example of how microscopic quantities, such as the velocity field

at the pore scale computed using the LB method, can be related to macro-

scopic, phenomenological laws.
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Figure 4.13.: Standard deviation of the average flux, J̄ of Bentheimer sand-
stone, as a function of applied force, g.

Once the right forcing regime is found, it is sufficient to compute the flux

for one forcing level and the permeability can be directly calculated using

expression (4.7). For all the simulations presented in this study we have

chosen a value of the force g=0.0001.

The minimum number of LB steps required to reach steady state is, in

general, system size dependent. Using g=0.0001 as the driving force, and

τ=1 as the BGK relaxation parameter, we have verified that 5000 steps

are sufficient for equilibration, even in the largest sample (5123) that we

have considered in this work. For this number of steps, average quantities,

such as the flux, have reached equilibrium. Note, however, that the local

densities and velocities fields are not yet fully equilibrated after 5000 steps,

and it takes about 8000 steps for the microscopic quantities to reach steady

state.

4.5.2. Effect of system size

In this section, we show how the permeability of a realistic rock sample

depends on the size of the sample, i.e. on the portion of rock used in the
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simulations to calculate the flux. Please note that the influence of the sam-

ple size was discussed by Thovert et al. [97]. The influence of the boundary

conditions was discussed in this paper and also by Gerbaux et al. [98].

In this study, the issue is addressed by considering samples of different

sizes, and by studying the distribution of permeability as the sample size

increases. The largest size we have considered is a 5123 cube, centred in

the middle of the full data set, then a 2563 cube, also centred in the middle

of the full data set. The 2563 sample has then been divided into 8 and 64

cubes of size 1283 and 643, respectively. To give an idea of the physical

size of these samples, consider that a 643 cube has a linear size of 313 μm.

The permeability has been computed in all these samples. The values of

permeability, K, as a function of void fraction φ are reported in Figure

4.14. Observe how the data for the smaller size we have considered (643)

Figure 4.14.: Permeability, K (in Darcys) as a function of void fraction, φ,
for rock samples of different size. The dotted line connecting
the points for the systems of size 643 is only a guide to the
eye.

is more spread-out, both in void fraction (φ) and in permeability, while, as

the system size increases, the data tends to concentrate into a narrower re-

gion. On average, we found that the permeability increases almost linearly

with increasing void fraction, although for the smallest samples we observed
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fluctuations. It is worth noting that, the averaged permeability of all 643,

1283 2563 and 5123 samples are 4717.66 mD, 4717.63mD, 4713.8mD and

4747.5mD respectively. This data shows that the averaged permeability of

small size samples (643, 1283 samples) are very close to the permeability of

the large size sample (2563, 5123), which might mean that the permeability

of large size samples can be predicted indirectly by averaging the permeabil-

ity of its small sub-samples. It is also worth mentioning that compared to

the Single-Relaxation-Time scheme (SRT) results [95], the degree of fluctu-

ation of MRT results is much smaller, while the degree of linearity is higher.

To study the permeability dependency of different rocks on sample size,

we calculate the permeability of different sizes of beadpack, LV60 sand-

pack and Portland carbonates with a similar resolution of 5μm/pixel. The

results are shown together in Figure 4.15. As we can see, the permeabil-

ity increases with fluctuations as the porosity rises. All the permeability

and porosity results converge to the value of large size samples that can

be regarded as Representative Element Volume (REV)[99]. As the poros-

ity and permeability of these rocks differs significantly from each other, we

normalise the permeability and void fraction by κ′ = (κ − κave)/κave and

φ′ = (φ − φave)/φave for the ease of comparison. The rescaled permeabil-

ity as function of porosity are shown in Figure 4.16. It can be observed

from this figure that from beadpack, sandpack, Bentheimer sandstone to

Portland carbonates, the magnitude of fluctuation in terms of porosity and

permeability increase dramatically which means the convergence rate of

permeability decreases from beadpack to carbonate. We also find that the

variation of porosity and corresponding permeability increases from bead-

pack to sandpack, Bentheimer sandstone, to Portland carbonate. These

differences between different rocks indicate that the the degree of hetero-

geneity increases from beadpack to carbonate which needs a large sample

to be a REV.

4.5.3. Effect of inlet and outlet boundary conditions

The aim of this section is to investigate the influence of boundary conditions

used in LB simulations on the calculated flow field, and on the permeability

in particular. Note that here by boundary conditions we mean the con-
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Figure 4.15.: Permeability, K (in Darcys) of different rock samples (bead-
pack, sandpack, Bentheimer sandstone, Portland carbonate)
as a function of void fraction, φ, for rock samples of different
size.

ditions imposed on the surface of the rock sample, and not the boundary

conditions at the wall nodes, as in section 4.3. We consider, for different

sample sizes, the following cases:

• Simple periodic boundary conditions (PBC) in the three spatial direc-

tions.

• Periodic boundary conditions with a fluid buffer 4 lattice sites wide in

the direction of the flow (direction of the forcing, z-axis).

• Mirror boundary conditions: The system is mirrored in the direction

of the flow (z-axis), and then periodic boundary conditions are used.

For example, if the system size is 643 lattice sites, then the dimensions

of the mirrored system are 64x64x128 lattice sites.

• To study the effect of the surrounding environment and rock geometry

on the flow field, we also consider the case of a given rock sample when
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Figure 4.16.: Normalised Permeability, κ′ = (κ − κave)/κave as a function
of normalised void fraction, φ′ = (φ − φave)/φave for bead-
pack (top left), sandpack (top right), Bentheimer sandstone
(bottom left) and Portland carbonate (bottom right)

taken as a sub-sample of a larger system. This means that we do a

single flow simulation for the larger system and calculate the fluxes

for the sub-samples within the larger one.

Figure 4.17 shows the permeability of Bentheimer sandstone for eight 643

cubes for different boundary conditions. As a first observation, we note that

the largest changes in permeability value with different boundary conditions

are observed for the cube with the largest void fraction and highest perme-

ability (last points on the right in Figure 4.17(a)). This is the cube where

one large channel is present. If the cube is part of a larger portion of rock,

the fluid flows through different paths and channels across the rock, and

does not all flow through the large channel. On the other hand, if this cube

is taken by itself, all of the fluid flows into the large channel, and the per-

meability of the rock is higher. From Figure 4.17(b), where we exclude the

results for the cube discussed above, we observe that simple PBC give lower

76



0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9 x 104

Porosity φ

P
er

m
ea

bi
lit

y 
[m

D
]

buffer BC
Simple PBC
Mirror PBC
from 512

(a)

0.18 0.2 0.22 0.24 0.26 0.28
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Porosity φ

P
er

m
ea

bi
lit

y 
[m

D
]

buffer BC
Simple PBC
Mirror PBC
from 512

(b)

Figure 4.17.: Permeability, K (in Darcys), as a function of void fraction, φ,
for 8 rock samples of size 643 and different boundary conditions
(a). Figure (b) represents the same data as figure (a), but
excluding data for the sample with largest void fraction.

permeability values with respect to the other boundary conditions. This

is because, by simply replicating the data set in the direction of the flow,

some channels might be artificially closed by the replica image of the rock.

The addition of a buffer reopens these channels, hence resulting in a more

permeable medium. Also, two sets of parallel curves in K versus φ can be

identified in Figure 4.17(b), one corresponding to the case when the cubes

are isolated, with both simple PBC and mirror PBC (open and full circles),

and one for the case when the cubes are taken as sub-samples of larger

samples (open triangles from a 2563 sample and full triangles from a 5123

sample). This indicates, not surprisingly, that the flow patterns and fluid

average velocity are very much dependent on the rock geometry. Moreover,

it is also worth noticing that for all boundary conditions considered, the

behaviour of the permeability as a function of void fraction is not strictly

monotonous. This indicates that, besides the void fraction, the connectivity

between the pore space is also important in determining the flow (and hence

the rock permeability).

Comparing the permeability of the 643 cubes (Figure 4.17(a)) with the

permeability of the 1283 cubes (Figure 4.18), for different boundary condi-

tions, it can be noted that in the case of the larger sample the values of

permeability are less dependent on boundary conditions, and on whether

the sample is isolated or part of a larger portion of rock. This gives an

indication of the length scales over which the rock can be considered ho-
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Figure 4.18.: Permeability, K (in Darcys), as a function of void fraction,
φ, for 8 rock samples of size 1283 and different boundary
conditions.

mogeneous. Note also the narrower range of variation in void fractions and

permeability in the case of the 1283 systems, as already observed in Figure

4.14.

4.5.4. Influence of boundary conditions as a function of

system size

For this study we have considered three sub-samples of increasing sizes of

Bentheimer sandstone, namely: 643, 1283 and 2563 voxels, respectively, all

centred at the centre of the full sample (see Figure 4.19). The permeability

as a function of system size for different boundary conditions is plotted in

Figure 4.20. A systematic trend in the value of the permeability can be

observed; for each size, and independently of the environment, the perme-

ability increases in going from simple PBC, to buffer, to mirror. However,

as the sample size increases, the value of the permeability becomes less

dependent on the type of boundary conditions used. The reason for the

observed trend is that, for larger samples, surface effects on the fluid flow

behaviour are smaller. For reference purposes, we also plot the permeability

for the 5123 sample with simple periodic boundary conditions (star symbol).

It should also be pointed out that the data points for the smallest system
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(a) 2563 (b) 1283 (c) 643

Figure 4.19.: Two-dimensional slices (perpendicular to the y-axis) of sam-
ples of Bentheimer sandstone. The slices are taken in the cen-
tre of each sample. Note that the larger samples contain the
smaller one/ones. The pore space is depicted in red and the
rock in black.

(643) show a marked dependence on the particular system chosen, since

this sample size is not large enough to capture the length scales of the rock

inhomogeneities, as also shown by the large variations in the permeability

values of Figure 4.14.
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boundary conditions.
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5. Comparison study of

Multi-Component Lattice

Boltzmann models 1

We compare three different multi-component LB models for two problems:

Poiseuille flow for binary fluids with viscosity contrast and capillary finger-

ing. The numerical results are presented and compared with theoretical

predictions. The thickness of the interface, limitations of the models and

numerical stability are also discussed. A summary is given to show the

capability and limitation of every model.

5.1. Poiseuille flow simulation for a binary

immiscible fluid system with viscosity

contrast

We carry out simulations of two fluids with a kinematic viscosity contrast

in a channel and compare with theoretical predictions in Figure 5.3. The

domain is periodic in y direction and bounded with non-slip walls. The sys-

tem is initialised with substance 0 in the middle and substance 1 on both

sides near the walls. An initial density value of 1 is applied to both sub-

stance 0 and 1. The force acceleration applied to each substance is 10−6 l.u..

Figure 5.1 shows the velocity and density profile for the Shan-Chen model

with viscosity ratio 4. The interactions were calculated using an eighth order

isotropy scheme and the Exact Difference Method was employed to incor-

porate the interaction forces between components. The simulation results

are generally in good agreement with the analytical solution [77], away from

1This chapter has been published in Computers & Mathematics with Applications 65.6
(2013): 882-890.
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the interfaces. The density profile shows that the two components are im-

miscible except for some noise near the interfaces. It is worth mentioning

that a very strong interaction is required to achieve an immiscible inter-

face; we observed very high spurious velocities up to 10−1(in lattice units)

near the interfaces. Figure 5.2 shows the velocity profile for the Shan-Chen

model with viscosity ratio 10. We observe that the simulation result does

not match the analytical solution and some noise is found near the interface.

This phenomenon has also been found by Sukop et al. [6]. To explore the

reason for the poor agreement with the theoretical prediction, the density

profile of the two substances is shown as well. In the density profile, we ob-

serve significant diffusion between the two substances. The concentration of

substance 0 decreases in the middle and increases in the domains near the

walls. To separate the two components, a stronger interaction is needed.

However, in that case the simulation becomes unstable due to high spurious

velocities caused by the strong interactions. A previous study showed good

agreement with theoretical predictions for fluids having a viscosity ratio less

than 6 [77]. It turns out to be difficult to calculate the flow of binary fluids

with a viscosity ratio larger than 6 as numerical instabilities emerge. We

observe that the thickness of the interface is significant (around 10 lattice

sites). The deviation from the analytical solution is probably due to the

low resolution of the channel as some very good results using fine resolution

have been reported [59, 41]. However, this will increase the computational

cost of the problem. In summary, we believe that the use of the Shan-Chen

model, with regard to simulation of flow in real porous media geometries,

is limited for the following reasons:

• The wide liquid-liquid interface is unfavourable for the simulation of

flow in porous media, particularly reservoir rocks, where the average

pore radius is typically around 10-30 [l.u.].

• It is difficult to increase the resolution of pore space images obtained

from x-ray microtomography (XMT) due to experimental limitations.

• Even if it is possible to increase the resolution, this would substantially

increase the computational burden

For comparison, we have carried out the same calculations using the Shan-

Chen model with Guo’s force term [58]. We observe that agreement with
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the analytical solution is not as good as for the Exact Difference Method

(EDM). Also, the spurious velocities observed near the interfaces are more

significant for the Guo model compared to EDM.
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Figure 5.1.: Left: Simulated (black) and analytical (red) velocity profiles
for Poiseuille flow of binary fluids with viscosity contrast for
the Shan-Chen model; Right: Simulated density of the Shan-
Chen model. The viscosity ratio between the two substances is
4. The initial densities are both set as 1, surface tension as 0.01
(l.u.)
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Figure 5.2.: Simulated velocity (left) and density (right) profiles for the
Shan-Chen model. The viscosity ratio between the two sub-
stances is 10. The initial densities are both set as 1

The simulation results of both the Free Energy Model and the Colour

Gradient Model are shown in Fig. 5.3 and give excellent agreement with

the analytical solution. Two immiscible fluids are found constrained in their

respective areas and no unexpected diffusion is discovered. We note that the

interface thickness of the Free Energy Model is around 6 lattice units (l.u.)

and the interface location is found at x = 38 instead of their initial position

of x = 35, so that an interfacial movement of 3 lattice units is discovered
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Figure 5.3.: Simulated velocity profiles for the Colour Gradient (left) and
Free Energy Model (right) with viscosity ratio 100, surface ten-
sion 0.01 (l.u.)

from the result. The reason for this interface shifting is not clear and needs

further investigation. The interface thickness of the Colour Gradient Model

is around 4 l.u., which is smaller than that of the Free Energy Model. An

interfacial shift is observed in the colour gradient model of around 1.5 l.u.,

which is significantly smaller than the free energy model. The recolouring

algorithm separates the two immiscible fluids very well and gives nearly 0

diffusivity as expected.

The same trend regarding the variation of interfacial thickness for different

multi-component models is observed for different viscosity ratios and inter-

facial tensions. As an example, Poiseuille flow simulations were performed

with a viscosity ratio of 10 and a surface tension of 0.005. The Shan-Chen

model generates a thickness of 6 l.u., while the Free Energy model and the

Colour Gradient model give 4 and 2-3 lattice units respectively.

5.2. Capillary fingering simulation

Capillary fingering is a well known hydrodynamic instability which occurs

in various displacements during oil/gas production. Here we consider one

fluid which is displaced by a second one, having a different viscosity, along

a channel with non-slip walls. A growing finger of the driving fluid will be

produced if the capillary number Ca is big enough.

Ca =
utν2
σ

, (5.1)
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where ut is the velocity of the tip of the finger and ν2 is the viscosity of

driving fluid. σ is the surface tension.

Chin et al. [77] studied viscous fingering using the Shan-Chen model.

Although fingering structures were observed in their simulations, the devel-

opment of a finger is clearer in simulations at higher surface tensions, which

is counterintuitive. We normally expect that increased surface tension is not

favourable to the generation of fingers. It is not clear whether these struc-

tures were produced due to viscous fingering or due to other effects [77].

Numerical instability and high diffusivity were also found in the simulation

when the viscosity ratio is larger than 7.

Here we use the Colour Gradient Model and the Free Energy Model to

study viscous fingering. A domain with grid size 512x32 is used in the sim-

ulation. The first half of the domain contains substance 0 and the rest is

occupied by phase 1. Periodic boundary conditions are used in x direction

and bounded with non-slip boundaries. A pressure gradient is imposed by

applying a body force in the x direction. Figure 5.4 shows the evolution

of fingers for binary fluids with a viscosity ratio of 20 and a tip velocity of

0.01, simulated by the Free Energy Model. From top to bottom, these are

finger evolutions for surface tension values of 0.06780, 0.03890, 0.01985 and

0.00992 (l.u.) respectively. No finger will be produced if the surface tension

is high. When the surface tension decreases, fingers are observed. How-

ever, with decreasing surface tension, less stable interfaces are produced.

