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Abstract

Two-phase flows occur regularly in nature and industrial processes and their understand-

ing is of significant interest in engineering research and development. Various numerical

methods to predict two-phase phase flows have been developed as a result of extensive

research efforts in past decades, however, most methods are limited to Cartesian meshes.

A fully-coupled implicit numerical framework for two-phase flows on unstructured meshes

is presented, solving the momentum equations and a specifically constructed continuity

constraint in a single equation system. The continuity constraint, derived using a momen-

tum interpolation method, satisfies continuity, provides a strong pressure-velocity coupling

and ensures a discrete balance between pressure gradient and body forces. The numerical

framework is not limited to specific density ratios or a particular interface topology and

includes several novelties.

A further step towards a more accurate prediction of two-phase flows on unstructured

meshes is taken by proposing a new method to evaluate the interface curvature. The

curvature estimates obtained with this new method are shown to be as good as or better

than methods reported in literature, which are mostly limited to Cartesian meshes, and the

accuracy on structured and unstructured meshes is shown to be comparable. Furthermore,

lasting contributions are made towards the understanding of convolution methods for two-

phase flow modelling and the underlying mechanisms of parasitic currents are studied in

detailed.

The mesh resolution is of particular importance for two-phase flows due to the inherent

first-order accuracy of the interface position using interface capturing methods. A mesh

adaption algorithm for tetrahedral meshes with application to two-phase flows and its

implementation are presented. The algorithm is applied to study mesh resolution require-

ments at interfaces and force-balancing for surface-tension-dominated two-phase flows on

adaptive meshes.
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Nomenclature

Vectors and tensors are either denoted in bold or in tensor notation by subscripts i (vector)

or ij (tensor), dependent on the context. All units are SI units.

Roman Letters

ṁ Mass flux [kg s−1]

d̂ Coefficient of the momentum interpolation method [m3 s kg−1]

r̃ Radial coordinate [m]

ũ Spatial momentum velocity [ms−1]

A Area [m2]

A Coefficient defining the type of boundary condition (only in Section 3.5)

A Constant that normalises the convolution kernel (only in Section 4.2.1)

a Combined implicit coefficient of the convective and viscous terms of the discre-

tised momentum equation [kg s−1]

Aij , A Coefficient matrix of an equation system

ai, a Co-variant vector [m]

ar Length of a liquid inclusion along its radial axis [m]

ay Length of a liquid inclusion along its symmetry axis [m]

B Coefficient defining the type of boundary condition (only in Section 3.5)

Bij , B Coefficient submatrix of an equation system

bi, b Right-hand side vector of an equation system

C Coefficient defining the magnitude of the boundary value (only in Section 3.5)

C Coefficient of the magnitude of parasitic currents

C General interface indicator function (only in Eq. 2.47)

c Coefficient of the momentum interpolation method [kgm−3 s−1]

Cγ Coefficient to define the resolution of the interface thickness

Cγ Number of interface advection time-steps per fluid time-step

Cκ Coefficient to define the resolution of the interface curvature

C∇γ Coefficient to define the width of the interface region

Cij , C Coefficient submatrix of an equation system

Cl Coefficient to define a general reference length scale

d Coefficient of the momentum interpolation method [m3 s kg−1]

d Diameter [m]

Dij , D Coefficient submatrix of an equation system

E() Relative error of a given variable

E−, E+ Unboundedness error of the CICSAM scheme

Es Global spring energy equivalent [m2]

F Volume flux [m3 s−1]
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f ′s,i, f
′
s Local volumetric surface force error [N m−3]

Fg,i, Fg Force due to gravity [N ]

fg,i, fg Volumetric force due to gravity [N m−3]

fi, f Body force per unit volume [N m−3]

Fs,i, Fs Surface force [N ]

fs,i, f s Volumetric surface force [N m−3]

g Gravitational acceleration [ms−2]

gi, g Gravitational vector [ms−2]

hij Second derivative of fluid height h

hi First derivative of fluid height h

kψ Coefficient of the CICSAM scheme

L Section length (only in Section 3.8.2) [m]

L2() L2 error norm of a given variable

lγ Reference length scale based on the colour function gradient [m]

L∞() L∞ error norm of a given variable

lκ Reference length scale based on the interface curvature [m]

le Length of a mesh edge [m]

lmax Maximum thickness of the interface (with respect to mesh adaption) [m]

lmin Minimum thickness of the interface (with respect to mesh adaption) [m]

lref General reference or target length scale [m]

ls Edge length of a cubical stencil [m]

M Number of independent equations in an equation system

mi, m Unit normal vector of the interface

N Global number of mesh elements

NI Number of cells in the interface region

Ne Global number of mesh edges

NG Global number of a given mesh entity

ni, n Unit normal vector of a mesh face

NL Local number of a given mesh entity

Nproc Number of processors used for a given simulation

NQ Number of neighbour cells Q

p Pressure [Pa]

R Equivalent radius of an ellipsoid [m]

r Radius [m]

r1, r2 Principal curvature radii [m]

rb,i, rb Vector connecting cell P and boundary face b [m]

rf,i, rf Vector connecting interpolation point f ′ and face centre f [m]

Rmax Maximum residual value of a given variable

rP,i, rP Vector connecting cell centre P and face centre f [m]

rQ,i, rQ Vector connecting cell centre Q and face centre f [m]

rU,i, rU Vector connecting upwind cell centre U and face centre f [m]

sf,i, sf Unit vector pointing from cell centre P to cell centre Q
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Sg,i, Sg Gravity source term [N m−3]

Si, S General source term [N m−3]

Si, S Surface vector (only in Eqs. 2.14 and 2.15) [m3]

t Time [s]

U Characteristic velocity for a spherical inclusion at Re < 1 [ms−1]

u Velocity component in x-direction [ms−1]

un Advecting velocity (see Section 3.3) [ms−1]

ui, u Velocity vector [ms−1]

ut Terminal rise velocity [ms−1]

u∞t Terminal rise velocity in a domain of infinite extend [ms−1]

uw Wall velocity [ms−1]

ux Axial velocity [ms−1]

V Volume [m3]

v Velocity component in y-direction [ms−1]

VI Volume of the concave side of the interface [m3]

w Velocity component in z-direction [ms−1]

wβ Weighting factor of the advection term of the VOF transport equation

wγ Weighting factor of the colour function

Wk Total kinetic energy [J ]

wm Weighting factor of the interface normal vector

X Data set

x Coordinate axis [m]

xi, x Position vector in the Cartesian coordinate system [m]

Y Data set

y Coordinate axis [m]

z Coordinate axis [m]

Greek Letters

α Scaling factor of the non-orthogonal correction

α∗ Non-orthogonality angle [rad]

β, β∗∗ Temporal weighting factor of the CICSAM scheme

∆τ Sum of present time-step ∆t1 and previous time-step ∆t2 [s]

∆p Pressure difference [Pa]

∆pmax Difference between maximum and minimum pressure in the domain [Pa]

∆s Distance between cell centres P and Q [m]

∆t Time-step [s]

∆t1 Present time-step [s]

∆t2 Previous time-step [s]

∆tc Capillary time-step constraint [s]

∆tγ Interface advection time-step [s]

∆x Mesh spacing [m]

δ Interpolation coefficient

ε Convolution length [m]
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εrel Relative tolerance of the numerical solver

Γ Diffusion coefficient [m2 s−1]

γ VOF colour function

γ∗ Average colour function value

γref Reference colour function for the interface resolution

κ Interface curvature [m−1]

κ′ Local curvature error [m−1]

κ∗ Intermediate curvature value [m−1]

µ Dynamic viscosity [Pa s]

Ω Support of the convolution kernel (only in Section 4.2.1)

Ω Surface area [m2]

φ General fluid variable [ms−1]

φi, φ Solution vector of an equation system

ψ Blending function of the CICSAM scheme (only in Section 3.4.2)

ψ Flux limiter of the convection scheme

ρ Density [kgm−3]

σ Surface tension coefficient [N m−1]

σe Tension of a fictitious massless spring [m]

τ Characteristic time scale (only in Section 6.3) [s]

τij , τ Stress tensor [N m−2]

θf Angle between interface normal vector and vector connecting adjacent cells[rad]

γ̃ Normalised colour function value

ϕ Skewness ratio

% Pearson product-moment correlation coefficient

ς Standard deviation

ϑ Dihedral angle between two mesh faces [rad]

ξ Relative local error

ζ Underrelaxation factor of the Laplacian smoothing

Subscripts

0 Initial value

φ Property of fluid variable φ

σ Originating from surface tension

A Acceptor cell of face f (with respect to CICSAM scheme)

A General incompressible Newtonian fluid

B General incompressible Newtonian fluid

b Boundary face

D Donor cell of face f (with respect to CICSAM scheme)

D Downwind cell of face f

E Neighbour element situated east of the considered element (cardinal directions)

e Extrapolation boundary face (only in Section 3.6)

e Face situated east of the considered element (cardinal directions)

e Mesh edge under consideration (only Chapter 5)
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EE Element situated east of element E (cardinal directions)

f Mesh face under consideration

f ′ Interpolation point of face f

g Originating from gravity

i Fluid properties inside the interface (concave side)

i Tensor component (for partial differential equations)

j Tensor component (for partial differential equations)

k Tensor component (for partial differential equations)

m Neighbour mesh node of mesh node n

n Mesh node under consideration

o Fluid properties outside the interface (convex side)

P Mesh cell under consideration

Q Neighbour mesh cell of mesh cell P

U Upwind cell of face f

u Originating from velocity

W Neighbour element situated west of the considered element (cardinal directions)

w Face situated west of the considered element (cardinal directions)

exact Analytically exact value

max Maximum value in the domain

mean Mean value in the domain

ref Reference value

Superscripts

c Convoluted variable

i Element address on a structured mesh (only Eq. 4.13)

i Present iteration

i− 1 Previous iteration

j Element address on a structured mesh (only Eq. 4.13)

n New mesh cell (with respect to adaptive mesh refinement)

p Parent mesh cell (with respect to adaptive mesh refinement)

t Variable at the present time instant

t−∆τ Variable at the previous-previous time instant

t−∆t Variable at the previous time instant

ta Variable at the time instant of mesh adaption on the new mesh

u Unconvoluted variable

Non-Dimensional Numbers

Ca Capillary number

Co Courant number

CoD Courant number of fluxes leaving the donor cell D (CICSAM scheme)

Eo Eötvös number

Fr Froude number

La Laplace number
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Mo Morton number

Pe Peclet number

Re Reynolds number

Red Reynolds number based on the diameter

ReL Reynolds number based on the domain length

Rer Reynolds number based on the radius

Functions

δij Kronecker delta

f() General function

K General convolution kernel

K3 Spline convolution kernel

K6 Sixth-order convolution kernel

K8 Eighth-order convolution kernel

Kcos Cosine convolution kernel

Klin Linear convolution kernel

Mathematical Operators and Symbols

−= Subtraction assignment operator

∗ Convolution operator∫
Integral

O() Order of the truncation error

∇ Nabla operator∮
Circular integral

∂ Partial differential operator∏
Product operator

∝ Proportional to∑
Summation operator

+= Addition assignment operator

33



Abbreviations

AMR Adaptive Mesh Refinement

CD Central Differencing

CDT Constraint Delaunay Tetrahedralisation

CELESTE Curvature Evaluation with Least-Squares fit of Taylor Expansion

CFD Computational Fluid Dynamics

CICSAM Compressive Interface Capturing Scheme for Arbitrary Meshes

CLSVOF Coupled Level-Set and Volume of Fluid

CPU Central Processing Unit

CSF Continuum Surface Force

DAC Direction Averaged Curvature

DNS Direct Numerical Simulation

FV Finite Volume

GPU Graphics Processing Unit

HC Hyper-C

HF Height Function

HiRAC Higher Resolution Artificial Compressive Formulation

HRIC High Resolution Interface Capturing Scheme

LS Level-Set

MCLS Mass-Conserving Level-Set

NVD Normalised Variable Diagram

PDE Partial Differential Equation

PISO Pressure Implicit with Split Operator

PLIC Piecewise Linear Interface Construction

PROST Parabolic Reconstruction of Surface Tension

STACS Switching Technique for Advection and Capturing of Surfaces

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

SIMPLER SIMPLE Revised

TVD Total Variation Diminishing

UD Upwind Differencing

UQ Ultimate Quickest

VOF Volume of Fluid
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1. Introduction

The rapid development of computer hardware and numerical methods over the past

decades have propelled a sharp rise in the use of computational fluid dynamics (CFD)

in science and industry. Today CFD is used to predict flows for a variety of applications,

from aerospace and automotive to medicine and oil recovery. Although the numerical

simulation of single-phase flows is highly developed and predominantly constraint by the

available computational resources, the prediction of two-phase flows remains a considerable

challenge. The major difficulties in accurately modelling two-phase flows are the represen-

tation and tracking of the molecular fluid-fluid interface and the evaluation of the surface

tension acting at fluid-fluid interfaces. The objectives of the research presented in this

thesis are to advance the understanding of two-phase flow modelling, in particular with

respect to unstructured meshes, and to develop numerical methods which provide more

accurate results without being constraint to a specific mesh type or a specific application.

1.1. Two-Phase Flow Modelling

The occurrence of two-phase flows in nature and in industrial processes is versatile, making

two-phase flows an interesting and important field of study. In the context of this thesis,

the terms two-phase flow and, synonymously, interfacial flow refer to the flow of two

immiscible, incompressible fluids. Typically, this represents the interaction of a gas and

a liquid separated by an interface, such as an air bubble in water or an ocean surface.

However, the term two-phase flow may also describe the interaction of two immiscible

liquids. Although two immiscible liquids do not satisfy the physical definition of two

different phases, it is common practice within the CFD community to label them as two-

phase flows, too. In fact, with respect to the numerical modelling of incompressible,

isothermal flows, as considered in this thesis, there is no technical difference between a

gas and a liquid phase because only density and viscosity differ. Classical examples for

two-phase flows in nature are rain drops, the ocean surface and lava. With respect to

industrial applications, the most prominent example for two-phase flows are combustion

processes, which are essential to most modes of transportation and energy production.

Other examples for industrial applications are cooling processes, oil flow in pipelines, ink-

jet printers and metal processing.

The numerical modelling of two-phase flows and the application of such models to pre-

dict natural and engineering processes is a very active field of research. Recent numerical

studies investigated the catastrophic consequences of storm surges and tsunamis [109, 132]

as well as the forces acting on dams [172] and weirs [142]. An oceanic phenomenon re-

ceiving notable research attention are rogue waves, also often referred to as freak waves,
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which are highly non-linear waves that do not correspond to the expected wave height

due to the local sea conditions. In 1995, for instance, a high-quality measurement at

the Draupner drilling platform in the North Sea recorded a rogue wave of 26 m height

[62]. Experimental, theoretical and numerical research focuses on understanding the sea

conditions creating rogue waves and on finding mathematical frameworks to predict the

occurrence and magnitude of rogue waves [62, 114, 274]. Recent research efforts have seen

the use of two-phase flow modelling tools to predict the retreat of glaciers in the Swiss alps

[110]. Even though glaciers are made of ice, a glacier as a whole can be considered a highly

viscous liquid. The numerical prediction of primary break-up of liquid jets has received

considerable attention [94, 212, 251] due to their importance in combustion and spray

processes. Other engineering applications of two-phase flow modelling include cooling

processes, as for instance in nuclear reactors [104], micro- and nanofluidic applications,

such as optimising the underfilling of flip-chip encapsulations for electronic packagings

[254], metal processing [136, 262] and understanding the transport of gaseous emboli in

human blood flow [52]. Alhendal et al. [5] performed numerical studies of the thermo-

capillary migration of bubbles at zero gravity, a phenomenon which requires significant

effort and resources to be studied experimentally on earth. A better understanding of this

phenomenon is important for the design of thermofluid machinery operated in space and

of experiments on-board the International Space Station.

Two-phase flow modelling is, however, not only used to predict flows in nature or in

industrial applications. Prof. Fedkiw at Stanford University and his co-workers received

an Academy Award, commonly known as Oscar, in 2008 for their technical achievements

related to their work on simulation tools used to animate two-phase flows in motion pic-

tures, such as Pirates of the Caribbean, Terminator 3 and Harry Potter. An interesting

example of how everyday observations can be explained using two-phase modelling was

presented by Benilov et al. [14], investigating why bubbles in drafted Guinness beer appear

to sink rather than ascend. Through numerical experiments Benilov et al. demonstrated

that the shape of the typical Guinness glass leads to an imbalanced distribution of gas

bubbles in the glass. This imbalance initialises a circulation which results in an downward

movement of the fluid at the outer radius of the glass and an upwards movement of the

fluid in the centre of the glass. Because the bubbles are small in size, their trajectory is

dominated by the circulation and, thus, sink at the outer radius of the glass. The results

also show that the circulation in the glass reverses if the glass is turned upside down.

The accurate numerical modelling of two-phase flows presents considerable challenges,

since the interface is infinitesimally thin with respect to continuum mechanics. Thus, the

fluid properties experience a discontinuous change at the interface and a singular force is

acting at the interface due to surface tension. Modelling the infinitesimally thin interface

in a finite volume or finite element framework is not trivial because of the finite discrete

resolution of space and time. Determining the spatial position of the interface on an

Eulerian mesh is predominantly a resolution issue and the order of accuracy of the spatial

position of the interface, numerically comparable with a shock wave, and of the forces

acting at the interface on a Eulerian mesh using finite volume or finite element methods
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is only first-order [20, 61, 227]. The accurate evaluation of the interface curvature as

well as the abrupt and large pressure gradient resulting from the force due to surface

tension acting at the interface further complicate the numerical modelling of two-phase

flows. Essentially, five particular issues with regards to two-phase flow modelling can be

identified:

1. the definition of the force due to surface tension acting at the interface,

2. numerical instabilities as a result of the pressure jump across the interface,

3. the accurate evaluation of the interface curvature,

4. the advection of the sharp interface, and

5. the finite discrete resolution of the interface.

Various methods to address these issues exist, each with its individual advantages and

disadvantages. Even though significant resources have been dedicated to the development

of methods for two-phase flow modelling in recent decades, no gold-standard to simulate

two-phase flows has evolved yet. Thus, it is of utmost importance to understand the

available methods and the implications attached to them, in order to apply the best

suited method to a given problem.

1.2. Mesh Type

The foundation of every finite difference, finite volume and finite element method is a

discrete representation of all modelled dimensions. The spatial domain is, therefore, sub-

divided into a finite number of non-overlapping elements. The resulting computational

meshes can be distinguished by orientation and implementation. The most frequently

used classifications of mesh orientation are Cartesian and non-Cartesian meshes. In Carte-

sian meshes the mesh faces are oriented perpendicular to the Cartesian coordinate axes

and, therefore, feature desirable numerical properties. Figure 1.1a shows an example of

a Cartesian mesh where the computational nodes are arranged equidistant, a particularly

beneficial arrangement. Studies by Juretić [111] demonstrated that the face-pairs of Carte-

sian meshes cancel out certain discretisation errors. Two mesh faces form a pair if their

outward-pointing surface vectors sum up to zero. In non-Cartesian meshes, on the other

hand, the mesh faces are not oriented in a particular fashion and, thus, non-Cartesian

meshes can represent domains of arbitrary shape. A typical two-dimensional example of

a non-Cartesian mesh is illustrated in Figure 1.1b. The numerical discretisation, how-

ever, is more complex on non-Cartesian meshes than it is on Cartesian meshes, since the

discretisation has to account for the skewness and non-orthogonality of the mesh. Fur-

thermore, the accuracy is adversely affected by the random orientation of mesh faces and

the arbitrary arrangement of computational nodes. With respect to the implementation

of the mesh, a structured and an unstructured implementation must be distinguished. A

structured implementation of the mesh means that each mesh element can be uniquely

addressed using a i,j,k -indexing system. In an unstructured mesh implementation the
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addressing of mesh elements does not possess an inherent structure and the connectivity

must be established individually for each mesh element. The structured implementation

is computationally more efficient than an unstructured implementation, whereas an un-

structured implementation is independent of the mesh type and the arrangement of the

mesh elements.

In the academic two-phase flow community, the use of non-Cartesian meshes is partic-

ularly unpopular and controversial. The inherent complexity of two-phase flows and their

numerical discretisation complicates the application on non-Cartesian meshes consider-

ably. As a result, most high-fidelity two-phase flow methods reported in the literature

are limited to Cartesian meshes, which considerably constraints the applicability regard-

ing complex applications. The advancement of two-phase flow modelling on arbitraryly

oriented meshes with an unstructured implementation is, therefore, essential to make two-

phase flow modelling applicable to a wider range of applications and industries.

(a) Equidistant Cartesian mesh (b) Triangular mesh

Figure 1.1.: Example of a two-dimensional equidistant Cartesian mesh and a triangular
mesh.

1.3. Present Contributions

The research presented in this thesis focuses on two-phase flow modelling on unstruc-

tured meshes. As part of the presented research a complete numerical framework for the

modelling of two-phase flows on unstructured and adaptive tetrahedral meshes has been

developed. A compressive VOF method, which is straightforward to implement on un-

structured meshes and inherently conserves mass within the limit of the solver tolerance,

is adopted to distinguish two incompressible, isothermal, immiscible fluids. This thesis

discusses in detail the discretisation and implementation of the numerical framework and,

in addition, elaborates on typical issues of two-phase flow modelling in general and of

two-phase flow modelling on unstructured meshes in particular. The major contributions

of this thesis to the field of computational fluid dynamics are:

• A fully-coupled balanced-force numerical framework for the simulation of two-phase

flows on collocated unstructured meshes is presented. The numerical framework is

based on a fully-coupled implicit approach, solving the momentum equations and a

specifically constructed continuity constraint in a single linear equation system. The

38



continuity constraint, based on the momentum interpolation method first proposed

by Rhie and Chow [198], is derived in Section 3.3 for single-phase flows and subse-

quently extended to two-phase flows. The continuity constraint facilitates a strong

pressure-velocity coupling and preserves continuity. The numerical framework pro-

vides and maintains an accurate balance between pressure gradient and body forces,

eliminating a major source of errors with respect to large body forces, such as the

forces due to surface force or gravity. In particular the presented implementation of

the force due to surface tension, the proposed density weighting and the extension

to adaptive meshes represent novel contributions. Furthermore, the necessity of a

symmetric implementation of the pressure term, and if applicable the body forces,

regardless of the mesh type is explained as it is a general source of confusion in

the literature. As demonstrated in this thesis, the numerical framework is capable

of accurately simulating interfacial flows with large density ratios and arbitrary in-

terface topology on structured, unstructured and adaptive meshes. The successful

application of a balanced-force framework, such as the one presented in this thesis,

to moving interfaces and on adaptive meshes has not been previously reported in

the literature and is demonstrated for the first time.

• A new method for the evaluation of the interface curvature directly from volume

fractions is proposed. The evaluation of the interface curvature represents a major

challenge for two-phase flow modelling with interface capturing methods, as a result

of the implicit interface representation and the finite numerical resolution. Inaccu-

rate curvature estimates directly affect the accuracy of the results and, in severe

cases, parasitic currents resulting from inaccurate interface curvature estimates may

even destroy the interface. The new method, presented in Section 4.3, is based on a

least-squares fit of a second-order Taylor series expansion of the volume fraction field

and is applicable to arbitrary meshes. The presented method yields similar or better

results than existing methods, which are typically limited to Cartesian meshes, and

the results on structured and unstructured meshes obtained with the new method

are shown to be comparable.

• The findings presented in this work contribute substantially to the understanding of

the application of convolution methods to two-phase flow simulations. Convolution

of the interface indicator function (e.g. the volume fraction) in interface captur-

ing/tracking methods is a common way to smooth the momentum discontinuity at

fluid-fluid interfaces. With respect to VOF methods, convolution is also applied to

improve curvature estimates calculated from the volume fraction field. However, the

success of applying convolution methods depends on the use of appropriate convo-

lution stencils and on the application to the correct variables. Different convolution

strategies with respect to fluid properties and the force due to surface tension are ex-

amined in Section 4.4 and the implications of the convolution stencil size is assessed

in Section 4.5. The conducted studies highlight inherent problems of convolution,

misconceptions about the correct application of convolution and miscorrelations be-

tween common academic test cases and realistic applications. Although the aspects
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of convolution are discussed and assessed using a VOF method, the findings equally

apply to level-set methods and front-tracking methods.

• The origin of parasitic currents in the vicinity of interfaces is examined. Most impor-

tantly, the presented results clearly show that parasitic currents and an inaccurate

pressure jump across the interface have different origins and are independent of each

other. It is also demonstrated that commonly used indicators for the applicability of

respective two-phase flow methods are only applicable in some cases but cannot be

used in all instances. Furthermore, examples where scaling of a test case can reduce

numerical errors but equally maintain the defining flow features are identified.

• The fundamentals of the application of tetrahedral mesh adaption algorithms to

two-phase flow simulations are studied. In this context, an implementation concept

for unstructured mesh adaption algorithms is presented in Section 5.4, applicable to

single-processor and multi-processor computer architectures. Furthermore, the mesh

resolution at interfaces with respect to suitable parameters for the control of mesh

adaption algorithms is investigated in Section 5.5 and reference length scales are

derived to determine the required mesh resolution. The conducted study contributes

to the understanding of mesh resolution requirements at interfaces and demonstrates

the applicability of the proposed numerical framework to adaptive meshes, satisfying

conservation laws and maintaining a discrete balance between pressure gradient and

body forces.

1.4. Thesis Outline

The remainder of this thesis is structured as follows:

In Chapter 2, the governing equations are presented and the fundamentals of the used

numerical methods are explained. The focus of this chapter is to lay the groundwork

for the research presented in this thesis. In particular, the discretisation errors related

to unstructured meshes and the problems associated with two-phase flow modelling are

discussed.

The fully-coupled balanced-force numerical framework for unstructured meshes developed

as part of the research presented in this thesis is devised and discussed in Chapter 3. The

discretisation of the governing equations is examined in detail and a continuity constraint,

specifically designed for the simulation of flows with large body forces on arbitrary meshes,

is derived. This continuity constraint conserves continuity, couples pressure and velocity

and maintains an accurate balance between body forces and pressure gradient.

Chapter 4 is concerned with the numerical representation of fluid-fluid interfaces. This

chapter focuses on the correct application of convolution to two-phase flows and the ac-

curate evaluation of the interface curvature. A new method to evaluate the interface

curvature on arbitrary meshes is presented and validated.

In Chapter 5, the application of adaptive tetrahedral meshes at interfaces is studied. An
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adaption algorithm for multi-processor computer architectures is presented and suitable

reference length scales for the resolution of the interface are derived. Furthermore, the

used numerical framework is extended to maintain an accurate balance between body

forces and the pressure gradient on adaptive meshes.

The results of additional test cases to evaluate the proposed methods are presented in

Chapter 6. The test cases assess the accurate description and interaction of viscous

stresses, the force due to surface tension and gravity. Additionally, the influence of interface

properties on parasitic currents is assessed and the origin of parasitic currents is examined.

In Chapter 7, the thesis is concluded and suggestions for future work are discussed.

The Appendix briefly discusses common topics concerning the implementation of the nu-

merical framework developed as part of the presented research. Furthermore, the damping

of spurious pressure oscillations arising from a collocated variable arrangement is explained

with a short example.
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2. Fundamentals

The numerical methods presented in this study are designed for incompressible, isothermal,

immiscible Newtonian fluids1 and are based on continuum mechanics principles, assum-

ing that the macroscopic physical properties of the fluid can be described as continuous

functions in space and time. This assumes that relevant length scales of the flow are sig-

nificantly larger than the discrete structures of the simulated materials. Hence, the fluid

in a domain of finite size can be described by a set of differential equations and bound-

ary conditions. The spatial domain is divided into a finite number of discrete control

volumes by means of a computational mesh and the temporal domain is represented by

finite time-steps. The differential equations describing the flow are discretised in space

and time on the applied computational mesh and time-steps, using numerical differenc-

ing schemes which are founded on the finite volume (FV) method. The resulting set of

algebraic equations is solved utilising preconditioning and iterative solving methods.

In this chapter the governing equations describing incompressible, isothermal, immis-

cible Newtonian fluids are presented in Section 2.1 and the basic discretisation in space

and time is devised in Section 2.2, using the example of convective-diffusive transport of

a passive scalar. Subsequently, the fundamentals of the numerical treatment of two-phase

flows are discussed in Section 2.3.

2.1. Governing Equations

The flow of a fluid is governed by two conservation laws: mass conservation and momen-

tum conservation. In what follows, the equations constituting these conservation laws

are briefly presented. The interested reader may refer to the textbook of Versteeg and

Malalasekera [249] for a detailed derivation of the governing equations.

2.1.1. Conservation of Mass

Conservation of mass is a fundamental concept in fluid mechanics, described by the conti-

nuity equation. Observing the fluid in an infinitesimally small control volume, the change

of mass is equal to the sum of mass flux over the bounding faces. Two assumptions about

the fluid characteristics have to be distinguished concerning the conservation of mass:

compressible and incompressible fluids. In compressible fluids the fluid density is depen-

dent on the surrounding pressure. An incompressible fluid, on the other hand, shows no or

negligible pressure dependency of its density. Hence, the density is taken to be dependent

1A Newtonian fluid is characterised by a linear relationship between velocity and viscous stresses.
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on the temperature only. A common example for an incompressible fluid is water at prac-

tical velocity. Most gases may be assumed to be incompressible for low Mach numbers, as

for instance air for Mach numbers smaller than 0.3. For a compressible fluid the continuity

equation is defined as
∂ρ

∂t
+
∂ρui
∂xi

= 0 , (2.1)

where ρ represents the fluid density, t stands for time and u is the velocity. Due to the

negligible density change, continuity for an incompressible fluid is satisfied if the divergence

of the velocity field is zero and, thus, the continuity equation for an incompressible fluid

becomes
∂ui
∂xi

= 0 . (2.2)

This definition also holds for two-phase flows with two fluids of different density. Reformu-

lating the definition for the conservation of mass with variable density in Eq. 2.1 follows

as
∂ρ

∂t
+ ρ

∂ui
∂xi

+ ui
∂ρ

∂xi
= 0 . (2.3)

Inserting the material derivative of the density, given as

Dρ

Dt
=
∂ρ

∂t
+ ui

∂ρ

∂xi
= 0 (2.4)

in Eq. 2.3 follows as

ρ
∂ui
∂xi

= 0 , (2.5)

therefore, proving that mass is conserved applying Eq. 2.2.

2.1.2. Transport of Momentum

The transport of momentum is described by the momentum equation and originates from

Newton’s second law. The momentum equation for a Newtonian fluid is

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂τij
∂xj

+
∑

fi , (2.6)

where τ is the tensor representing stresses in the fluid and f are external forces per unit

volume2 acting on the fluid, such as the force due to gravity. The stresses in a general

Newtonian fluid can be described as

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk
− p δij , (2.7)

where µ is the viscosity of the fluid, p represents pressure and δij is the Kronecker delta.

For an incompressible fluid the stress tensor simplifies to

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− p δij . (2.8)

2Alternative terms for force per unit volume are volumetric force or body force.
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Inserting the stress tensor of Eq. 2.8 in Eq. 2.6, the momentum equation for an incom-

pressible Newtonian fluid, without external body forces, becomes

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
. (2.9)

External body forces, such as gravity, may be included in the momentum equation as a

source term on the right-hand side. For instance, including the volumetric force due to

gravity fg = ρ g in the momentum equation follows as

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ fg,i . (2.10)

2.1.3. Transport of Passive Scalars

The transport of a passive scalar property, such as thermal energy, in a fluid is described by

a convection-diffusion equation, typically referred to as transport equation. The transport

equation for the general fluid variable φ of an incompressible fluid is given as

ρ

(
∂φ

∂t
+ uj

∂φ

∂xj

)
− ∂

∂xj

(
Γφ

∂φ

∂xj

)
= Si , (2.11)

where Γφ is the diffusion coefficient of fluid variable φ. The first term on the left-hand

side describes the temporal derivative of φ followed by the convective and diffusive trans-

port. The right-hand side contains the non-linear and linear source terms of the transport

variable, combined in source term S.

2.2. Finite Volume Method

The finite volume method is the most frequently used discretisation framework in CFD.

It can be applied to every common, non-overlapping mesh and all approximations are

based on physical conservation principles. In the finite volume method, control volumes

are defined for each element of the mesh and each element is bounded by a finite number

of faces. The integral of each equation has to be fulfilled for each control volume. Thus,

the discrete value of a general, continuous fluid variable φ(x, t) at control volume P has

to fulfil the condition ∫
VP

(φ(x, t)− φP ) dV = 0 , (2.12)

where V represents volume and subscript P denotes discrete values at the centre of control

volume P . The discretisation accuracy of fluid variable φ is directly dependent on the

variation of φ = φ(x, t). In order to obtain a second-order accurate approximation, it is

assumed that the variation in space and time is linear. Therefore, applying the Gauss

theorem3, the value at element centre P is calculated based on the value at the volume

3The Gauss theorem is also frequently called Green-Gauss theorem or divergence theorem.
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surface as ∫
VP

∇φ dV =

∮
Ω
φn dΩ , (2.13)

where Ω denotes the surface area and n is the outward-pointing surface normal vector.

Since the surface of the volume is constituted by a finite number of flat faces f , the

integration over the surface can be expressed as∮
Ω
φn dΩ =

∑
f

(∫
f
φ dS

)
, (2.14)

with S being the outward-pointing surface vector. The flow variable φ, however, is gener-

ally not known everywhere on a given surface but rather at element centres or face centres

only, dependent on the variable arrangement. Therefore, every face is represented by its

centre point, the so-called midpoint rule, assuming a linear variation of φ in space. This

leads to the second-order approximation at face centres

∑
f

(∫
f
φ dS

)
≈
∑
f

φf nf Af , (2.15)

where subscript f denotes values at face centre f and surface vector S is represented by

its individual components, the outward-pointing unit normal vector nf of face f and the

face area Af . As a result, the volume integral of Equation 2.13 is approximated as∫
VP

∇φ dV ≈
∑
f

φf nf Af . (2.16)

For an in-depth explanation and discussion of the finite volume method the interested

reader may refer to the textbook of Versteeg and Malalasekera [249] or the PhD thesis of

Jasak [106].

2.2.1. Mesh Errors

The distribution and quality of the computational mesh is very important for the accuracy

of the simulation results and the stability of the numerical solver. Using arbitrary meshes,

three potential errors with respect to the orientation and position of the mesh faces have

to be considered [111], as illustrated in Figure 2.1:

1. non-uniformity,

2. skewness, and

3. non-orthogonality.

A mesh is called uniform if the shared face of two adjacent computational nodes is situated

equidistant with respect to both nodes. For comparison, Figure 2.1a shows a face that is

situated non-uniform. In the context of an interpolation from adjacent element centres to

the shared face centre, a face is called skewed if the geometric face centre does not coincide

with the point where the vector connecting the adjacent element centres intersects the face,
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(a) Non-uniformity (b) Skewness

(c) Non-orthogonality

Figure 2.1.: Mesh cell P with neighbour cell Q and shared face f of a non-uniform, a
skewed and a non-orthogonal quadrilateral two-dimensional mesh.

as illustrated in Figure 2.1b. Uniformity and skewness are of significance when values

stored at the element centres are to be interpolated to face centres, or vice versa. Non-

orthogonality of mesh faces represents another possible source of error. Again, with respect

to an interpolation from adjacent element centres to the shared face centre, a mesh face

is called non-orthogonal if the vector connecting the two adjacent element centres is not

parallel to the normal vector of the face, which is shown in Figure 2.1c. Non-orthogonality

presents a particular problem in cases where gradients are to be evaluated at face centres,

for instance in the viscosity term of the momentum equation (Eq. 2.10) or in the diffusion

term of the transport equation (Eq. 2.11).

2.2.2. Spatial Interpolation

In case of a uniform mesh, as illustrated in Figure 2.2a, a second-order interpolation from

element centres to face centres can be performed by a linear interpolation, defined as

φf =
φP + φQ

2
, (2.17)

where P and Q denote the elements adjacent to face f . Using unstructured meshes, how-

ever, a uniform constellation of two elements is the exception rather than the norm. If the

mesh is non-uniform, illustrated for example in Figure 2.1a, an appropriate interpolation

coefficient for the element-centred values has to be defined to improve the accuracy of the

interpolation. Thus, the face-centred value is defined as

φf = (1− δ)φP + δ φQ (2.18)
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with δ being the interpolation coefficient. The most intuitive approach is weighting the

element-centred values by their inverse distance to face centre f [174], with the interpola-

tion coefficient following as

δ =
|rP |

|rP |+ |rQ|
, (2.19)

where rP and rQ represent the vectors from element centres P and Q to face centre

f , respectively. The linear interpolation with inverse distance weighting is second-order

accurate on Cartesian meshes and generally if rP = rQ [260]. However, distance weighting

is not the only possibility and Dalal et al. [36] used a volume-weighted interpolation

approach, given as

δ =
VP

VP + VQ
, (2.20)

with V representing the volume of the respective element.

Interpolating element-centred values to face centres by means of Eq. 2.18 leads to signif-

icant errors on meshes with considerable skewness, illustrated in Figure 2.1b. In order to

correct the interpolation for mesh skewness, the element-centred values are interpolated

to interpolation point f ′, which is defined as the intersection point between the face and

the vector connecting the element centres, as depicted in Figure 2.2b. The interpolated

value at point f ′ is then corrected to face centre f using the first derivative at face centre

f . For face f with its adjacent elements P and Q, following Figure 2.2b, the interpolation

is defined as

φf = (1− δ) φP + δ φQ +
[
(1− δ) ∇φ|P + δ ∇φ|Q

]
rf , (2.21)

where rf is the vector from interpolation point f ′ to face centre f . The most common

way to weight the element-centred values in Eq. 2.21 is to apply the inverse distance from

element centres P and Q to interpolation point f ′, following Eq. 2.19. Perez-Segarra et al.

[177] proposed an alternative weighting, where interpolation point f ′ is the point situated

on the line connecting elements P and Q closest to face centre f . The interpolation

coefficient δ is specified as

δ =
rf · sf

∆s
, (2.22)

with sf representing the unit vector pointing from cell centre P to cell centre Q and ∆s

being the distance between cell centres P and Q, as depicted in Figure 2.2a. Farre et al.

[65] did not find significant differences in accuracy between the interpolation coefficients

presented in Eq. 2.19 and Eq. 2.22, but their study also suggests that weighting the element

values using Eq. 2.22 improves convergence on severely non-orthogonal meshes. Assuming

a perfectly orthogonal mesh both weighting methods result in the same interpolation

coefficients. Karimian and Straatman [113] used δ = 0.5 to weight the element-centred

values, arguing that it reduces the likeliness of extreme values at face centres because of

the symmetric weighting.

For the remainder of this thesis, if not explicitly stated otherwise, the gradient-corrected

interpolation presented in Eq. 2.21 with inverse distance weighting as defined by Eq. 2.19

is applied for spatial interpolation.
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(a) Equidistant Cartesian mesh (b) Triangular mesh

Figure 2.2.: Mesh element P with neighbour element Q and shared face f of an equidis-
tant Cartesian and a triangular two-dimensional mesh including interpolation
entities.

2.2.3. Convection Term

The discretisation of convection terms is presented using the transport equation defined

in Eq. 2.11 and is equally applicable to other convection-diffusion equations, such as the

momentum equation. The convection term of Eq. 2.11 is discretised by integrating over

the element volume using the Gauss theorem and the midpoint rule, following as∫
VP

ρ uj
∂φ

∂xj
dV ≈

∑
f

φf ρf (nf · uf )Af (2.23)

≈
∑
f

ṁf φf , (2.24)

where φf is the fluid variable at the centre of face f and ṁf = ρf (uf ·nf )Af is the mass

flux through the centre of face f . The transport variable φf at face f is evaluated using

an appropriate differencing scheme. In what follows, two common convection differencing

schemes are discussed, upwind differencing and central differencing. Total variation dimin-

ishing (TVD) schemes represent an alternative for the discretisation of convection terms

but are not considered in this work. For a summary of TVD schemes for unstructured

meshes the interested reader may consult the paper of Darwish and Moukalled [38].

The upwind differencing (UD) scheme is a first-order accurate differencing scheme used

in convection-dominated flows. The face value of fluid variable φ is determined based on

the flow direction and follows as

φf =

φU for ṁf ≥ 0

φD for ṁf < 0 ,
(2.25)

where U and D denote the upwind and downwind elements, respectively. Advantages

of the UD scheme are the guarantee of a bounded solution [174] and the simplicity of

implementation. On the other hand, the UD scheme introduces a substantial amount of

numerical diffusion which adversely affects the quality of the solution.
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The central differencing (CD) scheme assumes a linear variation of fluid variable φ.

Using the values at both adjacent elements, the CD scheme in its general form is defined

as

φf = (1− δ) φP + δ φQ , (2.26)

where δ is the interpolation coefficient as defined in Section 2.2.2. The CD scheme may

be corrected as demonstrated in Eq. 2.21 if meshes with high skewness are used. An al-

ternative CD-type scheme follows a deferred correction approach. In a deferred correction

approach a low-order scheme is implemented implicitly to reduce the stencil size and to

increase the diagonal dominance of the matrix of the linear equation system, and a high-

order correction is implemented explicitly to increase the accuracy of the discretisation

scheme. The CD-scheme implemented using a deferred correction approach is based on

an implicit UD scheme implementation and an explicit high-order correction by means of

a gradient correction. The face value is defined as

φf = φU +∇φ|U · rU , (2.27)

where rU is the vector connecting upwind element centre U and face centre f . This

implementation provides an increased numerical stability compared to the traditional CD

scheme implementation (Eq. 2.26) as a result of the unconditionally stable UD scheme

representing the implicit term. The CD scheme is second-order accurate [68] but may

result in unphysical oscillations since the scheme is not bounded for convection-dominated

flows [106, 174]. Typically, the CD scheme becomes unstable for Peclet numbers Pe =

∆x |u|/Γ ≥ 2 [49], where ∆x is the mesh spacing and Γ is the diffusion coefficient. Studies

of Farre et al. [65] indicate that the CD scheme leads to divergent results if Pe� 10.

The results of a simple test case, following a test case reported by Jasak [106, chap.

3.7.1], are shown below to demonstrate the application of UD and CD schemes. The step

profile of a passive scalar is convected at an angle of 30◦ on an equidistant Cartesian

mesh with a Courant number of Co = |u|∆t/∆x = 0.1. The applied boundary conditions

are illustrated in Figure 2.3a. As expected, the result for upwind differencing, depicted

in Figure 2.3b, shows significant numerical diffusion. Central differencing, on the other

hand, results in considerably less numerical diffusion but leads to notable oscillations of

the scalar field, as shown in Figure 2.3c. The results presented in Figure 2.3 are in excellent

agreement with the results of Jasak [106] for this test case.

2.2.4. Diffusion Term

Applying the Gauss theorem and the midpoint rule to the integral form of the diffusion

term of the transport equation presented in Eq. 2.11 is given as∫
VP

∂

∂xj

(
Γφ

∂φ

∂xj

)
dV ≈

∑
f

(Γφ∇φ)f nf Af . (2.28)

Considering a mesh with orthogonally oriented faces and a linear spatial variation of φ,

the gradient at face centre f can be calculated with second-order accuracy using central
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(a) Boundary conditions

(b) Upwind differencing (c) Central differencing

Figure 2.3.: Convection of a step profile at a constant oblique velocity using upwind dif-
ferencing and central differencing.

differencing, defined as

∇φ|f =
φQ − φP

∆s
. (2.29)

However, on unstructured meshes orthogonality is a rare exception and non-orthogonality

has to be corrected to maintain the stability of the solving algorithm.

A deferred correction approach is typically deployed to correct the non-orthogonality

of the mesh [162]. The gradient calculation is decomposed into an orthogonal and a

non-orthogonal contribution, following as

∇φ|f · nf = ∇φ|f · (αf sf ) + ∇φ
∣∣
f
· (nf − αf sf ) , (2.30)

where sf is the normalised vector connecting the element centres adjacent to face f and

αf is the scaling factor of the decomposition. The first term on the right-hand side of Eq.

2.30, representing the orthogonal contribution, is calculated using the nearest neighbours

as

∇φ|f · (αf sf ) = αf
φQ − φP

∆s
(2.31)

and is implemented implicitly. The face-centred gradient in the second term on the right-

hand side of Eq. 2.30, which is the non-orthogonal contribution, is taken as the average of

the gradients at the adjacent element centres of the previous iteration, defined as

∇φ
∣∣
f

= (1− δ) ∇φ|P + δ ∇φ|Q , (2.32)
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and is implemented explicitly. Thus, Eq. 2.30 becomes

∇φ|f · nf = αf
φQ − φP

∆s
+
[
(1− δ) ∇φ|P + δ ∇φ|Q

]
· (nf − αf sf ) . (2.33)

and the complete diffusion term follows as

(Γφ∇φ)f nf Af =

[
αf
φQ − φP

∆s
+
[
(1− δ) ∇φ|P + δ ∇φ|Q

]
· (nf − αf sf )

]
Γφ,f Af .

