
 
 

     

 

 

 

 

Micromechanical Modelling of 
Damage Healing in Free Cutting Steel 

 
A thesis submitted for the Degree of Doctor of Philosophy 

 
 
 

by 

Shireen Afshan 

 
 
 
 

September 2013 
 
 

Department of Mechanical Engineering 
 Imperial College London



ii 
 

Declaration of originality 
 

I confirm that this thesis is my own work and that any material from published or 

unpublished work from others is appropriately referenced. 

 

 

Signature: 

                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



iii 
 

Copyright Declaration 
 
The copyright of this thesis rests with the author and is made available under a 

Creative Commons Attribution Non-Commercial No Derivatives licence. 

Researchers are free to copy, distribute or transmit the thesis on the condition that 

they attribute it, that they do not use it for commercial purposes and that they do not 

alter, transform or build upon it. For any reuse or redistribution, researchers must 

make clear to others the licence terms of this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgement 
 

I would like to express my sincere gratitude to my supervisors, Dr D. Balint, Prof J. 

Lin and Dr D. Farrugia for their guidance, technical support, and helpful discussions 

during the course of this research. 

Financial support from the EPSRC and Tata steel is gratefully acknowledged.  

The knowledge and efforts of my colleagues in our group was a valuable source of 

inspiration and success. 

Finally, I would like to express my profound gratitude to my husband and my parents 

for their support and encouragement throughout my education and professional 

career. 

  



v 
 

Summary 

Continuous casting is used to solidify most of the steel produced in the world every 

year. The process reduces the number of required milling stages and results in 

qualitative semi-finished products such as billets, blooms and slabs which will later 

be rolled into more specific shapes.  Extending the range of finished product sizes 

produced from a given concast bloom or billet section is often limited by the 

minimum area reduction required to ensure effective consolidation and final 

mechanical properties. Predicting effective consolidation or level of remnant porosity 

has always been an important issue for steel producers as it will affect the 

mechanical properties of final products (strength, ductility, etc.). It is known that 

partial or complete recovery of strength in such porous materials can be obtained by 

pore closure and diffusive healing processes at elevated temperature. Devising an 

appropriate healing process which does not cause discontinuity in the microstructure 

and mechanical properties at the healing sites and prevents distortion of the 

component during bonding requires an accurate choice of thermo-mechanical 

processing parameters. Although there has been considerable work on materials such 

as titanium alloys, aluminium alloys and copper, damage healing in free cutting steel 

has not received much attention. The main aim of this research is to develop a 

realistic damage healing computational approach that can predict damage healing or 

recovery during soaking under different compressive stress levels, and be used for 

hot rolling applications. 

This study investigates the void elimination process through two stages of void 

closure and healing. An Abaqus/UMAT subroutine has been developed for the 

analysis of the material porosity elimination process including two stages of void 

closure and healing. This study uses the Gurson-Tvergaard model under hydrostatic 

compression to predict the void closure. A novel approach has been developed in the 

present work to identify the Gurson-Tvergaard model parameters using a non-
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gradient based optimisation search method (Pattern Search Method). The healing 

process is modelled based on a combination of diffusion bonding, creep and 

plasticity following the Pilling model and can be adapted to any other 

healing/diffusion bonding model. The material model has been calibrated for free 

cutting steel and a stress state representative of the rolling process, and used to 

predict the closure and healing processes under rolling. The effect of parameters such 

as Roll Gap shape Factor (RGF), initial amount and distribution of void volume 

fraction on porosity elimination during rolling has also been investigated.   

An experimental technique has been developed to identify the conditions 

(temperature, pressure, time) required for void elimination in Free Cutting Steel 

(FCS). Different combinations of load and time were tested and optimum conditions 

have been obtained. Tensile tests on the bonded specimens have been carried out to 

measure the strength of the bonded region. The position of fracture on the specimen 

and also the cross section of the fracture surface have been inspected. 

The experimental results have been used to calibrate the developed void elimination 

model. Using the developed model, predictions of densification and healing can be 

made for optimisation of the rolling schedule. 
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Chapter 1  

Introduction 

In this chapter the aim of the research and the motivation for the 

present project are discussed. The application of the project in 

the global steel industry is also outlined.   
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1.1  The research motivation 

Defects undermine the mechanical properties of materials and reduce the structural 

integrity and service life. Voids and micro damage will grow under continuous 

loading. With increased concentration of micro damage in a material, micro cracks 

will be initiated, the spread and coalescence of which will cause the final 

macroscopic fracture of the material as critical conditions are reached. 

The prediction and characterisation of micro crack propagation and the final failure 

of the material is of such importance that it has become a special field in materials 

science. Various fracture models have therefore been proposed to quantify the 

damage associated with material deformation and are used to predict fracture 

(Gurson, 1977, McClintock, 1968, Rice and Tracey, 1969, Rousselier, 1987).  

Although high quality design and manufacturing processes can result in robust, 

strong products, the creation of damage cannot be avoided in some cases. However, 

this will not be an issue if processes such as damage elimination or healing are 

included in the application.  

Healing is a process by which material defects such as voids and cracks reduce, 

resulting in a stiffer and stronger material with enhanced mechanical properties. It 

has been an attractive concept in different fields. Use of healing can be seen in many 

applications involving polymers and composites (Blaiszik et al., 2010, Wool and 

Oconnor, 1981), biomaterials (Fratzl et al., 2008, Vermolen et al., 2008) and also the 

recovery of concrete (Li et al., 2008, Reinhardt and Jooss, 2003). Metal healing has 

been mostly studied in terms of sinter powder metallurgy where mass transfer of 

metal occurs at high temperatures such as 0.7-0.9 of the melting temperature, 

producing either solid state or liquid phase bonding across powder interfaces 

(Lumley and Polmear, 2007).  
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Although healing and diffusion bonding have been widely studied for different alloys 

(Huang et al., 1999, Salehi et al., 1992, Somekawaa et al., 2003), the conditions 

required to create self-bonding of cast steel have never been investigated. Devising 

an appropriate healing process which does not cause discontinuity in the 

microstructure and in properties at the bonds and prevents distortion of the 

component during bonding requires an appropriate combination of temperature, 

pressure and time combination. This motivated the author to pursue this research 

with the objectives explained in section 1.3. 

1.2  The research applications 

Continuous casting is used to solidify most of the 750 million tons of steel produced 

in the world every year (Thomas, 2001). The process reduces the number of required 

milling stages and results in qualitative semi-finished products such as billets, 

blooms and slabs which will later be rolled into more specific shapes. Extending the 

range of finished product sizes produced from a given concast bloom or billet section 

is often limited by the minimum area reduction required to ensure effective central 

consolidation and final mechanical properties. Predicting effective consolidation or 

level of remnant porosity for a range of steel grade (function of solidification 

regime), billet size, pass schedule/roll design and thermo-mechanical conditions has 

always been an important issue for steel producers as it will affect the mechanical 

properties of final products (strength, ductility, etc.) (Watts et al., 1999). It is known 

that partial or complete recovery of strength in such porous materials can be obtained 

by pore closure and diffusive healing processes at elevated temperature. 

This research will therefore focus on developing a realistic damage healing model 

that can predict damage healing or recovery during soaking under different 

compressive stress levels, and be used for hot rolling applications. 
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1.3  The research objectives 

Prediction of the extent of porosity eliminated under particular temperature, time and 

load conditions requires a combination of high quality experimental data and 

observations as well as robust physically based models. Therefore the following 

objectives had to be achieved in this project: 

- Understanding the damage recovery and diffusion bonding of steels under 

soaking and compressive stress conditions. 

- Developing a method which enables damage healing under compressive 

stress conditions to be modelled. 

- Establishing test procedures to enable damage healing behaviour under hot 

deformation conditions to be characterised. 

- Implementing the determined model for Tata Steel applications. 

1.4  Thesis outline 

Chapter two is a literature review of the previously mentioned topics in this chapter, 

i.e. the damage concept and cast steel damage characteristics, the Gurson model, 

void closure, void healing and the concept of diffusion bonding. 

Chapter three reviews the existing models for void elimination including models 

originating from sintering concepts and also those derived from growth models. The 

similarities in these models are discussed and the parameters causing discrepancies 

are briefly explained. The applicability of these models for the purpose of this study 

has also been discussed. 

Chapter four explores the applicability of the Gurson model to predict void closure. 

A novel approach is developed in this chapter to identify the Gurson-Tvergaard (GT) 

model fitting parameters using a non-gradient based optimisation search method 

(Pattern Search Method). This method of calibration is advantageous over trial-and-
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error fitting of FE simulations to experimental data which is expensive and time 

consuming. 

In Chapter five an ABAQUS/UMAT subroutine is developed for the analysis of the 

material porosity elimination process including two stages of void closure and 

healing. The approach uses the GT model under compressive loading to predict void 

closure, and the so-called Pilling model to predict the healing time.  

In Chapter six, the developed UMAT is applied to model the void elimination of a 

steel work-piece during rolling. The effect of parameters such as the Roll Gap shape 

Factor (RGF) and initial porosity distribution on void elimination processes are 

investigated. 

An experimental technique is developed in Chapter seven to estimate the load, 

temperature and time required for healing of Free Cutting Steel (FCS). Different 

analysis techniques are used to examine the extent of healing and the optimum 

bonding parameters (load, temperature and time combination leading to complete 

bonding) are obtained. Experimental results are used to calibrate and validate the 

healing model previously introduced in previous chapters. 

Finally, in Chapter eight conclusions are made based on the results gained in 

previous chapters and some guidelines are presented for future work. 
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Chapter 2  

The concept of porosity and 

its elimination in cast steel 

Failure of material is due to heterogeneous micro processes 

that deteriorate the mechanical properties of the material. A 

solid is regarded as damaged if some of its microstructural 

bonds are lost. Materials containing micro damage such as 

distributed microscopic voids, cavities, or micro cracks 

which might be process-induced or appear during loading are 

more prone to failure. 

Damage recovery can be viewed as the reverse of the damage 

evolution process. Therefore it is essential to briefly review 

the damage concept and the developed ductile fracture 

models for porous materials. Amongst all ductile fracture 

models the well-known Gurson-Tvergaard (GT) (1981) 

approach will be of particular interest here since this study 

investigates the applicability of the GT model under reverse 

loading to predict void closure. 
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2.1 Porosity 

Porosity is the amount of voids or empty spaces in a material and is usually defined 

by the parameter void volume fraction: 

In most cases porosity is undesirable and causes deterioration of mechanical 

properties of materials. In the case of cast steel, producing a contiguous, porosity-

free casting is very important. However, porosity may still be found in some parts 

which cannot be removed without unreasonable cost. 

Detection and quantification of porosity using non-destructive methods is difficult. 

Microporosity maybe concealed within large sections and remain undetectable. Non-

destructive techniques such as 2D and 3D metallographic methods (optical 

microscopy, scanning electron microscopy and X-ray tomography) are not feasible 

for large parts. 

The methods used by designers to account for porosity in castings are diverse and 

uncertain. Despite performing a wide range of expensive quality control tests and 

using large safety factors, perfect performance cannot be guaranteed.  

The porosity, however, can be minimised or eliminated by hot work. Cast steel with 

pre-existing porosity is compressed at high temperature during the rolling process 

where the cross section of the metal stock is reduced and products of desired shapes 

(sheets, bars, rods, etc.) are obtained. 

2.1.1 Categorising porosity 

Porous materials can be categorised into three groups based on porosity level (Zhang 

and Wang, 2005). The first group involves materials with porosity less than 1%; 

𝑣𝑜𝑖𝑑  𝑣𝑜𝑙𝑢𝑚𝑒  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑣𝑜𝑖𝑑𝑠

𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑏𝑢𝑙𝑘  𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
 2.1 
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these materials are usually described by models which ignore void interaction and 

assume isolated pores or a uniform distribution of pores. The well-known Gurson 

model and its modifications provide a good description for this group of porous 

materials. 

The second category involves porous materials with low to medium porosity levels 

(10-70%) and includes recently developed heavy metal foams and sintered porous 

metals. Due to the lack of natural materials in this mid porosity category, this group 

is usually less investigated than the other categories. 

The third group involves materials with porosity greater than 70%. A typical 

example of materials with this porosity range is cellular or foam materials, 

particularly open-cell foams. These materials are considered as structures where the 

solid medium acts as structural components, such as walls and edges, and pores are 

considered as empty spaces which have no effect on the overall strength of the 

materials. The modelling of these materials involves using representative volumes 

with strut-like edges of solid material for open-cell, sponge materials, or membrane-

walled cells for closed cell, honeycomb materials.  

The type of porosity found in as-cast steel is usually less than 1% and is better 

described by the first group. Therefore, the focus of this study will only be on the 

first category. 

2.1.2 Effect of porosity on material properties 

Pre-existing micro damage causes mechanical property degradation in materials. A 

study on cast steel showed that the elastic modulus of these materials decreases 

nonlinearly with porosity and that the steel exhibits a critical porosity level above 

which it loses all its stiffness (Hardin and Becketmann, 2007). The effect of micro 

porosity on the tensile properties of some aluminium alloys has also been 

investigated by some researchers (Surappa et al., 1986). Tensile loading of pore 
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containing materials causes strain concentrations in the vicinity of the voids and a 

corresponding flow stress reduction. In porous materials, a non-uniform porosity 

distribution leads to flow localisation and fracture initiation in high pore content 

paths. This explains the significant decrease in strength and ductility of damage- 

containing materials under tension. Figure 2.1 shows the porosity influence on yield 

stress, the elongation to failure and the percentage reduction in area for commercially 

pure titanium (C.P.Ti) and Ti-6Al-4V (Bourcier et al., 1986).  

The adverse influence of pre-existing damage, particularly porosity, on mechanical 

properties of materials has created an urgent need for the development of methods of 

damage healing and porosity elimination.  

2.2 Damage Concept 

2.2.1 Damage in cast steel  

Continuous casting involves flow of molten steel from a ladle, through a tundish into 

the mould. The liquid steel must be prevented from exposure to the oxygen and 

nitrogen in the atmosphere. In the mould, the hot liquid steel freezes alongside the 

water-cooled copper mould walls to make a solid shell which solidifies before the 

middle section. Towards the end of the mould, more of the liquid core solidifies, 

increasing the shell thickness. Solid steel is then withdrawn in a steady state from the 

mould base via rolls lower in the machine (Thomas, 2001). A schematic of 

continuous casting of steel is shown in Figure 2.2. 

Porosity in casts could be caused by factors such as entrained air during filling, 

solidification shrinkage and dissolved gases (Monroe, 2005). 
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(a)  

(b)  

(c)  

Figure 2.1- The influence of porosity on (a) the yield stress (b) the elongation to failure, and 
(c) the percentage reduction in area %R.A. for C.P.Ti and Ti-6Al-4V (Bourcier et al., 1986). 
All data is from tests in uniaxial tension (uniax) except for the plane strain (P.ε) tests of Ti-

6Al-4V in (c). 
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Figure 2.2- Schematic of continuous casting of steel (Thomas, 2001). 

Solidification shrinkage occurs as a result of a change in density or specific volume 

when liquid metal solidifies. As solidification occurs the temperature and pressure 

near the solidifying interface drops, reducing the gas solubility in the liquid. Gases 

will therefore be rejected at the solid-liquid interface. Porosity formed under this 

condition is termed shrinkage porosity. Air bubbles are another type of cast defects 

and occur due to incomplete air elimination in the process of mould filling where low 

pressure in the liquid metal can cause air entrainment. In addition to air bubbles, gas 

bubbles can also be blown into the liquid from the core. 

The size of individual pores may range in length from a few microns to a few 

millimetres. Large voids occur during solidification. During solidification of liquid 

metal, the volume decreases due to a difference in density between the liquid and 

solid phase. The liquid metal flows from neighbouring areas via inter-dendritic small 

channels to these parts (known as feeding process). As solidification progresses, the 

ability to feed becomes difficult due to the decreasing size of the channels.  

Therefore, some areas get isolated from the metal supply, leading to formation of 
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large pores. Figure 2.3 shows some SEM images of porosity in the centre of a leaded 

free cutting steel (LFCS) bloom. 

 

 

Figure 2.3- SEM images of porosity in the centre of a leaded free cutting steel (LFCS) bloom 

(continued). 
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Figure 2.3- SEM images of porosity in the centre of a leaded free cutting steel (LFCS) 

bloom. 
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2.2.2 Damage mechanisms 

Depending on the loading conditions and temperatures involved, damage could be 

caused by different mechanisms; these include cleavage/brittle fracture, ductile 

fracture, creep and fatigue (Lemaitre, 1996). Due to hot temperature deformation of 

cast steel in rolling, the process of ductile fracture will be more of an interest here. 

Ductile damage develops in a multistep failure process which involves several 

concurrent and interactive mechanisms – void nucleation, growth, and coalescence 

progressing simultaneously at different rates (Figure 2.4). 

Nucleation: Impurities such as inclusions and second-phase particles exist in 

structural alloys. Fracture of these particles or decohesion of the particle-matrix 

interface by deformation causes cavities to nucleate (Goods and Brown, 1979). Void 

nucleation is material-dependent and is highly influenced by particle size and particle 

volume fraction (Gurland, 1972). Larger particle sizes and volume fractions favour 

the nucleation process. This can be explained in terms of an increased number of 

dislocations surrounding large particles making the plastic relaxation easier and also 

the increase of interactions between the secondary plastic zones of particles at high 

particle volume fractions (Goods and Brown, 1979). The nucleation mechanism can 

be stress controlled, where the relieved shear stresses at the grain boundary give rise 

to a normal stress, causing the formation of a cavity (Argon et al., 1975). However, 

some other researchers believe that it is the local state of deformation that determines 

the cavity initiation (Lindley et al., 1970). 

Growth: The nucleated cavities will expand simultaneously under increased plastic 

deformation. Models have been developed to study the growth of an isolated 

cylindrical (McClintock, 1968) or spherical void (Rice and Tracey, 1969, Budiansky 

et al., 1982) in a remotely stress strain rate field. All these models indicate an 

exponential amplification of the growth rate by the stress triaxiality. Later, 
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constitutive equations for porous ductile materials have been obtained based on 

homogenization theory (Gurson, 1977, Rousselier, 1987).  

 

Figure 2.4- Damage mechanisms (Michel, 2004). 

Coalescence: Void growth is followed by micro-void coalescence which occurs 

when the matrix between neighbouring voids is sufficiently thinned down and a 

certain critical condition for local plastic instability is reached; this can usually be 

seen during necking. Unlike nucleation and growth, when the plastic deformation is 

dilatational and macroscopically homogenous, coalescence involves non 

homogeneous, localised deformation. Different approaches have been developed for 

the prediction of coalescence onset and process. In some studies coalescence has 

been considered as accelerated growth and a critical value of the void volume 

fraction, fc, which is a material-dependent constant, has been suggested as a criterion 

for coalescence onset. The coalescence process is then modelled by a simple 

heuristic method to decrease the stress to zero or to accelerate the damage evolution 

up to complete loss of the stress carrying capacity (Ruggieri et al., 1996, Sun et al., 

1992, Xia et al., 1995, Tvergaard and Needleman, 1984). However, in some other 

studies it is argued that fc cannot be a material parameter and varies with stress state 

and can be calculated from micromechanically based models (Thomason, 1990). 

Good reviews on prediction of coalescence onset and process are done by Benzerga 

and Leblond (2010) and Pardeon (2010). 

Void nucleation Grain boundary rupture 
and coalescence

Growth of an existing void 
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2.3 Gurson model 

Micromechanical models and computational tools have been developed widely to 

analyse and predict ductile fracture. The first quantitative analysis of the growth 

mechanics of an isolated void in a nonlinear material under triaxial loading 

conditions was given by McClintock for cylindrical voids (1968). The initiation of 

fracture   in   McClintock’s   model   is   based   on   the   condition   of   voids   touching   the  

adjacent voids and despite its simplifications exhibits some fundamental features of 

ductile fracture. A later famous approach is the Rice and Tracy growth model (1969) 

which is based on dilatational growth analysis of a single spherical void in a material 

under a uniform stress state. Needleman (1972) applied  Rice  and  Tracy’s  approach  to 

a doubly periodic square array of circular cylindrical voids under plane strain 

conditions. Needleman’s   work   inspired   Gurson   (1977) who later proposed an 

approach for obtaining an approximate yield surface for a material containing voids 

of long cylindrical and also spherical shapes.  

The derivation of the Gurson yield function for spherical voids is based on the 

mechanics of growth of voids under an axisymmetric stress state. The yield function 

of the Gurson model depends on the von Mises, or equivalent stress, 𝜎௘௤; the 

hydrostatic stress, 𝜎௛; the flow stress of the matrix material, 𝜎ത,  and void volume 

fraction, f: 

Figure 2.5 illustrates  the  Gurson  model’s  yield  surfaces  for  different  values  of  void  

volume fraction f. The yield function is reduced to the classical von Mises yield 

criterion if f = 0. 

The increase in void volume fraction could be due to the growth of existing voids 

and also due to the nucleation of new voids. The Gurson model treats the void 

Φ൫𝜎௘௤, 𝜎ത, 𝑓, 𝜎௠൯ =
𝜎௘௤ଶ

𝜎തଶ
+ 2𝑓cosh ൬

3𝜎௛
2𝜎ത

൰ − (1 + 𝑓ଶ) = 0 2.2 
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volume change due to both cases as that of a single void using homogenisation. 

Figure 2.6 shows the homogenisation process in the Gurson model. 

 

Figure 2.5- Schematic of the yield surface in the 𝜎௛ 𝜎ത⁄  - 𝜎௘௤ 𝜎ത⁄   plane. 

 

 

Figure 2.6- Homogenization of void nucleation and growth in the Gurson model. 
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The rate of change of void volume fraction, 𝑓̇, was defined as: 

where 𝑓௚̇  is the rate of growth of existing voids and is defined as:  

where 𝜀௜̇௝
௣  is a plastic strain rate and 𝐼௜௝  is the second-order unity tensor. The void 

nucleation rate 𝑓௡̇ is defined as: 

where 𝐴𝜀 and 𝐵𝜎 are the void nucleation intensities depending on the plastic strain 

increment and increase of hydrostatic stress (𝜎௛), respectively; 𝐸 is  Young’s  modulus  

and 𝐸௧ is the current tangent modulus of the matrix material. 

The parameters 𝐴𝜀 and 𝐵𝜎 are chosen so that void nucleation follows a normal 

distribution (Chu and Needleman, 1980). Thus, for nucleation controlled by the 

plastic strain, the parameters are specified by: 

while for the stress controlled nucleation: 

where 𝜎௒ is the yield stress, 𝜀ெ
௣  is the effective plastic strain of the matrix material, 

𝑓ே is the volume fraction of void nucleating particles, 𝜀ே  and 𝜎ே are the mean strain 

and stress for nucleation, respectively, and 𝑠ே is the corresponding standard 

deviation. 

𝑓̇ =    𝑓௚̇ + 𝑓௡̇ 2.3 

𝑓௚̇ = (1 − 𝑓)𝜀௜̇௝
௣ 𝐼௜௝ 2.4 

𝑓௡̇ = 𝐴ఌ ൬
𝐸𝐸௧

𝐸 − 𝐸௧
൰ 𝜀௘̇௤

௣ +
1
3
𝐵ఙ(𝜎௛) 2.5 

𝐴ఌ = ൬
1
𝐸௧

−
1
𝐸
൰

𝑓ே
𝑠ே√2𝜋

𝑒𝑥𝑝 ൝−
1
2ቆ

𝜀ெ
௣ − 𝜀ே
𝑠ே

ቇ
ଶ

ൡ , 𝐵ఙ = 0 2.6 

𝐴ఌ = 𝐵ఙ = ൬
1
𝐸௧

−
1
𝐸
൰
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Tvergaard (1981, 1982) studied the bifurcation prediction in the original Gurson 

model with his numerical analysis and found that the original Gurson model resulted 

in bifurcation at loads that were too small and strains that were twice the values he 

found numerically. Tvergaard therefore modified the Gurson model by introducing 

two fitting parameters, 𝑞ଵ and 𝑞ଶ, in  Gurson’s  yield  function. 

He found that 𝑞ଵ = 1.5, 𝑞ଶ = 1.0   and 𝑞ଷ = 𝑞ଵଶ  resulted in better accuracy. 

Although the parameters  𝑞ଵ, 𝑞ଶ and 𝑞ଷ have been assumed as material constants by 

some researchers, their dependency on other factors such as triaxiality and initial 

void volume fraction has also been discussed. This matter will be investigated in the 

following chapters. 

Another modification to the original Gurson model was related to modelling the 

complete loss of stress carrying capacity. The Gurson model predicts the total loss of 

load carrying capacity at 𝑓 = 100%. This critical void volume fraction, 𝑓𝑐, is 

unrealistically high and means the total disapearance of the material. The original 

Gurson model therefore can only model the homogeneous deformation phase 

(nucleation and growth) and is unable to predict localization and ductile fracture. 

The function 𝑓∗(𝑓) was introduced by Tvergaard and Needleman (1984) to model 

the rapid loss of stress-carrying capacity and therefore to account for the 

coalescence. 

where 𝑓𝐹 is void volume fraction at final fracture and 𝑓௨∗ = 1 𝑞ଵൗ . 

Φ൫𝜎௘௤, 𝜎ത, 𝑓∗, 𝜎௠൯ =
𝜎௘௤ଶ

𝜎തଶ
+ 2𝑞ଵ𝑓∗  cosh ൬

3𝑞ଶ𝜎௛
2𝜎ത

൰ − ൫1 + 𝑞ଷ𝑓∗
ଶ൯ = 0 2.8 

𝑓∗ = ቐ
        𝑓                                                          𝑖𝑓  𝑓 ≤   𝑓௖

𝑓௖ +
𝑓௨∗ − 𝑓௖
𝑓ி − 𝑓௖

(𝑓 − 𝑓௖)              𝑖𝑓  𝑓 > 𝑓௖
 2.9 
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Based on experimental (Goods and Brown, 1979) and numerical results (Andersson, 

1977) Tvergaard and Needleman (1984) have chosen the values 𝑓௖ = 0.15 and 

𝑓௖ = 0.25. This model is called Gurson-Tvergaard-Needleman (GTN) model and is 

used frequently in engineering applications.  

Gurson’s  model  has  been  criticised  by  Thomason (1998) as being based on a large 

number of adjustable parameters that have no physical significance in terms of the 

mechanism of ductile fracture. Thomason stated that unlike nucleation and growth 

which involve homogeneous deformation, coalescence involves a localised 

deformation and therefore should be modelled in a different approach. Thomason has 

questioned the assumption of ductile fracture being initiated at a critical void volume 

fraction and believes this assumption ignores the influence of the intervoid-matrix 

geometry and the magnitude of the normal stress on the critical conditions for the 

onset of coalescence. Thomason (1990) has proposed a mathematical plastic-limit 

load approach to predict the initiation of void coalescence. 

Looking at damage recovery as the reverse of damage evolution, the void closure 

stage would correspond to the reverse growth; the coalescence stage hence will be of 

no interest. The criticisms of Thomason regarding the coalescence stage therefore 

will not affect the use of the GT model to predict void closure. 

2.4 Void elimination  

Void elimination can be investigated through two stages. The first stage is the void 

closure when the void shrinks to a slit (crack) as a result of compression. By the end 

of this stage the surfaces of the slit however are not bonded properly and will be 

separated easily by a small tension. A strong bond which has the mechanical 

properties of the original material is obtained in the second stage when the surfaces 

of the void are bonded. 
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2.4.1 Void closure 

Figure 2.7 illustrates the void evolution from spherical shape to crack. Parameters 

such as the temperature during deformation, the temperature gradient, the maximum 

compressive stress and the deformation rate, have an influence on the void-closing 

process. 

The problem of void closure has been studied by many researchers and great 

progress has been made to identify the parameters that affect the behaviour of voids 

during hot rolling or forging. Some of these studies generally have dealt with the 

combination of parameters such as the effects of reduction (decrease in the thickness 

of the work-piece),  die  geometry  (die’s  shape  and  size)  and  the  rate  of  deformation  

(Dudra and Young-Taek, 1990, Park and Yang, 1997, Stahlberg, 1986, Stahlberg et 

al., 1980, Wallero, 1985). Stahlberg et al. (1986) showed that void closure occurs 

more rapidly for large reductions and that small void fractions are easier to remove 

than large void fractions. They also pointed out that void volume fraction may 

increase at the beginning of deformation due to large tensile stresses but will 

decrease after a particular reduction, leading to void closure.  

The effect of some rolling geometry parameters on void closure was also inspected in 

some studies. It was shown that large values of the ratio of roll radius to work-piece 

thickness will favour the void closure process (Wallero, 1985). Research performed 

by Dudra and Young-Taek (1990) studied the effect of die geometry (flat, double V 

and FML dies) and ingot geometry (square and round billets) on void closure in 

forging. A superior consolidation of porosity was observed for the V-shaped dies. 

This was due to the highest amount of hydrostatic stress and effective strain 

associated with these dies. In terms of ingot geometry, the voids in the square billet 

closed at a lower reduction but at higher press loads than the round billet.  
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Figure 2.7- Void evolution from spherical shape to crack (Zhang et al., 2009). 

Other parameters such as pressure, temperature and time have also been investigated. 

An experimental investigation by Han et al (1997) on crack recovery of 20MnMo 

steel indicated that damage recovery could be achieved without plastic deformation 

and only with increased heating temperature and prolonged holding time. However, 

another experimental study on crack healing in 1045 steel showed that even after 120 

min heat treatment at 1100oC, micro-voids were left in the crack healing area (Wei et 

al., 2006). 

It is well known that void closure is more easily and quickly obtained if plastic 

deformation takes place under the influence of hydrostatic pressure (Keife and 

Stahlberg, 1980). Wang et al. (1996) found that pore closure occurs at a certain level 

of hydrostatic pressure and speeds up at high temperatures. It was also shown that the 

holding period of the pressure in the compressive state affects the degree of healing. 

Figure 2.8 shows the cell models used in FE simulations in some studies. 

A recent study by Zhang et al. (2009) proposed a criterion for void closure in large 

ingots during hot forging. Zhang et al. investigated the effects of the Norton 

exponent, the stress triaxiality and the remote effective strain on void closure. It was 

found that the volumetric strain rate of the void had a direct relationship with the 

stress triaxiality and Norton exponent. At the early stage of void closure the rate of 

void closure was high and a smaller remote effective strain was required. This was 

due to the increased stress triaxiality level and Norton exponent. At the final stage of 
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void closure, however, the rate of void closure decreased. This was explained in 

terms of the instability of the void at this stage and the contact of void internal 

surfaces which may lead to some interactions such as friction and therefore can slow 

down the void closure process. 

(a) 

 

(b) 

 

(c) 

 

Figure 2.8- Cell models for different FE simulations: (a) A round billet compressed by flat 

dies (shown on the left) and Bottom-Flat-Top-V dies (shown on the right) (Park and Yang 

1997), (b) Square ingot (Zhang et al. 2009), (c) Round ingot (shown on the left) and square 

ingot (shown on the right) compressed by flat dies (Dudra and Young-Taek, 1990). 
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Complicating matters, the porosity distribution in as-cast steel is generally highly 

nonuniform; a billet contains more, larger pores at the centre than the surface, 

therefore the size and distribution cannot be predicted precisely. The voids in 

different positions experience varying boundary conditions and will close under 

different loading conditions. To investigate the closure of a void at a specific position 

in a steel billet, the stress state at that point can be identified and triaxiality obtained 

by FE modelling of the rolling process. The conditions for plastic closure of a void in 

that position could therefore be predicted by determining a closure load versus 

triaxiality relationship obtained from an RVE model. The influences of temperature 

and strain rate on the void closure under different triaxialities are also important. 