Figure 5.5 shows the evolution of the fingers of the same binary fluids with

a larger tip velocity of 0.05, calculated by the Colour Gradient Model. In

all cases, stable fingers are observed. Halpern and Gaver [100] studied the

fingering phenomenon in a channel, by measuring the width of the fingers

as a function of the capillary number Ca. We show our results obtained

from the Free Energy and Colour Gradient Models in comparison with the

results from Halpern and Gaver [100] in Figure 5.6.

Good agreement is achieved, although some small discrepancies are found.

These discrepancies might have arisen from the boundary conditions. The

Free Energy Model gives better agreement for low capillary number simula-

tions and the Colour Gradient Models did better in high capillary number
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Figure 5.4.: From top to bottom: Fingering evolution for the Free En-
ergy Model with surface tensions of 0.06780, 0.03890, 0.01985,
0.00992 [l.u.] at a time interval of 1000 time steps. Viscosity
ratio is 10; the tip velocity is 0.01. The number of snapshots
is different due to the different time required for the evolution
of fingers. For large surface tension, the fingers develop very
slowly. For low surface tension, on the other hand, we find very
long fingers (developing very quickly).

Figure 5.5.: From top to bottom: Fingering evolution for the Colour Gra-
dient Model with surface tensions of 0.03890, 0.01985, 0.00992,
0.00496 at a time interval of 1000 time steps. Viscosity ratio is
20; the tip velocity is 0.05
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Figure 5.6.: Finger width as a function of Capillary number. Our simulation
results from the Free Energy and Colour Gradient Model model
are shown as triangles and stars respectively, in comparison with
the results from Halpern shown as a solid black line

simulations. These numerical examples show that fingering phenomena can

be captured properly by both the Free Energy Model and the Colour Gra-

dient Model. It is worth mentioning that the numerical stability for both

the Free Energy Model and the Colour Gradient Model is similar. The

maximum viscosity ratio for dynamic interface simulations is around 20. To

achieve a higher viscosity ratio, an optimised perturbation term based on

the MRT collision scheme needs to be used. In this case, the viscosity ratio

can be increased to 1000 with reasonable numerical stability [65].
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5.3. Summary

The advantages and limitations of the Shan-Chen model, the Colour Gradi-

ent Model and the Free Energy Model have been investigated and directly

compared with regard to seven different aspects:

1. The maximum density ratio of binary fluids that can be achieved

2. The maximum viscosity ratio of binary fluids that can be achieved

3. Interfacial thickness in Poiseuille flow

4. Interface shifting distance in Poiseuille flow

5. Ability to describe capillary fingering

It has been observed that the Shan-Chen model is capable of simulating

high density ratio fluids [59, 101]. As such, it is a promising tool for liquid-

gas systems, but gives relatively low numerical stability and wide interfaces

for multi-component immiscible systems. For this reason, this model may

not be the optimal solution for simulation of immiscible flows [102]. Both the

colour gradient and the free energy model are capable of simulating fluids

with significant viscosity contrast, and recovering the analytical solutions

of Poiseuille flow and fingering simulations. In our study, we found that

the maximum viscosity ratio of these two models depends on the type of

problem. If the interface is static, fluids with a viscosity ratio up to 120

can be simulated. However, for dynamic interface simulations, this value

decreases to 20. We conclude that the free energy and colour gradient

models seem appropriate to simulate the flow of binary fluids with high

viscosity contrast and high numerical stability. This is of great importance

for the study of immiscible flow in porous media, in particular for CO2

storage and Enhanced Oil Recovery (EOR) operations.
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Table 5.1.: Quantitative comparison of three multi-component LB models

The Shan-Chen

Pseudo Potential

Model

The Free Energy
Model

The Colour Gradient
Model

Maximum density
ratio

up to 109 [41] 1 1

Maximum viscosity
ratio

5 120 (static interfaces)
20 (dynamic
interfaces)

120 (static interfaces)
20 (dynamic
interfaces)

Interface thickness
(Poiseuille flow
simulation)

10 lu 5 lu 2-3 lu

Interface Shifting
distance (Poiseuille

flow)

10 lu 5 lu 2-3 lu

Ability of simulating
capillary fingering

No Yes Yes

Inherent Parallelism Low High High

Diffusion High diffusivity interface Diffusivity can be
controlled by a single

parameter

Complete immiscible,
no diffusion on the

surface
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6. Multi-Component flow in

porous media

6.1. Introduction

Multi-component flows are of great importance in many engineering appli-

cations, including petroleum, biochemical and chemical engineering. Sev-

eral conventional CFD techniques, including the volume of fluid (VOF)

and level-set methods, have been used to study multi-component flow. In-

terfacial dynamics at large scales can be captured by these techniques, but

information of small scale interfaces is often missing [103]. The lattice Boltz-

mann method (LBM) is an alternative solution for simulations of complex

flow due to its statistical physics background, easy implementation, strength

of dealing with complex geometries and inherent parallelism [104]. In this

chapter, we will consider lattice Boltzmann simulations to study the flow

of water, supercritical CO2 and oil in porous media, for CO2 storage and

Enhanced Oil Recovery (EOR) operations.

6.2. Verifications for the multi-component lattice

Boltzmann method

To validate the LB multi-component model, we calculate five test problems,

for which the analytical solution can be calculated. Flow in a capillary tube

with different cross sections, and the relative permeability of an idealised

geometry are investigated and compared with analytical solutions.

6.2.1. Capillary Pressure

A tube with a rectangular cross section shown in Figure (6.1) is used to

measure the capillary pressure of a strongly non-wetting bubble of different
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sizes. The setup of the simulation and the equilibrium state of the bubble are

shown in Figure (6.1). The analytical solution of the equilibrium capillary

pressure relation was given by Mason and Morrow [105]:

Pc =
σ(1 + 2

√
πG)cosθ

r
F (θ,G) (6.1)

where r is the inscribed radius, G = A/O2, A is the cross-sectional area,

O is the perimeter length. F (θ,G) is close to one for small contact angles.

The tube size is set as 60x30x30, the contact angle of the wetting phase is 0

degrees. A surface tension σ = 0.01 ([lattice units]) was employed. We use

a fixed geometry with different initial non-wetting phase volumes to achieve

a different inscribed radius in Equation (6.1). The capillary pressure as a

function of inverse of the inscribed radius is shown in Figure (6.2). As can

be seen, the LB computed capillary pressure is in good agreement with the

theoretical predictions.

Figure 6.1.: Capillary tube with rectangular cross section: initial setup
for non-wetting phase coloured blue (top); equilibrium state
(bottom)

To verify the algorithm for simulating the dynamic entry of non-wetting

phase in the tube, two capillary tubes are set up. Figure (6.3) shows the

geometry of the capillary tubes. We study the pore space having a rectan-
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Figure 6.2.: Capillary pressure VS inscribed radius, the analytical solution
is plotted using a solid line

gular cross section (left in Figure 6.3) with two resolutions: 12x6 and 24x12.

A non-wetting phase reservoir is located near the inlet of the tube in the

flow direction where a porous plate prevents the non-wetting phase flowing

out through the outlet [45](the geometry of the porous plate is shown in

Figure 6.3). This configuration enables us to measure the capillary pressure

of small pores. Without the porous plate, the high pressure cannot be held

as the non-wetting phase will flow out through the outlet freely.

Figure 6.3.: A capillary tube with rectangular and uniform grain cross
section

To estimate the capillary pressure as a function of wetting phase satura-
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tion in the primary drainage, we started from zero capillary pressure, which

was achived by setting the inlet and outlet with the same density/pres-

sure. Then, the density/pressure of the outlet was incrementally decreased

to achieve the desired capillary pressure. When the saturation reached the

steady state, which implies that Equation (6.2) is satisfied for at least 500

time steps, the wetting saturation was recorded. The surface tension was

set as 0.01 [l.u.], and an equal viscosity for wetting and non-wetting phase

of 0.02 was used in the calculation. The contact angle for the wetting phase

was 0 degrees. The mean curvature for the case of zero contact angle is

given by Bear [99] as R = 1/(2/L1 + 2/L2), in which L1 and L2 are the

length and width of the rectangular cross section respectively.

|Sw(t)− Sw(t− 50)

Sw(t− 50)
| <= 10−6 (6.2)

The second type of capillary tube has four grains of uniform radius and

is shown at the right in Figure (6.3). The inscribed radius of the pore space

is known as R = (
√
2− 1)Rgrain. The tube size is 50x20x20 while the grain

radius is 12. The third type of test geometry is an idealised porous medium

which packs eight spheres with equal radius (Figure 6.4). The equation for

the inscribed radius is the same for the second type of capillary tube. The

size of the sphere pack is 50x20x20 with a sphere radius of 9.

Figure 6.4.: Idealised porous medium

The entry pressure can be computed by using the Young-Laplace equa-

tion. The curve of non-dimensional pressure PcR/γ versus wetting phase

saturation for primary drainage of the three test geometries, obtained from

LB simulations, are shown in Figures (6.5, 6.6, 6.7).

As can be seen, the LB simulation results for entry pressure are in excel-

lent agreement with analytical solutions. The simulated saturation increases
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Figure 6.5.: Capillary pressure curve for primary drainage process in a cap-
illary tube with rectangular cross section, considering two levels
of resolution: 12x6 and 24x12.
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Figure 6.6.: Capillary pressure curve for primary drainage process in a cap-
illary tube with four grains of equal radius.

slowly with the increase of pressure. When the pressure is increased beyond

the entry pressure, the saturation increases dramatically to a high value

and the non-wetting phase was found to enter the pore/throat. This entry

value was found to match the analytical prediction by the Young-Laplace

law (blue line in figures). According to the results, the discretization does

not affect the simulation results significantly, all the cases predict the en-

try pressure accurately. Snapshots of the primary drainage in an idealised

porous medium are shown in Figure (6.8).

6.2.2. Relative Permeability

In multi-phase flow in porous media, Darcy’s law (see equation 4.7) can be

extended to describe the ratio of permeability of each phase to the absolute
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Figure 6.7.: Capillary pressure curve for primary drainage process in an
idealised porous medium, which packs eight spheres of equal
radius.

Figure 6.8.: Snapshots of primary drainage in idealised porous medium,
from top to bottom, left to right.

permeability which can be used as a dimensionless measure of the effective

permeability of each phase. The extension of Darcy’s law can be written as:

κα(Sα) = − μαvα

ΔPακ
(6.3)

where the subscript α refers to the fluid phase α, Sα is the saturation, κ

is the absolute permeability, and the terms κα, vα and ΔP are the perme-

ability of phase α, volumetric averaged fluid velocity and pressure gradient

respectively. In the simulation, all the terms are in lattice units.

In multi-phase flow in porous media, the dimensionless capillary number
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Ca is used to measure the relative effect of the viscous and capillary forces,

and is defined as:

Ca =
μU

σ
(6.4)

where μ refers to the viscosity, U is the Darcy velocity1, and σ is the

surface tension. Several fundamental studies on the relative permeability

have been carried out by Marle [106], Avraan and Payatakes [107]. They

found that, if the capillary force dominates the flow, the fluids are hydrody-

namically decoupled. In that case, the extension of Darcy’s law (Equation

6.3) is valid and the relative permeability only depends on the geometry

of the porous media, wettability and phase saturation. If the viscous ef-

fect increases, the fluids are coupled and this leads to the mobilisation of

trapped fluids [108]. The relative permeability eventually shifts towards a

linear dependency with saturation in the near miscible region [109].

As model systems, immiscible two-phase flow through two channels (2D)

and a cylindrical channel (3D) were studied using the LB multi-phase model

described in Chapter 3.10.4. The predicted relative permeability is com-

pared with analytical solutions. The geometry of the 2D channel and the

setup of the simulation is shown in Figure 6.9. Periodic boundary conditions

are applied in the flow direction whereas a half-way bounce back boundary

condition is used on the upper and lower walls. A body force is applied to

drive both phases and to avoid the pressure gradient which normally leads

to capillary end effects. Viscosity ratios of the non-wetting and wetting

phase M = μnw

μw
of 1, 0.1 and 0.05 are studied. A mesh of 60x50 is used for

all simulations. The analytical solution can be derived from the Poisseuille

flow velocity profile and is given as [110]:

κw = 0.5S2
w(3− Sw) (6.5)

κnw = Snw[1.5M + S2
nw(1− 1.5M)] (6.6)

The simulation results for different viscosity ratios together with the an-

alytical solution are shown in Figure 6.10, 6.11 and 6.12. As can be seen,

1Darcy velocity U = Q/A, where Q is the flux over a cross-section of area A.
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the predicted relative permeability from LB agrees well with analytical so-

lutions for all viscosity ratios. This is because the flow in a channel with

two parallel walls is a second order problem, the LB method is a second

order method and the half-way bounce back boundary condition is of sec-

ond order accuracy, therefore the LB simulation can accurately predict the

relative permeability for this problem.

x

y

Wetting phase

Wetting phase

Non−wetting phase

Figure 6.9.: Geometry and setup of immiscible two-phase flow in a 2D
channel

Figure 6.10.: Relative permeability of a binary fluid in a 2D channel, LBM
predictions and analytical solution, viscositiy ratio M = 1.0

Having validated 2D model systems, two-phase flow through a 3D cylin-

drical channel was calculated. The geometry and setup are shown in Figure

6.13. The mesh resolution is 100x50x50. The relative permeability for vis-

cosity ratios M = 1 and M = 0.2 is calculated and compared with the

analytical solution given by Goldsmith and Mason (Equation 6.8)[111] as

shown in Figure 6.14
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Figure 6.11.: Relative permeability of binary fluid in a 2D channel, LBM
predictions and analytical solution, viscosity ratio M = 0.1

Figure 6.12.: Relative permeability of binary fluid in a 2D channel, LBM
predictions and analytical solution, viscosity ratio M = 0.05

κw = S2
w (6.7)

κnw = 2SnwM + S2
nw(1− 2M) (6.8)

As can be seen in Figure 6.14, the predicted relative permeability confirms

the validity of the LB implementation for binary fluids with equal viscosity.

However, for M = 0.2, the relative permeability of the non-wetting phase

for low saturation is slightly lower than theoretical predictions. This may

be due to the finite size resolution of the cylindrical channel walls, which is

not observed in the 2D flat channel test (Figure 6.10, 6.11 and 6.12)
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Figure 6.13.: Geometry and setup of immiscible two-phase flow in a 3D
cylindrical channel

Figure 6.14.: Relative permeability as a function of wetting saturation Sw
with different viscosity ratios (Left: equal viscosity M=1.0,
Right: viscosity ratio 5, M=0.2)

6.3. Experimental and LBM study of multi-phase

flow in micro-models

In this chapter, fluid displacement in single pore junction micro-models with

equal and unequal arms is studied. We also investigate a design based on an

actual rock section: Berea sandstone. In the Pore Network Models (PNMs),

which are widely used to predict the displacement of binary fluid in porous

media, the drainage and imbibition is calculated using the Young-Laplace

Law [112, 113]:

Pc = 2γcosθ(
1

h
+

1

w
) (6.9)

where, Pc is the capillary pressure, γ is the interfacial tension, θ the con-

tact angle and h and w the height and width of the channel. In PNM, a
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capillary filling rule was used to study the drainage and imbibition [112]. For

primary drainage, where the non-wetting phase is injected into a medium

completely saturated with wetting phase, the non-wetting phase should se-

lect the channel with the lowest capillary entry pressure first. For imbibition,

where the wetting phase is injected into a porous medium initially filled with

non-wetting phase, the wetting phase will enter the narrowest channel with

the highest capillary pressure.

This work aims to find a comprehensive solution to the question of whether

the capillary pressure filling rules used by network modelling are actually

observed in single junction and imbibition experiments and direct simu-

lations. Experiments and LBM simulations were performed to study the

spontaneous imbibition of decane in air-saturated micro-models. We found

that, for primary drainage, the capillary filling rule holds; however, for the

case of imbibition, the capillary filling rules may not be valid. The local

geometry of the network model junction plays an important role. More-

over, the experimental data was compared to computer simulations. The

simulations results were in excellent agreement with experimental data in

both imbibition and primary drainage, which confirmed the ability of the

lattice Boltzmann method to study complex flow at the pore scales.