(2.34)

Three basic decompositions for the non-orthogonal correction are available [106, 177],

determined by the choice of the scaling factor αf , as illustrated in Figure 2.4. The minimal

correction approach, αf = nf ·sf , minimises the non-orthogonal correction [277]. The or-

thogonal correction approach [50, 162], αf = 1, leaves the contribution of the implicit term

unchanged regardless of the angle between nf and sf . The contribution of the implicit

part increases with increasing non-orthogonality if the overrelaxed correction [111, 152],

αf = (nf · sf )−1, is used. According to Zwart [277], the minimal correction approach

provides theoretically the highest accuracy of the three approaches, as the length of the

correction vector n − αs is minimised. However, as studies of Jasak [106] demonstrate,

the minimal correction approach is unstable for large non-orthogonalities, because the

contribution of the implicit term diminishes as the angle between n and s increases. The

orthogonal correction is more robust than the minimal correction approach at the cost

of a lower accuracy. Ahipo and co-workers [2, 234] showed that the orthogonal correc-

tion approach, αf = 1, diverges if the non-orthogonality exceeds an angle of 38◦. The

overrelaxed approach provides the highest numerical stability of the three approaches on

meshes with considerable non-orthogonality [65, 106, 236], since the coefficient of the im-

plicit term is unconditionally positive [49, chap. 6.5], increasing the diagonal dominance

of the coefficient matrix. Because this thesis focuses on unstructured meshes with po-

tentially significant local non-orthogonality, the overrelaxed correction following Mathur

and Murthy [152] with αf = (nf · sf )−1 is used throughout this work to assure a stable

convergence.

(a) Minimal correction (b) Orthogonal correction (c) Overrelaxed correction

Figure 2.4.: Non-orthogonal correction methods at face f of a non-orthogonal two-
dimensional mesh.

The diffusion of a general fluid variable is simulated on a non-orthogonal hexahedral

mesh to demonstrate the necessity and capabilities of the applied correction method. A

sinusoidal profile of the general fluid variable φ is transported within a cubical domain by

diffusion only, as illustrated in Figure 2.5a. The results given in Figures 2.5b and 2.5c,
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calculated without non-orthogonal correction, show significant errors which are clearly

induced by the underlying mesh. Performing the same test case using the overrelaxed non-

orthogonal correction, the result obtained on this non-orthogonal mesh, shown in Figure

2.6a, is in very good agreement with the result obtained on the equidistant Cartesian

mesh, shown in Figure 2.6b, despite the considerable non-orthogonality of the mesh.

(a) Boundary conditions

(b) Smoothed contours (c) Cell-centred values

Figure 2.5.: Diffusion of a sinusoidal profile on a non-orthogonal hexahedral mesh without
non-orthogonal correction.

(a) Non-orthogonal
hexahedral mesh

(b) Cartesian mesh

Figure 2.6.: Diffusion of a sinusoidal profile on a non-orthogonal hexahedral mesh with
non-orthogonal correction and on an equidistant Cartesian mesh.
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2.2.5. Transient Term

The discretisation of time as the fourth dimension is required to perform unsteady simu-

lations. The major difference between transient terms and the spatial terms discussed in

previous sections is the direction of influence. Spatial terms describe an elliptical problem

whereas transient terms are parabolic, as there is no backward influence in time.

A solution at any given time instant is calculated from a given distribution at the

preceding time instant. Therefore, discretising the variation in time of a given initial

value problem
∂φ

∂t
= f(t, φ(t)) (2.35)

follows as ∫ t

t−∆t

∂φ

∂t
dt = φt − φt−∆t =

∫ t

t−∆t
f(t, φ(t))dt , (2.36)

where the superscripts t−∆t and t denote the value at the old and the new time instant,

respectively. Evaluating the integral on the right-hand side requires an approximation

according to the chosen discretisation scheme. Approximating the right-hand side using

the values at the old time instant results in

φt = φt−∆t + f(tt−∆t, φt−∆t)∆t+O(∆t) , (2.37)

and is called Explicit Euler or Forward Euler scheme. The Explicit Euler scheme becomes

unstable for large time-steps and, thus, suffers from strict Courant number limitations,

Co ≤ 1, because of its explicit implementation. Approximating the right-hand side instead

with the values at the new time instant, Eq. 2.36 becomes

φt = φt−∆t + f(tt, φt)∆t+O(∆t) , (2.38)

which is called Implicit Euler or Backward Euler scheme. The Implicit Euler scheme

is unconditionally stable and guarantees boundedness of the solution [174]. Both Euler

schemes, explicit and implicit, are first-order accurate.

Applying trapezoidal integration to the right-hand side of Eq. 2.36 results in the second-

order accurate Crank-Nicolson scheme, following as

φt = φt−∆t +
1

2

[
f(tt−∆t, φt−∆t) + f(tt, φt)

]
∆t+O(∆t2) . (2.39)

The Crank-Nicolson scheme is unconditionally stable but is known to potentially cause

unboundedness of the solution [175].

Another second-order accurate temporal discretisation scheme is the Second-Order Back-

ward Euler scheme, also called 3-level Implicit Euler scheme, which uses two previous time

instants in addition to the present time instant for discretisation. In case time-step ∆t is
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constant, Eq. 2.36 discretised using the Second-Order Backward Euler scheme becomes

3φt − 4φt−∆t + φt−2∆t

2∆t
= f(tt, φt) +O(∆t2) (2.40)

φt =
4

3
φt−∆t − 1

3
φt−2∆t +

2

3
f(tt, φt)∆t . (2.41)

Compared to the Crank-Nicolson scheme, the Second-Order Backward Euler scheme is

easier to implement, since the spatial discretisation does not require special attention

and the additional transient term is merely an addition to the right-hand side of the

equation system. Studies by Jasak [106] demonstrated that the Second-Order Backward

Euler scheme and the Crank-Nicolson scheme yield similar results, however, the latter

potentially becomes unbounded.

2.3. Two-Phase Flows

The simulation of two-phase flows requires a numerical representation of the interface

separating the two fluids. The work presented in this thesis utilises a one-fluid formulation,

where the involved fluids are distinguished by their properties, i.e. density and viscosity,

and the force due to surface tension is included in the governing equations as a source term.

In what follows, a brief introduction of important interface tracking and interface capturing

methods is given, followed by a detailed presentation of the Volume of Fluid method, which

is adopted to capture the interface in the presented study. Subsequently, the source term

representing the volumetric surface force is discussed and numerical conservation issues in

interfacial flows are examined.

2.3.1. Overview of Interface Tracking and Capturing Methods

Numerical methods to track or capture interfaces can be classified into two fundamental

categories: interface tracking methods4 and interface capturing methods5. Interface track-

ing methods represent the interface between two immiscible fluids explicitly, either adapt-

ing the Eulerian fluid mesh in a way to resemble the interface, typically called Moving-Mesh

methods [187, 237], or introducing an immersed boundary representing the interface, e.g.

Front-Tracking methods [184, 235, 240]. Moving-mesh methods are able to reproduce

the jump condition of fluid properties at the interface accurately and are able to pre-

cisely impose the force acting at the interface due to surface tension. The required mesh

movement and remeshing in cases of large interface movements makes the implementa-

tion complex, particularly with parallelised computer systems. Consequently, problems

with very high interface curvature and moderate interface movement, such as oscillat-

ing microbubbles [261], are particularly suited for moving-mesh methods. Front-tracking

methods do not require to alter the Eulerian fluid mesh but the adaption of the surface

mesh representing the interface makes the tracking of significant interface deformation dif-

ficult. Front-tracking methods require additional numerical models to simulate interface

4Also called surface methods.
5Also called volume methods or volume tracking methods.
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topology changes, such as breakup or coalescence.

Interface capturing methods rely on an implicit interface representation, which means

the explicit position and shape of the interface is not known. The most important in-

terface capturing methods are Volume of Fluid (VOF) methods [97, 269] and Level-Set

(LS) methods [169, 225]. VOF methods compute the evolution of an interface indicator

function, typically the volume fraction, which is advected based on the underlying flow

field. VOF methods inherently conserve mass but suffer from the absence of an explicit in-

terface representation and the related inaccuracies of calculating interface curvatures with

the available data. Level-set methods use a distance function from the interface, assigning

the zero level-set to the interface, and advect the distance function with the local fluid

velocity. LS methods provide accurate results when the interface is advected parallel to

one of the coordinate axes but suffer from mass loss if the interface is strongly deformed

or in flows with considerable vorticity. VOF and LS methods are in principle capable of

capturing interface breakup and coalescence without additional models, although very fine

meshes are required to diminish numerical artifacts and in case of coalescence it must be

assured that coalescence is physically plausible.

2.3.2. The Volume of Fluid Method

The Volume of Fluid (VOF) method [97] is adopted for the presented work to distinguish

two incompressible, immiscible fluids. The VOF method is among the most widely used

methods for two-phase flows, because it is easy to implement, applicable to arbitrary

meshes and mass conservative. The VOF method assigns a volume fraction γ, typically

called colour function, to every mesh element, representing the local volume fraction,

defined as

γ(x, t) =

0 fluid A

1 fluid B .
(2.42)

Thus, a mesh element holding a colour function value of 0 < γ < 1 contains an interface.

The colour function γ is advected based on the underlying flow field by the transport

equation
∂γ

∂t
+ ui

∂γ

∂xi
= 0 . (2.43)

The fluid properties, i.e. density and viscosity in isothermal flows, are discontinuous at

the interface and are defined based on the colour function as

ρ = ρA(1− γ) + ρB γ (2.44)

µ = µA(1− γ) + µB γ . (2.45)

The accurate advection of the colour function based on the underlying flow is essential

for the outcome of VOF simulations. Two fundamental types of VOF methods may be

distinguished: compressive methods and geometric methods. Compressive VOF methods

discretise the VOF transport equation (Eq. 2.43) with standard numerical differencing

schemes, as for instance the schemes presented in Section 2.2. However, low-order advec-
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tion schemes are not suitable as they lead to significant smearing of the interface, whereas

high-order schemes typically result in numerical oscillations and wrinkling of the interface.

Compressive VOF methods, therefore, use specifically designed spatial advection schemes

based on a donor-acceptor approach [39, 108, 123, 163, 239]. A donor (upwind) and an

acceptor (downwind) cell are assigned for every mesh face with respect to the underlying

flow field. Based on the angle between the local interface normal vector and the nor-

mal vector of the cell face, donor-acceptor schemes blend between compressive downwind

and diffusive upwind schemes. The temporal advection is commonly discretised with a

second-order accurate scheme, such as the Crank-Nicolson scheme or the Second-Order

Backward Euler scheme [39, 161, 238], as first-order schemes are too diffusive to maintain

the sharpness of the interface. Alternatively, the interface is transported using a geometric

method, advecting an explicit representation of the interface which is reconstructed from

the colour function field. The most notable state-of-the-art reconstruction methods are

piecewise linear interface construction (PLIC) methods [9, 133, 180, 199, 205, 247, 269]

and parabolic reconstruction methods [197]. The explicit interface is geometrically fit-

ted to the VOF volume fraction field and advected in an Eulerian, Lagrangian or mixed

Eulerian-Lagrangian fashion [150].

The major advantage of compressive VOF methods compared to geometric methods

are the straightforward implementation, the computational efficiency and, crucially, the

applicability to arbitrary meshes. However, even compressive VOF methods based on

very sophisticated donor-acceptor schemes suffer from considerable numerical diffusion on

unstructured meshes. Geometric methods advect the interface generally very accurately

but are, apart from a few exceptions [101, 149, 150, 155], exclusively available on Carte-

sian meshes. Moreover, the implementation of geometric methods is more complex than

compressive methods and the required computational effort is higher.

For the research presented in this thesis, given the applicability on unstructured meshes

and the computational efficiency, a compressive VOF method is adopted to capture the in-

terface. The numerical discretisation of the VOF transport equation (Eq. 2.43) is discussed

in Section 3.4. The numerical diffusion induced by the interface advection, an important

issue of compressive VOF methods on unstructured meshes, is further investigated as part

of the case studies presented in Chapter 6.

2.3.3. Surface Tension

Surface tension is a property of liquid interfaces caused by the cohesion of the molecules

of the liquid, which enables a liquid interface to resist external forces. A liquid naturally

strives towards the state of minimum potential energy. As a result of the missing neighbour

molecule of the same kind, molecules at the liquid interface have a higher energy than

molecules inside the liquid which are surrounded by molecules of the same kind. Thus,

the liquid minimises the number of molecules at the interface and, therefore, the interface

area, creating an internal pressure which is known as surface tension. The force due

to surface tension restores the balance between repulsive and attractive forces, which is

broken as a result of the missing neighbour molecule [146]. From a thermodynamic point of
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view, surface tension is the work necessary to increase the surface area of a liquid interface

by a given amount, i.e. the work done per unit area. Every fluid pair separated by an

interface, for instance air and water, is characterised by a surface tension coefficient σ,

which represents the factor defining the magnitude of the surface tension acting at their

interface. Considering an interface without external forces such as gravity, surface tension

is defined by the Young-Laplace equation [13]

∆p = pi − po = σ

(
1

r1
+

1

r2

)
= σ κ , (2.46)

where κ denotes the mean curvature of the interface, r1 and r2 are the principal curvature

radii of the three-dimensional interface and pi and po are the pressure inside and outside

the interface, respectively. Inside the interface refers to the concave side of the interface,

which yields the higher pressure, and outside refers to the convex side of the interface,

holding the lower pressure. The article of Navascues [166] provides a detailed review of

the derivation of surface tension from a macroscopic, i.e. mechanical and thermodynamic,

and a microscopic viewpoint.

In a landmark paper, Brackbill et al. [19] proposed the Continuum Surface Force (CSF)

model to numerically describe the effect of surface tension. The CSF model essentially

transforms the molecular surface tension into a volumetric source term, spreading the force

acting at the interface due to surface tension, henceforth simply referred to as surface

force6, over a transition region of finite thickness. The model is constructed in order to

fulfil the Young-Laplace equation presented in Eq. 2.46. The volumetric surface force

acting at the interface for a general interface indicator function C according to the CSF

model is [19]

fs,i = σ κ
1

∆C

∂C

∂xi
, (2.47)

where ∆C = |CA − CB| is the jump of the indicator function distinguishing fluids A and

B. With respect to the VOF method presented in Section 2.3.2 and its colour function γ,

which ranges from 0 to 1, the surface force per unit volume given in Eq. 2.47 simplifies to

fs,i = σ κ
∂γ

∂xi
. (2.48)

A similar definition is used for level-set methods, where the indicator function C in Eq.

2.47 represents the level-set distance function. The interface curvature κ is defined as

κ = −∂mi

∂xi
, (2.49)

where m is the unit normal vector of the interface, which is the normalised first derivative

of the colour function, given as

m =

∣∣∣∣∂xi∂γ

∣∣∣∣ ∂γ∂xi . (2.50)

The volumetric surface force f s defined in Eq. 2.47 is included as a source term in the

6The terms surface tension force and interface force are also frequently used in the relevant literature.

57



momentum equation (Eq. 2.10), which then becomes

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ fg,i + fs,i . (2.51)

A key problem related to the CSF method is the occurrence of unphysical currents

around the interface, so-called parasitic currents. In general, parasitic currents are caused

by the discretisation of a molecular surface force on a macroscopic scale. Lafaurie et al.

[123] found the magnitude of parasitic currents for a spherical fluid particle in a stationary

fluid to satisfy the relationship |u| = C σ/µ, where C is a coefficient dependent on the

numerical method. Parasitic currents represent a substantial problem for surface-tension-

dominated flows, where in extreme cases parasitic currents can be large enough to breakup

the interface. Evidently, parasitic currents develop either due to a local imbalance between

the pressure gradient at the interface and the surface force or due to an inaccurate estima-

tion of the interface curvature. An imbalance between pressure gradient and surface force

can be avoided by a careful implementation, as Francois et al. [71] and Mencinger and Žun

[154] demonstrated successfully. Both studies proved that if a constant curvature value

is imposed at the interface of a circular stationary two-dimensional fluid particle and the

implementation of surface force and pressure gradient match each other, parasitic currents

effectively vanish as their magnitude reduces to solver tolerance or machine precision, re-

spectively. The discretisation of a fully-coupled balanced-force numerical framework for

arbitrary meshes is the topic of Chapter 3.

The second key issue when simulating interfacial flows, particularly when using a VOF

method, is the evaluation of the interface normal vector and the interface curvature. In

order to be able to use classical finite volume methods to determine the interface normal

vector, the colour function γ, or any other interface indicator function for this purpose, has

to be continuous and differentiable [240]. To determine the interface curvature, the colour

function has to be twice differentiable. This requires the colour function γ to change

smoothly over a finite distance rather than suddenly. The colour function, however, is

abruptly varying in space, which leads to substantial aliasing errors in the evaluation

of gradients [34]. The calculation of the interface curvature is investigated in detail in

Chapter 4.

2.3.4. Conservation Issue in Two-Phase Flows

The conservation laws for mass and momentum which build the mathematical foundation

for the prediction of fluid flows, discussed in Section 2.1, require special attention with

respect to two-phase flows. Considering two incompressible, immiscible fluids without

evaporation or condensation, the fluid velocity at either side of the interface is equal [27,

185, 189, 202, 205, 206, 262, 264]. For example, the volume flux upstream and downstream

of the interface must be identical for a liquid fluid front travelling with a constant velocity

through a straight pipe. Thus, the momentum ρu of the lighter fluid is smaller than the

momentum of the heavier fluid. This leads to a momentum defect which represents a
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viable problem for the numerical modelling of interfacial flows with large density ratios.

Figure 2.7 schematically illustrates the momentum exchange in the interface region. In

order to locally conserve momentum, (ρu)A = (ρu)B, the lighter fluid must accelerate and

the denser fluid must decelerate. As a result, a non-zero density gradient, i.e. ρA/ρB 6= 1,

would change the interface thickness with respect to the CSF model. An interface thickness

which is dependent on the density ratio, however, is physically implausible and violates

the CSF method [19]. The conservation of mass is not straightforward either. Although

mass is conserved for a closed domain as well as for an infinitesimally small control volume,

conservation of mass for every individual mesh element is numerically not feasible with

respect to interfacial flows. Examining the example in Figure 2.7, the element containing

the interface has a higher mass entering the element through face e than mass leaving

the element through face f , as a result of the constant volume flux. Enforcing mass

conservation for mesh elements containing the interface would accelerate the flow as a

result of the density jump, which is unphysical.

Figure 2.7.: Schematical illustration of the momentum transport across a liquid front sep-
arating fluids A (grey) and B (white), travelling through a two-dimensional
pipe at constant velocity.

Implementing the momentum equation in its non-conservative form can assure conti-

nuity and a constant interface thickness. The non-conservative form of the momentum

equation (Eq. 2.51) is mathematically identical to its conservative counterpart but has

different numerical implications. The non-conservative form of the momentum equation

is given as

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

1

ρ

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ gi +

fs,i
ρ

. (2.52)

Applying the non-conservative momentum equation, only the element-centred density ρ is

used to calculate the mass flow through faces bounding the element. Therefore, the mass

flow at face f bounding element P is defined as

ṁf = (uf · nf )Af ρP . (2.53)

As a result, the fluid in element P is not accelerated by a non-zero density gradient.

Similarly, only the density of the present time instant is used for the discretisation of the

transient term of the non-conservative momentum equation.

59



3. Numerical Framework

This chapter presents and discusses the numerical framework developed to solve incom-

pressible, isothermal single-phase and two-phase flows on unstructured meshes. In what

follows, the relevant discretisation schemes and techniques for the governing equations are

devised and discussed, based on the mathematical and numerical foundation presented in

Chapter 2. Firstly, the fundamental architecture of the numerical framework is discussed

in Section 3.1 and the discretisation of the momentum equations is presented in Section

3.2. Subsequently, Section 3.3 presents the derivation and discretisation of the continu-

ity constraint and the advecting velocity, using a momentum interpolation method. The

devised advecting velocity includes a revised implementation of the surface force as well

as a novel density weighting, both presented in Section 3.3.4. Moreover, the accurate ap-

plication of the momentum interpolation method on non-Cartesian meshes is explained,

particularly emphasising the necessity of a symmetrical interpolation of the pressure gra-

dient and the body forces to satisfy the filtering properties of the momentum interpolation

method. In Section 3.4 the used compressive VOF methodology is described, followed by a

short description of the implementation of the boundary conditions in Section 3.5 and the

discretisation and implementation of the gradient evaluation in Section 3.6. The solution

procedure of the flow equation system and the interface advection is outlined in Section

3.7. The numerical framework is validated in Section 3.8. This validation also includes a

test case to demonstrate that the presented balanced-force numerical framework is appli-

cable to moving interfaces, a numerical capability and a test case not previously reported

in the literature. The chapter is concluded with a short summary in Section 3.9.

3.1. Basis of the Numerical Framework

This section presents and examines the basic architecture of the developed numerical

framework. The numerical framework is predicated on four cornerstones:

1. applicability to unstructured meshes,

2. a collocated variable arrangement,

3. an implicit discretisation, and

4. a fully-coupled system of equations to describe the flow.

The variable arrangement on the computational mesh plays an important role for the

discretisation and implementation of the numerical framework. The variables can be

arranged in two ways: staggered or collocated. The reason why the type of variable
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arrangement is important can be demonstrated by a finite difference example, considering

a one-dimensional equidistant mesh with mesh spacing ∆x. On a staggered mesh, pressure

is typically stored at cell centres whereas velocity is stored at face centres, meaning that

pressure and velocity have different control volumes. Discretising the momentum equation

at the positions where velocity is stored, for instance at face w with its adjacent cells W

and P , the discretised pressure gradient term of the momentum equation (Eq. 2.9) is

∂p

∂x

∣∣∣∣
w

≈ pP − pW
∆x

+O(∆x2) . (3.1)

No interpolation of pressure or velocity is required, all values are taken as-is. However,

the implementation of a staggered variable arrangement becomes particularly cumbersome

for unstructured meshes [259]. The complexity of a staggered variable arrangement for

an unstructured mesh can be bypassed with a collocated variable arrangement. Using

a collocated mesh, pressure and velocity are stored at cell centres. Thus, the pressure

gradient in the discretised momentum equation becomes

∂p

∂x

∣∣∣∣
P

≈ pe − pw
∆x

=
pP + pE

2∆x
− pP + pW

2∆x
=
pE − pW

2∆x
+O(∆x2) . (3.2)

The pressure gradient at cell centre P becomes independent of the pressure at P on a

collocated mesh and is only determined by the neighbours of cell P . This decoupling

of pressure and its gradient typically leads to unphysical pressure oscillations [174]. An

efficient and the most widely used method to prevent such pressure oscillations is the

interpolation method pioneered by Rhie and Chow [198], which is presented and discussed

in more detail in Section 3.3.

For a three-dimensional flow, the three momentum equations contain four unknown

variables; the three velocity components and pressure. Thus, the equation system is un-

derdefined and an additional relationship between velocity and pressure is required. Two

approaches are available to tackle the problem of the underdefined equation system: seg-

regated algorithms and coupled algorithms. In segregated algorithms the velocity and

pressure calculation are separated, calculating the pressure based on the velocity distri-

bution using a pressure-correction method in an iterative procedure. The velocity field is

approximated by solving the momentum equations using the pressure gradient of the pre-

vious iteration or an initial guess. Subsequently, the new pressure distribution is explicitly

calculated based on the approximated velocity field. The fluxes and pressure gradients are

updated thereafter and the iterative loop starts again until a sufficiently small residual

variation is reached. The most widely used pressure-correction methods are the SIMPLE

[174, 176], SIMPLER [174] and PISO [103] algorithms. In the context of two-phase flows

with appreciable surface tension and density ratio, the pressure Poisson equation

∇ · 1

ρ
∇p =

1

∆t
∇ · u , (3.3)

typically used in the aforementioned pressure correction procedures, becomes ill-conditioned

due to the discontinuous pressure and density fields in conjunction with the continuous

61



velocity field [58, 86], and as a result the pressure-correction step becomes computationally

very expensive [194] and the numerical stability suffers [248].

An alternative to segregated flow solvers using pressure-correction methods is to con-

struct and solve a fully-coupled implicit equation system, as for instance in [22, 31, 32, 40,

51, 246, 248]. Considering a fully-coupled equation system, the equations describing the

flow by means of its primitive variables are solved simultaneously. This requires a fourth

equation to describe the relationship between pressure and velocity to close the equation

system. Since the continuity equation (Eq. 2.2), which is naturally the fourth equation of

the set of equations describing incompressible, isothermal flows in three dimensions, does

not contain pressure but is merely an additional constraint on the velocity field, the major

issue is to define a fourth equation which is independent of the momentum equations and

contains pressure as well as velocity. As shown in Section 3.3, an equation which fulfils

the continuity equation and provides a strong pressure-velocity coupling can be derived

using the interpolation method first proposed by Rhie and Chow [198]. This equation,

from hereon simply referred to as continuity constraint, provides an additional relation-

ship between pressure and velocity as a result of the implicitly included pressure-velocity

coupling. Therefore, the equation system describing the flow has the same number of

independent equations as it has unknown variables and can be written in its generic form

as 
x-momentum equation

y-momentum equation

z-momentum equation

continuity constraint

 ·

u

v

w

p

 = b , (3.4)

where u, v and w are the velocity components, p is pressure and b is the right-hand side

vector of the equation system. The solution of a fully-coupled implicit equation system re-

quires more computational memory than a segregated solution approach and the solution

of the fully-coupled system of equations also suffers from similarly ill-conditioned equations

as the solution of the pressure-correction equation of segregated methods and the related

increase in required computational resources. However, the fully-coupled implicit approach

is more robust than a segregated solution methodology as a result of the strong, implicit

pressure-velocity coupling [51]. The strong pressure-velocity coupling is particularly de-

sirable for the simulation of two-phase flows, because of the large, quasi-discontinuous

pressure jump resulting from surface tension and the potentially large density ratio be-

tween the interacting fluids. Additionally, continuity is inherently satisfied because the

same velocities are used for the momentum equations and the continuity constraint.

3.2. Momentum Equations

An individual momentum equation is solved for each of the three coordinate axes of the

spatial domain. In order to prohibit the acceleration of the flow due to non-zero density

gradients at interfaces in two-phase flows, the momentum equations are implemented

in their non-conservative form, as defined in Eq. 2.52. In the following sections, the
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discretisation of each term of Eq. 2.52 is presented and, where applicable, the differences

between single-phase and two-phase flows are discussed. It is worth mentioning that the

presented discretisation methods equally apply to all three momentum equations.

3.2.1. Transient Term

The transient term of the momentum equation is discretised using the Second-Order Back-

ward Euler scheme, presented in Section 2.2.5. For a variable time-step ∆t, the Second-

Order Backward Euler scheme for fluid variable φ can be derived by developing the Taylor

series of φ at the previous time instant t−∆t1

φt−∆t1 = φt −∆t1
∂φt

∂t
+

∆t21
2

∂2φt

∂t2
+O(∆t3) (3.5)

and at the previous-previous time instant t−∆τ

φt−∆τ = φt −∆τ
∂φt

∂t
+

∆τ2

2

∂2φt

∂t2
+O(∆t3) , (3.6)

where ∆t1 is the present time-step, ∆t2 is the previous time-step and ∆τ = ∆t1 + ∆t2.

After multiplication by ∆t21/∆τ
2, Eq. 3.6 becomes

∆x2
1

∆τ2
φt−∆τ =

∆x2
1

∆τ2
φt − ∆x2

1

∆τ

∂φt

∂t
+

∆t21
2

∂2φt

∂t2
+O(∆t3) . (3.7)

Subtracting Eq. 3.7 from Eq. 3.5 then gives

φt−∆t1 − ∆t21
∆τ2

φt−∆τ = φt
(

1− ∆t21
∆τ2

)
+
∂φt

∂t

(
∆t21
∆τ
−∆t1

)
+O(∆t2) (3.8)

and after rearranging, the temporal derivative of φ follows as [144]

∂φt

∂t
=

(
1

∆t1
− ∆τ

∆t21

)[(
1− ∆t21

∆τ2

)
φt − φt−∆t1 +

∆t21
∆τ2

φt−∆τ

]
+O(∆t2) . (3.9)

Eq. 3.9 is identical to Eq. 2.41 if ∆t1 = ∆t2. As a result, the discretisation of the transient

term of the non-conservative momentum equation applying the Second-Order Backward

Euler scheme is given as∫
VP

ρ
∂ui
∂t

dV ≈ ρtP
(

1

∆t1
− ∆τ

∆t21

)[(
1− ∆t21

∆τ2

)
uti,P −u

t−∆t1
i,P +

∆t21
∆τ2

ut−∆τ
i,P

]
VP . (3.10)

3.2.2. Convection Term

Following the discretisation of fluid variable φ, discussed in Section 2.2.3, the convection

term of the momentum equation is discretised as∫
VP

ρ uj
∂ui
∂xj

dV ≈
∑
f

ṁf ui,f , (3.11)
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where ui,f is the face velocity and ṁf is the mass flux through face f . Because of the non-

conservative implementation of the momentum equations, the mass flux is implemented

as defined in Eq. 2.53. Using an upwind-based formulation, the face velocity is defined as

ui,f = ui,U + ψ δD (ui,D − ui,U ) . (3.12)

The upwind cell U is the cell located upstream and adjacent to face f , and, accordingly, the

downwind cell D is the cell located downstream and adjacent to face f . The flux limiter

ψ defines the applied differencing scheme, i.e. ψ = 0 for first-order upwind differencing

and ψ = 1 for central differencing, and δD is the inverse distance interpolation coefficient,

defined as

δD =
|rU |

|rU |+ |rD|
, (3.13)

where rU is the vector connecting the upwind cell centre U with face centre f and rD

denotes the vector connecting the downwind cell centre D with face centre f . The velocity

at face centre f is implemented implicitly, whereas the mass flow of the previous iteration

is used. For the work presented in this thesis the central differencing (CD) scheme is used,

as it diminishes numerical diffusion and is second-order accurate.

3.2.3. Viscous Term

Following the discretisation and the non-orthogonal correction presented for the generic

diffusion term in Section 2.2.4, the viscosity term of the incompressible momentum equa-

tion is discretised as∫
VP

∂

∂xj

[
µf

(
∂ui
∂xj

+
∂uj
∂xi

)]
dV ≈

∑
f

µf

[(
αf
ui,Q − ui,P

∆s︸ ︷︷ ︸
orthogonal

+
∂ui
∂xj

∣∣∣∣
f

(nf − αf sf )︸ ︷︷ ︸
non-orthogonal

)

+
∂uj
∂xi

∣∣∣∣∣
f

nf

]
Af , (3.14)

including a non-orthogonal correction which decomposes the first term of the left-hand

side of Eq. 3.14 into an orthogonal and a non-orthogonal part, as previously presented in

Eq. 2.34. The second term of the discretised viscous term represents the average of the

cell-centred gradients at the face, defined as

∂ui
∂xj

∣∣∣∣∣
f

(nf − αf sf ) =

(1− δ) ∂ui
∂xj

∣∣∣∣∣
P

+ δ
∂ui
∂xj

∣∣∣∣∣
Q

 (nf − αf sf ) . (3.15)

The interpolation to the face centre is weighted by the inverse distance to face f following

the work of Demirdžić [49], with δ being the interpolation coefficient as discussed in Section

2.2.2. The third term on the ride-hand side of Eq. 3.14 is averaged in the same way. As

defined in Section 2.2.4, the scaling factor αf is defined as αf = (nf · sf )−1.

The implementation of the viscous term as defined in Eq. 3.14 is identical for single-phase

flows and two-phase flows. However, if two interacting fluids hold different viscosities, the
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interpolation of the viscosity at face centres µf requires special consideration in two-phase

flows. Two basic interpolation methods can be distinguished [119], the arithmetic mean

µf =
µP + µQ

2
(3.16)

and the harmonic mean

µf =
2

µ−1
P + µ−1

Q

. (3.17)

Since the arithmetic mean gives equal weight to the fluids on either side of the face,

the fluid with smaller viscosity is accelerated. The harmonic mean, on the other hand,

gives more weight to the contribution of the less viscous fluid, avoiding a considerable

acceleration of the less viscous fluid [67, 190, 200]. The harmonic mean is used for all

simulations presented in this thesis as it provides a meaningful interpolation of the face

viscosity and reduces the impact of large viscosity ratios.

3.2.4. Pressure Term

Similar to the other spatial terms, the pressure term of the momentum equation is discre-

tised using the Gauss theorem and the midpoint rule. The accuracy of the interpolation

and the stability of the numerical implementation is increased by means of a gradient-

based skewness correction as presented in Eq. 2.21, using explicitly calculated gradients.

Therefore, the pressure discretisation follows as∫
VP

∂p

∂xi
dV ≈

∑
f

[
(1− δ) pP + δ pQ + ∇p

∣∣
f
rf

]
ni,f Af , (3.18)

where ni,f is the i-th component of the outward-pointing unit normal vector of face f and

rf is the vector from the interpolation point to the actual face centre. The interpolated

pressure gradient at the face is defined as

∇p
∣∣
f

= (1− δ) ∇p|P + δ ∇p|Q . (3.19)

The interpolation coefficient δ is determined using the inverse distance weighting defined

in Eq. 2.19.

3.2.5. Gravity

The volumetric gravity force fg = ρ g is implemented by means of a source term Sg, fol-

lowing the work of van Wachem et al. [248]. For single-phase flows on Cartesian meshes the

gravity force can be implemented in a straightforward manner, integrating the volumetric

gravity force over the control volume

Fg,i =

∫
VP

fg,i dV =

∫
VP

ρ gi dV ≈ ρ gi VP . (3.20)

On the other hand, because gravity results in a pressure gradient, the gravity force should

be discretised using a similar computational stencil as for the pressure gradient. Therefore,
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the gravity force is represented by source term Sg, defined at cell centre P as

fg,i ≈ Sgi,P =
1

VP

∑
f

(g · af ) ρf nf,iAf , (3.21)

where subscript f denotes all faces bounding cell P , Af is the area of face f and af =

xf − xP is the co-variant cell face vector, with xf and xP being the position vector of

face centre f and cell centre P , respectively.

The source term describing gravity requires special consideration if non-zero density

gradients occur, as it is typically the case in two-phase flows because the two fluids have

different densities. Similar to viscous stresses, the gravity force is not constrained by

conservation laws. Thus, following the same reasoning as for the interpolation of the

viscosity to face centres, density is interpolated to face centres using the harmonic mean

[67, 159], defined as

ρf =
2

ρ−1
P + ρ−1

Q

, (3.22)

in order to avoid a strong acceleration of the lighter fluid near the interface.

3.2.6. Surface Tension

In the presented finite volume framework, surface force is modelled using the CSF model

(see Eq. 2.48) and discretised as

Fs,i =

∫
VP

fs,i dV ≈ σ κP
∂γ

∂xi

∣∣∣∣
P

VP . (3.23)

Eq. 3.23 is included explicitly in the flow equation system. The surface force, which only

acts in the interface region, results in a pressure jump across the interface. Thus, as

mentioned previously in Section 2.3.3, the pressure gradient integrated over the volume

has to precisely replicate the surface force on a discrete level to avoid numerical artifacts.

The gradient of the colour function is, therefore, discretised in the same way as the pressure

gradient term in Eq. 3.18 and follows as

∂γ

∂xi

∣∣∣∣
P

=
1

VP

∑
f

[
(1− δ) γP + δ γQ +

(
(1− δ)∇γ|P + δ∇γ|Q

)
rf

]
ni,f Af . (3.24)

The interpolation coefficient δ is determined by Eq. 2.19 and the colour function gradient

is evaluated explicitly applying the iterative procedure described in Section 3.6. The

evaluation of interface curvature κ is examined in Sections 4.2.2 and 4.3.

66



3.3. Continuity Constraint

The content of this section has in parts been published in:
[54] Denner, F. and van Wachem, B.G.M.: Force-balancing at moving surface-tension-

dominated interfaces on collocated unstructured meshes. 8th International Confer-
ence on Multiphase Flow (ICMF 2013), 26 - 31 May 2013, Jeju, Korea.

[55] Denner, F. and van Wachem, B.G.M.: Fully-coupled balanced-force VOF framework
for arbitrary meshes with least-squares curvature evaluation from volume fraction.
Numerical Heat Transfer, Part B: Fundamentals, accepted for publication. DOI:
10.1080/10407790.2013.849996

As briefly discussed in Section 3.1, the equation system of the discretised momentum equa-

tions describing the fluid is underdefined, with three momentum equations containing four

unknown variables: the three Cartesian velocity components and pressure. Using a fully

coupled approach, a fourth equation containing the four unknown variables is required.

This problem can be overcome by deriving a fourth equation using the interpolation ap-

proach first proposed by Rhie and Chow [198], which was initially introduced to prevent

pressure-velocity decoupling. This approach introduces a third-order pressure gradient

term to the interpolation of face velocities. This third-order pressure gradient term ef-

fectively dampens out spurious oscillations in the pressure field, arising from a collocated

variable arrangement. Because the interpolation approach of Rhie and Chow can be de-

rived from the discretised momentum equation, it is generally referred to as momentum

interpolation method or momentum weighted interpolation method. In the proposed nu-

merical framework the face velocities calculated with the momentum interpolation method

are then used to formulate a continuity constraint for every mesh cell which preserves con-

tinuity and assures a strong pressure-velocity coupling.

Several numerical frameworks successfully applied a fully-coupled approach based on the

momentum interpolation method [22, 31, 32, 40, 248]. Cubero and Fueyo [31, 32], Darwish

et al. [40, 42] and Chen and Przekwas [22] published fully-coupled numerical frameworks

for unstructured meshes, devising a continuity constraint using the original formulation of

the momentum interpolation method as introduced by Rhie and Chow [198]. The original

formulation of the momentum interpolation method, however, only considers pressure

gradient terms but neither body forces, which significantly affect the pressure gradient,

nor transient terms. Further developments of the momentum interpolation method also

include body forces [26, 154, 246, 248], ensuring a balance between the pressure gradient

and body forces, as well as transient terms [25, 31, 154, 173, 246], diminishing the time-step

dependency of the pressure-velocity coupling.

In what follows, an advecting velocity unf at face centres f is derived using the momen-

tum interpolation method. The advecting velocity is then used to formulate the continuity

constraint
∂ui
∂xi
≈ 1

VP

∑
f

(uf · nf )Af ≈
1

VP

∑
f

unf Af = 0 , (3.25)

where f denotes all bounding faces of a given mesh cell P , nf is the outward-pointing unit

normal vector of face f and Af is the area of face f . The presented continuity constraint

has five distinct characteristics:
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1. it provides a strong pressure-velocity coupling,

2. it assures an exact balance between pressure gradient and body forces,

3. it fulfils the continuity equation (Eq. 2.2),

4. it can handle arbitrarily large density ratios, and

5. it is applicable to unstructured meshes.

The advecting velocity unf constructed for the continuity constraint is also used to define

the mass flux, thus, assuring a consistently defined convection term of the momentum

equations and further strengthen the coupling of velocity and pressure. The mass flux,

previously defined in Eq. 2.53, is then given as

ṁf = (uf · nf )Af ρP ≈ unf Af ρP . (3.26)

In the following section the general form of the advecting velocity unf is derived. Subse-

quently, the modifications for arbitrary meshes, the treatment of gravity and the implica-

tions for two-phase flows are explained.

3.3.1. Derivation of the Advecting Velocity

The general form of the advecting velocity unf is derived for an equidistant Cartesian mesh

using a first-order temporal discretisation. The temporal discretisation can be extended

to high-order methods without difficulty [31]. Discretising the momentum equation (Eq.

2.9) along the x-coordinate axis using a standard finite volume approach and neglecting

body forces leads to

ρVP
∆t

[
uP − ut−∆t

P

]
+ aPuP −

∑
Q

aQuQ = − ∂p

∂x

∣∣∣∣
P

VP , (3.27)

where P denotes the cell under consideration and Q represents the neighbours of cell P ,

as illustrated in Figure 2.2a. The coefficient a represents the combined implicit coefficient

of the convective and viscous terms of the discretised momentum equation at the current

time instant as defined Section 3.2. After dividing by aP , Eq. 3.27 becomes[
1 +

ρVP
aP∆t

]
uP =

1

aP

∑
Q

aQuQ −
VP
aP

∂p

∂x

∣∣∣∣
P

+
ρVP
aP∆t

ut−∆t
P , (3.28)

which can be further simplified with the abbreviations

c =
ρ

∆t
(3.29)

dP =
VP
aP

(3.30)

ũP =
1

aP

∑
Q

aQuQ , (3.31)
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following as

[1 + c dP ]uP = ũP − dP
∂p

∂x

∣∣∣∣
P

+ c dP ut−∆t
P . (3.32)

Because the advecting velocity is needed at face centres and not at cell centres, an analo-

gous equation is written at the centre of face f shared by cells P and Q, given as

[1 + c df ]uf = ũf − df
∂p

∂x

∣∣∣∣
f

+ c df u
t−∆t
f . (3.33)

The term ũf is determined by means of the adjacent cell centres, applying Eq. 3.32 at cell

centres P and Q, following as

ũf =
1

2
(ũP + ũQ)

=
1

2

{(
[1 + c dP ]uP + dP

∂p

∂x

∣∣∣∣
P

− c dP ut−∆t
P

)
+

(
[1 + c dQ]uQ + dQ

∂p

∂x

∣∣∣∣
Q

− c dQ ut−∆t
Q

)}
. (3.34)

Inserting Eq. 3.34 in Eq. 3.33 leads to

[1 + c df ]uf =
1 + c dP

2
uP +

1 + c dQ
2

uQ

−

[
df

∂p

∂x

∣∣∣∣
f

− 1

2

(
dP

∂p

∂x

∣∣∣∣
P

+ dQ
∂p

∂x

∣∣∣∣
Q

)]

+

[
c df u

t−∆t
f − 1

2

(
c dP ut−∆t

P + c dQ ut−∆t
Q

)]
. (3.35)

This can be further simplified with

df =
dP + dQ

2
=

1

2

(
VP
aP

+
VQ
aQ

)
(3.36)

and

d̂f =
df

1 + c df
. (3.37)

After inserting Eqs. 3.36 and 3.37, Eq. 3.35 becomes

uf =
uP + uQ

2
− d̂f

[
∂p

∂x

∣∣∣∣
f

− 1

2

(
∂p

∂x

∣∣∣∣
P

+
∂p

∂x

∣∣∣∣
Q

)]

+ c d̂f

[
ut−∆t
f −

ut−∆t
P + ut−∆t

Q

2

]
. (3.38)

As previously mentioned, the pressure term in Eq. 3.38 is responsible for damping out

spurious pressure oscillations resulting from the collocated variable arrangement, because
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[195, 249, 270]

∂p

∂x

∣∣∣∣
f

− 1

2

(
∂p

∂x

∣∣∣∣
P

+
∂p

∂x

∣∣∣∣
Q

)
∝ ∂3p

∂x3
. (3.39)

If this relationship does not hold, even a linear pressure profile would activate the pressure

dissipation term on a non-equidistant mesh, which would violate the accuracy of uf and the

filtering function of the pressure term. A detailed derivation of the relationship described

in Eq. 3.39 is given in Appendix B. The entire pressure term in Eq. 3.38 becomes redundant

if the pressure varies linearly in space, which corresponds to the fact that Eqs. 3.1 and

3.2 yield the same result if the pressure field varies linearly and pressure and velocity are

coupled by default.

Including all Cartesian coordinate axes, the advecting velocity unf at face f for single-

phase flows on equidistant Cartesian meshes follows by multiplying Eq. 3.38 with normal

vector nf as

unf = ufnf − d̂f
[
∇p|f nf −

1

2

(
∇p|P + ∇p|Q

)
nf

]
+ c d̂f

[
un,t−∆t
f − ut−∆t

f nf

]
, (3.40)

with

uf =
uP + uQ

2
(3.41)

and analogously for ut−∆t
f . The combined implicit coefficient a of the convective and

viscous terms of the discretised momentum equation, used in Eq. 3.36 to calculate coef-

ficient df , is taken to be the average coefficient of the three momentum equations, i.e.

a = avg {ax, ay, az} with subscripts x, y and z denoting the three coordinate axes. The

product of pressure gradient ∇p|f and normal vector nf at face f is calculated as

∇p|f nf =
pQ − pP

∆s
, (3.42)

with ∆s being the distance between the adjacent cells P and Q, as depicted in Figure

2.2a. The velocity term ufnf and the pressure gradient term ∇p|f nf at the face are

implemented implicitly, providing the required coupling between velocity and pressure

in order to close the fully-coupled equation system. The pressure gradient terms at cell

centres P and Q are implemented explicitly using the pressure gradient of the previous

iteration.

3.3.2. Modifications for Arbitrary Meshes

In the previous section the advecting velocity is derived for an equidistant Cartesian

mesh using the momentum interpolation method. Corrections to Eq. 3.40 are required

if arbitrary meshes are deployed, for instance non-orthogonal/non-equidistant hexahedral

meshes or tetrahedral meshes. Figure 2.2b on page 48 illustrates an example of a face

with its two adjacent cells as part of an unstructured mesh and the relevant interpolation

entities.
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To account for mesh skewness and varying distances from cell to face centres on arbi-

trary meshes, the face velocity is calculated by linear interpolation with inverse distance

weighting from adjacent cell centred velocities, replacing the symmetrical linear interpo-

lation of the face velocity on Cartesian meshes given in Eq. 3.41. The face velocity is,

therefore, given at interpolation point f ′ as

uf ′ = (1− δ)uP + δ uQ , (3.43)

where δ is the inverse distance interpolation coefficient. Additionally, the interpolated

velocity uf ′ is corrected to face centre f by the interpolated velocity gradient

∇u|f ′ = (1− δ)∇u|P + δ∇u|Q . (3.44)

Thus, the velocity at face centre f becomes

uf = (1− δ)uP + δ uQ +
[

(1− δ)∇u|P + δ∇u|Q
]
rf , (3.45)

where rf represents the vector from interpolation point f ′ to face centre f .