These matters have been studied in the following chapters in more detail. 

2.4.2 Void healing  

The mechanism of healing substantially depends on parameters such as temperature, 

pressure and the duration of load-temperature application. The effect of these 

parameters on pore healing has been investigated by several researchers. A study on 

sintering of grain boundary cavitation in Nickel Chromium alloy investigated the 

effect of hydrostatic compressive stress on the rate of change of cavity radius for 

cavities with and without internal gas (Stevens and Flewitt, 1979). It was shown that 

increasing the hydrostatic compressive stress caused a substantial decrease in time to 

remove the cavity. 

Temperature significantly speeds up the cavity removal process (Figure 2.9). 

Comparison of the change in cavity radius for cavities with internal gas and cavities 

with internal vacuum showed no difference until a critical size was reached for the 

cavities with internal gas, where no further radius reduction was observed. This was 

explained in terms of the internal pressure balancing the hydrostatic pressure and the 

surface energy.  
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Figure 2.9- Time to close a cavity for various temperatures (Stevens and Flewitt, 1979). 

 

Figure 2.10- Pressure dependence of zinc porosity at temperatures of (1) 18qC, (2) 93qC, (3) 

210qC, and (4) 260qC (Petrov and Razuvaeva, 2005).  𝑈  is the degree of porosity and is 

defined as   𝑈 =   𝜑𝑅തଷ  (where 𝜑 is the void concentration and 𝑅ത is the average void size).  
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Another study on porosity elimination in Zn showed that the decrease in porosity 

started from a threshold pressure, P*, and then decreased with increasing pressure 

(Petrov and Razuvaeva, 2005). Figure 2.10 shows the degree of porosity of the 

samples, 𝑈 =   𝜑𝑅തଷ  (where 𝜑 is the void concentration and 𝑅ത is the average void 

size), as a function of pressure for Zn in the temperature range 18–260oC. The 

threshold pressure P* decreased noticeably with rising temperature. It was also 

observed that at room temperature the duration of applied pressure did not affect the 

porosity but for a fixed healing time, t, the increase in temperature caused a 

significant acceleration in the process of void healing.  

The void healing concept has also been the subject of study for applications such as 

metal joining (Guo and Ridely, 1987, Derby and Wallach, 1984) and crack healing 

(Wang et al., 2008, Wei et al., 2004, Wang et al., 1996). In metal joining when two 

solid surfaces are brought in contact, the bond interface contains an array of voids 

with irregular shapes. Diffusion bonding processes therefore play an important role 

in bringing the surfaces of these voids to within an atomic spacing in order for a 

metallic bond to form over the whole bonding interface. Similar processes occur for 

crack healing, when after the tip blunting stage, one or more arrays of cylindrical 

pore channels form upon crack splitting. These pores will then evolve into spherical 

voids via a Rayleigh instability (Gupta, 1978). 

2.4.3 Diffusion phenomenon 

Diffusion bonding involves the joining of two solid surfaces under a low pressure 

and high temperature. The temperature range is usually between 50% and 80% of the 

absolute melting point of the material being bonded. To avoid large deformation of 

the joined surfaces the interfacial pressure must be sufficiently low, and therefore 

times of up to 100 min may be required to obtain satisfactory bonding (Derby and 

Wallach, 1982).  
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The application of diffusion bonding is advantageous over welding or adhesive 

bonding because of the fact that no melting or additional materials are involved, thus 

there is no discontinuity in the microstructure and in properties at the bonding sites. 

Additionally low bonding pressure will prevent any distortion of the components 

during bonding (Pilling and Ridely, 1987). Upon correct execution of the process, the 

bond produced will have indistinguishable properties from those of the bulk metal 

and the bond line will have continuous metallurgical structure. 

Diffusion as the phenomenon of material transport by atomic motion is ideally 

represented by net flux, J. As   given   by   Fick’s   first   law, J is proportional to the 

concentration gradient, 𝑑𝑐 𝑑𝑥⁄ , and diffusion coefficient, D: 

The kinetics of many thermally activated processes follows the Arrhenius equation, 

expressing the relation between the process rate, g, and temperature (Pontikis, 1990): 

where F is a frequency factor, R the gas constant, 𝐸஺ is the activation energy and T 

the absolute temperature. 

Similarly, diffusion obeys the Arrhenius equation. Therefore D can be expressed as: 

where Q is activation enthalpy and Do is a pre-exponential factor.  

Vacancies or other inhomogeneities within a metal are essential for atomic diffusion. 

Several different diffusion processes have been identified for solid state diffusion. 

The main diffusion processes are surface diffusion, grain boundary diffusion and 

lattice diffusion. 

𝐽 = −𝐷(𝑑𝑐 𝑑𝑥⁄ ) 2.10 

𝑔 = 𝐹exp(−𝐸஺ 𝑅T⁄ ) 2.11 

𝐷 = 𝐷௢exp(−𝑄 𝑅T⁄ ) 2.12 
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Boundary diffusion: When a pressure is uniformly applied perpendicular to a grain 

boundary, the stress in the boundary will redistribute around boundary cavities. A 

stress gradient results in a chemical potential gradient which causes diffusion. 

Surface diffusion: The difference in curvature between void tip and void surface 

results in a chemical potential gradient described by the Gibbs-Thomson relationship. 

This causes a flow of matter along the void surface. It should be noted that diffusion 

around the surface area occurs not only through a thin layer of material (surface 

diffusion) but also through the volume adjacent to the surface (volume diffusion). 

This material is assumed to be taken uniformly from the void surface. This type of 

diffusion only alters the shape of the void; the volume remains constant. 

Lattice diffusion: Lattice diffusion refers to atomic diffusion within the crystal 

lattice which occurs by substitutional mechanisms. In substitutional lattice diffusion 

the atom changes places with another atom. This relies on the existence of vacancies 

in the crystal lattice.  

All sintering mechanisms and the associated coefficients have been summarised in 

Table 2.1, where Ds is the surface diffusion coefficient, Dv is the vacancy diffusion 

coefficient, Dgb is the grain boundary diffusion coefficient and Dp is the coefficient 

of pipe diffusion along dislocations.   

Table 2.1- Solid state diffusion mechanism (Lumley, 2008). 

Mechanism Transport part Associated diffusion 
coefficient 

Source of matter 
transported to neck 

1 Surface diffusion 𝐷௦  Surface 

2 Lattice Diffusion 𝐷௩ Surface 

3 Vapour Transport None Surface 

4 Boundary Diffusion 𝐷௚௕ Grain Boundary 

5 Lattice Diffusion 𝐷௩ Grain Boundary 

6 Lattice Diffusion 𝐷௣ Dislocations 
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Since these processes have different activation energies, each will have a particular 

diffusion coefficient at different temperatures. Figure 2.11 shows the paths for matter 

transport to the neck region by diffusion mechanisms summarised in Table 2.1. 

 

Figure 2.11- Alternative paths for matter transport to the neck region (Lumley, 2008). 

Numbers refer to the mechanism numbers in Table 2.1. 

2.5 Conclusions 

The problem of porosity formation in the process of continuous casting of steel was 

explained. The characteristics of this type of porosity and the factors causing it were 

discussed. The adverse effects of porosity on mechanical properties of different 

materials investigated by other researchers were reviewed and the urgent need for 

methods of achieving damage healing and porosity elimination was highlighted. The 

void elimination process was investigated as two stages: void closure and healing. 

The parameters influencing the void closure process including the parameters that 

affect the behaviour of voids during hot rolling or forging (e.g. amount of reduction, 

die geometry and deformation rate) and also other parameters such as pressure, 

temperature and time, were discussed. It was shown that plastic deformation 

occurring under the influence of hydrostatic pressure at high temperature favours 
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void closure. The factors influencing the healing stage were also reviewed. Similar to 

the closure process the positive effects of increasing the hydrostatic compressive 

stress and temperature on the cavity removal process were outlined. It was suggested 

that porosity decrease may start at a threshold pressure which decreases noticeably 

with rising temperature.  

The importance of diffusion phenomena on bonding the void surfaces was explained 

and the diffusion bonding mechanisms contributing to void healing were reviewed. 

The next chapter will explain how diffusion bonding mechanisms have been 

combined in different models to predict void elimination. 
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Chapter 3  

Existing diffusive void 

growth/shrinkage models 

Despite similarities in assumptions and approaches taken in 

developing void shrinkage models, the existing models 

predict different void shrinkage rates. The discrepancies in 

these models are related to their origin. These models have 

been reviewed in detail here and their applicability for the 

purpose of this study has been discussed. 
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3.1  Factors influencing the void shrinkage 

models 

In this section the parameters which cause discrepancies in existing void shrinkage 

models are briefly explained.  

3.1.1 Bonding mechanisms involved 

There are many possible bonding mechanisms, where each transports material to 

deform the void surface and therefore shrink it in a different way. The differences in 

existing void shrinkage models are due to the origins of the models. Some existing 

void shrinkage models (Guo and Ridely, 1987, Hancock, 1976) were obtained from 

void growth models, where void shrinkage was considered as negative void growth. 

Some other models (Derby and Wallach, 1982, Hill and Wallach, 1989), on the other 

hand, originated from powder sintering models. Modelling of powder sintering 

process involves two stages. The initial stage deals with low densification (D < 0.9) 

and involves the growth of initial contact between particles. Here D is the density of 

the material relative to water. The final stage, however, deals with higher 

densification (D > 0.9), where the compact is modelled as a homogeneous solid 

containing spherical voids. The final stage therefore is more interesting in void 

shrinkage models (Artz et al., 1983, Ashby, 1974). 

The discrepancies in void shrinkage rates predicted by these models can be explained 

in terms of different mechanisms used in each model. Different models propose 

different predominant mechanisms. A mechanism which is considered as dominant 

in one model can be ignored in another one. A good example is the consideration of 

surface diffusion in the computation of void shrinkage rate. The contribution of 

surface diffusion to the shrinkage process has been ignored by some researchers 

stating that it mainly affects the void shape and does not reduce the volume of the 
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cavity (Guo and Ridely, 1987). Some other models however have taken into account 

surface diffusion as an important mechanism (Chuang and Rice, 1973, Needleman 

and Rice, 1980, Wang and Li, 2004).  

Table 3.1- Existing models of diffusion mechanisms (Takahashi and Inoue, 1992) 

Process Models 
Methods of combining diffusion 
mechanisms and characteristics of 
model. 

Diffusion bonding 

Derby and Wallach 

Hill and Wallach 

All diffusional mechanisms are taken into 
consideration; parallel operation is 
assumed; void shape is elliptical. 

Guo and Ridley 
Parallel operation is assumed; void shape 
is lenticular; diffusion distance is varied; 
rigid collapse is considered. 

Powder sintering 

Ashby 
All diffusional mechanisms are 
independent; complete parallel operation 
is assumed. 

Arzt et al 

Only interface source mechanisms 
(interface and volume diffusion) are 
considered; surface source mechanisms 
are ignored. 

Void growth 

Beere and Speight 
Interface diffusion only; diffusion 
distance varied; effects of creep rigid 
collapse are considered. 

Hull and Rimmer Series operation of surface and interface 
diffusion. 

Chen and Argon Series operation of surface and interface 
diffusion. 

Needleman and Rice 
Series operation of surface and interface 
diffusion; effect of plastic creep on 
diffusional flow; a numerical model. 
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The void shrinkage models originating from sintering models usually take all 

diffusion mechanisms into consideration (Derby and Wallach, 1982, Guo and Ridely, 

1987, Hill and Wallach, 1989). Derby & Wallach (1982) have considered all possible 

mechanisms which are shown in Figure 3.1. The void shrinkage models derived from 

void growth models however mostly consider surface and interface mechanisms and 

ignore creep and plastic deformation. 

The existing diffusion bonding models are shown in Table 3.1. The origin and 

characteristics of the models are also presented.  

 
1) Surface diffusion from 

surface sources to a neck 

 

 
2) Volume diffusion from 

surface sources to a neck 
 

3) Diffusion along the bond 
interface from interfacial 
sources to a neck 

 
4) Volume diffusion from 

interfacial sources to a 
neck 

 
5) Power law creep 

deforming the ridge 
 

6) Plastic yielding 
deforming the ridge 

Figure 3.1- The effect of bonding mechanisms on void shape (Derby and Wallach, 
1982). 

3.1.2 Void Geometry 

Different void geometries have been considered for the modelling of void healing. A 

popular assumption is that surface diffusion is fast enough to keep the void shape 

spherical (Speight and Beere, 1975, Sun, 2002, Beere and Speight, 1978). 
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Some models have considered the contact surface to contain triangular ridges of 

certain height and wavelength, which then gradually shrink into cylindrical channels 

with radial symmetry (circular cross section) (Derby and Wallach, 1982). Wang and 

Li (2004) have suggested that as atoms migrate along the void surface and grain-

boundary, the grain-boundary void changes its shape and volume and the equilibrium 

shape of a grain-boundary void is a spheroid. 

A cylindrical shape has also been assumed for some models (Chen and Argon, 1981, 

Pilling and Ridely, 1987). A cylindrical pipe shape with either lenticular or rhombic 

cross section has been considered in some cases. Gue and Ridly (1987) assumed a 

lenticular initial void shape. Takahashi on the other hand applied a rhombic geometry 

as the initial void shape and a lenticular geometry during diffusion. Figure 3.2 shows 

the schematic illustration of different void shapes used in different models. 

3.1.3 Void position  

Healing models have been developed for voids within the grain boundary (Wang and 

Li, 2003, Sun, 2002) and also for voids on the grain boundary (Chen and Argon, 

1981, Rimmer, 1959, Wang and Li, 2003, Beere and Speight, 1978). The final shape 

of a void within a grain is a result of the competition between the difference in the 

elastic energy stored in the solid and the surface energy. For a grain boundary void, 

however, this would depend on the variation in the elastic energy, the surface and 

grain boundary energies (Wang and Li, 2004). For voids within the grain boundary 

the primary mechanisms would be lattice diffusion and surface diffusion. For 

spherical voids, where surface diffusion is fast, lattice diffusion is the dominant 

mechanism and the surface diffusion is ignored (Wang and Li, 2003) 
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Figure 3.2- The schematic illustration of void shapes.(a) Cylindrical voids (Derby and 

Wallach, 1982)(b) Spheroidal voids (Wang and Li, 2004)(c) Rhombic voids (Takahashi and 

Inoue, 1992)(d) Lenticular voids (Takahashi and Inoue, 1992).  

3.1.4 Series and parallel operations 

Looking at models for void shrinkage on a bond interface, it can be seen that parallel 

operations have usually been considered. In parallel operations all possible bonding 

mechanisms act independently in such a way that their contribution to bonding can 

be added together to obtain the total amount of bonding. Figure 3.3(a) shows a 

parallel operation where surface source mechanisms operate independently of 

interface source mechanisms. As shown in Figure 3.3a diffusion of atoms toward the 

void tip reduces the radius of curvature at the tip (𝑟௖௧௜௣) compared to the radius of 

curvature at the top of the void (𝑟௖௧௢௣). 
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In void growth models it is assumed that interface and surface diffusion occur in 

series. In series operations, depending on the values of surface diffusion and grain 

boundary diffusion coefficients (𝐷௦ and 𝐷௚௕, respectively), the rate controlling 

mechanism can be identified. If 𝐷௦ ≫ 𝐷௚௕, surface diffusion is much faster than 

grain boundary diffusion. This means that grain boundary diffusion is rate 

controlling and surface diffusion can be ignored in calculating the healing time. This 

suggests equal radius of curvature at the void top and void tip (𝑟௖௧௜௣ = 𝑟௖௧௢௣) (see 

Figure 3.3b). However, if 𝐷௚௕ ≫ 𝐷௦ (grain boundary diffusion is much faster than 

surface diffusion), surface diffusion is rate controlling, resulting in a convex surface 

at the void tip and the moving of the sink point towards the void surface (Figure 

3.3c).  

 
Figure 3.3- Schematic illustrations of diffusion flux of atoms under compressive stress: 

parallel operation (model A); series operation (model B), when Dgb << Ds; series operation 

(model C), when Dgb >>Ds (Takahashi and Inoue, 1992). 

r
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3.2  Models for diffusive void growth  

Some void shrinkage models were developed from void growth models, where void 

shrinkage was considered as negative void growth. Below, some of these models are 

explained. 

3.2.1 Hull and Rimmer model  

The diffusive growth of grain boundary cavities has received continuous attention. 

Hull and Rimmer (1959) were one of the first to propose a diffusive mechanism for 

growth of an isolated cavity in a material under an applied external stress. Their 

model suggests that vacancies for void growth are formed by tension across the grain 

boundaries. This requires that the activation energy for failure is that of grain 

boundary diffusion. It is assumed that the vacancy chemical potential has a defined 

value at the cavity and the sum of the local stresses over the grain boundary equals 

the applied stress. This model also assumes that the vacancies are created uniformly 

over the entire boundary.  

The rate of growth of a void is determined by the gradient of chemical potential,  ∇𝜇, 

since the diffusion flux, J, is given by 3.1:  

𝐽 =
𝐷௚௕
𝐾TΩ

∇𝜇 3.1 

where 𝐾 is Boltzmann's constant, Ω is the atomic volume, T is the absolute 

temperature and 𝐷௚௕ is the grain boundary diffusion coefficient. The potential in the 

grain boundary is:  

𝜇 = −𝜎௡Ω 3.2 

where 𝜎௡ is the normal stress across the boundary and has a maximum value of 

𝜎 − 𝑃௛ on the grain boundary (𝑃௛ is  hydrostatic pressure). On the surface of a 

void  𝜇 = −2𝛾Ω 𝜌⁄ , where 𝛾 is the surface tension of the metal and 𝜌 is void radius 

(see page xxi). 
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For voids on the grain boundary with centre to centre separation distance, b (see 

Figure 3.4), a rough approximation would be: 

∇𝜇~ −
Ω
b
(𝜎 − 𝑃௛ −

2𝛾
𝜌
) 3.3 

𝐽~ −
𝐷௚௕
𝐾Tb

(𝜎 − 𝑃௛ −
2𝛾
𝜌
) 3.4 

The void surface area from which diffusion occurs is  2𝜋𝜌𝛿௚௕, where 𝛿௚௕ is the grain 

boundary width. Since diffusion flux, J = total flow rate of atoms/area, therefore, 

total  flow  rate  of  atoms = 2𝜋𝜌𝛿௚௕ ∙ 𝐽  . The total flow rate of atoms is the number of 

moles of material transferred per second (mol/s). To obtain the void volume growth, 

the flow rate is multiplied by atomic volume, Ω. Therefore, neglecting the surface 

tension term 𝛾, the rate of void volume growth is given by: 

𝑑𝑉
𝑑𝑡

~  𝑡𝑜𝑡𝑎𝑙  𝑓𝑙𝑜𝑤  𝑟𝑎𝑡𝑒 ∙ Ω  ~  
൫𝐷௚௕𝛿௚௕൯(𝜎 − 𝑃௛) ∙ 2𝜋𝜌Ω

𝐾Tb
 3.5 

where Ω is the atomic volume. 

Hull and Rimmer obtained the rupture time, 𝑡௥, for an array of equally sized nuclei 

lying on a square lattice of size b (see Figure 3.4 ): 

𝑡௥ =
𝐾Tb

2𝜋Ω(𝐷௚௕𝛿௚௕)(𝜎 − 𝑃௛)
ቐ
bଶ

8
+

𝛾b
(𝜎 − 𝑃௛)

+
4𝛾ଶ

(𝜎 − 𝑃௛)ଶ
𝑙𝑛 ቎

1
2 b(𝜎 − 𝑃௛) − 2𝛾
𝜌(𝜎 − 𝑃௛) − 2𝛾 ቏ቑ 3.6 

Figure 3.5 shows the expected variation of 𝑡௥ with (𝜎 − 𝑃௛) where the curve has an 

almost hyperbolic shape down to (𝜎 − 𝑃௛) = 2𝛾 𝜌଴⁄ . At this point the applied stress 

is balanced by the surface tension of the void nucleus, so that the voids never grow. 

Later other researchers (Raj and Ashby, 1975, Beere and Speight, 1975, Beere and 

Speight, 1978, Riedel, 1987) obtained similar equations for diffusion-controlled 

cavity growth. An analysis by Speight and Harris (1967) considered a cavity 

occupying a circular area of boundary and highlighted the effect of relative void 
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spacing. Their study showed that the Hull and Rimmer equation underestimated the 

growth rate for both small and large void spaces. This conclusion was later verified 

by Weertman (1973) for widely spaced voids. 

 
Figure 3.4- Cross section through voids lying in the plane of the grain boundary (Hull and 

Rimmere, 1959). 

 

Figure 3.5- Variation of 𝑡𝑟 with (𝜎 − 𝑃௛). 

3.2.2 Beere and Speight model 

Combining matrix creep and diffusion for cavity growth has been the subject of 

study for many researchers (Edward and Ashby, 1978, Cocks and Ashby, 1982a, 

Cocks and Ashby, 1982b, Chen and Argon, 1981, Kassner and Hayes, 2003, Lee et 

b

b/2

b/2

( σ - Ph )(2γ/ρ)

tr
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al., 1993). Beere and Speight (Beere and Speight, 1978, Beere and Speight, 1975) 

modelled the total void growth rate as the sum of diffusion and creep. Their model 

predicted the cavity growth on a grain boundary. Beere and Speight were the first to 

investigate the effect of creep on the diffusion distance. Their approach was later 

adopted by other researchers such as Chen and Argon (1981) and Guo and Ridley 

(1987) to predict the diffusion bonding process. The model of Chen and Argon 

(1981) will be explained in the next section.   

Beere  and  Speight’s  (1978) growth model assumes the grain boundary containing a 

cavity is divided into two regions (Figure 3.6). In region I, near the cavity (see Figure 

3.6), vacancies form uniformly and diffuse to the cavity. In region II, away from the 

cavity, no vacancies are formed but dislocation creep matches the displacement rate 

in region I, resulting in an increased growth rate. They indicated that local creep 

causes the diffusion distance to be less than 𝑐 − 𝜌 (see Figure 3.6) and found a 

relationship between the extent of diffusion region, lI, and a dimensionless quantity 

Λ: 

𝛬 =   
𝐺Ω𝐷௚௕𝛿௚௕
B𝐾T𝑐ଷ

 3.7 

where G is the shear modulus, Ω is the atomic volume, K is the Boltzmann constant 

and B is a defined as: 

𝐵 =   𝐴 ൬
𝐺𝑏௩𝐷௩

𝐾T
൰ 3.8 

where A is a dimensionless constant and 𝑏𝑣 is Burger’s  vector  (see  pages  xviii-xxii 

for definition of other parameters).  

Λ depends on the ratio of diffusion rate to creep rate (the creep rate is defined by a 

relationship of the type 𝜀̇ = 𝐵(𝜎/𝐺)௡). Figure 3.7 shows this relationship for copper 

crept at P = 20.67 MPa and with a grain boundary radius of 10 μm. It is evident from 

this figure that decreasing the diffusion rate compared to the creep rate (decreasing 

Λ) reduces the diffusion distance, lI, or in other words, lI approaches ρ; whereas 

increasing the diffusion rate, the diffusion region, lI, approaches c. 
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Figure 3.6- A  cavity  of  radius  ρ  is  associated  with  an  area  of  grain  boundary  of  radius  c. 

Vacancies created in Region I  diffuse to the cavity (Beere and Speight, 1978). 

 

Figure 3.7- Variation of diffusion region specified by lI, with Λ (Λ represents ratio of grain 

boundary diffusivity to creep rate)(Beere and Speight, 1978). 
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The normal stress acting across the boundary at the cavity equals 2 𝛾 𝜌⁄ , where 𝛾 is 

the surface energy and 𝜌 is the cavity radius. In region I, the normal stress (𝜎௡ூ ) 

increases with distance from the cavity; this explains the diffusion of vacancies to the 

cavity. The stress rate in this region is approximately linearly proportional to the 

diffusion rate. In region II the deformation rate is associated with a high power of 

normal stress (𝜎௡ூூ) due to dislocation creep, but since no vacancy diffusion exists the 

stress gradient is zero and the stress profile is flat. This is shown in Figure 3.8. 

 

Figure 3.8- Normal stress acting across the grain boundary. 

Beere and Speight developed solutions at high and low dislocation creep rates. For 

high diffusion rates the cavity growth rate depends on diffusion and is independent of 

power law creep. As the diffusion rate reduces, the dislocation creep rate becomes 

dominant in the growth of large cavities; the growth of smaller cavities however still 

remains partly dependent on the diffusion mechanism. 

Figure 3.9 shows the sensitivity of the normalised cavity growth rate to stress. At 

high stresses the cavity growth rate is proportional to σn, where n is the stress 

exponent of power law creep. At low stresses the normalised cavity growth rate 

shows a linear relationship with stress (dotted lines on this figure).  
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The cavity growth rate is calculated by adding the rates due to the low- and high-

stress asymptotic behaviour.  

𝑑𝑣
𝑑𝑡

=
8𝐾ଵ

൤4𝑙𝑛 𝑐𝜌 − ൬1 − 𝜌ଶ
𝑐ଶ൰ ൬3 −

𝜌ଶ
𝑐ଶ൰൨

+ 2𝜋𝜌ଷ𝜀௖̇ ቆ
𝑐ଶ

𝑐ଶ − 𝜌ଶቇ
௡

 3.9 

where 𝐾ଵ is defined as 𝐾ଵ = 𝜋Ω𝐷௚௕𝛿௚௕(𝜎 − 2𝛾/𝜌)/𝐾𝑇. 𝐷௚௕ and 𝛿௚௕ are grain-

boundary diffusivity and grain boundary thickness and 𝜀௖̇ is creep strain rate. The 

derivation of equation 3.7 can be found in (Beere and Speight, 1978) 

 

Figure 3.9- Stress sensitivity of the normalised cavity growth rate. At low stresses the 

normalised growth rate is proportional to stress to the power of unity (shown as dotted 

lines).  At  high  stresses  the  normalised  cavity  growth  rate  depends  on  σn (Beere and Speight, 

1978).  

Generally, using the Beere and Speight model, finding a real value solution for the 

diffusion distance under normal conditions is difficult. Beere and Speight have used 
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numerical solutions to a set of simultaneous equations which leads to the selection of 

a diffusion distance. Chen and Argon (1981) however have managed to obtain an 

equation for the diffusion distance. A comparison of Beere and Speight model with 

other diffusive void growth models is done in section 3.2.4. 

3.2.3 Chen and Argon model  

Chen and Argon (1981) used a coupled creep-diffusion approach to develop a model 

for growth of grain boundary cavities. They considered the effect of creep rate on 

diffusion distance, lI, initially defined by Beere and Speight (1978). Beere and 

Speight considered 0 < lI < c (see Figure 3.6) but Chen and Argon assumed ρ < lI < c 

and obtained: 

𝑙ூ = ൫𝐷௚௕𝛿௚௕Ω𝜎/𝐾T𝜀̇൯
ଵ/ଷ 3.10 

They ignored the surface energy term, 𝛾, and replaced the grain boundary radius, c, 

in equation 3.9, with the creep-flow-modified diffusion distance (lI +𝜌) and obtained:  

(𝜌ଷ𝜀̇)ିଵ
𝑑𝑣
𝑑𝑡

= 8𝜋(𝑙ூ 𝜌⁄ )ଷ ቈ4𝑙𝑛
𝑐
𝜌
− ቆ1 −

𝜌ଶ

(𝜌 + 𝑙ூ)ଶ
ቇ ቆ3 −

𝜌ଶ

(𝜌 + 𝑙ூ)ଶ
ቇ቉

ିଵ

 3.11 

Grain-boundary diffusion in region lI dominates the power-law creep in transporting 

matter to the grain boundary. 

Chen and Argon questioned the quasi-equilibrium void shape assumption made in 

other models and highlighted the observation of flat, disk-shaped cavities in 

experiments. They therefore obtained growth rate equations for both quasi-

equilibrium and crack-like voids.  

A comparison of Chen and Argon (1981) model with other diffusive void growth 

models is done in the next section. 
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3.2.4 Other models 

In addition to the diffusive void growth models explained so far, some other models 

also exist. Some of these models are developed by assuming power law creep only 

(Hancock, 1976) whereas some others are only based on grain boundary and volume 

diffusion processes (Raj and Ashby, 1975). Coupled diffusion-creep processes in 

parallel to rigid collapse and diffusion has also been considered (Guo and Ridely, 

1987). The void volume change rate as a function of bonding pressure for these 

models and also for the Beere and Speight (1978) and Chen and Argon model (1981) 

is shown in Figure 3.10. On this figure dotted lines represent power law creep based 

models and solid lines represent diffusion (coupled diffusion-creep or diffusion only) 

based models. The Guo and Ridley (1987) model shown in Figure 3.10 is a coupled 

diffusion-creep model. Individual constituents of this model are shown in Figure 

3.10, where the dotted line represents the power law creep part and the solid line 

represents the diffusion part of this model. The creep part of this model (shown by 

dotted line in Figure 3.10) is out of agreement with other creep-based models in this 

figure (e.g. Hancock (1976)). This is explained in terms of different assumptions 

made by these models. For example, the Gue and Ridley (1987) model assumes that 

during the initial stages of bonding, the void edge (tip) adjacent to the bonded 

interface deforms preferentially. This is referred to as the void crushing effect. 

Hancock (1978) however, neglects the crushing effect. 

It is evident from Figure 3.10 that at low pressures the Beere and Speight (1978) 

model, Raj and Ashby (1975) model and diffusional part of Guo and Ridley (1987) 

(solid line) are in good agreement. As explained in section 3.2.2, at low pressures 

Beere and Speight model neglects the effect of creep and the rate of void growth is 

only diffusion based. This explains the good agreement of this model with diffusion 

based models of Raj and Ashby (1975) and Guo and Ridley (1987) on this figure. 
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At higher bonding pressures, however, the Beere and Speight (1978) model deviates 

from those models and becomes in good agreement with creep based models such as 

those of Chen and Argon (1981) and Hancock (1976). 

Figure 3.10 also shows a relatively good agreement between the predictions of the 

coupled diffusion-creep model of Chen and Argon (1981) and the creep model of 

Hancock (1976). A very good match can also be seen between Chen and Argon 

(1981) and the Beere and Speight (1978) models at high pressures. The difference 

between the predictions of these models at low pressures can be explained in terms 

of the negligibility of creep in the Beere and Speight model at low pressures.  

 
Figure 3.10- Void volume change rate as a function of pressure for different models. Dotted 

lines represent power law creep based models and solid lines represent diffusion (coupled 

diffusion-creep or diffusion only) based models(Takahashi and Inoue, 1992) 

(Creep part) 
(Diffusion part) 
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3.3  Models for diffusive void shrinkage  

Some void shrinkage models consider the diffusion-bonding process to be analogous 

to that of pressure sintering. These models apply sintering based mechanisms for 

elimination of interfacial voids in metal joining and crack healing. Some other void 

shrinkage models, on the other hand, are solely based on diffusion mechanisms. 

Some of these models are explained in details here. 

3.3.1 Derby and Wallach model 

The model of Derby and Wallach (1982, 1984) assumes the surfaces in contact 

consist of long triangular ridges. As bonding progresses, the channels between the 

ridges shrink and cylindrical symmetry is obtained. The time from initial surface 

contact to the point where cylindrical symmetry is reached is modelled as stage I and 

the final collapse of the cylinders is defined as stage II (Figure 3.11). 