6.3.1. Methodology

Three micro-models of 2.5 dimensionality (they have a finite depth of 75μm)

were designed to study fluid flow in single junctions, with increasing com-

plexity, ranging from a simple square pore with equal, unequal arms, to a

pore structure representing actual Berea sandstone. The patterns with typ-

ical scales are shown in Figure 6.15. The oil-wetting micro-models were fab-

ricated in PMMA by Epigem Ltd. A Zeiss inverted microscope (AXIP Ob-

server A1.M) was used to capture still images and the displacement process

was captured by a high speed video microscope (FastCam MC2.1, Photron)

with a maximum frame rate of 10,000 frames per second (fps) and a reso-

lution of 512x512 up to a recording setting of 2,000fps. (The experiments

in this chapter were carried out by Emily Chapman from Department of

Chemical Engineering, Imperial College London)
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Figure 6.15.: Single Junction Designs, images were taken by Zeiss

microscope

The colour gradient multi-component lattice Boltzmann method described

in Chapter 3.10.3 was used to calculate the flow in micro-models. For the

boundary conditions, we used the simple half-way bounce back scheme

which offers second order accuracy and conserves the mass of all compo-

nents. To simulate the spontaneous imbibitions, a modification on the ge-

ometry was performed. We took the micro-model with a squared pore in

the centre as an example to show the initial configuration of the simulation.

This configuration is shown in Figure 6.16, the green represents the solid,

the colours blue and red represent air and decane respectively. A big reser-

voir which connects the top three channels was built for both decane and

air at the bottom; periodic boundary conditions were applied in X,Y and Z

direction.

Figure 6.16.: The initial configuration for multi-component simulation

For the main displacement process of two-component flow in micro-models,

the Reynolds number is very small (< 0.01), so that the inertial effects are
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negligible. The density of decane and air in the simulation was set as equal.

Another important dimensionless parameter is the capillary number which

represents the relative effect of viscous force versus surface tension on the

interfaces:

Ca =
uwμw
σ

(6.10)

where uw and μw are the Darcy velocity and dynamic viscosities of the

wetting phase. σ is the value of surface tension and was set as 10−2 in all

simulations. We use a low viscosity ratio of 10 in the simulation rather

than the real decane/air system viscosity ratio of 50. This is justified be-

cause the typical capillary number for the flow in micro-models is of order of

10−5 which means the capillary force dominates the displacement process.

Therefore the ratio of 10 or even lower is sufficient to reproduce the main

physical process [66]. The contact angle is set to 30◦. The implementation

of contact angle can be found in [36].

The initial distribution of decane and air was shown in Figure 6.16. Be-

cause the micro-model is oil-wet, the decane will spontaneously imbibe into

the model due to the capillary pressure. A video of the process can be cap-

tured by the high speed camera for the comparison with the LB simulations.

It is worth noting that, all the simulations were performed in 3D in order

to recover the experiments.

6.3.2. Simulation results and comparisons with experimental

data

Primary Drainage

Firstly, the primary drainage process was studied. The decane was forced

to enter the single square pore model with unequal arms from the top-right

channel. A body force of 10−5, which is equivalent to pressure gradient,

was imposed along the entry channel direction to mimic the pressure in

the experiments [73]. As can be seen in Figure 6.17, in both experimental

and simulation results, although the entry fluid reached the top-left channel

having the smallest width, the filling fluid did not enter due to the high

capillary pressure. The filling fluid chose the furthest channel, which has
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the largest width, to fill first. The capillary filling law holds in this case: the

channel with lowest capillary pressure will be filled first. The LB simulation

predicted the primary drainage in the micro-models accurately, quite good

agreements were achieved. According to Figure 6.17, we can see that, not

only the filling order was recovered properly, but also that the curvature of

interface and details of fluid distribution matched the experimental results

well. Two bubbles caused by snap-off in the left-bottom and right bottom

corner of pore were captured by the LB simulation. However, the volume

of bubbles in the simulation is slightly bigger than that in experiments; this

deviation might be caused by the neglect of density contrast and compress-

ibility of the air/decane system. Generally, we think the agreements is quite

satisfactory.

Figure 6.17.: Snapshots of primary drainage of decane in a single junction

micro-model, experiments results and the lattice Boltzmann

simulations. The experimental data and simulation results are

shown together for easier comparison. The left black-white

snapshots are experimental data, the colour snapshots were

obtained from the LB simulation.
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Spontaneous Imbibition

In both micro-models, the wetting phase (decane) has spontaneously im-

bibed into the model from the top right corner (the single junction micro-

model) and bottom right corner (the Berea micro-model). According to the

capillary entry pressure rules used by network modelling, the fluid should

enter the smallest channel which has the highest capillary pressure first;

however, in our study, this is not the case. The results for the single junction

micro-model and the Berea micro-model obtained by experiments and the

parallel lattice Boltzmann simulation are shown in Figure 6.18 and Figure

6.20 respectively. The snapshots are taken from the top of the micro-models

(Z direction). The black-white snapshots are experimental data, the light

grey and dark grey represent decane and air respectively, the interface is

shown in dark black. The lattice Boltzmann simulations are shown with

colours: the red, blue and green represent decane, air and PMMA base

respectively.

Figure 6.18.: Snapshots of spontaneous imbibition of decane in a single junc-

tion micro-model with equal arms. The left black-white snap-

shots are experimental data, the colour snapshots are obtained

from the LB simulation.
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Figure 6.19.: Sequential snapshots of spontaneous imbibition of decane in a

single junction micro-model with unequal arms.

Figure 6.20.: Snapshots of spontaneous imbibition of decane in a Berea

sandstone micro-model

In Figure (6.18), the decane was imbibed into the bottom right corner
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first, then top left and bottom left corner which is not consistent with the

filling rule used in network modelling (Figure 6.18.3, 6.18.4). In network

modelling, the fluid should imbibe into all the other channels simultane-

ously. We think this inconsistency was caused by the asymmetry of the

experimental micro-model. As a result, we slightly revised the geometry for

the LB simulation to break the symmetry. The width of the bottom right

channel is one lattice smaller than all the other channels, and the bottom

left corner of the squared pore was one lattice smaller than the other cor-

ners. It should be noted that after the modification on the geometry, the

width of the top left and bottom left channel is the same. According to

the filling rules of network modelling the decane should enter two channels

simultaneously; however, both the experiment and simulation showed that

the decane imbibes into the top left channel first as a result of interface con-

tact with the top left corner in advance (Figure 6.18.5,6.18.6). According

to Figure 6.19, the capillary filling law broke again. The decane fills first

not the narrowest channel, which has the highest capillary pressure, but the

nearest channel that the filling fluid reached first. The results of the LB

simulation and the experiments show very good agreements, almost all the

main process and interface movements were captured by the LB simulation.

For the imbibition in the Berea sandstone micro-model (Figure 6.20), the

results from the experiment and the LB simulation showed excellent agree-

ment. It can be observed that the decane imbibes from the bottom right

corner and enters the nearest top right channel first. After that it entered

the top left channel which has the highest capillary pressure. This result

supported again our hypothesis, for the case of imbibition, the local geom-

etry of the network model junction determines the filling sequence, rather

than the capillary pressure of the channels.

Although the agreement of displacement of interfaces between the sim-

ulations and the experiments are quite satisfying, the time scales did not

match well. This is due to the neglect of density ratio between decane and

air. The approximation of density ratio equal to 1 is based on the assump-

tion of a low Reynolds number. However, the Reynolds number increases

dramatically when the interface of decane touches the solid wall. As a re-

sult, the inertia plays an important role at that moment, and the density
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ratio is presumably no longer negligible.

6.3.3. Summary and outlook

In this chapter, the primary drainage and spontaneous imbibition of de-

cane/air systems in two micro-models with increasing complexity were in-

vestigated. Experiments and the LB simulations were performed to study

the flow in these micro-models. The LB simulations successfully simulate 3D

displacement of decane/air systems, as the observed displacement process

was well matched. The results demonstrate that the capillary filling rules

used in the network modelling may not be valid for the case of imbibition,

instead the local geometry plays a major role. The comparison illustrates

that the LB simulation is promising and quite adequate for multi-component

fluid flow simulation in porous media.

6.4. Relative permeability of reservoir rocks

6.4.1. Discussion of phase separation and wettability

In this section we present results of immiscible fluid flow using the optimised

colour gradient model [66] discussed in section 3.10.3. We first study phase

separation and wettability effects. Then we describe calculations of relative

permeabilities in the Bentheimer rock sample.

The phase separation of a binary immiscible mixture in LB simulations

depends on a number of parameters, particularly the value of surface tension

σ. LB simulations of critical spinodal decomposition in binary immiscible

fluids [114] were also carried out to determine the properties of a binary

mixture as a function of different parameter sets. Different wettabilities are

implemented in our model by assigning a particular order parameter φw

to the solid sites (the surface). This order parameter is not evolving with

the LB equation, but exerts a phase colour gradient on the neighbouring

fluid, with the same surface tension of σ as the fluid-fluid interaction. For

example, for water wettability, if the order parameter of the water phase

is φ = 1.0, then a value between 0.0 (neutral wetting) and 1.0 (maximal

wettability) can be assigned to the solid sites. The contact angle θ of the

wettability is given by θ = arccos(φ) [36].
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To verify that our implementation of two-phase flow simulations with the

LB method is able to model a wide range of wettability situations, we used

a simple model of a box containing two immiscible fluids above a surface

with variable wettability. The non-wetting fluid is initially placed in a cubic

configuration at the centre of the box and in contact with the surface, then

a LB simulation is performed until the non-wetting phase has reached its

equilibrium shape. The results are shown in Figure 6.21 for oil concentration

of 25% (the oil phase is coloured in red). When the surface is non-wetting,

the non-wetting (oil) phase spreads over the entire surface. As the water

wettability of the surface increases, the non-wetting phase starts to detach

from the surface, and forms a contact angle with it. This contact angle

can be defined as the angle between the wet surface and a plane tangent

to the non-wetting phase droplet where the droplet starts to detach from

the surface, as illustrated in Figure 6.22. This contact angle increases with

increasing wettability. At high wettability (φsolid = 0.8) the non-wetting

phase is completely detached from the surface and forms a spherical bubble.

6.4.2. Capillary pressure

The capillary pressure for Bentheimer sandstone (Fig. 4.9, Table 8.1) is

measured numerically using LBM. A drainage process is simulated to mimic

the experimental configuration. A buffer layer of 10 lattice sites wide is

added at the inlet of the sample for injecting non-wetting phase. A porous

plate shown in Fig. 6.3 is added at the outlet of the sample to prevent the

non-wetting phase flowing out. This configuration is consistent with the

experimental setup. Periodic boundary conditions are used for flow calcu-

lation, and a constant colour boundary condition, which converts all entry

fluid into non-wetting, is applied for the inlet. A certain pressure gradient

ΔP is applied to both phases until the system reaches steady state (satu-

ration becomes constant). Then, one point on the capillary pressure curve

is obtained. More points on the curve are obtained by applying different

pressure gradients ΔP .

The calculated capillary pressure is converted into the dimensionless Lev-

erett J-function:

108



(a) wet=0.0 (b) wet=0.1 (c) wet=0.2 (d) wet=0.3

(e) wet=0.4 (f) wet=0.5 (g) wet=0.6 (h) wet=0.8

Figure 6.21.: Equilibrium configurations (as 2D slices taken at the centre
of the 3D system) of a binary immiscible fluid mixture as a
function of increasing water wettability of the bottom surface.
Wetting phase (water) is depicted in blue and non-wetting
phase (oil) in red. Note the finite size effects in panel (c), where
the detaching droplet of oil touches the lateral boundaries of
the box. In this case, it is not possible to determine the contact
angle. However, there are no finite size effects for all the other
values of wettability.

Figure 6.22.: Schematic illustration of how the contact angle θ is defined.
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J(s) =
Pc

σ cos θ

√
κ

φ
, (6.11)

where Pc is capillary pressure, κ absolute permeability, φ the porosity, σ

surface tension, θ contact angle. The comparison of computed and measured

capillary pressure curve is shown in Figure 6.23. The agreement between

the experimental measurement and simulation is generally good. The pre-

dicted irreducible wetting phase saturation (Swi = 7%) is similar to the

experimental measurement. However, the calculated capillary pressure for

this saturation is significantly lower than the experimental data. This may

be due to resolution effects, some very small pores or throats may not be

captured by XMT imaging. Some very small pores or throats in the geome-

try are also difficult for LB simulation. These pore sizes or throat sizes may

be smaller than the width of the interface of LB simulation, therefore very

high capillary pressure may lead to low numerical stability. These difficul-

ties can be overcome using high resolution, but it will significantly increase

the computing expense.

Figure 6.23.: Computed versus experimental capillary pressure curves for

Bentheimer sandstone.

6.4.3. Relative permeabilities

There are two main methods to measure the relative permeability in the lab-

oratory: unsteady and steady method. The steady state method [115, 116],

which is most widely used in the lab, injects a fixed ratio of two phases

simultaneously at constant flowrate through the porous media until the
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saturation and pressure drop become steady. The hysteresis effect is repro-

duced by injecting fluid into the sample according to the direction of the

saturation change. In the unsteady measurement [116], which is the quick-

est laboratory method, the sample is initially saturated with one phase only,

and the other phase is injected into the sample to displace the in-situ fluid.

The changes in pressure and fluid produced are continuously measured. The

relative permeability of the in-situ and driving fluid are calculated using an

equation originally developed by Buckley and Leverett [117, 118]. The sat-

uration is not required to achieve equilibrium,which makes this method fast

and of low cost compared to the steady state method. It is worth not-

ing that this method is based on the assumption that the flow velocity is

high enough, which means that capillary end effects are negligible [108].

An example of the unsteady-state method is the Johnson-Bossler-Naumann

(JBN) method [119].

To the author’s knowledge, only a few papers have studied the direct

calculation of relative permeability of reservoir rocks [108, 3, 44]. The cal-

culation requires a high level of accuracy, reliability and efficiency of the

algorithm. It is also very difficult to recover the lab experiment configura-

tions in simulations. The available papers of direct calculation of relative

permeability on reservoir rocks randomly distribute the non-wetting phase

according to the desired saturation [46, 3, 44]. This initial configuration is

easy to set up but has a number of disadvantages:

• It does not recover the lab experimental measurement procedures.

• Some small or dead pore/channels might be occupied by the non-

wetting phase, which is not the case in the experiments due to high

capillary pressure.

• Is not able to calculate the imbibition relative permeability curve due

to the lack of drainage-imbibition hysteresis

In this study, we are going to examine the random distribution relative

permeability calculation method, and propose another new method for di-

rect calculation of relative permeability which considers drainage-imbibition

hysteresis and can produce both a drainage and an imbibition relative per-
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meability curve.

Firstly, we calculated the relative permeabilities using the random dis-

tribution method for both oil and water of Bentheimer sandstone of size

320x320x320 with a resolution of 4.9μm. A driving force was applied on

both phases. To initialise the oil and water phases, each fluid node is ran-

domly set as oil or water according to the desired saturation. A surface

tension σ = 0.01 in lattice units and 20N/m in physical units was used

in the simulations. The contact angle was set as 35◦ uniformly across the

whole sample, this value is consistent with oil-water contact angles in water-

wet rocks [3]. In all cases, we run the simulations until a steady state is

achieved. As the initial distribution of the non-wetting phase is randomly

set and followed with a phase separation process, the non-wetting phase

might be found in some pores that should not be occupied by the non-

wetting phase due to the high capillary pressure or local geometry. To take

into account these inaccessible pores, the experimental data is rescaled using

the Equation [120]:

Sw =
S∗w − Swi

1− Swi
, (6.12)

where S∗ is the total saturation of the wetting fluid and Swi is the “ir-

reducible” wetting saturation. In this case, Swi = 0.05 according to the

primary drainage experiment [3]. The non-wetting phase distribution of

different wetting phase saturations equal to 0.2, 0.4, 0.6, 0.8 is shown in

Figure 6.24. As we can see from these figures, for low wetting phase satu-

rations, the non-wetting phase occupies most of the pores, and most of the

non-wetting phase is connected. Due to the high connectivity of non-wetting

phase for low saturations, the relative permeability of the non-wetting phase

is much higher than that of the wetting phase. For high saturations, most

of the pores are occupied by the wetting phase, whereas the non-wetting

phase turns into a lot of isolated droplets due to the capillary forces. These

droplets can hardly move due to high capillary forces, and jam the small

throats for which the local capillary force is high. These hardly moving

droplets not only reduce the relative permeability of the non-wetting phase,

but also significantly reduce the relative permeability of the wetting phase

due to the blocking of small pores and throats. The simulation results
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and primary drainage experimental data by Ramstad et al. [3] are shown in

Figure 6.25. In all cases, the rock is considered to be water-wet and the cap-

illary number Ca is controlled by body force and set as 10−5. The simulated

non-wetting phase relative permeability is in fair agreement with the exper-

imental data. The wetting phase relative permeability agrees well with the

experimental data at medium and high saturation, but slightly over-predicts

at low saturation. This could be caused by the finite resolution of the mesh.