Considering mesh with non-orthogonal faces, the pressure term requires a correction

similar to the viscosity term of the momentum equation. The non-orthogonal correction

presented below follows the approach of Zwart [277]. The first pressure term in Eq. 3.40,

∇p|f nf , is decomposed as

∇p|f nf = ∇p|f (αf sf ) + ∇p
∣∣
f

(nf − αf sf ) , (3.46)

where αf = (nf ·sf )−1 is the scaling factor of the non-orthogonal correction as presented in

Section 2.2.4, based on the face normal vector nf and the normalised vector sf connecting

the two adjacent cells. The pressure gradients on the right-hand side of Eq. 3.46 are

discretised as

∇p|f (αf sf ) = αf
pQ − pP

∆s
(3.47)

∇p
∣∣
f

=
1

2

(
∇p|P + ∇p|Q

)
. (3.48)

Inserting the non-orthogonal correction in Eq. 3.40 leads to

unf = ufnf − d̂f
[
αf

pQ − pP
∆s

+
1

2

(
∇p|P + ∇p|Q

)
(nf − αf sf )

− 1

2

(
∇p|P + ∇p|Q

)
nf

]
+ c d̂f

[
un,t−∆t
f − ut−∆t

f nf

]
. (3.49)

After removing the obsolete pressure terms from Eq. 3.49, the advecting velocity at face
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f on an arbitrary mesh becomes

unf = ufnf − αf d̂f
[
pQ − pP

∆s
− 1

2

(
∇p|P + ∇p|Q

)
sf

]
+ c d̂f

[
un,t−∆t
f − ut−∆t

f nf

]
, (3.50)

where uf and ut−∆t
f are interpolated as described in Eq. 3.45.

Because the orthogonal contribution of the pressure term in Eq. 3.50 is interpolated

symmetrically as defined in Eq. 3.47, it is essential that the interpolation coefficient of the

non-orthogonal contribution defined in Eq. 3.48 is 1/2 even on arbitrary meshes to assure

that the relationship defined in Eq. 3.39 holds. Similarly, the interpolation coefficient used

to evaluate coefficient df , given in Eq. 3.36, must also be 1/2 on arbitrary meshes to satisfy

the relationship defined in Eq. 3.39.

On an equidistant orthogonal mesh, such as the equidistant Cartesian mesh used in the

previous section, the velocity interpolation presented in Eq. 3.45 reverts back to the inter-

polation defined in Eq. 3.41 and vector sf = nf . Thus, using Eq. 3.50 for the calculation

of the advecting velocity unf , the implementation for structured and unstructured meshes

is identical and no changes based on the mesh type are required.

3.3.3. Modifications for Gravity

The volumetric gravity force fg, as well as any other body force, has to be taken into

account for the calculation of the advecting velocity. Neglecting body forces can lead

to substantial imbalances, particularly in two-phase flows [37, 154]. Assuming gravity is

acting on a stationary single-phase flow without additional external forces, the momentum

equation reduces to

∇p = Sg . (3.51)

In order to ensure this relationship is valid at the discrete level, the gravity source term Sg

has to be included in the calculation of the advecting velocity using a similar interpolation

as for the pressure gradient. Decomposing the pressure term in Eq. 3.38 into a flow

contribution (denoted with subscript u) and a contribution resulting from the gravity

force (denoted with subscript g), defined as

∇p|f − ∇p
∣∣
f

=
{
∇p|f − ∇p

∣∣
f

}
u

+
{
∇p|f − ∇p

∣∣
f

}
g
, (3.52)

the gravity force must essentially be implemented so that{
∇p|f − ∇p

∣∣
f

}
g
−
[
Sg,f − Sg,f

]
= 0 (3.53)
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to assure a balance between pressure gradient and gravity force. Thus, the advecting

velocity including the gravity source term follows as

unf = ufnf − αf d̂f
[
pQ − pP

∆s
− 1

2

(
∇p|P + ∇p|Q

)
sf

]
+ αf d̂f

[
ρ(g · sf )− 1

2
(Sg,P + Sg,Q) sf

]
+ c d̂f

[
un,t−∆t
f − ut−∆t

f nf

]
. (3.54)

The advecting velocity resulting from Eq. 3.54 ensures an exact balance between pressure

gradient and gravity force. This principle works theoretically also for any other body

force.

3.3.4. Modifications for Surface Tension

The simulation of two-phase flows requires further modification of the momentum interpo-

lation method applied to determine the advecting velocity at cell faces, since large density

jumps at the interface may occur and because surface tension significantly affects the

pressure gradient.

The effect of a changing density has to be taken into account when simulating two-phase

flows, specifically if large density jumps at interfaces occur. The density ρf at mesh face

f is calculated by means of a harmonic average of the densities at adjacent cell centres,

as defined in Eq. 3.22. The coefficient c, defined previously in Eq. 3.29, containing ρf at

face f then becomes

cf =
ρf
∆t

(3.55)

and, therefore, Eq. 3.37 becomes

d̂f =
df

1 + cfdf
. (3.56)

In order to improve the stability of the numerical framework in cases of large density

ratios between the two fluids, it is proposed to weight the second pressure term of Eq. 3.50

by the ratio of face density and cell density. The motivation behind this weighting is to

align the pressure term of the advecting velocity with the pressure term of the momentum

equation, as the pressure term in the momentum equation is effectively weighted by the

density as well, and to dampen pressure oscillations potentially arising from large density

jumps at the interface. The proposed advecting velocity then follows as

unf = ufnf − αf d̂f
[
pQ − pP

∆s
−
ρf
2

(
∇p|P
ρP

+
∇p|Q
ρQ

)
sf

]
+ cf d̂f

[
un,t−∆t
f − ut−∆t

f nf

]
. (3.57)

The potential of this approach regarding the stability of the numerical framework is demon-

strated in Section 3.8.4.1.

Because of its significant impact on the pressure field, the surface force has to be included
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in the calculation of the advecting velocity for two-phase flows, similar to the inclusion

of the gravity force discussed in Section 3.3.3. Considering a stationary two-phase flow

without gravity or any other external body forces, the momentum equation reduces to

∇p = f s . (3.58)

Thus, in a balanced-force framework the pressure gradient ∇p and the volumetric surface

force f s must match each other on a discrete level. Similar to the relationship defined in

Eq. 3.53 for gravity, the condition{
∇p|f − ∇p

∣∣
f

}
σ
− σ

[
κf ∇γ|f − κ∇γ

∣∣
f

]
= 0 , (3.59)

where subscript σ denotes the pressure contribution resulting from surface tension, must

be satisfied to provide a balance between pressure gradient and surface force. With surface

force f s defined according to Eq. 2.48 and by applying the same discretisation stencil for

colour function and pressure, the advecting velocity at face f is given as

unf = ufnf − αf d̂f
[
pQ − pP

∆s
−
ρf
2

(
∇p|P
ρP

+
∇p|Q
ρQ

)
sf

]
+ αf d̂f σ

[
κf
γQ − γP

∆s
−
ρf
2

(
κP∇γ|P
ρP

+
κQ∇γ|Q
ρQ

)
sf

]
+ cf d̂f

[
un,t−∆t
f − ut−∆t

f nf

]
, (3.60)

with κf = (κP +κQ)/2. Including the gravity term as described in Section 3.3.3, weighted

by the local densities as introduced in Eq. 3.57, follows as

unf = ufnf − αf d̂f
[
pQ − pP

∆s
−
ρf
2

(
∇p|P
ρP

+
∇p|Q
ρQ

)
sf

]
+ αf d̂f σ

[
κf
γQ − γP

∆s
−
ρf
2

(
κP∇γ|P
ρP

+
κQ∇γ|Q
ρQ

)
sf

]

+ αf d̂f

[
ρf (g · sf )−

ρf
2

(
Sg,P
ρP

+
Sg,Q
ρQ

)
sf

]
+ cf d̂f

[
un,t−∆t
f − ut−∆t

f nf

]
. (3.61)

Eq. 3.61 provides an equation to compute the advecting velocity at face centres for two-

phase flows, which prevents pressure-velocity decoupling and provides an exact balance

between pressure gradient, surface force and gravity force.

3.4. Compressive Volume-of-Fluid Method

In the compressive VOF approach the colour function transport equation (Eq. 2.43) is

discretised using algebraic discretisation schemes and the colour function is transported

in a time-marching fashion. In the following sections, the discretisation of the transient

term and the spatial advection term of the colour function transport equation (Eq. 2.43) is

74



presented and discussed. The presented methodology is applicable to arbitrary meshes and

inherently conserves the colour function [238]. The numerical schemes presented in this

section represent only one specific choice, deemed to be best suited for the discretisation

of the colour function transport on unstructured meshes. Other schemes may be used in

a similar way without changing other parts of the numerical framework.

3.4.1. Temporal Discretisation

The transient term of Eq. 2.43 is discretised using a second-order temporal discretisation

scheme, such as the Crank-Nicolson scheme (Eq. 2.39) or the Second-Order Backward

Euler scheme (Eq. 2.41) [39, 238], since first-order schemes, such as the First-Order Back-

ward Euler scheme, are too diffusive to maintain the sharpness of the interface. Studies by

Darwish [37], Jasak [106] and Ubbink [238] comprehensively demonstrate that the First-

Order Backward Euler scheme as well as the First-Order Forward Euler scheme distort

the shape of a circular interface advected at a constant oblique velocity on an equidistant

Cartesian mesh. The Crank-Nicolson scheme, on the other hand, is able to preserve the

shape of the circular interface of the same test case.

Moukalled and Darwish [161] proposed a class of temporal discretisation schemes, which

switch between a compressive and a high-resolution scheme. The blending function, de-

termining the transition between compressive and high-resolution schemes, is based on

the angle between the interface normal vector and the velocity vector. In their paper,

Moukalled and Darwish used the Second-Order Backward Euler scheme and a compres-

sive Euler scheme. Advecting variously shaped interfaces at medium and high Courant

numbers, i.e. Co = 0.5 and Co = 1.0, Moukalled and Darwish [161] reported better

results using the new temporal discretisation method than deploying other commonly

used schemes, such as the Crank-Nicolson scheme. However, at small Courant number

(Co = 0.25) the Crank-Nicolson scheme yields similar or even better results than the new

discretisation approach. Given the restrictive Courant number limit imposed by the spa-

tial discretisation, explained in Section 3.4.3, there is no notable advantage gained from

adopting the transient discretisation of Moukalled and Darwish [161] compared to the

computationally more efficient and easier to implement Crank-Nicolson scheme.

In the presented numerical framework, the transient term of Eq. 2.43 is discretised using

the Crank-Nicolson scheme. The discretised transport equation of the colour function is,

therefore, given as

(γtP − γt−∆t
P )VP = −

∑
f

1

2

(
γtfF

t
f + γt−∆t

f F t−∆t
f

)
∆t , (3.62)

with flux F through face f being

Ff = (uf · nf )Af . (3.63)

The discretisation presented in Eq. 3.62 requires the fluxes through the face of two time

instants, thus, increasing memory requirements. Moreover, as further discussed in Section
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3.7.2, the fluxes of the new time instant are not yet known. Ubbink [238] proposed that if

the time-step is small enough, as it is due to the Courant number limitations outlined in

Section 3.4.3, the right-hand side of Eq. 3.62 can be approximated as

−
∑
f

1

2

(
γtfF

t
f + γt−∆t

f F t−∆t
f

)
∆t ≈ −

∑
f

γ∗fFf∆t , (3.64)

with the average colour function value at the face being

γ∗f =
γtf + γt−∆t

f

2
. (3.65)

Hence, Eq. 3.62 simplifies to

(γtP − γt−∆t
P )VP = −

∑
f

γ∗fFf∆t . (3.66)

Analogous to the continuity constraint defined in Eq. 3.25, the flux Ff in Eq. 3.66 is

defined as

Ff = unf Af . (3.67)

Thus, flux Ff used to advect the colour function satisfies continuity and the advection of

the colour function is defined consistently with the flow advection.

3.4.2. Spatial Discretisation

As already mentioned in Section 2.3.2, low-order advection schemes are not suitable for the

discretisation of the VOF colour function transport, as they lead to significant smearing of

the interface, and the application of high-order discretisation schemes results in numerical

oscillations and wrinkling of the interface. A number of spatial discretisation schemes

specifically designed for compressive VOF methods have been published, most notably

the CICSAM scheme [239], the Inter-Gamma scheme [108], the HiRAC scheme [96], the

HRIC scheme [163] and the STACS scheme [39].

The CICSAM scheme of Ubbink and Issa [239] is implemented as part of the presented

numerical framework to determine the value of colour function γf at mesh face f in Eq.

3.65. The CICSAM scheme is founded on the Normalised Variable Diagram (NVD) of

Leonard [126]. By defining an acceptor cell A, a donor cell D and an upwind point U for

the mesh face f under consideration, as illustrated in Figure 3.1, the normalised colour

function value at face f is defined as

γ̃f =
γf − γU
γA − γU

(3.68)

and the normalised value of the donor cell is

γ̃D =
γD − γU
γA − γU

. (3.69)

On structured meshes the upwind value is readily available whereas on unstructured
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meshes this is generally not the case. Jasak [106] proposed an extrapolation of the colour

function to overcome this problem, schematically illustrated in Figure 3.1, where the ap-

proximated upwind value is calculated as

γU = γA + 2 (xD − xA) · ∇γ|A , (3.70)

with xD and xA representing the position vector of donor cell D and acceptor cell A,

respectively.

Figure 3.1.: Example of the extrapolation of upwind node U for the CICSAM scheme on
unstructured meshes with respect to the face under consideration f , donor
cell D and acceptor cell A.

The CICSAM scheme is based on the Hyper-C (HC) scheme, which follows the upper

bound of the convective boundedness criteria [75], and the ULTIMATE QUICKEST (UQ)

scheme of Leonard [126]. Using the normalised values defined in Eqs. 3.68 and 3.69, the

HC scheme is given as

γ̃HCf =

min
{

1, γ̃D
CoD

}
when 0 ≤ γ̃D ≤ 1

γ̃D when γ̃D > 0 and γ̃D < 1 ,
(3.71)

where CoD is the Courant number with respect to the fluxes leaving the donor cell,

CoD =
∑
f

max

{
unf ∆t

VD
, 0

}
. (3.72)

The UQ scheme is defined as

γ̃UQf =

min
{

8CoD γ̃D+(1−CoD)(6 γ̃D+3)
8 , γ̃HCf

}
when 0 ≤ γ̃D ≤ 1

γ̃D when γ̃D > 0 and γ̃D < 1 .
(3.73)

Having defined both discretisation schemes, a blending function ψf is required, so that

γ̃f = ψf γ̃
HC
f + (1− ψf ) γ̃UQf . (3.74)

The blending function proposed by Ubbink and Issa [239] is based on the angle θf between

the interface normal vector mf and the normalised vector sf connecting the donor cell
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and acceptor cell. The blending function ψf is defined as

ψf = min

{
kψ

cos(2θf ) + 1

2
, 1

}
, (3.75)

with angle θf being

θf = arccos (|mf · sf |) . (3.76)

The constant kψ in Eq. 3.75 controls the dominance of the HC scheme (the compressive

scheme), where an increasing value of kψ corresponds to a stronger dominance of the HC

scheme. If not explicitly stated otherwise, kψ = 1 following the recommendation of Ubbink

and Issa [239]. After algebraic manipulation, the colour function value at face f follows

as [238, 239]

γf = (1− βf ) γD + βf γA , (3.77)

where the weighting factor βf is calculated from the normalised colour function values as

βf =
γ̃f − γ̃D
1− γ̃D

. (3.78)

Therefore, including the relationship described in Eq. 3.77, the average colour function

value at face f , previously defined in Eq. 3.65, becomes

γ∗f = (1− βf )
γtD + γt−∆t

D

2
+ βf

γtA + γt−∆t
A

2
. (3.79)

As pointed out by Ubbink [238], Eq. 3.79 does not guarantee a bounded solution, in

particular on unstructured meshes. In order to obtain a bounded solution, a corrector

step is implemented following Ubbink [238]. Because of the implicit implementation, the

predicted value γ∗f cannot be corrected directly but instead the weighting factor βf should

be corrected. If a negative colour function value in the donor cell D of face f is obtained,

i.e. γD < 0, the weighting factor βf is corrected by

β′f =

min
{
E−(2+CoD−2CoD βf )

2CoD(∆γ∗−E−)
, β′f

}
when ∆γ∗ > E−

0 when ∆γ∗ ≤ E− ,
(3.80)

with

E− = max
{
−γtD, 0

}
(3.81)

being the magnitude of the unbounded value and

∆γ∗ =
γtA + γt−∆t

A

2
−
γtD + γt−∆t

D

2
. (3.82)

Similarly, for γD > 1 the corrector follows as

β′f =

min
{
E+(2+CoD−2CoD βf )

2CoD(−∆γ∗−E+)
, β′f

}
when ∆γ∗ < −E+

0 when ∆γ∗ ≥ −E+ ,
(3.83)
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with

E+ = max
{
γtD − 1, 0

}
. (3.84)

The corrected weighting factor is then calculated as

β∗∗f = βf − β′f (3.85)

and the corrected face value is given as

γ∗∗f = (1− β∗∗f )
γtD + γt−∆t

D

2
+ β∗∗f

γtA + γt−∆t
A

2
. (3.86)

For a detailed derivation of the corrector step the interested reader may consult the thesis

of Ubbink [238] or the article of Ubbink and Issa [239].

Because the predictor-corrector approach outlined above can only determine the colour

function advection within the predefined solver tolerance, the colour function value at any

given time instant may not fulfil the boundedness criteria

0 ≤ γ ≤ 1 . (3.87)

Thus, any colour function value lower than zero or larger than unity is explicitly set to

the respective bound. The inherent conservation error of the colour function advection for

every time-step is, therefore, not larger than the order of magnitude of the solver tolerance.

3.4.3. Advection Time Step

The time-step applied in Eq. 3.66 to transport the VOF colour function γ has a crucial

influence on the accuracy of the simulation results. The advection of a circular interface

performed by Ubbink [238, chap. 5] indicates significantly less numerical diffusion for

decreasing Courant numbers, with reasonable results for Co = |u|∆t/∆x ≤ 0.3. Darwish

and Moukalled [39] attributed the strong Courant number dependence to the combina-

tion of a spatial advection scheme designed for explicit calculations [126] and an implicit

transient discretisation. Darwish and Moukalled argue that according to studies of Jasak

[106], the numerical diffusion of transient and spatial scheme, using the Explicit Euler

scheme and Upwind Differencing, cancel each other out when the Courant number ap-

proaches unity. On the other hand, using the Implicit Euler scheme in conjunction with

Upwind Differencing, the numerical diffusion caused by both schemes accumulates with

increasing Courant number. The case studies of Darwish and Moukalled [39] confirm the

trend of significantly improved results for decreasing Courant numbers as presented by

Ubbink [238], suggesting viable results for Co ≤ 0.25. Studies performed by Gopala and

van Wachem [81] suggest a Courant number limit of Co ≤ 0.01 in order to maintain a

sharp interface. Following the findings of the mentioned studies, an adaptive time-step

assuring Comax ≤ 0.01 is used to advect the VOF colour function for the simulations

presented in this thesis.
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3.5. Implementation of Boundary Conditions

The boundary condition at each mesh face b coinciding with a domain boundary and for

each variable is either extrapolated or set to a fixed value. Calculating the boundary value

by extrapolation, the boundary face value φb follows as

φb = φP + ∇φ|P · rb , (3.88)

with rb being the vector from cell centre P to face centre b. Using a predefined boundary

value, the boundary condition is implemented in the form

Aφb +B
∂φ

∂n

∣∣∣∣
b

= C , (3.89)

where A, B and C represent coefficients which define the boundary type and boundary

value. For instance, setting φ at a given boundary to the fixed value 10 would be achieved

with the coefficients A = 1, B = 0 and C = 10. Similarly, a fixed gradient normal to the

boundary face of 500 is defined as A = 0, B = 1 and C = 500. In order to calculate the

boundary face value φb from Eq. 3.89, the adjacent cell centre is mirrored at the boundary

face, as illustrated in Figure 3.2.

Figure 3.2.: Illustration of boundary mirroring across boundary-face b.

Therefore, the cell centre of the adjacent cell and its mirrored counterpart are equidistant

in relation to the boundary face. The boundary face value at face b then follows as

φb =
φP + φB

2
(3.90)

and the gradient normal to face b becomes

∂φ

∂n

∣∣∣∣
b

=
φB − φP

2 |rb|
. (3.91)
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Inserting Eqs. 3.90 and 3.91 in Eq. 3.89, the value at the mirrored cell centre φB is

A
φP + φB

2
+B

φB − φP
2 |rb|

= C

φB

(
A

2
+

B

2 |rb|

)
= φP

(
−A

2
+

B

2 |rb|

)
+ C

φB = φP
−A

2 + B
2 |rb|

A
2 + B

2 |rb|
+

C
A
2 + B

2 |rb|
. (3.92)

Irrespectively whether the boundary value is extrapolated, as described by Eq. 3.88, or

holds a fixed predefined value, calculated by Eq. 3.92, the first term on the right-hand side

of either equation (Eq. 3.88 or Eq. 3.92) is implemented implicitly and the second term

on the right-hand side is implemented explicitly.

3.6. Gradient Evaluation

Two common methods to evaluate gradients in a finite volume framework are available:

least-squares gradient construction methods and the Gauss theorem. Least-squares meth-

ods construct the gradient based on the values at an arbitrary finite number of neighbour

points using a least-squares fit. Least-squares methods are independent of the underlying

mesh in the sense that the mesh errors discussed in Section 2.2.1 do not affect the result or

stability of the gradient evaluation. However, the accuracy of least-squares methods de-

pends strongly on the computational stencil [89] and the applied weighting function [153].

The Gauss theorem is a cornerstone of finite volume methods, as described in Section 2.2,

and gradients can be readily computed with the available data. The Gauss theorem has no

directional dependence, is conservative in nature and the computational stencil includes

only direct neighbour cells. Moreover, the Gauss theorem is computationally cheaper than

least-squares methods and its implicit implementation is straightforward. However, the

result and stability of the gradient evaluation using the Gauss theorem in a finite volume

framework is significantly affected by the mesh errors discussed in Section 2.2.1. Because

the numerical discretisation presented in Sections 3.2 - 3.5 is based on the Gauss theorem,

the Gauss theorem is also applied to explicitly evaluate gradients. This is essential to

assure the discrete balance between the pressure gradient and the acting body forces.

The gradient at cell P is defined using the Gauss theorem as

∇φ|P =
1

VP

∑
f

φf nf Af , (3.93)

where VP is the volume of cell P , subscript f denotes the faces bounding cell P , nf is

the outward-pointing normal vector of face f and Af is the area of face f . As previously

discussed in Section 2.2.2, the value interpolated at face centres from the two adjacent cell

centers must be corrected if the mesh is skewed. The face value then becomes

φf = (1− δ)φP + δ φQ +
[
(1− δ) ∇φ|P + δ ∇φ|Q

]
rf , (3.94)
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where P and Q are the cells adjacent to face f , δ is the inverse distance interpolation

coefficient as defined in Eq. 2.19 and rf is the vector connecting the interpolation point f ′

and the actual face centre f , as illustrated in Figure 2.2b. Using Eq. 3.94 to calculate the

face values φf for Eq. 3.93 requires an iterative algorithm to determine the cell-centred

gradients, because Eq. 3.94 explicitly includes thus cell-centred gradients. Eq. 3.93 is

solved iteratively until the predefined maximum number of iterations is reached or the

maximum gradient residual in the domain is smaller than a predefined threshold. The

threshold for the gradient residual is defined as

max{| ∇φ|iP − ∇φ|
i−1
P |} < εrel , (3.95)

with εrel representing the relative tolerance of the flow solver and superscripts i and i− 1

denoting the gradients of the current and the previous iteration, respectively.

The convergence of the gradient evaluation may be adversely affected at boundaries

where the values are extrapolated, in particular the pressure gradient evaluation when

large body forces are acting on the fluid. In order to improve the convergence of the

gradient evaluation, a different implementation than the straightforward method described

in the previous paragraph is proposed for cells bounded by at least one face to which the

relevant values are extrapolated. For face e, representing an extrapolation-boundary, the

value at its face centre is

φe = φP + ∇φ|P · re , (3.96)

where re is the vector from cell centre P to face centre e. Following Eq. 3.93, the gradient

at cell centre P is given as

∇φ|P =
1

VP

∑
f

φf nf Af =
1

VP

φeneAe +
∑
f 6=e

φf nf Af

 . (3.97)

Inserting Eq. 3.97 in Eq. 3.96 follows as

φe = φP + φe
Ae (ne · re)

VP
+

1

VP

∑
f 6=e

φf Af (nf · re) . (3.98)

By rearranging Eq. 3.98, the extrapolated value at face center e becomes

φe

(
1− Ae (ne · re)

VP

)
= φP +

1

VP

∑
f 6=e

φf Af (nf · re) (3.99)

φe =
φP + 1

VP

∑
f 6=e φf Af (nf · re)

1− Ae (ne·re)
VP

. (3.100)

Because mesh skewness is corrected in an iterative manner using cell-centred gradients, φf

in Eq. 3.100 might be an extrapolated value itself, should cell P be bounded by more than

one face holding an extrapolation boundary condition. A preceding step is proposed be-

fore extrapolating face values as described in Eq. 3.100, in order to circumvent significant

inaccuracies caused by other extrapolated values when extrapolating a face value. This
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preceding step is proposed to avoid the divergence of the gradient evaluation. All extrap-

olated face values are first estimated based on the average of gradients at neighbouring

cells, which is defined for all face centres e coinciding with an extrapolation boundary as

φe = φP +
re
NQ

∑
Q

∇φ|Q , (3.101)

where subscript Q denotes the neighbours of cell P and NQ is the number of neighbours of

cell P . This provides a smoother transition between iterations and significantly improves

the convergence and stability of the gradient evaluation.

3.7. Solution Procedure

The numerical discretisation presented in Sections 3.2 - 3.6 leads to two algebraic equa-

tion systems, one that represents the fluid flow and one that describes the advection of the

VOF colour function, which are solved separately. The two equation systems are explicitly

coupled by the face fluxes Ff and the surface force F s. For each partial differential equa-

tion (PDE) describing the fluid flow or the VOF colour function advection, an algebraic

equation representing the discretised PDE is defined for each mesh cell as

AP φP +
∑
Q

AQ φQ = bP , (3.102)

where P denotes the cell under consideration and Q denotes its neighbour cells. The

right-hand side coefficient bP contains all known terms, such as boundary conditions and

data of previous time instants. Written in matrix form, the equation system follows as

Aφ = b . (3.103)

Matrix A is a squared matrix of size (M · N) × (M · N), with M being the number of

discretised PDEs and N being the global number of mesh cell.

As a result of the explicit treatment of the surface force in the flow equation system,

the momentum transport is numerically only stable if the propagation of capillary waves

is resolved by the time-step ∆t. According to Brackbill et al. [19], the capillary time-step

constraint is defined as

∆tc ≤
√

(ρA + ρB) ∆x3

4πσ
, (3.104)

where ∆x denotes the mesh spacing and subscripts A and B denote the two fluids.

Solving the two equation systems separately provides the opportunity to use different

time-steps for the colour function advection and for the fluid flow, satisfying the Courant

number requirement for the colour function advection discussed in Section 3.4.3 without

imposing the same strict Courant number limit to the fluid flow. Thus, the time-step of

the colour function advection ∆tγ follows as

∆tγ =
∆t

Cγ
, (3.105)
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where Cγ is a whole-number variable, determined at every time instant to fulfil the Courant

number requirement for the colour function advection. Hence, for every fluid time-step

∆t, the colour function advection is divided into Cγ time-steps ∆tγ .

In what follows, the individual coefficients and contributions to the equation systems

describing the fluid flow and the VOF colour function advection are presented in detail.

Subsequently, the sequence of the solution procedure is outlined.

3.7.1. Flow Equation System

As mentioned in Section 3.1, the solution procedure of the equation system representing

the fluid flow follows a fully-coupled implicit approach. The aim of the fully-coupled

implicit approach adopted in this work is to solve the governing equations of the fluid

flow in one linear equation system. Therefore, a linear equation system is constructed

from the discretised non-conservative momentum equations (Eq. 2.52) and the continuity

constraint (Eq. 3.25), arranged as
Ax 0 0 Bx

0 Ay 0 By

0 0 Az Bz

Cu Cv Cw D


︸ ︷︷ ︸

A

·


φu

φv

φw

φp


︸ ︷︷ ︸

φ

=


bx

by

bz

bc


︸ ︷︷ ︸
b

. (3.106)

Inside matrixA, submatrixAi contains the coefficients of the velocity terms and submatrix

Bi contains the coefficients of the pressure term of the i-th momentum equation. The

coefficients of velocity component j following from the continuity constraint, derived using

the momentum interpolation method presented in Section 3.3, are placed in submatrix

Cj . Submatrix D holds the coefficients of the pressure term of the continuity constraint.

Solution vector φ is constituted by the solution subvectors of the three velocity components

u, v and w, and pressure p. Every row of the equation system is normalised by the

respective diagonal coefficient of matrix A to improve the convergence of the numerical

solution algorithm, particularly on unstructured meshes.

Discretising the momentum equations for the three Cartesian coordinates using the

numerical schemes presented in Section 3.2 leads to a set of coefficients which are placed

in the respective positions of the coefficient matrix A and to contributions to the right-

hand side vector b. Applying the Second-Order Backward Euler scheme to discretise

the transient term of the momentum equation results in a contribution to the diagonal

coefficient

Ai,P +=
∆τ2 −∆t21

∆τ2 ∆t1 −∆τ ∆t21
ρtP VP , (3.107)

and the right-hand side vector

bi,P +=

(
∆τ

∆τ ∆t1 −∆t21
ut−∆t1
i − ∆t1

∆τ2 −∆τ ∆t1
ut−∆τ
i

)
ρtP VP , (3.108)

where subscript i denotes any of the three Cartesian coordinate axes. The convective term
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of the momentum equations contributes to the diagonal coefficients

Ai,P +=


∑

f (1− ψ lD) ṁf , when ṁf ≥ 0∑
f ψ lD ṁf , when ṁf < 0

(3.109)

and the off-diagonal coefficients

Ai,Q +=


∑

f ψ lD ṁf , when ṁf ≥ 0∑
f (1− ψ lD) ṁf , when ṁf < 0

(3.110)

of the matrix, with mass flux ṁf being defined as given in Eq. 3.26. The coefficients and

right-hand side contribution resulting from the viscous stresses using a deferred correction

approach are

Ai,P +=
∑
f

−
µf αf Af

∆s
(3.111)

Ai,Q +=
∑
f

µf αf Af
∆s

(3.112)

bi,P −=
∑
f

µf Af

[
∂ui
∂xj

∣∣∣∣
f

(nf − αf sf ) +
∂uj
∂xi

∣∣∣∣
f

nf

]
. (3.113)

The velocity gradients of Eq. 3.113 are averaged as described in Section 3.2.3. The pressure

term of the momentum equation only yields off-diagonal matrix coefficients, following as

Bi,P =
∑
f

(1− δ) ni,f Af (3.114)

Bi,Q =
∑
f

δ ni,f Af , (3.115)

and, if the mesh is skewed, a contribution to the right-hand side vector

bi,P −=
∑
f

ni,f Af ∇p
∣∣
f
rf . (3.116)

The gravity term, if applicable, results in a straightforward contribution to the right-hand

side vector

bi,P += Sgi,P VP . (3.117)

and, similarly, the surface force only contributes to the right-hand side vector with

bi,P += σ κP
∂γ

∂xi

∣∣∣∣
P

VP . (3.118)

The continuity constraint, presented in Section 3.3, represents the fourth equation of

the linear equation system, as mentioned previously. For each cell P the velocity term of
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the continuity constraint results in the off-diagonal coefficients

Cu,P =
∑
f

(1− δ)nx,f Af (3.119)

Cu,Q =
∑
f

δ nx,f Af (3.120)

Cv,P =
∑
f

(1− δ)ny,f Af (3.121)

Cv,Q =
∑
f

δ ny,f Af (3.122)

Cw,P =
∑
f

(1− δ)nz,f Af (3.123)

Cw,Q =
∑
f

δ nz,f Af . (3.124)

In the presence of mesh skewness the correction of the interpolated velocity at face centres

contributes with

bc,P −=
∑
f

[(
(1− δ) ∇u|P + δ ∇u|Q

)
rf

]
nf Af (3.125)

to the right-hand side vector. The transient term, consisting only of values from the

previous time instant, adds to the right-hand side vector and is defined as

bc,P −=
∑
f

cf d̂f Af

(
un,t−∆t
f − ut−∆t

f nf

)
. (3.126)

The pressure term of the continuity constraint crucially contributes to the diagonal coef-

ficient of the matrix

DP =
∑
f

d̂f αf Af
∆s

, (3.127)

assuring a non-zero diagonal of the matrix, as well as to the off-diagonal coefficients

DQ =
∑
f

−
d̂f αf Af

∆s
(3.128)

and the right-hand side vector

bc,P +=
∑
f

d̂f αf ρf Af
2

(
∇p|P
ρP

+
∇p|Q
ρQ

)
sf . (3.129)

If applicable, the gravity term

bc,P −=
∑
f

αf d̂f Af

[
ρf (g · sf )−

ρf
2

(
Sg,P
ρP

+
Sg,Q
ρQ

)
sf

]
(3.130)
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and the surface force term

bc,P −=
∑
f

αf d̂f σ

[
κf
γQ − γP

∆s
−
ρf
2

(
κP∇γ|P
ρP

+
κQ∇γ|Q
ρQ

)
sf

]
(3.131)

contribute to the right-hand side vector.

The solution of the equation system is performed in a time-marching fashion, starting

with an initial set of values. To account for the non-linearity of the equations, the mass

fluxes are calculated using the deferred advecting velocity unf , as defined in Eq. 3.26,

and non-linear iterations are performed within each time-step, known as inexact Newton

method [48, 186]. Typically, 2−50 non-linear iterations are required at every time instant

to yield a converged result. The number of non-linear iterations is dependent on the

flow characteristics, the mesh size and the solution tolerance. Initially in each time-step,

a converged implicit solution for the linear equation system is found, using the result

of the previous time instant as an initial guess. Subsequently, the spatial gradients of

the primitive variables and the new mass fluxes are calculated, the equation system is

updated and solved again. This iterative procedure continues until the non-linear problem

converged to a sufficiently small residual. The linear equation system is preconditioned

using a JACOBI method and solved by an enhanced BiCGSTAB method [218]. The

iterative solver and the preconditioner are incorporated in the freely-available PETSc

library [11, 12], which is integrated in the presented numerical framework to handle and

solve linear equation systems. In general, the numerical framework and solving sequence

are independent of the iterative solver or preconditioning method used and the presented

choice represents only one possible option.

3.7.2. VOF Equation System

A linear equation system is constructed from the discretised equations describing the

colour function transport in each mesh element, which is solved utilising an iterative

solving method. The transient discretisation, presented in Section 3.4.1, is included in the

equation system as

AP +=
VP
∆tγ

(3.132)

bP +=
VP
∆tγ

γ
t−∆tγ
P . (3.133)

The time-step ∆tγ represents the time-step applied to advect the colour function, which,

as previously mentioned, might be smaller than the time-step used to calculate the flow.

Discretising the advection term using the CICSAM scheme, as presented in Section 3.4.2,

results in the contributions to the diagonal coefficients of the matrix

AP +=
∑
f

1

2
wβ,P Ff , (3.134)
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the off-diagonal coefficients

AQ +=
∑
f

1

2
wβ,Q Ff (3.135)

and the right-hand side vector

bP −=
∑
f

wβ,P γ
t−∆tγ
P + wβ,Q γ

t−∆tγ
Q

2
Ff , (3.136)

where subscript P denotes the element under consideration and subscript Q denotes its

neighbour elements. If cell P is the acceptor cell with respect to its adjacent face f , the

weighting factors resulting from the CICSAM scheme are

wβ,P = βf (3.137)

wβ,Q = 1− βf , (3.138)

and if cell P is the donor cell of face f , the weighting factors are

wβ,P = 1− βf (3.139)

wβ,Q = βf . (3.140)

As for the flow equation system, every row of the VOF equation system is normalised with

the respective diagonal coefficient of the matrix to improve convergence of the numerical

solving algorithm.

Similar to the solution of the flow equation system discussed in Section 3.7.1, the VOF

equation system is preconditioned with a JACOBI method and solved using a standard

BiCGSTAB method [244], both incorporated in the PETSc library [11, 12]. Initially in

each time-step, the CICSAM weighting factor β is calculated for each mesh face and the

VOF equation system is assembled and solved. Following the solution of the equation

system, the CICSAM weighting factors βf are corrected if the resulting colour function

values are not bounded and the equation system is solved again. This iterative predictor-

corrector procedure continues until the colour function value at every mesh cell satisfies

the bounds defined by the predefined solver tolerance. After a converged and bounded

solution has been found, time-step ∆tγ is incremented and the sequence starts again.

This iterative procedure continues for Cγ time-steps ∆tγ , at which point the new colour

function distribution for the present fluid time-step ∆t is found.

3.7.3. Solution Sequence

At the beginning of every time instant, the data of previous time instants (velocity, pres-

sure, flux and colour function) are copied to the respective arrays, e.g. velocity data that

are stored as data of the previous time instant are declared as data of the previous-previous

time instant.

Subsequently, the VOF equation system is assembled and solved as described in Section

3.7.2. The colour function is advected based on the flow field resulting from the previous
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time instant. Because the colour function is advected prior to computing the flow field at

a given time instant, the pressure field is calculated based on the new interface position.

In contrast, updating the interface position after the new flow field has been calculated

would result in a lag between pressure distribution and interface position for any given

time instant. When a new interface position is found, the fluid properties and the colour

function gradient are updated and the new interface curvature is calculated.

The new interface position is then used to calculate the new gravity source term. After

that, the coefficient matrix and the right-hand side vector of the flow equation system are

assembled and the flow equation system is solved as described in Section 3.7.1. When a

converged result for the equation system is found, the spatial gradients of the primitive

variables are evaluated and the new face fluxes are calculated. Subsequently, the residual

of the non-linear iteration is determined and, if the predefined convergence criteria are

not satisfied, the flow equation system is updated with the new fluxes and new spatial

gradients of the primitive variables and solved again. As soon as a converged result for

the non-linear flow field is reached, the maximum Courant number is updated and, if

necessary, the time-step is adapted to fulfil the predefined Courant limit.

3.8. Validation

The validation of the numerical framework focuses on demonstrating the ability of sim-

ulating single-phase and two-phase flows on structured and unstructured meshes with

comparable accuracy. Furthermore, the correct treatment of surface tension, the accurate

balancing of body forces and pressure gradient as well as the satisfaction of continuity and

the conservation of the colour function are demonstrated.

3.8.1. Fluid under Gravity

A fluid under gravity in a closed container is simulated to verify the correct description of

the gravity force term. Assuming a stationary fluid, the pressure gradient must precisely

match the gravity force acting on the fluid, as described in Eq. 3.51. The computational

domain is cubical with an edge length of 1m, the density of the fluid is ρ = 1 kgm−3 and

the gravitational acceleration acting on the fluid is g = 10ms−2. Therefore, assuming

zero pressure at the top of the domain, the pressure at the bottom of the domain is

p = g ρ y = 10Pa. Two meshes are considered for this test case, an equidistant Cartesian

mesh with 80 × 80 × 80 cells and a tetrahedral mesh with approximately 4.8 × 105 cells,

both illustrated in Figure 3.3. Figure 3.4 shows the pressure distribution resulting from

gravity computed by the presented numerical framework. On both the Cartesian mesh

as well as the tetrahedral mesh the computed pressure distribution accurately reproduces

the analytical pressure distribution.

3.8.2. Hagen-Poiseuille Flow

The pressure drop of a flow with constant velocity in a circular pipe due to friction, known

as Hagen-Poiseuille flow, is evaluated to validate the accurate interaction of inertial mo-
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(a) Cartesian mesh (b) Tetrahedral mesh

Figure 3.3.: The equidistant Cartesian mesh and the tetrahedral mesh used to validate the
correct description of the gravity force by the presented numerical framework.
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Figure 3.4.: Pressure profile of a fluid with density 1 kgm−3 in a cubical domain with edge
length 1m due to gravitational acceleration of 10ms−2.

mentum, viscous stresses and pressure. For a flow in a circular pipe, a pressure difference

between two distinct points develops in the axial direction of the pipe as a result of viscous

stresses. Assuming an axisymmetric flow, the axial velocity component ux with respect to

the radial coordinate r̃ is [13]

ux(r) =
p0 − p1

4µL
(r − r̃) , (3.141)

where L is the length of the considered section of the circular pipe, r is the radius of the

pipe and p0 and p1 is the pressure at the beginning and at the end of the considered section

of the pipe, respectively. The volume flux F through the pipe follows by integrating the

axial velocity over the radius

F =

∫ r

0
2π ux r̃ dr =

π r4 (p0 − p1)

8µL
. (3.142)
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The volume flux through the pipe is also readily available as F = ux π r
2 and the expected

pressure jump is, therefore,

∆p = p0 − p1 =
8µux L

r2
. (3.143)

The pressure drop predicted on a tetrahedral mesh with approximately 9.5× 104 cells,

shown in Figure 3.5a, for Reynolds numbers Rer = ux ρ r/µ = 1 and Rer = 100 is

depicted in Figure 3.5b, together with the analytical result from Eq. 3.143. The numerical

framework accurately predicts the pressure difference in the circular pipe for both Reynolds

numbers.

(a) Computational mesh
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(b) Pressure profile

Figure 3.5.: Normalised pressure drop, computed and analytical, as a function of non-
dimensional length for a flow with constant volume flux in a circular pipe
discretised by a tetrahedral mesh of approximately 9.5× 104 cells.

3.8.3. Lid-Driven Cavity

The lid-driven cavity is a common test case to validate numerical methods for fluid flows

because it captures convective and viscous transport of the fluid. Ghia et al. [77] published

a vast amount of high-fidelity numerical reference data of the flow in a lid-driven cavity

for various Reynolds numbers. Because the laminar solution of the lid-driven cavity is

steady, ReL = uw ρL/µ = 100 and ReL = 1000 are considered to validate the numerical

framework, with uw representing the constant velocity of the top wall, i.e. the lid, and L

denoting the edge length of the domain. Although the results for the laminar cases as well

as the reference results of Ghia et al. [77] are two-dimensional, the simulations are carried

out in three-dimensional domains because the implementation of the numerical framework

requires three spatial dimensions. However, because the cavity walls perpendicular to

the third dimension hold a free-slip boundary condition, no differences compared to the

two-dimensional results are expected by using three-dimensional domains, apart from an

overhead in computational resources. Figure 3.6a illustrates schematically the domain

with its boundary conditions. The side walls and the bottom wall are stationary and hold
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a no-slip condition. A no-slip condition is also imposed at the top wall, which moves at a

constant velocity uw and, thus, drives the flow in the cavity. Two equidistant Cartesian

meshes, 100×100×5 cells and 200×200×5 cells, and two tetrahedral meshes, 5.3×104 cells

and 2.4× 105 cells, are deployed. The two coarser meshes are shown in Figures 3.6b and

3.6c. To assist the understanding of the resulting flow in the lid-driven cavity, Figure 3.7

shows the contours of the computed velocity distribution for the two considered Reynolds

numbers. The vortex developing in the cavity is rotating clockwise.

(a) Boundary conditions (b) Cartesian mesh (c) Tetrahedral mesh

Figure 3.6.: Boundary conditions and meshes applied for the lid driven cavity.

(a) Re = 100 (b) Re = 1000

Figure 3.7.: Contours of the velocity magnitude of the flow in the x-y plane running
through the centre of the lid driven cavity domain.

Figure 3.8 shows the velocity profiles obtained for the considered Reynolds numbers

in the two relevant dimensions along a line through the domain centre on the Cartesian

meshes and the tetrahedral meshes. The results of both Cartesian meshes and the refer-

ence results of Ghia et al. [77] are in excellent agreement. The results obtained on the

tetrahedral meshes are in equally good agreement with each other as well as with the

reference data. The only minor disagreement observable in the graphs occurs at the walls,

where the simulation results do not exactly reproduce the velocity predefined at the walls.
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(a) Re = 100, Cartesian meshes
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(b) Re = 1000, Cartesian meshes
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(c) Re = 100, tetrahedral meshes
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(d) Re = 1000, tetrahedral meshes

Figure 3.8.: Velocity profiles of the flow in a lid driven cavity at two different Reynolds
numbers on equidistant Cartesian meshes and tetrahedral meshes along the
vertical and horizontal lines through the domain centre. The results of Ghia
et al. [77] are included as a reference.
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This disagreement is merely a post-processing issue, resulting from the finite distance

between the cell centre closest to the wall, where the velocity value is stored, and the

actual cell face holding the boundary condition. Nevertheless, the results for both mesh

types are overall in very good agreement with the reference data and are not affected by

the mesh type.

3.8.4. Surface Tension

The balanced-force implementation of the presented numerical framework is verified using

a stationary and a moving surface-tension-dominated interface. The numerical framework

is designed to provide an exact balance between pressure gradient and surface force (as

well as other body forces). Test cases to verify the balance between pressure gradient and

surface force have to satisfy certain conditions. Firstly, other body forces, such as gravity,

should be absent. Secondly, the interface should be spherical so that the interface is in

equilibrium and the geometrically exact interface curvature, defined as

κ =
2

r
, (3.144)

where r is the radius of the spherical interface, can be imposed. Thus, the interface

curvature does not have to be calculated numerically, eliminating errors arising from the

interface curvature evaluation. Thirdly, all velocity gradients should be negligible, thus,

the momentum equation is linear and reduces to Eq. 3.58. Following these conditions, the

pressure gradient and the surface force are in equilibrium by definition and the pressure

jump across the interface is defined by the Young-Laplace equation given in Eq. 2.46.