   

Figure 3.11- Model geometry used by Derby & Wallach, (a) Stage I (b) Stage II. (Derby and 

Wallach, 1982). 

Derby and Wallach (1982) defined three categories of bonding mechanisms 

including surface source mechanisms, bond-line source mechanisms and bulk 

deformation mechanisms (Figure 3.1). Plastic deformation categorised as a bulk 

deformation process occurs at the initial stages of bonding, when the contact area is 

very small. Since it happens at a very high speed compared to the other mechanisms, 
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it has been considered as an instantaneous process. Diffusion from surface sources to 

the neck is explained in terms of mass transferred from the void surface to the curved 

neck by surface diffusion (mechanism 1) and volume diffusion (mechanism 2). 

Using Kuczynski’s (1956) approach for shrinkage of pores during sintering, the 

surface and volume flux are defined as: 

Surface diffusion: 

𝑉̇ଵ =
2Ωδୱ𝐷௦

𝑟𝐾T
𝛾
𝑟
൬1 −

𝑟
𝑥ଵ − 𝑥ଶ

൰ 3.12 

Volume diffusion: 

𝑉̇ଶ =
2Ω𝐷௩

𝐾T
𝛾
𝑟
൬1 −

𝑟
𝑥ଵ − 𝑥ଶ

൰ 3.13 

The diffusion along the bond interface (mechanism 3) and volume diffusion from the 

interfacial source (mechanism 4) are defined as: 

Grain boundary diffusion: 

𝑉̇ଷ =
3Ωδ୥ୠ𝐷௚௕
2𝐾T𝑥ଶ

൬𝑃
𝑥ଵ
𝑥ଶ

−
𝛾
𝑥ଶ

−
𝛾
𝑟
൰ 3.14 

Volume diffusion: 

𝑉̇ସ =
3Ωr𝐷௩

𝐾𝑥ଶ
൬𝑃

𝑥ଵ
𝑥ଶ

−
𝛾
𝑥ଶ

−
𝛾
𝑟
൰ 3.15 

where 𝑥ଵ, 𝑥ଶ and r (bond neck radius) are shown in Figure 3.11. 

At high temperatures and low pressures, bulk deformation of surface ridges occurs 

by power law creep. Derby and Wallach (1982) used Wilkinson and  Ashby’s (1975) 

approach to model power law creep for stages I and II. 



Chapter 3: Existing diffusive void growth/shrinkage models  

55 
 

𝑉̇ହ಺ =
√3S𝐴௖𝑥ଶଶtan𝛽

2 ൥1 − ቀ𝑥ଶ𝑥ଵ
ቁ
ଶ
௡൩

௡ ቐ
2 ቂቚ𝑃 ቀ𝑥ଵ𝑥ଶ

− 1ቁ − 𝛾
𝑥ଶ
ቚቃ

𝜇𝑛 ቑ

௡

 3.16 

𝑉̇ହమ =
√3𝜋𝑟ଶS𝐴௖

2 ൥1 − ቀ 𝑟𝑥ଵ
ቁ
ଶ
௡൩

௡ ቎
2 ቀቚ𝑃 𝑥ଵ

𝑥ଶ
− 𝛾
𝑥ଶ
ቚቁ

𝜇𝑛 ቏

௡

 3.17 

In equations 3.16 and 3.17, S is the sign of the bonding pressure, negative if 

compressive, 𝐴௖ is the power law creep pre-exponential constant, 𝛽 is the angle 

between a surface ridge and the horizontal, 𝜇 is the chemical potential and n is the 

power law creep exponent. 

Considering a parallel operation, this model assumes that the overall rate of bonding 

will be as the sum of the individual rates of all mechanisms.  

Hill and Wallach (1989) later identified the problem of discontinuity arising when 

the void shape changed from triangle (stage I) to cylinder (stage II). A vapour phase 

mass transport was later added to the model to reduce the effect of the discontinuity 

on the void closure rate. 

Derby   and  Wallach’s  model   is   in   good agreement with experimental results when 

power law creep is the dominant bonding mechanism. However, when diffusion 

bonding, especially surface diffusion, becomes dominant, deviations arise between 

prediction and experimental results. The other problem with this model is the 

assumption that each mechanism is completely independent of the effect of others, 

whereas, a quick analysis of the driving forces of each mechanism shows that this 

assumption may not be true.  
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3.3.2 Wang and Li model  

Despite the assumption of constant void shape made in many void shrinkage models, 

Wang and Li (2004) considered the variation in the void shape in their model. Figure 

3.12 shows the three dimensional model they used for a gas-filled spheroidal void in 

an elastic solid under triaxial stress.  

 

Figure 3.12- The schematic model of a gas-filled spheroidal void in an elastic solid under 

triaxial stresses σx= σy ≤ σz (Wang and Li, 2004). 

The shape of a spheroidal void having the same volume as a spherical one of radius 𝜌 

can be described by a shape factor, m: 

𝑚 =
(𝜌௫/𝜌௭)ଶ/ଷ − 1
(𝜌௫/𝜌௭)ଶ/ଷ + 1

 3.18 

Therefore: 

𝑋 = 𝑌 = 𝜌ඨ
1 +𝑚
1 −𝑚

cos𝜃 , 𝑍 = 𝜌
1 −𝑚
1 +𝑚

sin𝜃 3.19 

In equation 3.19, 𝜌𝑥 is the radius of the spheroid in x and y direction and 𝜌𝑧 is the 

radius of the spheroid in z direction. In this equation m = 0 represents a spherical 

void shape and m = 1 corresponds to a crack.  



Chapter 3: Existing diffusive void growth/shrinkage models  

57 
 

The instability of the void is specified by a dimensionless loading parameter, 

𝜓 = (𝜎ଷ + 𝑝)ଶ𝜌௢/𝛾𝐸 which describes the relative importance of elastic energy and 

surface energy. If 𝜓 exceeds a critical value, 𝜓௖ , the collapse of the spherical void 

into a crack occurs. Figure 3.13 shows the stability conditions projected on (m, α  𝜓) 

plane. The heavy solid and the dotted lines correspond to the stable and the unstable 

equilibrium states, respectively, where α  is a volume parameter (𝛼 = 𝜌 𝜌଴  ⁄ ) and 𝜔 is 

the stress ratio defined as 𝜔 = (𝜎ଵ + 𝑃)/(𝜎ଷ + 𝑃).  

    

Figure 3.13- Stability conditions projected on the (m, α  𝜓) plane. The heavy solid and dotted 

lines are the numerical solutions to the stable and unstable equilibrium shapes (Wang and 

Li, 2004). 

In this model an equilibrium state shape parameter, me, is defined as a function of 𝜓. 

For the elliptical void described by me, the curvature of the void apex, 𝑘௔௣௘௫, is 

defined as: 

𝑘௔௣௘௫ = −
𝜏ଷ + 1
𝜌𝜏ଵ ଶ⁄                                 𝜏 =

1 +𝑚௘

1 −𝑚௘
 3.20 

The number of atoms removed from the grain boundary per unit time and per unit 

volume, 𝜂 also becomes a function of me (equation 3.21). 
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𝜂 =
8𝐷௚௕𝛿௚௕𝛾
𝐾T𝑏ଶ𝜌√𝜏

  
𝜌𝜎 √𝜏 𝛾 + 𝑥ଶ𝜌𝜌଴ 𝜏ଷ ଶ⁄ (𝛼ଷ𝛾) − (1 + 𝜏ଷ)(1 − 𝑥ଶ𝜏)⁄⁄

3 − 4𝑥ଶ𝜏 + 𝑥ସ𝜏ଶ + 4𝑙𝑛൫𝑥√𝜏൯
 3.21 

where  𝑥 = 𝜌 𝑏ଵ⁄  (see Figure 3.14). 

The removal of atoms from the grain-boundary to the void causes adjacent grains to 

move close at a rate of 𝜂𝛺,  therefore the void volume decreases at a rate of 𝜋𝜉ଶ𝜂Ω. 

The collection of atoms further decreases the void volume at a rate of 𝜋൫𝑏ଵ
ଶ −

𝜉ଶ൯𝜂Ω (𝜉 is the radius of the spheroid at the void apex as shown in Figure 3.14). So, 

the total shrinkage rate of the voids can be given as: 

𝑑𝑉
𝑑𝑡

= 𝜂𝜋𝑏ଵ
ଶΩ 3.22 

 

Figure 3.14- The schematic model for an array of gas-filled voids on a planar grain-

boundary under hydrostatic pressure (Wang and Li, 2004) where 𝜉 and 𝜑 are the void 

radius at the void apex and equilibrium angle at the void apex, respectively. 

One of the downsides of the Li and Wang model is the mathematical complication 

and the very detailed numerical analysis required which are not convenient in 

practice. It should also be noted that this model is more suitable for an infinite solid 

containing a single void. For a model with more than one void, the model can be 

2b1

Grain boundary
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approximately used only if the initial size of the voids is small enough compared to 

the void spacing. 

3.3.3 Pilling model 

The elimination of voids in Pilling’s  model  includes three processes. These processes 

involve the collapse of the supporting contact area by plastic deformation and creep, 

diffusion of atoms from the grain boundary to the voids via both volume and 

interfacial paths and surface diffusion or transfer of mass along the void surface 

(Pilling and Ridely, 1987, Pilling, 1988, Pilling et al., 1984).  

The creep rate in the cylindrical cell is controlled by the effective stress, assuming 

that the material away from the bond zone is non-deforming and that the external 

diameter of the cylinder remains constant. The axial plastic collapse of the cylinder 

causes an increase in both the inner and outer radii and the height of the cylinder. 

The material in the cylinder walls beyond the outer radius can then be removed and 

redistributed within the bore of the cylinder, reducing the internal radius and 

restoring the external radius. 

 
Figure 3.15- Vertical section through the cylindrical geometry used to define bonding 

(Pilling, 1988). 
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The fractional area, 𝑓௛, of non-bonded surface is defined by   𝑟௛ଶ 𝑟௢ଶ⁄ , where 𝑟௛  and 𝑟௢ 

are the inner and outer radii of the cylinder, respectively (see Figure 3.15). Defining 

the change in fractional area of voids as  𝑑𝑓௛ = 𝑟௜ଶ 𝑟௢ଶ⁄ −   𝑟௛ଶ 𝑟௢ଶ⁄ , the rate of change in 

the fractional area of non-bonded interface by power law creep and plastic flow can 

be obtained as, 

 𝑑𝑓௛
𝑑𝑡

|௣௟ = −2𝜀௥̇(1 − 𝑓௛) 3.23 

where 𝜀௥̇ is the effective strain rate in the radial direction. 

The rate of change in the fractional area of non-bonded interface, as a result of 

diffusive mass transfer can also be obtained as 

 𝑑𝑓௛
𝑑𝑡

|ௗ = −𝑁௜ ቆ
1

𝜋𝑟௢ଶℎ௢𝑓௛

𝑑𝑉
𝑑𝑡 ቇ

 3.24 

where,  

 

𝑑𝑉
𝑑𝑡

=
2𝜋𝐷௚௕𝛿௚௕Ω𝜎௭

𝐾T
1 − 𝑓௛

ln(1 𝑓௛⁄ ) − (1 − 𝑓௛)/2
 

 
3.25 

In equation 3.24, 𝑁௜ is the number of interfaces intersecting the void surface (𝑁௜ =

int(1 + ℎ௢𝑓௛ 𝑑⁄ ), where d is the grain size), 𝐷௚௕ is the grain boundary diffusion 

coefficient, 𝛿௚௕ is the grain boundary thickness, 𝛺 is the atomic volume, K is 

Boltzmann’s  constant,  𝜎௭ is the axial stress and T is the absolute temperature. 

The rate of change of fractional area of non-bonded interface by creep and plastic 

flow and diffusive flow are shown in Figure 3.16. It is evident that complete 

interfacial contact is achieved mainly as a result of the time-dependent plastic 

collapse of the asperities, rather than by diffusion. 
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Figure 3.16- The rate of change in fractional area of non-bonded interface, fh, with fh for 

diffusive flow and creep and plastic flow (P=10MPa, T=1273 K, ro=28μm). 

 

Figure 3.17- The change in fractional area of non-bonded interface, fh, versus time 

(P=10MPa, T=1273K, ro=28μm). 
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Figure 3.18- Comparison of predictions of rate of change in fractional area of non-bonded 

interface, fh, with void radius for the Beere and Speight and Pilling models. 

The time predictions of the Pilling model are in a better range for rolling applications 

compared to other models. Figure 3.18 compares the rate of change in fractional area 

of non-bonded interface predicted by the Beere and Speight model and the Pilling 

model. Generally models which emphasise more the diffusion bonding and creep 

than plastic deformation predict very long healing times. Since the void elimination 

model developed here is for the purpose of rolling applications, shorter healing time 

predictions are preferable. Furthermore, the Pilling model meets the void shape 

requirement (cylindrical shape of voids in cast steel). In addition, the Pilling model 

does not involve the complications of finding a non-real value such as diffusion 

distance, Λ, as in Beere and Speight model, and the critical loading parameter, Λc, as 

in the Wang model; this makes the implementation of the model simpler. 
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3.4  Conclusions 

The existing void shrinkage models were reviewed and the model discrepancies in 

shrinkage rate predictions were explained. Factors such as void size, void geometry, 

the mechanisms involved and the type of operating mechanisms (parallel or series) 

were suggested to be the causes of the differences in predictions made by the 

different models. 

A range of existing void shrinkage models was reviewed. Some of these models were 

developed from void growth models where void shrinkage was considered as 

negative void growth. Other void shrinkage models, on the other hand, considered 

the diffusion-bonding process to be analogous to that of pressure sintering and 

applied sintering based mechanisms for elimination of interfacial voids in metal 

joining and crack healing. In addition to these models, some others were also 

developed that were solely based on diffusion mechanisms.  

From all the existing models, the Pilling model has been selected by the author to be 

implemented into the FE code and applied in the developed void elimination 

software for prediction of healing time for the purpose of simulating rolling 

applications. The reason for this selection has been explained in terms of shorter time 

predictions (suitable for rolling applications) made by this model, due to its 

accounting for plastic deformation compared to other models which emphasise on 

diffusion bonding and creep, and therefore predict very long healing times. The other 

advantage of the Pilling model is that it meets the void shape requirement 

(cylindrical shape of voids in cast steel). In addition, the Pilling model does not 

involve the complications of finding non-real value as in other models. 

This model has been implemented into the void elimination software in Chapter 5 to 

predict healing time. 
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Chapter 4  

Automated calibration of void 

closure model parameters 

The so-called Gurson model is a well-established 

micromechanical model of the ductile fracture of porous 

materials. The current work explores the applicability of the 

Gurson model to predict void closure. The fixed parameters 

characterising the modified Gurson model are not universal 

and must be calibrated for a particular material, typically by 

trial-and-error fitting of FE simulations to experimental data. 

However, the trial and error approach is expensive and time 

consuming (one test generally corresponds to only one 

triaxiality level). A novel approach has been developed in the 

present chapter to identify the void closure model parameters 

using Pattern Search method which is a well-known non-

gradient based optimisation search method (Pattern Search 

Method).  



Chapter 4: Automated calibration of void closure model parameters 

67 
 

4.1  Effect of triaxiality on void closure 

Recent works have demonstrated that stress triaxiality is one of the key aspects 

affecting void coalescence in porous materials (Vadillo and Fernández-Sáez, 2009, 

Zhang and Chen, 2007). Finite element simulation of void changes under constant 

triaxiality is a standard numerical procedure in the evaluation of ductile damage of 

metals. A number of simulations have been performed for uniform loading, and 

constant triaxiality allowing the effect of triaxiality to be investigated separately 

(Brocks et al., 1995, Kuna and Sun, 1996, Pardoen and Hutchinson, 2000, Steglich 

and Brocks, 1997). This study investigates the effect of triaxiality on void closure by 

predicting the load under which a void with specific volume under certain triaxiality 

closes. 

A pertinent application of the micromechanics of void closure is the 

thermomechanical processing of steel, e.g. long rolling, in which the rolling stages 

are ideally optimised to plastically close porosity left in the cast and diffusion bond 

under temperature and pressure the crack-like interfaces that remain. Complicating 

matters, the porosity distribution in as-cast steel is generally highly nonuniform; a 

billet contains more, larger pores at the centre than the surface, therefore the size and 

distribution cannot be predicted precisely. The voids in different positions experience 

varying boundary conditions and will close under different loading conditions.  

4.1.1 Methodology 

To investigate the closure of a void at a specific position in a steel billet, the stress 

state at that point can be identified and triaxiality obtained by FE modelling of the 

rolling process. The conditions for plastic closure of a void in that position could 

therefore be predicted by determining a closure load versus triaxiality relationship 

obtained from a representative volume element (RVE) model such as that employed 

in this study. An axisymmetric model of a cylinder of material with a central 
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spherical hole was constructed using ABAQUS/Explicit (2010), Version 6.10-2, a 

schematic of which is shown in Figure 4.1. In order to systematically study the 

dependence of void closure on stress triaxiality, a constant triaxiality (T) is 

maintained during loading, which dictates a dependency between the boundary stress 

components. The axial stress 𝜎௬ was applied linearly, with lateral stress, 𝜎௫, defined 

as a function of the axial stress and the triaxiality. At the mesoscopic scale, i.e. on a 

scale that is large relative to the pore/void, but small relative to that of the billet, the 

hydrostatic and Von Mises stresses, 𝜎௛ and 𝜎௘௤ and the triaxiality T are (the stress is 

nonuniform on the scale of the void): 

where the pressures (positive pressure acts in the direction opposite the normal) are 

𝑃௫ = −𝜎௫ and 𝑃௬ = −𝜎௬. Only positive values of 𝑃௬ are considered, i.e. compressive 

axial stress. Assuming that 𝑃௬ > |𝑃௫|, two loading boundary conditions can be 

considered: Condition (A) 𝑃௫ > 0; Condition (B)  𝑃௫ < 0, as depicted in Figure 4.1, 

both of which reduce equation 4.3 to: 

The range of triaxialities must be identified that satisfies either Condition A or B, 

hence leading to compression and closure of the void. Under Condition A, the 

numerator and denominator in equation 4.4 are both positive, hence triaxiality is 

negative. However, under Condition B, the denominator could be negative 

(triaxiality positive) or positive (triaxiality negative) depending on the applied 

𝜎௛ =
1
3 ൫

𝜎௫ + 𝜎௬ + 𝜎௭൯ =   
1
3 ൫

2𝜎௫ + 𝜎௬൯ 4.1 

𝜎௘௤ = ඨ1
2
ቀ൫𝜎௫ − 𝜎௬൯

ଶ + ൫𝜎௬ − 𝜎௭൯
ଶ + (𝜎௭ − 𝜎௫)ଶቁ   = |𝜎௬ − 𝜎௫| 4.2 

𝑇 =
𝜎௛
𝜎௘

=
2𝜎௫ + 𝜎௬
3|𝜎௬ − 𝜎௫|

= −
2𝑃௫ + 𝑃௬
3ห𝑃௫ − 𝑃௬ห

 4.3 

𝑇 = −
2𝑃௫ + 𝑃௬
3൫𝑃௬ − 𝑃௫൯

                 4.4 
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pressures: when 𝑃௬ > −2𝑃௫, the triaxiality is negative, and when 𝑃௬ < −2𝑃௫, the 

triaxiality is positive. To satisfy the condition of 𝑃௬ > |𝑃௫| for positive triaxialities, 

an upper limit on the triaxility must be determined by substituting 𝑃௬ = −𝑃௫ into 

equation 4.4, which gives T = 1/6. Table 4.1 summarises the process of defining the 

allowable triaxiality range. 

 

Figure 4.1- Possible loading boundary conditions. 

Table 4.1- Process of defining the allowable triaxiality range. 

 Px   − − + 

Py + + + 

2Px+Py − + + 

3(Py-Px) + + + 

T (triaxiality) + − − 

 

Figure 4.2 shows the triaxiality range of −∞ < 𝑇 < ଵ
଺
  which has been obtained and 

will be used for the simulations. 

Px = 0 Py = - 2Px 

Condition A Condition B 
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Figure 4.2- Possible triaxialities leading to compression under the assumption of 𝑃𝑦 > |𝑃𝑥|. 

4.1.2 The representative volume element (RVE) model 

As explained in the previous section, an axisymmetric model of a cylinder of 

material with a central spherical hole was constructed using ABAQUS/Standard. A 

detailed schematic of this is shown in Figure 4.3, where H and 𝑊  are the height and 

radius of the cylinder, respectively, and the radius of the void, 𝜌, can be expressed in 

terms of the void volume fraction and geometry as: 

The effects of strain rate and temperature on void closure are investigated for an 

RVE with equal height to diameter (H = 5.0 and W = 2.5) and an initial void volume 

fraction of 𝑓଴ = 0.002.  

𝜌 = ቆ
3 ∙ 𝑣𝑣𝑓 ∙ 𝐻𝑊ଶ

4 ቇ
ଵ/ଷ

                 4.5 



Chapter 4: Automated calibration of void closure model parameters 

71 
 

The material properties used in the model were the experimental data obtained from 

high-temperature tensile testing of free cutting steel at 900qC and 1100qC (Foster, 

2007) (see Appendix A), which are temperatures typical of hot rolling, with the 

elastic-plastic properties input to the simulations as tabulated stress versus strain data 

for a given strain rate and temperature (i.e. a given simulation does not include 

material rate dependence, although the effect of strain rate is studied by multiple 

simulations).  

To account for large deformations, the finite strain/deformation theory was used in 

the simulation (NLGEOM was set to ON in ABAQUS). 

Instead of modelling only half of the cell, the entire cell was modelled to allow for 

the void closure process, as the top surface of the void touches the lower surface. The 

detailed description of the model is provided in the following subsections. 

 

Figure 4.3- The RVE model. 

Boundary conditions: 

In Figure 4.3, line AB is the rotational axis of symmetry to generate axisymmetric 

boundary conditions (Ux = Uz = URy = URz = 0, where U and UR represent 

RF

A

B C

H

W

ρ

R6

Die
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displacement and rotation, respectively). The bottom of the cylinder (line BC) is 

fixed in the y direction (Uy = 0).  

The die in Figure 4.3 is an axisymmetric discrete rigid body, which is in contact with 

the top of the cylinder and is only free to move in the y direction (Ux = Uz = URy = 

URz = 0). This boundary condition was applied to the reference point (RP) of the 

rigid body. 

Loading conditions: 

Computations were carried out at a prescribed fixed triaxiality. Several methods can 

be used to impose constant stress triaxiality on the cell. In the present work the 

pressure 𝑃௬ was increased linearly with 𝑃௫ depending on 𝑃௬ and T according to 

equation 4.4 until the point of incipient contact between opposing faces of the void, 

at which point 𝑃௬ and 𝑃௫ were recorded as the axial and lateral pressures, 

respectively, required for void closure under triaxiality  𝑇 = 𝜎௛/𝜎௘. 

A frictionless surface to surface type of contact was defined between the die and the 

cylinder. ‘Hard’  type  of  contact (default assumption in surface to surface contact in 

ABAQUS) was used in defining the interaction in the normal direction. Thermal 

interactions between the die and the cylinder were ignored in this simulation.  

Mesh and element type sensitivity: 

To select an appropriate mesh size for the model, a mesh sensitivity analysis was 

performed where four different mesh densities were inspected. Initially a coarse 

mesh was applied to the model producing 90 elements.  Finer meshes resulting in 

250, 1000 and 2250 elements were also examined. These meshes are shown in Figure 

4.4. The variation of void volume fraction, vvf with time during compression was 

obtained for these meshes, as shown in Figure 4.5. This figure shows a good 

convergence of the results for a mesh density of 1000 elements corresponding to the 

mesh shown in Figure 4.4c. This mesh was therefore selected to be applied to the 

model. 
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For axisymmetric conditions, two options are available for the element type in 

ABAQUS. These include CAX4, which is a 4-node bilinear axisymmetric 

quadrilateral element and CAX8 which is a 8-node biquadratic axisymmetric 

quadrilateral element (see the ABAQUS theory manual for a complete description of 

the elements). To select the suitable element type for the model, the variation of void 

volume fraction, vvf, (see equation 4.6 in section 4.1.3) with time during compression 

was obtained for these two element types. The results of this analysis are shown in 

Figure 4.6, where no significant differences are observed when using CAX4 and 

CAX8 elements. However, CAX4 element type is preferred over CAX8 due to faster 

computations. 

In order to be computationally efficient, reduced integration elements (CAX4R and 

CAX8R) are a good option. However, before using these elements the effect of using 

these elements on the accuracy of the results has to be checked. The variation of void 

volume fraction, vvf, with time during compression was obtained for CAX4R 

elements. The result of this is also shown in Figure 4.6, where no significant 

difference can be observed in the obtained results for CAX4R and CAX4.  

Based on the above findings, CAX4R element type was selected for the model. 

 
(a)                             (b)                              (c)                             (d) 

Figure 4.4- Finite element mesh for the voided cell model with total number of elements 

equal to (a) 90, (b) 250, (c) 1000, (d) 2250.  
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Figure 4.5- The effect of mesh size on the prediction of vvf versus time for the RVE model. 

 

Figure 4.6- The effect of element type on the prediction of vvf versus time for the RVE model. 
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4.1.3 Calculation of void volume fraction, vvf  

This section explains how void volume fraction is calculated for the RVE model. 

For the voided unit cell, the initial void volume fraction can be written as: 

where 𝜌 is the void radius and 𝑊 and H are the radius and height of the cylindrical 

cell, respectively as defined in Figure 4.3. 

To obtain the volume of the void at any time increment during deformation, the x-y 

coordinates of the void surface are extracted using Python coding. Python is a 

powerful, interactive, object-oriented programming language. ABAQUS makes 

extensive use of Python for accessing ABAQUS results on the output database (.odb) 

file, scripting with ABAQUS/CAE and ABAQUS/Viewer, and generally to 

accomplish varied programming tasks. Here for simplification the coordinates are 

extracted for a quarter of the model only, as shown in Figure 4.7. 

 

Figure 4.7- Selected nodal points for calculation of void volume. 

Rotation of the x-y profile of the hole about the y-axis produces a half sphere (see 

Figure 4.8), the volume of which can be calculated as an integration of frustums of 

cones along the y-axis.  

𝑣𝑣𝑓 =
4
3𝜋𝜌

ଷ

𝜋𝑊ଶ𝐻
 4.6 
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Figure 4.8- Void volume calculation as an integration of frustums of cones along the 

y-axis. 

The integration approach used to calculate the void volume can also be used to 

obtain the volume of the cell. The x-y coordinates of the edge (see Figure 4.9) of the 

cell are extracted during the deformation and the volume of the cell is calculated. 

 
Figure 4.9- Selected nodal points for calculation of the volume of the cylinder. 

Y
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𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  ℎ𝑎𝑙𝑓  𝑠𝑝ℎ𝑒𝑟𝑒 =෍
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Figure 4.10 illustrates a schematic of the voided cell during the compression, where 

the x-y coordinates of the void surface (profile of the void) and x-y coordinates of the 

edge of the cell (profile of the cell) are shown at three stages of the deformation 

process. 

 

Figure 4.10- The x-y coordinates of the selected nodes for the void (represented as 

the profile of the void) and for the cell (represented as the profile of the cell) at three 

different stages during the deformation process. 

MATLAB 2011a was used to calculate the volume of the void, volume of the cell 

and therefore the void volume fraction at any time during the deformation. A user 

interface was created which requires the user to upload the x-y profiles of the void 

and the cell and calculates the vvf at any time during the deformation. This user 

interface is shown in Figure 4.11. As mentioned previously the x-y profiles of the 

void and the cell are extracted from the model in the format of ABAQUS report, 

using Python coding. The developed Python and MATLAB codes for calculation of 

vvf are provided in Appendix B.     

 

Profile of the cell

Profile of the void

Load
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Figure 4.11- The MATLAB user interface for calculation of vvf. Void and cell profiles are 

shown at five stages during deformation on the right and vvf versus time is shown on the left.   

4.1.4 Satisfaction of incompressibility 

The aim of this section is to study the satisfaction of incompressibility in the RVE 

model during plastic deformation.  

Figure 4.12 shows the variation in the volume of the matrix, Vm, normalised by the 

volume of the matrix at the start of plastic deformation, Vmo, with time during 

compression for three different initial void volume fractions, fo. The total volume of 

the matrix is obtained by summing the volumes of all elements (EVOL in 

ABAQUS). Figure 4.12 shows 0.46% reduction in the total volume of the matrix 

over the deformation for all cases of fo.  To study the effect of this volume reduction 

on the vvf calculation, a comparison should be made between the vvf versus time 

obtained based on the assumption of constant Vm, or incompressible matrix, and vvf 

versus time when there is 0.46% reduction in the volume of the matrix. The volume 

of the cell is defined as: 

𝑐𝑒𝑙𝑙  𝑣𝑜𝑙𝑢𝑚𝑒 =   Vm+Vv 

where  Vm and Vv are volume of the matrix and the void, respectively. 
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The void volume can be obtained using the integration method explained in section 

4.1.3. The change in vvf with time obtained based on this assumption is represented 

as case 1 in Figure 4.13. 

For an incompressible matrix (case 1), Vm is constant during the deformation and is 

obtained by adding the volume of all elements at the start of plastic deformation. As 

previously shown in Figure 4.12, the matrix volume is varying slightly. The volume 

of the matrix, Vm can either be obtained from the integration method, case 2, 

explained in section 4.1.3 or by adding the volume of the elements (EVOL in 

ABAQUS), case 3. The vvf versus time obtained for both cases is shown in Figure 

4.13. It should be noted that for all cases the volume of the void is calculated from 

the integration method. As it is evident from Figure 4.13, there is no difference in the 

vvf versus time prediction for constant Vm (case 1) and slightly varying Vm (case 2 

and case 3). Therefore, the slight variation in matrix volume shown in Figure 4.12 

does not have an influence on the vvf versus time analysis. 

 
Figure 4.12- Variation of the matrix volume, Vm, normalised by the matrix volume at the 

start of plastic deformation, Vmo, with time. 
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Figure 4.13- Comparison of vvf versus time for case 1, case 2 and case 3. In case 1 

matrix volume is assumed constant whereas in case 2 and case 3 the matrix volume 

varies by 0.46%. In case 2, matrix volume is calculated from the integration method 

explained in section 4.1.3 and in case 3 matrix volume is obtained by adding the 

volume of the elements (EVOL in ABAQUS). 

4.1.5 Results 

Figure 4.14 and Figure 4.15 illustrate the influence of temperature on the axial and 

lateral pressures required for void closure under different triaxialities for a strain rate 

of 𝜀̇ = 0.1. The closure pressures for temperatures 900qC, 1000qC and 1100qC have 

been obtained from FE simulations. Figure 4.14 shows that an increasingly negative 

triaxiality leads to larger required closure pressures, an effect resulting from the 

plastic incompressibility of the material surrounding the void. Although not evident 

in these figures for the triaxialities shown, the closure pressures also approach one 

another as Triaxiality, T tends to -∞,  hence  the  void  tends  to  an  increasingly  equiaxed  

shape throughout the closure process as T becomes very small (negative). The results 
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in Figure 4.14 and Figure 4.15 also quantify the degree to which the higher 

temperature, 1100qC, reduces the pressures relative to 1000qC (e.g. 𝑃௬ and 𝑃௫ each 

reduce by roughly 32% for a triaxiality T = -2) and 900qC (e.g. 𝑃௬ and 𝑃௫ each reduce 

by roughly 55% for a triaxiality T = -2) required to close the void, with an increasing 

effect for smaller triaxialities.  