For low wetting phase saturations, most of the wetting phase is close to

the rock as a thin layer of which the thickness should realistically be much

smaller than the radius of the channel or pores. Due to the finite resolu-

tion of the mesh, the thickness of these layers may be over-predicted and

therefore yield a slightly higher calculated relative permeability.

Figure 6.24.: Oil (Non-wetting phase) distribution of different saturation

in Bentheimer sandstone: (a) Sw = 0.2, (b) Sw = 0.4, (c)

Sw = 0.6, (d) Sw = 0.8
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Figure 6.25.: Relative permeabilities for wetting phase (water, blue round

points) and non-wetting phase (oil, red squared points) in

a sample of Bentheimer sandstone of 3203 voxels.Primary

drainage experimental data (by Ramstad et al. [3]) are shown

as triangular points.

To consider the drainage-imbibition hysteresis, a forced drainage, followed

by a forced imbibition was carried out to generate the distribution of oil/wa-

ter and then used as the initial distribution for the relative permeability

calculations. The rock sample is fully saturated with water, except for a

buffer layer of thickness 10 lattice sites, which is set near the inlet and out-

let of the sample. The buffer layer at the outlet is saturated with water

while the buffer layer at the inlet is saturated with oil and forcibly injected

into the sample until the saturations converge which completes the drainage

calculation. The distribution of oil/water at different saturation values is

saved for the drainage relative permeability calculations. To carry out the

imbibition calculation, the fluid in the buffer layer is then changed into

wetting phase and the forced injection continues until the saturations con-

verge again. The drainage-imbibition calculation snapshots are shown in

Figure 6.26 and Figure 6.27. The distributions of oil/water are saved for

the imbibition relative permeability calculations. These distributions need

post-processing to be used as the initial distribution for the relative perme-

ability calculations. The buffer layers are removed from the geometry and
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the geometry is mirrored in order to use periodic boundary conditions in the

relative permeability calculation. The post-processing flowchart is shown in

Figure 6.28.

Figure 6.26.: Primary drainage simulation of Bentheimer sandstone.

Figure 6.27.: Forced imbibition simulation of Bentheimer sandstone.
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Figure 6.28.: Post-processing of drainage-imbibition results for relative per-

meability calculation: (1) drainage/imbibition results at a de-

sired saturation (2) remove the buffer layers at the inlet and

outlet (3) mirror the geometry along with wetting/non-wetting

phase distributions for relative permeability.

With the distributions of oil/water from the drainage-imbibition calcula-

tion, a body force was applied on both phases. The magnitude of the body

force was determined by the desired capillary number. In this study, the

capillary number was controlled to be near 10−5 which is similar to that

used in the experiments. After the permeability of both phases converged,

the relative permeability for a desired saturation was obtained. With these

data, we can produce a drainage relative permeability curve and an imbi-

bition relative permeability curves for both drainage and imbibition as in

Figure 6.29.

The figures show that the calculation results using our new method are

generally in good agreement with experimental data. For the drainage rel-

ative permeability calculation, the new algorithm is of similar accuracy as

the random distribution algorithm. However, the non-wetting phase (oil)

relative permeability is slightly over-predicted for high saturation imbibi-

tion calculations. The relative permeability end point for imbibition is also

over-predicted by simulation. These discrepancies may be caused by the
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Figure 6.29.: Relative permeability simulation and experimental data for
Bentheimer sandstone.

finite resolution of the mesh in small pores and throats. As a uniform mesh

is used in the simulation, the number of mesh mesh points is limited, part of

the thin wetting layer (with a thickness of which is smaller than the imag-

ing resolution, in this study 4.9μm) near the rock surfaces and small scale

snap-off oil droplets may not always be captured effectively [121]. The thin

wetting layers near the rock contribute little to the general wetting phase

relative permeability. Therefore the lack of wetting layers does not affect

the wetting phase relative permeability results significantly. In contrast, the

lack of small non-wetting (oil) droplets which have high capillary pressure

and possibly block small channels, may increase the relative permeability

of the non-wetting phase because fewer channels are blocked. A potential

solution could be to use a finer mesh. However, this will decrease the com-

putational efficiency.

Generally speaking, this new direct relative permeability method can pre-

dict the relative permeability with reasonable accuracy for both drainage

and imbibition. This method is recommended for relative permeability cal-

culations for following reasons:

• The new method is closer to the lab operations

• The saturation does not need to be normalised to consider the “irre-

ducible” pores

• It is closer to the reservoir condition.
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• Drainage and imbibition hysteresis is considered in the method and

both drainage and imbibition relative permeability can be predicted.

However, it does have several disadvantages including:

• The drainage and imbibition simulation take significantly more time

than the random distribution method.

• Extra post-processing of drainage and imbibition results are needed.

• The non-wetting phase relative permeability might be over-predicted

due to the limit of the mesh resolution.

6.5. Calculation of cluster size distributions for

residual oil in sandstones

6.5.1. Introduction

The displacement of non-wetting phase (oil/super-critical(SC)-CO2) in porous

media is of great importance in many engineering applications such as en-

hanced oil recovery (EOR) or Carbon Capture and Storage (CCS). A resid-

ual phase of non-wetting phase remains in the porous medium due to cap-

illary trapping. This may be advantageous in carbon geo-sequestration,

where residual trapping of displaced CO2 ensures long-term storage [4,

122, 123]. On the other hand, it may be a problem in oil recovery, where

this portion of oil is trapped in the pores and cannot be produced by nor-

mal operations such as waterflooding. Therefore a better understanding

of the characteristics of the capillary trapping of the residual phase has be-

come a central issue in both oil and gas EOR and CCS improvement design.

Lorenz and Ziff [124] studied capillary trapping assuming that it is a

percolation process, where the wetting phase fills the small throats which

have high capillary pressures, while keeping the non-wetting phase in larger

pores. They found that the number of residual clusters N(s) of size s, scales

with an exponent τ . A value of 2.189 was found for normal percolation

[124, 125]. Blunt et al. [126] simulated the drainage and imbibition using

a cubic lattice three-dimensional network model. A power-law non-wetting
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cluster size distribution was observed with a lower exponent τ = 2.12.

To study the characteristics of the residual phase, including residual sat-

uration and size distribution, the non-wetting phase was solidified in order

to measure the non-wetting phase directly in early studies [127]. X-ray mi-

crotomography (XMT) methods have recently been used to image both the

pore space and fluids. The grains, wetting and non-wetting phase can be

observed directly with a resolution of a few microns [125, 128, 4, 129, 130].

From XMT studies in Doddington and Clashach sandstones, residual cluster

size distributions of oil/water and sc-CO2 were measured and approximate

power-law distributions were observed [125, 128]. The effect of wettabil-

ity on residual cluster size distribution in beadpacks was investigated and

more small clusters were observed in oil-wet conditions [131, 132]. Iglauer et

al. [4] measured the residual oil cluster size distribution in Doddington and

Clashach sandstone of different wettability conditions. A higher power-law

exponent τ = 2.12 for the oil-wet core was found compared to the water-

wet core samples. In this study, a 3D lattice Boltzmann multi-component

code is used to simulate two-phase flow in two reservoir sandstone samples:

Bentheimer and Clashach. Residual cluster size distributions are calculated

and compared with available experimental data [128, 4].

6.5.2. LB method for two-phase displacement in reservoir

rocks

The samples were imaged using x-ray microtomography (XMT) with a grid

resolution of 4.9 microns/pixel for Bentheimer sandstone and 8.96 micron-

s/pixel for Clashach sandstone. The images were filtered and segmented

into a binary file to provide information of solid and pore structure. The

reconstructed 3D geometries are shown in Figure 6.30 and Figure 6.31. A

3D single phase LB solver is used to calculate the absolute permeability

and a colour gradient multi-component LB solver [121] is used to simulate

the multi-phase flow in the samples. The grid and calculated petrophysical

properties, and fluid parameters used in simulation are summarised in Table

6.1 and 6.2.

To simulate the drainage and imbibition processes, two buffer layers of
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Figure 6.30.: A 3D image of Clashach sandstone with a resolution of 8.96
microns/pixel. The red represents grains while the light grey
represents the pore space.

Figure 6.31.: A 3D image of Bentheimer sandstone with a resolution of 4.9
microns/pixel.

10 lattice sites each are added at the inlet and outlet of the sample to allow

fluid injection, and flow out. At the beginning, the sample is fully satu-

rated with water (wetting phase) except for the buffer inlet layer, which is

saturated with oil (non-wetting phase) (Figure 6.32). A uniform body force

is applied in the x-direction to drive the non-wetting fluid into the sample.

Periodic boundary conditions are applied, so that the fluid flowing out will

enter the sample on the opposite side. The out-flowing fluid will also re-

colour into non-wetting phase before entering the inlet. This mimics a pure

non-wetting phase injection drainage process. The simulation is stopped

Sample Size Resolution Porosity
Calculated
Permeability

Bentheimer 300 x 300 x 300 4.9μm 0.22 4970 mD
Clashach 300 x 300 x 300 8.96μm 0.132 129 mD

Table 6.1.: Sample size and petrophysical properties
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Quantity
simulation in
lattice unit

simulation in
physical unit

Experimental
value[4]

Density wetting phase
(Brine)

1.0 1000kg/m3 1030kg/m3

Density non-wetting phase
(n-Decane)

1.0 1000kg/m3 730kg/m3

Viscosity wetting phase 0.05 1.25mm2/s 1.039mm2/s
Viscosity non-wetting phase 0.05 1.25mm2/s 1.26mm2/s
Surface tension 0.01 12.5mN/m 23.8mN/m
Contact angle 35◦ 35◦ 35◦

Table 6.2.: Fluid properties used in simulations

when the average flux rate and wetting phase converge to a constant value.

This means that no non-wetting phase can be injected in the sample due

to the high capillary pressure. Snapshots of the drainage process of Ben-

theimer and Clashach sandstones are shown in Figure 6.33 and Figure 6.34.

From the figures, we can see that the big pores and channels are filled with

non-wetting phase first, due to low capillary pressure. Some small pores and

throats are not filled with non-wetting phase due to the very high capillary

pressure. The fluid in these pores becomes residual wetting phase that can-

not be drained out, unless a further increase of injection pressure is applied.

Figure 6.32.: Initial setup for drainage/imbibition simulation. The pore
space, inlet and outlet buffer layers are shown in blue.

The inlet buffer layer is then replaced with wetting phase and the fluid

flowing out is recoloured as wetting to conduct the imbibition simulation.

The terminal condition of the simulation is similar to drainage: the sim-

ulation stops when the wetting phase saturations converge to a constant

value. The pressure applied ensures a low corresponding capillary number
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Figure 6.33.: Snapshots of drainage process simulation of Bentheimer sand-
stone. The non-wetting phase (oil) is shown in red and the
rock is shown in transparent green. Saturation increases from
left to right.

Figure 6.34.: Snapshots of drainage process simulation of Clashach
sandstone.

Ncap = 3.56× 10−4 which is consistent with experimental data.2

Snapshots of imbibition and a cross section of residual oil distribution are

shown in Figure 6.35, 6.36 and 6.37. We can see that due to the wettability,

the wetting phase contacts the sample surfaces and fills the narrow regions

first, whereas the non-wetting phase preferentially stays in the centre of the

pores, which leads to snap-off of non-wetting phase. The strength of snap-

off depends on the capillary number and wettability. When the contact

angle increases, the piston-like advance dominates the displacement of flows

and suppresses the snap-off, which leads to little or no trapping [133]. The

simulation results are consistent with experimental data. The observed

residual saturation in the imbibition simulation 21%. This is slightly higher

than the experimental measurements 18.8%[4]. To directly compare the

residual cluster sizes and shape, we plot the largest three residual oil clusters

(12000 ∼ 15000 voxels), three medium size clusters (4000 ∼ 6000 voxels) and

2The capillary number is a dimensionless defined as Ncap = V μ

σ
, where V is the char-

acteristic velocity, μ is the viscosity and σ is the surface tension. It represents the
relative effect of viscous forces versus surface tension acting across an interface be-
tween a binary immiscible fluid system.
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three small clusters (400 ∼ 700 voxels) in Figure 6.38. The large residual

oil clusters are found to span several pores. As the cluster size decreases,

the cluster spans fewer pores and becomes spherical in shape. The small

clusters are all found to be spherical in shape and occupy only one pore.

This observation is consistent with experimental data in the literature [125,

128, 4].

Figure 6.35.: Snapshots of an imbibition process simulation in the Ben-
theimer sandstone. Saturation decreases from left to right.

Figure 6.36.: Snapshots of an imbibition process simulation in the Clashach
sandstone.

Figure 6.37.: Cross section snapshot of residual non-wetting phase distribu-
tions after waterflooding. Left: Bentheimer sandstone; Right:
Clashach sandstone

To quantitatively compare the cluster size distributions, the cumulative

cluster size distribution S(s) =
∑∞

i=s in(i) [128, 4] is computed, where
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Figure 6.38.: Left: three largest residual non-wetting clusters (12000 ∼
15000 voxels); Middle: three medium size residual non-wetting
clusters (4000 ∼ 6000 voxels); Right: Six small size residual
clusters (400 ∼ 700 voxels)

n(i) = N(i)/Nv, N(i) is the number of residual clusters of size i and Nv is

the total number of pore-space voxels. S(s) is shown as a function of s on

logarithmic axes for both Bentheimer and Clashach sandstone are plot in

Figure 6.39 and Figure 6.40. The experimental measurements of Clashach

sandstone is also shown in Figure 6.40 for direct comparison. Both figures

show a similar tendency: we observe the power-law dependence of N(s),

and obtain τ = 2.10 and τ = 2.13 for Bentheimer and Clashach respec-

tively. The simulation exponents are slightly lower than the percolation

theory prediction τ = 2.189 [133] but higher than the experimental mea-

surements τ = 2.05 (Clashach sandstone) [4]. This difference in τ indicates

that the LB simulation results produce fewer residual oil clusters than ob-

served in the experiments. This may be caused by the finite mesh resolution

of the simulation. A uniform mesh of resolution 5 or 9 microns/pixel is used

in the simulation; as a consequence, some small residual clusters may not be

captured and this finite resolution may also affect the coalescence of clus-

ters. It is worth noting that the cumulative cluster size distribution S(s)

increases dramatically at large size values s > 104, and levels out soon for

s < 103. This indicates that, although the number of large clusters (>

10000 voxels) is relatively small compared to the total number of residual

clusters (less than 1%), it forms more than 80% of the residual saturation.

The number of small residual clusters (less than 1000 voxels) is very big

(90% of total residual cluster number), but only contributes a very small

portion to the residual saturation (less than 1.5%).

124



100 101 102 103 104 10510−2

10−1

100

s

S
(s

)

Figure 6.39.: Residual oil cluster distributions in Bentheimer sandstone.
S(s) is the cumulative cluster size distribution function, while
s is the cluster size

6.5.3. Summary

In this study, the lattice Boltzmann method is used for the first time to

directly calculate the residual cluster size distribution of Bentheimer and

Clashach sandstone. The residual cluster distribution is generated following

a full drainage and imbibition process. The shape characteristics of residual

clusters and cluster size distributions are investigated and compared to avail-

able percolation theoretical study and XMT experimental measurements.

We confirm conclusions from theoretical and experimental studies that the

distribution of residual cluster size is a power law. Exponents are obtained

close to the experimental values. This implies that the lattice Boltzmann

method can handle the complex capillary-controlled displacement of multi-

component systems in real reservoir rocks. This new technique can be of

benefit to both Enhanced Oil Recovery (EOR) and Carbon Capture and

Storage (CCS) design.
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Figure 6.40.: Residual oil cluster distributions of experimental
measurements[4] (black squared dots) and LB simulation
results (red triangular dots) in Clashach sandstone.
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7. Solute/Heat transfer simulation

using the lattice Boltzmann

method

7.1. Introduction

Solute/heat dispersion in porous media is of great importance in many sci-

entific and engineering problems [134]. Although it is conceptually a simple

process, the macroscopic behaviour is complex and a rigorous theoretical de-

scription remains an outstanding scientific challenge [135]. Various numer-

ical methods have been proposed to investigate transport in porous media.