Therefore, errors in pressure jump across the interface and velocity magnitudes larger than

the solver tolerance (or machine precision) are the result of a numerical imbalance between

pressure gradient and surface force. Francois et al. [71] and Mencinger and Žun [154]

presented force-balancing at stationary interfaces and Denner and van Wachem [54, 55]

recently demonstrated force-balancing at a moving interface, the results of which are

presented in Section 3.8.4.2.

3.8.4.1. Stationary Interface

The content of this section has in parts been published in:
[55] Denner, F. and van Wachem, B.G.M.: Fully-coupled balanced-force VOF framework

for arbitrary meshes with least-squares curvature evaluation from volume fraction.
Numerical Heat Transfer, Part B: Fundamentals, accepted for publication. DOI:
10.1080/10407790.2013.849996

The force-balancing of the numerical framework at a stationary interface is evaluated using

an inviscid static drop in mechanical equilibrium with the specifications previously used

by Francois et al. [71]. The inviscid drop with surface tension coefficient σ = 73N m−1

and radius r = 2m is positioned at the centre of a three-dimensional cubical domain

with edge length 8m. No gravity is present. As previously mentioned, the pressure

jump across the interface for a stationary spherical fluid particle in equilibrium and zero
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gravity is given by the Young-Laplace equation (Eq. 2.46) and the interface curvature κ

for a three-dimensional spherical fluid particle is defined as in Eq. 3.144. As a result,

the exact pressure jump across the interface of the considered drop is ∆pexact = 73Pa.

In order to validate the balanced-force surface force implementation, the geometrically

exact curvature κ = 1m−1 is applied to calculate the surface force of the static inviscid

drop in equilibrium. If the implementation of pressure gradient and surface force is in

balance, the developing parasitic currents and the pressure error must be of the order

of the solver tolerance. Three different meshes are deployed, shown in Figure 3.9: an

equidistant Cartesian mesh with 40 × 40 × 40 cells, a non-orthogonal hexahedral mesh

with 40× 40× 40 cells and a tetrahedral mesh with approximately 6.0× 104 cells.

(a) Cartesian mesh (b) Non-orthogonal mesh (c) Tetrahedral mesh

Figure 3.9.: The three different meshes used to validate the balanced-force implementation
of the surface force in the presented numerical framework for a stationary
interface.

The simulations are performed with two different time-steps ∆t and four different den-

sity ratios ρi/ρo. Although theoretically the density ratio should not influence the outcome

of the simulations, a higher density ratio multiplies the acceleration term of the momen-

tum equations and, thus, even small imbalances in the numerical framework can reduce

the accuracy notably or cause stability issues, as observed with respect to the proposed

density weighting in the following paragraph. Up to date only Francois et al. [71] have pre-

sented balanced-force results for two-phase flows with density ratios ≥ 106. The maximum

parasitic currents |u|max and the pressure error

E(∆pmax) =
|∆pmax −∆pexact|

∆pexact
(3.145)

for the different meshes are presented in Table 3.1. In Eq. 3.145, ∆pmax represents the

difference between the maximum and the minimum pressure in the entire domain. The

results show no considerable parasitic currents developing on the tested meshes with the

applied density ratios, i.e. the magnitude of the parasitic currents is of equal magnitude or

smaller magnitude than the applied solver tolerance εrel = 10−15. The resulting pressure

error has a vanishingly small magnitude as well. The pressure profile along a line parallel

to the x-axis and crossing through the centre of the drop for a density ratio of ρi/ρo = 109
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and a time-step of ∆t = 10−3 s, given in Figure 3.10, shows no pressure oscillations in

the vicinity of the interface. On both the equidistant Cartesian mesh, shown in Figure

3.10a, and the tetrahedral mesh, shown in Figure 3.10b, the numerical framework is able

to predict the pressure profile accurately, as the comparison with the exact pressure profile

following from the Young-Laplace equation (Eq. 2.46) demonstrates. Hence, the numerical

framework is maintaining an exact balance between pressure gradient and surface force at

a stationary interface.

Table 3.1.: Maximum velocity magnitude and pressure error after one time-step for an
inviscid static drop in equilibrium with exact curvature. The static inviscid
drop with surface tension coefficient σ = 73N m−1 and radius r = 2m is
positioned at the center of the 8m× 8m× 8m domain.

Mesh ρi/ρo
|u|max[m/s] E(∆pmax)

∆t = 10−3s ∆t = 10−6s ∆t = 10−3s ∆t = 10−6s

100 4.924× 10−16 3.236× 10−19 3.407× 10−14 1.869× 10−14

Cartesian 103 3.545× 10−16 1.440× 10−19 2.920× 10−14 7.981× 10−15

403 cells 106 2.753× 10−16 2.736× 10−19 1.869× 10−14 1.888× 10−14

109 3.867× 10−16 1.379× 10−19 2.842× 10−14 1.143× 10−13

100 1.193× 10−15 1.102× 10−18 3.816× 10−14 2.180× 10−14

Non-orthogonal 103 1.152× 10−15 1.253× 10−18 3.660× 10−14 7.125× 10−14

403 cells 106 1.118× 10−15 1.144× 10−18 6.541× 10−14 3.991× 10−14

109 1.164× 10−15 2.461× 10−18 5.061× 10−14 1.781× 10−13

100 7.916× 10−16 9.366× 10−19 2.667× 10−14 2.823× 10−14

Tetrahedral 103 9.967× 10−16 1.325× 10−18 5.470× 10−14 8.040× 10−14

≈ 6× 104 cells 106 1.540× 10−15 1.484× 10−18 9.052× 10−14 8.643× 10−14

109 1.352× 10−15 2.468× 10−18 7.884× 10−14 1.141× 10−13

The development of the residual of the numerical solution for the inviscid static drop

in equilibrium is examined in order to assess the potential of weighting the pressure term

and the body force terms of the advecting velocity by the ratio of face density and cell

density, as proposed in Eq. 3.57. The equidistant Cartesian mesh with 40× 40× 40 cells

is deployed and time-step ∆t = 10−3 s is applied. The pressure field is initialised with

p = 0Pa in the entire domain. The first time-step is numerically particularly challenging

in this situation because the pressure jump across the interface has to be developed by

the solving algorithm. Figure 3.11 depicts the maximum residual, defined as

Rmax = max
{∣∣uiP − ui−1

P

∣∣ , ∣∣viP − vi−1
P

∣∣ , ∣∣wiP − wi−1
P

∣∣ , ∣∣piP − pi−1
P

∣∣} , (3.146)

as a function of non-linear iterations for the first time-step of the simulation. In Eq.

3.146 superscripts i and i− 1 denote the values of the present iteration and the previous

iteration, respectively. For a density ratio of ρi/ρo = 103, shown in Figure 3.11a, the first

time-step converges regardless whether the pressure term and the surface force term of

the advecting velocity are density-weighted or not. If the density ratio of the two fluids
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Figure 3.10.: The computed pressure profile and the exact pressure profile, as defined by
the Young-Laplace equation (Eq. 2.46), along a line crossing through the
centre of the domain on an equidistant Cartesian and a tetrahedral mesh.
The static inviscid drop with surface tension coefficient σ = 73N m−1, den-
sity ratio ρi/ρo = 109 and radius r = 2m is positioned at the center of the
8m× 8m× 8m domain.

is increased to ρi/ρo = 109, however, shown in Figure 3.11b, the simulation diverges if no

density-weighting is applied. On the other hand, including the density-weighting proposed

in Eq. 3.57 in the momentum interpolation method provides a stable convergence even for

a density ratio as high as ρi/ρo = 109.
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Figure 3.11.: Maximum residual Rmax of the first time-step as a function of non-linear
iterations of the inviscid static drop in equilibrium for two density ratios,
with and without density-weighting of the pressure term and the surface
force term of the advecting velocity.
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3.8.4.2. Moving Interface

The content of this section has been published in:
[54] Denner, F. and van Wachem, B.G.M.: Force-balancing at moving surface-tension-

dominated interfaces on collocated unstructured meshes. 8th International Confer-
ence on Multiphase Flow (ICMF 2013), 26 - 31 May 2013, Jeju, Korea.

[55] Denner, F. and van Wachem, B.G.M.: Fully-coupled balanced-force VOF framework
for arbitrary meshes with least-squares curvature evaluation from volume fraction.
Numerical Heat Transfer, Part B: Fundamentals, accepted for publication. DOI:
10.1080/10407790.2013.849996

As mentioned previously, any imbalance between body forces and pressure gradient man-

ifests itself in an erroneous prediction of the pressure jump across the interface and in

parasitic currents. The force-balancing at a moving interface is assessed by means of a

spherical fluid particle moving at a constant velocity (i.e. velocity gradients are negli-

gible) through a rectangular channel. Both fluids have the same constant velocity and,

thus, there is no slip at the interface. The viscosity ratio of both fluids is unity and the

considered density ratios ρi/ρo are 100, 103 and 106. The applied Reynolds number and

the applied capillary number of the moving interface are Red = |u| ρi d/µ = 0.01 and

Ca = |u|µ/σ = 0.01, respectively. The geometrically exact curvature, as defined in Eq.

3.144, is imposed as a fixed constant at the interface. The simulations are performed

on an equidistant Cartesian mesh with 50 × 70 × 50 cells, shown in Figure 3.12a, and a

tetrahedral mesh with approximately 1.5× 105 cells, shown in Figure 3.12b.

(a) Cartesian mesh (b) Tetrahedral mesh

Figure 3.12.: The equidistant Cartesian mesh and the tetrahedral mesh used to validate the
balanced-force implementation of the surface force of the presented numerical
framework for a moving interface.

Figure 3.13 presents the maximum error of the pressure jump across the interface as

a function of time on the equidistant Cartesian mesh and the tetrahedral mesh. On the

Cartesian mesh the pressure error is negligible as it is of the same order of magnitude

as the solver tolerance εrel = 10−10, regardless of the applied density ratio. The pres-

sure error observed on the tetrahedral mesh is one order of magnitude higher than on
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the Cartesian mesh as the solver reaches the predefined maximum number of non-linear

iterations per time-step (50 iterations). A fully converged result, i.e. an error equal to the

solver tolerance, could be achieved by raising the maximum number of non-linear itera-

tions, however, at a significantly higher computational cost. Figure 3.14 shows a similar

result for the maximum velocity error in the domain, being essentially negligible on both

types of meshes and regardless of the applied density ratio. The results, therefore, prove

that the presented numerical framework provides an accurate balance between pressure

gradient and surface force for moving interfaces as well.

If the surface force is not included in the definition of the advecting face velocity (see

Eq. 3.60), the pressure and velocity errors increase by several orders of magnitude, as
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Figure 3.13.: Pressure error for an interface moving at a constant velocity and using the
exact curvature to determine surface force on an equidistant Cartesian and
a tetrahedral mesh.
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Figure 3.14.: Velocity error for an interface moving at a constant velocity and using the
exact curvature to determine surface force on an equidistant Cartesian and
a tetrahedral mesh.
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depicted in Figures 3.13 and 3.14. This demonstrates the necessity to account for body

forces in the pressure-velocity coupling.

3.8.5. Continuity and Mass Conservation

The conservation of mass, defined for incompressible flows by the continuity equation given

in Eq. 2.2, is fundamental to fluid flow. According to the implementation of the continuity

constraint defined in Eq. 3.25, continuity is implicitly satisfied by the numerical framework

within the limits of the numerical solver tolerance and the machine precision.

Figure 3.15 shows the cumulative continuity error of the simulation of the Hagen-

Poiseuille flow in a circular pipe presented in Section 3.8.2. For both considered Reynolds

numbers the continuity error is negligible. The magnitude of the continuity error of . 10−8

is expected given the applied solver tolerance of εrel = 10−8 in this test case. The cumu-

lative continuity error of the test case presented in Section 3.8.4.2, simulating a surface-

tension-dominated interface moving at a constant velocity in a rectangular channel, is

shown in Figure 3.16. Similar as for the single-phase flow, the presented results show neg-

ligible continuity errors. It should be noted that the mesh type and the applied density

ratio do not affect the continuity error. The results prove that the presented numerical

framework is satisfying continuity for single-phase flows as well as two-phase flows.
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Figure 3.15.: Cumulative continuity error of the Hagen-Poiseuille flow in a circular pipe
presented in Section 3.8.2.

The implemented compressive VOF method inherently conserves the colour function

and, therefore, by virtue of Eq. 2.44 the mass of each phase within the limit of the solver

tolerance applied to solve the VOF equation system (see Section 3.7.2). As observed in

Figure 3.17, depicting the evolution of the relative volume error of the volume inside the

moving surface-tension-dominated interface presented in Section 3.8.4.2 as represented by

the colour function, the conservation error of the implemented compressive VOF method

is negligible as the cumulative conservation error after 800 time-steps is < 10−7 %. The

resulting error at every individual time-step is well within the limits of the solver toler-

ance, given the applied solver tolerance of εrel = 10−10 in this specific case. Only minor

differences between Cartesian and tetrahedral meshes are observed.
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Figure 3.16.: Cumulative continuity error of the moving surface-tension-dominated inter-
face presented in Section 3.8.4.2 on an equidistant Cartesian and a tetrahe-
dral mesh.
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Figure 3.17.: Relative volume error of the volume inside the moving surface-tension-
dominated interface presented in Section 3.8.4.2 on an equidistant Cartesian
and a tetrahedral mesh.

3.9. Summary

In this chapter a fully-coupled implicit numerical framework has been presented to simulate

single-phase flows as well as two-phase flows with surface tension on unstructured meshes.

The numerical framework has been developed with emphasis on:

• an accurate flow prediction on unstructured meshes,

• a reliable and strong pressure-velocity coupling,

• a precise balance between pressure gradient and body forces (i.e. surface force and

gravity), and
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• numerical stability on meshes with significant skewness and non-orthogonality.

The presented validation has demonstrated the capabilities of the numerical framework to

accurately predict single-phase and two-phase flows. Most crucially, the results obtained

on structured and unstructured meshes have been shown to be comparable. Furthermore,

the numerical framework provides an accurate balance between pressure gradient and body

forces, which is a common source of errors in two-phase flow simulations. The accurate

balance between pressure gradient and body forces has been verified for both stationary

and moving interfaces, a test case which has not been presented previously in the literature.

Contrary to most two-phase flow frameworks reported in the literature which are limited

to specific density ratios [120, 217, 227], the presented framework can handle any practical

density ratio.
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4. Interface Treatment

The numerical treatment of the interface, in particular the thickness of the interface region

and the evaluation of the interface curvature, is pivotal for the accurate prediction of two-

phase flows. Considerable research efforts have been dedicated to improve the numerical

interface treatment in the past two decades but advanced methods are mostly limited

to Cartesian meshes. In Section 4.1 the general difficulties associated with the interface

representation in VOF frameworks are examined and, in Section 4.2, relevant existing

methods to treat the interface are reviewed and discussed. In Section 4.3 a new method

to evaluate the interface curvature directly from the colour function field is presented and

validated. The new curvature evaluation method is applicable to unstructured meshes and

shows results comparable to or better than existing methods, both on Cartesian meshes

and unstructured meshes. Subsequently, Section 4.4 examines how surface force and fluid

properties should be treated with respect to convolution and Section 4.5 demonstrates

how convolution can adversely affect simulation results. The chapter closes with a short

summary in Section 4.6.

4.1. Interface Representation in VOF Frameworks

The interface in VOF frameworks is implicitly represented by a colour function value of

0 < γ < 1, as previously explained in Section 2.3.2. Hence, only the cells in which an

interface is located are known but not the exact position of this interface. This creates

problems for the numerical evaluation of the interface curvature, the application of the

surface force and the treatment of fluid properties.

The implicit treatment of the interface by means of the VOF colour function, which is

abruptly varying in space, induces significant errors upon differentiation. Derivatives of

the colour function are required to determine the surface force (first derivative) and the

interface curvature (second derivative). The differentiation of the abruptly varying colour

function is ill-posed and results in substantial errors, as a small change in colour function

value between neighbouring cells can cause a large change in its derivatives [33, 258, 265].

Cummins et al. [34] referred to such errors as aliasing errors, due to the similarity with

aliasing in digital signal processing and image processing [220, 258]. Since the colour

function varies abruptly in space, sudden changes in colour function value between neigh-

bouring cells occur regularly. Contrary to general intuition, the errors associated with

differentiating an abruptly varying or noisy function increase as the mesh becomes more

refined as a result of the decreasing mesh spacing. Studies of Stickel [220] show that

the differentiation of noisy data in general follows the correct trend but that the error

magnitude is significant. Brackbill et al. [19] observed errors of almost 100% when the
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interface curvature is calculated directly based on the discontinuous colour function using

a standard finite difference approach. The surface force term, which includes the first

derivative of the colour function, suffers from the abruptly varying colour function in a

similar way as the interface curvature, resulting in an abruptly varying body force in the

interface region.

Similar to the regularisation of noisy signals in digital data processing [33, 220], smooth-

ing the colour function field by means of a convolution method is a widely exercised but

controversial approach to reduce the adverse effects of the abruptly varying colour func-

tion. Calculating the interface curvature from a convoluted representation of the colour

function reduces fluctuations of the curvature value along the interface but also omits ge-

ometric information of the interface. Similarly, using the first derivative of the convoluted

colour function to determine the surface force, convolution smooths the force acting on

the fluid but equally spreads the pressure jump at the interface, which is sharp in reality,

over a larger region.

Applying a VOF method means that the surface force is stored at cell centres and is,

therefore, not a singular force as it is theoretically based on the continuum assumption.

The application of the surface force, and with it the thickness of the interface, is a con-

troversial issue. Analogously, the fluid properties, i.e. viscosity and density, change at the

interface, raising the question whether they should be calculated based on the original

(unconvoluted) colour function or the convoluted colour function. Spreading the surface

force and the fluid properties over a wider region, for instance by using the convoluted

colour function and its gradients, facilitates a smooth transition of momentum across the

interface. On the other hand, keeping the fluid properties and the surface force as sharp

as possible is desired from a physical viewpoint.

4.2. Review of Existing Methods

This section reviews the available literature on interface treatment in VOF frameworks.

Firstly, the convolution of the VOF colour function is introduced and explained. Subse-

quently, Section 4.2.2 discusses state-of-the-art methods to evaluate the interface curvature

in VOF frameworks. Section 4.2.3 summarises the findings concerning an adequate mesh

resolution for interfacial flows with respect to VOF methods.

4.2.1. Convolution

Convolution is a mathematical operation which constructs a function by overlapping two

other functions. In two-phase flows, convolution7 is used to transform a discontinuous

interface indicator function, such as the VOF colour function, into a more continuous scalar

field. The convoluted colour function is frequently applied to reduce the aforementioned

aliasing errors occurring when evaluating the interface curvature [19, 34, 46, 71, 238, 262,

263] and to facilitate a smooth momentum transition across the interface [119, 123, 226,

7Smoothing, mollification and regularisation are often used synonyms for convolution in the relevant
literature on two-phase flow modelling.
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240, 256, 262, 263, 272]. The quality of the results obtained with convoluted variables

depends strongly on the applied convolution length and the convolution method itself.

Various convolution methods with application to multiphase flows can be found in the

literature, such as polynomial [46, 262, 263, 267], spline [19, 167, 224, 232, 233, 262, 271],

Gaussian [79, 157] and trigonometrical convolution functions [179, 232, 233, 240, 271].

Lafaurie et al. [123] and Ubbink [238] used an iterative method they referred to as Laplacian

filter. The implementation of convolution methods on unstructured meshes is typically

straightforward.

The convolution of the colour function by means of a Laplacian filter is an iterative

process, defined as

γc,iP =

∑
f γ

c,i−1
f Af∑
f Af

, (4.1)

where γc is the convoluted colour function, subscript f denotes all bounding faces of cell P

and superscript i represents the iteration number. The iterative process, with the initial

condition γc,i=0 = γ, is performed for a predefined number of iterations. Ubbink [238]

recommends two iterations, as the filter then includes the first and second neighbours of

each cell.

Using a generic convolution kernel K to convolute the VOF colour function, the convo-

luted colour function γc is defined as

γc(x) = K ∗ γ(x) =

∫
Ω
γ(x′)K(x′ − x) dx′ , (4.2)

where Ω denotes the support of the kernel. The support of the kernel is defined as the

region, bounded by the finite convolution length ε, in which K 6= 0. Of course, this

procedure is not limited to the colour function but can be applied to any scalar or vector

field. Williams et al. [263] identified five basic requirements for convolution kernels applied

to interfacial flows:

1. the kernel has a finite support Ω,

2. the kernel is monotonically decreasing with increasing distance from the convolution

centre,

3. the kernel must be smooth and at least three times continuously differentiable,

4.
∫

ΩK(x, ε) dx = 1, and

5. the kernel collapses to a Dirac Delta function for Ω→ 0.

Applying non-monotonic convolution kernels (see condition 2), such as the Nordmark

kernel [167], to the colour function results in an oscillating and potentially unbounded

colour function field. The convolution kernel should be smooth (condition 3) and should

have continuous partial derivatives of at least third-order, since curvature is proportional

to the second derivative of the colour function.
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Tornberg and co-workers [233, 271] applied a piecewise linear convolution kernel, which

in its radially symmetric form is defined as

Klin(r, ε) =

{
A (1− r/ε) if r < ε

0 if r ≥ ε ,
(4.3)

where r is the distance to the centre of the kernel and A is a constant chosen to normalise

the kernel. The linear kernel Klin fulfils all the requirements mentioned above apart from

condition 3, as it is not continuously differentiable.

Another class of convolution kernels frequently applied in interfacial flow simulations are

spline kernels. Williams [262] applied smooth, monotonic kernels such as the K3 kernel,

which had been previously applied in smooth particle hydrodynamics (SPH) simulations

[158, 160] and is defined as

K3(r, ε) =


A
(

1− 6 r
2

ε2
+ 6 r

3

ε3

)
if r ≤ ε/2

A
(
1− r

ε

)3
if ε/2 < r ≤ ε

0 if r ≥ ε .
(4.4)

This kernel has been applied in VOF simulations by Lörstad and co-workers [137, 138] as

well. As Morris et al. [160] pointed out, the second derivative of the K3 kernel (and of

similarly constructed spline kernels) is not continuous but piecewise linear and, therefore,

does not fulfil condition 3 of the requirements discussed above.

Two radially symmetric kernels satisfying all of the above requirements are the sixth-

order and eighth-order kernels of Williams [262]. The sixth-order kernel is given as

K6(r, ε) =

{
A(ε2 − r2)3 if r < ε

0 if r ≥ ε
(4.5)

and, similarly, the eighth-order kernel follows as

K8(r, ε) =

{
A(ε2 − r2)4 if r < ε

0 if r ≥ ε .
(4.6)

The K6 and K8 kernels are among the most widely used convolution kernels for VOF

simulations (see e.g. [34, 71, 154, 263]).

Peskin [179] introduced a convolution method using a cosine function to define the

weighting of the cells within convolution length ε. A separate cosine function for each

Cartesian direction i is solved, with the convoluted colour function being calculated as

[179, 233, 240]

γc(x) =

∫
Ω
γ(x′)

∏
i

[
Kcos(x

′
i − xi)

]
dx′ . (4.7)

The convolution kernel Kcos, which fulfils all five requirements outlined above, is defined

as

Kcos(xi, ε) =

{
A/2ε (1 + cos (πxi/ε)) if xi < ε

0 if xi ≥ ε .
(4.8)
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Williams [262] performed an extensive study on convolution kernels, analysing different

high-order polynomial kernels as well as spline kernels. Williams comprehensively demon-

strated that the sixth-order and eighth-order kernels yield better results than spline ker-

nels, such as the K3 kernel defined in Eq. 4.4. The sixth-order and eighth-order kernels of

Williams [262] are depicted in Figure 4.1 alongside the cosine kernel of Peskin [179] as a

function of normalised distance from the convolution centre. The K6 and K8 kernels give

more weight to values located at discrete points (i.e. cell centres) close to the centre of

the convolution than the Kcos kernel. Williams [262] also pointed out that the magnitude

of the kernel derivatives become very large for decreasing convolution length ε, as they

become singular for ε → 0. Thus, an increasing number of discrete points is required for

decreasing convolution length ε to numerically represent the derivatives of the convolution

kernel or of a convoluted variable. This becomes important when surface force or interface

curvature are evaluated from the convoluted colour function field. Comparing the three

convolution kernels depicted in Figure 4.1, the eighth-order kernel has the steepest slope

(first derivative) and the highest curvature (second derivative) of the three kernels and,

therefore, requires the highest number of discrete points for an adequate resolution. The

Kcos kernel provides a smoother transition for small convolution lengths, i.e. ε < 3∆x,

whereas the K6 and the K8 kernel are predicated for larger convolution lengths (ε ≥ 3∆x).

Williams [262, p. 42] explicitly recommends a convolution length of ε ≥ 4∆x for the K6

kernel.
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Figure 4.1.: The K8, K6 and Kcos convolution kernels as a function of the distance x from
the convolution centre relative to convolution length ε.

4.2.2. Interface Curvature

As previously explained in Section 2.3.3, the force acting at the interface due to surface

tension depends directly on the local interface curvature. The accurate numerical eval-

uation of the interface curvature in VOF frameworks is a particularly challenging task,

because:

• the colour function is not a smooth function,
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• the explicit position of the interface is not know but only the cells in which an

interface is located, and

• the interface curvature evaluation depends strongly on the mesh resolution.

A number of methods to evaluate the interface curvature directly from the colour function

or indirectly by some sort of reconstructed function have been presented in the literature.

The following sections review relevant methods to calculate the interface curvature in VOF

frameworks and highlight the characteristics of each method.

4.2.2.1. Direct Differentiation Methods

Direct differentiation methods refers to methods which evaluate the curvature by differen-

tiating the colour function field directly. The colour function field is differentiated twice by

a suitable differentiation method to evaluate the local interface curvature. Various finite

difference, finite volume and least-squares methods for the differentiation of the colour

function can be found in the literature. The extension to unstructured meshes is typically

straightforward and has been demonstrated in previous studies [100, 238, 262]. Regardless

which method is used for differentiation, the curvature is defined following Eq. 2.49 as [19]

κ = −
(
∇ · ∇γ
|∇γ|

)
. (4.9)

Standard finite difference and finite volume methods are among the most intuitive and

widely used methods to calculate the interface curvature. Finite difference and finite vol-

ume methods do not require significant computational resources but suffer from inaccurate

curvature estimates, because of the discontinuous nature of the colour function. Brackbill

et al. [19] applied a standard finite difference method to differentiate the colour function

and proposed to reformulate Eq. 4.9 as

κ =
1

∇γ

[(
∇γ
|∇γ|

· ∇
)
|∇γ| − (∇ · ∇γ)

]
, (4.10)

to shift the major contribution of the curvature from the edges of the differentiation stencil

to its centre. Using a finite volume framework, the interface curvature can be evaluated

straightforward using the Gauss theorem [119, 120, 238]

κP = − 1

VP

∫
VP

∇ ·m dV ≈ − 1

VP

∑
f

mf Af = − 1

VP

∑
f

∇γ
|∇γ|

∣∣∣∣
f

Af , (4.11)

where γ may either be the convoluted or unconvoluted colour function.

In order to diminish the aforementioned aliasing errors and provide more accurate cur-

vature estimates, the colour function is often smoothed by means of a convolution method

for the purpose of curvature evaluation [4, 19, 34, 46, 71, 123, 154, 238, 262, 263]. Williams

et al. [263] introduced a hybrid approach, using the first derivative of a convolution kernel
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to evaluate the interface normal vector

m ≈ ∇K ∗ γ
|∇K ∗ γ|

(4.12)

and a finite difference method to calculate the curvature from the interface normal vector,

following on a two-dimensional equidistant Cartesian mesh as

κ = −∇ ·m ≈ −m
i+1,j
x −mi−1,j

x

2∆x
− mi,j+1

y −mi,j−1
y

2∆y
. (4.13)

The extension to three dimensions is straightforward. Aleinov and Puckett [4] used the

second derivative of a convolution kernel to directly determine the curvature. However,

this approach was effectively dismissed by Williams [262] as he demonstrated that the

interface would need to be convoluted over at least 64 cells to obtain adequately resolved

second derivatives of the convolution function, which severely violates the local character

of the interface and is computationally very expensive.

Studies published by Cummins et al. [34] and Raessi et al. [191] found that curvature

values calculated by finite difference and finite volume methods do not converge with mesh

refinement, representing a severe drawback of such methods. The reason for the observed

divergence are aliasing errors resulting from the differentiation of the colour function [34].

Kothe et al. [120], van Wachem and Schouten [247] and Wang [253] applied a least-

squares fit of a Taylor series to calculate the first derivative of the colour function and to

evaluate the interface normal vector. Taylor series expansions are formed from cell P to

all adjacent cells Q, defined as

γQ = γP +
∂γ

∂x

∣∣∣∣
P

(xQ − xP ) +
∂γ

∂y

∣∣∣∣
P

(yQ − yP ) +
∂γ

∂z

∣∣∣∣
P

(zQ − zP ) . (4.14)

The resulting equations are then solved in a 3× 3 equation system

A · ∇γ|P = b (4.15)

using a least-squares minimisation. The matrix A and the right-hand side vector b follow

from the Taylor series expansion as

A =


∑

Q
(xQ−xP )2

∆sQ

∑
Q

(xQ−xP )(yQ−yP )
∆sQ

∑
Q

(xQ−xP )(zQ−zP )
∆sQ∑

Q
(xQ−xP )(yQ−yP )

∆sQ

∑
Q

(yQ−yP )2

∆sQ

∑
Q

(yQ−yP )(zQ−zP )
∆sQ∑

Q
(xQ−xP )(zQ−zP )

∆sQ

∑
Q

(yQ−yP )(zQ−zP )
∆sQ

∑
Q

(zQ−zP )2

∆sQ

 (4.16)

and

b =


∑

Q
(γQ−γP )(xQ−xP )

∆sQ∑
Q

(γQ−γP )(yQ−yP )
∆sQ∑

Q
(γQ−γP )(zQ−zP )

∆sQ

 , (4.17)

where ∆sQ is the distance of cell P to its neighbour Q. The curvature is, subsequently,

calculated using a finite difference or finite volume method. The least-squares fit provides
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an inherent spatial smoothing of the abruptly varying colour function field for the purpose

of calculating its derivatives [253].

4.2.2.2. Height Function Techniques

Recent efforts to find more accurate ways to determine the interface curvature have focused

predominantly on height function (HF) techniques [1, 18, 34, 66, 71, 72, 91, 129, 135, 183].

HF techniques construct fluid heights as a basis for the curvature evaluation by integrating

the colour function along the largest interface normal vector component. The curvature is

then calculated from the derivatives of the fluid heights. For instance, if the z-component

is the largest component of the colour function gradient, the curvature is calculated as

[71, 135]

κ =
hxx + hyy + hxxh

2
y + hyyh

2
x − 2hxyhxhy(

1 + h2
x + h2

y

)3/2 , (4.18)

where the derivatives of the height function, hi and hij , are calculated using a finite

difference approach with central differencing. Studies carried out by Cummins et al.

[34], Francois et al. [71], López et al. [135] and Popinet [183] presented excellent results

using HF techniques compared to other curvature evaluation methods and demonstrated

second-order convergence on equidistant Cartesian meshes. Liovic et al. [129] successfully

reduced the orientation dependency of the original HF technique on orthogonal meshes,

further increasing the accuracy of curvature evaluation with height functions, by not only

including fluid heights generated along the coordinate axes but also including fluid heights

defined on the diagonals of the Cartesian mesh.

Lörstad, Fuchs and co-workers [137, 138] proposed a curvature evaluation method

founded on the principles of the height function technique, called Direction Averaged Cur-

vature (DAC) model. The DAC model computes the curvature from fluid heights in the

direction of the largest interface normal vector component. Assuming the z-component is

the largest component of the interface normal vector m, the interface curvature is defined

as [138]

κ =
mz

|mz|

(
hii
|m|
− hihjhij
|m|3

)
. (4.19)

The major drawback of HF techniques are inconsistent curvature estimates if the inter-

face is poorly resolved [34, 183], i.e. when the curvature radius approaches the mesh size.

This is a serious drawback, as the error in curvature is largest in these areas. Furthermore,

no extension of HF techniques to unstructured meshes has yet been presented.

4.2.2.3. Other Methods

The advected normal vectors method developed by Raessi et al. [191, 193, 194] advects

the normal vector of the interface as a separate variable together with the colour function.

At every time instant the interface curvature is calculated by Eq. 4.11 from the advected

interface normal vector using central differencing [188]. Based on the underlying flow field,
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a transport equation for the interface normal vector

∂m

∂t
+∇(u ·m) = 0 (4.20)

is solved. A specifically designed algorithm, see [191] for details, ensures that the mag-

nitude of the interface normal vectors is unity and that the interface normal vectors and

the colour function remain coupled. The key advantage of this method is the decreasing

curvature error with increasing mesh resolution, contrary to standard finite difference and

finite volume methods. However, the interface normal vectors become inaccurate in cases

where the interface is locally underresolved, which also affects the accuracy at succeeding

time instants due to the advection of the ill-defined normals.

The coupling of VOF methods and level-set methods, often called VOF-LS or CLSVOF

methods, has experienced considerable attention in recent years. The basic idea behind

combining VOF and LS is to exploit the advantages and mask the disadvantages of the two

approaches. A VOF method is used to ensure mass conservation and a level-set method

is used to compute accurate interface normals and interface curvature, since the level-set

function is smooth and continuous, using standard finite difference or finite volume meth-

ods. The LS distance function is either reconstructed based on the advected VOF colour

function [3, 171, 222, 257] or the LS distance function is advected separately and coupled

with the VOF method subsequently [76, 219, 223, 227, 242, 256]. Results presented in a

number of studies, e.g. in [141, 222, 223], show a reduction of the error in curvature using

VOF-LS methods compared to traditional VOF methods and improved mass conservation

properties compared to standard LS methods.

Other methods to calculate the interface curvature in interface capturing frameworks,

but not widely used and, therefore, not considered to be relevant in the context of this

thesis, are the curvature evaluation from a fitted high-order polynomial [182] and the

curvature evaluation based on a parametrisation method [203].

4.2.3. Mesh Resolution

An adequate mesh resolution at the interface, with respect to interface curvature and

surface force, is critical for the success of two-phase flow simulations. For two fluids

with considerable surface tension, the interface is usually the dominating flow feature and,

thus, governs the mesh resolution. The resolution of the interface is particularly important

because the spatial accuracy of the interface position is limited to first order [20, 61, 227].

The mesh resolution tangential to the interface is critical for the accurate evaluation of

the local interface curvature, e.g. a stronger curved interface requires a higher resolution.

An insufficiently resolved interface curvature typically results in an underestimated local

curvature magnitude and, thus, leads to an underprediction of the local surface force. It

is obvious that from a geometrical standpoint a higher resolution is always preferable as

it reduces the numerical discretisation error of the interface shape representation. How-

ever, as explained in Section 4.1, a higher mesh resolution increases errors arising from

differentiating the abruptly varying colour function if direct differentiation methods are
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applied. Various recommendations regarding the mesh resolution with respect to interface

curvature can be found in the literature. According to Brackbill et al. [19], the curvature

varies quasi-continuously along the interface contours if κ · ∆x < 1. Raessi et al. [194]

deem an interface to be underresolved if κ · ∆x ≥ 1/3 and results by Malik et al. [143]

indicate an effectively curvature independent solution error for κ·∆x ≤ 0.05. Popinet [183]

and Cummins et al. [34] found height function techniques struggle to produce consistent

curvature estimates if κ ·∆x > 0.25 or κ ·∆x > 0.2, respectively. A popular mesh reso-

lution choice found in the literature for equidistant Cartesian meshes is 20 mesh cells per

diameter for circular and spherical interfaces [34, 71, 92, 129, 262, 263], which corresponds

to κ ·∆x = 0.2.

The mesh resolution normal to the interface is equally important as it determines the

thickness of the interface region. From a physical point a view, minimising the interface

thickness is, of course, highly desirably. However, minimising the interface thickness em-

phasises the discontinuity at the interface, which potentially poses problems in terms of

numerical stability and momentum error at the interface for high density and viscosity

ratios. Studies by Francois et al. [71] and Zahedi et al. [272] indicate that minimising the

interface thickness is beneficial with respect to surface force and the resulting pressure

jump across the interface. On the other hand, spreading the fluid properties over several

mesh cells provides a continuous momentum transfer between the fluids [98, 256].

The convolution of the colour function is strongly affected by the mesh resolution and

two cases should be distinguished:

1. the convolution length ε is constant, meaning that the mesh resolution affects the

number of computational points within the support of the convolution kernel, and

2. the convolution length ε is proportional to the mesh distance ∆x, meaning that the

mesh resolution affects the convolution length.

As Williams [262] demonstrated, a higher resolution of the convolution kernel, and equally

of the interface region, reduces curvature errors significantly. Studies by Francois et al. [71]

and Cummins et al. [34] found an improved convergence behaviour for curvature estimates

calculated directly from the colour function field if the convolution length is constant or ε ∝√
∆x, which supports the findings of Williams [262]. However, including more neighbour

cells in the convolution support, i.e. increasing the computational stencil, increases the

required computational effort considerably, as the number of included neighbour cells, and

with it the required computational time, increases with power three for three-dimensional

simulations.
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4.3. The CELESTE Method for Interface Curvature

Evaluation

The content of this section has in parts been published in:
[53] Denner, F. and van Wachem, B.G.M.: Two-Phase Flow Modelling on Arbitrary

Meshes: Superior VOF Curvature Estimation and the Issue of Convolution. Inter-
national Conference on Numerical Methods in Multiphase Flows, 12 - 14 June 2012,
State College, PA, USA.

[55] Denner, F. and van Wachem, B.G.M.: Fully-coupled balanced-force VOF framework
for arbitrary meshes with least-squares curvature evaluation from volume fraction.
Numerical Heat Transfer, Part B: Fundamentals, accepted for publication. DOI:
10.1080/10407790.2013.849996

A new method to evaluate the interface normal vector and the interface curvature, called

CELESTE (Curvature Evaluation with LEast-Squares fit of Taylor Expansion), is pre-

sented in this section. As the literature survey of methods to evaluate curvature in Section

4.2.2 indicates, the curvature evaluation on unstructured meshes is essentially limited at

present to direct differentiation methods, which are straightforward to implement but pro-

duce curvature estimates of insufficient quality. The new curvature evaluation method is

developed based on the following requirements:

1. improved curvature estimates compared to standard finite difference and finite vol-

ume methods,

2. applicable to arbitrary meshes,

3. diminishing aliasing errors upon differentiation,

4. straightforward extension for parallel computer systems, and

5. variable stencil size.

The CELESTE method is founded on a least-squares fit of a Taylor series and is applica-

ble to arbitrary meshes. In contrast to the least-squares method reported by Kothe et al.

[120] discussed in Section 4.2.2.1, CELESTE is constructed around an overdefined system

of equations and utilises a least-squares fit not only for the evaluation of the interface nor-

mal vector but also for the evaluation of the interface curvature. The CELESTE method

is constituted by three distinct steps. Firstly, the first derivative of the colour function

field is calculated using a least-squares fit of a second-order Taylor series expansion, based

on a discrete number of neighbouring cells. The interface normal vector is obtained by

normalising the resulting first derivative of the colour function. Subsequently, the interface

curvature is evaluated with a similar least-squares fit using the interface normal vector.

Thirdly, a weighted local average of the curvature is calculated in order to obtain a repre-

sentative curvature in the entire interface region. CELESTE diminishes numerical noise

as a result of the least-squares fit, is applicable to arbitrary meshes, can be implemented

in parallelised software frameworks without major changes to the existing data structure

(see Appendix A.2 for details) and various stencil sizes can be applied to evaluate the

interface curvature.
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4.3.1. Least-Squares Approach

The proposed method is based on a second-order Taylor series expansion of the colour

function γ from cell P to its neighbour cells Q. In three dimensions the Taylor series

expansion is defined as

γQ = γP +
3∑
i=1

∂γ

∂xi

∣∣∣∣
P

(xi,Q − xi,P ) +
3∑
i=1

3∑
j=1

∂2γ

∂xi ∂xj

∣∣∣∣
P

(xi,Q − xi,P ) (xj,Q − xj,P )

2

+ O(∆x3,∆y3,∆z3) . (4.21)

There are 9 unknowns, underlined in Eq. 4.21, so ideally 9 points around the mesh cell

P should be used. However, it is important to have a symmetric stencil of points around

cell P , as explained in Section 4.3.4. In practice, matching both conditions is not possible

and an overdefined equation system is obtained, defined as

A · φ = b , (4.22)

which is solved using a least-squares algorithm. The coefficients of the unknown deriva-

tives, e.g. xQ−xP , are placed in matrixA and the known values at cell P and its neighbours

Q are placed in the right-hand side vector b. In the presented study the least-squares fit

is performed using the dgels routine of the freely-available software package LAPACK [7].

4.3.2. Interface Normal Vector

The computation of the interface normal vector follows the least-squares approach outlined

in the previous section. Firstly, the gradient of the colour function field is determined from

which, secondly, the interface normal vector is readily available by normalising the colour

function gradient. The coefficient matrix A and the right-hand side vector b are weighted

by a geometric weighting factor ∆s−2
Q , which is the squared inverse distance from neighbour

point Q to centre point P . Hence, the the equation system given in Eq. 4.22 for the colour

function gradient is constituted by the coefficient matrix

A =



∆x1

∆s21

∆y1

∆s21

∆z1
∆s21

∆x2
1

2∆s21

∆y2
1

2∆s21

∆z2
1

2∆s21

∆x1∆y1

∆s21

∆x1∆z1
∆s21

∆y1∆z1
∆s21

. . . . . . . . .
∆xQ

∆s2Q

∆yQ

∆s2Q

∆zQ
∆s2Q

∆x2
Q

2∆s2Q

∆y2
Q

2∆s2Q

∆z2
Q

2∆s2Q

∆xQ∆yQ

∆s2Q

∆xQ∆zQ
∆s2Q

∆yQ∆zQ
∆s2Q

. . . . . . . . .
∆xNQ

∆s2NQ

∆yNQ

∆s2NQ

∆zNQ

∆s2NQ

∆x2
NQ

2∆s2NQ

∆y2
NQ

2∆s2NQ

∆z2
NQ

2∆s2NQ

∆xNQ
∆yNQ

∆s2NQ

∆xNQ
∆zNQ

∆s2NQ

∆yNQ
∆zNQ

∆s2NQ


,

(4.23)
the solution vector

φ =

(
∂γ

∂x

∣∣∣∣
P

∂γ

∂y

∣∣∣∣
P

∂γ

∂z

∣∣∣∣
P

∂2γ

∂x∂x

∣∣∣∣
P

∂2γ

∂y∂y

∣∣∣∣
P

∂2γ

∂z∂z

∣∣∣∣
P

∂2γ

∂x∂y

∣∣∣∣
P

∂2γ

∂x∂z

∣∣∣∣
P

∂2γ

∂y∂z

∣∣∣∣
P

)T
,

(4.24)
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and the right-hand side vector

b =



∆γ1
∆s21

...
∆γQ
∆s2Q

...
∆γNQ
∆s2NQ


(4.25)

where NQ is the number of neighbours evaluated for cell P . The coefficients ∆xQ =

xQ − xP , ∆yQ = yQ − yP and ∆zQ = zQ − zP in matrix A represent the distance from

neighbourQ to cell P and similarly ∆γQ = γQ−γP in the right-hand side vector of Eq. 4.24.

The interface normal vectorm is obtained by normalising the first derivatives of the colour

function, following Eq. 2.50. The inclusion of the second derivatives of the colour function

in the linear equation system described above, although not used directly, is essential for

the accuracy of the subsequent curvature evaluation, as the interface curvature follows

from the second derivatives of the colour function.

4.3.3. Interface Curvature

In principle, the calculation of the interface curvature follows the same approach as the

calculation of the colour function gradient presented in the previous section. However, only

the first derivatives are taken into account for the curvature, as higher-order derivatives do

not improve the curvature evaluation notably. For each component k of interface normal

vector m the equation system
∆x1 ∆y1 ∆z1

. . .

∆xQ ∆yQ ∆zQ

. . .

∆xNQ ∆yNQ ∆zNQ

 ·


∂mk

∂x

∣∣∣∣
P

∂mk

∂y

∣∣∣∣
P

∂mk

∂z

∣∣∣∣
P

 =


∆mk,1

...

∆mk,Q

...

∆mk,NQ

 (4.26)

is solved using a least-squares fit. From the resulting gradients of the interface normal

vector, the curvature is readily available for each cell P as

κP = − ∂mi

∂xi

∣∣∣∣
P

. (4.27)

The numerical representation of the interface as a region of finite thickness presents a

problem for the application of the computed interface curvature to calculate the surface

force, schematically illustrated in Figure 4.2. Even a geometrically accurate curvature

estimate of Eq. 4.27 as depicted in Figure 4.2a can result in considerable numerical errors,

since the curvature varies in the direction normal to the interface. For the surface force,

however, a constant interface curvature in the direction normal to the interface is desirable,

as illustrated by the example in Figure 4.2b, because the surface force should not vary in

the direction normal to the interface, to resemble reality as closely as possible.