The effect of strain rate on the closure pressures for the same initial void volume 

fraction (𝑓଴ = 0.002) and a temperature of 900qC is studied here. The mean strain 

rate experienced by a work-piece during rolling varies with the roll rotation speed, 

separation distance and radius. Initially the material has a lower velocity through the 

rolls, resulting in lower strain rates but the velocity increases as the work-piece is 

rolled leading to higher strain rates. Decreasing the separation distance of the rolls 

and  increasing  the  roll’s  radius   increases  the  strain  rate.  Applying mean strain rate 

equations such as the one derived by Sims (1954) for the initial rolling/roughing 

stage provides a strain rate envelope with minimum and maximum values of 0.1 and 

10 s-1 respectively. To cover this range of strain rate, three orders of magnitude, 0.1, 

1 and 10 for the strain rate have been considered here.  

Increasing the strain rate from 𝜀̇ = 0.1 to 𝜀̇ = 10 significantly increases the pressures 

required to close the void (e.g. 𝑃௬ and 𝑃௫ each increase by approximately 33% for a 

triaxiality T = -2).  
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Figure 4.14- Axial pressures at the onset of void closure versus triaxiality, showing the 

effect of temperature. 

  

Figure 4.15- Lateral pressures at the onset of void closure versus triaxiality, showing the 

effect of temperature. 
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Figure 4.16- Axial pressures at the onset of void closure versus triaxiality, showing the 

effect of strain rate. 

  

Figure 4.17- Lateral pressures at the onset of void closure versus triaxiality, showing the 

effect of strain rate. 
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4.2  Calibration of GT model parameters for void 

closure 

Gurson model is a widely known and used micromechanical model for the ductile 

fracture of porous materials. The yield surface of the Gurson-Tvergaard model, 

including the fitting parameters, q1, q2 and q3, is given in terms of the equivalent and 

hydrostatic stress measures by: 

where f * is a damage parameter that depends on the void volume fraction f, which is 

an average measure for a void-matrix aggregate, 𝜎௛ is the mean normal stress, 𝜎௘௤ is 

the Von Mises stress and 𝜎ത is the flow stress of the matrix material. The model has 

been explained in more details in Chapter 2. 

4.2.1 Fitting parameters q1, q2 and q3 

The parameters q1 and q2 were introduced by Tvergaard (1981, 1982) in what is now 

commonly known as the Gurson-Tvergaard (GT) model in order to account for the 

effect of plastic work hardening and to improve the model predictions relative to 

finite element analysis of void growth. Tvergaard defined the set of parameters as q1 

= 1.5, q2 = 1.0 and q3 = q1
2 for a range of materials defined by 𝜎௒ 𝐸⁄ = 0.004, 𝜐 =

0.3 and n = 5, 10, 20 and  𝜎௒ 𝐸⁄ = 0.002, 0.008  𝜐 = 0.3 and n = 10 (where 𝜎௒ is the 

yield stress, E is the Young’s modulus, 𝜐  is the Poisson’s ratio and n is hardening 

exponent). Søvik (1996) later suggested that the q1 parameter can be considered to be 

a function of hardening exponent, and found that q1 deviates from 1 when a 

material’s   hardenability   decreases. Søvik (1996) explained this behaviour to be a 

result of considerable void shape change in materials with low hardening. Therefore, 

in experimental applications a fixed pair of (q1, q2) is often taken to ignore the effect 

Φ(𝑞, 𝜎ത, 𝑓∗, 𝜎௛) =
𝜎௘௤ଶ

𝜎തଶ
+ 2𝑞ଵ 𝑓∗cosh ൬

3𝑞ଶ𝜎௛
2𝜎ത

൰ − 1 − 𝑞ଷ𝑓∗ଶ = 0 4.8 
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of strain hardening on void growth. Studies by Koplik and Needleman (1988) found 

that values of q1 = 1.25, q2 = 1.0 and q3 = q1
2 provide the best agreement between the 

GT model and the finite element results for power law hardening materials defined 

by 𝜎௒ 𝐸⁄ = 0.002, 𝜐 = 0.3 and n values of 0.2, 0.1 and 0. Other q parameters can be 

found in the literature for different materials, Kuna and Sun (1996) found q1 = 1.15 

and q2 = 1.0 and q3 = q1
2 for an elastic perfectly plastic material defined by 𝜎௒ 𝐸⁄ =

0.0018, 𝜐 = 0.3. Mahnken (1999)  found q1 = 1.5 and q2 = 0.5 and q3 = 1.0 for a 

material defined by 𝜎௒ 𝐸⁄ = 0.0017 and 𝜐 = 0.3. 

Therefore a fixed set of q parameters cannot be applied to all materials. The q 

parameters vary for different material properties and also other parameters such as 

triaxiality. Kim et al. (2004) outlined the dependency of the q1 and q2 parameters on 

stress triaxiality and the initial void volume fraction, by studying the influence of 

stress triaxiality and initial void volume fraction on void growth and coalescence.  

Although the Gurson model is widely used to model ductile fracture, its application 

to void closure has not received any attention. The aim of this study is to investigate 

the applicability of a modified Gurson model to predict void closure under 

compressive stress states. The diffusion processes explained in Chapter 2 and 3 are 

not considered in this chapter but will be studied in the following chapters. 

The parameter q1 affects the yield region by changing the dependency of the damage 

parameter on the void volume fraction f. High values of q1 reduce the plastic limit 

and lower the strength of the porous material. Tvergaard originally assumed q1 = 1.5 

as an optimal value to produce good agreement between numerical and experimental 

results on porous solids. According to equation 4.8, q2 influences the hydrostatic 

component of the current elastic domain. Increasing the value of q2 significantly 

decreases the yield limit. Corigliano et al. (2000) showed that for high values of q2 

the strain hardening properties of the matrix material are almost completely 

eliminated by softening due to enhanced void growth, which is induced by the 

reduction of the overall strength of the porous material.  
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In this section finite element analyses are performed for a representative volume 

element (RVE) containing a spherical void and an equivalent cell of Gurson-

Tvergaard (GT) material subject to a range of stress triaxialities. The free cutting 

steel (FCS) experimental material properties for 900 qC and 𝜀̇ = 0.1 were used for 

both models (Foster, 2007) (see Appendix A for material data). The numerical results 

of the voided RVE and the corresponding GT cell model are compared, and an 

optimization method is used to find the GT model parameters that best fit the results.  

4.2.2 The GT cell model 

Finite element analyses were performed on a representative volume element (RVE) 

with a discrete spherical void at the centre, voided cell model (VC model) (Figure 

4.4), and an equivalent cell of Gurson-Tvergaard (GT) material (Figure 4.18). Both 

models were axisymmetric cylinders with the same dimensions and equal height to 

diameter.   

The void volume in the discrete void model was the same as the total volume of the 

pores distributed in the GT cell model. The matrix material was assumed to be strain 

hardening and isotropic, with free cutting steel (FCTS) experimental material 

properties used for 900 qC and 𝜀̇ = 0.1 (Foster, 2007). To compare the behaviour of 

cell models, the same load, contact, geometric dimensions (radius and height of the 

cell) and boundary conditions used for the voided cell (VC) model as explained in 

section 4.1.2 were applied here. The method presented in Section 4.1.1 has been used 

to keep the triaxiality constant during loading. Figure 4.18 shows a schematic of the 

GT cell. 
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Figure 4.18- The equivalent Gurson-Tvergaard (GT) cell model. 

Mesh and element type sensitivity analyses are performed for the GT cell to find a 

suitable mesh density and element type. Coarse, medium and fine meshes 

(corresponding to in 510, 1020 and 2040 elements, respectively) were examined. 

These meshes are shown in Figure 4.19. The variation of void volume fraction, vvf 

with time during compression was obtained for these meshes as shown in Figure 

4.20. This figure shows a good convergence of the results for all considered mesh 

densities. The medium mesh however was applied to the GT model. 

 
         (a)                                          (b)                                          (c) 

Figure 4.19- Finite element mesh for the GT model (a) Coarse mesh size (510 elements), (b) 

Medium mesh size (1020 elements) and (c) Fine mesh size (2040 elements). 
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Figure 4.20- The effect of mesh size on the prediction of vvf versus time for the GT model. 

Coarse, medium and fine meshes correspond to 510, 1020 and 2040 elements as shown in 

Figure 4.19 (a), (b) and (c), respectively. 

Similar to section 4.1.2, CAX4 (4-node bilinear axisymmetric quadrilateral element) 

and CAX8 (8-node biquadratic axisymmetric quadrilateral element) and also CAX4R 

(reduced integration CAX4 elements) were examined. To select the suitable element 

type for the model, the variation of void volume fraction, vvf with time during 

compression was obtained for these element types. The results of element type 

sensitivity are shown in Figure 4.21, where no significant difference is observed in 

the obtained results for CAX4, CAX4R and CAX8 elements. Similar to the voided 

cell model in section 4.1.2, CAX4R element was adopted for the FE model 

developed herein. 
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Figure 4.21- The effect of element type on the prediction of vvf versus time for the GT model. 

4.2.3 The calibration process 

A program was developed which optimises the q parameters, finding the values that 

minimise the difference in a least squares sense between the void volume fraction 

predicted by the GT FE model and that of the corresponding discrete void RVE FE 

model. 

In order to create a model in ABAQUS, the common option is to use ABAQUS/CAE 

which is the pre-processor for ABAQUS. However, using CAE, any model creation 

or amendment has to be done manually. For parametric studies when the effect of a 

parameter change in the model is investigated, the manual amendments will be time 

consuming and sometimes impossible. To avoid the need for manual changes and to 

automate the process, Python was used herein. Python is a powerful, interactive, 

object-oriented programming language. ABAQUS makes extensive use of Python for 

scripting with ABAQUS/CAE, accessing ABAQUS results on the output database 
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(.odb) file, and ABAQUS/Viewer, and generally to accomplish varied programming 

tasks.   

A simple MATLAB graphical user interface (GUI) was created to control the 

calibration process (see Figure 4.22). The developed MATLAB code for the GUI is 

provided in Appendix B part vi. The user is required to input values for initial void 

volume fraction, fo, and triaxiality and set up a directory path, where all codes are 

stored. The process starts as the Run button is clicked.  

 

Figure 4.22- The developed MALAB graphical user interface, GUI. 

Figure 4.23 contains a flow chart that illustrates the steps required to calibrate the q 

parameters. The information such as geometry, boundary conditions, loading and 

mesh are required to create the GT and VC models (see section 4.1.2 and 4.2.2). This 

information is hard coded in two Python pre-processor codes that are read by 

ABAQUS to create the GT and VC models (the developed codes are provided in 

Appendix B part i and ii). The values for the initial void volume fraction and 

triaxiality input by the user into the GUI are stored in a text file. The Python pre-

processor accesses this text file (this information is also needed for the creation of 

the GT and VC cell models). The GT and VC models are solved in ABAQUS and a 

set of separate Python postprocessor codes is used to access the results. The first 

Python postprocessor code reads the vvf from the database of the GT cell model (the 

developed code is provided in Appendix B part v). The other two codes read the x-y 
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coordinates of the void and the cell from the database of the VC model (the 

developed codes are provided in Appendix B part iii and iv).   

In the next step the difference between the void volume fraction predicted by the GT 

FE model and that of the corresponding discrete void RVE FE model is calculated in 

MATLAB. The Pattern Search optimisation method, which is a built-in optimisation 

function in MATLAB, is then used to optimise the q parameters. The current values 

of the q parameters, the maximum number of iterations, the optimisation tolerances 

and the current error (cost function defined in section 4.2.5) are input to the 

optimisation algorithm (see Appendix B part vi for further details). The optimisation 

algorithm determines a new set of q parameters and the process continues until the 

optimisation tolerances are achieved. The tolerances usually used as the termination 

criteria for the optimisation process have been taken as the default parameters 

suggested in MATLAB documentation (2011) and are summarised in Appendix C 

part i. The details of the optimisation procedure are explained in section 4.2.5. 

 

Figure 4.23- Illustration of the calibration procedure. 
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4.2.4 The effect of q parameters on vvf rate 

Before optimising the q parameters, it is necessary to study the individual effects of 

q1, q2 and q3 on the void volume fraction rate (vvf versus time). Initially the void 

volume fraction versus time for the GT model explained in section 4.2.2 is obtained 

for a triaxiality, T = -1, initial void volume fraction, fo = 0.005, and q1 = 1.5, q2 = 1 

and q3 = 2.25. To investigate the effect of q1, parameters q2 and q3 have been fixed 

(to 1.0 and 2.25, respectively) and q1 is changed by 50% (q1 = 2.25) and 100% (q1 = 

3.0). The vvf versus time curves for these q parameters are shown in Figure 4.24a. It 

is apparent from this figure that increasing the q1 parameter noticeably increases the 

void volume fraction rate.  

Figure 4.24b shows the effect of q2 parameter, where q1 and q3 have been fixed to 1.5 

and 2.25, respectively and the q2 parameter is changed by 50% (q2 = 1.5) and 100% 

(q2 = 2.0). It is evident from this figure that increasing the q2 parameter significantly 

increases the vvf rate.  

To study the effect of q3 parameter, q1 and q2 have been fixed to 1.5 and 1 

respectively and the q2 parameter is changed by 50% (q3 = 3.375) and 100% (q3 = 

4.5). The vvf versus time curves for these q parameters are shown in Figure 4.24c, 

where almost no sensitivity to the q3 parameter is observed. To further investigate 

this, the q2 parameter is changed by -50% (q3 = 1.125) and 500% (q3 = 11.25) as 

shown in Figure 4.24c. However, the vvf versus time curve still shows no sensitivity 

to the q3 parameter. 

To ensure the results obtained in Figure 4.24c are not only specific to triaxiality T = -

1, another triaxiality was also examined. In Figure 4.25, for a triaxiality of T = -0.5 

the q1 and q2 parameters have been fixed to 1.5 and 1, respectively, and the q2 

parameter was changed by 50%, 100%, -50% and 500%. This figure also shows that 

the vvf rate is almost insensitive to q3. Therefore, the conclusion made from Figure 
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4.24c on the insensitivity of the vvf versus time to q3 is not only specific to one 

triaxiality.  

 
(a) 

 
(b) 

Figure continued on the next page. 
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(c) 

Figure 4.24-The effect of (a) q1, (b) q2 and (c) q3 on vvf versus time for triaxiality T = σh/σe= 

-1. 

 

Figure 4.25- The effect of q3 on vvf versus time for triaxiality T = σh/σe = -0.5. 
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4.2.5 Optimisation procedure 

The aim of the optimisation process is to find the q parameters that minimise the 

difference in a least squares sense between the void volume fraction predicted by the 

GT FE model (shown as F1 in Figure 4.26 ) and that of the corresponding discrete 

voided cell (VC) FE model (shown as F2 in Figure 4.26). It should be noted that the 

curves in Figure 4.26 are just schematics used for illustration purposes and are not 

representing the output results of any FE simulation.  

 

Figure 4.26- Schematic illustration of the optimisation problem, where F2 (VC) is a fixed 

curve (target curve) and F1 (GT) is a function of the q parameters.   

The GT model takes the q parameters as input to predict the void volume fraction:  

Therefore, the objective is to find q = q* in such a way that the difference between 

the two curves is minimised. This will be achieved by minimising a cost function 

(objective function), 𝑅(𝑞) defined in equation 4.10,  

vvf

Time (s)

F1 (GT)

F2 (VC)

Fଵ = Fଵ(𝑞);               𝑞 = 𝑞(𝑞ଵ, 𝑞ଶ, 𝑞ଷ) 4.9 

𝑅(𝑞) =
1
2
෍[𝑔௜]ଶ
ெ

௜ୀଵ

 4.10 
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where M is the total number of data points ( M = 10 in Figure 4.26) and 𝑔௜(𝑞) is: 

There are various types of optimisation methods available in the literature. These 

methods can be categorised into gradient based and direct search methods depending 

on the procedures employed to find the optimised values. In gradient based methods 

both the cost function and the gradient of the cost function are required to evaluate 

the optimum point (Newton type methods belong to this category). Search methods, 

on the other hand, do not require knowledge of the gradient of the objective function 

and conduct the optimisation only based on the cost function value. Simplex method, 

Pattern Search and Genetic Algorithm (GA) are examples of this category. In terms 

of the controls required for optimisation, the methods are categorised into 

constrained and unconstrained. Simplex method is an example of an unconstrained 

method where no search range or constraint is required to be defined to find the 

optimum point. Therefore, the outcome of these optimisation methods may 

sometimes be totally unreasonable and may converge to an unrealistic value. 

Furthermore, some optimisation methods converge to a local minimum rather than a 

global minimum. Gradient based methods and some of the search methods such as 

Simplex method are of this type. Well-known examples of methods that are designed 

to converge to global minimum include Pattern Search, Genetic Algorithm, and 

Simulated Annealing. These methods work for both smooth and non-smooth cost 

functions. However, there are some other global methods that are only limited to 

smooth cost functions and thus have not been mentioned here. 

The cost function in this study (defined in equation 4.10) does not have an explicit 

analytical definition and properties (it is a black-box function with only the input and 

output known). The gradient of this function is only available if numerical 

differentiation methods such as finite difference are employed. For this reason and 

also due to the local minima convergence issues of the gradient based methods, they 

𝑔௜(𝑞) = Fଵ୧ − Fଶ୧  4.11 



Chapter 4: Automated calibration of void closure model parameters 

97 
 

were ruled out for use in this study. The Simplex method, as already mentioned, is 

unconstrained and is a local solver and therefore is not suitable for this application 

which requires finding the global minimum. Amongst the global methods, GA is 

more efficient than the Simulated Annealing but less efficient than Pattern Search. 

GA is also a stochastic method and by repeating the optimisation, the solution might 

converge to a different value. Therefore, the Pattern Search method was chosen as 

the optimisation method for all the studied cases and will be compared with GA for 

one case to demonstrate its superiority for this application. 

It is important to note that although the global methods attempt to locate a global 

solution, no solver employs an algorithm that can absolutely guarantee a solution as 

global (MATLAB documentation (2011)) and sometimes might converge to a local 

minimum. This is an outstanding area of research, and is an issue with all current 

optimisation methods. The impact of this inherent uncertainty is discussed at the end 

of section 4.2. 

The   expression   ‘Pattern   Search’   was   first   used   by   Hooke and Jeeves (1961). 

However one of the most basic forms of Pattern Search method had been used before 

in 1959 (Davidon, 1991). 

The Pattern Search method is in the category of direct search methods that requires 

neither analytical nor explicit derivations of the cost function. The Pattern Search 

finds a sequence of points 𝑥ଵ, 𝑥ଶ, … , 𝑥௞, where k is the iteration number. The update 

of the q parameters is done based on a series of exploratory moves to reach the 

optimal point, and iterations are maintained until a predefined condition based on 

changes in the parameters, or the cost function, is satisfied (Torczon, 1997).  

Assume that 𝑥଴ is the initial estimate of the N parameters. A pattern of points is 

defined as, 

ൣ𝑞୩൧
ଶே×ே

= ൤𝑥
୩ିଵ

𝑥୩ିଵ
൨
ଶே×ே

+ ൣ𝑠୩൧
ଶே×ே

 4.12 
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in which s is the mesh size and is defined as,  

The parameters for next iteration would be updated as follows, 

Initially, the scaling factor, ∝, is considered as one. If 𝐹(𝑞௠௜௡) < 𝐹(𝑥୩ିଵ) the poll is 

called a successful poll, otherwise the poll would be an unsuccessful one. For each 

successful poll, ∝ will be doubled and for each unsuccessful poll, ∝ will be halved. 

Further details on Pattern Search method can be found in (Torczon, 1997). 

The Pattern Search algorithm is available in MATLAB as a built in function. All the 

parameters required for the optimisation (such as the cost function and optimised 

value tolerances usually used as the termination criteria for the optimisation process)  

have been taken as the default parameters suggested in MATLAB documentation 

(2011). These parameters are summarised in Appendix C part i. 

4.2.6 Testing the optimisation method 

To investigate the performance of the Pattern Search method for the calibration of 

the q parameters, a void volume fraction versus time curve was obtained by running 

the GT FE model (explained in section 4.2.2) for q1 = 1.5, q2 = 1 and q3 = 2.25 (stress 

triaxiality, T = -1, and initial void volume fraction, fo = 0.005, were used for the 

model); This   curve   is  marked   as   the   ‘Target   curve’   in Figure 4.28.  The q values 

were then set to q1 = 1.0, q2 = 1.0 and q3 = 1.0 (as the initial guess for the 

optimisation process) and the optimisation was conducted (as in section 4.2.3) to 

determine whether the optimisation method is capable of finding the target q 

parameters (i.e. q1 = 1.5, q2 = 1 and q3 = 2.25) and reproducing the target curve. A 

search range of 0.9 < q < 4.0 was used for all q parameters (the effect of search range 

is explored later). Figure 4.27a shows the optimisation process, where at each 

𝑠௠ = ቂ ∝ 𝐼
−∝ 𝐼ቃ2𝑁×𝑁

, 𝐼 = ൥
1 0 ⋯
0 1 …
⋮ ⋮ ⋱

൩
𝑁×𝑁

 4.13 

𝑞௠௜௡ = argmin𝐹(𝑞୩) 4.14 
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iteration the cost function defined in equation 4.10 (where F1 and F2 are the target 

and the guess curves, respectively) is calculated. In this test the best point was found 

in 17 iterations: q1 = 1.5, q2 = 1 and q3 = 2.25 (Figure 4.27b). These values are in 

exact accord with the q parameters used for the Target curve. In each iteration, if the 

cost function is not reduced by the new q parameters, the old set and the 

corresponding cost function are retained. Figure 4.28 compares the vvf versus time 

for q1 = 1.5, q2 = 1 and q3 = 2.25 (Target curve), for initial guess values of q1 = 1.0, q2 

= 1.0 and q3 = 1.0 and the optimised values of q. This figure shows that the optimised 

curve is identical to the target curve.  

(a) 

 

(b) 

 
Figure 4.27- (a) Cost function value at each iteration, (b) The best q parameters. 

The above findings confirm that the Pattern Search method is perfectly capable of 

finding the target values, at least for the range and guess values used. It is well 

known that some optimisation algorithms are sensitive to the initial guess. It is 

therefore important to investigate the initial guess sensitivity on the optimisation 

method used. This has been investigated later in this section. 
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Figure 4.28- Comparison of target, initial guess and optimised curves. 

Comparison with Genetic Algorithm (GA) 

This section compares the performance of Pattern Search method with Genetic 

Algorithm (GA) which is an evolutionary algorithm to search for global minima. GA 

works based on techniques inspired by natural evolution. It is an iterative process 

starting from a population of randomly generated individuals. The population in each 

iteration is called a generation. GA only passes the best population of each 

generation to the next generation by using the cross-over and mutation of individuals 

of a generation to make children for the next generation. Further details on genetic 

algorithms can be found in (Conn et al., 1991, Goldberg, 1989).   

The target curve explained in the previous section was used and the optimisation was 

conducted using Genetic Algorithm to determine whether the optimisation method is 

capable of finding the original q parameters. The same search range and the same 

termination criteria as in the previous section were used (full description of the 

parameters used for both GA and Pattern Search can be found in Appendix B).  

Figure 4.29 shows the optimisation process, where each data point corresponds to the 

cost function defined in equation 4.10 for the best individual in the generation (an 

individual is any point to which you can apply the cost function and a generation is 

an array of individuals). It should be noted that as indicated in Appendix C, part ii 
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the size of the population of 20 per variable is suggested as the default value in 

MATLAB. Since the optimisation is conducted for 3 variables (q1, q2 and q3) the 

total population of each generation is 3×20 = 60. This means each data point shown 

in Figure 4.29 represents up to 60 function evaluations (ABAQUS runs). In practice 

the total function evaluations are less than this maximum value. This is due to the 

fact that some of the individuals of the current generation are present in the next 

generations. In this study a total number of 1347 ABAQUS runs were performed. 

This shows how computationally expensive this method is. 

In Figure 4.29 the best fitness value (cost function) of 1.01×10-5 was found after 51 

generations. This corresponds to the optimised parameters of q1 = 1.52, q2 = 0.99 and 

q3 = 1.48. This indicates errors of 1.33%, -1.0% and -34.2% in q1, q2 and q3 

determinations, respectively. Comparing these results to the Pattern Search results 

which has 0% error in finding the target values and require about 60 ABAQUS runs, 

it is concluded that the Pattern Search is more suitable for this application.     

 
(a) 

 
(b) 

Figure 4.29-(a) Best cost function value for each generation, (b) The best q values. 
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The effect of initial guess 

Previously the q parameters were set to q1 = 1.0, q2 = 1.0 and q3 = 1.0 as the initial 

guess for the optimisation process. To investigate the sensitivity of the Pattern Search 

method to the initial guess, two additional sets of q parameter, as summarised in 

Table 4.2 were also examined for the same search range. The optimisation was 

performed for all the considered cases. The cost function values at each iteration are 

shown in Figure 4.30.  

Table 4.2-The initial guess values tested. 

 Initial guess values 
q1 q2 q3 

Case I (studied previously) 1.0 1.0 1.0 
Case II 2.0 2.0 2.0 
Case III 3.0 3.0 3.0 

 

(a) 

 

(b) 

 
Figure 4.30- Cost function values at each iteration (a) Case II, (b) Case III. 
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Figure 4.31a compares the vvf versus time before and after optimisation for Case II 

with the target curve (q1 = 1.5, q2 = 1 and q3 = 2.25). Similarly, Figure 4.31b 

compares the vvf versus time before and after optimisation for case III and the Target 

curve. It is evident from both figures that the optimised curves are identical to the 

target curve. The q parameters obtained from optimisation for both cases are 

identical to the q parameters used for the target curve. Therefore, the optimisation 

method used in this study is not sensitive to the initial guess values for the studied 

cases. However, it is evident that cases II and III converge more slowly than case I. 

(a) 

 

(b) 

 
Figure 4.31- Comparison of the target, initial guess and optimised curves for (a) Case II 

(initial guess: q1 = 2.0, q2 = 2.0 and q3 = 2.0) and (b) Case III (initial guess: q1 = 3.0, q2 = 

3.0 and q3 = 3.0.) 
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The effect of search range 

So far all optimisations were performed for a search range of 0.9 < q < 4.0. To 

investigate the sensitivity of the method to the search range, the optimisation of the q 

parameters for Case I (initial guess values of q1 = 1.0, q2 = 1.0 and q3 = 1.0) is 

repeated but for an expanded search range of 0.1 < q < 10.0. 

Figure 4.32a shows the optimisation process, where at each iteration the cost 

function defined in equation 4.10 (where F1 and F2 are the target and the guess 

curves, respectively) is calculated. The best point was found in 37 iterations: q1 = 

1.5, q2 = 1 and q3 = 2.25 (Figure 4.32b). These values are in exact accord with the q 

parameters used for the Target curve. Therefore, by expanding the search range, the 

applied optimisation method is still capable of finding the target values. 

(a) 

 

(b) 

 

Figure 4.32- (a) Cost function value at each iteration, (b) The best q parameters. 
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4.2.7 Results and discussion 

As discussed in section 4.2.5, a common concern when dealing with optimisation 

algorithms is whether the technique is able to find the absolute minima. If the 

objective function (cost function) has a large multiplicity of local minima, the 

approach may be trapped very far away from the solution. Knowing the properties of 

the cost function influences the choice of the best numerical technique used to 

minimize the cost function. If the cost function has a large multiplicity of local 

minima the only solution will be to use algorithms which are more likely to find the 

global minima, such as Pattern Search and Genetic Algorithm.  

The cost function optimised in this study (equation 4.10) does not have an explicit 

analytical definition and properties. Also, as shown in the previous sections, a very 

large number of function calls (ABAQUS runs) are required for the GA to perform 

the optimisation. It was shown that considering the running times for the ABAQUS 

models, application of GA is not practical and the Pattern Search was shown to be 

more efficient. However, there is no guarantee that the Pattern Search or any other 

global method always converges to the global minima. There are some situations that 

the solution is trapped in a local minimum. An example of this has been shown 

below.  

Two different search ranges were studied (triaxiality T = -0.5 was used). Table 4.3 

summarises the tested search ranges, the best cost function values and q parameters 

obtained after optimisation for each case. In Table 4.3, Case A corresponds to a 

search range which is symmetric with respect to the commonly suggested values, q1 

= 1.5 and q2 = 1.0 and explores 1.0 < q3 < 4.0 based on the assumption of q3 = q1
2 

and Case B corresponds to a very wide search range. The cost function versus 

iteration plots for both cases is shown in Figure 4.33.  
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Table 4.3-Different search ranges tested. 

 Search range Best (q1,q2,q3) Best Cost Function value  q1 q2 q3 
Case A [1.0, 2.0] [0.75, 1.25] [1.0, 4.0] (2.0, 1.24, 4.0) 0.0035 
Case B [0.1, 10] [0.1, 10] [0.1, 10] (3.13, 1.0, 10.0) 0.0036 

(i) 

 
(a) 

 
(b) 

(ii) 

 
(a) 

 
(b) 

Figure 4.33- (a) Cost function value at each iteration for (i) Case A and (ii) Case B, (b) The 
best q parameters for (i) Case A and (ii) Case B. 
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The results in Table 4.3 and Figure 4.33 indicate that by expanding the search range, 

the optimisation has found different optimised q parameters and cost function values 

for this case. Figure 4.34 compares the void volume fraction, vvf, versus time after 

optimisation for cases A and B. Since the difference in the cost function values for 

both cases is very small the plots are almost identical. Therefore, the q parameters 

obtained in both Case A and Case B can be considered suitable for modelling the 

material, and the set of best q parameters is shown to be not necessarily unique. 

However, it should be noted that the expanded range studied in Case B is an 

uncommonly broad range and the q values are far away from common values found 

in the literature. Therefore, to avoid finding unreasonable optimised values the range 

of q parameters was set to the one used in Case A. However, it is worth emphasising 

that the q parameters are dimensionless and do not have physical meaning, so both 

sets are suitable from the standpoint of the material behaviour.  

 

Figure 4.34- Comparison of vvf versus time for Case A and Case B.  

Figure 4.35 to Figure 4.38 show the results of optimising the GT model parameters 

for triaxialities in the range -2.0 ≤  T ≤  -0.5. The graphs show void volume fraction 

(vvf) versus time (deformation), beginning from an initial value of 0.005 to a final 

void volume fraction near zero, for the discrete void cell (VC) model and the GT cell 

model before and after the optimisation. The values of vvf coincide for all models 
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strains, when the material is elastic or has a small plastic strain). A considerable 

improvement in the GT behaviour is obtained upon optimisation of the q1 and q2 

parameters, although an exact match is not possible. 

 
Figure 4.35- vvf vs time for VC and GT model before and after optimisation at  

Triaxiality 𝑇 = 𝜎௛/𝜎௘  = -0.5. 

 
Figure 4.36- vvf versus time for VC and GT model before and after optimisation at 

triaxiality 𝑇 = 𝜎௛/𝜎௘ =  -1.0. 
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Figure 4.37- vvf  versus time for VC and GT model before and after optimisation at 
triaxiality  𝑇 = 𝜎௛/𝜎௘ = -1.5. 