Network modelling has been widely used to simulate the dispersion in porous

media at the pore scale [136, 137, 138, 139]. However, for heterogeneous

porous media, such as carbonate rocks, it is very difficult to reliably extract

a network [140]. For this reason, direct calculation on three-dimensional

pore space images was proposed to avoid network extraction [46]. Coelho et

al. used a finite difference method to solve for the flow and dispersion in

unconsolidated beadpacks and sandstones and found good agreement with

experimental results [141]. By contrast, Adler and Thovert reported that

the agreement with experimental data for Vosges sandstone, using similar

methods, is not satisfactory [142]. Maier et al. used the lattice Boltzmann

method to solve for the flow combined with a random-walk particle-tracking

(PT) method to simulate dispersion in a pack of spheres. Comparison with

nuclear magnetic resonance (NMR) spectroscopy experiments show agree-

ment for transient, as well as asymptotic, dispersion rates [143]. Recently,

Scheven et al.[7] reported molecular displacement (or propagator) distribu-

tions for different rock samples obtained from Pulsed Field Gradient - Nu-

clear Magnetic Resonance (PFG-NMR) experiments [7, 144]. They showed

that the signature of the propagator distribution strongly depends on the
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heterogeneity of the porous medium. Bijeljic et al. [145] simulated solute

transport through pore space images of different rocks using a Stokes solver

for the flow field and a streamline-based algorithm for solute dispersion.

They observed qualitative agreement with the experimental NMR propa-

gator results as reported in [7]. Here we calculate, for the first time, both

the flow field and hydrodynamic dispersion from LB calculations. We con-

sider rock samples of increasing heterogeneity: a beadpack, a Bentheimer

sandstone and a Portland carbonate. The LB method has already been

shown to be a particularly efficient method for the calculation of flow fields

in complex geometries, such as porous media [104]. Here we extend the LB

method and develop a new algorithm to calculate molecular displacement

distributions directly from LB simulations. In this study, we obtain quanti-

tative agreement with the experimental distributions reported and explain

some outstanding questions in the experimental results [7].

7.2. Verification: Natural convection in a cavity

The natural convection within an enclosed cavity is studied using a thermal

LB method described in Chapter 3.11. The setup for the calculation is

shown in Figure 7.1. The top and bottom boundaries are adiabatic surfaces,

while the left and right surfaces are set to 30◦C and 10◦C respectively. The

initial temperature of the fluid inside was set as 20◦C which is the averaged

temperature between the hot and cold surfaces. The initial velocity was set

to 0 for everywhere. The Mach number1 and Prandtl number2 of the fluid

are 0.1 and 0.71 respectively. The simulations were tested with a range of

Rayleigh numbers: Ra = 103, 104, 105, 106, 107. The Rayleigh number is a

dimensionless number associated with buoyancy driven flow and measures

the strength of conduction and convection. When the Rayleigh number is

low, the heat transfer is in the form of conduction; when it is high, heat

transfer is mainly in the form of convection. It is defined by:

Ra = gβΔTH3/αν (7.1)

1The Mach number is a dimensionless quantity representing the ratio of speed of an
object moving through a fluid and the local speed of sound [146].

2The Prandtl number Pr is a dimensionless number; the ratio of momentum diffusivity
(kinematic viscosity) to thermal diffusivity [147].
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where ΔT is the temperature difference between the hot and cold surfaces,

H is the cavity dimensions, α is the thermal diffusivity and ν is the kinematic

viscosity. The mean and maximum local Nusselt number, which is the ratio

of heat transferred by convection to by conduction at the isothermal, vertical

boundaries, are calculated and compared to the benchmark solutions [148].

The following equation is used to compute the mean Nusselt number and

local Nusselt number:

Nu(x) =

∫ n

0
(PrRe · u1 − ∂T

∂x
)dy (7.2)

Nulocal = PrRe · u1 − ∂T

∂x
(7.3)

Figure 7.1.: Geometry of the cavity and initial setup of the simulation

7.2.1. Streamlines and Isotherms

Streamlines and isotherms are shown in Figure 7.2, 7.3, 7.4, 7.5, 7.6. These

images were found to be in good agreement with those by Hortmann and

Peric, de Vahl Davis [148, 149]. As can be seen in Figure 7.2, at Ra = 103,

the the temperature contours are nearly parallel to each other, which means

the dominant heat transfer mechanism is conduction. As the Ralyleigh num-

ber increases, the temperature field becomes flatter and stretches to the

centre of the cavity (Figure 7.2, 7.4, 7.5, 7.6). This is due to the increas-

ing buoyancy exerted on the hot fluid, and the heat transfer is becoming

convective dominant.

For the streamlines, a single vortex is found in the low Rayleigh number

simulation (Figure 7.2). As the Rayleigh number increases to 104, the vortex
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becomes elliptical and stretches towards the vertical boundaries (Figure

7.3). Two vortices can be found for Rayleigh number 105. These rotate in

a clockwise direction due to a small temperature gradient in the centre of

the cavity (Figure 7.4). As the Rayleigh number increases to 106, the flow

becomes more turbulent and a third vortex is formed in the centre. The

two vortices at either side are stretched and move to the boundary (Figure

7.5). If the Rayleigh number increases further to 107, the two vortices on

either side of the centre split into a large cortex and a smaller one. These

are located closer to the walls (Figure 7.6). All the results agree reasonably

well with the benchmark solutions [148, 149] .

Figure 7.2.: Left: Isotherm, Right: streamline; Ra=103

Figure 7.3.: Left: Isotherm, Right: streamline; Ra=104

Figure 7.4.: Left: Isotherm, Right: streamline; Ra=105
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Figure 7.5.: Left: Isotherm, Right: streamline; Ra=106

Figure 7.6.: Left: Isotherm, Right: streamline; Ra=107

7.2.2. The Nusselt Number

The calculated mean Nusselt numbers and maximum local Nusselt numbers

are shown with benchmark solutions [148, 149] in Table 7.1.

Table 7.1.: Calculated mean and maximum local Nusselt numbers and com-
parison to benchmark solutions.

Numean Numean Benchmark Numax Numax Benchmark
Ra 128x128 256x256 Solutions [148, 149] 128x128 256x256 Solutions [148, 149]

103 1.21121 1.11740 1.118 1.520 1.51552
104 2.25326 2.24259 2.24475 3.56168 3.53555 3.53087
105 4.53345 4.52653 4.52164 7.82336 7.77109 7.772013
106 8.73804 8.82444 8.82513 17.5789 17.7613 17.5360
107 15.7321 36.7223

The accuracy of the fine mesh (256x256) is found to be greater than 99.9%

for all cases whereas the accuracy of the coarse mesh (128x128) varies from

99.7% to 91.7%. The increased accuracy with the fine mesh is due to the

better resolution of the boundary layer. The accuracy can be further im-

proved by using a finer mesh near the boundary and a coarse mesh at the

rear part away from the boundary. This non-uniform mesh can guarantee
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a high accuracy without increasing the computational time and memory

usage [148].

The correlation for the mean Nusselt number and results obtained by

Markatos and Pericleous [5] are plotted in Figure 7.7. The correlation pro-

posed by Markatos and Pericleous can be summarised as:

For laminar flow (103 <= Ra <= 106) :

Nu = 0.143Ra0.299 (7.4)

For Turbulent flow (106 < Ra <= 1012):

Nu = 0.082Ra0.329 (7.5)

The present Nusselt number results suggest a correlation for laminar re-

gion as:

Nu = 0.146Ra0.297 (7.6)

This matches the benchmark solution well with a variation less than 0.6%.

As can be seen in Figure 7.7, the present work matches the benchmark

solution very well with a small variation between 0.3% to 1.4%.

Figure 7.7.: Nusselt number as a function of the Rayleigh number, simu-
lation results and benchmark solution given by Markatos and
Pericleous [5]
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7.3. Validation: Taylor Dispersion

The Taylor-Aris dispersion [150, 151] in a straight-walled channel under

Poisseuille flow is calculated using the thermal LB code. The geometry and

simulation setup is shown in Figure 7.8. The dispersion coefficient can be

calculated analytically as [152]:

D = Dm +
(2a)2v2

210Dm
(7.7)

where 2a is the width of the channel, v is the averaged velocity of the flow

and Dm is the molecular diffusion coefficient. The dispersion coefficient of

the flow can be calculated numerically by the equation [145]:

D =
1

2

dσ2

dt
(7.8)

where σ is the variance of the particle displacement. The calculated

dispersion coefficient as a function of channel width is plotted in Figure

7.9 along with the analytical solution. The simulation results match the

analytical solution well.

Figure 7.8.: Taylor dispersion (Figure from Sukop [6])
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8. Lattice Boltzmann simulation of

solute transport in reservoir

rocks 1

8.1. Introduction

Solute dispersion in porous media is of great importance in many scien-

tific and engineering problems [134]. Although it is conceptually a simple

process, the macroscopic behaviour is complex and a rigorous theoretical

description remains an outstanding scientific challenge [135]. Various nu-

merical methods have been proposed to investigate transport in porous

media. Network modelling has been widely used to simulate the disper-

sion in porous media at the pore scale [136, 137, 138, 139]. However, for

heterogeneous porous media, such as carbonate rocks, it is very difficult

to reliably extract a network [140]. For this reason, direct calculation on

three dimensional pore space images was proposed to avoid network ex-

traction [46]. Coelho et al. used a finite difference method to solve for

the flow and dispersion in unconsolidated bead packs and sandstones and

found good agreement with experimental results [141]. By contrast, Adler

and Thovert reported that the agreement with experimental data for Vos-

ges sandstone, using similar methods, is not satisfactory [142]. Maier et

al. used the lattice Boltzmann method to solve for the flow combined with

a random-walk particle-tracking (PT) method to simulate dispersion in a

pack of spheres. Comparison with nuclear magnetic resonance (NMR) spec-

troscopy experiments show agreement for transient, as well as asymptotic,

dispersion rates [143]. Recently, Scheven et al. reported molecular dis-

placement (or propagator) distributions for different rock samples obtained

from Pulsed Field Gradient - Nuclear Magnetic Resonance (PFG-NMR)

1This chapter has been submitted to Water Resource Research for possible publication
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experiments [7, 144]. They showed that the signature of the propagator

distribution strongly depends on the heterogeneity of the porous medium.

Bijeljic et al. [145] simulated solute transport through pore space images

of different rocks using a Stokes solver for the flow field and a streamline

based algorithm for solute dispersion. They observed qualitative agreement

with the experimental NMR propagator results as reported in [7]. Here we

calculate, for the first time, both the flow field and hydrodynamic dispersion

from LB calculations. We consider rock samples of increasing heterogeneity:

a bead pack, a Bentheimer sandstone and a Portland carbonate. The LB

method has already been shown to be a particularly efficient method for the

calculation of flow fields in complex geometries, such as porous media [104].

Here we extend the LB method and develop a new algorithm to calculate

molecular displacement distributions directly from LB simulations. This

new scheme need only small modification on the existing solute dispersion

LB code to track particles displacement in porous media. In this study, we

obtain quantitative agreement with the experimental distributions reported

and explain some outstanding questions in the experimental results [7].

8.2. Methodology

We solve the steady viscous flow in porous media using a Multi-Relaxation-

Time (MRT) D3Q19 lattice Boltzmann (LB) method [31, 32]. The MRT

scheme and was reported to have significantly improved numerical stability

compared with the single relaxation time LB model [33] and to eliminate

the unfavourable viscosity dependency of computed velocity on relaxation

time [44]. The optimzied relaxation parameters in this MRT scheme were

equivalent to the two-relaxation-time (TRT) scheme which is much sim-

pler and efficient for flow calculation in porous media [153, 154]. To solve

the solute dispersion, we treat the solute as a passive scalar for which the

advection-diffusion is simulated by a second distribution function, corre-

sponding closely to the normal fluid distribution function, except with a

simpler equilibrium distribution [6]. It has been shown that solute concen-

tration are readily exchanged in this algorithm [6]. In order to solve the

convection-diffusion equation (adiabatic, without source term):

∂φ

∂t
+

∂

∂xj
(viφ) =

∂

∂xi
(Dij

∂φ

∂xj
), (8.1)
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where φ is the concentration of solute andDij is the molecular diffusion coef-

ficient, the concentration and diffusion coefficient are analogues to fluid den-

sity and viscosity respectively [6]. The simulation of solute dispersion does

not require all the 19 velocities in the D319 model. Instead, only 6 perpen-

dicular velocities are adequate for 3D simulations [155, 54]. This simplified

single relaxation time D3Q7 solute dispersion model significantly reduces

the memory and computing cost and makes it a very efficient method. Sim-

ilar to lattice Boltzmann method for flow calculation, the phase space and

velocities of solute lattice Boltzmann model are discretized by a regular lat-

tice in three dimensions. In this D3Q7 solute LB model [156], the discrete

velocity is defined as: ei = (0, 0, 0), (±1, 0, 0), (0,±1, 0), (0, 0,±1), (i =

0, 1, 2, 3, 4, 5, 6). The evolution of the set of solute distribution functions

gα(x, t), α = 0, 1, . . . , 6 is given as below:

gα(x+ eαδt, t+ δt)− gα(x, t) = −M−1S(mα(x, t)−meq
α (x, t)), (8.2)

where the equilibrium moments are defined as:

meq = (0, v1φ, v2φ, v3φ, 3/4φ, 0, 0)
T . (8.3)

The macroscopic solute concentration φ is obtained with φ =
∑α=6

α=0 gα. The

transformation matrix M and the relaxation matrix S are given as:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1
6 −1 −1 −1 −1 −1 −1
0 2 2 −1 −1 −1 −1
0 0 0 1 1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.4)
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S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ0 0 0 0 0 0 0

0 τ11 τ12 τ13 0 0 0

0 τ21 τ22 τ23 0 0 0

0 τ31 τ32 τ33 0 0 0

0 0 0 0 τ4 0 0

0 0 0 0 0 τ5 0

0 0 0 0 0 0 τ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.5)

τ0 in the relaxation matrix S has no affection on the numerical solution,

τ4, τ5, τ6 does not affect the leading-order approximation but affect error

term, τi were set as τi = 1, (i = 0, 4, 5, 6) in this study. The diffusion

coefficient matrix is selected as:

τij =
1

2
δij + 4Dij , (8.6)

δij is the Kronecker’s delta. Asymptotic analysis showed that this so-

lute LB model is second-order accurate in space and first-order accurate

in time [157].

The parameters selected can recover the convection diffusion equation

8.1 [157, 156]:

Table 8.1.: Petrophysical parameters

Sample size (in pixels) Resolution porosity permeability

Beadpack 512x256x256 5.0μm 0.357 2624.53 mD
Bentheimer sandstone 512x256x256 4.9μm 0.23427 4755 mD
Portland carbonate 640x320x320 9.0μm 0.0917 355mD

The 3D images of the samples were obtained by using micro-CT scanning

of dry cylindrical cores at different resolutions (Table 8.1). The raw pic-

tures were filtered using a 3x3 median filter and then segmented according

to Otsu’s algorithm [158]. We mirror the geometry of the porous media

in the flow direction in order to apply periodic boundary conditions for

both flow calculation and solute dispersion simulation. The sizes, resolu-

tions and petrophysical parameters of the sample is given in Table 8.1. The

permeability and porosity of the sample in different sizes were investigated

in order to find the representative element volume (REV) which is a vol-
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ume big enough to represent the macroscopic property of the core but small

enough for direct numerical simulation. A constant body force term [58] was

used to generate the desired pressure gradient [73]. Several optimisations

strategies were used to improve the efficiency of the code. The data stor-

age is optimised by using a sparse storage technique which only stores the

fluid mesh points. This reduces the memory usage and data reading/writ-

ing by 70%-80%, depending on the porosity of the sample. The collision

and streaming steps were combined into a single loop and a balanced do-

main decomposition scheme was implemented for MPI parallel computing.

This solute dispersion lattice Boltzmann method has been validated using

several test cases for which the analytical solutions are available. These

include Taylor-Aris dispersion, natural convection flow in a square cavity

and Rayleigh-Bérnard convection [6, 102].