In order to get a representative curvature value in the entire interface region, a two step

115



(a) Geometrically accurate curvature values at
cell centres within the interface region

(b) Numerically desired curvature values at cell
centres within the interface region

Figure 4.2.: Schematical illustration of interface curvature κ at cell centres located in the
interface region. The example interface (thick black line) has a constant cur-
vature of κ = 1.0m−1 with a numerical interface region of finite thickness
(bounded by the dash-dotted line) and is illustrated on an equidistant quadri-
lateral mesh. In this example, the theoretical curvature of the inner bound of
the interface region is κ = 0.9m−1 and κ = 1.1m−1 for the outer bound of
the interface region, as illustrated in both figures. All given curvature values
have the unit m−1.

weighted average of the curvature is calculated. The first step, which aims on smoothing

the curvature field, calculates an intermediate curvature κ∗ in each cell by weighting the

curvature value with the related colour function value, defined as

κ∗P =
κPwγ,P +

∑
Q κQwγ,Q

wγ,P +
∑

Qwγ,Q
, (4.28)

where subscript Q denotes the neighbour cells of cell P . Because the calculated interface

normal vectors, and as a result the interface curvature, become inaccurate as the colour

function reaches zero or unity [34, 197], the highest weight (wγ = 1) is assigned to cells

with a colour function value of γ = 0.5. Cells which do not contain an interface, i.e. γ = 0

or γ = 1, are omitted. Accordingly, the weighting factor wγ follows as

wγ,i = [1− 2 (|0.5− γi|)]8 . (4.29)

To reduce the curvature variation normal to the interface, the second step of the averaging

procedure weights the curvature in neighbouring cells additionally with respect to the

interface normal vector and is given as

κP =
κ∗Pwγ,P +

∑
Q κ
∗
Qwγ,Qwm,Q

wγ,P +
∑

Qwγ,Qwm,Q
. (4.30)
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The weighting factor wm is defined as

wm,Q = |mP · sQ|8 , (4.31)

where mP represents the interface normal vector at cell P and sQ is the normalised vector

connecting cell P and its neighbour Q. Numerical experiments proved 8 to be a desirable

choice for the exponents in Eqs. 4.29 and 4.31, although other exponents could be used as

well.

4.3.4. Computational Stencil

The computational stencil on which the presented procedure to evaluate the interface

curvature is applied affects the resulting interface curvature estimates significantly. Hasel-

bacher and Vasilyev [89] identified two contradicting criteria for the stencil of a gradient

reconstruction using a least-squares fit of a Taylor series: a) the stencil should be as small

as possible to minimise the truncation error constants and b) the stencil should be as

symmetric as possible to cancel out terms in the truncation error. Kothe et al. [120] con-

cluded that a wide, symmetric stencil for the evaluation of the interface normal vector is

required, e.g. 27 cells in three-dimensional simulations. Also, considering the minimisation

of numerical noise arising from the abruptly varying colour function upon differentiation,

the number of cells included in the stencil must be larger than the number of unknown

gradients.

In order to make use of a symmetric stencil for the least-squares fit, a cubical computa-

tional stencil with edge length ls is used for CELESTE. Thus, every cell within a distance

of ls/2 to centre cell P with respect to the three Cartesian coordinate axes is part of the

computational stencil. Figure 4.3 illustrates a cubical stencil in two dimensions on a Carte-

sian mesh and a triangular mesh. Special caution must be exercised for problems where

high interface curvature values compared to the mesh resolution occur, as large stencils

can adversely affect the results. With respect to the stencil size used for CELESTE, Lisita

[130] found an edge length for the interface normal evaluation of ls,m = 4∆x and for the

interface curvature evaluation of ls,κ = 2∆x to be preferable choices.

On unstructured meshes the mesh spacing is neither constant nor readily available.

Therefore, a reference mesh distance d∗ is defined as a basis for the stencil size on unstruc-

tured meshes. This reference mesh distance d∗ is defined as the average distance between

two adjacent cell centres in proximity of the interface. In the specific case of an equidistant

hexahedral mesh, d∗ is equal to the mesh spacing ∆x.

4.3.5. Validation

To validate the CELESTE method, a static inviscid drop in equilibrium is simulated to

quantify the errors resulting from the evaluation procedure of the interface curvature. A

static inviscid fluid particle (drop or bubble) in equilibrium is an often facilitated test

case, as for instance in [71, 129, 134, 135, 263], due to its simplicity and informative value.

Firstly, because the drop is in equilibrium, the interface is spherical by definition, allowing
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Figure 4.3.: Cubical stencil (dashed box) of edge length ls on a Cartesian (left) and a
triangular (right) mesh. The centre of the stencil cell is denoted with P and
cell centroids of neighbouring cells are illustrated with dots. Highlighted cells
are part of the CELESTE stencil.

to compare the calculated curvature value at every discrete point in the interface region

against the exact curvature value given by Eq. 3.144. Secondly, since the velocity field

is initially stationary and given a balanced-force numerical framework such as the one

described in Chapter 3, all observed velocities are parasitic currents and can be attributed

to an inaccurate curvature evaluation. Lastly, considering an inviscid spherical fluid par-

ticle and no additional external body forces such as gravity, the pressure jump across the

interface is exactly defined by Eq. 2.46. It is important that curvature error, parasitic

currents and pressure error are evaluated separately, as they do not correlate with each

other, even though the inaccuracy in evaluating the interface curvature is the source of all

three errors. The curvature error represents the maximum (or average in other studies)

difference between calculated and theoretical curvature. The parasitic currents depend on

the distribution and magnitude of the curvature error and the pressure error results from

an inaccurate estimation of the mean interface curvature.

The drop used for the validation of the interface curvature evaluation has a radius

of r = 2m and is positioned at the centre of a cubical domain with edge length 8m.

The surface tension coefficient of the fluid pair is σ = 73N m−1. Therefore, the exact

pressure jump across the interface for the considered drop is ∆p = 73Pa. The density

inside and outside the drop is ρi = 1.0 kgm−3 and ρo = 0.1 kgm−3, respectively. A fixed

time-step of ∆t = 10−3 s is applied. This particular test case with the given properties

has previously been used in several publications to examine interface curvature evaluation

methods [71, 129, 134, 263]. Thus, the results obtained with CELESTE can be compared

to the results obtained with other commonly applied methods to evaluate the interface

curvature.

The inviscid drop is simulated on three equidistant Cartesian meshes and three tetra-

hedral meshes, using CELESTE to determine the interface curvature with various stencil

sizes. The Cartesian meshes consist of 203, 403 (Figure 3.9a) and 803 cells, and the applied

tetrahedral meshes have approximately 6.0 × 104 (Figure 3.9c), 1.1 × 105 and 2.7 × 105
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cells. Alongside simulations without convolution of the colour function, denoted in the

remainder with n.c. (no convolution), simulations applying the Kcos, K6 and K8 convolu-

tion kernels, discussed in Section 4.2.1, are presented in order to make a sound judgment

about the capabilities of the new curvature evaluation method. Stencils of equal size ls

are applied in the following simulations to convolute the colour function, with convolution

length ε = ls/2, and to evaluate the interface normal vector and curvature. For the three

considered tetrahedral meshes the reference length scale d∗ equals to 0.17m for the mesh

with 6.0× 104 cells, 0.14m for the mesh with 1.1× 105 cells and 0.10m for the mesh with

2.7× 105 cells.

The accuracy of the interface normal vector and interface curvature evaluation is as-

sessed by means of the L2 and L∞ error norms, defined for the interface normal vector

as

L2(m) =

√√√√ 1

NI

NI∑
i=1

(mi −mexact)
2 (4.32)

L∞(m) = max {|m−mexact|} (4.33)

and for the interface curvature as

L2(κ) =

√√√√ 1

NI

NI∑
i=1

(
κi − κexact
κexact

)2

(4.34)

L∞(κ) = max

{
|κ− κexact|
κexact

}
, (4.35)

where NI is the number of cells in the interface region. Eqs. 4.32 - 4.35 are evaluated for

cells in the interface region only. A cell is considered to lie within the interface region if

10−5 ≤ γc ≤ 1.0 − 10−5, following the work of Cummins et al. [34]. The exact curvature

κexact for a spherical interface follows from Eq. 3.144. The difference between the computed

pressure jump across the interface and the exact pressure jump across the interface (see

Eq. 2.46) is quantified by Eq. 3.145.

4.3.5.1. Interface Normal Vector

The accurate evaluation of the interface normal vector is an important feature, since

the interface curvature directly follows as a result. Figure 4.4 shows the L2(m) and

L∞(m) error norms for interface normal vector m obtained with CELESTE on the three

equidistant Cartesian meshes as a function of stencil size and convolution kernel. The

graphs clearly show a decreasing error for calculating the interface normal vector from a

convoluted colour function field with increasing stencil size. The differences between the

tested convolution kernels reduces with increasing mesh resolution. On all three meshes

the polynomial convolution kernels, i.e. K6 and K8, show a steeper slope for increasing

stencil size than the Kcos kernel. In instances where the normal vectors are calculated

using the original colour function field without convolution, the error remains constant

regardless of the stencil size. Considering an unconvoluted colour function, the gradient
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of the colour function is only dependent on the value at the cell containing the interface

and its direct neighbours. Therefore, it does not make a difference if the stencil for the

gradient computation is increased. Furthermore, only minor differences are observed for

the tested meshes.
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Figure 4.4.: L2 and L∞ error norms of interface normal vector m as a function of sten-
cil size ls and convolution kernel for a spherical drop on three equidistant
Cartesian meshes using the CELESTE method.

Figure 4.5 shows the error norms for the interface normal vector as a function of stencil

size and convolution kernel on the three tetrahedral meshes. The L2(m) and L∞(m)

error are of similar value on the three considered meshes. As for the Cartesian meshes, a

decreasing error is observed with increasing stencil size for cases with convoluted colour

function and a constant error is observed using the unconvoluted colour function. The

errors for the cases with convoluted colour function are about one order of magnitude

higher compared to the errors observed on the Cartesian meshes. The choice of convolution

kernel carries only a small influence on the resulting error of the interface normal vector.
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Figure 4.5.: L2 and L∞ error norms of interface normal vector m as a function of stencil
size ls and convolution kernel for a spherical drop on three tetrahedral meshes
using the CELESTE method.

4.3.5.2. Interface Curvature

The errors induced by the curvature evaluation using the CELESTE method on equidis-

tant Cartesian meshes, presented in Figure 4.6, show no clear correlation with the stencil

size. Considering the cases using a convoluted colour function, a large difference for the

resulting error between different stencil sizes and different convolution kernels can be ob-

served on the coarsest mesh (203 cells). The variations between the presented stencil

sizes and convolution kernels successively decrease on the finer meshes (403 and 803 cells).

The results without convolution of the colour function show similar trends as the results

obtained with convolution of the colour function. Generally, a higher curvature error is

obtained by using the unconvoluted colour function compared to the cases with convo-

lution. However, the difference of the errors induced by the curvature estimate between

cases with and without convolution decreases for higher resolved meshes.

The maximum curvature error, represented by L∞(κ), for the convoluted cases ranges

from 1.5− 38 % on the 203 cells mesh, 0.8− 5 % on the 403 cells mesh and 2.0− 3.8 % on

the 803 cells mesh. Applying no convolution to the colour function, the curvature errors

are 1.9− 69 % on the 203 cells mesh, 3.2− 14.7 % on the 403 cells mesh and 6.2− 8.2 % on

the 803 cells mesh. For a two-dimensional circular fluid particle, Mencinger and Žun [154]

reported errors of around 8.9 % and 4.5 % on Cartesian meshes resolving the radius of the
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fluid particle radius with 10 and 20 cells, respectively. For this simulations Mencinger

and Žun applied the K8 convolution kernel with a convolution length ε equal to the fluid

particle radius. Simulations conducted by Martins Villar [151], published in [57], presented

a maximum curvature error for a spherical fluid particle of 0.4 % using a height function

technique and resolving the interface with 20 cells per diameter. Also reported in [57] are

results of van der Heul [241] applying a mass-conserving level-set method, called MCLS

[243], to a spherical interface with a reported curvature error of 7.5 %. Studies of Cummins

et al. [34] applied the K8 kernel with a convolution length of ε = 4∆x to a two-dimensional

circular interface. The resulting curvature errors are included in Figure 4.6 for comparison.

The curvature error obtained with CELESTE, even without convolution, is equal to or

smaller than in the results reported by Cummins et al. [34] using standard finite difference

methods for the evaluation of the interface curvature.
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Figure 4.6.: L2 and L∞ error norms of interface curvature κ as a function of stencil size
ls and convolution kernel for a spherical drop on three equidistant Cartesian
meshes using the CELESTE method.

On the tetrahedral meshes, the interface curvature does not feature the large errors

observed for the interface normal vector. The L2(κ) and L∞(κ) errors in Figure 4.7 show

similar error magnitudes on the tetrahedral meshes as previously seen on the Cartesian

meshes. The curvature errors for a stencil size of ls = 4d∗, however, are approximately one

order of magnitude higher than for a stencil size of ls = 6d∗. This strongly suggests that

a stencil size of ls = 4d∗ is not large enough. The results of all three convolution kernels

and the results obtained without convolution of the colour function show similar trends

on all tested tetrahedral meshes.
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Figure 4.7.: L2 and L∞ error norms of interface curvature κ as a function of stencil size ls
and convolution kernel for a spherical drop on three tetrahedral meshes using
the CELESTE method.

4.3.5.3. Pressure Error

The error in pressure jump across the interface obtained on the Cartesian meshes with

varying stencil size is shown in Figure 4.8. With increasing mesh resolution, the variation

in E(∆pmax) between the different stencil sizes reduces significantly. If convolution is

applied, the difference between convolution kernels similarly diminishes on higher resolved

meshes. The pressure error is generally around the order of 10−2.

The magnitude of the pressure error E(∆pmax) on the tetrahedral meshes is of simi-

lar magnitude compared to the pressure errors obtained on the Cartesian meshes, being

around 10−2 as shown in Figure 4.9. A notable decrease in variation of E(∆pmax) on finer

meshes for the tested stencil sizes and convolution methods is observed. By not convolut-

ing the colour function, the pressure error has a similar trend with respect to stencil size

and mesh resolution as the results of the cases in which the colour function is convoluted,

however, the magnitude of the error is higher.

A close relationship between the pressure error across the interface E(∆pmax) after one

time-step and the curvature error L2(κ) can be identified by comparing the graphs in Fig-

ures 4.6 and 4.8 for Cartesian meshes and in Figures 4.7 and 4.9 for tetrahedral meshes.

The observed correlation between pressure error and curvature error has physical mean-

ing given the relationship between pressure jump across the interface and surface force.
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Assuming a constant surface tension coefficient, the pressure jump across the interface

follows directly from the surface force, which is proportional to the interface curvature.
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Figure 4.8.: Pressure error E(∆pmax) after one time-step as a function of stencil size ls and
convolution kernel for a static inviscid drop in equilibrium on three equidistant
Cartesian meshes using the CELESTE method. The drop with surface tension
coefficient σ = 73N m−1 and radius r = 2m is positioned at the centre of the
8m× 8m× 8m domain and the time-step is 10−3 s.
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Figure 4.9.: Pressure error E(∆pmax) after one time-step as a function of stencil size ls and
convolution kernel for a static inviscid drop in equilibrium on three tetrahedral
meshes using the CELESTE method. The drop with surface tension coefficient
σ = 73N m−1 and radius r = 2m is positioned at the centre of the 8m ×
8m× 8m domain and the time-step is 10−3 s.

4.3.5.4. Parasitic Currents

The magnitude of parasitic currents after one time-step on the applied equidistant Carte-

sian meshes, depicted in Figure 4.10, shows no clear trend concerning mesh resolution or

stencil size. The polynomial convolution kernels show a similar performance, with the

Kcos kernel performing slightly better on finer meshes than its polynomial counterparts.

The parasitic currents developing with the unconvoluted colour function are of similar

magnitude compared to the convoluted cases on the 203 mesh, but are considerably higher

on the finer meshes. The results show a widening gap between the case using the uncon-

voluted colour function to the cases using the convoluted colour function with increasing
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mesh resolution. This suggests an increasing impact and importance of convolution on

finer meshes with respect to parasitic currents. Figure 4.11 depicts the typical velocity

distribution around the interface after one and fifty time-steps for the case using the Kcos

convolution function and a stencil size of ls = 4∆x.
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Figure 4.10.: Maximum velocity magnitude after one time-step as a function of stencil size
ls and convolution kernel for a static inviscid drop in equilibrium on three
equidistant Cartesian meshes using the CELESTE method. The drop with
surface tension coefficient σ = 73N m−1 and radius r = 2m is positioned at
the centre of the 8m× 8m× 8m domain and the time-step is 10−3 s.

(a) t = ∆t (b) t = 50 ∆t

Figure 4.11.: Vector field of the parasitic currents obtained using the CELESTE method in
conjunction with the Kcos convolution function and a stencil size of ls = 4∆x
after one time-step and fifty time-steps. The velocity vectors are shown in
the x-y plane crossing through the centre of the domain. The length of the
vectors represents the velocity magnitude, with the maximum magnitudes
given in Table 4.2. The vector field after one time-step (a) is magnified 10
times compared to the vector field after fifty time-steps (b).

Table 4.1 presents maximum velocity magnitudes published in different studies for the

static inviscid drop in equilibrium on an equidistant Cartesian mesh of 403 cells and
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Table 4.1.: Reference values for the maximum velocity magnitude [m/s] after one and fifty
time-steps for a static inviscid drop in equilibrium. The static inviscid drop
with surface tension coefficient σ = 73N m−1 and radius r = 2m is positioned
at the centre of the 8m×8m×8m domain, which is resolved by an equidistant
Cartesian mesh of 403 cells and a time-step of 10−3 s.

Method Publication t = ∆t t = 50∆t

Convolution
Williams et al. [263] 8.55× 10−2 3.86× 10−1

Francois et al. [71] 4.87× 10−3 1.63× 10−1

Height function

Denner et al. [57] 7.92× 10−3 4.26× 10−2

Francois et al. [71] 4.02× 10−3 4.02× 10−2

López et al. [135] ≈ 4.0× 10−3 ≈ 4.0× 10−2

Liovic et al. [129] 2.30× 10−3 3.35× 10−2

Mass-Conserving Level-Set Denner et al. [57] 2.98× 10−3 2.65× 10−2

Table 4.2 presents the velocity magnitudes obtained with the proposed curvature evalua-

tion method CELESTE. Comparing Tables 4.1 and 4.2, the CELESTE method performs

very well against the listed references. The maximum velocity magnitude obtained with

CELESTE after one time-step is smaller with all tested setups using one of the three con-

volution kernels than the results presented in the literature. The studies using a height

function method generally show a smaller increase in velocity over time, leading to smaller

parasitic currents after fifty time-steps in some instances.
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Figure 4.12.: Maximum velocity magnitude after one time-step as a function of stencil size
ls and convolution kernel for a static inviscid drop in equilibrium on three
tetrahedral meshes using the CELESTE method. The drop with surface
tension coefficient σ = 73N m−1 and radius r = 2m is positioned at the
centre of the 8m× 8m× 8m domain and the time-step is 10−3 s.

The magnitude of parasitic currents on the tetrahedral meshes, shown in Figure 4.12, are

of similar magnitude as the parasitic currents observed on Cartesian meshes, especially on

the higher resolved meshes. Generally, the maximum velocity magnitude after one time-

step is around 10−3m/s for cases with convoluted colour function, with lower magnitude
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Table 4.2.: Maximum velocity magnitude [m/s] obtained with CELESTE after one and
fifty time-steps for a static inviscid drop in equilibrium. The static inviscid drop
with surface tension coefficient σ = 73N m−1 and radius r = 2m is positioned
at the centre of the 8m×8m×8m domain, resolved by an equidistant Cartesian
mesh of 403 cells and a time step of 10−3 s.

Convolution kernel Stencil t = ∆t t = 50∆t

Kcos

4∆x 1.010× 10−3 6.746× 10−2

6∆x 1.153× 10−3 8.118× 10−2

8∆x 9.794× 10−4 7.102× 10−2

10∆x 4.527× 10−4 3.356× 10−2

12∆x 1.025× 10−4 7.436× 10−3

K6

4∆x 1.074× 10−3 6.896× 10−2

6∆x 1.789× 10−3 1.234× 10−1

8∆x 1.407× 10−3 1.021× 10−1

10∆x 6.700× 10−4 5.168× 10−2

12∆x 2.324× 10−4 1.700× 10−2

K8

4∆x 1.178× 10−3 7.619× 10−2

6∆x 2.155× 10−3 1.488× 10−1

8∆x 1.630× 10−3 1.176× 10−1

10∆x 7.885× 10−4 5.825× 10−2

12∆x 2.689× 10−4 1.962× 10−2

for larger stencils. No significant differences are observed between the tested convolution

kernels. In cases where no convolution is applied, the magnitude of parasitic currents is

higher than for the cases with convolution of the colour function, but with a similar trend

concerning stencil size. Similar to the aforementioned curvature error, the stencil size of

ls = 4d∗ produces significantly higher parasitic currents. As observed on the Cartesian

meshes, the impact of convolution increases on finer meshes.

4.3.5.5. Parasitic Kinetic Energy

As explained in Section 2.3.3, Lafaurie et al. [123] found the velocity magnitude of parasitic

currents to be proportional to the ratio of surface tension coefficient σ and fluid viscosity

µ, described as

|u| = C
σ

µ
, (4.36)

where C is a constant depending on the interface capturing/tracking method. In fact,

coefficient C represents the capillary number of the parasitic currents, since the capillary

number is defined as Ca = |u|µ/σ and, therefore, |u| = Caσ/µ. Typical values of C range

from 10−2 to 10−10 [123, 250]. The results of various studies presented in the literature

are given in Table 4.3.

In order to validate the potential of the curvature evaluation method CELESTE, a

viscous static drop in equilibrium is simulated. Assuming only moderate changes of the
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Table 4.3.: Parasitic currents coefficients reported in the literature for various VOF meth-
ods.

Method
Grid resolution

C
cells / radius

SURFER [123] - ≈ 10−2

PLIC [184] 3.2− 102.4 ≈ 10−3

VOF-LS [3] 5− 50 ≈ 10−3

K8 [154] 10 2.39× 10−4

K8 [154] 20 6.58× 10−5

PROST [154] 10 8.17× 10−5

PROST [154] 20 1.31× 10−5

Advected normals [193] 32 6.01× 10−7

interface shape as a result of parasitic currents, the kinetic energy induced by the parasitic

currents and the viscous dissipation eventually reach an equilibrium. Similar to the drop

considered in the previous sections, the simulated viscous drop has a radius of r = 2m

and is positioned at the centre of a cubical domain with edge length 8m. The surface

tension coefficient of the interface is σ = 73N m−1 and no gravity is present. The density

of both fluids is ρ = 1 kgm−3 and both fluids hold a viscosity of µ = 1Pa s.

Table 4.4 presents coefficient C based on the maximum and mean velocity magnitude,

and the total kinetic energy Wk for three equidistant Cartesian meshes and three tetrahe-

dral meshes. Coefficient C based on the maximum and mean velocity is defined as

Cmax = |u|max
µ

σ
(4.37)

and

Cmean = |u|mean
µ

σ
, (4.38)

respectively. The mean velocity in the domain is calculated as

|u|mean =
1

N

N∑
P=1

uP (4.39)

and the total kinetic energy in the domain is defined as

Wk =
N∑
P=1

1

2
ρP |u|2P VP , (4.40)

where N is the number of cells in the domain.

The results presented in Table 4.4 show a decreasing velocity and kinetic energy for

Cartesian meshes with increasing mesh resolution. The coefficients C obtained with CE-

LESTE are comparable to the coefficients presented by Mencinger and Žun [154] using

the piecewise parabolic reconstruction method PROST of Renardy and Renardy [197].
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Table 4.4.: Mean and maximum parasitic currents and total kinetic energy on equidistant
Cartesian and tetrahedral meshes for a static viscous drop in equilibrium using
the CELESTE method to evaluate the interface curvature. The drop with
surface tension coefficient σ = 73N m−1 and radius r = 2m is positioned at
the centre of the 8m × 8m × 8m domain and the time-step is 10−3 s. Both
fluids have a density of ρ = 1 kgm−3 and a viscosity of µ = 1Pa s.

Mesh Cmean Cmax Wk [J ]

Equidistant Cartesian, 203 cells 1.27× 10−5 1.71× 10−4 8.085× 10−4

Equidistant Cartesian, 403 cells 1.40× 10−6 6.00× 10−5 2.413× 10−5

Equidistant Cartesian, 803 cells 4.10× 10−7 2.52× 10−5 1.267× 10−6

Tetrahedral, ≈ 6.0× 104 cells 4.40× 10−6 1.47× 10−4 1.670× 10−4

Tetrahedral, ≈ 1.1× 105 cells 4.10× 10−6 1.05× 10−4 7.990× 10−5

Tetrahedral, ≈ 2.7× 105 cells 2.41× 10−6 1.45× 10−4 3.986× 10−5

Moreover, the results presented here are better than the results obtained by Mencinger

and Žun [154] using a similar convoluted colour function approach with K8 convolution.

It should be noted that Mencinger and Žun applied the K8 convolution kernel with a

significantly larger convolution length, i.e. convolution length equal to the fluid particle

radius, which is expected to produce smaller parasitic currents. This issue is revisited in

more detail in Section 4.5. On tetrahedral meshes, coefficients C of similar magnitude as

for the Cartesian meshes are generally obtained. The Cmax coefficient on the finest of the

three tetrahedral meshes is higher than on the second finest tetrahedral mesh. The coeffi-

cient Cmean and the kinetic energy in the domain, however, decrease with increasing mesh

resolution on the tetrahedral mesh as well, indicating that the higher Cmax coefficient and

the underlying maximum velocity on the finest tetrahedral mesh are not representative for

the entire domain. Figure 4.13 shows the evolution of total kinetic energy as a function

of time. In general, mesh refinement reduces terminal parasitic currents and the resulting

kinetic energy. The evolution of the kinetic energy decreases rapidly with increasing mesh

resolution, on Cartesian as well as on tetrahedral meshes.

4.4. Convolution of Fluid Properties and Surface Force

The content of this section has been published in:
[56] Denner, F. and van Wachem, B.G.M.: On the convolution of fluid properties and

surface force for interface capturing methods. International Journal of Multiphase
Flow, 54 (2013), pp. 61-64.

The convolution of fluid properties, i.e. density ρ and viscosity µ, and surface force f s

has previously been discussed in other studies, e.g. [19, 192, 240, 272], but remains a

controversial and essentially unsolved issue. The convolution of density, viscosity and

surface force facilitates a smooth transition of momentum across the interface, which

improves the convergence of the numerical solver and reduces numerical oscillations. On
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Figure 4.13.: Evolution of the total kinetic energy Wk as a function of time for the viscous
static drop in equilibrium using the CELESTE method. The drop with
surface tension coefficient σ = 73N m−1 and radius r = 2m is positioned at
the centre of the 8m× 8m× 8m domain and the time-step is 10−3 s. Both
fluids have a density of ρ = 1 kgm−3 and a viscosity of µ = 1Pa s.

the other hand, keeping the fluid properties and the surface force as sharp as possible is

desired from a physical viewpoint. Numerous studies [102, 123, 226, 240, 262, 263, 272]

support the convolution of fluid properties and surface force as it diminishes numerical

oscillations and, supposedly, reduces parasitic currents. Wang and Tong [256] and Hong

et al. [98] argued that fluid properties should be distributed continuously, i.e. should be

convoluted, since the velocity field is continuous across the interface, but that the surface

force should not be convoluted to maintain a sharp pressure jump at the interface. Yet

other studies either only convoluted the viscosity, keeping the density and the surface force

sharp [29, 78, 243], or applied no convolution [147], applying density, viscosity and surface

force as-is.

Eight convolution strategies with respect to fluid properties and surface force are vali-

dated and compared. The considered constellations, where superscript u denotes uncon-

voluted variables and superscript c denotes convoluted variables, are:

1. ρu − µu − fus,i (no convolution),

2. ρc − µu − fus,i (convolution of density),

3. ρu − µc − fus,i (convolution of viscosity),

4. ρc − µc − fus,i (convolution of fluid properties),

5. ρu − µu − f cs,i (convolution of surface force),

6. ρc − µu − f cs,i (convolution of density and surface force),

7. ρu − µc − f cs,i (convolution of viscosity and surface force),
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8. ρc − µc − f cs,i (convolution of fluid properties and surface force).

For cases in which density is convoluted, the colour function γ in Eq. 2.44 is replaced

by its convoluted counterpart γc. Therefore, the convoluted density follows as

ρc = ρA(1− γc) + ρBγ
c . (4.41)

If viscosity is convoluted, the viscosity distribution is based on the convoluted colour

function in a similar manner following Eq. 2.45, defined as

µc = µA(1− γc) + µBγ
c . (4.42)

The surface force is convoluted by replacing the colour function gradient in Eq. 2.48 with

the gradient of the convoluted colour function. Thus, the convoluted surface force f cs,i is

defined as

f cs,i = σ κ
∂γc

∂xi
. (4.43)

The colour function γ is convoluted by means of the Kcos kernel defined in Eq. 4.8 with

a convolution length of ε = 2∆x. Convolution is performed immediately after the colour

function advection. Dependent on the considered test case, the unconvoluted or convoluted

properties are used in the discretised equations.

Two representative test cases, a static drop in equilibrium and a bubble rising due to

buoyancy, are simulated to examine the considered convolution strategies. The static drop

in equilibrium is used to assess the effect of convolution on surface-tension-dominated two-

phase flows with high density and viscosity ratios. Examining the influence of convolution

on viscous stresses and buoyancy is the focus of the rising bubble case. The interface

curvature in both test cases is computed using the CELESTE method presented in Section

4.3.

4.4.1. Static Drop in Equilibrium

A static drop in equilibrium is considered with the aim of evaluating the evolution of

parasitic currents induced by discretisation inaccuracies. Since the static system is initially

in equilibrium, any velocities developing in the domain are regarded as parasitic currents.

Assuming the parasitic currents are small enough so that they do not significantly affect

the shape of the interface, the magnitude of parasitic currents should converge to an

equilibrium value, where the kinetic energy induced by the parasitic currents is equal to

the dissipation in the system. The drop with radius r = 2m and surface tension coefficient

σ = 100N m−1 is positioned at the centre of an 8m×8m×8m domain and resolved with

10 cells per diameter. The considered density ratios ρi/ρo and viscosity ratios µi/µo are

103 and 106, where i and o denote fluid properties inside and outside the drop, respectively.

The results in Figure 4.14 demonstrate a considerable effect of the density and viscosity

treatment on parasitic currents. In general, the effect of density and viscosity convolution

on the parasitic currents increases with increasing density and viscosity ratios. In most

cases, parasitic currents are significantly reduced by convoluting density and viscosity.
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Figure 4.14.: Maximum parasitic currents as a function of time for a spherical drop in
mechanical equilibrium with density ratios ρi/ρo and viscosity ratios µi/µo
of 103 and 106, using different convolution strategies with respect to density
ρ, viscosity µ and surface force f s. Superscript u denotes unconvoluted
variables and superscript c denotes convoluted variables.

The cases in which viscosity is convoluted but density is not do not yield a stable result

for a density ratio of 106. The interface in these cases is destroyed within the first five

time-steps as a result of high parasitic currents. Therefore, these cases are not depicted

in Figure 4.14b and 4.14c. Similar results can be observed in Figure 4.14c for convolution

strategies in which density is convoluted but viscosity is not convoluted, where parasitic

currents increase monotonically and the simulations eventually diverge. However, the

simulations are stable if the convolution of density and viscosity is treated equally, with

decreasing or constant parasitic currents for all tested density and viscosity ratios. This

proves a critical enhancement of numerical stability if density and viscosity are treated

equally, i.e. either both unconvoluted or both convoluted. Regarding the convolution of

the surface force, the results in Figure 4.14 show a higher magnitude and a slower decay

of parasitic currents for cases with convoluted surface force compared to the respective

cases with unconvoluted surface force. The convolution of surface force does not improve

the numerical stability for the performed test cases.

4.4.2. Spherical Cap Bubble Rising due to Buoyancy

The rise velocity ur as a function of time for a bubble rising under the sole action of

gravity, using the eight aforementioned convolution strategies, is depicted in Figure 4.15.

The bubble is initially spherical with a diameter of d0 = 0.02m, a Morton number of

Mo = g µ4
o/ρo σ

3 = 0.056 and an Eötvös number of Eo = ρo g d
2
0/σ = 40. The density

and viscosity ratios of the two fluids are ρi/ρo = µi/µo = 10−2. The resolution of the

equidistant Cartesian mesh corresponds to 20 cells per initial diameter d0 and the domain

has a width of 5d0. Empirical studies by Clift et al. [27, Fig. 2.5] suggest a terminal

132



Reynolds number of Red = ut ρo d0/µo ≈ 20.5 − 21.0 for this bubble, representing a

terminal Froude number of Fr = ut/
√
d0 g ≈ 0.626 − 0.642, where ut stands for the

terminal rise velocity. Given the finite extend of the computational domain, the expected

terminal rise velocity is corrected by means of the semi-empirical correlation [88]

ut
u∞t
≈ 1−

(
d0

L

)2

, (4.44)

where L denotes the domain extend perpendicular to the gravitational acceleration and

u∞t represents the terminal rise velocity in a domain of infinite extend. Thus, the expected

terminal Froude number of the rising bubble in the given computational domain is Fr ≈
0.601− 0.616.
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Figure 4.15.: Froude number of an initially spherical bubble rising due to buoyancy as a
function of non-dimensional time τ = t

√
g/d0, using different convolution

strategies with respect to density ρ, viscosity µ and surface force f s. Super-
script u denotes unconvoluted variables and superscript c denotes convoluted
variables.

At first glance, examining the left graph in Figure 4.15, all considered convolution

strategies produce acceptable predictions of the rise velocity, with terminal Froude num-

bers ranging from 0.606 to 0.621. However, analysing the detailed presentation of the rise

velocity evolution given in the right graph of Figure 4.15, considerable differences between

the tested convolution strategies can be observed. Comparing cases for which only the

convolution of the surface force differs show equivalent results, contrary to the significant

differences observed for the static drop in the previous section. The dominating effect in

case of the static drop is surface tension whereas the rising bubble is governed by buoyancy

and viscous stresses, which greatly reduces the influence of the surface force on the fluid

system. In contrast to the static drop in equilibrium where viscosity is merely responsible

for the dissipation of parasitic currents, viscous stresses play an important role in the evo-

lution of the bubble shape. This explains the large differences caused by the convolution

of viscosity, as observed in Figure 4.15. The results also suggest that using the convoluted

density field is superior to using the discontinuous density field, as the convolution strate-
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gies in which viscosity as well as density are convoluted predict the terminal rise velocities

most accurate.

4.4.3. Conclusion

The analysis of the two representative test cases highlight the significant influence of con-

volution on the predictive quality of interfacial flow simulations. The presented results of

the two test cases indicate that the convolution of density improves the results consider-

ably, even though it is questionable from a strictly physical point of view. In cases where

the accurate prediction of viscous stresses is essential, ensuring a continuous variation of

viscous stresses across the interface by convoluting viscosity is important, as shown by

the rising bubble case. Crucially, the equal treatment of density and viscosity with re-

spect to convolution is essential to maintain numerical stability for high density ratios, as

demonstrated by the static drop in equilibrium with density ratio 106. The test cases also

comprehensively demonstrate that the convolution of the surface force adversely affects

the development and dissipation of parasitic currents in surface-tension-dominated flows

and, contrary to the generally accepted notion, does not improve the numerical stability.

4.5. Influence of Convolution Length

The content of this section has in parts been published in:
[53] Denner, F. and van Wachem, B.G.M.: Two-Phase Flow Modelling on Arbitrary

Meshes: Superior VOF Curvature Estimation and the Issue of Convolution. Inter-
national Conference on Numerical Methods in Multiphase Flows, 12 - 14 June 2012,
State College, PA, USA.

[55] Denner, F. and van Wachem, B.G.M.: Fully-coupled balanced-force VOF framework
for arbitrary meshes with least-squares curvature evaluation from volume fraction.
Numerical Heat Transfer, Part B: Fundamentals, accepted for publication. DOI:
10.1080/10407790.2013.849996

The results presented in Section 4.3.5 show notable differences for different convolution

lengths. Generally, a larger convolution length results in smaller parasitic currents and

a more accurate estimate of the interface normal vector. Studies by Francois et al. [71],

Williams et al. [263] and most notably Williams [262] and Cummins et al. [34] support these

findings. Williams [262] studied various convolution kernels in detail and demonstrated

a decreasing error when calculating interface normal vectors with increasing convolution

length, as the interface region is resolved by an increasing number of mesh cells. Mislead-

ingly, such results suggest that a large convolution stencil is preferable over a compact

convolution stencil. Figure 4.16 shows the parasitic currents and the error in pressure

jump across the interface, as defined in Eq. 3.145, for the static inviscid drop in equilib-

rium as a function of convolution length ε. The parasitic currents are reduced significantly

with increasing convolution length on both meshes. However, the pressure error develops

in the opposite direction, rising monotonically with increasing convolution length. Thus,

evaluating only the parasitic currents, as the literature suggests is a popular practice,

would lead to the false conclusion that a large convolution stencil is better than a compact
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Figure 4.16.: Maximum parasitic currents magnitude |u|max and pressure error E(∆p)
after one time-step as function of convolution length ε for the static inviscid
drop in equilibrium used in Section 4.3.5 on an equidistant Cartesian (403

cells) and a tetrahedral (≈ 6× 104 cells) mesh.

As Gerlach et al. [76] pointed out correctly, a small convolution length ε may result in

a noisy colour function field whereas a large convolution length may violate the physically

feasible representation of the interface. Albadawi et al. [3] found steeply increasing errors

in their simulations of detaching bubbles with increasing convolution length. Applying

different convolution stencils to the rising bubble presented in Section 4.4.2 demonstrates

why large convolution stencils are a poor choice for realistic applications of interfacial

flows. The Kcos convolution kernel defined in Eq. 4.8 is applied to the rising bubble on the

equidistant Cartesian mesh discussed in Section 4.4.2, using convolution lengths ranging

from ε = 2∆x to ε = 8∆x. The stencils for the evaluation of the interface normal vector

(ls,m = 4∆x) and the interface curvature evaluation (ls,κ = 2∆x) remain unchanged.

Density and viscosity are convoluted as described in Eqs. 4.41 and 4.42, whereas the

surface force is calculated based on the unconvoluted colour function. The resulting bubble

rise velocities of the four cases, illustrated in Figure 4.17, differ substantially. Examination

of the bubble shape evolution, depicted in Figure 4.18, shows fundamental differences

between the four cases. The results indicate that the different evolution of the bubble shape

caused by the larger convolution length increases the drag of the bubble and, therefore,

reduces the bubble rise velocity. Particularly, using a convolution stencil of ε = 8∆x,

the excessive convolution deteriorates the bubble in a significant and unphysical way,

preventing the bubble to reach a terminal shape within the simulated time frame.
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√
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Figure 4.18.: Bubble shape evolution of an initially spherical bubble rising due to buoy-
ancy, applying different convolution lengths ε. The bubble shapes are illus-
trated every t = 0.07 s (τ = 1.57), starting from the initial position, in the
x-y plane crossing through the centre of the domain.

4.6. Summary

In this chapter the numerical modelling of the interface and the evaluation of its geometry

has been analysed and discussed, and a new method to evaluate the interface curvature has

been presented. The new curvature evaluation method CELESTE is based on a second-

order Taylor series expansion of the colour function and the resulting overdefined equation

system is solved using a least-squares algorithm. CELESTE is applicable to both struc-

tured and unstructured meshes without difficulties and can be applied on computational

stencils of various size. The curvature errors and parasitic currents obtained with CE-

LESTE are as good as or better than the results presented in the literature deploying
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various other commonly used methods to approximate interface curvature directly or in-

directly from the colour function, which are mostly limited to Cartesian meshes. Using

CELESTE to evaluate the interface curvature, the results and performance on Cartesian

and tetrahedral meshes are in very good agreement with each other.

The validation of the new curvature evaluation method CELESTE also included the

comparison of three commonly used convolution kernels for the convolution of interface

indicator functions in two-phase flows. Based on these results, the Kcos convolution kernel

of Peskin [179] has been found to be best suited for the used numerical framework.

The test cases simulated in Sections 4.3.5 and 4.4 demonstrate that the application of

the unconvoluted colour function, often described to be a discontinuous function, is not a

problem in itself. In fact, every function is essentially discontinuous in a numerical frame-

work due to the finite resolution. Thus, the unconvoluted colour function merely results

in higher gradients and is more prone to errors upon differentiation than the convoluted

colour function. At the other end of the spectrum, the numerical experiments presented

in Section 4.5 show that the application of large convolution lengths adversely affect the

outcome of the simulation.

Although the convolution of the colour function for the purpose of curvature evalua-

tion has clear benefits if applied carefully, the convolution of fluid properties and surface

force is a controversial issue. The presented test cases, comparing different convolution

strategies with respect to density, viscosity and surface force, demonstrate the necessity

of treating density and viscosity equally if large density ratios and viscosity ratios are

applied. Furthermore, the test cases show that, contrary to the generally accepted notion,

the surface force should not be convoluted as it increases parasitic currents and prohibits

the accurate prediction of the pressure jump across the interface.
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5. Adaptive Tetrahedral Mesh

Refinement at Interfaces

The mesh resolution and quality are critical for the success of any numerical simulation

and particularly important in CFD. The accuracy of the results, the convergence of the

numerical solver as well as the computational requirements are directly dependent on the

mesh. The mesh has to resolve relevant physical length scales occurring in the flow in

order to perform physically sound numerical simulations and to minimise the numerical

inaccuracies induced by the spatial discretisation. The mesh resolution plays a particularly

important role with respect to two-phase flows and the interface separating the involved

fluids. As previously mentioned in Sections 1.1 and 4.2.3, the interface position and the

resulting forces acting at the interface (i.e. surface force and gravity) are only first-order

accurate when using interface capturing methods [20, 61, 227], such as VOF or LS methods.

On a mesh of equal node density, such as an equidistant Cartesian mesh, resolution

requirements derived from a particular flow feature, such as an interface, can lead to

unaffordable computational requirements. In addition, the mesh resolution required to

resolve all relevant flow structures is usually not known a priori. Adaptive mesh refinement

(AMR) methods are frequently used to adapt the mesh in response to the flow, to overcome

the problem of an accurate computational mesh of reasonable size. AMR methods aim

at providing a fine mesh resolution in areas where small physical length scales occur or a

high accuracy is desirable, and limit the mesh to a coarser resolution in areas which are

not of great importance to the overall results or in which the physical length scales are

considerably larger. Mesh adaption methods can be grouped into four major categories

[107]:

1. h-refinement, where mesh nodes are inserted or removed and the mesh is reconnected

accordingly,

2. r-refinement, where the mesh nodes are moved and the mesh connectivity remains

the same,

3. p-refinement, where the local discretisation of the equations is adapted, and

4. hybrid methods, which are combinations of the above categories.

It is not guaranteed that an appropriate mesh resolution is achieved using r-refinement

due to the fixed number of nodes. The adaption of the numerical discretisation, the

so-called p-refinement, is especially interesting for finite element methods [107]. The h-

refinement methodology is the most qualified and flexible approach for dynamic multiscale

flow problems such as two-phase flows.
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It is important to understand that a fluid-fluid interface represents a special case with

respect to adaptive meshes. Information about the interface which is lost at any time

during a simulation cannot be recovered at a later stage. Thus, it is crucial to maintain an

adequate minimum mesh resolution in the vicinity of the interface at all times. In contrast,

velocity information lost because of an inadequate mesh resolution can be interpolated or

extrapolated from discrete neighbouring points with reasonable accuracy, due to its quasi-

continuous distribution.

In this chapter, the following important issues regarding the application of unstructured

adaptive meshes to two-phase flows are investigated:

• an implementation concept which is computationally efficient and can be easily ex-

tended to multi-processor computer systems,

• a suitable reference length scale or error measure to control the mesh resolution of

adaptive tetrahedral meshes at interfaces,

• a methodology that satisfies continuity and preserves the conservation properties of

compressive VOF methods, and

• accurate force-balancing at surface-tension-dominated interfaces on adaptive meshes.

Firstly, the present state-of-the-art concerning mesh adaption methods for two-phase flow

simulations in general is reviewed in Section 5.1. Section 5.2 presents relevant methods to

adapt tetrahedral meshes and Section 5.3 elaborates on the importance of mesh quality for

fluid simulations using tetrahedral meshes. Subsequently, in Section 5.4, the implemen-

tation of a tetrahedral mesh adaption algorithm is presented. The presented algorithm is

conceptually simple, computationally efficient and is readily extendable to multi-processor

computer systems. In Section 5.5, the adequate interface resolution and related reference

length scales for adaptive tetrahedral meshes are investigated. In Section 5.6, the ad-

vecting velocity evaluated at cell faces as derived in Section 3.3 is extended to adaptive

meshes. The mesh properties, the conservation of flow properties and force-balancing are

examined for a moving surface-tension-dominated interface on an adaptive tetrahedral

mesh in Section 5.7. The findings of this chapter are summarised in Section 5.8.