 

Figure 4.38- vvf versus time for VC and GT model before and after optimisation at 
triaxiality 𝑇 = 𝜎௛/𝜎௘ = - 2.0. 
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Performance of the optimised GT model is best when T = -1.5, exhibiting close 

correlation with the discrete void cell model for the entirety of the void closure 

process, predicting accurately even final void closure, and is generally very accurate 

for T ≤   -2. However, as 𝑇 becomes increasingly negative, the void remains more 

equiaxed throughout the void closure process, hence the original Gurson values of 

the parameters (q1 = q2 = q3 = 1.0) also provide a reasonably accurate behaviour (T = 

-2 is an example, in Figure 4.38). The results of the parameter fits for various 

triaxialities, including the final value of the cost function, are summarised in Table 

4.4. 

Table 4.4. Optimised q values for different triaxialities 

𝑇 q1 q2 q3 Cost Function 
(equation 4.10) 

-0.3 2.0 1.25 2.0 0.007 

-0.4 2.0 1.25 4.0 0.0048 

-0.5 2.0 1.25 4.0 0.0035 

-0.6 1.62 1.25 4.0 0.0031 

-0.7 1.73 1.12 4.0 0.0027 

-0.8 1.97 1.0 4.0 0.0024 

-0.9 1.74 1.0 4.0 0.0018 

-1.0 1.5 1.0 4.0 0.0013 

-1.5 1.0 1.0 2.0 0.0008 

-2.0 1.04 0.94 2.0 0.0016 

Table 4.4 shows that the cost function decreases as triaxiality decreases, indicating 

the optimized GT model performs better (regarding the discrete VC model as reality) 

when the triaxiality is sufficiently negative that the void remains roughly spherical 

for the majority of the deformation. Deviation occurs late in the closure process 
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when the hole becomes non-spherical prior to closing. The best response can be seen 

at T = -1.5, which is the triaxiality at which the void remains spherical. 

Just for the sake of completion, it should be noted that instead of optimising all three 

q parameters, it is possible to optimise only q1 and q2, with q3 considered to be equal 

to q1
2 (Tvergaard, 1981, 1982). The optimisation has been performed based on this 

assumption for triaxiality of T = -1 and initial void volume fraction of fo = 0.005. 

Figure 4.39 shows the optimisation process where an optimum point of q1 = 1.55, q2 

= 1.0 (and q3 = q1
2 = 2.40) has been reached resulting in a cost function of 0.0013. 

The values for q1, q2 and the cost function are in very close agreement with the 

results obtained when optimising all three q parameters (q1 = 1.5, q2 = 1.0 and cost 

function = 0.0013, see Table 4.4) but the q3 parameters are significantly different. 

However, as discussed in section 4.2.4, the vvf behaviour is almost insensitive to the 

q3 parameter. It was predicted that no significant difference should exist between the 

results obtained from either of the approaches. Figure 4.39 confirms this prediction. 

(a) 

 

(b) 

 
Figure 4.39- (a) Cost function value at each iteration, (b) The best q parameters. 
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Figure 4.40- The comparison of vvf versus time for the case where only q1 and q2 are 

optimised (q3=q1
2), and the case where all three q parameters are optimised. 

4.3  Conclusions 

A model has been created which predicts the closure load for a voided cell of specific 

void size and certain triaxiality. The effect of temperature and strain rate has been 

investigated. The results show that for high temperatures and low strain rates, less 

pressure would be required for void closure. 

The applicability of the reverse Gurson model for void closure is examined. Finite 

element analyses are performed on a representative material volume (RMV) 

containing a spherical void and an equivalent cell of Gurson-Tevergaard (GT) 

material. The numerical results of the voided RMV and the GT cell are compared 

and an optimization method is used to find the q parameters which fit the results best.  

The effect of triaxiality on the void closure process is investigated and the results 

show that the Gurson model has better agreement with the voided cell model for 

higher triaxialities. This is explained by the fact that Gurson assumes a spherical void 

shape which is more correct at high triaxialities. 
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Chapter 5   

Micromechanical modelling 

of void elimination: Healing 

As mentioned in the previous chapters, the porosity 

elimination process can be investigated through two stages. 

The first stage is the pore closure when the pore shrinks to a 

slit (crack) as a result of compression. Upon initial contact of 

the pore surfaces, a series of voids form along the bonding 

surfaces, the scale of which depends on the pore surface 

roughness. It is assumed that these voids can be removed by 

diffusion and plastic deformation so allowing an intimate 

contact along the bond (the healing stage). A strong bond 

which has the mechanical properties of the original material 

is therefore obtained in the healing stage when the surfaces 

of the void are diffusion bonded. The modelling of pore 

closure has been described in the previous chapter. This 

chapter continues the porosity elimination process by 

modelling the second stage, void healing.   
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5.1  Experimental observation of the voids 

The purpose of this section is to characterise the porosity distribution and shape to 

provide a better understanding of the assumptions made in the modelling process. 

In steel casts the porosity is usually localized and non-uniformly distributed relative 

to the entire part and is more concentrated in the centre. As explained in Chapter 3 

this kind of porosity forms due to solidification shrinkage. To observe these pores 

two billets, billet 1 and billet 2, from the centre of two different blooms were 

considered. Figure 5.1a shows a schematic of a 750×355×500  mm cast bloom and 

the cutting locations for billet 1 and billet 2. Macroscopic images of the cross section 

of billet 1, at two locations specified by cutting planes A and B (see Figure 5.1b) are 

shown in Figure 5.1c. It is evident from this figure that pores are concentrated in the 

centre of the bloom (pores are the dark spots in the image). To observe the porosity 

in the longitudinal direction, macroscopic images were   taken   from   the   ‘af’  edge  of 

billet 2 (Figure 5.1d). It is evident also from this figure that porosity is concentrated 

in the centre of the bloom. 
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(b) 

 

(c) 

 
(d) 

Figure 5.1-(a) The cast bloom and the location of billets, (b) Billet 1 and the cutting planes 

A and B, (c) Macroscopic images of the cross section of billet 1 at cutting planes A and B, 

(d) Pores distributed longitudinally at the centre of the bloom. 
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Although maximum porosity concentration is at the centre of a bloom, porosity is not 

limited to the central part only. Away from the centre, small patches of micro-

porosity are likely to be seen. Porosity in this region reduces in size and 

concentration and has random shapes. Figure 5.2a shows a SEM image of porosity in 

a near surface region (billet 11 in Figure 5.2c), scale in 𝜇𝑚. Figure 5.2d on the other 

hand, shows a pore in the central region (billet 31 in Figure 5.2c) scale in mm. It is 

worth mentioning that the surface of the bloom is very unlikely to contain porosity 

and is usually assumed to be non-porous (Farrugia, 2012).   

 

 
Figure 5.2- (a) Porosity at a near surface region of a free cutting steel (FCS) bloom, (b) 

Porosity in the central region of a FCS bloom, (c) Locations of billet 11 and billet 31 used 

for images (a) and (b),  respectively. 
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5.2  Introducing the parameter vvfc and its 

underpinning physics 

For a non-porous solid material, plastic deformation will not change material 

volume. However, for a porous material under plastic straining in either tension or 

compression, the material volume will change. Figure 5.3a shows a bulk of material 

containing cavities of different shapes and sizes. Gurson assumes a 

“homogenisation”  process  by  adding  all  voids into a single spherical void as shown 

in Figure 5.3b. In terms of finite element (FE) modelling, these voids will be 

homogeneously distributed in all elements as shown in Figure 5.3c. The initial void 

volume fraction of the material prior to plastic deformation is defined as: 

𝑣𝑣𝑓 =
𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑣𝑜𝑖𝑑𝑠

𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
 5.1 

           In reality        Homogenisation FE modelling 

   
               (a)               (b)               (c) 

Figure 5.3-(a) Voids of different shape and size in a material, (b) Homogenisation of voids 

into a single spherical void, (c) FE modelling of porous material.  

As explained in the previous chapters the first stage of void healing is assumed to be 

the void closure, when the void reduces to a crack as a result of compression as 

shown in Figure 5.4a. Following the compression stage, the void surfaces are still 

apart by their roughness. This is illustrated in Figure 5.4b for a closed cylindrical and 

spherical void. The initial contact of the asperities on the surfaces of the closed voids 

Compression at 
hot temperature

Compression at 
hot temperature

Compression at 
hot temperature
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(or cracks) creates a series of cylindrical voids or channels on a scale small compared 

to that of the original void (Figure 5.4c). It is assumed that these voids can be 

removed by diffusion bonding so allowing an intimate contact along the bond (the 

healing stage) assuming no oxidation is present (Derby and Wallach 1982; Monroe 

2005). The diffusion bonding of these voids is predicted by the Pilling model here 

which assumes cylindrical shape for the voids (Pilling et al., 1984; Pilling and 

Ridely, 1987; Pilling, 1988). Details on the Pilling model can be found in Chapter 3. 

It is assumed that cylindrical pores within an element are agglomerated into a single 

cylinder, similar to the Gurson model assumption, as shown in Figure 5.4d. 

Figure 5.4a shows a bulk of porous material under compression at hot temperature 

where pores have been closed and diffusion bonding is initiated. The void volume 

fraction at this stage is called vvfc and is defined as: 

𝑣𝑣𝑓௖ =
𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑐𝑙𝑜𝑠𝑒𝑑  𝑝𝑜𝑟𝑒𝑠
𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

 5.2 

In order to obtain the value of vvfc for a material, the volume of the existing closed 

pores should be measured while the material is under compression at the test 

temperature. It is worth mentioning that upon the removal of compressive load and 

heat, the volume of the existing closed pores will increase, therefore a measured 

value of vvf will not represent the actual value of vvfc, as the measured value will be 

greater than that at compressive load and hot temperature when healing initiates.  

Therefore, vvfc should ideally be measured while load and temperature are applied. 

Since porosity is usually concealed within a material, this would require a technique 

such as in-situ 3D X-ray microscopy. However, currently, it is not possible to 

distinguish pores in free cutting steel from MnS inclusions, which are much larger 

than the remnant cylindrical porosity depicted in Figure 5.4c (Kaye et al., 2013). For 

these reasons, vvfc is treated as a fitting parameter to be obtained by matching model 

predictions to experimental data. This is discussed in greater detail in Chapter 7. 
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(a) (b) (c) (d) 

Figure 5.4-(a) A bulk of porous material, where pores have been closed under compression, 

(b) A through crack and a penny shaped crack, where the crack surfaces are apart by 

roughness, (c) Formation of cylindrical voids or channels, (d) Homogenous distribution of 

cylindrical voids in all elements. 

5.3  The developed User Material (UMAT) 

A user material subroutine, UMAT, in ABAQUS/Standard is used to define the 

mechanical constitutive behaviour of a material. UMAT is used when the existing 

material models included in the ABAQUS material library cannot accurately 

represent the behaviour of the material to be modelled. User-defined material models 

can be used to define any constitutive model of arbitrary complexity. 

An understanding of the overall structure of ABAQUS is necessary in developing a 

user subroutine. Appendix D provides information on the basic flow of data and 

actions from the start of an ABAQUS/Standard analysis to the end of a step.  

Multiple user materials can be implemented in a single UMAT and can be used 

together. A UMAT subroutine has been developed for the analysis of the material 

porosity elimination process comprising two stages of void closure and healing. The 

UMAT consists of three subroutines which are explained below. 

Compression at 
hot temperature

Compression at 
hot temperature
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5.3.1 Subroutine Gurson-Tvergaard (GT) 

The developed approach uses GT under reverse loading to predict void closure. As a 

result of plastic compression the void volume fraction of the material, vvf, reduces to 

vvfc, the void volume fraction at which healing is initiated. Tata steel uses a specific 

in-house developed UMAT subroutine for the GT constitutive model. This UMAT 

has been used as a subroutine in the overall void elimination UMAT and contains the 

GT constitutive equation responsible for the material response.  

5.3.2 Subroutine HealTime 

The HealTime subroutine is the implementation of the Pilling model. This study 

applies the model proposed by Pilling (Pilling et al., 1984; Pilling and Ridely, 1987; 

Pilling, 1988) to predict the healing time. The elimination of voids involves three 

processes. These processes involve the collapse of the supporting contact area by 

plastic deformation and creep, diffusion of atoms from grain boundaries to the voids 

via both volume and interfacial paths and surface diffusion or transfer of mass along 

the void surface. The model has previously been described in detail in Chapter 3. 

To obtain the healing time from the Pilling model, equation 5.4 which is the inverse 

of   Pilling’s   diffusion bonding rate equation (equation 5.3) (also see Chapter 3 for 

further details), was integrated using the trapezoidal rule.  

ℎ =
𝑑𝑣𝑣𝑓
𝑑𝑡

= −2𝜀௥̇(1 − 𝑣𝑣𝑓) − 𝑁௜ ቆ
2

𝑟௢ଶℎ௢𝑣𝑣𝑓
𝐷௚௕𝛿Ω𝜎௭

𝐾T
1 − 𝑣𝑣𝑓

ln(1 𝑣𝑣𝑓⁄ ) − (1 − 𝑣𝑣𝑓)/2ቇ
 5.3 

𝑔 =
𝑑𝑡

𝑑𝑣𝑣𝑓
= [ℎ]ିଵ 5.4 

In equation 5.3,  𝜎௭ is the axial stress and 𝜀௥̇ is the radial component of the strain 

rate; equations for 𝜎௭ and 𝜀௥̇ can be found in (Pilling, 1988) and in the HealTime 

subroutine shown in Appendix E. These variables are calculated for each element 
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based on its stress state and are passed from ABAQUS into the UMAT every time 

the UMAT is called.   

In equation 5.3, 𝑁௜ is the number of interfaces intersecting the void surface (𝑁௜ =

int(1 + ℎ௢𝑣𝑣𝑓 𝑑⁄ ), where d is the grain size), 𝐷௚௕ is the grain boundary diffusion 

coefficient, 𝛿 is the grain boundary thickness, 𝛺 is the atomic volume, K is the 

Boltzmann’s  constant,  𝜎௭ is the axial stress and T is the absolute temperature.  More 

details on Pilling model can be found in Chapter 3. 

The trapezoidal integration method approximates an integral from a to b by 

approximating the area under a curve using trapezoids. This is shown mathematically 

in equation 5.5, where N is the number of intervals. 

𝑡 = න 𝑔𝑑𝑣𝑣𝑓
௕ୀ଴

௔ୀ௩௩௙೎
 

≈
∆𝑣𝑣𝑓
2

[𝑔(𝑣𝑣𝑓଴) + 2𝑔(𝑣𝑣𝑓ଵ) + 2𝑔(𝑣𝑣𝑓ଶ) + ⋯+ 2𝑔(𝑣𝑣𝑓ேିଵ) + 𝑔(𝑣𝑣𝑓ே)] 

∆𝑣𝑣𝑓 =
𝑏 − 𝑎
𝑁

, 𝑡௜ = 𝑎 + 𝑖∆𝑣𝑣𝑓 

5.5 

The HealTime subroutine calculates the total healing time based on the above 

equations (see Appendix E for the developed Fortran code). 

5.3.3 Subroutine FindF 

During the void closure process the change in vvf is calculated from the Gurson-

Tvergaard (GT) subroutine. However, after the healing process starts the change in 

vvf, Δvvf, at each time increment is calculated from the Pilling equation (equation 

5.3). This is especially important in multi-pass rolling processes when the final 

closure and healing states of the current roll pass are inherited as the starting 

condition of the next roll pass. For example, one element may reach the closure state 

in the first roll pass but it may not completely heal until the fourth or fifth roll pass. 
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Therefore, the variation in vvf from the first to the last roll pass is important and is 

calculated from the Pilling model here. 

Therefore, the behaviour of the material is updated during the healing process. When 

healing is completed, vvf is set to zero, reducing the GT yield surface to a von Mises 

yield surface. 

The change in vvf at each time increment, Δt, is defined as: 

Δ𝑣𝑣𝑓 = ℎ ∙ Δ𝑡 5.6 

A subroutine has been developed which calculates the change in vvf at each time 

increment for this purpose (see Appendix E for the developed Fortran code). 

5.3.4 Methodology and illustration 

This section explains how the subroutines explained above are combined into a 

UMAT subroutine for prediction of void elimination process. 

In a general loading condition, voids in different locations may experience different 

stress states and will close at different times and under different local pressures. 

Therefore, at each time increment, the characteristics of each element must be 

monitored. This requires the definition of an array, I, storing the stress conditions, 

healing process and element status. This array is specific to Pilling model here but it 

can be adapted to any other diffusion bonding/healing model. Defining I as, 

𝐼௞೙
௜,௝ = ቂ𝑆௜,௝, 𝑡௖

௜,௝, 𝑡௛
௜,௝, 𝑃௞೙

௜,௝ቃ     5.7 

in which i is the element number, j is the integration point and 𝑘𝑛 is the increment 

number. For elements with more than one integration point, an average value could 

be calculated. This study however uses reduced integrated elements with one 

integration point (i.e. j=1). From now on as a matter of simplicity j notation is 

ignored.  
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In equation 5.7, 𝑡௖ is the time at which the 𝑣𝑣𝑓 reaches 𝑣𝑣𝑓௖,   𝑃 is the compressive 

hydrostatic pressure under which this condition occurs, 𝑡௛ is the time required for 

healing and S represents the status of the element which is defined as follows, 

𝑆௜ = ቐ
2 if 𝑡௧௢௧௔௟௜ ≥ 𝑡௖௜ + 𝑡௛௜

1 if 𝑡௖௜ ≤ 𝑡௧௢௧௔௟௜ < 𝑡௖௜ + 𝑡௛௜
0 if otherwise

 5.8 

i.e. S = 1 when vvf  is reduced to vvfc (void is closed but not healed), and S = 2 when 

the element is healed.  

Before getting into the details of the implementation of the above concept into a 

UMAT subroutine, it is better to have a brief introduction on how UMAT 

subroutines are handled in ABAQUS. More details on how a UMAT is run in 

ABAQUS can be found in Appendix D.  

Figure 5.5 shows a flow chart illustrating the step by step procedure followed by the 

UMAT for void closure and healing. It is important to know that a UMAT is run for 

each time increment, for each element integration point and for each iteration 

(ABAQUS document).  

Initially the status of all elements assigned with UMAT properties is set to zero, 

indicating that these elements contain open voids with a specified void volume 

fraction. The GT model is the constitutive equation responsible for the material 

response. It is therefore called to calculate the stress and strain status in the model as 

well as the change in the void volume fraction of the elements. Void closure can be 

predicted by calling the GT subroutine. During deformation the void volume fraction 

of each element is monitored. Once an  element’s  void  volume  fraction  reaches 𝑣𝑣𝑓௖, 

the following actions should be taken: 

1) The element status, S, will change from 0 to 1, indicating the element has 

reached the closure state. 

2) HealTime subroutine is called to calculate the healing time, 𝑡௛௜ , (using Pilling 

model, explained in Chapter 3) for that element. 
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3) FindF subroutine is called to obtain the change in vvf,  Δvvf,  during healing at 

each time increment according to equation 5.6. This implies that after the 

closure stage the change in the void volume fraction is controlled by the 

Pilling model, but the GT model inherits the new value of vvf. 

Step 3 will continue until the healing time is reached (𝑡 ≥ 𝑡௖௜ + 𝑡௛௜ ). At this point the 

element is healed (vvf = 0), reducing the GT yield surface to the von Mises yield 

surface.  The  element’s status should therefore be changed from 1 to 2 (from closed to 

healed). 

 

Figure 5.5- The developed UMAT structure, where an oval signifies a decision point in the 

code or a specific state (i.e. beginning of an increment) during the analysis and a rectangle 

signifies an action that is taken during the analysis. More details on how a UMAT is run in 

ABAQUS can be found in Appendix D. 
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5.4  The problem of modelling long real times 

Complete healing might not occur in some cases when the stress state is non-

homogeneous or the simulation time is not large enough for the healing to complete. 

In principal, when 𝑣𝑣𝑓 reaches 𝑣𝑣𝑓௖, healing should begin and have a duration 𝑡௛ as 

predicted by the healing model (equation 5.4) for the local stress. However, since the 

healing times are very long, the problem of simulating the real time emerges. A time 

scaling method is proposed to deal with this problem. Consider a model with two 

elements, where the closure and healing times are 𝑡௖ଵ, 𝑡௛ଵ and 𝑡௖ଶ, 𝑡௛ଶ for elements 1 

and 2, respectively. The desired simulation time, 𝑡௦, is much smaller than the healing 

times 𝑡௛ଵ and 𝑡௛ଶ. It should be noted that the closure time for an element, 𝑡௖, is very 

small compared to the corresponding healing time, 𝑡௛; 𝑡௖ is reached as a result of 

plastic deformation whereas 𝑡௛ involves slower processes such as creep and diffusion 

bonding. 

Figure 5.6a shows a situation where the closure state for all elements is reached 

whithin the desired simulation time, 𝑡௦ (𝑡௖ଵ < 𝑡௦ and 𝑡௖ଶ <  𝑡௦). Whereas the healing 

times 𝑡௛ଵ and 𝑡௛ଶ are greater than 𝑡௦ and therefore healing will not occur before the end 

of the simulation.  One solution is to assume the elements are healed as soon as they 

are closed. This is illustrated in Figure 5.6b. However, using this approach neglects 

the effect of the change in material behaviour that would result from sequential 

healing. This could be important in many applications, e.g. multi-pass rolling where 

the final closure and healing states of the current roll pass are inherited as the starting 

condition of the next roll pass. In this application it is necessary to account for the 

effects of sequential and incomplete healing on the mechanical properties of the 

material. 

A better solution would be to scale the healing time remaining for a given element, 

measured relative to the time at which the last element closure occurs, 𝑡௛௜ −

൫max  (𝑡௖௜ ) − 𝑡௖௜൯, using a scaling factor, 𝜂௦. The scaling factor, 𝜂௦ and the simualtion 
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time 𝑡௦ should be selected so that the void elimination of all elements occurs within 

the simulation time and the element void elimination sequence is preserved (see 

Figure 5.6c). Considering the fact that 𝑡௖ ≪ 𝑡௛, it can be assumed that the closure 

state   for   all   elements   is   reached   before   the   first   element’s   void   elimination  would  

occur in real time. Although the possibility exists of void elimination (i.e. reaching 

the healing time) in some elements causing a change in the stress state of 

neighbouring elements, and consequently leading to closure of those elements, this is 

a small effect and is neglected.  Based on the above assumptions the following 

statements can be made:  

The scaled void elimination time, 𝑡௘௦௜  (𝑡௘௜  is the real elimination time), for all 

elements is less than the simulation time: 

𝑚𝑎𝑥൫𝑡௘௦௜ ൯ < 𝑡௦ 5.9 

No scaled elimination time is reached before all elements are closed: 

𝑚𝑖𝑛൫𝑡௘௦௜ ൯ > 𝑚𝑎𝑥൫𝑡௖
௝൯ 5.10 

where i and j represent the element number (i is not necessarily equal to j). 

Given that 𝑡௛௜ = 𝑡௘௜ − 𝑡௖௜ , it follows that the healing time remaining 𝑡௛௜ −

൫max൫𝑡௖௜൯ − 𝑡௖௜൯ = 𝑡௘௜ − 𝑚𝑎𝑥  (𝑡௖௜ ). Defining the scaled elimination time as 𝑡௘௦௜ =

𝑚𝑎𝑥൫𝑡௖௜൯ + 𝜂௦ ∙ [𝑡௘௜ − 𝑚𝑎 𝑥൫𝑡௖௜൯] would automatically satisfy equation 5.7 for all 

values of 𝜂௦ > 0. Equation 5.6 can be restated as equation 5.8 and can be used to 

determine an upper bound for 𝜂௦: 

𝑚𝑎𝑥൫𝑡௖௜൯ + 𝜂𝑠[𝑚𝑎𝑥൫𝑡௘௜ ൯ − 𝑚𝑎𝑥൫𝑡௖௜൯] < 𝑡௦ 5.11 

or 

0 < 𝜂𝑠 <
𝑡௦ − 𝑚𝑎𝑥൫𝑡௖௜൯

𝑚𝑎𝑥൫𝑡௘௜ ൯ − 𝑚𝑎𝑥൫𝑡௖௜൯
 5.12 
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(a) 

(b) 

(c) 

Figure 5.6- Scaling of healing time to overcome the problem of simulating long real 

times. 

For most applications it is advantageous to choose 𝜂௦ as small as possible, hence this 

demonstrates that scaling only the part of the healing time that would elapse after the 

final element closure, with 𝜂௦ = 0, preserves the sequence of void closure and 

healing and takes into account the effect healing might have on the closure process of 

other voids. In other words, with 𝜂௦ = 0,  all healing can be deemed complete once 

the last closure is complete. To observe the sequential healing, 𝜂௦ > 0 is required. 

5.5  Comparison of GT model with void 

elimination model 

This section compares the material behaviour predicted by GT model and the 

developed void elimination model. This will illustrate the change in the porous 

material behaviour when healing occurs.  

5.5.1 Finite element model 

A three-dimensional model of a cylinder with a central porous region was 

constructed in ABAQUS/Standard, version 6.10-2, a schematic of which is shown in 

Figure 5.7. The initial void volume fraction was taken to be vvf = 0.005, and the 

aforementioned material properties for free cutting steel (FCS) at 900 qC and 𝜀̇ = 0.1 

(Foster, 2007) (see Appendix A) were used. The calibrated fitting parameters, q1 = 

2.0, q2 = 1.25 and q3 = 2.0 were obtained for an average triaxiality, T = -1/3 (see 
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Chapter 4, Table 4.4). The details of the FE model are explained in the following 

subsections. To account for large deformations the finite strain/deformation theory 

was used in the simulation (NLGEOM was set to ON in ABAQUS). 

Boundary conditions: 

An eighth of a cylinder was modelled with symmetry boundary conditions on the flat 

faces as shown in Figure 5.7. In this figure, plane  ‘abcd’  is  symmetric  relative  to the 

z axis (Uz = URx = URy = 0, where U and UR represent displacement and rotation, 

respectively). Similarly, plane  ‘dcfe’  is  symmetric  relative  to  the x axis (Ux = URy = 

URz = 0) and plane  ’bcf’   is  symmetric   relative  to   the y axis (Uy = URx = URz = 0). 

The die is a rigid surface in contact with the top of the cylinder and is only free to 

move in the y direction (Ux = Uz = URx = URy = URz = 0).  

In order to avoid separation between the die and the cylinder in the tension step, the 

die was tied to the top surface of the cylinder (plane  ‘ade’). A frictionless surface to 

surface type of contact was defined between the die and the cylinder. ‘Hard’  type  of  

contact (default assumption in surface to surface contact in ABAQUS) was used in 

defining the interaction in the normal direction. Thermal interactions between the die 

and the sample were ignored in this simulation.  

Loading conditions: 

The simulation consists of three steps of compression, unloading and tension. During 

the compression step, pressure is evenly applied to the die increasing linearly from 0 

to 60 MPa. Due to the compression, void closure occurs in this step. In this step, the 

void volume fraction of the elements in the porous region specified in Figure 5.7, 

reaches vvfc. The pressure is then held constant at 60 MPa for the healing time to be 

reached (vvf = 0) for all the elements. The cylinder is then pulled in tension to 

investigate the change in vvf, once healing was complete. To do so, an upwards 
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displacement of 1.75 mm in the y direction was applied to the reference point (RP) of 

the rigid die. 

 
Figure 5.7- A cylindrical model with central porous region (all dimensions are in mm). 

Mesh and element type: 

The one eighth cylinder consists of a total of 1660 elements with 290 elements in the 

porous region. A mesh with 8-node linear brick, reduced integration elements 

(C3D8R in ABAQUS terminology) was used. Figure 5.8 represents the mesh 

configuration. The die was defined as a discrete rigid surface consisting of 98 

elements. A quadratic-dominated free mesh with discrete rigid elements was applied 

to the die.  

 
Figure 5.8- The mesh configuration. 
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5.5.2 Simulation procedure and results 

The porous region of the model shown in Figure 5.7 was given GT material model in 

one case and the developed void elimination model (closure + healing) in another 

case. Figure 5.9 compares the change in vvf of the porous region for the sequence of 

compression, holding the compressive load and tension for the developed void 

elimination model compared to an equivalent GT material without void healing. In 

both cases the cylinder is compressed where the void volume fraction of the elements 

in the porous region, reaches vvfc, this is represented as the closure stage in Figure 

5.9. The compressive load is then held for healing to occur. For the GT material the 

vvf remained constant during this step, whereas for the void elimination material 

model the vvf decreases to zero as a result of healing.    

 

Figure 5.9- The comparison of the GT model and the developed void elimination model. 

To investigates the change in material behaviour as a result of healing, the load 
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elimination model had to be compared. However, before doing so the FE model had 

to be slightly modified. In order to better reveal the material behaviour difference as 

a result of healing, a larger initial void volume fraction (vvf = 0.02) and a larger 

porous zone (see Figure 5.10) were considered and a greater displacement was 

applied in the tension load step. This was initially attempted with the model shown in 

Figure 5.7. However, there were convergence problems for this geometry; so the 

dog-bone shape shown in Figure 5.10 was used. Boundary conditions, contact 

properties and element type used for this model are identical to the previous model 

shown in Figure 5.7.  

 
Figure 5.10- The dog-bone model with central porous region (all dimensions are in mm). 

As in the previous model, the simulation consists of three steps of compression, 

holding the compressive load and tension. Application of the same pressure level (P 

= 60 MPa) as in the original model resulted in total collapse of the cylinder. This is 

due to the higher compliance resulting from the larger porous region, larger initial vvf 

and the dog-bone shape. Therefore, a smaller compressive load (P = 16 MPa) was 

applied in this study compared to the previous model (Figure 5.7). The load 

increased linearly from 0 to 16 MPa during the compression step and was evenly 
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applied to the die. This is illustrated in Figure 5.11 from point A to B, where a 

compressive load of 1.25 kN (P = 16 MPa) has resulted in a displacement of -2.27 

mm. This displacement is the movement of the reference point (RP) specified on the 

die (see Figure 5.10). The compressive load is then held constant for healing to occur 

(point B in Figure 5.11). 

The compressive load is then removed (point B to C in Figure 5.11) and the cylinder 

is pulled in tension (point C to D in Figure 5.11) where an upwards displacement of 

1.27 mm in the y direction was applied to the RP on the die. Points D to E show the 

plastic behaviour according to the GT model with healing enabled (according to 

Pilling model) in tension. Points D to F show the plastic behaviour according to the 

GT model without healing enabled in tension. It is evident from this figure that the 

GT model with healing enabled requires a higher load to reach the same 

displacement as the corresponding GT model without healing enabled in tension, as a 

result of voids reopening under tension in the latter. 

 
Figure 5.11- Comparison of load-displacement behaviour of GT and the developed void 

elimination model (the load here is the summation of the reaction forces of the bottom 

surface of the one eighth cylinder in Figure 5.10). 
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5.5.3 The effect of change in stress state 

Depending on the application, the stress state might change during the loading 

process. For example, in rolling applications the stress state at some locations 

changes from compression to tension. This will result in opening of the closed but 

not healed voids in the elements. Therefore, the void elimination model has to be 

able to capture this situation. This section investigates the capability of the developed 

void elimination model in correctly predicting vvf in situations when the stress state 

changes.  

During the healing process, the stress state of those elements which have already 

been closed might change from compression to tension. In that case since the 

elements have not been completely healed reopening of those elements might occur. 