In order to probe the molecular displacements in pre-calculated Stokes

flow through porous media, we have developed a novel scheme to set up

the simulation. First of all, the velocity field is calculated by a single phase

MRT-LBM code. It is worth noticing that to maintain the stability and ac-

curacy of the single phase LB simulation, the maximum local Mach number

need to less than 0.05, which can be controlled by using appropriate body

force/pressure gradient applied on the fluid. Because the reaction is not

considered in this study, this velocities are to be used in solute dispersion

calculation as constants. Therefore, in the solute dispersion calculation, the

velocity and pressure field is not needed to be solved, only the convection-

diffusion equation (Equation 8.1) is solved, which can improve the overall

efficiency of the simulation. As the LB-based solute dispersion model is only

able to solve the concentration change of solute in the sample, we cannot

track the displacement of the propagators explicitly. To solve this problem,

we initialise the concentration of solute φσi
(x), where x is the coordinate of

x axis, as follows:

φσi
(x) =

⎧⎨
⎩1, if x = i

0, if x 	= i
(8.7)

where φσi
(x) is the concentration of solute σi and x is the coordinate in

the flow direction. This scenario is equivalent to injecting all the propagators
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at the same position x = i in the flow direction. The solute concentration is

simulated by solving the advection-diffusion equation using the lattice Boltz-

mann method. If the solute concentration φσi
(x′) at position x′ is found to

be larger than zero, this indicates that a portion φσi
(x′) of the propagators

has been displaced to x′. The displacement of these propagators can easily

be calculated as x′−i (where i is the initial position for all the propagators).

However, this is slightly different from the NMR experimental setup [7] in

which the tracking particles were distributed uniformly across the whole

sample. To solve this problem, we add component σ1, σ2, . . . to simulate

molecules starting from different positions x = 1, 2, . . . . This configuration

is consistent with the NMR experiments [7]. This configuration is equiva-

lent to conducting several solute dispersion LB simulations (in this study,

we solve 100 solute dispersion equations), but we solve convection-diffusion

equations of φσi
within a single simulation which can save time on data

reading and processing. Although this setup needs more memory compared

to the conventional solute dispersion LB calculation, the calculation is very

efficient, provided the code is carefully optimised using the D3Q7 LB model.

The Péclet number Pe = LU
D is set to around 15, where L is the character-

istic length chosen as resolution, U is the volumetric averaged velocity and

D is the molecular diffusion coefficient. This is consistent with the NMR

experiments, for all the simulations, by modifying the mean velocity and

molecular diffusivity. For LB based dispersion calculation, we found that

the Péclet number is related with the stability of simulation, high Péclet

number (Pe>100) significantly affect the stability of simulation. Therefore,

we use relatively low Péclet number for all simulations.

8.3. Results

We first simulate diffusion in the pore space of a bead pack and find a re-

stricted diffusion coefficient Dr = σ2/2Δt = 0.63 ∗Dm, where Δt is the dif-

fusion time, Dm is the molecular diffusion coefficient and σ2 = 〈(ζ−〈ζ〉)2〉 is
the variance of the molecular displacement distribution P (ζ) [7]. This agrees

with the expected value [159] and supports our simulation approach. We

show the geometries of the bead pack, Bentheimer sandstone and Portland

carbonate, obtained from micro-CT scanning in Figure 8.1. The correspond-

ing LB velocity distributions are also shown in the same figure. We observe
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that the degree of heterogeneity of the velocity distributions increases from

bead pack to Portland carbonate. In the bead pack, the distribution of pore

widths is quite narrow and the velocity distribution is generally uniform;

for sandstone, we observe significant differences in the flow rate for different

channels or pores; for the carbonate, most of the flow is concentrated in a

few large pores.

Figure 8.1.: Pore space images (left: pore is green, solid is blue) and veloc-
ity distributions (right) of porous media with increasing hetero-
geneity: 1) bead pack; 2) Bentheimer sandstone; 3) Portland
carbonate. Resolutions are 5μm, 4.9μm and 9μm respectively.
Regarding the velocity distributions, red and blue indicate high
and low velocities respectively.

We study transport in the porous media by calculating the probability

distributions for molecular displacement from the lattice Boltzmann simula-

tions. The simulation results for the three different porous media are shown

in Figure 8.2 in direct comparison with the experimental results [7]. The

probability distribution P (ζ) is rescaled into a non-dimensionalised form as

P (ζ)×〈ζ〉0, where 〈ζ〉0 = vaveΔt is the nominal mean (Darcy) displacement

and vave is the Darcy velocity. The displacement ζ is rescaled to ζ/〈ζ〉0. In
the bead pack (top in Figure 8.2), we observe that the simulation results
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match the experimental data very well. A Gaussian distribution centred

around the mean displacement is observed, according to expectation. From

the results we conclude that all solute is displaced from the initial positions

in the bead pack.

Figure 8.2.: Probability of molecular displacement in different porous media:
bead pack (left), Bentheimer Sandstone (middle) and Portland
Carbonate (right) for time t = 0.25s, 0.5s and 1.0s (from top
to bottom) as a function of rescaled displacement. Simulation
results (red) are compared with NMR experimental data (blue)
from Scheven et al. [7]. The Péclect number is Pe=18 in the
LB simulations.

In the Bentheimer Sandstone (middle in Figure 8.2), the simulation re-

sults generally agree well with the experimental data, except for a small

deviation near the peak of the Gaussian distribution centred around the

mean displacement ζ/〈ζ〉0 = 1. In addition to the Gaussian distribution

around the mean displacement, a stagnant peak is found near ζ/〈ζ〉0 = 0.

This indicates that a portion of the solute is trapped in slowly or non-flowing
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regions, related to the heterogeneous geometry. Although the general dis-

tribution of probability of displacement match the experimental data well,

the probability of displacement were found oscillating near the mean dis-

placement, this might be due to the insufficient of initial solute pules, this

initialization helps to save the computing source but only take into account

part of the geometry initially whereas the experiments distribute the parti-

cle tracers uniformly across the sample. In the Portland carbonate (bottom

in Figure 8.2), the simulation successfully predicts the displacement of the

solute. The Gaussian distribution around the mean displacement is reduced

significantly whereas the magnitude of the stagnant peak has grown. This

means that more solute is trapped in slowly or non-flowing parts of the pore

space. It is worth mentioning that the calculated displacement distributions

for both Bentheimer sandstone and Portland carbonate show slightly big-

ger values than the experimental data for negative displacement regions

ζ/〈ζ〉 < 0. To investigate the reason for this deviation, we plot the ratio

of measured mean displacement divided by the nominal mean displacement

θ = 〈ζ〉/〈ζ〉0 as a function of evolution time (Figure 8.3) for all three rock

samples. All the simulation results converge to 1, as expected, although

a small deviation of 3% − 5% for Bentheimer sandstone and Portland car-

bonate is observed. From the figure, we can see that the ratio 〈ζ〉/〈ζ〉0 of

Bentheimer sandstone decrease with time from a value of 3.3 whereas the

Portland carbonate increases with time from a value of 0.76. These devia-

tions from unity in early times are due to the different initial locations of

the solute, in Bentheimer sandstone simulation, the solute were placed in a

region with relative high velocity such as areas with well connected pores

and throats while in Portland carbonate, the solute were initially put on

areas with pores or throats with low velocities. As the solute displace and

disperse with external flow, it spread to the whole sample, the ratio 〈ζ〉/〈ζ〉0
therefore eventually converge to 1. To investigate the deviation at early time

region (t < 0.5s), we place the solute at different regions, we found that the

initial value of ratio 〈ζ〉/〈ζ〉0 varies from 0.5 to 4, but after enough time, all

converge to the same value which is close to 1. This is an evidence that the

deviations at early time are caused by initial condition, but will not affect

the final calculation results. In the NMR experiments, on the other hand, a

significant deviation of 〈ζ〉/〈ζ〉0 from unity (up to 1.20−1.35) was observed

for the sandstone and carbonate. Scheven et al. [7] suggest that this may be
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caused by surface relaxation effects, which lead to undercounts of stagnant

spins from the measurement. Our calculations do not suffer from surface

relaxation effects and therefore no undercount of stagnant spins is to be ex-

pected. Indeed, our stagnant peaks are wider than the experimental ones,

particularly in the negative displacement region. In addition, we observe

that the detailed agreement between simulation and experiment is better

for the beadpack than for the Portland carbonate. The reason is that our

computational domain is fixed (sample size = 5mm x 2.5mm x 2.5mm ),

whereas the Representative Element of Volume (REV) presumably increases

with increasing complexity. This issue will be evaluated in a forthcoming

paper.
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Figure 8.3.: Ratio of measured displacement 〈ζ〉 and nominal mean displace-
ment 〈ζ〉0 as a function of evolution time Δt for the beadpack,
Bentheimer sandstone and Portland carbonate

To quantify the capability of solute trapping of different rocks, we cal-

culate the percentage of solute with displacement less than 0.05 × 〈ζ〉0 as

a function of time. The results are shown in Figure 8.4. As we can see in

the figure, the concentration of slowly or non-flowing solute decreases with

time and finally all the curves converge to a constant value. This means

that this solute fraction can not be displaced by the flow and is trapped in

the pores. No trapped solute is found in bead pack; the volume of trapped

solute decreases to zero as all solute can be displaced by flow. A frac-

tion of 1.49% solute is observed to be trapped in Bentheimer sandstone,

increasing to 8.13% in Portland carbonate. This analysis suggests that the
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solute trapping increases with an increasing degree of heterogeneity. Here

we postulate the fraction of trapped solute as a new quantitative measure

of heterogeneity. It is also worth noting that the convergence time (slope <

0.01) of beadpack, Bentheimer sandstone and Portland carbonate increases

from 0.86s to 1.67s and 1.81s. This suggests that the convergence time

of solute transport in porous media (in terms of trapped solute in pores)

increases with an increasing degree of heterogeneity.
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Figure 8.4.: Percentage of solute trapped in pores. The red solid line, blue
dashed line and black dash-dotted line show the percentage of
solute for which the displacement is less than 5% of the mean
nominal displacement. The data is plotted as a function of time
[seconds].

8.4. Summary

We use a lattice Boltzmann-based simulation to study flow and transport

in three-dimensional realistic rock samples: a bead pack, Bentheimer sand-

stone and Portland carbonate. We develop a new algorithm based on the

LB method to calculate both the flow field and solute transport in porous

media. We compute the flow and displacement probability distributions for

all porous media and observe good agreement with NMR experiments. We

observe that the magnitude of the flowing Gaussian distribution reduces

and the stagnant peak increases, as the degree of heterogeneity increases.
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We quantitatively measure the trapping capability of three rock samples of

increasing heterogeneity: the homogeneous beadpack does not trap any so-

lute, while the Bentheimer sandstone and Portland carbonate retain 1.49%

and 8.13% of solute, respectively, in stagnant pores. The experimental sur-

face relaxation problem, leading to an undercount of stagnant spins, as

found in the NMR experiments, is removed using the lattice Boltzmann

simulations. The ratio of measured and nominal mean displacements of the

lattice Boltzmann prediction converges to 1 for all the cases as expected.

Compared to existing transport simulation tools such as streamline-based

algorithms, the lattice Boltzmann-based method is easy to implement and

handles the problem in an efficient way with very good accuracy. This

method can be widely used to study transport problems in porous media,

with applications in hydrology, chemical engineering, carbon storage and

enhanced oil recovery.
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9. Lattice Boltzmann Method

Implementation

9.1. Introduction

A C++ code package was developed to carry out LBM simulations in 2D

and 3D. An MRT scheme was used in the collision step to improve the

numerical stability and eliminate the viscosity dependence of permeability

calculation. Two separated versions of the code have been developed to

simulate single phase and binary fluids system respectively. Several subrou-

tines have been developed to compute the permeability, export simulation

results in VTK format for 3D visualisation, refine the mesh and calculate

the Reynolds number. The capability of this code package for single phase

flow simulations (2D and 3D) can be summarised as:

• Simulate high Reynolds number flow (Re < 2000, Karman Street Sim-

ulation)

• Simulate low Reynolds number flow with complex geometry

• Calculate permeability of porous media

• Refine the mesh

In order to simulate the flow of a binary fluids system, interfacial be-

haviours and wetting, three multi-component LBM models including the

Shan-Chen pseudo potential model, the Colour Gradient Model, and the

Free Energy Model were studied and implemented. Their performances

were compared with theoretical predictions by numerical experiments. The

multi-component LBM code package is able to simulate:

• Interface evolution with surface tension and wettability
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• Binary fluids with different viscosity

• Binary fluids system with complex geometry

• Snap-off phenomena

• Capillary fingering

• Capillary pressure prediction

• Relative permeability prediction

• Initial-residual saturation prediction

• Residual saturation cluster size distribution prediction

9.2. Parallel LBM implementation

The LBM simulator is able to simulate various degrees of complex flow with

extremely complicated boundaries. However, it is very time-consuming,

especially for multiphase calculation, even with modern computers. The

efficiency of LB calculation is crucial if the simulation is to be used for

real industrial applications. In order to reduce the calculation time to a

reasonably low level for realistic applications, careful optimisation is de-

sired for algorithm implementation. In this chapter, introduction of parallel

computing and three principal optimisation techniques used in LB code im-

plementation are described. According to the features of reservoir rocks,

three optimisation schemes are proposed:

• Sparse storage scheme to reduce the memory and CPU usage

• Parallel implementation of LB algorithms

• Local operation optimisations

9.2.1. Sparse storage scheme for LB simulations

Reservoir rock, as one type of porous media, is a material containing pores.

The porosity, which is the fraction of the volume of voids over the total

volume, varies from 2% to 40% [160]. The skeletal portion of the material,

which is often called the matrix, is not involved in flow calculation (except
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the fluid-solid surfaces). It forms 60%-90% of the sample volume, occupies

most of the memory and computing resources and therefore leads to poor

performance. In order to give these memory and computing resources to

fluids nodes, the layout of data needs to be redesigned to reduce the memory

requirements. Several studies were carried out on sparse storage schemes for

LB simulations: the normal 3D arrays storing the data on cartesian coordi-

nates are mapped to a continuous 1D array which only contains the data of

fluid nodes. The neighbouring nodes information which is natural for the

Cartesian coordinates system needs a separate 1D array to store [161, 162].

In this study, a compressed storage scheme for neighbouring nodes is used

to minimise the extra memory usage.

We use a 2D porous medium with Cartesian coordinates as an example to

describe the sparse scheme used in LB implementation. The extension to 3D

geometries is straightforward. We consider a 2D porous medium in Figure

9.1, the colour black represents the matrix while the white represents the

pores. The pore nodes are mapped into a 1D array S[i] and the coordinates

(i,j) are renumbered into an index from 0, Figure 9.2. The information

of the the mapping procedure from a 2D coordinates system to 1D sparse

storage array is saved in one 2D geometry array G[i, j] and one 1D index

array R[i], Figure 9.3. These two arrays aim to convert the sparse index

in 1D storage arrays to 2D coordinates and from 2D coordinates to 1D

sparse storage. The 2D geometry array G[i, j] is originally used to save the

pore/solid information, and is added to the mapping information as: 0 for

matrix nodes, i > 1 is the index of fluid nodes in the sparse 1D array. With

this 2D geometry array, we can not only identify the solid surfaces but also

easily convert the 2D coordinates (i, j) to the index of the fluids nodes in

the 1D sparse array (Figure 9.2). It’s easy to map from 2D to 1D, but 1D to

2D needs more careful consideration. A separate 1D array R[i] is applied to

store the mapping information from the 1D sparse array to 3D coordinates.

It is defined as follows: if a fluid node on (i, j) is mapped to the 1D sparse

array at location s, then R[s] = i∗ny+j (in 3D R[s] = i∗ny∗nz+j∗nz+k)
where nx, ny, nz is the size of the sample in x,y,z direction. For any index s

in the 1D sparse array, to recover the Cartesian coordinates of this node, a

simple calculation is carried out: i = int(R[s]/ny) and j = R[s]%ny. This

definition compresses the two coordinates (i, j) (three (i, j, k) in 3D cases)
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into a single integral number which saves half or more of the memory usage

on neighbouring information storage. With G[i, j] and R[s], we can easily

convert the index in the normal Cartesian coordinate system and the sparse

system.

Figure 9.1.: Sample 2D porous medium

Figure 9.2.: Mapping from 2D porous medium (top, G[i, j]) to 1D sparse
array (bottom, S[i])
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Figure 9.3.: Mapping information from 1D sparse array (R[s]) to 2D porous
medium. R[s] stores the compressed coordinates (i,j) which is
used to map the 1D sparse array to its original coordinates in
the 2D geometry.