5.1. Adaptive Meshing and Interfaces

Even though two-phase flows are predicated for the application of AMR methods, the

literature on this topic is relatively scarce. Most methods for two-phase flows are designed

for Cartesian meshes, making their extension to adaptive meshes with different refinement

levels difficult or in many instances impossible. On the other hand, adapting a structured

mesh by redistributing its nodes (r-refinement), thereby abandoning a possibly existing ini-

tial Cartesian alignment, limits the mesh adaption substantially. Existing AMR methods

developed for two-phase flows using interface capturing/tracking methods can generally

be divided into three groups, illustrated for two-dimensional domains in Figure 5.1:

1. quadtree and octree meshes [83, 115, 139, 143, 183, 217, 226, 230, 255, 276],

139



2. adaptive triangular and tetrahedral meshes [28, 115, 275], and

3. adaptive hybrid meshes [47, 105].

(a) Quadtree mesh (b) Triangular mesh (c) Hybrid mesh

Figure 5.1.: Major refinement types of two-dimensional meshes used for two-phase flows.

The quadtree/octree refinement of typically Cartesian meshes has gained notable popu-

larity in the two-phase flow research community over the past decade. The quadtree/octree

refinement is conceptually easy to implement, the refinement is straightforward to control

by its refinement levels and the preferable structured mesh arrangement is retained in most

mesh areas. However, split cell faces are required to connect mesh cells of different size, as

seen in Figure 5.1a. These split cell faces include so-called hanging nodes. A hanging node

is defined as a mesh node on one side of the cell face but it is a point somewhere near the

centre of the cell face for the opposing neighbour. Split cell faces require special treatment

for the discretisation of face fluxes and pressure [83, 139]. Furthermore, the mesh is only

able to change one refinement level per cell, prohibiting rapid resolution changes.

The limitations of most high-fidelity two-phase flow modelling methods to Cartesian

meshes and the inherent complexity of adaption algorithms for unstructured meshes are the

main reasons for the low popularity of adaptive triangular/tetrahedral meshes in the two-

phase flow community. Although the numerical discretisation on stationary and adaptive

triangular/tetrahedral meshes is identical, the mesh adaption algorithm is complex and

not straightforward to implement. Furthermore, gaining a mesh of good quality is difficult

and the control of the mesh adaption process is non-trivial, easily leading to underresolved

or overresolved mesh regions.

Delage-Santacreu et al. [47] and Ito et al. [105] developed hybrid mesh refinement meth-

ods for two-dimensional meshes including triangular and quadrilateral cells, as illustrated

in Figure 5.1c. In order to circumvent having hanging nodes between quadrilateral cells

of different size, triangular cells are introduced to connect the different refinement levels.

Tuković and Jasak [237] presented a moving mesh interface tracking method including

an adaptive polyhedral mesh refinement. Most recently, Maric and co-workers [149, 150]

proposed a geometrical VOF method applicable to arbitrary unstructured meshes, using

the same mesh adaption framework as Tuković and Jasak [237]. Apart from that, the

application of adaptive polyhedral meshes to two-phase flows has not been reported in

the literature. Polyhedral meshes are equally flexible in terms of geometry as tetrahedral
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meshes but discretisation errors on polyhedral meshes are considerably smaller than on

tetrahedral meshes [111]. However, similar to adaptive tetrahedral meshes, the implemen-

tation of polyhedral mesh adaption procedures is very complex.

Comparing quadtree/octree and unstructured triangular/tetrahedral meshes, the shape

of the control volume (i.e. the mesh cell) is irrelevant for the application of source terms

[112], such as surface force, since source terms are applied at cell centres and are not

the sum of face values. Also, as a result of the abrupt, discontinuous pressure change,

shocks do not benefit from face-pair error cancellation found in structured quadrilateral

cells [112]. This is noteworthy in the context of two-phase flows because, from a numerical

viewpoint, shocks are very similar to fluid-fluid interfaces with surface tension. Studies

by Juretić [111] indicate a larger discretisation error for split-quadrilateral cells, found in

quadtree meshes, than for triangular cells. On the other hand, Kim et al. [115] found

no sizeable differences between the results of mold filling processes obtained on adaptive

tetrahedral and octree meshes.

An important advantage of unstructured adaptive meshes is the possibility of a rapid

resolution change, whereas quadtree/octree meshes are limited to a stepwise change of

resolution. A rapid change of the resolution at an interface may save valuable computa-

tional resources but may also increase the errors induced by the numerical discretisation

and may harm the stability of the numerical solver. The application of adaptive meshes

with rapidly changing resolution has been successfully applied to capture shocks around

aerofoils [41, 87, 127, 196]. Compere et al. [28] used strongly anisotropic adaptive tetra-

hedral meshes to model two-phase flows, though Compere et al. did not investigate the

applicability of anisotropic meshes to surface-tension-dominated flows or two-phase flows

with high density and viscosity ratios.

5.2. Methods for Tetrahedral Mesh Adaption

As tetrahedral meshes do not possess an inherent addressing structure, the adaption of

tetrahedral meshes is very flexible. However, assuring a valid mesh of good quality is

often difficult. This section provides an overview of the relevant methods for adaptive

tetrahedral mesh refinement.

5.2.1. Delaunay Tetrahedralisation and Refinement

A Delaunay triangulation is a triangulation such that no mesh node is inside the cir-

cumcircle constituted by the three nodes of a given triangle, illustrated in Figure 5.2.

The two-dimensional Delaunay triangulation extends straightforward to three dimensions,

then called Delaunay tetrahedralisation. The Delaunay tetrahedralisation distributes the

nodes such that no node is inside the circumsphere constituted by the four nodes of a

given tetrahedron. In two-dimensions the Delaunay triangulation maximises the mini-

mum angle between adjacent edges [43]. Although three-dimensional meshes generated by

a Delaunay tetrahedralisation are generally of very good quality, dihedral angles are not

maximised and the Delaunay tetrahedralisation fails to reliably identify so-called sliver
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cells [208], which are almost flat cells that fulfil the Delaunay condition. A derivative

of the original Delaunay tetrahedralisation is the constraint Delaunay tetrahedralisation

(CDT) [23, 216]. The CDT enforces additional requirements to the original Delaunay

tetrahedralisation, such as a specific bounding geometry, so that the final tetrahedralisa-

tion might contain tetrahedrons which do not satisfy the Delaunay condition [214]. The

Delaunay triangulation/tetrahedralisation and its derivatives represent the de facto stan-

dard for tetrahedral mesh generation and are applied in various meshing algorithms, most

notably [60, 80, 82, 207, 211, 213, 268]. For a more detailed introduction to Delaunay

tetrahedralisation in general and constraint Delaunay tetrahedralisation in particular, the

interested reader is advised to refer to the works of Shewchuk [207] and Si [214].

Figure 5.2.: Example of a triangular mesh which satisfies the Delaunay condition, including
the circumcircles of the individual triangles.

The Delaunay method can also be used for the refinement of triangular and tetrahedral

meshes without major algorithm changes [44, 45, 59, 122, 208]. Once an element is

chosen for refinement, illustrated in Figure 5.3a, a new node is inserted at the centre of

the circumcircle of a given triangle in two-dimensional meshes, shown in Figure 5.3b, or

the centre of the circumsphere constituted by the four nodes of a given tetrahedron in

three-dimensional meshes. Subsequently, the new node is connected to the nodes of the

neighbouring elements, which are then replaced by the newly created elements, as shown

in Figure 5.3c. The key challenge is to choose the best combination of elements to replace.

5.2.2. Edge Bisection

Edge bisection is a widely used refinement method for adaption algorithms of tetrahedral

meshes [8, 24, 44, 80, 87, 181]. Edges which have to be refined are chosen according to

an error estimate and new mesh nodes are introduced at the midpoints of these edges, as

illustrated in Figure 5.4. The new nodes are connected to the neighbour nodes building

new faces and elements. If the refinement is only applied to one cell adjacent to an edge,

it leads to hanging nodes and generates an invalid mesh. Hence, in order to avoid the

creation of hanging nodes and to ensure a valid mesh, all elements and faces adjacent to

a split edge must be refined. The edge bisection method is relatively easy to implement

and the number of new elements is bounded, since each redundant element is replaced by

exactly two new elements.
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(a) Delaunay condition (b) Node insertion (c) Retriangulation

Figure 5.3.: Two-dimensional example of the Delaunay refinement. The circumcircle of a
given element is constructed, as shown in (a), at the centre of which a new
mesh node is inserted, see in (b). The new node is then reconnected with the
neighbouring mesh nodes as illustrated in (c).

(a) Before edge bisection (b) After edge bisection

Figure 5.4.: Edge bisection of edge AB as part of an adaptive tetrahedral mesh refinement.
A new mesh node is inserted at the centre of edge AB and reconnected with
the neighbouring mesh nodes.

There are various algorithms to decide which edge of a given cell should be split [44, 273].

Using the longest edge of a given cell, called longest-edge bisection or generalised bisec-

tion, maximises the dihedral angles of the new elements, since the largest dihedral angle

of the parent-element is split. In non-generalised bisection approaches, the refinement

edge is chosen based on various other measures, for instance weighted error estimates for

anisotropic mesh adaption [252]. The newest vertex approach, also called newest node

approach, splits the edge opposite to the newest node of a given element. This method is

straightforward to implement for two-dimensional meshes but is difficult to implement for

three-dimensional meshes [273].

Numerous examples of the successful application of edge bisection methods to engineer-

ing problems have been reported in the literature. For instance, Sahni et al. [204] applied

edge bisection for the adaptive meshing of boundary layers. An unstructured AMR al-

gorithm with edge bisection was used for free surface flows by Dai and Schmidt [35], for

aerodynamic simulation over a wing and in a gas turbine combustor by Tam et al. [229],

for biomedical flow simulations and other applications by Li et al. [128] and for general

interface problems by Wang et al. [252], to name just a few.
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5.2.3. Edge Collapsing

Edge collapsing, also called edge contraction, illustrated in Figure 5.5, is a commonly used

method to coarsen tetrahedral meshes and numerous application examples can be found

in the literature [6, 10, 35, 44, 128, 204, 229].

An edge which is too short according to the local error measure or reference length scale

is collapsed by merging its two constituting nodes. Thus, all elements and faces adjacent

to the collapsed edge become redundant and are removed from the mesh. Positioning the

mesh node resulting from edge collapsing at the midpoint of the collapsed edge is generally

preferable [229]. Processing edges flagged for collapsing in order of their length, starting

with the shortest edge, minimises the local impact on the mesh caused by edge collapsing

[127].

(a) Before edge collapsing (b) After edge collapsing

Figure 5.5.: Two-dimensional mesh coarsening using edge collapsing. The nodes consti-
tuting the collapsed edge (indicated in black) are merged and adjacent mesh
entities are removed.

A major difficulty of the application of edge collapsing is to assure the collapsing proce-

dure does not violate the validity of the mesh. For example, the integrity of the geometry

is violated if a boundary node is moved. When edges are collapsed, elements in close

vicinity may be inverted or unintentionally collapsed [35, 121], as depicted in Figure 5.6,

resulting in elements with zero or negative volume.

(a) Before edge collapsing (b) After edge collapsing

Figure 5.6.: Two-dimensional example of an invalid mesh resulting from edge collapsing.
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5.2.4. Face and Edge Swapping

Mesh reconnection by means of face swapping and edge swapping is an important method

to improve local and global mesh quality [74, 209]. In general, mesh reconnection means

replacing mesh elements and faces by newly built elements and faces, using the same set

of mesh nodes and occupying the same volume. Face swapping reconnects two tetrahe-

dral elements adjacent to a single face, whereas edge swapping reconnects N tetrahedral

elements adjacent to one common edge by removing the chosen edge and replacing the N

elements by 2N − 4 new elements [74].

The 2-3 flip [74, 209], illustrated in Figure 5.7, deletes the shared face of the two

tetrahedral elements and connects the two nodes which have not been adjacent to the

deleted face. As a result, three new faces and three new elements are created. The reverse

procedure is known as the 3-2 flip. The 4-4 flip [209], shown in Figure 5.8, replaces the

common edge of four tetrahedral elements by its cross-sectional counterpart. The 2-3/3-2

flip as well as the 4-4 flip are easy to implement and very fast, since there are only two

possible configurations which have to be compared with respect to mesh quality.

Figure 5.7.: Example of a 2-3/3-2 flip tetrahedral mesh reconnection. The mesh face
{2, 3, 4} is replaced by faces {1, 2, 5}, {1, 3, 5} and {1, 4, 5}.

Figure 5.8.: Example of a 4-4 flip tetrahedral mesh reconnection. The mesh edge {4, 5} is
replaced by edge {2, 3}.
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5.2.5. Node Redistribution

Redistributing mesh nodes, also referred to as r-refinement, is used to improve the mesh

quality, to adapt the mesh to the flow field without changing the mesh topology and to

avoid sudden resolution changes by smoothing the node distribution.

Laplacian smoothing is a frequently used mesh smoothing method [35, 69, 74, 178], since

it is straightforward to implement and computationally efficient. Laplacian smoothing

relocates the free mesh node P at the arithmetic centre of its neighbour nodes Q, as

shown in Figure 5.9. The mesh nodes are relocated in an iterative procedure, defined as

xiP = (1− ζ)xi−1
P +

ζ

NQ

NQ∑
Q=1

xi−1
Q , (5.1)

where superscript i represents the iteration and NQ is the number of neighbours cells Q

of cell P . The underrelaxation factor ζ in Eq. 5.1 is necessary to avoid inverted elements

as a result of the Laplacian smoothing. With regards to tetrahedral meshes, Laplacian

smoothing is not directly related to a good mesh quality, which is a substantial drawback

of this method [35, 73].

(a) Before Laplacian smoothing (b) After Laplacian smoothing

Figure 5.9.: General principle of the Laplacian smoothing in two dimensions. Mesh node
P is moved to the arithmetic centre of its neighbour nodes Q.

Anderson et al. [6] presented a node redistribution algorithm which minimises the energy

of fictitious springs representing the mesh edges. The redistribution method removes

sudden element volume changes and, according to the findings of Anderson et al. [6],

results in a sufficient element quality. Each mesh edge is treated as a massless overdamped

linear spring with tension

σe = le − lref , (5.2)

where le is the edge length and lref is the target length scale. The redistribution method

aims on reducing the equivalent of the global spring energy Es (equivalent as the spring

constant is not defined) of the mesh, defined as [6]

Es =

Ne∑
e=1

σ2
e . (5.3)
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Based on the spring tension σe, the nodes are dynamically repositioned with velocity [6]

ẋn =

Ne∑
e

xm − xn
|xm − xn|

σe , (5.4)

where subscript e denotes all edges connected to node n, subscript m denotes the second

node constituting edge e and Ne represents the number of edges connected to node n.

The redistribution algorithm terminates as soon as the spring tension reaches an equi-

librium within a predefined tolerance. Anderson et al. [6] applied a Runge-Kutta solver

with pseudo time-stepping to perform the dynamical displacement. In order to avoid the

inversion of cells as a result of the node displacement, Anderson et al. limited the maxi-

mal movement per time-step and found that the equilibrium criterion is usually satisfied

within 10 iterations. Similar algorithms have also been reported in other publications

[30, 87, 165].

5.2.6. Other Methods

An alternative to edge collapsing for the coarsening of a previously refined mesh region

is de-refinement. In a de-refinement procedure, the local mesh nodes introduced most

recently are removed. Hence, de-refinement aims to restore a previous, coarser local mesh.

De-refinement is very restrictive for two reasons: a) it is not possible to coarsen beyond the

initial mesh and b) deletion of one node can have contingencies, i.e. requires the removal

of other nodes to ensure a valid mesh. A two-dimensional example of a de-refinement

displaying the issue of contingencies is illustrated in Figure 5.10. Integers 0 to 2 refer to

the order in which nodes have been previously introduced as part of the mesh refinement,

e.g. by means of an edge bisection algorithm. Removing the node of order 1 to de-refine

the mesh also requires to remove the node of order 2 to retain a valid mesh.

Figure 5.10.: Problems associated with contingencies of a mesh de-refinement algorithm.
The integers denote the refinement level of each mesh node (0 = initial mesh).
Removing the node of refinement level 1 also requires the node of refinement
level 2 to be removed, otherwise the mesh becomes invalid.

Mesh adaption can also be performed by means of a multigrid approach, as presented

by Plaza et al. [181]. A multigrid approach stores each mesh of each refinement step in

memory. When a set of elements or a mesh region is chosen to be coarsened, the next
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coarser mesh representation for this mesh region is recalled from memory. This approach

is computationally fast but memory expensive, as it is necessary to store multiple mesh

representations. A major drawback is that it is not possible to coarsen past the initial

mesh with this method.

5.3. Tetrahedral Element Shape and Quality

The quality of the computational mesh is of great importance to conduct accurate nu-

merical simulations and is particularly interesting with respect to adaptive meshes. As

briefly explained in Section 2.2.1, mesh errors resulting from a mesh with poor quality

considerably deteriorate the accuracy of the discretisation and may severely challenge the

stability of the numerical framework. Various measures to quantify the shape of a tetrahe-

dral element and its quality can be found in the relevant literature [70, 74, 116, 131, 210].

Widely deemed to be the most universally applicable quality measures for a tetrahedral

element are the dihedral angle of its cell faces [73], its aspect ratio [15] and its radius-edge

ratio [214].

The dihedral angle is defined as the angle between two adjacent mesh faces. Small

and large dihedral angles, i.e. close to 0◦ and 180◦, cause significant interpolation errors

because of increased face skewness and face non-orthogonality. The evaluation of gradients

for an element with very small or large dihedral angles is additionally challenged as the

cell volume approaches zero, thus, making gradients unbounded. This is particularly

problematic with respect to discontinuous variables with high gradients, such as the VOF

colour function and pressure in two-phase flows with surface tension. The aspect ratio

measures the “roundness” of the element and is either defined as the ratio between the

longest edge and the shortest height of the tetrahedron [216], ranging from
√

2/
√

3 to +∞,

or as the ratio between 3 times the inradius and the circumradius, ranging from 1 to +∞,

also called radius ratio. The objective in isotropic meshes is to minimise the aspect ratio,

as the reachable accuracy with a given element is inversely proportional to its longest edge

[116]. The radius-edge ratio of a tetrahedron is defined as the ratio between the radius of

its circumsphere and its shortest edge [216], ranging from
√

6/4 to +∞. Research suggest

that the nodes of a tetrahedral mesh are well spaced if the radius-edge ratio of the mesh

is bounded for all its tetrahedral elements [214]. The radius-edge ratio reliably identifies

tetrahedrons of bad quality apart from sliver cells, see example in Figure 5.11, which can

have a radius-edge ratio as good as
√

2/2.

Typical shapes of tetrahedral elements are shown in Figure 5.11, a figure reprinted

from Si [214, page 27, fig. 3.3]. The numerical stability of the computational simulation

is dictated by the worst shaped element, rendering mesh quality essential. The optimal

element shape for a tetrahedral mesh is the regular tetrahedron, constituted by four equi-

lateral triangles. A regular tetrahedron has an optimal aspect ratio of
√

2/
√

3 based on

its edge length and height, and all dihedral angles are 70.53◦. Needles occur commonly

in areas with large resolution changes and are not by default harmful to the simulation

outcome. Sliver cells, on the other hand, are an example for a particularly bad shaped

tetrahedral element, causing major errors and instabilities. The smallest dihedral an-
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gles of a sliver cell are close to 0◦, whereas its largest angles are typically close to 180◦.

The aspect ratio of sliver cells is large compared to most other tetrahedral element types

and the volume of sliver cells is approaching zero. Most crucially, the resulting face

skewness and face non-orthogonality are significant. Despite considerable research efforts

[15, 122, 127, 128, 207, 210, 214], the reliable detection of sliver cells has proven to be

difficult, since non of its edges is significantly longer than the others and because its

radius-edge ratio is typically very good.

Figure 5.11.: Tetrahedral elements of different shapes as classified by Bern et al. [15].
Figure reprinted from Si [214, page 27, fig. 3.3].

The ultimate goal of maintaining a good mesh quality is minimising discretisation errors

and, in return, maximising the accuracy of the discretisation as well as the stability of the

solving algorithm. As previously mentioned, specific mesh errors influence the accuracy of

the discretisation and the numerical stability. Most important with respect to the discreti-

sation error are the face skewness and the face non-orthogonality, previously discussed in

Section 2.2.1. The face skewness of a given mesh face f is defined as

ϕ =
|rf |
∆s

, (5.5)

where rf is the vector connecting the interpolation point of face f with the actual centre of

face f , as defined in Section 2.2.2, and ∆s is the distance between the cell centres adjacent

to face f , as defined in Section 2.2.4. As previously discussed in Section 2.2.2, a gradient

based skewness-correction is required to maintain a second-order accurate interpolation.

Because the gradient based skewness-correction also has to be used in the evaluation of

spatial gradient itself, interpolation errors caused by face skewness can propagate quickly

and become self-amplifying and unbounded for severely skewed meshes. As a result,

the numerical stability of the solving algorithm is fundamentally compromised and no

convergent result can be reached. The non-orthogonality of a given mesh face is defined

by the angle between its normal vector and the vector connecting the two adjacent cell

faces and is, therefore, calculated as

α∗ = arccos (nf · sf ) , (5.6)

where nf is the outward-pointing unit normal vector of face f and sf is the unit vector

connecting the cell centres adjacent to face f . Minimising non-orthogonality is crucial for

an accurate and stable interpolation of spatial gradients, as explained in Section 2.2.4.

In an ideal mesh, such as a Cartesian mesh, face skewness and face non-orthogonality
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are ϕ = 0 and α∗ = 0◦, respectively. Face skewness and face non-orthogonality are not

strictly correlated with any shape measure of tetrahedral elements, since skewness and

non-orthogonality primarily depend on the arrangement of elements in relation to each

other. However, elements of good quality typically lead to a mesh with small skewness

and non-orthogonality.

Minimising both face skewness and face non-orthogonality is essential to obtain accurate

results and the minimisation of face skewness in particular is important to avoid unbounded

gradients and to assure a robust numerical algorithm. Although tetrahedrons with large

aspect ratio but good dihedral angles, such as the needle element depicted in Figure

5.11, are not desirable because of the potentially significant mesh non-uniformity and

insufficient resolution associated with them, they are not critical to the stability of the

numerical solving algorithm and can, therefore, be tolerated. Cells with very small or very

large dihedral angles, on the other hand, such as slivers or spindles, are hazardous to the

numerical stability and may lead to divergence of the solving algorithm. Thus, cells with

dihedral angles ϑ→ 0◦ and ϑ→ 180◦ must be avoided. The adaption algorithm presented

in Section 5.4 enforces limits on minimum and maximum dihedral angle explicitly by not

accepting new mesh cells if they contain a dihedral angle smaller or larger than predefined

limits. Preliminary studies performed during the course of the development of the adaption

algorithm found ϑ = 13◦ and ϑ = 167◦ to be suitable lower and upper bounds to ensure

a stable result. However, further research on dihedral angle limits is required to gain a

deeper understanding of the underlying mechanisms.

5.4. Mesh Adaption Algorithm

In this section a mesh adaption algorithm for tetrahedral meshes and its implementation

are presented. The mesh adaption algorithm first computes the reference length scale for

each mesh cell. Subsequently, the mesh adaption algorithm, described in the following

sections, is applied based on the local reference mesh resolution. After the mesh has been

adapted, the solution stored on the old mesh is mapped to the new mesh, the data struc-

tures of the flow variables are reallocated and the new spatial gradients of the primitive

variables and the colour function are determined. Lastly, the new advecting velocity at

face centres is evaluated.

5.4.1. Setwise-Local Implementation Concept

A computationally efficient implementation is important for the applicability of a mesh

adaption algorithm. The presented mesh adaption algorithm is implemented following a

setwise-local implementation approach. As the name suggests, the setwise-local implemen-

tation limits any mesh adaption to a small subset of the local mesh, providing an efficient

and flexible implementation. In this context, local mesh refers to the original mesh as-

signed to a given processor8. The basic concept of the setwise-local implementation is

constituted by four distinct steps:

8Processor refers to a CPU and its associated memory
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1. selecting a subset of the mesh, from hereon called mesh-set,

2. remesh the mesh-set with an appropriate adaption method,

3. establish internal connectivity of the new mesh-set, and

4. reintegrate the new mesh-set into the original mesh by updating the local connec-

tivity.

The setwise-local principle can be used on single-processor as well as multi-processor com-

puter systems and for any kind of remeshing operation, e.g. refinement, coarsening, recon-

nection or local retetrahedralisation.

The workflow is schematically illustrated in Figure 5.12 using the example of a three-

dimensional edge bisection. A mesh-set is selected around the mesh edge flagged for

refinement, containing the cells adjacent to that edge as well as the faces, edges and

nodes constituting these cells. In the given example the mesh-set consists of four cells,

four internal faces, eight bounding faces and the adjacent edges and nodes, as shown

in Figure 5.12a. Subsequently, the edge bisection algorithm is applied to the mesh-set,

inserting a node that splits the flagged edge, as illustrated in Figure 5.12b. The new

edges, faces and elements are created and the internal connectivity is established. Lastly,

the retetrahedralised mesh-set, shown in Figure 5.12c, is reintegrated in the original mesh

by updating the connectivity between the new mesh-set and the original mesh. The old,

now redundant mesh entities are flagged to be removed. The new mesh-set occupies

exactly the same volume as was previously occupied by the old mesh-set. It is crucial

that the mesh entities, i.e. nodes, edges and faces, which constitute the boundary of the

mesh-set are not changed, otherwise the connectivity and validity of the resulting mesh is

violated. The setwise-local implementation is applicable for any kind of mesh adaption and

is not bounded to a specific size of the mesh-set. Crucially, the implementation principle

remains unchanged regardless of the performed adaption procedure and is independent of

the number of processors involved.

(a) Selected mesh-set (b) Node insertion (c) Retetrahedralised

mesh-set

Figure 5.12.: Basic principle of the setwise-local implementation, exemplified by a three-
dimensional edge-bisection.

The implementation is comprised by three separate data structures: the local, set and

new data structures. The local data structure contains the original mesh on a given
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processor and remains fully intact during the adaption process. The only amendments

made to the local data structure during the adaption process is flagging entities which

become redundant and updating the connectivity information where applicable. The mesh-

set selected for refinement or coarsening is stored in the set data structure. The set

data structure only holds copies of relevant data from the local and new data structures,

schematically shown in Figure 5.13a, and is overwritten after every adaption step with

the present mesh-set. The new data structure contains mesh entities created by the mesh

adaption algorithm, illustrated in Figure 5.13b. The remaining mesh entities of the local

and new data structures are merged into a reallocated local data structure after the entire

mesh has been adapted, as illustrated in Figure 5.13c, and the redundant mesh entities of

both data structures are discarded. The separation of the three data structures provides

high computational efficiency and simplifies the extension to a multi-processor computer

architecture. Additionally, it is simple to control memory requirements, as the size of the

new data structures and arrays can be fixed, and it is possible to readapt certain mesh

areas multiple times without algorithm changes or performance loss.

(a) Mesh-set selection (b) Mesh adaption (c) Merging
data structures

Figure 5.13.: Data structures of the setwise-local implementation and workflow of the mesh
adaption procedure. The relevant information of the mesh-set selected for
mesh adaption is copied from the local and new data structures to the set
structure, as illustrated by the arrows in (a). New mesh entities created
by the mesh adaption algorithm are appended to the new data structures,
depicted in (b). As shown in (c), the local and new data structures are
merged and redundant mesh entities, crossed out in (c), are deleted after the
mesh adaption has been completed.

Two situations have to be considered when performing parallel, multi-processor simu-

lations: a) all entities of the mesh-set are located on the same processor or b) the entities

of the mesh-set are located on two or more processors. Situation a), where all entities are

located on a single processor, does not require any special treatment and the implemen-
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tation concept as described above can be applied. If the mesh entities of a given mesh-set

are distributed over two or more processors, situation b), special measures are required

to retain a valid and correctly connected mesh. The implementation across processor

boundaries follows a master-slave principle. Firstly, it is determined on which processors

the individual entities of the mesh-set are located. Among the involved processors, one

processor is assigned to be the master and the other processors are labelled as slaves.

The master is host to the set data structure, in which the mesh-set is stored, and to the

mesh adaption operations. The slaves send the relevant data to the master and wait for

the remeshing process to be completed. After the master has received the relevant mesh

data from its slaves, the mesh adaption commences as a local procedure on the master

processor. Subsequently, the internal connectivity of the new mesh-set is established. The

newly created mesh data is communicated back to the slaves and the local connectivity

is reestablished on the adjacent processors (i.e. the master and its slaves). Lastly, the

ghost information is updated on the involved processors. Ghost entities are mesh entities

which are located adjacent to a processor boundary on a neighbouring processor and are

required for the numerical discretisation across processor boundaries (see Appendix A.2

for details).

When the mesh is adapted across processor boundaries, it is necessary to determine

which processor will own the new mesh entities. Two rules may be put in place, either

a) the new mesh entities all belong to the master and the connectivity information and

ghost patterns are updated accordingly or b) the new mesh entities are distributed over

the involved processor by means of a parentage rule. Communication between processors

is considerably reduced if the master processor owns the new mesh entities, rule a), but

it may lead to a substantial load imbalance, which then has to be resolved by a costly

repartitioning of the mesh. Redistributing the new mesh entities back to the relevant pro-

cessors, rule b), is desirable with respect to load balancing but increases the interprocessor

communication. Furthermore, dependent on the performed mesh adaption operation, e.g.

retetrahedralisation by means of a Delaunay tetrahedralisation, no unique assignment to

a specific processor can be passed on from an old cell, requiring an overwriting processor

assignment. Studies of Gross and Reusken [85] advocate storing the children on the same

processor as their parent, i.e. rule b).

5.4.2. Error Measure

Applying adaptive meshes to any given numerical problem requires a suitable error mea-

sure, such as a reference length scale, to control the mesh adaption. Frequently used error

measures are based on first or second derivatives of the primitive variables, the Kolmogorov

length scale in turbulent flows or the length scale of other relevant flow features. Menzies

[156] identified the following criteria for the definition of error measures:

• accurate reflection of the desired mesh resolution,

• reliably computable from the available data, and

• inexpensive to compute.
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In two-phase flows, the interface is typically the dominating flow feature and its resolution

is crucial for the accurate prediction of two-phase flows. Suitable error measures to define

the mesh resolution in the vicinity of interfaces by means of reference length scales are

examined in Section 5.5. The interested reader is referred to the papers of Habashi et al.

[87] and Cristini et al. [30] or the thesis of Menzies [156] for an overview of general error

measures used in mesh adaption algorithms.

The mesh adaption algorithm presented in this section uses error measures in the form

of reference length scales to determine the mesh resolution. Since the flow variables in the

presented numerical framework are stored at cell centres, calculating the reference length

scale at cell centres suggests itself. The mesh adaption algorithm, however, is based on

mesh edges rather than mesh cells. Thus, the cell-centred reference length scale has to

be transferred to its adjacent edges. Enforcing the local minimal reference length scale

strictly would require that every mesh edge is as long as its shortest adjacent cell-centred

reference length scale, within a predefined tolerance. In terms of implementation, this

requires a floating point comparison for each adjacent element of every mesh edge, a

computationally expensive exercise for large meshes. To circumvent the evaluation of a

large number of floating point comparisons while transferring the cell-centred reference

length scale to mesh edges, it is proposed to transfer the reference length scale from cell

centres to adjacent edges by means of a harmonic average, defined for edge e as

le =
NQ∑
Q l
−1
ref,Q

, (5.7)

where subscript Q denotes all cells adjacent to edge e, lref,Q represents the reference length

scale at cell Q and NQ is the number of adjacent cells. The harmonic average emphasises

small length scales and bypasses expensive floating point comparisons.

5.4.3. Mesh Coarsening

The applied mesh coarsening algorithm is based on a local retetrahedralisation using a

setwise-local implementation. An edge identified to be too short compared to the local

reference length scale is removed together with all its adjacent mesh entities, leaving only

the empty hull of the mesh-set constituted by the bounding faces, edges and nodes. This

empty hull is then filled by a new tetrahedralisation. The local retetrahedralisation has

been chosen over edge collapsing to avoid problems with inverted or invalid cells and to

increase the flexibility of the algorithm. A local retetrahedralisation can be applied to

coarsen the mesh as well as to refine the mesh or improve its quality. The basic principle

of the algorithm outlined below is, therefore, not limited to mesh coarsening.

A threshold is defined based on the local reference length scale, edges shorter than this

threshold should be removed. The threshold follows from the local reference length scale

of all adjacent elements and a factor representing the adaption tolerance. The adaption

tolerance is necessary to avoid a substantial overlap of mesh coarsening and refinement,

which could lead to a deadlock. The index and length of edges flagged to be removed

are stored in a doubly-linked list, schematically illustrated in Figure 5.14, in the order
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of their length, starting with the shortest. A doubly-linked list is a chain of structures,

where each structure is linked to the preceding and succeeding structures by a pointer

containing the respective memory address. The linked list provides a storage format

which can be dynamically changed while the mesh is adapted and, hence, the linked list

enables to remove edges or move edges to a different position in the coarsening order. In

the presented algorithm, always the first edge stored in the linked list at any given time

through the coarsening procedure, called the head, is chosen to be removed. Therefore,

the edges are reliably removed in order of their length, beginning with the shortest edge,

as suggested by Li [127].

Figure 5.14.: Schematical illustration of mesh edges stored in a doubly-linked list for mesh
coarsening.

The coarsening algorithm, applied to every flagged edge, is constituted by the following

eight steps:

1. define and copy the mesh-set around the flagged edge,

2. translate the relevant data of the mesh-set into a form suitable for the retetrahedral-

isation algorithm,

3. perform the retetrahedralisation,

4. define the new internal mesh entities of the mesh-set,

5. establish the internal connectivity of the new mesh-set,

6. reconnect the new mesh-set with the original mesh,

7. map the flow data from the old mesh-set to the new mesh-set, as described in Section

5.4.6, and

8. update the list of flagged edges.

The open-source software TetGen [214, 215] is used as part of the presented algorithm

to retetrahedralise a given mesh-set. TetGen is able to generate tetrahedral meshes for

any three-dimensional polyhedral domain using a CDT algorithm and can be integrated

into existing software projects as an external library. The tetrahedralisation is controlled

by means of input flags upon calling TetGen with a given set of faces and nodes, which

represent the empty hull defined by the bounding faces of the mesh-set. It it worth

mentioning again that it is absolutely essential that the hull of the mesh-set, i.e. the

bounding faces of the mesh-set, is not changed or split by the retetrahedralisation to avoid

the creation of hanging nodes and to ensure a valid new mesh.
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After all edges flagged for coarsening and its adjacent mesh entities have been replaced,

the local and new data structures are merged, the obsolete mesh entities are discarded

and the indexing (see Appendix A.1 for details) of the mesh entities is updated.

5.4.4. Mesh Refinement

The mesh refinement is based on a longest-edge bisection approach, as presented in Section

5.2.2. Similar to the threshold defined for mesh coarsening in Section 5.4.3, a threshold

is defined for the mesh refinement based on the local reference length scale and a factor

representing the adaption tolerance. The index and length of the flagged edges are then

stored in a linked list as illustrated in Figure 5.14 in order of descending edge length and

the edge stored at the head of the list is processed by the longest-edge bisection algorithm.

The longest-edge bisection algorithm applied to every flagged edge is constituted by the

following nine steps:

1. define and copy the mesh-set adjacent to the flagged edge (see Figure 5.12a),

2. introduce a new mesh node at the centre of the flagged edge (see Figure 5.12b),

3. connect the new node to the other nodes of the mesh-set (build new edges),

4. define the new faces adjacent to the new node,

5. define the new elements inside the mesh-set based on their host face (bounding face

of the mesh-set),

6. establish the internal connectivity of the new mesh-set,

7. reconnect the new mesh-set with the original mesh by updating the relevant connec-

tivity information,

8. map the flow data from the old mesh-set to the new mesh-set, as described in Section

5.4.6, and

9. update the list of flagged edges.

In addition, before proceeding to the next edge flagged for refinement, the algorithm

identifies any new edges which do not satisfy the local reference length scale. New edges

which do not satisfy the refinement threshold are flagged for refinement and added to the

linked list holding the flagged edges. It is worth mentioning again that all cells adjacent

to the edge flagged for refinement have to be processed to ensure that no hanging nodes

are created.

The update of the edge-adjacent element information is treated in a special way, as

the number of elements adjacent to an edge may change during the refinement process.

Therefore, the connectivity information of edge-adjacent element information is only up-

dated once, after all edges have been processed, not after every individual edge bisection.

This minimises the time intensive array reallocation and updating of the edge-adjacent

element information. Instead, the old connectivity information is kept and, if necessary,

156



the actually edge-adjacent elements are determined by a recursive algorithm, marching

from descendant to descendant to the finest local mesh level.

Similar to the mesh coarsening algorithm presented in Section 5.4.3, the local and new

data structures are merged after all edges flagged for refinement have been processed. Fur-

thermore, the obsolete mesh entities are discarded, the edge-adjacent element connectivity

is updated and the indexing of all mesh entities is updated. Details about connectivity

information and indexing can be found in Appendix A.1.

5.4.5. Initialisation

The initialisation step is particularly important for interfacial flows to assure an adequate

mesh resolution and, thus, an accurate simulation. Although velocity information lost in

the adaption process can be retrieved with good accuracy from the velocity data and its

gradients at neighbour cells, interface information lost during the mesh adaption process

is lost permanently. Therefore, the result of a two-phase flow computation can only be as

accurate as the initial interface representation.

The initialisation of the flow field is performed iteratively in conjunction with the mesh

adaption algorithm. At first, the relevant flow variables, i.e. velocity, pressure and colour

function, are initialised and the reference length scale is evaluated. Subsequently, the mesh

is adapted according to the reference length scale. The relevant flow variables are then

reinitialised on the new mesh, the new reference length scale for each cell is computed and

the mesh is adapted again. This procedure continues until the mesh has converged to a

steady solution or until a predefined number of iterations is reached. Figure 5.15 shows

an example of the iterative initialisation procedure for a spherical interface, including the

initial mesh in Figure 5.15a, an intermediate mesh in Figure 5.15b and the final mesh after

five iterations in Figure 5.15c.

5.4.6. Solution Mapping Between Meshes

The mapping of the solution obtained on the old mesh to new and moved mesh cells is

important to assure an efficient and accurate application of mesh adaption algorithms and

to maximise the accuracy of the results. The aim is to obtain a mapping methodology

which is accurate, preserves the governing conservation laws, in particular continuity, and

assures the balance between body forces and pressure gradient.

For continuously varying variables, such as velocity, a piecewise-linear mapping is ap-

plied by means of extrapolating the variable from the parent cell to its children cells. In

general, the parent is defined as the cell of the old mesh closest to the new cell under

consideration. Following Jasak and Gosman [107] and Juretić [111], the value of a flow

variable at the cell centre of the new cell can be extrapolated as

φn = φp + (xn − xp) · ∇φp , (5.8)

where superscript n denotes the new cell and superscript p denotes the parent cell. The

position vector of the new and parent cell centres are represented by xn and xp, respec-
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(a) Initial mesh (b) After two iterations of
initialisation

(c) After five iterations of
initialisation

Figure 5.15.: Example of the iterative initialisation procedure for a spherical interface. The
initial mesh, shown in (a), is refined based on the initialised flow field and
after the mesh has been adapted, the flow field is reinitialised. This iterative
procedure continues until a predefined convergence criteria is reached.

tively.

A different treatment is required to map discontinuous variables, such as the colour func-

tion or the pressure at interfaces, because, firstly, the exact position of the discontinuity is

not known and, secondly, the large, abruptly changing spatial gradient of the discontinu-

ous variable may lead to an unbounded solution upon extrapolation. Using the mapping of

the interface position (i.e. the discontinuity of the colour function) after mesh refinement

as an example, it is neither explicitly known in which of the new cells the interface is

located nor is the magnitude of the colour function in each new cell known. Furthermore,

the distribution of the colour function is known with only first-order accuracy. Therefore,

a piecewise-constant mapping of the colour function, defined as

γn = γp , (5.9)

is applied. Since the colour function is known with only first-order accuracy regardless of
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the applied mapping method, a piecewise-constant mapping does not decrease the formal

order of accuracy of the interface position. However, it is unlikely that this mapping is

strictly conservative, although the results regarding the conservation of continuity and

mass presented in Section 5.7.2 are excellent.

With respect to isothermal, incompressible two-phase flows and the numerical frame-

work presented in Chapter 3, mapping the velocity and the colour function to the new

mesh is sufficient. The pressure distribution as well as the density and viscosity distri-

bution can be calculated from the velocity and colour function data in conjunction with

boundary conditions. However, mapping the pressure to the adapted mesh as well im-

proves the convergence and stability of the numerical solver substantially, as it serves as

an initial guess for the iterative solving procedure. To avoid an unbounded pressure field

near the interface, the pressure is mapped following Eq. 5.9.

5.5. Interface Resolution

Despite considerable research efforts directed towards the application of mesh adaption

methods to two-phase flows in the past two decades, the literature on suitable refer-

ence length scales is scarce. The focus on quadtree/octree meshes in the two-phase flow

community is presumably one reason why well-defined reference length scales have been

discounted in many studies on mesh adaption methods. The control of octree meshes

is considerably simpler compared to adaptive tetrahedral or polyhedral meshes, as the

number of refinement levels is easily specified. Unstructured adaptive meshes, however,

require a sophisticated definition of error measures or reference length scales, in order to

resolve flow features adequately while minimising computation time. Another reason why

well-defined error measures have not caught notable attention with respect to interfacial

flows might be the common notion of “the more cells the merrier“. In principle this is,

of course, true because of the discontinuous nature of the interface but it does not max-

imise the potential of mesh adaption. It is worth recalling at this point that any interface

information lost after initialisation cannot be recovered. Thus, the reference length scale

applied in the vicinity of the interface must assure an adequate mesh resolution through-

out the simulation and the interface must not be directly affected by the applied mesh

adaption procedure after initialisation. Moreover, the reference length scale must assure

that the total number of cells is reasonable with respect to the available computational

resources.

In the following sections, the resolution at interfaces is examined and a set of suitable

reference length scales is defined. The influence of the different parameters and length

scales is demonstrated with a spherical interface in a cubical domain, illustrated in Figure

5.16a. The initial mesh contains approximately 1500 cells and is depicted in Figure 5.16b.

Only the initialisation stage of the simulation is conducted, as described in Section 5.4.5.
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(a) Domain with spherical interface (b) Initial mesh

Figure 5.16.: Computational domain including the spherical interface and its initial tetra-
hedral mesh.

5.5.1. Defining the Interface Region

A minimum resolution in the interface region regardless of the shape of the interface is

important to keep the interface sharp and, with respect to adaptive meshes, to optimise

the application of mesh adaption procedures [28]. Various ways of capturing the interface

and defining an interface region for the purpose of determining reference length scales for

adaptive meshing are available. The aim is to define a band of finite width around the

interface in which a minimum mesh resolution is guaranteed and in which the mesh size

is defined based on interface properties, such as interface curvature or interface thickness.

Moreover, an interface region of adequate size can be used to assure that the interface

is always resolved by a required minimum mesh resolution, in order to avoid the loss of

interface information. The width of the interface region is also important with respect to

the frequency with which the mesh adaption is applied. Mesh adaption has to be applied

more frequent to interface regions of smaller width than to interface regions of larger

width.

Otsu [170] presented a method to binarise a scalar field by defining an optimal threshold

that separates two reference values by maximising the variance between those values.

Otsu’s method has initially been developed to binarise gray-level histograms in picture

processing. Remaki and Habashi [196] successfully applied Otsu’s threshold binarisation

method to capture weak shocks (typically with Mach number > 1 behind the shock) by the

adaptive mesh refinements, which would otherwise be underresolved in instances where

they occur together with strong shocks (Mach number behind shock < 1). However, since

interfaces practically do not have different “strength”, the weak-strong problematic does

not occur in incompressible interfacial flows.

Alternatively, a band defining the interface region can be constructed based on the

distance from an interface. Compere et al. [28], for instance, called such a band proximity

zone for their level-set framework with adaptive meshes. The difficulty of this approach
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lies in finding the closest interface-cell for every given cell. Thus, this approach requires

considerable computational resources for large meshes and if multiple interfaces are present

in the domain. Herrmann [92] constructed a band around the interface as part of a localised

level-set method by means of a band growth algorithm. The band growth algorithm

constructs the band by marching from neighbour to neighbour, starting from each cell

containing an interface, and terminates when no more cells within the width of the band

are found.

Defining a band around the interface based on the first derivative of the colour function is

a straightforward and computationally inexpensive approach. Because the colour function

is by definition abruptly varying at the interface, the magnitude of its first derivative

is non-zero only in the cells containing an interface and in its direct neighbours. Thus,

it is proposed to define the interface band as the region in which the magnitude of the

first derivative of a reference colour function γref is larger than a specified threshold.

The reference colour function can be the unconvoluted colour function or a convoluted

colour function, whichever deemed to be most suitable for the definition of the interface

region. Applying a convoluted colour function increases the number of cells with a non-

zero gradient magnitude and, therefore, allows for a wider and better resolved interface

band. Thus, any cell P that satisfies the condition

|∇γref |P ≥ C∇γ · |∇γref |max , (5.10)

where C∇γ is a predefined constant defining the width of the band, is part of the interface

band. In Eq. 5.10, |∇γref |max represents the maximum discrete magnitude of the reference

colour function gradient in the entire domain. C∇γ is defined within the range 0 ≤ C∇γ ≤
1, where C∇γ = 0 classifies the entire domain as interface region and C∇γ = 1 would

only include the cell(s) holding the maximum colour function gradient magnitude in the

interface region. The extension to parallel computer systems and unstructured meshes is

straightforward.