To check this situation the change in 𝑣𝑣𝑓 is monitored in each time increment. A 

positive change in the void volume fraction (Δ𝑣𝑣𝑓 > 0) implies that the element is 

under tension and the void is growing. In that case if the 𝑣𝑣𝑓 of that element exceeds 

the 𝑣𝑣𝑓௖, the  element’s  status  has  to  be  changed  from  closed  to  open. 

A similar model to the one used in the previous section (Figure 5.10) was used to 

investigate this situation. However, the tension stage was started earlier than before 

to ensure some closed but not healed voids still exist in the model. 

To illustrate this, the porous region of the model in Figure 5.10 is considered. The 

reopening of voids for this porous region has been illustrated in Figure 5.12. It can be 

seen from Figure 5.12a that under compression, part of elements have reached the 

closure  state  (light  blue  elements)  whereas  some  others  haven’t  (dark  blue  elements).  

As the healing time is reached, the healing starts for some elements (green elements 

in Figure 5.12b). The holding time however is not long enough for some other 

elements and therefore the healing will not occur for all elements with closure state 

(light blue elements in Figure 5.12c). The cylinder is stretched in the next stage and 

therefore elements with closed status have reopened (red elements in Figure 5.12d). 
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Therefore, the model successfully simulates the situation of changing the stress state. 

 

Figure 5.12- (a) Some elements have reached the closure state. (b) Healing has started from 

the centre (c) Majority of elements have been healed however a small number of elements 

are still in closure state and some elements have not even reached the closure state yet. (d) 

The cylinder has been stretched and the elements with closed status have reopened. 

5.6  Healing under non-uniform stress states 

In the previous section (section 5.5) the stress state was almost uniform. Non- 

uniform stress states are very common in real cases such as rolling and indentation. 

During rolling the stress state varies at different locations of the bloom/billet. It is 

therefore important to study the applicability of the void elimination model to non- 

uniform stress states. For this purpose a three-dimensional work-piece loaded by a 

rigid roll was created in ABAQUS/Standard under an indentation scenario (no 

rolling), a schematic of which is shown in Figure 5.13. The reason for selecting such 

an FE configuration was to create a stress state similar to that in the rolling process in 
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terms of non-uniformity. However, the FE model created in this section does not 

simulate the exact rolling process and is more similar to an indentation process where 

the work piece is stationary (in contrast to a rolling process where the bloom moves 

horizontally through the rollers) and the roll moves downwards in the y direction as 

shown in Figure 5.13 (in contrast to the rolling process where the rolls rotate). The 

rolling process will be simulated in Chapter 6.  

5.6.1 Finite element model 

A three-dimensional work-piece loaded by a rigid roll was created in 

ABAQUS/Standard. The work-piece was divided into two sections, section I and 

section II as shown in Figure 5.13. The developed void elimination UMAT 

subroutine was applied only to section I of the work-piece in contact with the rigid 

roll. The outer section of the work-piece (section II), where appreciable densification 

and healing would not occur, was modelled using a von Mises yield surface 

equivalent to the GT model with vvf = 0. 

The initial void volume fraction was taken to be vvf = 0.005 and the aforementioned 

material properties for free cutting steel (FCS) at 900 qC and 𝜀̇ = 0.1 (Foster, 2007) 

(see Appendix A) were used. The calibrated fitting parameters, q1 = 2.0, q2 = 1.25 

and q3 = 4.0 were obtained for an average triaxiality, T = -0.5 (see Chapter 4, Table 

4.4).  

To account for large deformations the finite strain/deformation theory was used in 

the simulation (NLGEOM was set to ON in ABAQUS). 

Boundary conditions: 

In Figure 5.13, plane  ‘A’   is  symmetric   relative   to   the  x axis (Ux = URy = URz = 0, 

where U and UR represent displacement and rotation, respectively). Plane   ‘B’   is  

symmetric relative to the y axis (Uy = URz = URx = 0). 
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The roll (compactor) in Figure 5.13 is a 3D discrete rigid body and is in contact 

(surface-to-surface contact) with the top of the work-piece. The roll is only free to 

move in the y direction (other degrees of freedom for the roll have been constrained). 

A ‘tangential behaviour’ for the contact surfaces was defined using the penalty 

method. The friction coefficient between the roll and the steel work-piece was taken 

to be 0.8 which represents the steel to steel friction coefficient for non-lubricated 

surfaces (Engineering Toolbox, 2013). Unless otherwise stated, the default values in 

ABAQUS/Standard for surface to surface contact were used for all other parameters. 

Loading conditions: 

A compressive force was applied to the reference point of the roll increasing linearly 

from 0 to 3270 kN over 6 seconds during the compression step. The load was then 

held constant while densification and healing occurred.  

Mesh and element type: 

The work-piece consists of 10500 elements with 3000 elements in the porous region 

(Section I in Figure 5.13). A mesh with 8-node linear brick, reduced integration 

elements (C3D8R in ABAQUS terminology) was used. Figure 5.14 represents the 

applied mesh. 

The rigid roll consisted of 1080 elements. A quadratic-dominated free mesh with 4-

node 3D bilinear rigid quadrilateral elements (R3D4 in ABAQUS terminology) was 

applied to the roll. 
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Figure 5.13- The schematic of a 3D work-piece with porous middle section under 
compression. 

5.6.2 Simulation results 

As it was mentioned in section 5.6.1, the UMAT subroutine was used only in the 

centre part of the sheet in contact with the rigid roll. The outer section of the sheet, 

where appreciable densification and healing would not occur, was modelled using a 

von Mises yield surface equivalent to the GT model with vvf = 0. Figure 5.14 shows 

the stress distribution in the specimen under compression; the middle section is under 

plane strain but approaches a plane stress condition nearer to the surface. 
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Figure 5.14- The stress distribution in the specimen under compression. 

Figure 5.15 shows the healing process of the specimen during the application of the 

compressive load. When the compressive load is sufficient some elements reach the 

closure state. The rate of reduction of void volume fraction in the centre of the sheet 

is higher because the stress in the loading direction is highest there, hence closure 

occurs more readily in the centre (Figure 5.15a). Figure 5.15b shows more elements 

have reached the closure state as the compressive load has reached its maximum 

value (as mentioned in section 5.6.1 load is applied linearly over a period of 6 

seconds). Nearer to the free surfaces of the specimen the rate of reduction of void 

volume fraction reduces, therefore fewer elements reach the closure state near the 

free surfaces. It is evident that the healing will start from elements which reached the 

closure state first (Figure 5.15c). It can be seen from Figure 5.15d that a larger 

number of elements have been healed after 60 seconds, however, some have 

remained unhealed and will be healed upon holding the load for a longer time.  

    

 



Chapter 5: Micromechanical modelling of void elimination: Healing 

141 

 

 

 
 (a) time = 1.6 s 

 

 
 (b) time = 6 s 

 

 
 (c) time = 22.1 s 

 

 

 (d) time = 60 s 

Figure 5.15- Progress of healing during loading (blue, green and red represent the 

unclosed, closed and healed elements respectively). (a) closure has started, (b) more 

elements have reached the closure state, (c) healing has started, (d) healing has progressed 

with time.      

Element status
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5.6.3 Sensitivity of healing time to vvfc 

The 𝑣𝑣𝑓௖ strongly affects the healing time: larger values of 𝑣𝑣𝑓௖ imply coarser void 

surfaces and therefore longer healing times. To investigate this, the model explained 

in section 5.6.1 was considered. The simulation was performed for two different vvfc 

values of 0.0045 and 0.0035. The change in vvf with time during the healing process 

was obtained for all elements. To simplify the presentation of the results, the vvf 

versus healing time is only shown for a random element (element A as shown in 

Figure 5.16) in both cases. The results (vvf versus healing time) are presented in 

Figure 5.17a and b, where for a 𝑣𝑣𝑓௖ of 0.0045 (Figure 5.17a) the healing time is 

longer than for 𝑣𝑣𝑓௖ = 0.0035 (Figure 5.17b). It is worth noting that the healing 

times are long compared to a typical roll pass. This is discussed further in Chapter 6 

where rolling is simulated. 

 

 

Figure 5.16- The selected element (Element A) used for presentation of healing time 

sensitivity to vvfc. 

 

(Element 8684)
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Figure 5.17- Comparison of vvf versus healing time for when vvfc=0.0045 and when 

vvfc=0.0035. 

5.7  Conclusions 

An Abaqus/UMAT subroutine has been developed for the analysis of the material 

porosity elimination process including two stages of void closure and healing. The 

model uses GT under reverse loading to predict void closure, where as a result of 

compression the void volume fraction (𝑣𝑣𝑓) of the material reduces to 𝑣𝑣𝑓௖. Further 

application of the Gurson model will not bond the surfaces of the pores and therefore 

𝑣𝑣𝑓 is not practically zero and thus a healing model is required. Pilling’s   healing  

model has been implemented into the UMAT to predict the healing time here but it 

can be adapted to any other diffusion bonding/healing model. 

The simulations were performed on a specimen with porous material properties (GT 

model) and on the same specimen with the current healing UMAT model. The 
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comparison of the results showed increased strength in the latter model as a result of 

porosity elimination. 

The healing model is significantly affected by 𝑣𝑣𝑓௖. Larger values of 𝑣𝑣𝑓௖, imply 

coarser void surfaces and hence longer healing times. Therefore, for two different 

𝑣𝑣𝑓௖ values, the difference in closure times is insignificant due to plastic deformation 

whereas the healing times vary noticeably. This is especially important during rolling 

processes where a correct healing time needs to be achieved by adjusting the rolling 

speed. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Micromechanical modelling of void elimination: Healing 

145 

 

5.8  References 

Engineering Toolbox (2013). Available from World Wide Web : 
http://www.engineeringtoolbox.com/friction-coefficients-d_778.html  

Farrugia, D. (2012). TATA Steel technical presentation, TATA Steel. 

Foster, A. (2007). Birmingham, University of Birmingham. Ph.D thesis. 

Kaye, M., Puncreobutr, C., Lee, P. D., Balint, D. S., Connolley, T., Farrugia, D., and 
Lin, J. (2013) Acta Materialia, 10.1016/j.actamat.2013.08.065 (Accepted 
forpublication). 

Pilling, J. (1988). "The kinetics of isostatic diffusion bonding in superplastic 
materials." Materials Science and Engineering 100: 137-144. 

Pilling, J., D. W. Liversey, J. B. Hawkyard and N. Ridely (1984). "Solid state 
bonding in superplastic Ti-6AI-4V." Metal Science 18(3): 117-122. 

Pilling, J. and N. Ridely (1987). "Solid state bonding of superplastic AA 7475." 
Materials Science and Technology 3(5): 353-359. 

Abaqus document, Writing User Subroutines with ABAQUS [Online]. Available: 
http://imechanica.org/files/Writing%20User%20Subroutines%20with%20AB
AQUS.pdf. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6   

Model application to the 

rolling process 

In this chapter the developed UMAT will be applied to 

model the void elimination of a Free Cutting Steel (FCS) 

work-piece during rolling. The effect of parameters such as 

the Roll Gap geometry/shape Factor (RGF) and initial 

porosity distribution on the void elimination process will be 

investigated. 
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6.1  Rolling process 

In rolling the cross-sectional area of a work-piece is reduced or changed in shape by 

the compressive forces exerted by the rotating rolls. In relation to temperature, 

rolling is classified into three groups: cold rolling which occurs at temperatures less 

than 0.3 of the melting temperature, Tm, warm rolling which involves temperatures 

between 0.3Tm - 0.7Tm and hot rolling which occurs above the recrystallization 

temperature (above 0.7Tm).  

Hot rolling is often used for as-cast steels. The work-piece starts as an ingot which is 

a metal stock cast into a size and shape convenient to store and transport. The ingots 

have different size and weight ranging from small blocks weighing a few kilograms 

to large ingots weighing several tons. Prior to entering the roll-reduction sequence 

the ingot is heated in a furnace for a few hours to reach a uniform temperature 

profile. After removing the scale (oxide forming at high temperatures) from the 

work-piece surface,   it   enters   a   “cogging/blooming mill” where it reduces into a 

bloom or slab (see Appendix F, part i for information on products of the rolling mill). 

The largest thickness reduction in the work-piece  occurs  in  a  “roughing  mill/train”. 

There are two different types of roughing processes. One consists of several rolling 

stands (typically four to five set of rollers) which reduce the thickness of the work-

piece. The other type consists of one single reversing stand through which the work-

piece is moved back and forth. The thickness of the work-piece is further reduced in 

a  “finishing  train”  consisting  of  four  to  seven  stands,  where  the  desired  surface  finish  

is obtained. Figure 6.1 illustrates the hot rolling process of steel. 

The product of rolling will be a high quality material with reduced porosity, 

enhanced ductility and strength and more uniform and finer grain size. Figure 6.2 

shows the changes in the grain structure of cast metal during hot rolling (Kalpakjian 

and Schmid 2001)  
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Figure 6.1- Rolling process (Udomphol 2007). 

 

Figure 6.2- Change in the grain size during the hot rolling process (Kalpakjian and Schmid 

2001). 

Depending on the desired output product, different rolling processes are used. These 

include flat rolling, shape rolling, tube rolling, plug rolling, ring rolling, etc. Flat 

rolling involves slabs, plates, sheets, strips and foils. This study focuses on flat 

rolling process only.   

Since rolling is a widely used deformation process it has different versions. The 

sequence of the stands in the rolling process and also the arrangement of the rolls in 

the mill stand can differ for any rolling system (Appendix F, part ii summarises 

different rolling mill configurations). 
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6.1.1 Parameters in the rolling process 

Figure 6.3 illustrates the geometries in flat rolling, where the starting and ending 

materials have rectangular cross sections. The gap between the two rollers is less 

than the thickness of the starting material and therefore the thickness of the metal is 

reduced as it passes through the rollers. The torque produced by the rolling mill 

depends   on   the   mill’s   diameter.   Smaller   diameters   will   result   in   less   torque.   The 

gripping of the work-piece between the rollers is highly affected by the friction at the 

interface between the material and the rollers. The maximum thickness reduction 

possible in a single pass is restricted by the friction between the rolls. For a certain 

friction present, if the gap between the rollers is smaller than a certain value relative 

to the initial thickness, the work-piece may hit the rollers and slide back with no 

gripping taking place. To keep the volume rate of flow constant throughout the roll 

gap, the speed at which the metal moves during rolling should vary.  Therefore, the 

velocity increases as the thickness decreases.  

 

Figure 6.3- Schematic illustration of geometries in rolling. 

The force experienced by a work-piece during rolling is influenced by different 

parameters. Initial temperature of the work-piece significantly affects the rolling 

force. Increasing the initial temperature (up to a certain point) reduces the rolling 

force. The rolling force is also affected by the rotation speed of the rollers. Increasing 
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the roll’s rotation speed, the material flow stress increases due to the increase in the 

average strain rate in the deformation zone. It must be noted that increased strain rate 

can adversely affect material properties and therefore, very high roll speed reduces 

the product quality. One important parameter affecting the rolling force is the Roll 

Gap geometry/shape Factor. The stress regime of the work-piece between the rollers 

is highly affected by this parameter. The Roll Gap geometry/shape Factor (RGF) is 

defined as, 

𝑅𝐺𝐹 =
𝐿
𝐻௠

 6.1 

Where L and Hm are defined as: 

𝐿~൫𝑅௥(𝐻ଵ − 𝐻ଶ)൯
଴.ହ 6.2 

𝐻௠ =
𝐻ଵ + 𝐻ଶ

2
 6.3 

where Rr is the rollers radius, L is the projected arc of contact between the roll and 

the work-piece. H1 and H2 are the work-piece thickness before and after passing 

through the rollers, respectively. 

The relationship between the RGF and the pressure distribution in a rolling work-

piece will be studied in the following sections. 

6.1.2 Healing during multi-pass rolling process 

The damage healing approach introduced in Chapter 5 will be applied to a rolling 

case in the following sections. Prior to this, it is important to know that the rolling 

occurs in a multi-pass process. As explained at the beginning of section 6.1, most of 

the reduction in the work-piece thickness occurs in the roughing stand. There are two 

different types of roughing processes. One consists of several rolling stands as shown 

in Figure 6.1. The other type consists of one single reversing stand through which the 
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work-piece is moved back and forth. Therefore, if the healing model is applied to the 

multi-pass rolling, the final closure and healing states of the current roll will be 

inherited as the starting conditions of the next roll pass. 

6.1.3 The FE model  

In order to investigate the porosity elimination process during hot rolling, the 

developed UMAT subroutine (see Chapter 5) has been applied to a case of hot  flat  

product rolling. The FE model represents only one stand in the roughing stage.  

A three-dimensional model of two rolls and a billet was provided by TATA steel, a 

schematic of which is shown in Figure 6.4. The billet has a cross sectional area of 

324 cm2 (18×18 cm) and length of 49.649 cm. Since the billet has a symmetric 

geometry, only a quarter of the billet has been modelled to save computational time. 

The rolls have radius of 34.75 cm and Hm/L= 3.5. 

In Figure 6.4b, plane  ‘acge’  is  symmetric  relative  to  the  x axis (Ux = URy = URz = 0) 

and  plane  ’cdhg’  is  symmetric  relative  to  the  y axis (Uy = URx = URz = 0). The billet 

has a velocity of 4.49 cms-1 in z direction. The velocity of the rollers in x, y, z 

direction is zero. The angular velocity of the rollers are defined as -0.1288 rad/s and 

0.1288 rad/s. The rolls are 3D analytical rigid bodies and are in contact (surface-to-

surface  contact)  with  the  billet.  A  ‘tangential  behaviour’ for the contact surfaces was 

defined using the penalty method. The friction coefficient between the roll and the 

steel work-piece was taken to be 0.3 (the reduction in the product thickness only 

occurs if the shear frictional stress is greater than a minimum value). Unless 

otherwise stated, the default values in ABAQUS/Standard for surface to surface 

contact were used for all other parameters. 

To study the porosity elimination of the work-piece, only a section of the billet has 

been given porous material properties. The developed UMAT has been applied to the 

porous section and a finer mesh has been used. Figure 6.5 represents the block 
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partitioning and the applied mesh. The work-piece consists of a total of 3904 

elements with 1464 elements in the porous region. A mesh with 8-node linear brick, 

reduced integration elements (C3D8R in ABAQUS terminology) was used.  

(a) 

 

(b) 

 

Figure 6.4- (a) Finite element model of the work-piece between rotating rollers, (b) Finite 

element model of the billet. 
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The non-porous section of the work-piece was modelled using a von Mises yield 

surface equivalent to the GT model with vvf = 0. The initial void volume fraction of 

the porous section was taken to be fo = 0.006 and vvfc of 0.003 was assumed. The 

aforementioned material properties for free cutting steel (FCS) at 900 qC and 𝜀̇ = 0.1 

(Foster, 2007) (see Appendix A) were used. The calibrated fitting parameters, q1 = 

2.0, q2 = 1.25 and q3 = 4.0 were obtained for an average triaxiality, T = -0.5 (see 

Chapter 4, Table 4.4). 

Figure 6.6 shows the pressure distribution and evolution throughout the work-piece 

as it is compressed through the rollers. The compression may be sufficient at some 

positions in the work-piece and therefore closure and healing may occur in some 

parts. However at some positions the amount of compression and plastic deformation 

may not be enough for a closure state to be reached and healing may never occur. In 

Figure 6.7 some of the elements have reached the closure state and started to heal. 

These elements are shown in red. As the work-piece is rolled more elements 

experience compression and the number of these element (shown in red) increase. 

 

Figure 6.5- Illustration of the block partitioning and the applied mesh.  
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Figure 6.6- Pressure distribution along the work-piece (positive values represent 
compression). 
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Figure 6.7-Void elimination process during rolling. Blue represents 

elements which have not reached the closure state. Red represents elements 

which have reached the closure state and have started to heal.  
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It should be noted that in Figure 6.7, although some elements (represented in red) 

have reached the closure state and have started to heal, more time is required for 

these elements to heal completely. Since the stress state in the work-piece is non-

uniform, the healing times are different for each element. To have an approximate 

estimation of the predicted healing time for the studied case, three random elements 

were selected from the model as shown in Figure 6.8. The change in vvf with time 

during healing for these elements is shown in Figure 6.9. This figure shows predicted 

healing times of 19.1 s, 23.6 s and 20.4 s for element A, B and C, respectively. The 

average healing time for all closed elements (red elements in Figure 6.7) is 18.1s.  

 

Figure 6.8- Elements selected for investigation of healing time. 

 

 

 

Element A
Element B

Element C



Chapter 6: Model application to the rolling process 

157 
 

 
Figure 6.9- vvf versus time for element A, B and C (see Figure 6.8) 

In the studied case considering the work-piece dimensions and the rotation speed of 

the rolls, the time for the entire work-piece to pass through the rolls is about 11 

seconds. It is clear that since the work-piece is moving through the rolls, different 

locations of the work-piece experience the compression for less than 11 seconds (e.g. 

about 1 to 2 seconds). Comparing this to the predicted healing times, the healing 

cannot be achieved within a single roll pass. It is clear that the predicted healing 

times are associated with a specific condition (Hm/L, fo, vvfc, temperature, etc.). If 

these conditions change, the healing time will be different. For example, for smaller 

values of Hm/L, the healing time will be shorter. In that case, considering the fact that 

rolling (roughing stage in the studied case) involves multiple passes (see section 

6.1.2), healing might be possible.  

In cases where the applied conditions (e.g Hm/L, fo, vvfc, temperature, etc.) result in 

longer healing times (e.g. 2-3 minutes), reducing the roll rotation speed and 

increasing the number of roll stands would favour the healing process, but this would 

reduce output and add cost. Further, this would cause heat loss in the work-piece. 

Apart from performing the rolling process in furnace rooms, it may not be possible to 

heal under these conditions.   
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6.1.4 The effect of roll gap geometry factor on porosity 

closure 

As mentioned in section 6.1.1, the stress regime of the work-piece between the rolls 

is highly affected by Roll Gap geometry/shape Factor. For Hm/L  >  4.8 (where 

Hm/L=𝑅𝐺𝐹ିଵ) all principal stresses are tensile, therefore representing a regime of 

tensile triaxiality. For 1.8  <  Hm/L  <  4.8, the vertical principal stress is compressive, 

but all the other stresses are tensile. For 1  <  Hm/L  <  1.8, the hydrostatic stress 

becomes compressive therefore porosity closure will be promoted at a greater rate as 

Hm/L decreases (Farrugia, 2012). Here the porosity closure has been investigated for 

a range of Hm/L values, with the understanding that greater closure will enable 

greater healing; the trend with Hm/L can be understood without simulating healing. 

The FE model explained in section 6.1.3 was used for this purpose (vvf of 0.02 was 

assumed). To compare the closure extent for different Hm/L cases, closure 

percentage as defined in equation 6.4 has been obtained for Hm/L values of 2.5, 3.5, 

4.5, 6.5 and 8.  

𝐶𝑙𝑜𝑠𝑢𝑟𝑒  𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑐𝑙𝑜𝑠𝑒𝑑
𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

× 100 6.4 

 
Figure 6.10- Closure percentage obtained during rolling for different Hm/L values. 
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As explained before for Hm/L  >  4.8 all principal stresses are tensile, therefore 

representing a regime of tensile triaxiality. Looking at Figure 6.10, the closure 

percentage (% Closure) is low for Hm/L values of 6.5 and 8. For 1.8  <  Hm/L  <  4.8, 

the vertical principal stress becomes compressive, therefore porosity closure will be 

promoted. Figure 6.10 shows higher closure percentage for Hm/L values of 2.5 and 

3.5. It is worth mentioning that the value of 𝑣𝑣𝑓௖ is an assumption here 

(𝑣𝑣𝑓௖=0.015); in real cases the value of 𝑣𝑣𝑓௖ might be smaller and therefore the 

closure percentage values could be different. 

6.1.5 The effect of initial porosity size on porosity closure 

The porosity elimination in rolling is highly affected by the amount of initial porosity 

present in the work-piece, or in other words, the initial void volume fraction (𝑓௢). 

Higher values of  𝑓௢, require larger compression (larger reduction in work-piece 

thickness) and also longer times. Figure 6.11 compares the percentage of closure of a 

billet with initial porosity values of 𝑓௢= 0.02 and 𝑓௢  = 0.03 rolled under the same 

conditions. As it is evident from Figure 6.11 for initial void volume fraction of 𝑓௢  = 

0.02, the amount of compression has been sufficient to produce a relatively high 

closure percentage of around 91%, whereas for a slightly higher initial porosity of 𝑓௢  

= 0.03, the closure percentage is relatively smaller (~19 %).  

 
Figure 6.11-Closure percentage versus time for two different values of initial porosity  𝑓଴. 
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6.2  Modelling of non-uniform initial porosity 

distribution  

While  porous  ductile  material  models  are  usually  based  on  assumptions  of 

uniform void distributions, the cases of non-uniform porosity is common in real case 

scenarios. Attempts have been made to model non-uniform porosity distribution. 

Studies such as that of Oho and Hutchinson (1984) have investigated the effects of 

an inhomogeneous distributions of voids on material behaviour. To model the non-

uniform distribution of the voids Ohno and Hutchinson considered an infinite block 

of material containing an infinite planar band with an excess void level. The initial 

void volume fraction outside the band was specified as 𝑓ଵ, while the initial value 

inside the  band was denoted by 𝑓ଵ௕.  

Ohno  and  Hutchinson’s  model uses Gurson theory to characterize the material, and 

the initial void volume fraction within the band is taken to be axisymmetric with 

𝑓ଵ௕ =   𝑓ଵ + ∆  exp  ൜−
1
2
(
𝑟
𝑠𝜆
)ଶൠ 6.5 

where λ is the  initial  thickness  of the  band and is also identified  as  the  initial 

average  void  spacing.  Other conventions are shown in Figure 6.12. The initial void 

volume fraction inside the band for 𝑟 ≫ 𝑠𝜆 is also taken as 𝑓ଵ. 

Therefore, the non-uniformity of the initial void distribution is a disk-shaped cluster 

of thickness λ   and approximate radius 𝑠𝜆 whose excess in volume fraction at its 

centre over the uniform background level is ∆.  

The  main   aim   of  Ohno   and  Hutchinson’s  work  was   to   define   the   effect of cluster 

size, S on the ductility. They considered the interaction between the band and the 

outside material and governed constitutive equations to determine the critical 

condition for localisation. The implementation of their work, however, to model 
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spatial distributions of voids in a work-piece in a finite element approach is not 

feasible. 

 

Figure 6.12- Conventions used in Ohno  and  Hutchinson’s  approach (1984). 

A more applicable approach is that of Becker. He studied the effect of a non-uniform 

distribution of porosity on flow localization and failure in a porous material (Becker 

1987). To model void distribution Becker used a sub-modelling approach by dividing 

the total area into sub-regions or cells with different void volume fractions. Each cell 

had a specific void density and was regarded as a continuum. The porosity 

distribution was mimicked from a porous specimen. The specimen surface was 

divided into frames, where each frame was adjacent to the previous one. The void 

area fraction of each frame was measured with an Optomax optical image analysis 

system. Each frame contained approximately 40 voids with the area fraction being 

calculated by dividing the void area by the total frame area.  

Zhang et al. (1999) have also criticised the assumption of uniform void size and void 

spacing in porous material damage models, stating that this assumption ignores the 

effect of void interaction and therefore overestimates the material resistance to 

fracture. They investigated the effect of void size and spacing and void interaction by 
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applying different axisymmetric cell models containing one void or two voids with 

different geometries. Figure 6.13 illustrates the geometry of a cylindrical cell 

containing two voids used by Zhang et al. Comparison of cell models having 

identical void spacing and that of different void spacing showed that the void growth 

was faster for the cell with void spacing smaller in the cross section direction than 

that in the tension loading direction. 

The approach of Zhang et al. is suitable for cases of cell model studies, however 

implementation of their work to a damage model which is to be used for large scales 

requires changing or deriving of new constitutive equations in the model to account 

for void spacing and void size.  

This   study   will   follow   Becker’s   approach   to  model   porosity   distribution   in   a   cast 

work-piece. 

 

Figure 6.13- The geometry of cylindrical cell containing two voids (Zhang, Bai et al. 1999) 

6.2.1 Finite element modelling of initial porosity distribution 

As it was shown in Chapter 5, in steel casts the porosity is usually localized and non-

uniformly distributed relative to the entire part. In steel cast products the porosity is 

more concentrated in the centre. It is known that central porosity is basically due to 
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the volumetric contraction of steel during solidification. Figure 6.14 shows a chain of 

voids found in the core of a cast steel bloom (see Figure 5.1 in Chapter 5 for more 

details). This localised type of porosity is highly undesirable and causes 

inhomogeneties in the material properties.  

As shown in Chapter 5, moving from the bloom centre towards the surface, the 

porosity reduces in size and concentration (see Figure 5.2). Small patches of micro-

porosity are likely to be seen in the region between the centre and surface. However, 

the surface is very unlikely to have porosity and is usually assumed to be non-porous 

(Farrugia 2012).  

 

Figure 6.14- A chain of voids found in the core of a cast steel bloom. 

So far an even distribution of initial porosity,  𝑓଴, has been considered in the 

developed void elimination UMAT. To model non-uniform initial porosity spread, 

instead of assuming a constant value of 𝑓଴, it will be defined as a function which 

changes with coordinates.  In order to obtain any initial porosity distribution, this 

function has to be replaced with the function defining the distribution of interest. 

Here two different configurations have been considered. The first attempt considers a 

linear porosity spread, increasing from surface to the centre of the work piece. The 

second attempt models a Gaussian or normal distribution of porosity.  

To obtain a linear porosity distribution where the porosity increases linearly from 

surface to the centre of the work-piece, the configuration in Figure 6.15 is used, 

where (𝑥଴, 𝑦଴) represents the very centre of the work-piece and (𝑥ଵ, 𝑦ଵ) represents 
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the corner surface of the work-piece. Equations for planes (1) and (2) can therefore 

be obtained. The surface describing the linear porosity distribution can therefore be 

defined as: 

𝑓 = ൞
−𝑓𝑜

𝑦 − 𝑦1
𝑦1 − 𝑦𝑜

, 𝑦 ≥ 𝑦𝑙

−𝑓𝑜
𝑥 − 𝑥1
𝑥1 − 𝑥𝑜

, 𝑦 < 𝑦𝑙
 

6.6 

 

where 𝑦௟ is the diagonal of the work-piece shown as dashed line in Figure 6.15. 

𝑦𝑙 =
𝑦1 − 𝑦0
𝑥1 − 𝑥0

𝑥 + 𝑏,              𝑏 = 𝑦0 −
𝑦1 − 𝑦0
𝑥1 − 𝑥0

𝑥0 6.7 

 

Figure 6.15- The cross section of the work- piece and the coordinates. 

The obtained surface has been plotted in Figure 6.16, where maximum and minimum 

porosity are shown in red and blue respectively.  

As a second attempt, a two-dimensional Gaussian function has been used to spread 

the porosity.  

𝑓(𝑥, 𝑦) = 𝐴exp ൭−ቆ
(𝑥 − 𝑥௢)ଶ

2𝜎௫ଶ
+
(𝑦 − 𝑦௢)ଶ

2𝜎௬ଶ
ቇ൱ 6.8 

Here the coefficient A is the amplitude, (𝑥଴, 𝑦଴) is the centre coordinate and 𝜎௫, 𝜎௬ 

are the x and y spreads of the function. Figure 6.17 was created using 𝐴 = 𝑓଴, 

𝜎௫ =   𝜎௬ =50 and (𝑥଴, 𝑦଴) as the coordinates of the work-piece centre.  