9.2.2. Parallel implementation

In LB simulation, most of the operations are local, and therefore it is ideal

for parallel computing. In the last 20 years, parallel machines and libraries

have become widely available. These technologies make larger scale sim-

ulations possible. Several studies have been carried out to investigate the

efficiency of the parallel lattice Boltzmann method. Skordos [161] compared

two parallel CFD methods: finite differential method and the lattice Boltz-

mann method. An equal partition strategy was used in this study. He

investigated the relationship between problem sizes, size of each partition,

number of partitions and the performance of the code. A 50% level of effi-

ciency is obtained if the number of processors is more than 15. Martys et al.

[162] implemented a parallel multi-phase lattice Boltzmann code to simulate

multiphase flows. A speedup slightly lower than linear was achieved.

The principal parallel machine/technology can be categorised into two

groups: shared-memory machines and distributed memory machines. The

shared-memory machines (Figure 9.4(a)) have multiple processors but all

the processors share a single memory. As all the machines share one mem-

ory and BUS, the communication efficiency between processors is very high.

However, it is very expensive to build a very large shared-memory machine.

The distributed machine (Figure 9.4(b)) has multiple processors with inde-

pendent memory, the communication between processors is carried out by

an external network. The external network limits the latency and band-

width of memory which might lead to poor performance of parallel com-

puting. However, it is relatively easier and cheaper to build a large scale

distributed-memory machine than a shared-memory machine. In this study,
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we use a distributed-memory machine to accelerate the simulation. The op-

timised code is tested on a Viglen HPC system which consists of several

HX525BTi Twin Blades which contain two Intel Xeon E5-2650 (Six Core

2.0GHz) Processors, 64GB of memory and the blades are connected by a

QDR Infiniband Mezzanine network.

Figure 9.4.: Two typical parallel machines: (a) a shared-memory machine
and (b) a distributed-memory machine [2]

Several parallel interfaces are available to implement parallel computing

code, including MPI (Message Passing Interface), PVM (Parallel Virtual

Machine), and HPF (High Performance Fortran). MPI is used in our parallel

implementation mainly due to two reasons:

1. MPI has been developed for 20 years and is considered as a standard.

2. It is highly compatible with different types of machines which ensures

the portability of the code.

To implement a parallel LB code, the computational domain is divided

equally into several partitions in x direction. This is shown in Figure (9.5).

Particles distribution functions (PDFs) from different partitions are illus-

trated with different colours. The PDFs in the dotted line area will stream

to the adjacent nodes and therefore need to communicate with PDFs that

are stored in another processor. An MPI subroutine is developed to ex-

change values for PDFs in this area.

There are two types of communication subroutines in MPI: blocking and

non-blocking communication. Blocking communication (MPI Send() and
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MPI Recv()) does not return (blocked) until the communication is finished.

Receiving functions (MPI Recv() etc.) returns when the receive buffer has

been filled with valid data.

In contrast, non-blocking communication (MPI Isend() and MPI Irecv())

returns immediately (not blocked) even if the communication is not finished

yet. MPI Wait() or MPI Probe() must be called to confirm the completion

of communication. The blocking communication is easier to use but it

blocks the processors when the communication is carried out which leads

to unnecessary CPU idles. On the other hand, non-blocking functions al-

low overlapping of computation and communication which can generally

improve computing performance.

Partition IIPartition I Partition III

Communications

x

y

Figure 9.5.: Schematic diagram of partition geometry

In the existing implementation, the partition is only carried out in X

direction but with load balance consideration. The workload between sub-

domains is minimised to achieve a balanced partition. The computing kernel

implementation of single phase parallel LB can be summarised as:

• Local operation: collision term calculation

• Local operation: streaming to neighbouring nodes

• MPI operation: boundary nodes communications
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• Local operation: distribution function update, macroscopic quantities

calculation

Another potential efficient implementation of LB is using graphical pro-

cessing units (GPUs). A GPU is specifically designed to be extremely fast

at processing floating point operations, it can provide equivalent computing

power to a small supercomputer since a larger portion of their transistors

are used for floating-point arithmetic and it has a higher memory band-

width than CPUs [163]. However it suffers several disadvantages. First of

all, the code portability is poor compared to CPU code, the code should be

implemented and optimised for a certain GPU structure, an update on the

hardware requires corresponding updates of source code. This makes the

code maintenance expensive. What’s more, the memory of GPU is currently

limited to 8GB, which is a relatively small value for realistic porous medium

flow calculations. Although the hybrid GPU/CPU technology can overcome

this shortage by using multi GPUs, the bandwidths between CPUs/GPUs

limit further efficiency improvements.

9.2.3. Local operation optimisations

To fully explore how the code performs at the macro scale and investigate

the efficiency of the LB code, it was profiled using a profiling tool, GNU

profiler. The GNU profiler is able to produce accurate information on the

time spent on every line of our code, it helps to find the functions on which

the program is spending most of its execution time. Then bottleneck func-

tions, which are called most frequently or use most execution time, should

be optimised. The profiler helps developers to understand their code better

and achieve a more targeted optimisation.

The LB code package was profiled and analysed carefully to target the

bottleneck of the code. The profiling showed that the MPI operations use

only between 7% − 15% execution time, whereas the matrix operations in

the Multi-Relaxation-Time scheme use more than 30% computing time.

This was identified as one of the bottlenecks of the code. According to the

profiling report, the transformation matrix M and its inverse M−1 were

found to be the cause of the low efficiency. In normal LB implementation,

M and M−1 are defined in the initialisation part, and stored in arrays. In

154



the collision step, the transformation matrix value is called very frequently

in the equation to calculate the collision term Ω:

Ω =M−1S((Mf)−Meq) (9.1)

The frequent calling for values of arrays M , M−1 and distribution func-

tion values f lead to massive movement of pointers between each other

which significantly slows down the computing speed. The movement of

pointers should be reduced to minimise the time spent on memory reading.

Therefore, the value of matrixM andM−1 should be given explicitly in the

code to avoid frequent pointer movement. It is easy to explicitly give M

values, but difficult for M−1. Because the structure of a modern computer

is based on a binary system, the decimal format input for M−1 is not accu-

rate enough for LB simulation and will cause numerical instability. Instead,

a hexadecimal (hex) format of M−1 can be used to explicitly input array

values. Numerical tests showed that this local operation optimisation can

reduce 40% of the computing time which significantly improves the code

performance.

9.2.4. Scaling test and results

The opimised parallel LB code is applied to study single phase flow in

Bentheimer sandstone, the image of which is obtained by x-ray microto-

mography scanning with a resolution of 4.9μm. The size of the sample is

1024x512x512. The calculation time is recorded for the scaling test. Parallel

computing performance can be evaluated using Speedup (Sp):

Sp =
t1
tp

(9.2)

where t1 is the calculation time on a single processor, tp is the calculation

time on p processors. The efficiency Ep is defined as:

Ep =
Sp
p

(9.3)

Under ideal conditions, the speedup and efficiency will be p and 1 re-

spectively. The simulation tests were carried out on a Viglen HPC cluster,

the detailed configuration of the machine was given at the beginning of this

chapter. Figure 9.6 shows the calculation time for LB simulations. The
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computing time decreases as the number of processors increases. Figure 9.7

and Figure 9.8 show the speedup and efficiency results. We observe very

good scaling performance in the figure, as the speedup is very close to the

ideal value if the number of processors is below 120. It means that the code

can benefit from the increase of processor numbers on performance improve-

ment. The speedup and efficiency are slightly lower than the ideal value for

more than 120 processors. The decrease in speedup and efficiency is caused

by the simple partition scheme. The simple bisectional partition scheme is

used in the existing implementation. It only optimises the workload of pro-

cessors, while the MPI communication load (number of nodes which need

to communicate with other processors) is not taken into account in the bi-

sectional partition scheme. A more robust partition scheme, such as the

graph partitioning method can be used to further improve the parallel per-

formance. This not only balances the workload of each processor but also

minimises the communication load [164, 165, 166].
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10. Conclusions and outlook

This PhD project has presented an optimised parallel numerical tool based

on the lattice Boltzmann method for complex fluid flow simulation in porous

media. A C/C++/MPI code package has been developed to simulate single

phase flow, multiphase flow and thermal/solute dispersion in porous media.

The representation of the porous medium is taken by x-ray microtomogra-

phy scanning at voxel sizes of several microns. The code has been highly

optimised in order to simulate large computing scale reservoir rock samples

(sample size >1024x512x512). In this chapter, the contribution of this PhD

project will be summarised and then followed by a brief discussion of the

drawbacks of the model and outlook on future work.

10.1. Conclusions

This thesis presents a lattice Boltzmann model to solve pore scale complex

flow in porous media. The description of the models, validations, numerical

experiments on reservoir rocks and novel optimisation schemes have been

presented.

The first part (Chapter 3.90-2) briefly introduced the background of this

project, the importance of the study of pore scale flow and the development

of numerical techniques for pore scale simulation.

The second part (Chapter 3) discussed in detail the algorithm of the lat-

tice Boltzmann method, a brief study on boundary conditions was carried

out to compare different boundary conditions in terms of accuracy, and the

compatibility for porous medium flow calculations. A Multi-Relaxation-

Time (MRT) collision scheme was introduced to improve the accuracy and

stability of the simulation. The three most used multiphase/multi-component

lattice Boltzmann methods and a thermal/solute dispersion lattice Boltz-
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mann method were also discussed. Lastly, the recovery of macroscopic con-

trol equations was given showing the connection between the lattice Boltz-

mann method and Navier-Stokes equations.

The third part (Chapter 4) includes extensive validation examples, fol-

lowed by numerical experiments to predict the transport properties of single

phase flow in different types of reservoir rock samples:

• Validation tests have been carried out including channel flow, and fi-

brous porous media permeability prediction. The calculation results

have been compared to analytical solutions and showed good agree-

ment.

• Various boundary conditions used for permeability prediction calcula-

tion of porous media have been studied, the results were analysed and

the most reliable boundary condition for porous media permeability

calculation has been suggested.

• A systematic study of the effect of system size has been carried out.

I find that, as the system size of the computational sub-sample in-

creases, the values of the permeability measurements as a function of

porosity tend to concentrate in a narrower region of the porosity.

In the fourth part (Chapter 6), multiphase/multi-component flow is stud-

ied extensively by validation examples and numerical experiments on micro-

models and reservoir rock samples. The most relevant conclusions are:

• Various validation simulations have been performed including calcula-

tion of capillary pressure, and relative permeability. The results have

been compared to analytical solutions and showed good agreement.

• A comparison study of three different multi-component Lattice Boltz-

mann models was carried out to explore their capability of describing

binary immiscible fluid systems in porous media. Poiseuille flow of

layered immiscible binary fluids and capillary fingering phenomena

were investigated and the results were evaluated against analytical

solutions. In addition, the capability of the various models to simu-

late fluids with significant viscosity and density contrast and suitable

159



interface thickness was systematically studied. The Colour Gradient

model is found the most efficient model for binary immiscible flow in

porous media due to its thin interfaces, capability for high viscosity

ratio and high level of numerical stability.

• The spontaneous imbibition of a decane/air system in two sets of

micro-models with increasing complexity: single junction models with

equal, unequal arms and a pore structure based on actual Berea sand-

stone were studied. The simulation results were compared to corre-

sponding micro fluidic experiments. The simulations were successfully

validated against the micro-fluidic experiments on the displacement

processes of imbibition and primary drainage.

• The relative permeability of realistic reservoir rock samples was stud-

ied. Two relative permeability prediction schemes were introduced

and compared to available experimental data. The simulation results

were generally in good agreement with the experimental data. How-

ever, some small discrepancies of non-wetting phase relative perme-

ability were found in the imbibition cycle. These discrepancies might

be caused by limited mesh resolution. The accuracy can be improved

by using a finer resolution which will, however, increase the computing

time significantly.

• Residual cluster sizes in porous medium, caused by capillary trapping,

were studied using a multi-component lattice Boltzmann method. The

simulations were carried out to simulate the generation of non-wetting

residual clusters. The shape was analysed and the size distribution was

calculated and compared to corresponding experimental data. The

simulation generally agrees with the experimental findings although

parts of very small and large residual clusters were not captured due

to the limited resolution of the mesh.

Chapter 7 looked at solute/heat transfer diffusivity in porous media us-

ing the lattice Boltzmann method. The method was firstly validated by

convection-diffusion flow in a cavity and the simulation results were com-

pared to experimental data. Then flow and solute transport were simulated

directly on pore space images of rock cores with an increasing degree of

heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate.
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A novel scheme is proposed to predict probability distributions for molecu-

lar displacements using the lattice Boltzmann method to calculate both the

flow field and solute dispersion. The results were compared directly with

NMR experimental data for molecular displacements and excellent agree-

ment was found. The fraction of solute particles trapped by integrating over

the stagnant peak were calculated to quantify the degree of heterogeneity.

In the last part of the thesis (Chapter 9), issues of computing were ad-

dressed. A special sparse storage method was designed for porous media,

parallel operation and local collision optimisations were introduced, and a

scaling test was carried out to analyse the efficiency of the algorithm. In

general, the optimised lattice Boltzmann implementation has a very good

efficiency, as close to ideal scalability was observed. However, the efficiency

decreases after 120 CPUs, which is caused by the application of a simple bi-

sectional partition scheme. The graph partitioning method [165, 166] which

not only minimises the local workload but also minimises the communica-

tion load is suggested for future implementation.

10.2. Outlook and future work

The present work can be applied to study reaction in porous media, for

example by adding a random walk particle tracking module based on the

random walk method. The lattice Boltzmann method calculates the flow

field and the random walk module accounts for the convection and disper-

sion. A proper reaction model might enable the simulation to predict the

precipitation and dissolution in porous media which is of great importance

for both carbon storage and the oil and gas industry.

The present model is not of high efficiency for multiphase flow calcula-

tion in porous media, which is caused by limited mesh resolution near small

pores and throats. These small pores and throats also lead to high capillary

pressure and high spurious velocity which significantly slow down the sim-

ulation and affect the numerical stability. Adaptive mesh refinement may

be one solution for these problems. The location of droplets interfaces are

identified and the local mesh refinement is carried out near interfaces. The

fine mesh for multiphase simulation can significantly reduce the spurious
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velocity and improve the numerical stability [167]. However this adaptive

scheme will be an expensive scheme, the positioning of the droplets inter-

faces and local refinement need complex algorithms and also increase the

MPI parallel operation workload.

Another possible solution is developing an algorithm that can predict the

drainage and imbibition without solving the full multiphase flow problem.

The new algorithm should only account for the local capillary pressure and

the local velocity should not be taken into account. The velocity field from

a single phase calculation can be used to approximate the local velocity in

capillary pressure simulation. A proper method need to be developed to

predict the local velocity using the reference velocity in single phase cal-

culation. This scheme avoid the velocity field update which is the most

expensive computing part in capillary pressure measurement. Therefore it

should be a ideal method for the capillary pressure prediction for realistic

reservoir rocks.

In terms of the implementation, the graph partitioning method is sug-

gested for future implementation. This scheme sets the boundaries at the

throats which not only minimises the computing workload of the cores but

also minimises the communication load. This is of significant importance

for the parallel efficiency of large scale computing.
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Gianluigi Zanetti. Lattice Boltzmann model of immiscible fluids.

Phys. Rev. A, 43(8):4320–4327, Apr 1991.

[35] D. Grunau, S. Chen, and K. Eggert. A lattice Boltzmann model for

multiphase fluid flows. Phys. Fluids A, 5(10):2557–2562, 1993.

[36] J. Tölke, M. Krafczyk, M. Schulz, and E. Rank. Lattice Boltzmann

simulations of binary fluid flow through porous media. Phil. Trans.

R. Soc. Lond. A, 360:535, March 2002.

[37] U. D’Ortona, D. Salin, Marek Cieplak, Renata B. Rybka, and

Jayanth R. Banavar. Two-color nonlinear Boltzmann cellular au-

tomata: Surface tension and wetting. Phys. Rev. E, 51(4):3718–3728,

Apr 1995.

[38] Michael R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans.

Lattice Boltzmann simulations of liquid-gas and binary fluid systems.

Phys. Rev. E, 54(5):5041–5052, Nov 1996.

[39] C. M. Pooley and K. Furtado. Eliminating spurious velocities in the

free-energy lattice Boltzmann method. Phys. Rev. E, 77(4):046702,

Apr 2008.