Figure 5.17 shows the resulting mesh using two different interface region widths, C∇γ =

10−3 and C∇γ = 0.2. The adaptive refinement in this example is limited to five iterations

of initialisation, as described in Section 5.4.5, and the mesh resolution is determined based

on the interface curvature and the interface thickness, discussed in Sections 5.5.2 and 5.5.3.

As expected, the larger constant C∇γ results in a thinner interface region than the smaller

constant. The relative volume error with respect to the geometrically exact volume of the

spherical interface in both cases is approximately 0.03%, proving that the volume error

is not dependent on the band width. Since the interface thickness is only one cell, the

volume error should not depend on the thickness of the interface region.

5.5.2. Resolution of Interface Curvature

An adequate resolution of the interface curvature, i.e. the resolution tangential to the

interface, is vital for accurate interfacial flow simulations, as an underresolved interface

curvature results in a deficient local surface force. As discussed in Section 4.2.3, various
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(a) C∇γ = 10−3 (b) C∇γ = 0.2

Figure 5.17.: Tetrahedral mesh refined in the interface region based on the condition de-
fined in Eq. 5.10. The figures show the mesh cells with an x-coordinate of
the cell-centre larger than half the domain size.

recommendations for a suitable curvature resolution have been made in previous publica-

tions. Cristini et al. [30] proposed to use a harmonic average to define a reference length

scale based on the local minimum and maximum curvature as

lκ =

√
2

κ2
min + κ2

max

, (5.11)

whereas others, most notably [19, 143, 183, 194, 275], defined the curvature length scale

to be

lκ ∝
1

κ
. (5.12)

The evaluation of the length scale following Cristini et al. [30], given in Eq. 5.11, includes

a considerable number of floating point comparisons to find the local minimum and max-

imum curvatures. Thus, the length scale definition given in Eq. 5.12 is preferable from a

computational standpoint.

The reference length scale derived from the interface curvature used in the presented

algorithm follows the relationship defined in Eq. 5.12 and is given as

lκ =
1

Cκ κ
, (5.13)

where Cκ is a predefined constant defining the mesh resolution and its bias towards in-

terface curvature. Results of Raessi et al. [194] indicate useful results for a curvature

resolution of

lκ ≤
1

3κ
. (5.14)

Malik et al. [143] found nearly curvature independent solutions for a variety of interface
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geometries for a curvature resolution of

lκ /
1

20κ
. (5.15)

Figure 5.18 shows meshes for a spherical interface obtained with different values of Cκ,

applied in an interface region defined by Eq. 5.10 with C∇κ = 0.1. Figure 5.19 shows

the relative volume error of the spherical interface as a function of Cκ. The volume error

successively decreases for larger curvature coefficients Cκ as a result of the resulting higher

mesh resolution. The qualitative assessment of Figure 5.18 indicates that Cκ should not

be smaller than 3 to assure a decent representation of the curvature.

(a) Cκ = 1 (b) Cκ = 3 (c) Cκ = 8

Figure 5.18.: Tetrahedral mesh refined based on the interface curvature of a spherical
interface for different values of Cκ, as defined in Eq. 5.13. The figures show
the mesh cells with an x-coordinate of the cell-centre larger than half the
domain size.

For the above length scale definitions as well as for the recommendations reviewed in

Section 4.2.3 the mesh resolution refers to the distance between computational nodes,

i.e. the distance between cell centres. On unstructured meshes the distance between cell

centres is, however, not equal to the edge length. For two adjacent regular tetrahedrons,

the distance of its cell centres is twice the insphere radius and is given as

d∗ =
le√
6
, (5.16)

where le is the edge length of the regular tetrahedrons. Hence, assuming a mesh built

of regular tetrahedrons, a reference length scale based on the interface curvature defined

with Cκ = 1 represents a mesh spacing in the interface region of d∗ ≈ 5/2κ and Cκ = 8

corresponds to d∗ ≈ 2/39κ. Thus, assuming the cells are regular tetrahedrons, the interface

curvature resolution recommended by Raessi et al. [194] can theoretically be achieved with

Cκ = 1.225 and the recommendation of Malik et al. [143] with Cκ = 8.165. This must be
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Figure 5.19.: Relative volume error of the spherical interface on meshes adapted with dif-
ferent values of Cκ, as defined in Eq. 5.13.

kept in mind when deciding on an adequate reference length scale definition.

5.5.3. Interface Thickness

In reality the interface between to immiscible fluids is infinitesimally thin with respect

to continuum mechanics and, thus, strictly speaking, cannot be resolved within a finite

volume framework. Instead, the interface is represented with a finite thickness. Following

the results of the study of different convolution strategies presented in Section 4.4, the

fluid properties are distributed smoothly across the interface, i.e. convoluted, whereas

the surface force is calculated based on the unconvoluted colour function. Therefore,

the interface thickness affects the surface force and the resulting pressure jump across the

interface directly. Treating the interface thickness separate from the interface curvature for

the purpose of defining an adequate mesh resolution is necessary for two reasons. Firstly,

defining the interface resolution solely based on the interface curvature and assuming the

interface has a thickness of one mesh cell results in a thinner interface in regions of high

curvature than in regions where the local curvature is small. Secondly, determining the

mesh resolution based on the interface thickness assures that interface movements are

captured accurately even if κ→ 0, i.e. for a completely flat interface.

The first derivative of the colour function, which is readily available, seems to provide a

meaningful indication for the mesh resolution at interfaces, because the first derivative of

the colour function is non-zero only at interfaces and by definition spatially coincides with

the surface force (see Eq. 2.48). Darwish et al. [41] published results applying a gradient-

based indicator for adaptive mesh refinement to capture shocks, which are numerically

similar to fluid-fluid interfaces, in supersonic flows. However, a high first derivative itself

does not per se require a high mesh resolution and first derivatives only provide efficient

indication for the mesh resolution if the variation of the quantity under consideration

is considerably non-linear. For this reason, previous studies concerned with general error

measures for mesh adaption proved the second derivative to be a more reliable and efficient

indicator for the mesh resolution [87, 196, 228, 229]. For instance, Tam [228] defined an
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error estimate from the second derivative of a given flow quantity, where edge length le

has to satisfy

l2e

∣∣∣∣∂2φ

∂x2

∣∣∣∣
e

= Cl , (5.17)

with Cl representing a predefined coefficient. Other methods to control mesh adaption

include the equidistribution principle [63, 156] and the spring analogy [6, 87, 156, 165].

Nakahashi and Deiwert [165] recommend a spring analogy in form of a tension spring to

determine the mesh resolution and a torsion spring to define the face skewness.

However, because the interface, represented implicitly by the colour function, should

retain a thickness of one mesh cell, applying one of the error measures explained above

effectively creates a deadlock. In theory, the refinement would continue with an ever

decreasing interface thickness until, eventually, the interface thickness approaches zero and

the number of mesh cells becomes infinite. Because a gradient-based indicator can only

initiate mesh adaption but not terminate it for the specific case of a fluid-fluid interface, an

upper bound lmax and a lower bound lmin for the interface thickness have to be determined.

Defining explicit bounds assures a reasonably thin interface and guarantees a termination

of the mesh refinement algorithm. The proposed length scale defining the resolution of

the interface thickness is given as

lγ = min

{
max

{
Cγ
|∇γref |

, lmin

}
, lmax

}
, (5.18)

where coefficient Cγ defines the target resolution of the interface thickness based on the

colour function gradient. The upper and lower bound of the length scale for the resolution

of the interface thickness should be suitable for the size of the problem and the dominating

length scales of the expected flow field, in order to keep the interface thin at a reasonable

computational cost.

Meshes obtained with different values of Cγ and different lower and upper bounds are

shown in Figure 5.20. Comparing Figures 5.20a and 5.20b only the value of Cγ differs.

The two meshes show substantial differences in mesh resolution and a strong impact of

the weighting of the colour function gradient in determining the reference length scale.

The relative volume error of the spherical interface is 3 × 10−4 for Cγ = 10 compared

to 5 × 10−5 for Cγ = 1, emphasising the strong impact of Cγ on the mesh observed in

Figures 5.20a and 5.20b. The differences resulting from the definition of the lower bound

of the interface thickness can be examined by comparing Figures 5.20b and 5.20c. In

Figure 5.20c the lower bound of lmin = r/10 effectively limits the mesh resolution. The

volume error difference between the two cases with Cγ = 1 is smaller than the qualitative

assessment of Figures 5.20b and 5.20c suggests, with a relative volume error of 7 × 10−5

for lmin = r/10 compared to 5× 10−5 for lmin = r/40.
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(a) Cγ = 10, lmin = r/40,

lmax = r/4

(b) Cγ = 1, lmin = r/40,

lmax = r/4

(c) Cγ = 1, lmin = r/10,

lmax = r/4

Figure 5.20.: Tetrahedral mesh refined based on the colour function gradient of a spherical
interface, as defined in Eq. 5.18. Cγ defines the target mesh resolution with
respect to the interface thickness and lmin and lmax are predefined lower and
upper bounds for the interface thickness. The figures show the mesh cells
with an x-coordinate of the cell-centre larger than half the domain size.

5.6. Advecting Velocity on Adaptive Meshes

The content of this section has in parts been published in:
[54] Denner, F. and van Wachem, B.G.M.: Force-balancing at moving surface-tension-

dominated interfaces on collocated unstructured meshes. 8th International Confer-
ence on Multiphase Flow (ICMF 2013), 26 - 31 May 2013, Jeju, Korea.

The adaption of the mesh poses two viable problems with respect to the advecting velocity

and, thus, requires separate attention. Firstly, the transient term of the advecting velocity

as given in Eq. 3.61 cannot be evaluated accurately at newly created mesh faces. Secondly,

inconsistencies are introduced to the evaluation of the advecting velocity using Eq. 3.61

by applying a piecewise-linear mapping to the velocity and a piecewise-constant mapping

to the colour function, as described in Section 5.4.6. Because this chapter is concerned

with the application of adaptive tetrahedral meshes at interfaces, only surface force is

considered in the following discussion. Other body forces, such as gravity, are omitted for

the sake of brevity. Nonetheless, the proposed methodology is equally applicable if other

or additional body forces are acting on the fluid.

In the solution procedure outlined in Section 3.7, the advective velocity is evaluated

twice, implicitly and explicitly. The implicit evaluation of the advecting velocity is embed-

ded in the continuity constraint (Eq. 3.25), which is an essential part of the fully-coupled

flow equation system. The advecting velocity is also calculated explicitly at the end of

each non-linear iteration and used to update the mass fluxes (Eq. 3.26) for the convective

term of the momentum equation of the succeeding non-linear iteration. The advecting
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velocity calculated explicitly after the last non-linear iteration of a given time-step is also

used to update the transient term of the continuity constraint and the volume flux for the

VOF advection (Eq. 3.67) of the succeeding time-step.

After the mesh has been adapted and the solution has been mapped to the new mesh,

the explicit advecting velocity has to be evaluated. It is important to understand that

this explicitly calculated advecting velocity is only required for the first iteration of the

succeeding time-step. On the old mesh, by virtue of Eq. 3.25, the velocity field resulting

from the last non-linear iteration satisfies continuity and, as given by the balanced-force

numerical framework presented in Chapter 3, the pressure gradient is in balance with the

acting body forces. Thus, assuming the velocity field mapped to the new mesh also satisfies

continuity, it is proposed to explicitly calculate the advecting velocity at face centres as

un,taf = utaf · nf , (5.19)

where superscript ta denotes values at the time instant of mesh adaption on the new mesh.

Calculating the advecting velocity in the proposed way circumvents the issue of unreliable

data of the previous time-step and the implicit advecting velocity, implemented as part of

the fully-coupled flow equation system, of the succeeding time instant ta + ∆t becomes

un,ta+∆t
f = ufnf − αf d̂f

[
pQ − pP
|sf

−
ρf
2

(
∇p|P
ρP

+
∇p|Q
ρQ

)
sf

]
+ αf d̂f σ

[
κf
γQ − γP

∆s
−
ρf
2

(
κP∇γ|P
ρP

+
κQ∇γ|Q
ρQ

)
sf

]
+ cf d̂f

[
un,taf − utaf nf

]
︸ ︷︷ ︸

= 0

. (5.20)

Hence, the problematic transient term of the advecting velocity vanishes for the first

iteration at the time instant following mesh adaption. Given pressure and colour function

are mapped from the old mesh to the new mesh in the same way and applying the same

methodology to evaluate the gradients of these variables, the pressure gradient and surface

force are in discrete balance on the new mesh. Moreover, using the advecting velocity as

defined in Eq. 5.19 to update the mass flux at cell faces the mass flux is given by Eq.

2.53 and, thus, the convective term of the momentum equations is consistently defined.

In the subsequent non-linear iterations the advecting velocity is then again calculated in

its original form as defined in Eq. 3.60.

Any remaining errors resulting from the solution mapping and the assumptions made in

Eq. 5.19 should vanish during the course of the non-linear iterations within the first time-

step after mesh adaption, given that velocity, pressure and colour function are consistently

defined. Errors caused by mapping can be further diminished by reducing the size of the

first time-step following mesh adaption, as it decreases coefficient d̂ as well as the difference

between the implicit and explicit pressure gradient and surface force terms of Eq. 5.20.
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5.7. Moving Interface with Surface Tension on Adaptive

Tetrahedral Mesh

A surface-tension-dominated interface moving through a rectangular domain at a constant

velocity, the test case presented in Section 3.8.4.2, is used to test the tetrahedral mesh

adaption methodology at interfaces and to verify the conservation of mass and the appli-

cability of the balanced-force framework presented in Chapter 3. The considered density

ratios between the fluids inside and outside the interface are ρi/ρo = 100 and ρi/ρo = 106

and the viscosity ratio between the two immiscible, incompressible fluids is unity. The

applied Reynolds number Red = |u| ρi d/µ and capillary number Ca = |u|µ/σ are 0.01,

and the geometrically exact curvature is explicitly imposed at the interface.

5.7.1. Properties of the Adapted Mesh

The initial mesh consists of approximately 2.1× 104 cells and is adapted in the interface

region. The reference length scale, as discussed in Section 5.5, is determined by a minimum

interface thickness lmin = r/5, curvature factor Cκ = 2.5 and interface band C∇γ = 0.1

based on a reference colour function convoluted applying the Laplacian filter (see Eq. 4.1)

for 5 iterations. The dihedral angles of new and modified elements is explicitly bounded

to 13◦ ≤ ϑ ≤ 167◦. An example of the adapted mesh at time t = 1.907 s is given in Figure

5.21.

Figure 5.21.: The adapted tetrahedral mesh at t = 1.907 s used to simulate the moving
surface-tension-dominated interface.
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As discussed in Section 5.3, the quality of the mesh is paramount in performing accurate

numerical simulations. Particular attention is given to the dihedral angle ϑ, the face

skewness ϕ as defined in Eq. 5.5 and the face non-orthogonality α∗ as defined in Eq. 5.6.

Figure 5.22 shows the histograms of the dihedral angle for every face pair of the mesh

at two different time instants: the adapted mesh after initialisation in Figure 5.22a and

the mesh after the last adaption step at t = 1.907 s in Figure 5.22b. In both meshes, the

largest share of dihedral angles lies between 40◦ and 70◦. Comparing the histograms with

the mesh shown in Figure 5.21, it appears that these are the angles of the large clusters

of somewhat regularly distributed elements remaining from the initial mesh. At the later

time instant more dihedral angles are located near the lower and upper bounds of 13◦ and

167◦, respectively.
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(a) Initial mesh, t = 0 s
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(b) Final mesh, t = 1.907 s

Figure 5.22.: Histogram of the dihedral angle ϑ of all face pairs of the adaptive tetrahedral
mesh.

The skewness of each individual mesh face of the final mesh is given in Figure 5.23a. A

large number of faces have a skewness in the range 0.1 ≤ ϕ < 0.3, originating from the

previously mentioned large area of regularly distributed elements. However, the histogram

also shows a significant number of faces with a skewness of ϕ ≥ 0.5 and, in particular,

455 faces with a skewness of ϕ ≥ 1, posing a potential problem for the numerical solving

algorithm and, as explained in Section 5.3, for the explicit evaluation of spatial gradients.

Figure 5.23b shows the histogram of the non-orthogonality of the mesh faces at t =

1.907 s, quantified by the angle between the normal vector of a given cell and the vector

connecting the cell centres adjacent to that face. As seen for the dihedral angle and the

skewness, the regularly distributed elements in large parts of the domain can be identified

in the histogram of the non-orthogonality as their non-orthogonality angle is α∗ ≈ 0◦, as

observed in Figure 5.21. More interesting, however, is the considerable number of faces

which have a non-orthogonality angle of α∗ ≥ 38◦, as this is the angle identified in studies

of Ahipo and Traoré [2] and Traoré et al. [234] above which the orthogonal correction of

the deferred correction method becomes numerically unstable. It is worth reminding, that

the deferred correction methodology is used in the presented framework for the viscous
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Figure 5.23.: Histogram of the skewness ϕ and the non-orthogonality α∗ of the adaptive
tetrahedral mesh at time t = 1.907 s.

stresses of the momentum equations as well as the pressure gradient and body force terms

of the continuity constraint. Since an overrelaxed correction is used in the presented

framework, as described in Section 2.2.4, the numerical solving algorithm is robust despite

the large non-orthogonality, however, at the price of a reduced accuracy [106].

The change of the mean skewness, shown in Figure 5.24a, is negligible, being < 1 %.

The rise of the standard deviation ς of the face skewness shown in Figure 5.24b, on the

other hand, is significant. Given that the skewness is defined in the interval 0 ≤ ϕ < ∞,

the increasing standard deviation in conjunction with the almost constant mean indicates

a considerable increase in the number of faces with large skewness. Similar conclusions can

be drawn for the rising standard deviation of the dihedral angle ϑ with practically constant

mean. This corresponds well with the observations made in comparing the histograms of

the dihedral angle of the initial mesh and the final mesh, showing an overall unchanged

distribution of the dihedral angle but more face pairs with a dihedral angle close to the

lower and upper bounds in the final mesh. The mean of the face non-orthogonality rises

significantly during the course of the simulation, as observed in Figure 5.24a, with a

comparably moderate rise of the standard deviation. This suggests a general increase of

the non-orthogonality of a large number of mesh faces.

In order to examine potential dependencies of the considered mesh properties, Table 5.1

presents the Pearson product-moment correlation coefficient, defined as

%(X,Y ) =

∑N
i=1(Xi −X) · (Yi − Y )

(N − 1) ςX ςY
, (5.21)

for combinations of the examined mesh properties. In Eq. 5.21, ς represents the standard

deviation and X and Y are the examined data sets. The correlation coefficient ranges from

−1 to 1, with % = 0 representing no correlation between the data sets and % = −1 and % = 1

representing a perfect negative or positive correlation of the data sets, respectively. Face

skewness ϕ and face non-orthogonality α∗ are basically uncorrelated but the results show a

notable correlation between face skewness and dihedral angle as well as non-orthogonality
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Figure 5.24.: Evolution of the relative mean and relative standard deviation of skewness ϕ,
non-orthogonality α∗ and dihedral angle ϑ of the adaptive tetrahedral mesh.

and dihedral angle. Face skewness and face non-orthogonality both have a significant

negative correlation with the minimum adjoining dihedral angle of the respective mesh face

and a similarly positive correlation with the largest adjoining dihedral angle adjacent of

the respective mesh face. Thus, if the minimum dihedral angle decreases or the maximum

dihedral angle increases, the face skewness and face orthogonality are likely to rise. This

observation is supported by intuition and the generally advocated notion that an element

with bad dihedral angles, i.e. very small and very large angles, typically causes higher

discretisation errors. It should be noted that, although both meshes consist of more than

2×105 faces, the distribution and orientation of the mesh faces are, of course, not perfectly

independent, particularly in the large regions where the elements are distributed somewhat

regularly.

Table 5.1.: Correlation coefficients % of skewness ϕ, non-orthogonality α∗, minimum di-
hedral angle ϑf,min and maximum dihedral angle ϑf,max for all faces f of the
initial and final mesh.

Correlation coefficient t = 0 s t = 1.907 s

%(ϕf , α
∗) −0.113 −0.111

%(ϕf , ϑf,min) −0.524 −0.561

%(ϕf , ϑf,max) +0.554 +0.602

%(α∗f , ϑf,min) −0.472 −0.507

%(α∗f , ϑf,max) +0.544 +0.548

5.7.2. Continuity and Mass Conservation

Continuity and the conservation of the colour function has been discussed and demon-

strated in Section 3.8.5 for simulations on stationary meshes. As described in Section 5.6,
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the advecting velocity is extended for the application on adaptive meshes. Thus, it is

important to verify that the made assumptions do not impair the basic integrity of the

numerical framework.

The cumulative continuity error of the moving interface on the adaptive tetrahedral

mesh examined in the previous section, shown in Figure 5.25a, is negligible for both

considered density ratios. Occasional small perturbations induced by the adaption of the

mesh are evident, however, they are insignificant and vanish quickly. The volume error

of the volume inside the interface relative to its initial volume, shown in Figure 5.25b,

is negligible as well, being 3 × 10−9 % at the end of the simulation. What is more, the

results are in excellent agreement with the results obtained on stationary Cartesian and

tetrahedral meshes presented in Section 3.8.5. Hence, the results verify that the numerical

framework presented in Chapter 3 together with the extension made in Section 5.6 satisfies

continuity and conserves the colour function accurately on adaptive meshes.
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Figure 5.25.: Cumulative continuity error and relative interface volume error of the surface-
tension-dominated moving interface presented in Section 3.8.4.2 on an adap-
tive tetrahedral mesh.

5.7.3. Verification of Force-Balancing

Similar as for continuity and the conservation of the colour function, the impact of mesh

adaption on the force-balancing as well as the corresponding extension of the presented

momentum interpolation method to adaptive meshes in Section 5.6 may affect the force-

balancing methodology of the numerical framework and, therefore, requires additional ver-

ification. Velocity gradients of the considered test case are negligible, due to the constant

velocity of the interface in conjunction with the very low Reynolds number (Red = 0.01).

Furthermore, given the geometrically exact curvature explicitly imposed at the spherical

interface and the low capillary number (Ca = 0.01), the interface remains in mechanical

equilibrium. Thus, any imbalance between surface force and pressure gradient manifests

itself in parasitic currents and in an erroneous prediction of the pressure jump across the
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interface, as previously discussed in Section 3.8.4.

Figure 5.26a shows the maximum velocity error and Figure 5.26b the maximum pressure

error as a function of time on the adaptive tetrahedral mesh. The parasitic velocity

magnitude as well as the pressure error are both negligible and of the same order of

magnitude as on the stationary tetrahedral mesh presented in Figures 3.13b and 3.14b.

Moreover, the impact of the mesh adaption on the results is insignificant and the velocity

error as well as the pressure error show only minor differences between the two applied

density ratios. This proves the applicability of the presented balanced-force numerical

framework and the extension to it made in Eq. 5.19 to adaptive meshes.
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Figure 5.26.: Velocity error and pressure error for a surface-tension-dominated interface
moving at a constant velocity and using the exact curvature to determine
surface force on an adaptive tetrahedral mesh.

5.8. Summary

In this chapter the basics of the application of adaptive tetrahedral meshes to interfacial

flows have been studied. The difficulties surrounding adaptive meshing at interfaces have

been highlighted and the available adaption methods for tetrahedral meshes have been

reviewed.

Based on the outlined difficulties and the available methods, an adaption algorithm

and its implementation concept have been presented. The implementation concept limits

mesh adaption to a local set of mesh entities and, thus, considerably simplifies the data

management and the extension to parallel computer architectures. Furthermore, the so-

lution mapping between meshes for different variables has been assessed, concluding that

a piecewise-constant mapping for the colour function is preferable to a piecewise-linear

mapping, as for instance applied to velocity.

A particular focus of this chapter has been the adequate mesh resolution at interfaces.

As mentioned previously, the literature on suitable reference length scales and other error

measures to define the mesh resolution at interfaces is very limited. In Section 5.5 the
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mesh resolution at interfaces has been discussed and reference length scales have been

proposed, designed to control an adaptive tetrahedral mesh refinement in the vicinity of

the interface. The presented numerical experiments demonstrate the applicability and

impact of the proposed reference length scale.

The examination of the sample adaptive tetrahedral mesh in Section 5.7.1 has found a

statistically notable correlation between the face skewness and face non-orthogonality with

the adjoining dihedral angles of a given face. Furthermore, the analysis of the mesh showed

that mesh adaption should be applied with great care as it tends to include elements

with inferior properties in regions where the mesh resolution varies considerably, as for

instance close to the interface. Further work is required in the future to improve the

understanding of the underlying mechanisms leading to an increased face skewness and

face non-orthogonality.

As previously discussed in Section 2.3.3, a local imbalance between body forces, in

particular surface force, and the pressure gradient leads to substantial parasitic currents

and is a major source of errors in two-phase flow simulations. Up to date, however, the

applicability of a balanced-force framework on unstructured adaptive meshes has not been

demonstrated in the literature. The extension to the advecting velocity (Eq. 3.61) proposed

in Section 5.6 assures force-balancing on unstructured adaptive meshes as demonstrated

in Section 5.7.3. Thus, the numerical framework presented in Chapter 3 is fully applicable

to adaptive meshes. In this regard, it has also been successfully verified that the numerical

framework including its extension to adaptive meshes satisfies continuity and conserves the

mass of both fluids. It is worth mentioning that, although demonstrated on tetrahedral

meshes, the theory of the balanced-force numerical framework is equally applicable to

other unstructured adaptive meshes.
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6. Further Case Studies

In this section additional case studies are presented and discussed to further validate and

assess the presented numerical framework for incompressible two-phase flows. The test

cases are chosen because of their particular informative value in order to scrutinise the

numerical framework in its entirety. Firstly, Section 6.1 studies the influence of interface

properties on parasitic currents. A better understanding of the involved error sources helps

to perform more accurate two-phase flow simulations. The rise of a bubble due to buoyancy

is presented in Section 6.2, demonstrating the correct interaction of surface force, gravity

force and viscous stresses. Section 6.3 presents the rise of liquid inclusions at low Reynolds

number, used to investigate the accurate prediction of capillary instabilities. Subsequently,

the numerical framework is assessed with respect to interface topology changes in Section

6.4, simulating coaxial and oblique coalescence of two rising bubbles. Lastly, the numerical

diffusion of the interface advection on unstructured meshes is revisited in Section 6.5. The

major findings of the case studies are summarised in Section 6.6.

The interface normal vector and the interface curvature are evaluated using the CE-

LESTE method, presented in Section 4.3. Unless otherwise stated, the applied convolution

length is ε = 2d∗ and the stencil size for the evaluation of the interface normal vector and

the interface curvature are ls,m = 4d∗ and ls,κ = 2d∗, respectively.

6.1. Influence of Interface Properties on Parasitic Currents

The content of this section has been published in:
[55] Denner, F. and van Wachem, B.G.M.: Fully-coupled balanced-force VOF framework

for arbitrary meshes with least-squares curvature evaluation from volume fraction.
Numerical Heat Transfer, Part B: Fundamentals, accepted for publication. DOI:
10.1080/10407790.2013.849996

Parasitic currents present a limiting factor for the applicability of VOF methods. Under

specific circumstances, parasitic currents can become large enough to destroy the interface

and, therefore, prohibit a feasible solution to a given problem. Using the CSF method [19]

discussed in Section 2.3.3 to model the surface force, the surface tension coefficient σ and

the interface curvature κ are the key interface properties.

In order to verify the influence of interface properties on the outcome of VOF sim-

ulations, different surface tension coefficients are applied to the inviscid static drop in

equilibrium discussed in Section 4.3.5. Moreover, the size of the drop and its surrounding

domain is varied to examine the influence of the interface curvature on the simulation

results. The tests are performed on an equidistant Cartesian mesh of 403 cells, shown in

Figure 3.9a, and on a tetrahedral mesh with approximately 6.0×104 cells, shown in Figure
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3.9c. The CELESTE method is used to evaluate the interface curvature with a stencil size

of ls = 4∆x on the Cartesian mesh and ls = 6d∗ on the tetrahedral mesh. The applied

convolution length is ε = 2∆x on the Cartesian mesh and ε = 3d∗ on the tetrahedral mesh.

A linear relationship between surface tension coefficient σ and parasitic currents for a

viscous static drop in equilibrium has been demonstrated by Francois et al. [71], applying

a convolution approach as well as a height function technique, and Ubbink [238], using a

convolution approach. The results presented in Figure 6.1 also show a linear relationship

between surface tension coefficient and parasitic currents. Furthermore, Figure 6.1 shows a

predominantly second-order rise of parasitic currents with increasing curvature. The mean

curvature error is constant with changing surface tension but increases mainly linear with

increasing interface curvature, as depicted in Figure 6.2.
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Figure 6.1.: Maximum velocity magnitude after one time-step as a function of surface
tension coefficient σ and theoretical interface curvature κt for a static inviscid
drop in equilibrium. The drop with surface tension coefficient σ = 73N m−1

and radius r = 2m is positioned at the centre of an 8m× 8m× 8m domain
and is simulated with a time-step of 10−3 s.
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Figure 6.2.: L2 error norm of interface curvature κ as a function of surface tension coeffi-
cient σ and theoretical interface curvature κt for a spherical drop.

The different impact of surface tension coefficient and interface curvature on parasitic

currents, despite the first-order influence of both parameters on the surface force according

176



to the definition in Eq. 2.48, can be explained by examining the presented results in more

detail. In case of an inviscid two-phase flow without gravity, the momentum equation

presented in Eq. 2.52 reduces to

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

1

ρ
σ κ

∂γ

∂xi
. (6.1)

The local interface curvature κ includes errors arising from its approximation and may be

split up as κ = κ+ κ′, where κ represents the base value, i.e. the average curvature, and

κ′ represents the absolute local error. The absolute local error is defined as κ′ = ξ κ with

the relative local curvature error being ξ = (κ − κ)/κ. The results presented in Section

3.8.4 as well as the results of other studies [71, 154] indicate that the pressure gradient at

the interface reflects the base surface force f s = σ κ∇γ. Assuming a perfect correlation

between base surface force and pressure gradient means that for a stationary problem both

terms cancel each other out and Eq. 6.1 becomes

∂ui
∂t

+ uj
∂ui
∂xj

=
1

ρ
σ κ′

∂γ

∂xi
. (6.2)

Hence, parasitic currents arise due to the local surface force error f ′s = σ κ′∇γ and,

therefore, due to the local error of the interface curvature κ′ = ξ κ. Changing the surface

tension coefficient σ only changes the magnitude of the local surface force error f ′s but not

its distribution. Accordingly, parasitic currents have a linear relation to a changing surface

tension coefficient. A similar conclusion can be drawn for a changing interface curvature,

which changes the magnitude of the surface force error and, as a result, changes the

resulting parasitic currents. However, the results shown in Figure 6.2 also show a changing

curvature error, suggesting a higher relative error ξ for higher curvature values. The higher

relative curvature error originates from larger aliasing errors when the interface curvature

is evaluated on a smaller mesh spacing, resulting from the smaller domain. As a result,

the local error in surface force f ′s is not only affected by the changing base curvature κ,

but also by the changing relative error ξ, leading to a predominantly second-order change

of parasitic currents, as seen in Figure 6.1. It is worth emphasising at this point that the

parasitic currents are not considerably affected by the mesh type, neither the source of

parasitic currents nor the general relationship to interface properties.

Considering static fluid particles in equilibrium with equal pressure jump across the

interface ∆p = σκ, the presented results indicate different parasitic currents for different

combinations of surface tension coefficient σ and interface curvature κ. The interface

properties of a fluid particle with an accelerating force acting on it, such as the rising

bubble in Sections 4.4.2, 4.5 and 6.2, can be adjusted with the aim of diminishing the

impact of parasitic currents without changing its Eötvös number Eo = ρo g d
2
0/σ. Thus, the

presented findings can provide guidance in choosing fluid properties and spatial dimensions

which diminish parasitic currents and curvature errors, and the findings can help to analyse

simulation results.

According to Scardovelli and Zaleski [205], computational studies of two-phase flows

become difficult for Laplace number Lar = σ ρ r/µ2 ' 106 because of the resulting para-
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sitic currents, which can become large enough to destroy the interface. This assumption is

supported by the results presented in Figure 6.1, showing that parasitic currents increase

linearly with increasing surface tension coefficient σ. However, the presented results also

suggest that the Laplace number is not a reliable indicator for the applicability of com-

putational methods to two-phase flow problems. As shown in Figure 6.1, the parasitic

currents predominantly increase with second-order when increasing the interface curva-

ture κ. Replacing the fluid particle radius r with the equivalent interface curvature given

in Eq. 3.144, the Laplace number is defined as Laκ = 2σ ρ/κµ2, meaning that an increas-

ing interface curvature results in a decreasing Laplace number. Thus, parasitic currents

can theoretically become large enough to break up the interface at any Laplace number.

6.2. Spherical Cap Bubble Rising due to Buoyancy

The content of this section has in parts been published in:
[53] Denner, F. and van Wachem, B.G.M.: Two-Phase Flow Modelling on Arbitrary

Meshes: Superior VOF Curvature Estimation and the Issue of Convolution. Inter-
national Conference on Numerical Methods in Multiphase Flows, 12 - 14 June 2012,
State College, PA, USA.

[55] Denner, F. and van Wachem, B.G.M.: Fully-coupled balanced-force VOF framework
for arbitrary meshes with least-squares curvature evaluation from volume fraction.
Numerical Heat Transfer, Part B: Fundamentals, accepted for publication. DOI:
10.1080/10407790.2013.849996

The content of this section has in parts been submitted for publication in:
[57] Denner, F., van der Heul, D., Oud, G.T., Martins Villar, M., da Silveira Neto, A.

and van Wachem, B.G.M.: Comparative study of mass-conserving interface captur-
ing frameworks for two-phase flows with surface tension. Submitted to International
Journal of Multiphase Flow on 27 June 2013.

A bubble rising in a heavier fluid due to buoyancy is simulated, as previously presented

in Sections 4.4.2 and 4.5. The precise calculation and interaction of viscous stresses and

the forces due to buoyancy and surface tension are essential for the accurate prediction

of the bubble shape and the bubble rise velocity. In particular the overshoot of the rise

velocity shortly after the bubble starts ascending and the terminal rise velocity are key

characteristics. The finite size of the fluid domain, however, affects the rise velocity of

the bubble [88], which is important for the correct interpretation of the simulation results.

The expected rise velocity is corrected by the semi-empirical correlation proposed by

Harmathy [88], given in Eq. 4.44. The accuracy and applicability of this correlation in

numerical studies has been demonstrated by van Sint Annaland et al. [245], using a VOF

method, and by Hua et al. [99], using a front-tracking method.

Following the test case proposed by Lebaigue et al. [124], the bubble is initially spherical

with a diameter of d0 = 0.02m, a Morton number Mo = g µ4
o/ρo σ

3 = 0.056 and an Eötvös

number Eo = ρo g d
2
0/σ = 40, where subscript o denotes the fluid properties outside the

bubble and subscript i denotes properties inside the bubble, and g is the gravitational

acceleration. The fluid of the continuous phase has a density of ρo = 1000 kgm−3 and a

viscosity of µo = 2.73556×10−1 Pa s, and the fluid of the dispersed phase has a density of
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ρo = 10 kgm−3 and a viscosity of µo = 2.73556×10−3 Pa s. The surface tension coefficient

is σ = 0.1N m−1 and the gravity of g = 10ms−2 is acting in negative y-direction. The

domain dimensions are 5d0 × 7d0 × 5d0. Two different meshes are applied, an equidistant

Cartesian mesh with 100× 140× 100 cells, shown in Figure 6.3a, and a tetrahedral mesh

with approximately 1.4×106 cells and an average cell-to-cell distance of d∗ ≈ 8.07×10−4m,

shown in Figure 6.3b. The capillary time-step constraint, following Eq. 3.104, for this case

is tc ≤ 8.97× 10−4 s on the Cartesian mesh and tc ≤ 6.5× 10−4 s on the tetrahedral mesh.

Both fluids are initially at rest and the motion of the bubble is induced by buoyancy only.

The boundary at the top of the domain is considered to be an outlet boundary, all other

boundaries are free-slip walls.

(a) Cartesian mesh (b) Tetrahedral mesh

Figure 6.3.: The two meshes applied to simulate the spherical cap bubble rising due to
buoyancy. The equidistant Cartesian mesh consists of 100 × 140 × 100 cells
and the tetrahedral mesh has approximately 1.4× 106 cells.

As previously discussed in Section 4.4.2, empirical studies by Clift et al. [27, Fig 2.5]

suggest a terminal Reynolds number of Red = |u|r ρo d0/µo ≈ 20.5 − 21.0 for a bubble

with Eo = 40 and Mo = 0.056. This Reynolds number represents a Froude number of

Fr = |ur|/
√
d0 g ≈ 0.626−0.642 with respect to the fluid properties defined above. Given

the domain extend of 5d0 perpendicular to the gravitational acceleration, the rise velocity

in the finite computational domain is approximately 96% of the rise velocity observed in

a domain of infinite extend. Thus, the expected terminal rise velocity corresponds to a

Froude number of Fr ≈ 0.601−0.616. Numerical studies of Blanco-Alvarez [17] and Lubin

et al. [140], using a computational domain of unspecified extend, obtained terminal Froude

numbers of approximately 0.63 and 0.60, respectively. Results for this test case obtained

by Martins Villar [151] and reported in [57] on the equidistant Cartesian mesh using a

VOF-PLIC interface reconstruction method to advect the interface and a height function

technique to evaluate the interface curvature, abbreviated herein as VOF-PLIC HF, are

included in Figure 6.4 as a reference.
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Figure 6.4.: Rise velocity and shape evolution of the rising bubble on a Cartesian mesh and
a tetrahedral mesh. Reference results of Martins Villar [151] using a VOF-
PLIC method to track the interface and a height function (HF) technique to
evaluate the interface curvature, abbreviated VOF-PLIC HF, are shown as
well. The bubble shapes are illustrated every 0.07 s (τ = 1.57), starting from
the initial position, in the x-y plane crossing through the centre of the domain.

The rise velocity of the bubble as a function of time, presented in Figure 6.4a, shows

similar results on the Cartesian and the tetrahedral mesh. Predicting equal rise velocities

during the initial acceleration phase of the bubble on both meshes, the rise velocities differ

increasingly while the bubble assumes its terminal shape. The terminal Froude number at

time τ = 6 obtained on the Cartesian mesh is Fr = |ur|/
√
d0 g = 0.606, being in excellent

agreement with the literature references given above, whereas on the tetrahedral mesh the

resulting Froude number is 0.557. The rise velocity predicted on the Cartesian mesh is

in very good agreement with the reference results of Martins Villar [151] obtained with a

VOF-PLIC HF framework.

The bubble shapes obtained on both meshes, shown in Figures 6.4b and 6.4c, as well as

the bubble shape obtained with the VOF-PLIC HF framework, shown in Figure 6.4d, are

in very good agreement with each other. The predicted terminal rise velocity is equivalent

to a Reynolds number of Red = 19.81 on the Cartesian mesh and Red = 18.2 on the

tetrahedral mesh. The aspect ratio of the bubble on the Cartesian mesh is 0.403, with

an eccentricity of 0.69. Both values are in very good agreement with the experimental

results of Bhaga and Weber [16], suggesting an aspect ratio of approximately 0.395 and an

eccentricity of roughly 0.64 for Red = 19.81, as well as with the results obtained using the

VOF-PLIC HF framework of Martins Villar [151], predicting an aspect ratio of 0.408 and

an eccentricity of 0.7. On the tetrahedral mesh, the bubble has an aspect ratio of 0.375

and an eccentricity of 0.71, which is in reasonably good agreement with the experimental
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results of Bhaga and Weber [16], suggesting an aspect ratio of approximately 0.4 and an

eccentricity of approximately 0.64 for Red = 18.2. The shape of the rising bubble on

both meshes, depicted in Figure 6.4, is also in excellent agreement with boundary-element

simulations of Ryskin and Leal [201]. The drag force on the bubble as a potential reason for

the different rise velocities can, therefore, be eliminated. The inherent mass conservation

of the applied VOF methodology further excludes mass conservation errors as a potential

reason for the discrepancy in rise velocity. On the tetrahedral mesh the relative error of

the bubble volume is 6.1× 10−2 % at the end of the simulation.

The colour function suffers from notable numerical diffusion on the tetrahedral mesh,

reducing the effective density difference between the two fluids from initially 990 kgm−3 to

approximately 890−920 kgm−3 at time τ = 6, as observed in Figure 6.5. This represents a

reduction of the effective buoyancy force acting on the bubble of 7−10 %, which correlates

well with the 8.1 % lower rise velocity at τ = 6 on the tetrahedral mesh compared to

the rise velocity on the Cartesian mesh. The issue of numerical diffusion of the colour

function on tetrahedral meshes is further examined in Section 6.5. The comparison of the

results obtained on the equidistant Cartesian with the numerical framework presented in

this thesis and with the VOF-PLIC HF framework show no significant differences. This

demonstrates the competitiveness of the compressive VOF method used in the presented

numerical framework compared to advanced interface reconstruction methods that are

typically limited to Cartesian meshes.

(a) Cartesian mesh (b) Tetrahedral mesh

Figure 6.5.: Density distribution of the rising bubble at time τ = 6 on the equidistant
Cartesian mesh and the tetrahedral mesh.

6.3. Stability of Liquid Inclusions at Low Reynolds Number

The content of this section has been submitted for publication in:
[57] Denner, F., van der Heul, D., Oud, G.T., Martins Villar, M., da Silveira Neto, A.

and van Wachem, B.G.M.: Comparative study of mass-conserving interface captur-
ing frameworks for two-phase flows with surface tension. Submitted to International
Journal of Multiphase Flow on 27 June 2013.

The solely buoyancy driven free rise of a viscous inclusion, initially of ellipsoidal shape,

at low Reynolds number (Re < 0.1) in another viscous fluid is simulated. As a result of

the very low Reynolds number, the material derivative of the velocity can be neglected
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[13, 202]. Therefore, the momentum equation becomes effectively linear and the problem

reduces to balancing the acting body forces, i.e. surface force and buoyancy force, and

the viscous stresses. The particular challenge of this test case is the accurate prediction

of the critical capillary number beyond which the initially ellipsoidal inclusion does not

restore its equilibrium (i.e. spherical) shape. The rising inclusion becomes unstable when

the critical capillary number is exceeded and high curvatures occur due to the resulting

shape of the inclusion. Because the shape and stability of the liquid inclusion are strongly

dependent on the correct prediction of the surface tension effects and the viscous stresses in

proximity of the interface, this test case represents a more rigorous validation of interface

capturing/tracking methods than the test case presented in Section 6.2.

Following boundary-element simulations of Koh and Leal [117], reprinted in Figures 6.6

and 6.7, Lemmonier and Hervieu [125] proposed six different test cases. Each test case is

characterised by the capillary number Ca = U µo/σ, where U is the characteristic velocity,

and the ratio between the inclusions length along its symmetry axis ay and its radial axis

ar. The characteristic velocity for a spherical inclusion rising under the sole action of

gravity within the Stokes approximation (Re < 1) is [13, 27]

U =
2 g R2 |ρo − ρi|

3µo

1 + µi
µo

2 + 3 µiµo
, (6.3)

where subscripts i and o denote fluid properties inside and outside the inclusion, and R

is the equivalent radius of the inclusion R = 3
√
ay a2

r . The characteristic time scale of the

problem is defined as

τ =
R

U
. (6.4)

In all six test cases (A-F) the continuous phase has a density of ρo = 2000 kgm−3 and a

viscosity of µo = 100Pa s, and the liquid inclusion has a density of ρi = 1980 kgm−3 and

a viscosity of µi = 50Pa s. The gravity acting in negative y-direction is g = 9.81ms−2.

In cases A-C the liquid inclusion has initially a prolate ellipsoidal shape, as seen in Figure

6.6. The properties of test cases A-C are presented in Table 6.1. The liquid inclusion is

expected to restore its equilibrium shape for test case A (Ca = 1.25), whereas in test cases

B (Ca = 1.5) and C (Ca = 2.0) an instability develops at the tail of the liquid inclusion

and the equilibrium shape is not fully restored, as boundary-element simulations of Koh

and Leal [117] depicted in Figure 6.6 indicate. In test cases D-F the liquid inclusion has

initially an oblate ellipsoidal shape, as seen in Figure 6.7, for which the properties are

given in Table 6.2. According to Koh and Leal [117], the liquid inclusion is able to restore

its equilibrium shape in test case D (Ca = 3.5) but develops a cavity in test cases E

(Ca = 4.0) and F (Ca = 10.0), as shown in Figure 6.7. Experimental and numerical

studies by Koh and Leal [118], Stone [221] and Manga and Stone [145] support these

findings. Test cases A-C are simulated on an equidistant Cartesian mesh of 76× 220× 76

cells and test cases D-F are simulated on an equidistant Cartesian mesh of 96× 260× 96

cells. Both meshes have a mesh spacing of ∆x = 0.01m.
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Figure 6.6.: Reference results of Koh and Leal [117] for the liquid inclusion test cases A-C
(Ca = 1.25 − 2.0). The individual inclusion shapes are depicted at t = 2τ
intervals as well as the time at which the inclusion has restored its equilibrium
shape or at which the instability is fully developed, respectively. Reprinted
with permission from Koh and Leal [117]. Copyright 1989, AIP Publishing
LLC.