(1)

(2)

Surface

Centre
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Figure 6.16-Linear distribution of porosity in the work-piece. 

 

Figure 6.17- Normal distribution of porosity in the work-piece. 

The initial porosity with three different distributions of even, linear and Gaussian for 

a section of the work-piece has been illustrated in Figure 6.18(a), (b) and (c), 

respectively. The Python codes developed for modelling non-uniform initial porosity 

are provided in Appendix G.  
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Figure 6.18- The initial porosity with three different distributions of (a) Even, (b) Linear and 

(c) Gaussian (normal). 

(a) 

(b) 

(c) 

f0 
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Figure 6.19- Comparison of the change in void volume 

fraction during rolling for (i) evenly, (ii) linear and (iii) 

normal porosity distributions at three steps: (a) 

sometime after the roller has touched the section, (b) the 

roller in middle of the section, and (c) the roller passed 

through the whole section. 

 

Figure 6.19 compares the change in void volume fraction as the thickness of the 

work-piece is reduced during rolling, for three different examples of initial porosity 

distributions. In all three cases the deformation process has been shown in three steps 

of (a) sometime after the roller has touched the section, (b) the roller in middle of the 

vvf 
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section, and (c) the roller passed through the whole section. Figure 6.19 (i) illustrates 

the change in 𝑣𝑣𝑓  for a case of evenly distributed initial porosity. Figure 6.19 (ii) and 

(iii) show the porosity spread for linear and normal distributions, respectively. 

Comparison of the three initial porosity distributions shown in Figure 6.19 indicates 

that a much lower amount of porosity remains in the work-piece after deformation 

for linear and normal initial porosity distributions compared to the case of evenly 

distributed initial porosity.  

Figure 6.20 compares the healing percentage versus time for the three considered 

distributions of initial porosity. It can be seen that for the even distribution of initial 

porosity the closure percentage achieved is the lowest (18.7%) compared to other 

cases. This is clearly due to the total initial void volume fraction being larger for the 

even distribution compared to linear and normal distributions. 

 

Figure 6.20- The comparison of closure percentage during rolling for three different initial 

porosity distributions. 
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6.3  Conclusions 

The developed UMAT has been applied to model the void elimination of a steel 

work-piece during rolling. The effect of Roll Gap geometry/shape Factor   (RGF=𝐿/

𝐻௠) on porosity elimination during rolling was investigated. For 𝐻௠/𝐿 > 4.8 all 

principal stresses are tensile, representing a regime of tensile triaxiality which leads 

to lower healing percentages compare to cases of 1.8 < 𝐻௠/𝐿 < 4.8, when the 

vertical principal stress becomes compressive and porosity closure occurs.  

The effect of initial void volume fraction on porosity elimination in rolling was also 

investigated. It was observed that for larger initial void volume fractions the 

percentage was lower. This was due to the amount of compression for larger values 

of 𝑓଴ not being sufficient at some locations in the work piece to reach the closure 

state. 

Finally, non-uniform initial porosity distributions in a work-piece were modelled. 

Instead of defining a constant value for 𝑓଴ (which creates an even distribution in the 

work-piece), 𝑓଴ was defined as a function which changed with coordinates. Two 

cases of linear and normal distribution were investigated. To model any distribution 

the user has to only replace the function with that of interest.  
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Chapter 7   
Experimental work 

Devising an appropriate healing process which does not 

cause discontinuity in the microstructure and mechanical 

properties at the bonding sites requires an accurate choice of 

thermo-mechanical processing parameters. 

An experimental technique has been developed to estimate 

the load and the time required for porosity healing in Free 

Cutting Steel (FCS) at 1000oC. Different analysis techniques 

have been used to examine the extent of healing and the 

optimum bond parameters have been obtained. Experimental 

results are used to calibrate a healing model previously 

introduced in Chapter 5.  

 



Chapter 7: Experimental work 

 

172 
 

7.1  The aim and objectives of the experimental 

program 

Healing as a process in which material defects such as voids and cracks reduce in 

size, resulting in a stiffer and stronger material with enhanced mechanical properties, 

has been an objective in the processing of many materials. Applications of void 

healing can be seen in polymers and composites (Blaiszik et al., 2010, Wool and 

O'connor, 1981), biomaterials (Fratzl and Weinkamer, 2008, Vermolen et al., 2008) 

and also the recovery of concrete (Li and Yang, 2008, Reinhardt and Jooss, 2003). 

Healing in metal processing has been mostly studied in terms of sinter powder 

metallurgy where mass transfer of metal occurs at high temperatures in the range of 

0.7 to 0.9 of the melting temperature, producing either solid state or liquid phase 

bonding across powder interfaces (Lumley and Polmear, 2007).  

Although healing and diffusion bonding has been widely studied for different alloys, 

the conditions required to create self-bonding of porosity in FCS has never been 

inspected and is therefore the main focus of this chapter. It is also worth mentioning 

that in the majority of studies done on bonding, the examination of the bond strength 

has been ignored. In most cases SEM and optical microscopy have been used to 

observe the trace of the bonding line. This study however, offers a better method of 

checking if a completely strong bond has been made.   

To improve the quality of jointed interfaces, it is essential to consider the optimal 

conditions for bonding. The main factors affecting the quality of the bonds include 

temperature, pressure and time. The aim of this study is therefore to develop 

experimental techniques to estimate the load, temperature and time required for 

healing of FCS as-cast grades. The relationship of the bond parameters and tensile 

strength of the joints has been discussed. Image analysis techniques have been used 

to examine the extent of healing and the optimum bond parameters have been 
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obtained. The experimental results are used to calibrate the void elimination model 

outlined in Chapter 5. 

7.2  The experimental method 

A number of cylindrical samples manufactured from non-porous as-cast FCS billets 

provided by TATA Steel were cut in halves and were compressed under various 

loading ranges. The holding time was varied in a systematic approach to ensure an 

accurate estimation of the required load and healing time. The extent of healing was 

examined by performing a series of tensile tests and inspecting the flow curves of the 

specimens.  

7.2.1 Test Materials  

The material was provided by TATA steel in the as-cast state as a number of work-

piece cuts. The composition tested was reduced leaded free-cutting steel enhanced 

with bismuth and tellurium, Telby+ (Table 7.1) 

Table 7.1- Chemical composition of leaded free cutting steel (LFCS) enhanced with Telby+. 

C Mn P S Si Other(Pb) 

0.07 1.00 0.05 0.30 0.01 < 0.4 

Test material was supplied as the final 400mm length of a 355×750mm continuous 

cast work-piece. Defects or porous features are more likely to be found in the centre 

of the work-piece than the edge. A 50 × 50 × 400mm sample was taken from the 

work-piece edge as shown in Figure 7.1.  
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Figure 7.1- Cast work-piece sectioning plan as defined by TATA. 

7.2.2 Equipment 

The tests were conducted in a Gleeble 3800 material test station (Figure 7.2). The 

Gleeble 3800 is a fully integrated digital closed loop control thermal and mechanical 

testing system. These machines typically have a high speed heating system, a servo 

hydraulic system and a computer control and data acquisition system.  

The Gleeble uses a direct resistance heating mechanism, in which a low current 

frequency causes a uniform current density throughout the volume of the specimen. 

This indicates that the specimen is heated at the same time in the whole volume. 

Power is controlled by adjusting the phase difference between voltage and current.   

Electrical current is transferred to the specimen by means of a static and a dynamic 

jaw. The jaws are water cooled assuring a high heat extraction at each side of the 

specimen. Therefore only a small part at the centre is held at the prescribed 

temperature.  

Specimen temperature is monitored by thermocouples mounted to the specimen 

surface at middle of its length. The thermocouple follows the programme cycle to 

control the electrical current fed into the test-piece enabling the system to simulate 

 500 
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different time and temperature conditions. Here K-type thermocouples were used 

which provides accurate temperature measurement up to 1250ºC.  

 

Figure 7.2- Gleeble 3800 testing system. 

  

Figure 7.3- The extensometer, C-Gauge. 
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A jaw-to-jaw transducer called an L-gauge, can be used to measure the length change 

of the specimen from one jaw to the other jaw; however, this measurement includes 

the compliance of the jaws and is not very accurate. Therefore the diameter change 

of a specimen is measured at the specimen centre by an extensometer, C-gauge 

(Figure 7.3). The reading of the C-gauge is used to determine the stress and strain 

rate. 

Figure 7.4 shows details of the specimen set up within the test chamber and is 

suitable for both tension and compression tests. Copper grips are used to clamp 

specimens for testing. Copper grips have very high thermal conductivity and are 

good for hot ductility studies and welding and casting simulations. Another option is 

stainless steel hot grips, which due to lower thermal conductivity are more suitable 

for isothermal testing. Two thermocouples have been mounted on the specimen to 

monitor the temperature on either side of the middle cut as shown in Figure 7.5. The 

temperature difference between the two thermocouples was about 30oC 

(thermocouple 1 showed a temperature of 970oC and thermocouple 2 showed 

1000oC) which is insignificant relative to the maximum temperature of 1000oC and 

indicates a well distributed temperature along the gauge length.  

  

Figure 7.4- The specimen set up within the test chamber. 
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Figure 7.5- The thermocouple set up on the specimen. 

7.2.3 The specimens 

The specimens were machined into cylindrical shapes with threaded ends (Figure 

7.6) and were ground at the cut surface with P2500 abrasive paper followed by 

cleaning in ethanol to produce a smooth surface finish (with roughness no greater 

than 9.1𝜇m). The surface preparation was done a few hours prior to diffusion 

bonding and specimens were kept in a desiccator jar to prevent oxidation. Each of the 

halved specimens had a length of 55.5mm and a diameter of 10mm; the adopted 

specimens’   shape  and  key  dimensions are shown in Figure 7.7. The test procedure 

comprised compressing the two halves of each specimen, which were put back 

together such that their axes were aligned, under various combinations of load and 

time. 

 

Figure 7.6- The cylindrical specimen cut into halves. 

Hot zone

Bonding interface

Thermocouple 1 Thermocouple 2
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Figure 7.7- Test specimen dimensions (units in mm). 

7.2.4 Test procedure 

The Gleeble direct resistance heating mechanism requires sufficient initial contact 

between the two halves of the specimen. To achieve this, the specimen was 

preloaded. It was found that  an applied load of -0.5 kN corresponding to a pressure 

of 6.4 MPa for a 10 mm diameter, maintained for a minimum of 30 s produced the 

contact conditions necessary to achieve a temperature of 1000°C by direct resistance 

heating. Following the preloading step the load was increased to one of three values, 

and the specimens were held under that condition for varying time periods. Table 7.2 

provides a summary of the test load and time combinations studied for 1000°C. A 

schematic diagram of the time, temperature and pressure variation is also illustrated 

in Figure 7.8. 

Table 7.2- The load-time combinations tested. 

Test No Load (kN) Pressure (MPa) Time 

1 1.0 12.7  (≈  0.4σy) 2.5 min 
2 1.0 12.7  (≈  0.4σy) 4 min 
3 1.0 12.7  (≈  0.4σy) 5 min 
4 1.0 12.7  (≈  0.4σy) 10 min 
5 3.0 38.2  (≈  1.3σy) 20 s 
6 3.0 38.2  (≈  1.3σy) 30 s 
7 3.0 38.2  (≈  1.3σy) 1 min 
8 3.0 38.2  (≈  1.3σy) 2 min 
9 5.0 63.7  (≈  2.1σy) 10 s 
10 5.0 63.7  (≈  2.1σy) 20 s 
11 5.0 63.7  (≈  2.1σy) 30 s 
12 5.0 63.7  (≈  2.1σy) 1 min 
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Figure 7.8- Schematic of the time, temperature and pressure variation during the test 

(positive pressure is downwards). 

7.2.5 Tensile tests 

Tensile tests on the bonded specimens were subsequently carried out to measure the 

strength of the bonded region. The tensile test specimens were necked in the middle; 

the adopted geometry and the key dimensions of the specimens are shown in Figure 

7.9. The tests were performed at room temperature and a uniform strain rate of 0.2 s-1 

was employed. A C-gauge was utilised to measure the change in diameter and the 

diametral strain was calculated. 

 

Figure 7.9-Uniaxial test piece geometry and dimensions (units in mm). 
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7.2.6 Experimental results 

The flow curves obtained for bonds formed at 1000oC under compressive loads of 

12.73 MPa, 38.2 MPa and 63.7 MPa are shown in Figure 7.10 to 7.12 respectively. It 

is apparent from Figure 7.10 that under a compressive load of 12.73 MPa, holding 

times of 2.5 min and 4 min are not sufficient for a strong bond to form; for these 

holding times the bonds broke under considerably lower stress and strain values. This 

is also evident from Figure 7.13, where it can be observed that the samples held for 

2.5 min and 4 min (Figure 7.13(a), and 7.13(b), respectively) fractured at the bond 

line. This is supported by the presence of flat regions in the cross-sections of the 

bond interfaces of the 2.5 min and 4 min samples, as shown in Figure 7.14. Although 

the 5 min sample fractured in the middle of the specimen (see 7.13(c)), the fracture 

surface shown in Figure 7.14(c) clearly indicates that a strong bond was formed. The 

10 min sample (see Figure 7.13 (d)) fractured away from the bond line, indicating the 

bond was in fact stronger than the material itself; this is supported by the fracture 

surface shown in Figure 7.14 (d). 

The stress strain response of the specimens with 2.5 min and 4 min holding times for 

the 12.7 MPa pressure (see Figure 7.10) also shows that the bonds formed for these 

holding times fracture differently from those formed at 5 min and 10 min holding 

times. In contrast to holding times of 5 min and 10 min where the final stage of 

fracture is represented by a sudden drop in stress, the 2.5 min and 4 min holding time 

curves exhibit a final stage of fracture consisting of a gradual, almost linear, decrease 

of the stress followed by an abrupt reduction to zero. The initial gradual stress drop 

in these cases is consistent with a fracture sequence consisting of initial separation of 

the weakly bonded part of the cross-section, followed by fracture of the strongly 

bonded part, as shown in Figure 7.14.  
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Figure 7.10- Flow curves obtained for bonds formed at 1000oC and 12.73 MPa. 

 

Figure 7.11- Flow curves obtained for bonds formed at 1000oC and 38.2 MPa. 
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Figure 7.12- Flow curves obtained for bonds formed at 1000oC and 63.7 MPa. 

 
Figure 7.13- Position of necking in samples subjected to 12.7 MPa pressure at 1000°C 

for (a) 2.5 min, (b) 4 min, (c) 5 min, (d) 10 min. 
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Figure 7.14- Cross-sections of bonded samples after fracture. Bonds were formed under 

12.7 MPa, 1000°C and holding times of (a) 2.5 min, (b) 4.5 min, (c) 5 min, (d) 10 min. 
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The failure strains for the 5 min and 10 min samples for the 12.7 MPa pressure are 

also similar, at least to within the level of scatter expected from testing different 

samples under the same conditions (this is explored further in Figure 7.15), giving 

further indication that holding times greater than approximately 5 min are sufficient 

to form a strong bond at this pressure and temperature.  

Figure 7.11 shows that increasing the compressive holding pressure from 12.7 MPa 

(≈   0.42σy) to 38.2 MPa (≈   1.27σy), where σy is the yield strength at 1000oC, 

significantly decreased the holding time required for a strong bond to form. For a 

pressure of 38.2 MPa, a holding time of 20 s is sufficient to create a strong bond. 

This can be explained in terms of the plastic deformation that has occurred for the 

latter case. 

As shown in Figure 7.12, increasing the holding pressure further to 63.8 MPa did not 

significantly alter the required holding time; however, comparing Figure 7.10 and 

7.12, a relative decrease in the peak strength can be observed for the higher pressure. 

The peak strengths of the bonded specimens are listed in Table 7.3, for the ranges of 

pressures and holding times tested. Table 7.3 shows that for compressive holding 

pressures below the yield stress, the peak strength of the material is lower than that 

for a compressive holding pressure approximately equal to the yield stress. It is also 

evident that increasing the holding pressure to a value well beyond the yield stress 

caused a decrease in the peak strength of the material. This decrease in peak strength 

is attributed to the significant amount of barrelling that occurs in these tests under 

such large compressive pressures, creating damage in the material as a result and 

therefore softening the material. 
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Table 7.3- Maximum strengths of bonded specimens. 

Load Holding Time Max Strength 
(MPa) 

-1 kN (≈  0.42σy) 
5 min 573.55 

10 min 602.19 

-3 kN (≈  1.27σy) 

20 s 631.00 

30 s 614.02 

1 min 607.33 

2 min 619.53 

-5 kN (≈  2.12σy) 

20 s 522.46 

30 s 527.88 

1 min 518.90 

Although a strong bond formed for the 12.7 MPa pressure and 5 min holding time, 

Figure 7.10 indicates a higher failure strain for the bond formed under 10 min 

holding time. This can also be seen in Figure 7.11, where for different holding times 

the material exhibits a range of failure strains with no discernible trend. One possible 

explanation is the difference in soaking time experienced by the samples. To 

investigate this, several contiguous cylindrical samples were machined from the 

same batch of billet surface material and tested using the same procedure as that 

shown in Figure 7.8. The specimens were heated to 1000oC and a compressive load 

of 12.7 MPa was applied for holding times of 2.5 min, 5 min and 10 min. The 

specimens were then machined into dog-bone shapes as in Figure 7.9 and tested in 

tension to investigate the resulting stress-strain behaviour of each specimen.  

Figure 7.15 compares the flow curves obtained from these tensile tests. The highest 

failure strain is associated with a holding time of 2.5 min, the second highest 

ductility is exhibited by the 10 min holding time and the 5 min holding time has the 

minimum ductility. Therefore a relationship between soaking time and ductility 
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cannot be established. It is more likely that the range of failure strains shown in 

Figure 7.15 is a result of the natural variability associated with testing different 

samples taken from the same batch of material.  

 

Figure 7.15- Flow curves obtained from tensile testing of samples soaked at 1000oC  for 

different times. 

7.3  SEM images of the bonds 

In order to further assess the bonded interfaces, bonded samples were cut 

longitudinally and images were taken from the bonding zones using a Hitachi 

S3400N Scanning Electron Microscope (SEM). In order to be able to view the 

bonding interface the bonded samples were shortened from ends and then were EDM 

cut through the cross sections. This has been shown in Figure 7.16. 
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Figure 7.16- Preparation of SEM view point for inspection of the bonding interface. 

Figure 7.17 to 7.19 show the bonds formed at 1000oC, under a compressive pressure 

of 12.37 MPa for holding times of 4 min, 5 min and 10 min respectively. Figure 7.17 

shows a crack line at the bond interface. As shown previously for the tensile testing 

of the 12.37 MPa bonded samples, for a holding time of 4min the bonds were broken 

under considerably lower stress and strain values, indicating an incomplete bond. 

The crack line appearing at the bond interface in Figure 7.17 is consistent with this 

finding. 

Increasing the holding time to 5min resulted in better healing of the joint line; as 

shown in Figure 7.18, the crack was reduced to predominantly a series of separated 

voids. Increasing the holding time to 10min (Figure 7.19), no trace remained of the 

bond line confirming a fully bonded sample. 
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Figure 7.17- SEM image of the bond line. Bonds were formed under P= 12.37MPa, 1000oC 

and holding time of 4 min. 

 

Figure 7.18- SEM image of the bond line. Bonds were formed under P= 12.37MPa, 1000oC 

and holding time of 5 min. 
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Figure 7.19- SEM image of the bond line. Bonds were formed under P= 12.37MPa, 1000oC 

and holding time of 10 min. 

Similar images were taken of the joint interface for bonds formed at 1000oC, under a 

compressive pressure of 63.7 MPa. Figure 7.20 to 7.22 show the bonds formed at 

these conditions for holding times of 10s, 20s and 30s respectively. As shown 

previously from the tensile testing of the bonded samples, for a holding time of 10s 

the bonds were broken under considerably low stress and strain values indicating an 

incomplete bond. The crack line appearing at the bond interface in Figure 7.20 

confirms this situation. Increasing the holding time to 20s has resulted in better 

healing of the bond line. As shown in Figure 7.21 the crack has been reduced to a 

series of distanced voids. With increasing the holding time to 30s (Figure 7.22), no 

track of the bonding joint can be seen indicating a fully bonded sample. 

The SEM images have also been taken of the bonds formed at 1000oC under a 

compressive pressure of 38.2 MPa for several holding times. The results have been 

shown in Figure 7.23 to 7.25 for holding times of 10s, 20s and 30s respectively. 
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Figure 7.20- SEM image of the bond line. Bonds were formed under P= 63.7MPa, 1000oC 

and holding time of 10 s. 

 

Figure 7.21- SEM image of the bond line. Bonds were formed under P= 63.7MPa, 1000oC 

and holding time of 20 s. 
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Figure 7.22- SEM image of the bond line. Bonds were formed under P= 63.7MPa, 1000oC 

and holding time of 30 s. 

 

Figure 7.23- SEM image of the bond line. Bonds were formed under P= 38.2MPa 1000oC 

and holding time of 10 s. 

Approximate crack 
width = 0.5

5
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Figure 7.24- SEM image of the bond line. Bonds were formed under P= 38.2MPa 1000oC 

and holding time of 20 s. 

 

Figure 7.25- SEM image of the bond line. Bonds were formed under P= 38.2MPa 1000oC 

and holding time of 30 s. 
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7.4  Model calibration  

This section presents a method for calibration of the void elimination model, using 

the experimental results obtained in section 7.2.6. It is worth mentioning that this 

calibration process is associated with the healing stage of the void elimination 

process only (calibration of Pilling model) and does not involve the closure stage. 

7.4.1 The concept of vvfc 

As previously explained, the performed experiments included the diffusion bonding 

of two cylindrical pieces together at high temperature (1000oC) under a range of 

compressive holding loads. Assuming the cylindrical halves are both non-porous, 

under compressive loading, asperities on the cross sections of the cylindrical halves 

come into contact. Upon initial contact a series of approximately cylindrical voids 

form along the bonding surface, the scale of which depends on the roughness. This 

has been illustrated in Figure 7.26.  

 

Figure 7.26- Illustration of the bonding interface and the defined porous zone in the 

experiments. 

The void volume fraction of the porous zone is characterised by vvfc, the void 

volume fraction at the start of healing: 
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𝑣𝑣𝑓௖   =    𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑣𝑜𝑖𝑑𝑠
𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑝𝑜𝑟𝑜𝑢𝑠  𝑧𝑜𝑛𝑒 7.1 

The porous zone formed upon the contact of asperities on the cross sections is 

assumed to be approximately a cylinder. The radius of this cylinder is equal to the 

specimen radius and its height is twice the surface roughness (see Figure 7.26). 

Therefore, the volume of the porous zone is defined as: 

𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑝𝑜𝑟𝑜𝑢𝑠  𝑧𝑜𝑛𝑒   =   𝜋  (𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛  𝑟𝑎𝑑𝑖𝑢𝑠)ଶ. (2 × 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠) 7.2 

Figure 7.23 shows a SEM image of the bonding line formed under a compressive 

load of 38.2 MPa at 1000oC and a holding time of 10 s. The total volume of the voids 

along the bonding line in Figure 7.23 is also assumed to be approximately that of a 

disc, with a radius equal to the specimen radius and a height equal to the approximate 

crack width as shown on Figure 7.23. Therefore, the volume of the voids is defined 

as: 

𝑣𝑜𝑙𝑢𝑚𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑣𝑜𝑖𝑑𝑠 = 𝜋  (𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛  𝑟𝑎𝑑𝑖𝑢𝑠)ଶ. 𝑐𝑟𝑎𝑐𝑘  𝑤𝑖𝑑𝑡ℎ 7.3 

The void volume fraction of the porous zone is therefore defined as: 

𝑣𝑣𝑓௖     =    𝑐𝑟𝑎𝑐𝑘  𝑤𝑖𝑑𝑡ℎ
2 × 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 7.4 

It was estimated from Figure 7.23 that the width of the crack at the bonding line is 

approximately 0.5 𝜇m. This will result in a void volume fraction of approximately 

0.027 for the bond shown in Figure 7.23 (roughness = 9.1 𝜇m).  

It is worth mentioning that the measurement of vvfc should be done during the phase 

of load-temperature application. The SEM image shown in Figure 7.23 is associated 

with a specimen which has been taken out of the Gleeble and therefore is at room 

temperature and under no compressive load. The measured crack width from this 

image is therefore larger compared to when the specimen is under compression. 

Therefore, the void volume fraction calculated using the crack width measured from 



Chapter 7: Experimental work 

 

195 
 

the SEM image in Figure 7.23 is larger and is not representative of the actual vvfc. In 

addition, the void volume fraction calculated from the SEM image overestimates the 

total volume of the voids on the bonding interface by approximating it into a disc 

with a radius equal to the specimen radius and a height equal to the gap width (crack 

width). This approximation ignores the contact of the asperities and the area already 

bonded by plastic deformation.  

Ideally, vvfc should be measured while load and temperature are applied. Since 

porosity is usually concealed within a material, this would require a technique such 

as in-situ 3D X-ray microscopy. However, currently, it is not possible to distinguish 

pores in free cutting steel from MnS inclusions, which are much larger than the 

remnant cylindrical porosity (Kaye et al., 2013) as discussed in Chapter 5. For these 

reasons, vvfc is treated as a fitting parameter to be obtained by matching model 

predictions to experimental data. In the following sections a method will be proposed 

for finding the vvfc, where healing times obtained experimentally from section 7.2.6 

will be compared against the healing times calculated from the Pilling model for 

different vvfc values (considering the applied experimental conditions). Since void 

volume fraction vvfc is representative of the amount of porosity in the material, it is 

clear that a change in the value of vvfc will affect the predicted healing times. 

Therefore, the value of vvfc for which a close agreement between experimental and 

model predictions of healing time is observed will be selected as the calibrated value. 

This will be explained in more detail in section 7.4.4. Prior to this, a brief description 

of the numerical aspects of healing time calculation is given in section 7.4.2 and 

7.4.3. 
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7.4.2 The sensitivity of the healing time to the 

integration procedure 

To obtain the healing time from Pilling model, equation 7.5 which is the inverse of 

Pilling’s   diffusion   bonding   rate   equation (see Chapter 3), was integrated using the 

trapezoidal rule.  

𝑔 = 𝑑𝑡
𝑑𝑓௛

= ቈ−2𝜀௥̇(1 − 𝑓௛)

− 𝑁௜ ቆ
2

𝑟௢ଶℎ௢𝑓௛
𝐷௚௕𝛿Ω𝜎௭

𝐾𝑇
1 − 𝑓௛

ln(1 𝑓௛⁄ ) − (1 − 𝑓௛)/2
ቇ቉

ିଵ
 

7.5 

The parameters in equation 7.5 have been previously explained in Chapter 3. 

The trapezoidal integration method approximates an integral from a to b by 

approximating the area under a curve using trapezoids. This is shown mathematically 

in equation 7.6, where N is the number of intervals. 

න 𝑡  𝑑𝑓௛
௕ୀ଴

௔ୀ௩௩௙೎
≈ ∆𝑓௛

2 ൣ𝑔൫𝑓௛଴൯ + 2𝑔൫𝑓௛ଵ൯ + 2𝑔൫𝑓௛ଶ൯ + ⋯+ 2𝑔൫𝑓௛ேିଵ൯

+ 𝑔൫𝑓௛ே൯൧ 

∆𝑓௛ =
𝑏 − 𝑎
𝑁 , 𝑡௜ = 𝑎 + 𝑖∆𝑓௛ 

7.6 

It is clear from Equation 7.5 that 𝑑𝑡 𝑑𝑓௛⁄  is an undefined function at 𝑓௛ = 0, 

therefore, to calculate the total healing time, b should be set to a very small value e.g. 

1E-18, instead of absolute zero.  The effect of this substitution on the accuracy of 

healing time will be very insignificant. This is because: lim௙೓→଴
ௗ௧
ௗ௙೓

= 0 (see 

Appendix H), indicating that healing time versus 𝑓௛ reaches a plateau when 𝑓௛ tends 

to zero. 
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The accuracy of the numerical integration process can be affected by the magnitude 

of the subdivisions (∆𝑓௛) used. The sensitivity of the calculated healing times (using 

this integration method) to the number of subdivisions has been studied. Figure 7.27 

compares the calculated healing times versus 𝑓௛ for three values of N. It is clear from 

this figure that smaller values of N will result in slightly smaller healing time 

predictions.  

     
Figure 7.27- Sensitivity of the numerically calculated healing time to the number of 

integration subdivisions, N. The healing times were calculated for 1000oC and load of 38.2 

MPa. 

For further investigation, two larger values of N were studied (N = 180 and N = 320).  

The calculated healing times and the percentage of healing time difference (%∆) 

relative to the healing time corresponding to the largest N (N = 320) are shown in 

Figure 7.28 for all studied values of N. Although larger values of N will result in 

better accuracy, it is clear from Figure 7.28 that the %∆ is insignificant. It is worth 

mentioning that high values of N will result in longer computational times. 

Therefore, the value of N can be chosen so that it satisfies accuracy and 

computational efficiency requirements. This study uses N = 80 for calculation of 

healing time. 
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Figure 7.28- Percentage healing time difference (%∆) relative to the healing time 

corresponding to the largest N (N= 320) for vvfc = 0.01 and load of 38.2 MPa. 

7.4.3 Methods of healing time calculation 

To calculate the healing time from the Pilling model for the considered experimental 

conditions, two approaches were used. Initially, the experiment was simulated using 

ABAQUS/Standard version 6.10-2. A model of a quarter cylinder with symmetry 

boundary conditions on the flat faces was created, representing one of the two 

cylindrical halves in the experiment. Plane  ‘cdef’  is  symmetric relative to the x axis. 

Plane  ‘abcf’  is  symmetric  relative  to  the  y axis  and  plane  ‘bcd’  is  symmetric  relative 

to the z axis. The load was applied as a uniaxial pressure to  plane  ‘aef’, increasing 

linearly with time as ramp (pressures of 12.7MPa, 38.2MPa and 63.7MPa were 

tried). The cylinder was partitioned to include a thin section (with thickness of 

0.009mm) on the cut end, shown in blue in Figure 7.29. This thin section represents 

the bonding interface; the developed UMAT was applied to this section only (with 

elastic-plastic properties of free cutting steel at 1000oC and 𝜀̇ (see Appendix A) 

elsewhere equivalent to the GT material with vvf = 0). A mesh with 8-node linear 

brick elements (C3D8 in ABAQUS terminology) was used. 

As previously described in Chapter 3, the Pilling diffusion bonding rate equation is a 

function of hydrostatic pressure. The hydrostatic pressure distribution at the bonding 
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interface was obtained from the created ABAQUS model. This pressure distribution 

for three uniaxial loads has been shown in Figure 7.30. Figure 7.30a shows a uniform 

hydrostatic pressure distribution for a uniaxial load of 12.7 MPa.  Figure 7.30b and 

7.29c show the hydrostatic pressure distribution for a uniaxial load of 38.2 MPa and 

63.7 MPa, respectively where the distribution is almost uniform with maximum and 

minimum values of 13.1 MPa and 12.9 MPa for the uniaxial load of 38.2 MPa and 

maximum and minimum values of 21.7 MPa and 21.5 MPa for the uniaxial load of 

63.7 MPa. It is worth mentioning that the ABAQUS UMAT calculates the healing 

time for each element based on the hydrostatic pressure of that element. For non-

uniform pressure distribution, the healing times will differ for each element 

(elements which experience higher pressure have smaller healing times). Therefore, 

maximum and minimum values of hydrostatic pressure correspond to smallest and 

largest healing times, respectively. The smallest and largest healing times and the 

corresponding hydrostatic pressures for the considered case have been summarised in 

Table 7.4. It is clear from this table that the difference in the predicted healing times 

for maximum and minimum values of hydrostatic pressure is insignificant and 

therefore a uniform hydrostatic pressure distribution can be assumed and a single 

healing time can be calculated for all elements. 