[40] Xiaowen Shan and Hudong Chen. Lattice Boltzmann model for sim-

ulating flows with multiple phases and components. Phys. Rev. E,

47(3):1815–1819, Mar 1993.

[41] A. L. Kupershtokh, D. A. Medvedev, and D. I. Karpov. On equa-

tions of state in a lattice Boltzmann method. Comput. Math. Appl.,

58(5):965–974, 2009.

[42] A. L. Kupershtokh, D. I. Karpov, D. A. Medvedev, C. P. Stamatelatos,

V. P. Charalambakos, E. C. Pyrgioti, and D. P. Agoris. Stochastic

models of partial discharge activity in solid and liquid dielectrics. IET

Sci. Meas. Technol., 1(6):303–311, 2007.

[43] G. Jin, T. W. Patzek, and D. B. Silin. Direct prediction of the absolute

permeability of unconsolidated and consolidated reservoir rocks. paper

SPE, 90084:26–29, 2004.

166



[44] C. Pan, L.-S. Luo, and C. T. Miller. An evaluation of lattice Boltz-

mann schemes for porous medium flow simulation. Comput. Fluids,

35:898–909, 2006.

[45] C. Pan, M. Hilpert, and CT Miller. Lattice-Boltzmann simulation of

two-phase flow in porous media. Water Resour. Res., 40(1):W01501,

2004.

[46] T. Ramstad. Simulation of two phase flow in reservoir rocks using a

lattice Boltzmann method. paper SPE, 124617, 2009.

[47] P. A. Skordos. Parallel simulation of subsonic fluid dynamics on a

cluster of workstations. High Performance Distributed Computing 95,

4th IEEE Int. Symp, 1995.

[48] P. Giovanni, F. Massaioli, and S. Succi. High-resolution lattice-

Boltzmann computing on the IBM SP1 scalable parallel computer.

Comput. Phys., 8:705, 1994.

[49] G. Amati, S. Succi, and R. Piva. Massively parallel lattice-Boltzmann

simulation of turbulent channel flow. J. Mod. Phys., C 8:869, 1997.

[50] D.R.Noble, S.Chen, and J.G.Georgiadis. A consistent hydrodynamic

boundary condition for the lattice-Boltzmann method. Phys. Fluids,

7:203, 1995.

[51] J.Ma, K.Wu, and Z.Jiang. Shift:an implementation for lattice Boltz-

mann simulation in low-porosity porous media. Phys. Rev. E,

81:056702, 2010.

[52] G.A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas

Flows. Oxford science publications. Oxford University Press, Incor-

porated, 1994.

[53] P.L. Bhatnagar, E.P. Gross, and M. Krook. A model for collision

processes in gases. Phys. Rev., 94:511–525, 1954.

[54] D. A. Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltz-

mann models. Lecture notes in mathematics. Springer, 2000.

167



[55] T. Inamuro, M. Yoshino, and F. Ogino. A non-slip boundary condi-

tion for lattice-Boltzmann simulations. Phys. Fluids, 7(12):2928–2930,

1995.

[56] M.Breure, J.Bernsdorf, and T.Zeiser. Accurate computations of the

laminar ow past a square cylinder based on two different methods:

lattice-Boltzmann and finite-volume. Int. J. Heat Fluid Flow, 21:186–

196, 2000.

[57] D.P. Ziegler. Boundary conditions for lattice-Boltzmann simulations.

J. Stat. Phys., 71:1171–1177, 1993.

[58] Z. Guo, C. Zheng, and B. Shi. Discrete lattice effects on the forcing

term in the lattice Boltzmann method. Phys Rev. E, 65(4):046308,

2002.

[59] A. L. Kupershtokh. New method of incorporating a body force term

into the lattice Boltzmann equation. In Proc. 5th International EHD

Workshop, University of Poitiers, Poitiers, France, pages 241–246,

2004.

[60] Xiaowen Shan and Gary Doolen. Multicomponent lattice-Boltzmann

model with interparticle interaction. J. Stat. Phys., 81(1):379–393,

1995.

[61] H. Huang, M. Krafczyk, and X. Lu. Forcing term in single-phase and

Shan-Chen-type multiphase lattice Boltzmann models. Phys Rev. E,

84(4):046710, 2011.

[62] Z. Yu and L. S. Fan. An interaction potential based lattice Boltzmann

method with adaptive mesh refinement (AMR) for two-phase flow

simulation. J. Comp. Phys., 228(17):6456–6478, 2009.

[63] Z. Yu. A Novel Lattice Boltzmann Method for Direct Numerical Sim-

ulation of Multiphase Flows. PhD thesis, The Ohio State University,

2009.

[64] D. Kehrwald. Numerical analysis of immiscible lattice BGK. PhD

thesis, Dissertation, Fachbereich Mathematik, Universität Kaiser-

slautern, 2002.

168



[65] J. Tölke, S. Freudiger, and M. Krafczyk. An adaptive scheme using

hierarchical grids for lattice Boltzmann multi-phase flow simulations.

Comput. Fluids, 35(8):820–830, 2006.

[66] B. Ahrenholz, J. Tölke, P. Lehmann, A. Peters, A. Kaestner,

M. Krafczyk, and W. Durner. Prediction of capillary hysteresis in

a porous material using lattice-Boltzmann methods and comparison

to experimental data and a morphological pore network model. Adv.

Water Resour., 31(9):1151–1173, 2008.

[67] J. Tölke. Gitter-Boltzmann-Verfahren zur Simulation von
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A. Conversion of lattice units

In lattice Boltzmann simulations, all the quantities used in the simulation

are in lattice units. In order to convert parameters between physical and

lattice units, the following reference scale must be defined: reference length

Lr, reference density ρr and reference velocity ur. We use L, ρ, t, ν, cs to

represent length, density, time, viscosity and speed of sound in lattice units

respectively, while L′, ρ′, t′, ν ′, c′s represent these quantities in real physical

units. The reference units define the relation between the lattice units and

physical unit:

Lr =
L′

L
, ρr =

ρ′

ρ , ur =
c′s
cs

(A.1)

In a simulation, L, ρ, ν, cs are known, while the real physical quantities

ρ′, ν ′, c′s are also known according to measurements or literature. The only

quantities that need to be determined are L′ and Lr. A dimensional analysis

is conducted to determine the physical and reference lengths. The Reynolds

number in the simulation and in the real physical problem should be the

same because it is a dimensionless number. Therefore, we can obtain an-

other equation as:

vL

ν
= Re =

v′L′

ν ′
(A.2)

Equation (A.2) is equivalent to:

ν ′

ν
=
v′L′

vL
= Lrur (A.3)

Combining Equation (A.1) and (A.3), we obtain four equations to solve

four unknowns: ρr, ur, Lr, L
′. The conversion in time can be carried out

using equation (A.4):
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Lr

ur
=
t′

t
(A.4)

With Lr, ρr, ur, it is possible to determine the real time interval Δt′,

distance between nodes Δx′,Δy′ and velocity v′.
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B. A short manual for single

phase/multiphase LB

simulations

The parallel lattice Boltzmann simulation package is coded in C/C++ and

MPI is used for parallel communication. It uses text-based input files to

initialise the simulation. There are two principal source code files:

• SINGLE_PHASE_MPI_Software_Spars.cpp : for Single phase simula-

tion.

• Multi_Component_CG_MPI_SPARSE_Software.cpp : for multi-component

simulation

The source code can be compiled using the following command (provided

C/C++/OpenMPI have been installed properly):

mpic++ SINGLE_PHASE_MPI_Software_Spars.cpp -o Single_Phase

mpic++ Multi_Component_CG_MPI_SPARSE_Software.cpp -o Multi_Phase

B.1. Geometry file

The geometry is imported by an ASCII file containing 0 and 1, where 0

represents a fluid node and 1 represents a solid node. It is assumed that the

geometry information is stored in a 3D array G[i][j][k], where (i, j, k) are

the coordinates of the mesh point. The format of the geometry input file is

in Z,Y,X order. The geometry file can be generated by the following code:
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for (int k=0;k<nz;k++)

for (int j=0;j<ny;j++)

for (int i=0;i<nx;i++)

cout<<G[i][j][k]<<endl;

end

end

end

B.2. Initial phase distribution file

In multi-component calculations, the initial distribution of the wetting phase/non-

wetting phase needs to be specified prior to the simulation. A similar phase

distribution input file (ASCII file) to the geometry input file is used to ini-

tialise the wetting/non-wetting phases. In the phase distribution input file,

1 represents wetting phase whereas -1 represents non-wetting phase. The

solid nodes can be specified to have any value. The code for generating the

geometry input file can be easily modified to generate the phase distribution

input file.

B.3. Single phase flow calculation

To carry out a single phase flow calculation, the initial parameters need to

be imported from an input file: INPUT.dat. It is a text-based file, input

parameters are given at the beginning of every line and comments about the

parameters are given after. Space is needed between the parameters and

the comments. The following parameters are compulsory for single phase

calculations:

• BC.dat :Geometry file name

Line 2. The file name of the geometry input file which stores the

geometry information of the porous medium is specified here, it can

include the path of the file if preferred.

• 20 30 3 :nx ny nz

Line 3. The size of the geometry is given here, in this case a porous

182



medium of 20x30x3 is computed.

• 300000 :Maximum time step

Line 4. Define the maximum time step you want to calculate. When

the program runs beyond this value, it will stop.

• 7.0 :x=1 (um) Resolution

Line 5. The resolution of the porous medium is given here. The unit

is μm/pixel.

• 1.0e-6 0.0 0.0 :body force for x,y,z

Line 7. The body force applied on the fluid in X,Y,Z direction. Space

is needed between parameters.

• 0.05 :Viscosity

Line 14. Viscosity is defined here in lattice units.

• 1 :Direction of Permeability Calculation (1=X, 2=Y, 3=Z)

Line 18. The direction of the permeability calculation is defined here,

1 denotes permeability calculation is to be carried out in X direction,

2 for Y and 3 for Z.

• 50 :Frequency of results writing

Line 19. Calculation summary export frequency in time steps, in this

case, every 50 time steps, a summary of the calculation including

maximum velocity, averaged velocity, permeability and relative error

will be exported on monitor and to a data file.

• 2000 :Frequency of velocity field writing

Line 21. Velocity field VTK file export frequency in time steps. In this

case, every 2000 time steps, a VTK file LBM_velocity_Vector_xxxx.vtk

is generated for velocity field visualisation using ParaView1 xxxx is the

time step at which the velocity field exports.

• 2000 :Fre of density field writing

Line 22. Export freqency for density field.

1ParaView is an open source multiple-platform application for interactive, scientific vi-
sualisation.
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• /home/LBM/1_ :OUTPUT PATH

Line 25. Output path definition. It is a prefix before every out-

put file. If the velocity file velocity.vtk is to be exported, a prefix

/home/LBM/1_ will be put before every output file name. For example,

the velocity output file velocity.vtk will become /home/LBM/1_velocity.vtk.

It helps to distribute the outputs to your preferred directory.

• 0 :Geometry Reading format

Line 45. Put 0 here to use ASCII geometry input file.

B.4. Multi phase simulation

The multiphase calculation input file (INPUT_CG_SPARSE.dat) is similar to

the single phase. But more parameters are needed to define the two phase

system.

• phase.dat :Initial components distribution

Line 3. File name of initial phase distribution input file.

• 0 :Psi constant BC

Line 8. Use constant phase boundary? If 0 is set, a periodic boundary

for wetting/non-wetting phase is used. This means any wetting/non-

wetting phase that flows from the outlet will flow into the inlet and

keeps the same properties (still wetting/non-wetting). If 1 is set, it

means several constant phase boundary conditions are active, more

details can be found in Line 16,17,18.

• 0 0 :Psi constant BC in X

Line 16. Constant phase boundary on outlet and inlet (we assume that

i = nx is outlet and i = 0 is inlet.). 0=OFF; if it is set as 1, all the

liquid flowing out will flow in periodically to the inlet but the phase

colour (blue for wetting and red for non-wetting) will be changed into

the colour given by the initial phase distribution function. If it is set

as 2, then it will be coloured by the value of its neighbouring nodes.

• Line 17,18 defines the boundary condition for Y and Z direction.

• 0.05 :Viscosity (Component A, psi=1)

0.05 :Viscosity (Component B, psi=-1)

184



Line 19,20. Viscosity of the phase two phases.

• 0.7 :#Contact Angle

Line 21. This line defines the static contact angle used in the simu-

lation. It should be between -1 and 1. It is the cosine of the static

contact angle. If the contact angle is θ, then cos(θ) needs to be spec-

ified there.

• 1.0e-2 :#Surface tension (Kappa)

Line 22. Surface tension definition in lattice units. It should not be

larger than 1e-1 to avoid numerical instabilities.

• 2989816.0 :Permeability (Single Phase mD)

Line 24. Absolute permeability of the sample, this value is used for

relative permeability calculation.

Keep all the other parameters as they were from the original copy.

B.5. Run simulations

To run the simulation:

• Single phase:

mpirun -np 8 Single_Phase INPUT.dat

where 8 is the number of processors you want to use, Single_Phase

is the compiled binary executive file. INPUT.dat is the input file.

• Multi-phase: mpirun -np 8 Multi_Phase INPUT_CG_SPARSE.dat

B.6. Sample Codes

Sample codes including input files, initial geometry files and initial phase

distribution files were packed in sample_codes.tar.bz2. Sample of differ-

ent cases are listed in different directories.
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B.6.1. Single phase permeability calculation

In directory Single_Perm_Bentheimer, the geometry file of bentheimer

sandstone and corresponding input file are given. Run the code using com-

mands in Chapter B.5. The permeability of every 50 time steps are saved

in the file: Permeability_error_local_Perm.txt

The first column is the calculated permeability.

B.6.2. Capillary fingering calculation

In directory multiphase_capillary_fingering, the input file and initial

geometry and phase files are given. The geometry is a 2D channel of 512x32.

Binary fluid with viscosity 0.2 and 0.05 is displaced by a bodyforce of 7.0e-

6. The code exports the phase distribution VTK file every 500 time steps.

The inlet and outlet boundary condition was fixed colour boundary. All the

fluid flowing out is recoloured to wetting fluid before re-entry into the inlet.

This boundary condition is defined at line 8 and 16 in the input file.

B.6.3. Drainage/imbibition in a Micro model

The sample input file and initial geometry and phase distribution file are

given in directory micro_model_imbibition. The geometry is converted

from a bmp image file using a matlab code SD.m. Periodic boundary condi-

tions are applied in all directions. A reservoir near the inlet was set for the

wetting phase. No external force is applied to both phases, the displacement

of wetting phase is driven only by capillary force. The surface tension and

contact angle are set in line 21 and 22.

B.6.4. Relative permeability calculation of Bentheimer

sandstone

Sample code of relative permeability calculation of bentheimer sandstone is

given in directory relative_permeability_bentheimer. The initial sat-

uration is defined in line 38. The wetting/non-wetting phase is generated

randomly according to the pre-defined saturation. Periodic boundaries are

applied and we mirror the geometry in order to apply the periodic boundary

condition. The initial phase distribution is not required in this calculation.
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The calculated relative permeability of component 1/2 can be found in

open Relative_Permeability_Component1.txt. The first column is the

calculated relative permeability of component 1/2, the second column is

the saturation of component 1/2

B.6.5. Drainage and imbibition calculation

The drainage and imbibition of Ketton carbonate is simulated using geom-

etry files and initial files in directory drinage_imbibition. The drainage

process in Ketton rock is simulated with input file INPUT_CG_SPARSE_dri.dat.

The recolouring boundary condition is applied on inlet and outlet boundary.

The fluid flowing out will be recoloured to non-wetting before re-entry into

the inlet. Two buffer areas were set near the inlet and outlet and a porous

plate was set at the outlet of the rock sample to prevent the non-wetting

phase flowing out, which is similar to the experimental configuration in the

lab.

The imbibition simulation is slightly different from drainage. The porous

medium plate was removed from the outlet to let the non-wetting phase

free to flow out. The initial fluid distribution was produced by the drainage

simulation. The boundary condition is the same as drainage simulation.

B.6.6. Solute dispersion in the Bentheimer sandstone sample

The solute dispersion is simulated using the geometry and input file in

directory solute_dispersion_bentheimer. The initial configuration was

described in Chapter 8.2. The number of pulse peaks can be adjusted by

changing the first value of line 49. The initial location of peaks is set

at the third column of line 49. The results are exported in ASCII files:

General_disp_concentration_X_xxxx.sta. The probability of different

displacement of tracking solute is stored in this file for future analysis.
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