Figure 6.7.: Reference results of Koh and Leal [117] for the liquid inclusion test cases D-F
(Ca = 3.5 − 10.0). The individual inclusion shapes are depicted at t = 2τ
intervals as well as the time at which the inclusion has restored its equilibrium
shape or at which the instability is fully developed, respectively. Reprinted
with permission from Koh and Leal [117]. Copyright 1989, AIP Publishing
LLC.
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Table 6.1.: Properties of the prolate liquid inclusion test cases.

Case A Case B Case C

Ca 1.25 1.5 2.0

σ 0.711881N m−1 0.593235N m−1 0.444926N m−1

∆tc (Eq. 3.104) 0.02109 s 0.02311 s 0.02668 s

ar 0.1m 0.1m 0.1m

ay 0.2m 0.2m 0.2m

U (Eq. 6.3) 8.8985×10−3ms−1 8.8985×10−3ms−1 8.8985×10−3ms−1

τ (Eq. 6.4) 14.1588 s 14.1588 s 14.1588 s

Table 6.2.: Properties of the oblate liquid inclusion test cases.

Case D Case E Case F

Ca 3.5 4.0 10.0

σ 0.403586N m−1 0.353138N m−1 0.141255N m−1

∆tc (Eq. 3.104) 0.02801 s 0.02995 s 0.04735 s

ar 0.2m 0.2m 0.2m

ay 0.1m 0.1m 0.1m

U (Eq. 6.3) 1.4126×10−2ms−1 1.4126×10−2ms−1 1.4126×10−2ms−1

τ (Eq. 6.4) 11.2378 s 11.2378 s 11.2378 s

Figures 6.8 - 6.10 show the evolution of the initially prolate liquid inclusions (cases

A-C) at different time instants. In case A, shown in Figure 6.8, the inclusion restores

its equilibrium shape and predicts the evolution of the liquid inclusion shape with very

high accuracy. Case B, shown in Figure 6.9, predicts the evolution of the liquid inclu-

sion shape very accurate until t = 6τ . However, the liquid inclusion does not develop

a proper instability, apart from a small detachment, and restores its equilibrium shape

eventually. In case C, on the other hand, the development of the instability at the tail of

the liquid inclusion is predicted accurately, as shown in Figure 6.10. Apart from the minor

disagreement regarding the instability in case B, the computational results obtained with

the presented numerical framework are in excellent agreement with the reference results

of Koh and Leal [117].

The results for the initially oblate liquid inclusions, test cases D-F, are presented in

Figures 6.11 - 6.13. In case D, the liquid inclusion resumes its equilibrium shape slowly

but predicts the final result accurately, as shown in Figure 6.11. Similar to case D, the

evolution of the shape of the liquid inclusion in case E is slower than predicted by Koh and

Leal [117], as observed in Figure 6.12. Moreover, the numerical framework underestimates

the developing cavity. In case F, shown in Figure 6.13, the size of the cavity of the liquid

inclusion is also underestimated but the overall prediction is in very good agreement with

the reference results of Koh and Leal [117].
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(a) t = 0τ (b) t = 2τ (c) t = 4τ (d) t = 6τ (e) t = 8τ (f) t = 10τ

Figure 6.8.: Shape evolution of the liquid inclusion of test case A (Ca = 1.25) at different
time instants. The interface region of the liquid inclusion is illustrated by
isocontours for VOF colour function values γ = 0.25 and γ = 0.75 in the x-y
plane crossing through the centre of the domain.

(a) t = 0τ (b) t = 2τ (c) t = 4τ (d) t = 6τ (e) t = 8τ (f) t = 10τ

Figure 6.9.: Shape evolution of the liquid inclusion of test case B (Ca = 1.5) at different
time instants. The interface region of the liquid inclusion is illustrated by
isocontours for VOF colour function values γ = 0.25 and γ = 0.75 in the x-y
plane crossing through the centre of the domain.

(a) t = 0τ (b) t = 2τ (c) t = 4τ (d) t = 6τ (e) t = 8τ (f) t = 10τ

Figure 6.10.: Shape evolution of the liquid inclusion of test case C (Ca = 2.0) at different
time instants. The interface region of the liquid inclusion is illustrated by
isocontours for VOF colour function values γ = 0.25 and γ = 0.75 in the x-y
plane crossing through the centre of the domain.
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(a) t = 0τ (b) t = 2τ (c) t = 4τ (d) t = 6τ (e) t = 8τ (f) t = 10τ (g) t = 12τ (h) t = 14τ

Figure 6.11.: Shape evolution of the liquid inclusion of test case D (Ca = 3.5) at different
time instants. The interface region of the liquid inclusion is illustrated by
isocontours for VOF colour function values γ = 0.25 and γ = 0.75 in the x-y
plane crossing through the centre of the domain.

(a) t = 0τ (b) t = 2τ (c) t = 4τ (d) t = 6τ (e) t = 8τ (f) t = 10τ (g) t = 12τ (h) t = 14τ (i) t = 16τ

Figure 6.12.: Shape evolution of the liquid inclusion of test case E (Ca = 4.0) at different
time instants. The interface region of the liquid inclusion is illustrated by
isocontours for VOF colour function values γ = 0.25 and γ = 0.75 in the x-y
plane crossing through the centre of the domain.

(a) t = 0τ (b) t = 2τ (c) t = 4τ (d) t = 6τ (e) t = 8τ (f) t = 10τ (g) t = 12τ

Figure 6.13.: Shape evolution of the liquid inclusion of test case F (Ca = 10.0) at different
time instants. The interface region of the liquid inclusion is illustrated by
isocontours for VOF colour function values γ = 0.25 and γ = 0.75 in the x-y
plane crossing through the centre of the domain.
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6.4. Bubble Coalescence

The coalescence of two bubbles of equal properties is simulated, following experiments

conducted by Brereton and Korotney [21], reprinted in Figure 6.15. Both bubbles are

initially spherical with a Morton number Mo = 2× 10−4 and an Eötvös number Eo = 16.

The bubbles are arranged either coaxially or obliquely and are driven by buoyancy only.

The fluids are initially at rest and the domain is resolved by an equidistant Cartesian mesh

with 20 cells per initial diameter. The numerical results of van Sint Annaland et al. [245]

are reprinted in Figure 6.16 as an additional reference.

In the coaxial case, both bubbles are initially positioned coaxially with respect to the

direction of gravity and the bubble centres are situated 1.5 diameter apart from each

other. Figure 6.14 shows the evolution of both bubbles at different time instants. The

trailing bubble quickly reduces the gap to the leading bubble as a result of the slip stream,

whereas the leading bubble is not notably affected by the presence of the trailing bubble.

The presented results are in excellent agreement with the experiments of Brereton and

Korotney [21], reprinted in Figure 6.15a, and with the simulations of van Sint Annaland

et al. [245], shown in Figure 6.16a, and Farhangi et al. [64]. It has to be noted, that in

the experiment the initial shape of the bubbles is evidently not perfectly spherical.

(a) t = 0.0 s (b) t = 0.025 s (c) t = 0.05 s

(d) t = 0.075 s (e) t = 0.1 s (f) t = 0.125 s

Figure 6.14.: Coaxial coalescence of two bubbles (Eo = 16, Mo = 2× 10−4) rising due to
gravity on an equidistant Cartesian mesh with a mesh resolution of 20 cells
per initial bubble diameter.
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(a) Coaxial coalescence (b) Oblique coalescence

Figure 6.15.: Experimental results of coaxial and oblique bubble coalescence published by
Brereton and Korotney [21]. The time interval between the individual pho-
tographs is 0.03 s. Reprinted from van Sint Annaland et al. [245], Copyright
2005, with permission from Elsevier.

(a) Coaxial coalescence (b) Oblique coalescence

Figure 6.16.: Numerical results of coaxial and oblique bubble coalescence published by van
Sint Annaland et al. [245]. Reprinted from van Sint Annaland et al. [245],
Copyright 2005, with permission from Elsevier.
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As in the coaxial case, the centre of the bubbles in the oblique case are initially positioned

with a distance of 1.5 diameter from each other with respect to the direction of gravity.

The trailing bubble is shifted by 1.6 diameters in positive x-direction away from the coaxial

position. After the bubbles have moved out of their initial position, the trailing bubble

slowly moves into the slip stream of the leading bubble, as shown in Figure 6.17. The

rise of the leading bubble seems not to be affected by the trailing bubble in the first 0.1 s.

In subsequent time instants the leading bubble becomes successively more influenced by

the trailing bubble, leaving its initially purely vertical trajectory. The results presented

in Figure 6.17 are in good qualitative agreement with the experimental data shown in

Figure 6.15b and the simulations of van Sint Annaland et al. [245], reprinted in Figure

6.16b, Marchandise et al. [148] and Singh and Shyy [217]. The bubbles in the experimental

studies of Brereton and Korotney [21] appear not to be initially spherical, as suggested by

Figure 6.15b.

(a) t = 0.0 s (b) t = 0.025 s (c) t = 0.05 s (d) t = 0.075 s

(e) t = 0.1 s (f) t = 0.125 s (g) t = 0.15 s (h) t = 0.175 s

Figure 6.17.: Oblique coalescence of two bubbles (Eo = 16, Mo = 2× 10−4) rising due to
gravity on an equidistant Cartesian mesh with a mesh resolution of 20 cells
per initial bubble diameter.
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6.5. Numerical Diffusion of Interface Advection

Considerable numerical diffusion of the colour function advection on tetrahedral meshes

is observed in the simulation of a bubble rising due to buoyancy, presented in Section 6.2.

Ubbink [238] suggested two possible reasons for numerical diffusion of the colour function

using the CICSAM scheme, presented in Section 3.4.2. Firstly, the extrapolation of the

upwind node, required to determine the advection of the colour function on unstructured

meshes and, secondly, the implicit assumption that a face contains the interface if both

adjacent cells contain an interface.
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Figure 6.18.: Froude number of an initially spherical bubble rising due to buoyancy as a
function of the non-dimensional time τ = t

√
g/d0, using different weighting

factors kψ of the CICSAM interface advection scheme. The graph on the
right is a closeup of the graph on the left, showing the Froude number region
relevant to the terminal rise velocity.

One readily available measure to tackle numerical diffusion originating from the advec-

tion of the colour function is the application of a more compressive advection scheme.

Increasing the coefficient kψ of the CICSAM scheme increases the dominance of the com-

pressive Hyper-C scheme over the more diffusive UQ scheme (see also Section 3.4.2) and,

therefore, makes the CICSAM scheme more compressive. Figure 6.18 shows the rise ve-

locity of the bubble rising due to buoyancy presented in Section 6.2 on a tetrahedral mesh

of approximately 1.4× 106 cells, shown in Figure 6.3b, simulated with different CICSAM

weighting coefficients kψ. The specific case of kψ = 1, as recommended by Ubbink and Issa

[239], is the result previously presented in Section 6.2. For a sound comparison the result

obtained on the equidistant Cartesian mesh, also previously presented in Section 6.2, is

depicted as well. The rise velocity is considerably impacted by the CICSAM weighting

coefficient in the range 1 ≤ kψ < 3 and shows only small differences for kψ ≥ 3. The higher

terminal rise velocity for kψ ≥ 2 indicates a significantly reduced numerical diffusion and

the stable rise velocity for τ > 3 suggests that the accumulation of numerical diffusion is

diminished after the bubble has assumed its terminal shape. Similar to the development of

the rise velocity over time, the evolution of the bubble shape presented in Figure 6.19 does

not show considerable difference for kψ ≥ 3. The results indicate that, using the CICSAM
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scheme, a weighting coefficient of kψ = 3 reduces the numerical diffusion on tetrahedral

meshes without the negative side-effects of a fully compressive scheme, i.e. wrinkling of

the interface.

(a) kψ = 1 (b) kψ = 2 (c) kψ = 3 (d) kψ = 4 (e) kψ = 5

Figure 6.19.: Rise velocity and shape evolution of the rising bubble on a tetrahedral
mesh using different weighting factors kψ of the CICSAM interface advection
scheme. The bubble shapes are illustrated every 0.07 s (τ = 1.57), starting
from the initial position, in the x-y plane crossing through the centre of the
domain.

6.6. Summary

The case studies discussed in this section have further demonstrated the capabilities of

the presented numerical framework and general topics on two-phase flow modelling have

been investigated. The influence of surface tension coefficient and interface curvature on

parasitic currents has been examined in Section 6.1, whereby a non-linear rise of parasitic

currents has been observed with increasing interface curvature. The results also indicate

that Laplace number limits to determine the applicability of VOF methods should be used

carefully in the presence of high interface curvature.

Overall, the results for the spherical cap bubble rising due to buoyancy, for the liquid

inclusions at low Reynolds number and for the bubble coalescence obtained with the

presented numerical framework are in excellent agreement with the respective experiments,

with empirical data and other numerical studies. The rising bubble is predicted with very

good accuracy on both Cartesian and tetrahedral meshes, as shown in Figure 6.4. On the

tetrahedral mesh, however, numerical diffusion of the colour function adversely affects the

rise velocity. Numerical experiments presented in Section 6.5 indicate that it is possible to

counteract the numerical diffusion induced by tetrahedral meshes with more compressive
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interface advection schemes.

The simulation of the rising bubble discussed in Section 6.2 has also demonstrated that

sophisticated compressive VOF methods are capable of transporting evolving interfaces

with equal accuracy as more complex VOF-based interface reconstruction methods, such as

PLIC. This is of particular significance as compressive VOF methods are often overlooked

in the two-phase flow community, despite the inherent applicability to unstructured meshes

and the straightforward implementation as presented in Sections 3.4 and 3.7.2.

The presented numerical framework is also capable of capturing complex capillary ef-

fects, as demonstrated with the liquid inclusions rising at low Reynolds number presented

in Section 6.3. Given the applied mesh resolution, the prediction of the critical capillary

number is in excellent agreement with results obtained by a boundary-element method

more suited to the problem.
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7. Conclusion

In this thesis, the fundamentals of two-phase flow modelling in general and on unstruc-

tured meshes in particular have been examined and the available methods have been fur-

ther developed. The numerical modelling of two-phase flows is complicated by a number

of difficulties due to the finite resolution of the numerical representation of the molecular

interface between the phases. Most research efforts dedicated to two-phase flow modelling

have been focused on Cartesian meshes, whereas the development of methods for unstruc-

tured meshes has frequently been neglected. As previously mentioned in the introduction

of this thesis (Section 1.1), five particular difficulties related to two-phase flow modelling

can be identified:

1. the definition of the force due to surface tension acting at the interface,

2. numerical instabilities as a result of the pressure jump across the interface,

3. the accurate evaluation of the interface curvature,

4. the advection of the sharp interface, and

5. the finite discrete resolution of the interface.

In order to further investigate the problems above and to advance the modelling of two-

phase flows on unstructured meshes, the research presented in this thesis has predomi-

nantly focused on the following topics:

• the sources of parasitic currents in the vicinity of the interface,

• a numerical framework for the prediction of two-phase flows on unstructured meshes,

• the maintenance of the discrete balance between pressure gradient and body forces

(force-balancing) by the numerical framework,

• the accurate evaluation of the interface curvature,

• the convolution of fluid properties at the interface,

• the application of adaptive tetrahedral meshes to two-phase flow simulations, and

• the identification of suitable test cases.

In what follows, the major contributions of this thesis are summarised and the main

findings of the conducted studies are concluded. Lastly, suggestions and recommendations

for future research are discussed.
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7.1. Parasitic Currents

Parasitic currents, developing in the interface region as a result of the numerically ap-

proximated interface representation, are a major problem of two-phase flow modelling.

The reduction of parasitic currents is of utmost importance as they represent a limiting

factor for the applicability of numerical methods to model two-phase flows. Apart from

deteriorating the result and altering the shape of the interface, parasitic currents can be-

come large enough to destroy the interface. Two primary sources of parasitic currents have

been identified: a) an imbalance of pressure gradient and body forces and b) an inaccurate

estimation of the interface curvature.

The imbalance of pressure gradient and body forces can be resolved by algorithms that

maintain an accurate force-balance on the discrete level, such as the numerical framework

presented in Chapter 3 or the algorithms previously presented by Francois et al. [71]

and Mencinger and Žun [154]. Imposing the exact curvature at an interface, parasitic

currents vanish if the pressure gradient and the body forces are balanced on a discrete

level, following previously published studies [71, 154] and the arguments discussed in

Section 3.3. This principle has been demonstrated at a stationary interface in Section

3.8.4.1, as previously shown in similar studies by Francois et al. [71] and Mencinger and

Žun [154]. In this thesis it has also been shown that this principle holds regardless of the

mesh type as well as for moving interfaces on fixed (Section 3.8.4.2) and adaptive meshes

(Section 5.7.3), scenarios which have not been studied before in the literature.

As concluded from the results presented in this thesis, in particular the analysis of the

relationship between parasitic currents and interface properties in Section 6.1, another

cause for parasitic currents are sudden variations, i.e. noise, in the magnitude of the in-

terface curvature along the interface. An inaccurate average curvature estimate, on the

other hand, has been found to alter the pressure jump across the interface, as observed

in different cases presented in this thesis. It is, therefore, essential to diminish numeri-

cal noise when evaluating the interface curvature, in order to reduce parasitic currents.

Similar conclusions have been drawn previously in other studies as well [34, 71, 262]. In

Section 6.1 it has also been shown that parasitic currents are influenced differently by sur-

face tension and interface curvature. While a linear correlation between surface tension

coefficient and parasitic currents has been identified, a predominantly second-order rise

of parasitic currents with increasing interface curvature has been observed. The second-

order correlation results from a changing curvature magnitude and a changing error in

curvature. The changing curvature error has been attributed to increasing aliasing errors,

resulting from the smaller mesh spacing when resolving an interface of higher curvature

with a mesh resolution fixed to the curvature radius.

7.2. Balanced-Force Numerical Framework

The fully-coupled numerical framework presented in Chapter 3 has been developed for

two-phase flow modelling on unstructured meshes. Particular attention has been payed to

maintaining the accurate balance between pressure gradient and body forces.
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The fully-coupled implicit implementation of the numerical framework provides two

distinct advantages for the application to two-phase flows. Firstly, the fully-coupled equa-

tion system ensures a strong pressure-velocity coupling, which is particularly important

for two-phase flows with considerable surface tension because of the pressure jump across

the interface. The results presented in Section 3.8.4.1 demonstrate that the numerical

framework avoids pressure oscillations at the interface even for surface-tension-dominated

interfacial flows with a very high density ratio of 109. Secondly, the implicit implementa-

tion of the fully-coupled system of equations increases the numerical stability compared

to segregated solution methods [51]. As pointed out by Desjardins and Moureau [58]

and Gueyffier et al. [86], the pressure Poisson equation used in segregated methods is

ill-conditioned with respect to two-phase flows as a result of the discontinuous pressure,

density and surface force fields. This may lead to numerical instabilities of segregated

methods in flows with large surface tension or large density ratios.

The balance of pressure gradient and body forces has been achieved by a specifically

constructed advecting velocity at face centres, derived using the momentum interpolation

method, initially proposed by Rhie and Chow [198]. This advecting velocity has been used

to define a continuity constraint which represents the fourth equation of the fully-coupled

equation system. To assure force-balancing, it is essential that the pressure gradient and

the source terms of the body forces are evaluated on the same computational stencil for

the momentum equations as well as for the advecting velocity. It has been demonstrated

that with the proposed numerical framework, force-balancing is achieved for stationary

interfaces, as presented in Section 3.8.4.1, as well as for moving interfaces, as shown

in Section 3.8.4.2. In Section 5.6, the presented force-balancing methodology has been

successfully extended to adaptive meshes, as verified in Section 5.7.3.

It should be noted that the presented theory on force-balancing assumes that the contri-

bution of velocity and body forces to the pressure gradient are cumulative, as explained in

Sections 3.3.3 and 3.3.4 and defined for the example of gravity in Eq. 3.52. Therefore, the

implementation of the discretisation of the pressure gradient and the body forces leading

to force-balancing can only be proven to be exact in a stationary situation (Re → 0).

This is a justified assumption for gravity, or other volume forces such as electromagnetic

forces, as it superimposes a pressure gradient on the flow field [13]. The force due to sur-

face tension, on the other hand, is a surface force in reality acting at the molecular level,

modelled numerically as a volume force by means of the CSF model, which is based on

the Young-Laplace equation. The Young-Laplace equation as given in Eq. 2.46 is satisfied

only for an interface in equilibrium, i.e. if the interface is in a state of minimal energy

[19]. Thus, it is not fully clear what magnitude of error is introduced by the discretisation

of the surface force in a dynamic situation (Re � 1), when the fluid acceleration terms

are appreciable. This has also never been discussed or even raised in the literature. It is,

nevertheless, very likely that a successful general implementation of the discretisation of

the pressure gradient and the body forces must at least exactly ensure force-balancing in

a stationary situation, such as the force-balancing methodology derived in this thesis.

A density-weighting of pressure gradient and body forces has been proposed in Section
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3.3.4 as an addition to the momentum interpolation method to increase the stability

of the numerical framework. Because the pressure term of the momentum equation is

effectively weighted by density, the proposed density-weighting aligns the pressure term of

the momentum equation with the pressure term of the advecting velocity. For the same

reason and to maintain the discrete balance with the pressure term, the density-weighting

is also applied to the acting body forces. As shown by the results presented in Section

3.8.4.1, the density-weighting assures convergence even for a density ratio as high as 109.

On the other hand, performing the same simulations without the density-weighting of

the pressure term and of the body forces in the advecting velocity equation has led to

divergence of the numerical solver for a density ratio of 109.

In conclusion, the presented fully-coupled numerical framework is very robust, enabling

the simulation of two-phase flows with high surface tension (e.g. Ca = 10−2 in Sections

3.8.4.2 and 5.7) as well as high density ratios (e.g. ρi/ρo = 109 in Section 3.8.4), and

maintains an accurate balance between pressure gradient, surface force and gravity force,

eliminating a major source of errors in two-phase flow modelling.

7.3. Evaluation of the Interface Curvature

The inaccurate evaluation of the interface curvature has been identified as a fundamental

source of error in two-phase flow computations by the work presented in this thesis as

well as by previously published studies [19, 34, 71, 193, 263]. Inaccurate curvature esti-

mates are a major source of parasitic currents and lead to an inaccurate prediction of the

pressure jump across the interface. Significant research efforts have led to sophisticated

methods to evaluate the interface curvature on Cartesian meshes, e.g. height function

techniques, whereas the curvature evaluation on unstructured meshes has been limited to

direct differentiation methods using standard finite difference or finite volume methods.

As explained in Section 4.1, the direct differentiation of an abruptly varying scalar field

results in so-called aliasing errors, known for instance from digital signal processing. For

this reason, differentiating the abruptly varying colour function field to evaluate the in-

terface curvature results in substantial errors. Convolution of the colour function with a

suitable convolution kernel has been proven in several studies [34, 262] to reduce aliasing

errors upon differentiation.

In Section 4.3 of this thesis, a novel method to evaluate the interface curvature has

been presented. The new method, called CELESTE, is based on a least-squares fit of

an overdefined equation system, constructed with a second-order Taylor series expansion

of the colour function. The differentiation by means of a least-squares fit provides two

important advantages compared to finite difference or finite volume methods. Firstly,

the least-squares fit of an overdefined equation system damps out aliasing errors. Thus,

convolution can be applied with smaller convolution length or can be discarded entirely.

Secondly, the stencil size on which the least-squares fit is applied can be tuned. The

method, therefore, has great potential for applications on adaptive meshes and for the

application to interfaces with large curvature variations, such as bubbles where the rim

has a significantly higher curvature than the rest of the interface. The CELESTE method
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significantly improves the accuracy of the interface curvature estimates compared to other

direct differentiation methods. The accuracy of the results obtained with CELESTE are

comparable to the results gained with methods that are limited to Cartesian or structured

meshes, such as height-function techniques. Moreover, the predictive quality of the CE-

LESTE method on structured versus unstructured meshes has shown to be similar, which

is a considerable improvement with respect to the state-of-the-art for the application of

unstructured meshes to simulate two-phase flows.

7.4. Convolution in Two-Phase Flow Modelling

As mentioned above, the convolution of the colour function, or any other interface in-

dicator function for this purpose, is a common practice to improve curvature estimates.

Convolution is also applied to smooth the sudden change of fluid properties at the interface

as well as the discontinuous surface force. Despite the frequent application in two-phase

flow modelling, convolution remains a controversial and important issue.

The study reported in Section 4.4 has demonstrated a substantial influence of the convo-

lution of fluid properties and surface force on the outcome of two-phase flow computations.

Contrary to the generally accepted notion, the convolution of the surface force does nei-

ther enhance the predictive quality of two-phase flow simulations nor does it improve the

stability of the numerical framework. Furthermore, calculating the surface force based on

the unconvoluted colour function results in a sharp pressure jump at the interface, thus,

replicating reality most closely. The study has also demonstrated, that the convolution of

density and viscosity reduces parasitic currents and improves the accuracy of the results.

Although particularly the convolution of density seems counterintuitive from a physical

viewpoint, the smooth momentum variation around the interface has been found to be a

critical factor with regards to the predictive quality of the numerical framework. Lastly,

the results presented in Section 4.4 have demonstrated that the numerical stability of the

solution algorithm is considerably improved if density and viscosity are treated equally

with respect to convolution.

Another issue of convolution is the applied convolution length, synonymous with the

applied computational stencil of the convolution. A large convolution length potentially

omits essential interface data whereas a small convolution length results in noisy curvature

estimates and a steep momentum transition. Previously published studies occasionally

applied very large convolution lengths to circular or spherical interfaces, some as large

as the interface curvature radius. As the results in Section 4.5 as well as other studies

[34, 71, 262, 263] have demonstrated, parasitic currents decrease significantly if the con-

volution length is increased. If, however, large convolution stencils are applied to realistic

applications, such as the bubble rising due to buoyancy presented in Section 4.5, the re-

sults become significantly distorted or incorrect. Therefore, the convolution stencil should

be kept as small as possible to ensure a realistic interface representation, and as large

as necessary to provide a smooth momentum transition and accurate interface curvature

estimates.
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7.5. Adaptive Tetrahedral Meshes and Interfacial Flows

The application of adaptive mesh algorithms to two-phase flows is at present predom-

inantly focused on Cartesian quadtree/octree meshes. The application of unstructured

adaptive mesh algorithms in general and tetrahedral adaptive mesh algorithms in particu-

lar to two-phase flow simulations, on the other hand, is still premature and the literature

on it is scarce. The predominant reason for the focus on quadtree/octree meshes in the

two-phase flow community is presumably the lack of high-fidelity methods for two-phase

flow modelling on unstructured meshes. The research conducted as part of this thesis has

studied the fundamentals of the application of adaptive tetrahedral meshes to interfacial

flows, focusing on three important issues:

1. the quantification of the required mesh resolution,

2. the force-balancing at moving interfaces on adaptive meshes (as mentioned in Section

7.2), and

3. the implementation of mesh adaption algorithms.

The definition of a reference length scale or suitable alternative error measure to de-

termine the required mesh resolution in the vicinity of the interface is critical to the

application of adaptive tetrahedral meshes to interfacial flows. Due to the practically

infinitesimally thin interface, the interface is the prevailing flow feature with respect to

the mesh resolution. A reference length scale for the interface region has been derived

in Section 5.5, which is based on the local interface curvature and colour function gradi-

ent, including explicit bounds for the minimum and maximum interface thickness. The

presented results demonstrate the applicability of the proposed reference length scale and

show the potential of adaptive tetrahedral meshes for two-phase flows.

The implementation of adaptive (tetrahedral) mesh algorithms is critical with respect to

the computational performance and, ultimately, the applicability of the methodology. In

Section 5.4, an implementation approach for adaptive tetrahedral mesh algorithms, called

setwise-local, has been presented. The setwise-local approach limits the application of the

mesh adaption algorithm to a local subset of mesh cells. The limitation to a local subset

of mesh cells simplifies the data management, the control of required memory resources

and the extension to parallel computer architectures. The extension to parallel computer

architectures requires only minor amendments to the interprocessor communication.

7.6. Test Cases for Two-Phase Flow Modelling

Suitable test cases to scrutinise and test the developed methods presented in this thesis

had to be identified. The choice of test cases is essential for an accurate and meaningful

assessment of numerical methods. The correct definition and informative value of test cases

for two-phase flows is a frequently neglected issue in the relevant literature. For instance,

although a circular or spherical interface is ideal to test the evaluation of curvature or the

discrete balance between pressure gradient and body forces, it is not suitable to compare
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parasitic currents caused by different convolution stencils, as demonstrated in Section 4.5.

Another example is a bubble rising due to buoyancy, as presented in Section 6.2, which

is not suitable to quantify parasitic currents caused by an inexact curvature estimation

because parasitic currents cannot be reliably identified in the dynamic flow field.

The test cases presented in this thesis each provides specific information. The inviscid

static drop in equilibrium has been used for the evaluation of the error in interface curva-

ture, the error in pressure jump across the interface and the parasitic currents caused by

the new curvature evaluation method CELESTE, as presented in Section 4.3.5. Because

the interface is spherical, the exact curvature and the exact pressure jump across the in-

terface are readily available as a reference. Also, because both fluids are by definition

initially at rest, all observed velocity magnitudes are parasitic currents. Simulating the

same static drop with viscous fluids, as used in Sections 4.3.5.5 and 4.4.1, the kinetic en-

ergy induced by the parasitic currents can be examined. The magnitude and convergence

of this parasitic kinetic energy are important characteristics of numerical methods for two-

phase flows. The force-balancing of the presented numerical framework has been verified

by simulating a surface-tension-dominated interface and applying the geometrically exact

curvature to it, as presented in Sections 3.8.4 and 5.7.3. Thus, given the velocity gradients

are negligible and no additional body force is acting, the pressure error and magnitude of

the parasitic currents must be of the order of solver tolerance to prove a discrete balance

between surface force and pressure gradient. The precise calculation and interaction of

viscous stresses, buoyancy force and surface force are essential for the accurate prediction

of the shape and the rise velocity of the spherical cap bubble rising due to buoyancy,

examined in Sections 4.4.2, 4.5 and 6.2. The particular challenge of the liquid inclusions

rising at low Reynolds number, presented in Section 6.3, is the accurate prediction of the

critical capillary number beyond which the initially ellipsoidal inclusion does not restore

its equilibrium shape. This test case represents a particularly severe validation of methods

for two-phase flow modelling because the shape and stability of the liquid inclusion are

strongly dependent on the correct prediction of the surface tension effects and the viscous

stresses in proximity of the interface.

7.7. Recommendations for Future Research

In the following sections, suggestions and recommendations for future work are discussed

based on the results and findings of this thesis.

7.7.1. Interface Advection Methods

According to the findings presented in this thesis, the numerical methods for force-balancing

and for the evaluation of the interface curvature developed as part of the presented re-

search, are practically independent of the mesh type. Nonetheless, the bubble rising due

to buoyancy analysed in Section 6.2 shows differences in rise velocity between Cartesian

and tetrahedral meshes. The differences have been attributed to the numerical diffusion

resulting from the interface advection. This assumption has been further validated by cus-
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tomising the spatial interface advection scheme in Section 6.5. As pointed out by Ubbink

[238], the extrapolation of the upwind node as well as the implicit assumption that an

interface cuts through a mesh face if both adjacent cells contain an interface are possible

reasons for the increased numerical diffusion observed on tetrahedral meshes. Addition-

ally, interface advection schemes, such as CICSAM [239] or STACS [39], generally do not

include a correction for skewness of the mesh faces. Increasing the mesh resolution in the

vicinity of the interface reduces the errors origination from all three sources. Nevertheless,

it is suggested to investigate the possibility of introducing a correction for face skewness to

the interface advection scheme, in order to reduce the numerical diffusion on unstructured

meshes. A skewness correction is suggested as it possibly increases the formal order of ac-

curacy of the interface advection, reduces numerical diffusion and because of its typically

straightforward implementation.

Alternatively, it is suggested to study the potential of PLIC methods with Lagrangian

tracking of the reconstructed interfaces for unstructured meshes, particularly with respect

to numerical diffusion. Several PLIC methods for two-dimensional unstructured meshes

have recently been published [101, 155], demonstrating the applicability of PLIC methods

to unstructured meshes. Yang and James [266] have derived a set of analytical formulations

for PLIC interface reconstructions on triangular and tetrahedral meshes, which could serve

as a basis for a new PLIC method for three-dimensional unstructured meshes.

7.7.2. Coupling of VOF Method and Lagrangian Particle Tracking

The application of VOF methods, or other interface capturing/tracking methods such

as level-set or front-tracking methods, require the interface to be adequately resolved by

the mesh, i.e. the interface curvature radius has to be at least twice the mesh spacing.

Simulating flows such as the breakup of a liquid-jet, however, includes multiple physical

scales. Resolving all of the involved scales adequately by the mesh to deploy, for instance,

a VOF method is not possible for engineering applications. Shinjo and Umemura [212],

for example, performed Direct Numerical Simulations (DNS) of the primary breakup of a

liquid jet on a state-of-the-art supercomputing facility, using meshes with up to 6.9× 109

cells. Despite the very high mesh resolution, capturing all scales of the secondary breakup

is not possible.

The combination of interface capturing methods and Lagrangian particle tracking has

great potential to enable multiscale two-phase flow simulations, as recent studies [90, 93,

95, 231] have demonstrated. Interface capturing methods are used to resolve large scale

fluid bodies, such as a liquid jet, and Lagrangian particle tracking is used to simulate

dispersed fluid particles which are not resolved by the Eulerian mesh. This methodology

benefits from the fact that small fluid particles are more likely to be spherical as they

are dominated by the acting surface force due to the high interface curvature. It would,

therefore, be interesting to combine the numerical framework presented in this thesis with

a Lagrangian particle tracking method to broaden the application range of the numerical

framework and to further study the application of combined methods to multiscale two-

phase flow problems. Future research should be particularly concerned with the accurate
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transition of fluid particles from the Eulerian to the Lagrangian framework and vice versa,

building up on the work of Herrmann [93] and Tomar et al. [231].

7.7.3. Conservation Issue at Interfaces

The conservation issue at the interface, discussed in Section 2.3.4, represents an impor-

tant problem for two-phase flows with high density ratios. Discretising the momentum

equation in its conservative form results in an interface thickness that is dependent on

the density ratio, which is physically implausible and violates the CSF method. However,

as demonstrated by Raessi and Pitsch [189, 190], discretising the momentum equation

it is non-conservative form introduces additional errors for flows with high-density ratios

and, as a result, can severely distort the interface and lead to divergence of the numerical

solving algorithm. Raessi and Pitsch [190] attributed these findings to the decoupling of

mass conservation and momentum conservation. It is worth mentioning that Raessi and

Pitsch used a segregated flow solver for their studies. In the fully-coupled numerical frame-

work presented in Chapter 3, however, the momentum equations and the conservation of

continuity, described by means of the continuity constraint formulated in Section 3.3, are

implicitly coupled. The implications of the implicit coupling of momentum equations and

continuity conservation for the discussed conservation issue at fluid-fluid interfaces and

the potential to eliminate this issue numerically has not been part of the research pre-

sented in this thesis and is, therefore, recommended for future research. Diminishing the

errors induced by the numerical description of momentum conservation and continuity

conservation at interfaces would be a significant contribution to two-phase flow modelling.

7.7.4. Improving Computational Performance with GPUs

The solution of the fully-coupled implicit equation system as part of the numerical frame-

work presented in Chapter 3 consumes the largest share of computational resources. The

equation system is not only very large, i.e. four partial differential equations for each

mesh cell, but also not well defined due to the pressure, density and viscosity disconti-

nuity at the interface. Several studies [84, 164, 194] presented significant acceleration of

two-phase flow simulations using Graphics Processing Units (GPUs) to solve the pres-

sure Poisson equation of segregated flow solvers. Raessi et al. [194] presented a speed-up

for three-dimensional two-phase flow simulations of factor 15 for single-core computations

and factor 2.75− 6 for multi-core simulations, compared to performing the same task on

an equal number of CPUs. The application of GPUs to solve the fully-coupled equation

system of the presented numerical framework potentially increases the computational per-

formance considerably, since its characteristics are very similar to the pressure Poisson

equation from a numerical viewpoint. Conveniently, several freely-available software li-

braries are already providing support for GPUs, such as the PETSc library [11, 12] or the

CUDA library [168]. It is, therefore, recommended to study the potential of GPUs for the

solution of fully-coupled equation systems for two-phase flows.
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7.7.5. Adaptive Computational Stencil for CELESTE

As mentioned above, the new curvature evaluation method CELESTE is applicable on

variable stencil sizes, providing the opportunity to adapt the stencil size with respect

to the ratio between local interface curvature and mesh resolution. The adaptation of

the stencil size to the local interface curvature could assure a suitable stencil size when

adaptive meshes are used as well as for severely deformed interfaces on fixed meshes. Using

a large stencil potentially underestimates the curvature of high-curvature regions whereas

a small stencil disregards essential data required to provide the best possible curvature

estimate. An adaptive stencil for the evaluation of the interface curvature could, therefore,

assure the most accurate curvature estimate is obtained with the available data. Thus, it

is recommended to assess the potential of adaptive stencil sizes for the CELESTE method

with respect to fixed and adaptive meshes.

7.7.6. Height Function Technique for Unstructured Meshes

As observed in the validation of the CELESTE method in Section 4.3.5, height function

(HF) techniques generally provide more accurate curvature estimates, and as a result also

typically more accurate predictions of the pressure jump across the interface, than direct

differentiation methods, such as finite difference methods, finite volume methods or the

proposed CELESTE method. To date, however, HF methods are limited to Cartesian

meshes. It is, therefore, suggested to evaluate the possibility of extending height function

techniques to unstructured meshes. The orientation-independent HF method for Cartesian

meshes reported by Liovic et al. [129] is recommended as a basis for the extension to

unstructured meshes.
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A. Implementation of the Numerical

Framework

A key aspect of numerical simulations using unstructured meshes is the implementation

and parallelisation of the data structure. Mesh connectivity information is particularly

important with respect to unstructured meshes, since an unstructured mesh does not pos-

sess an inherent order. The data structure and the connectivity information directly affect

the numerical discretisation and the performance of the software. In what follows, the ba-

sic implementation and parallelisation of the numerical framework presented this thesis is

explained. The explanation focuses on specific details, such as connectivity information,

indexing of mesh entities, numerical discretisation and ghost information.

A.1. Data Structure

The data structure consists of three types of mesh entities: node9, face and element10.

Additionally the mesh entity type edge is required when the tetrahedral mesh adaption

algorithm presented in Section 5.4 is used. Mesh nodes are defined by their coordinates

{x, y, z} whereas the other mesh entities are defined by their constituting nodes. Each

mesh entity is identified by a unique index, ranging from 0 to NG − 1, where NG is the

number of this mesh entity (e.g. elements).

Connectivity information of the mesh is required to determine the position of mesh

entities within the mesh, or in the context of numerical discretisation, the neighbour

relations of mesh entities. The mesh connectivity information includes:

• nodes that constitute each edge,

• elements adjacent to each edge,

• nodes that constitute each face,

• elements adjacent to each face,

• nodes that constitute each element,

• bounding faces of each element, and

• neighbour elements of each element.

9Also called vertex.
10Also called cell.
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This set of connectivity information is not memory-optimised but is the result of focusing

on computational performance rather than memory efficiency. For instance, the neighbour

elements of each element could also be determined from the elements adjacent to each face

whenever necessary. This would, however, require notable additional computational effort.

Each set of connectivity information is represented by two integer-arrays. Using the

faces bounding an element as an example, one array, called for instance elementFaces, is a

continuous list of the indices of the bounding faces for each element. Thus, the length of

elementFaces is the sum of bounding faces for each individual element of all elements in

the domain. The second array, called elementFacesPtr, contains the position of the first

bounding face in array elementFaces for each element. In order to perform loops over this

array, it is of length number of elements + 1. A schematical example of the two arrays

and their interrelation is given below.

1 // I n i t i a l i s a t i o n o f the count ing v a r i a b l e s

2 int i , j ;

3

4 // Loop over a l l mesh e lements

5 // Number o f e lements i s a b b r e v i a t e d ”noElem”

6 for ( i =0; i<noElem ; i++)

7 {
8 // Loop over the bounding f a c e s o f each element

9 for ( j=elementFacesPtr [ i ] ; j<elementFacesPtr [ i +1] ; j++)

10 {
11 elementFaces [ j ] = 0 ;

12 }
13 }

Listing A.1: Sample C-code to demonstrate accessing connectivity information stored in

a sparse-array. The example shows the initialisation of the array holding the

bounding faces of all elements.

The numerical discretisation of partial differential equations on unstructured meshes, as

for instance described in Section 2.2 and Chapter 3, requires additional mesh properties.

Considering a mesh without skewness, the centre and area of each face as well as the centre

and volume of each mesh element are required for discretisation. Since mesh skewness is

common on unstructured meshes, the interpolation point f ′, as illustrated in Figure 2.2b

on page 48, of every mesh face is stored separately as well. The interpolation point could, of

course, also be calculated on demand. However, for the benefit of computational efficiency

the interpolation points are computed only once and stored for later use.

The unit normal vector of each face nf is required for the discretisation of the governing

equations. Using the finite volume method and applying the midpoint rule as given in

Eq. 2.16, the face normal vector pointing in outward direction of the element under

consideration is required. This means, the face normal vector has to point in a specific

direction. As a directional orientation, for instance along the relevant coordinate axis,

is not applicable on unstructured meshes, the normal vectors are set by default to be

directed towards the adjacent mesh element of higher index, as shown in the example
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depicted in Figure A.1. An integer value of either 1 or −1 is stored for each bounding

face at each element, dependent on the relative orientation of the respective face normal

vector. This integer value is used as a multiplier for the face normal vector in the numerical

discretisation, assuring the correct orientation of the face normal vector.

Figure A.1.: Example of the face normal vector orientation. The normal vector is pointing
towards the adjacent element with the higher index.

A.2. Parallelisation

To maximise the performance and make efficient use of high-performance computer sys-

tems, a well-suited parallelisation of the numerical framework is important, in particular

with respect to the numerical discretisation and the solving procedure. The mesh is di-

vided into Nproc equally (or rather as equally as possible) sized partitions, where Nproc is

the number of processors used for a given simulation.

So-called ghost elements are required, in order to keep the discretisation local to a

given processor and minimise interprocessor communication. Ghost elements are copies

of elements which are local to a neighbouring processor and adjacent to the respective

processor boundary, schematically illustrated in Figure A.2. The data at such ghost ele-

ments is required for the discretisation of one or more elements local to a given processor

and adjacent to the respective processor boundary as well. The data at ghost elements

is communicated once per time-step or iteration, respectively. Therefore, interprocessor

communication is reduced to a minimum. For a classical finite volume discretisation as

presented in Section 2.2, only one layer of ghost elements is required. Every additional

layer of ghost elements increases the interprocessor communication and adversely affects

the computational performance.

As mentioned previously, every mesh entity is identified by a unique index. For the sake

of simplicity and computational efficiency, all mesh entities are consecutively numbered

with a local index, ranging from 0 to NL, where NL is the local number of a given mesh

entity including all its ghost entities with respect to the given processor. The local indexing

system enables quick and simple local data manipulation.
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Figure A.2.: Schematical example of the ghost pattern at processor boundaries, required
for numerical discretisation. The processor boundary between the two pro-
cessors is highlighted in red and the ghost elements are illustrated in green
and blue, respectively.

A.3. Modifications for CELESTE

The CELESTE method to evaluate the interface curvature on both structured and unstruc-

tured meshes requires only little modification to the existing data structure. Additional

neighbour cells are required for the discretisation using CELESTE compared to the stan-

dard finite volume discretisation of the momentum equations, the continuity constraint

and the interface advection, because of the symmetric and typically larger stencil size

for CELESTE, as shown in Figure A.3. Therefore, the additional neighbour cells are ap-

pended to the neighbour-elements connectivity information, to allow quick and easy access

of the required cells.

(a) Finite volume stencil (b) CELESTE stencil

Figure A.3.: Comparison of the typical finite volume stencil and an example of a CELESTE
stencil.

Performing multi-processor simulations, the ghost pattern has to be extended to cover

the additional neighbour connectivity information required for the discretisation using the

CELESTE method. However, in order to reduce the additional interprocessor communi-

cation effort to a minimum, the extended ghost pattern is only applied to the coordinates

of the cell-centres and the colour function. Other data is not required to evaluate the

interface curvature using the CELESTE method.
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B. Damping Spurious Pressure

Oscillations on Collocated Meshes

The damping of spurious pressure oscillation for numerical methods with collocated vari-

able arrangement using the momentum interpolation method, first proposed by Rhie and

Chow [198], is demonstrated by means of a one-dimensional example.

Figure B.1.: Example of an equidistant one-dimensional mesh.

Interpolating the velocity by means of Eq. 3.38 to face e of the one-dimensional mesh

depicted in Figure B.1 is given as

ue =
uP + uE

2
− d̂e

[
∂p

∂x

∣∣∣∣
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− ∂p
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E

2

]
. (B.1)

Discretising the pressure term of Eq. B.1 using standard finite difference methods, with

∆x representing the mesh spacing, results in
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=
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4∆x
(pW − 3pP + 3pE − pEE) (B.4)

Following the derivation of Versteeg and Malalasekera [249, page 340], the third derivative

of pressure at face e is given as
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= − 1
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Thus, comparing Eqs. B.4 and B.7 it becomes evident that
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and, therefore,
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It is this relationship that dampens out the spurious pressure oscillations on collocated

meshes. Because the momentum interpolation method is second-order accurate at best,

the third-order pressure gradient term does not affect the formal accuracy of the method

[249].
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C. Permissions to Republish Third Party

Material

See following pages.
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