 

Figure 7.29- A quarter cylinder, representing one of the two cylindrical halves with a 

thin porous section on the cut end, representing the bonding surface. 
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(a) 

 
 

(b) 

 
 

(c) 

 

 
Figure 7.30- Hydrostatic pressure distribution for uniaxial loads of (a) 12.7 MPa, (b) 38.2 

MPa and (c) 63.7 MPa. 

Table 7.4- Calculated healing times using ABAQUS model for vvfc = 0.01. 

Uniaxial Load 
(MPa) 

Max and Min values of 
hydrostatic pressure 

(MPa) 

Min and Max 
Healing times(s) 

12.7 4.23 178.4 

38.2 
13.1 67.2 

12.9 68.2 

63.7 
21.7 39.4 

21.5 39.8 
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As the second approach and to be computationally efficient, the healing times can 

also be calculated numerically directly from Pilling model for the same experimental 

boundary conditions. To do so equation 7.5 was integrated numerically using 

trapezoidal method in Microsoft Excel 2010. A temperature of 1000oC (the 

temperature at which experiments were performed) was used and the hydrostatic 

pressure was assumed to have a uniform distribution on the specimen cross section at 

the bonding interface. The magnitude of the hydrostatic pressure was taken to be a 

third of the applied uniaxial load. For vvfc = 0.01, the healing times calculated using 

this approach are compared against the maximum and minimum healing times 

obtained from ABAQUS (Table 7.4). This comparison is shown in Figure 7.31, 

where a very good match is observed between the results obtained from both 

approaches. Since the calibration process involves investigating a range of 

parameters (different vvfc and loads), the numerical approach has been preferred for 

calculation of the healing time to save computational time.   

 
Figure 7.31- Comparison of the healing times calculated numerically using Excel against 

the maximum and minimum healing times obtained from ABAQUS. 
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7.4.4 Calibration procedure 

To identify the representative vvfc, the healing time was calculated from the Pilling 

model for different values of vvfc at 1000oC and under three loading conditions (63.7 

MPa, 38.2 MPa and 12.7 MPa). Figure 7.32 shows the calculated healing times under 

different loading conditions for a range of vvfc.  

As previously shown in Figure 7.12, the healing time obtained experimentally for a 

holding load of 63.7 MPa is between 10 and 20 s. The results in Figure 7.30 show 

that for vvfc = 0.003, the model predicts a healing time of 13 s, which is in accord 

with the experimental data. The calibration factor vvfc is therefore taken to be 0.003 

for this condition. As previously shown in Figure 7.11, the healing time obtained 

experimentally for 38.2 MPa was approximately 20 s. The calibrated model (vvfc = 

0.003) predicts a healing time of 21 s for this pressure, which is in close agreement 

with the experiments.  

For a pressure of 12.7 MPa, the calibrated model (vvfc = 0.003) predicts a healing 

time of 50.7 s. However, the healing time previously obtained from the experiments 

for this loading condition was greater than 300 s, indicating the calibration is not 

valid for this loading condition. This establishes a range of pressure, approximately 

35 to 65 MPa (≈  σy to 2σy), for which the calibrated value of vvfc = 0.003 is valid at 

1000oC. Conditions involving pressures outside this range, or significantly different 

temperatures, would require additional calibration. 

It should be noted that the obtained vvfc here is almost 10 times smaller than the 

value (0.027) calculated in section 7.4.1 from the SEM image shown in Figure 7.23. 

As previously discussed in section 7.4.1, Figure 7.23 shows the SEM image of the 

bonding interface for a specimen at room temperature and under no compression. It 

is therefore reasonable for the calculated vvfc from the SEM image in Figure 7.23 to 

be larger than the obtained value here. It is difficult to further assess the accuracy of 

the calibrated vvfc value with experimental data available. 
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Figure 7.32- Comparison of the healing times obtained experimentally with healing times 

calculated from the Pilling model at different loads and for different values of vvfc. 

7.4.5 Sensitivity to roughness 

Any parameter which influences the healing time prediction can directly affect the 

calibration of the vvfc. This section investigates the influence of variation of the 

absolute scale of the surface roughness on the bonding time. To study the effect of 

surface roughness, a range of vvfc values were considered and the corresponding 

healing times were calculated numerically (using Microsoft Excel) for several 

surface roughnesses. Figure 7.33a to 7.33c show the effect of surface roughness on 

healing time at different loads for three vvfc values of 0.001, 0.005 and 0.01. It is 

evident from this figure that surface roughness significantly affects the predicted 

healing time. For rougher surfaces the required healing time is longer. This is 

especially more pronounced at lower loads.  
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 (a) vvfc = 0.001 

 

(b) vvfc = 0.005 

 

(c) vvfc = 0.01 

 

 
Figure 7.33- The effect of surface roughness on healing time at 

different loads for three vvfc values of (a) 0.001, (b) 0.005 and (c) 

0.01. 
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For better understanding of the effect of surface roughness on the calibration of vvfc, 

an example has been outlined on Figure 7.33. A point has been marked on Figure 

7.33a representing a healing time of approximately 12 s for the roughness of 18.2 𝜇m 

and vvfc = 0.001 at a load of 63.7 MPa and temperature of 1000oC. Another point has 

been marked on Figure 7.33c for the same load and temperature conditions, showing 

a healing time of approximately 15 s for the roughness of 4.5 𝜇m and vvfc = 0.01. 

Let’s   assume   the   healing   time   obtained   experimentally   for   this   load-temperature 

condition is around 12 to 15 s. Therefore, depending on the surface roughness, the 

value of vvfc could be taken as 0.001 or 0.01. This shows the significant effect of 

surface roughness on the calibration of vvfc. 

7.4.6 Application of the calibration method for TATA 

steel 

The process of hot rolling of steel is usually performed at a temperature range of 

900-1200oC. Semi-finished products such as blooms, billets and slabs are first heated 

in a furnace until they are red hot. The first stage of rolling involves passing the large 

semi-finished product backwards and forwards through a roughing stand. A stand 

consists of a set of steel rolls on which pressure is applied to compress the hot steel 

passing through them. After leaving the roughing stand the products are continuously 

passed through a series of finishing stands which compress the steel and cause 

further thickness reduction. Depending on the thickness reduction and the final shape 

required, different stands are used and therefore the applied compressive load varies. 

The proposed calibration method in this study investigates only one temperature 

(1000oC) and three compressive loads of -1 kN, -3 kN and -5 kN. These values were 

selected to cover a wide range of loading conditions reproducing stresses below, 

approximately equal to and above the yield stress of the material. Application of 

compressive loads higher than -5 kN was not experimentally possible due to 
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significant barrelling and collapse of the specimen. It should be noted that in the 

performed experiments in this chapter, the compressive load is uniaxial and is not 

exactly identical to that in the rolling process. In addition, the specimens have 

cylindrical shape and are different to semi-finished products in shape and size. These 

are the imitations of the calibration process and may provide an approximate 

estimation for the rolling process. In order to increase the accuracy of the calibration 

procedure for rolling purposes, it is recommended that the proposed calibration 

strategy be applied to real rolling cases. The following steps are suggested to achieve 

this objective:  

1) The average pore surface roughness should be measured for a work-piece 

(billet, bloom, etc.). This is required for calculation of the healing time. 

2)  The rolling should be performed for several load, temperature and time 

combinations. The load parameter can be controlled by using different roll 

stands and setups (single, double, etc.) resulting in different thickness 

reductions. The time parameter can be controlled by performing the rolling 

process in furnace rooms and using very slow roll speed.  

3) The extent of healing of the rolled products can be investigated using SEM 

and X-ray tomography. In addition, tensile tests can be performed for 

different sections of the rolled product to study the strength and ductility and 

to ensure complete healing. 

4) Following step 2 and 3, combinations of load, temperature and time leading 

to healing can be obtained. These are considered as experimental data. 

5) The healing times for each load-temperature combination in step 4 can be 

predicted using the Pilling model for different vvfc values for the specified 

pore surface roughness obtained in step 1. 

6) Finally the predicted healing times in step 5 can be compared with the 

experimental data obtained in step 4. The vvfc for which a good agreement 
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between predicted and experimentally obtained healing times is seen can be 

taken as the calibrated vvfc.  

7.5  Limitations of the approach in rolling 

applications 

As mentioned in Chapter 2, diffusion bonding is a slow process. If the applied load 

and temperature are low, the time required for diffusion bonding to occur could be 

very long. As shown in chapter 6, for a single roll pass, when Hm/L = 3.5, fo = 0.006, 

T = 900oC and roll speed = 0.1288 rad/s (see Chapter 6, section 6.1.3 for further 

detail), the average healing time predicted by the model was 18.1s. For the applied 

roll speed of 0.1288 rad/s, different locations of the work-piece experience the 

compression for about 1 to 2 seconds. Therefore, it is clear that the healing cannot be 

achieved within a single roll pass. Considering the fact that rolling (roughing stage in 

the studied case) involves multiple passes (see section 6.1.2), healing might be 

possible if a high number of passes is used. However, the number of passes is limited 

by the desired thickness reduction.  

In cases where the applied conditions (e.g Hm/L, fo, vvfc, temperature, etc.) result in 

longer healing times (e.g. 2-3 minutes), reducing the roll rotation speed and 

increasing the number of roll stands would favour the healing process, but this would 

reduce output and add cost. Furthermore, this would cause heat loss in the work-

piece. Apart from performing the rolling process in furnace rooms, it may not be 

possible to heal under these conditions.   

7.6  Conclusions 

An experimental technique has been developed to identify the conditions 

(temperature, pressure, time) required for healing in Free Cutting Steel (FCS). 
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Different combinations of load and time were tested and optimum conditions have 

been obtained for 1000oC.   

Different analysis techniques have been used to examine the extent of healing. The 

position of fracture on the specimen and also the cross section of the fracture surface 

have been inspected. Tensile tests on the bonded specimens have been carried out to 

measure the strength of the bonded region. 

The effect of soaking time on the failure strain has been studied for fully bonded 

samples. No particular trend in failure strain with soaking time was observed. The 

variation in failures strain is attributed to natural specimen variability. 

It was observed that maximum strength is achieved for holding pressures 

approximately equal to the yield stress, σy. This is attributed to lower pressures being 

insufficient for strain hardening to occur, and larger pressures causing significant 

barrelling and subsequent damage in the material. 

The experimental results have been used to calibrate a previously developed void 

elimination model, with vvfc = 0.003 determined to be valid for the pressure range 35 

to 65 MPa (≈  σy to 2σy) at 1000oC. 

The obtained results may only provide an approximate estimation for the rolling 

process. In order to increase the accuracy of the calibration procedure for rolling 

purposes, it is recommended that the proposed calibration strategy be applied to real 

rolling cases. A procedure has been suggested to achieve this objective. 
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8.1  Overall conclusions 

This research has focused on developing a realistic damage healing model that can 

predict the extent of porosity eliminated under temperature, time and load conditions 

used for hot rolling applications. This has required a combination of high quality 

experimental data and observations as well as robust physically-based models. The 

project’s  conclusions  have  been  summarised  in  detail  below:   

- The dependency of void closure on stress triaxiality was studied and closure 

load versus triaxiality plots were obtained from an RVE model (a cylinder of 

material with a central spherical hole constructed using ABAQUS). To 

investigate the closure of a void at a specific position in a steel billet, the 

stress state at that point can be identified and triaxiality obtained by FE 

modelling of the rolling process. The conditions for plastic closure of a void 

in that position could therefore be predicted from the obtained closure load - 

triaxiality plots. The effects of temperature and strain rate were investigated 

and the results showed that for high temperatures and low strain rates, less 

pressure would be required for void closure. 

- The applicability of a reverse Gurson model for void closure was examined. 

Finite element analyses were performed on a representative material volume 

(RMV) containing a spherical void and an equivalent cell of Gurson-

Tevergaard (GT) material. The numerical results of the voided RMV and the 

GT cell were compared and an optimization method was used to adjust the 

Gurson   model’s   parameters. The effect of triaxiality on the void closure 

process was also investigated and the results showed that the Gurson model 

was in better agreement with the voided cell model for higher triaxialities. 

This could be explained by the fact that Gurson assumes a spherical void 

shape which is more correct at high triaxialities. 
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- An Abaqus/UMAT subroutine was developed for the analysis of the material 

porosity elimination process including two stages of void closure and healing. 

The model used GT under reverse loading to predict void closure. Pilling’s  

healing model was implemented into the UMAT to predict the healing time. 

However the healing stage can be adapted to any other diffusion 

bonding/healing model. The developed UMAT was compared against the GT 

model and the developed UMAT and the results showed an increase in 

material strength as a result of porosity elimination. It was also shown that 

the healing model was significantly affected by vvfc. Larger values of vvfc, 

implied coarser void surfaces and therefore resulted in longer healing times.  

It was shown that for two different vvfc values, the difference in closure times 

was insignificant due to plastic deformation whereas the healing times varied 

noticeably. 

- The developed UMAT was applied to simulate the void elimination of a steel 

bloom during rolling. The effect of Roll Gape shape Factor (RGF) on 

porosity elimination during rolling was investigated. It was shown that for 

Hm/L > 4.8 the closure percentages were lower compared to cases of 1.8 < 

Hm/L < 4. This was due to all principal stresses being tensile (representing a 

regime of tensile triaxiality) for cases of Hm/L > 4.8 compared to cases of 1.8 

< Hm/L < 4 where the vertical principal stress becomes compressive and 

porosity closure occurs.  

- The effect of initial void volume fraction on porosity elimination in rolling 

was also investigated. It was observed that for larger initial void volume 

fractions the closure percentage was lower. This was due to the amount of 

compression for larger values of vvfo not being sufficient at some locations in 

the work piece to reach the closure state. 

- Non-uniform initial porosity distributions in a bloom were modelled. Instead 

of defining a constant value for vvfo (which creates an even distribution in the 
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bloom), vvfo was defined as a function of spatial coordinates. Two cases of 

linear and normal distribution were investigated. To model any distribution 

the user has to only replace the distribution function. This makes the model 

approach very versatile and adjustable to other applications with different 

distributions. 

- An experimental technique was developed to estimate the conditions required 

for healing of Free Cutting Steel (FCS). Different combinations of load and 

time were tested and optimum conditions were obtained. The relationship 

between the bond parameters and tensile strength of the joints was inspected. 

It was seen that for compressive holding loads below the yield point the 

maximum strength of the material was lower than that for a compressive 

holding load around the yield point. It was also seen that increasing the 

holding load to a value well beyond the yield point causes a decrease in the 

maximum strength of the material. This was explained in terms of the large 

amount of barrelling that occurred under large compressive loads, damaging 

the sample and therefore softening the material. The experimental results 

have been used to calibrate a void elimination model previously developed by 

the author. 

8.2  Suggestions for future work 

- The experiments performed in this project have investigated the healing times 

under three loading conditions. To improve the accuracy and reliability of the 

healing time predictions of the developed model, the experiments can be 

performed for several more load-holding time combinations. The effect of 

temperature is also suggested to be investigated by performing the tests at 

different temperatures within the range of temperatures used in the rolling 

application. However these tests will require a large number of trial and error 
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attempts. The recalibration of the model can therefore be done based on the 

obtained results.  

- Surface roughness has a significant influence in the healing process. To 

investigate this effect and include it in the developed model, specimens of 

different surface roughness can be tested under the same procedure explained 

in Chapter 7 and the healing times can be obtained. 

- It was observed in the previous chapter that the healing was better at the 

centre of the bond interface compared to the edges. This was due to a more 

compressive triaxiality at the specimen centre. It is therefore worth 

investigating the effect of triaxiality on the healing process. To investigate the 

effect of void shape on the healing process, healing of artificially made voids 

of different shapes can be performed. To eliminate other influencing factors 

and inspect the shape effect only, other parameters such as temperature, 

holding pressure, void surface roughness, triaxiality and void size should be 

kept constant for each void shape. This requires the manufacturing of samples 

out of non-porous material containing voids of the same volume but different 

shapes.  

- In real cases porosity is embedded within the material. To inspect the 

elimination of natural porosity in FCS material, two experimental techniques 

are suggested here: 

x The first approach involves small cylinders of porous material which need 

to be scanned using x-ray to measure the amount of initial porosity. These 

samples need to be compressed under different temperature-load-holding- 

time combinations and then scanned using x-ray to investigate the extent 

of healing. The healing can be accomplished in a Gleeble system as in 

those tests explained in Chapter 7. The complication with this approach 

involves the sample size limitation, as the maximum penetrable thickness 
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for steel by x-ray is 4-5 mm. Such a small size specimen requires 

complicated machining and special test set ups. In Gleeble, isothermal 

flow stress compression anvils as shown in Figure 8.1 provide a uniform 

temperature distribution throughout the compression specimen during 

deformation tests. These anvils require a minimum contact with the 

specimen in order to produce a uniform temperature. For small 

specimens, sufficient contact cannot be made between the specimen and 

the anvils. Different solutions can be suggested for the problem of size 

limitation and complicacy of Gleeble testing for such small specimens. 

One solution could be the manufacturing of three-piece specimens as 

shown in Figure 8.2a. In this figure, part B is a porous cylindrical 

specimen cut from the centre of a bloom. To increase the contact area, 

parts A1 and A2 can be used, where part B is positioned between part A1 

and part A2 and the whole set up is placed in the Gleeble so that the cross 

sections of part A1 and A2 are in contact with the anvils. However since 

parts A1, A2 and B are unattached, a mould (part C) is required to hold 

the pieces together when positioning the sample in the Gleeble (Figure 

8.2b). This specimen set up is advantageous over dog-bone shape 

specimens since it requires simpler machining. Also using the specimen 

set up in  Figure 8.2, Parts A1 and A2 can be cut from non-porous 

sections (to ensure good contact), whereas with dog-bone specimens such 

requirement may not be guaranteed.   

x The porosity distribution increases from surface to the centre of a cast. In 

most cases the surface of the work-piece can be almost free of pores 

whereas the centre part usually has the highest porosity distribution. To 

investigate the healing of the voids concentrated at the centre, it is 

necessary to design a sample that somehow represents this porosity 
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distribution. To do so a porous section can be injected into a block of non-

porous steel (very surface part of a billet) as shown in Figure 8.3. 

 
Figure 8.1-Anvils in Gleeble compression set up. 

 

Figure 8.2- (a) The three piece sample, (b) the mould. 

Anvils

A1

A2

BPorous specimen
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Figure 8.3- Sample with injected porous section in its centre. 

8.3  Recommendations for TATA steel 

As discussed in Chapter 2, the application of diffusion bonding is advantageous over 

welding or adhesive bonding because of the fact that no melting or additional 

materials are involved, thus there is no discontinuity in the microstructure and in 

properties at the bonding sites. Upon correct execution of the process, the bond 

produced will have indistinguishable properties from those of the bulk metal and the 

bond line will have continuous metallurgical structure. However, diffusion bonding 

is not as fast as welding or adhesive bonding. 

As explained in Chapter 6, the time required to obtain satisfactory bonding 

significantly depends on parameters such as temperature, Hm/L, vvfc and fo. Higher 

temperatures and lower values of Hm/L, vvfc and fo reduce the healing time. In an 

ideal case, if the highest possible temperature and the lowest possible values for 

Hm/L, vvfc and fo are considered and the highest number of stands is used in the multi-

pass rolling process, diffusion bonding is possible to occur. However, such ideal 

cases are not always practical. 

To ensure diffusion bonding occurs during rolling, the process has to be slowed 

down.  Reducing the roll rotation speed and increasing the number of roll stands will 

Porous section

Non-porous section
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favour the diffusion bonding process. However, this will cause heat loss in the work-

piece during rolling. To prevent this, the rolling process can be performed in furnace 

rooms but this would reduce output and add cost. Apart from performing the rolling 

process in furnace rooms, it may not be possible to heal under these conditions. 
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Appendices 

Appendix A: The free cutting steel material data:  

 

 

Test 1
900
0.1

L 22 A2 205
True StrainTrue Stress

0 0
0.002496 21.41887
0.005286 43.5493
0.012334 60.71616
0.026136 66.93404 103.2151
0.047868 74.59221
0.077528 82.57222 Peak Stress
0.109244 89.36411 106.2008
0.14096 95.30389

0.159755 98.06371 Strain at fail
0.189415 102.2495 0.364
0.216139 104.6874
0.247855 106.2008
0.266649 104.3505
0.29631 97.02045 87.38449

0.323033 79.82758
0.354749 46.17051

0.364 0

Temperature:
Strain Rate:

Testpiece:

Stress @ 
e=0.2

Stress @ 
e=0.1

Test 2
900

1
L 22 A1 075

True StrainTrue Stress
0 0

0.007859 38.17105
0.015717 57.91264
0.02947 80.0588

0.051082 97.16647 152.6577
0.074658 111.2701
0.098234 122.1737 Peak Stress
0.12181 130.6187 158.5324

0.145386 138.3378
0.168966 144.7028 Strain at fail
0.192546 151.0056 0.352
0.216122 156.2313
0.229875 158.2159
0.240681 158.5324
0.255416 157.849 122.8063
0.267204 152.2697
0.286851 133.088
0.310427 97.74193
0.334003 62.2972

0.352 0

Temperature:
Strain Rate:
Testpiece:

Stress @ 
e=0.2

Stress @ 
e=0.1

Test 3
900
10

L 22 A3 335
True StrainTrue Stress

0 0
0.004852 35.98829
0.011091 49.26787
0.018023 61.94055
0.027728 77.00529 174.082
0.042978 93.84223
0.06516 110.4572 Peak Stress

0.090115 121.0442 196.4634
0.11507 135.5402

0.140025 148.2853 Strain at fail
0.16498 158.7006 0.337

0.189935 169.9888
0.21489 180.138

0.239845 187.2141
0.2648 194.5237 126.7861

0.279358 196.4634
0.302233 187.5019
0.323001 106.2959

0.337 0

Temperature:
Strain Rate:

Stress @ 
e=0.1

Testpiece:

Stress @ 
e=0.2

Test 5
1100

0.1
L 22 C2 335

True StrainTrue Stress
0 0

0.00846 14.16344
0.017377 30.52683
0.034296 40.34204
0.057847 45.34272 63.13127
0.084713 49.66176
0.113236 53.43797 Peak Stress
0.156851 58.69955 74.6923
0.188862 62.03769
0.228646 65.94387 Strain at fail
0.291296 71.33976 1.03
0.342742 74.33302
0.390414 74.6923
0.460038 72.90534
0.497078 72.01081 51.68558
0.560185 71.6712
0.631523 71.16756
0.722067 69.48183
0.812611 64.97928
0.903155 56.20633

0.9937 40
1.03 0

Temperature:
Strain Rate:
Testpiece:

Stress @ 
e=0.2

Stress @ 
e=0.1

Test 6
1100

1
L 22 B1 205

True StrainTrue Stress
0 0

0.014779 26.98867
0.062401 53.48913
0.154368 70.72355
0.211847 78.35842 76.78481
0.263575 84.75933
0.30586 89.56209 Peak Stress

0.343425 93.36945 101.3711
0.378627 96.63628

Peak Stress 0.412651 98.71306 Strain at fail
0.463095 101.3711 0.849
0.497588 101.3047

Strain at fail 0.540291 100.1485
0.607618 93.4897
0.699577 78.51231 60.53516
0.798113 58.55171

0.849 0
0.849 0

Temperature:
Strain Rate:
Testpiece:

Stress @ 
e=0.2

Stress @ 
e=0.1

Test 7
1100

10
L 22 B3 205

True StrainTrue Stress
0 0

0.004202 28.53892
0.008404 44.24134
0.029414 69.35941
0.053725 76.02508 104.9367
0.093043 85.19875
0.129661 92.31358 Peak Stress
0.172911 100.6297 114.5785
0.216161 107.5062
0.241973 110.5413 Strain at fail
0.283843 114.5785 0.504
0.300422 114.0362
0.324211 113.3807
0.347622 108.9145
0.361129 107.6005 86.55043
0.381838 101.1247
0.406845 89.35069
0.426259 79.0532
0.437064 72.24474
0.46208 59.26335

0.480688 45.50109
0.504 0

Temperature:
Strain Rate:

Stress @ 
e=0.1

Testpiece:

Stress @ 
e=0.2
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Appendix B: All codes used for the calibration of q parameters in 

Chapter 4 

i) Python code to create the voided cell model  

#------------------------------------------------------------------- 
#This python code creates and runs (in ABAQUS) the voided cell (VC) 
#model explained in section 4.1.2. 
 
 
#CreateVC.py 
#------------------------------------------------------------------- 
 
from abaqus import * 
from abaqusConstants import * 
import sketch 
import part 
import step 
import regionToolset 
from material import * 
import regionToolset 
import section 
import displayGroupMdbToolset as dgm 
import assembly 
import step 
import interaction 
import load 
import mesh 
import job 
import visualization 
import xyPlot 
import displayGroupOdbToolset as dgo 
import connectorBehavior 
#------------------------------------------------------------------- 
 
#READ TEXT FILES 
 
mypath='C:/sa809' 
text_file = open(mypath+'/readparameter.txt','r') 
lines=text_file.readlines() 
#------------------------------------------------------------------- 
 
#PARAMETERS 
 
E=120000.0 
v=0.33 
W=2.5 
H=5.0 
Rdie=6.0 
Tstr=lines[0] 
T=float(Tstr) 
f0str=lines[1] 
f0=float(f0str) 
 
my_amp=((0.0, 0.0), (2,0.1),(4,0.2),(6,0.3),(8,0.4),(10,0.5), 
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  (12,0.6),(14,0.7),(16,0.8),(18,0.9),(20,1.0)) 
#------------------------------------------------------------------- 
 
#MAXIMUM LOAD APPLIED TO THE CYLINDER 
 
Py=12400 
Px=Py*(3*T+1)/(3*T-2) 
#------------------------------------------------------------------- 
 
#CALCULATING THE LOAD APPLIED TO THE DIE 
 
PPy=Py*(W/Rdie)**2.0 
 
r=pow(((3.0*f0*H*pow(W,2.0))/4.0),0.33333333) 
#------------------------------------------------------------------- 
 
#GEOMETRY 
 
myPoints=((0,r),(0,H/2),(W,H/2),(W,-H/2),(0,-H/2),(0,-r)) 
m=(W,0) 
middlePoint =(r,0) 
#------------------------------------------------------------------- 
 
#MODEL DEFINITION 
 
myModel = mdb.Model(name='CellModel-1') 
#------------------------------------------------------------------- 
 
#SKETCH GEOMETRIES 
 
mySketch=myModel.ConstrainedSketch(name='Sketch A', sheetSize=10.0) 
mySketch.Line(myPoints[0],myPoints[1]) 
mySketch.Line(myPoints[1],myPoints[2]) 
mySketch.Line(myPoints[2],myPoints[3]) 
mySketch.Line(myPoints[3],myPoints[4]) 
mySketch.Line(myPoints[4],myPoints[5]) 
mySketch.Arc3Points(myPoints[0],myPoints[5], middlePoint) 
CentreLine=mySketch.ConstructionLine((0,15),(0,0)) 
mySketch.assignCenterline(CentreLine) 
#------------------------------------------------------------------- 
 
#CREATE PART1 
 
MyPart=mdb.models['CellModel-1'].Part(dimensionality=AXISYMMETRIC,  
                                      name='Part-1', 
                                      type=DEFORMABLE_BODY)   
MyPart.BaseShell(sketch=mySketch) 
#------------------------------------------------------------------- 
 
#CREATE THE FCS MATERIAL AND THE SECTION 
 
myMaterial=mdb.models['CellModel-1'].Material(name='Material-1') 
myMaterial.Elastic(table=((50.0, 0.0), (77.49135123, 0.05), 
 (92.68496318, 0.1), (102.9185488, 0.15), (110.8575636, 0.2), 
 (117.434901, 0.25), (123.0976329, 0.3), (128.097914, 0.35), 
 (132.5932383, 0.4), (136.6891598, 0.45), (140.4601843, 0.5), 
 (143.9610364, 0.55), (147.2331995, 0.6), (150.3089364, 0.65),    
 (153.2138781, 0.7), (155.9687552, 0.75), (158.5905939, 0.8), 
 (161.0935641, 0.85), (163.4895965, 0.9), (165.7888385, 0.95), 
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 (168.0, 1.0), (170.1306173, 1.05), (172.1872589, 1.1), 
 (174.1756877, 1.15), (176.10099, 1.2), (177.9676796, 1.25), 
 (179.7797821, 1.3), (181.5409042, 1.35), (183.2542913, 1.4),  
 (184.922875, 1.45), (186.549313, 1.5), (188.136023, 1.55),   
 (189.6852115, 1.6), (191.1988979, 1.65), (192.6789354, 1.7),  
 (194.1270298, 1.75), (195.5447542, 1.8), (196.9335633, 1.85),   
 (198.2948051, 1.9), (199.6297311, 1.95), (200.9395057, 2.0))) 
 
 
mdb.models['CellModel-1'].HomogeneousSolidSection(name='Section-1', 

material='Material
-1', 
thickness=None) 

f = MyPart.faces 
faces = f.getSequenceFromMask(mask=('[#1 ]', ), ) 
region = regionToolset.Region(faces=faces) 
 
MyPart.SectionAssignment(region=region,  
                         sectionName='Section-1',  
                         offset=0.0, 
                         offsetType=MIDDLE_SURFACE,  
                         offsetField='') 
#------------------------------------------------------------------- 
 
#INSTANCE THE PART1 
 
myAssembly=mdb.models['CellModel-1'].rootAssembly 
myInstance=myAssembly.Instance(dependent=OFF,  
                    name='Part-1-1', 
                    part=MyPart) 
#------------------------------------------------------------------- 
 
#DEFINE SETS 
 
e1 = myInstance.edges 
edges1 = e1.getSequenceFromMask(mask=('[#10 ]', ), ) 
myAssembly.Set(edges=edges1, name='TOP') 
 
edges1 = e1.getSequenceFromMask(mask=('[#8 ]', ), ) 
myAssembly.Set(edges=edges1, name='Right') 
 
edges1 = e1.getSequenceFromMask(mask=('[#4 ]', ), ) 
myAssembly.Set(edges=edges1, name='Bottom') 
 
edges1 = e1.getSequenceFromMask(mask=('[#22 ]', ), ) 
myAssembly.Set(edges=edges1, name='Axis') 
#------------------------------------------------------------------- 
 
#DEFINE SURFACES 
 
side1Edges1 = e1.getSequenceFromMask(mask=('[#1 ]', ), ) 
myAssembly.Surface(side1Edges=side1Edges1, name='HoleSurface') 
 
side1Edges1 = e1.getSequenceFromMask(mask=('[#10 ]', ), ) 
myAssembly.Surface(side1Edges=side1Edges1, name='TOP') 
    
side1Edges1 = e1.getSequenceFromMask(mask=('[#8 ]', ), ) 
myAssembly.Surface(side1Edges=side1Edges1, name='Right')  
#------------------------------------------------------------------- 
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#CUT 
 
myCutPoints=((0,2*r), (W,2*r), (W,-2*r), (0, -2*r), (2*r,H/2), 
(2*r,-H/2), (W,0)) 
originPoint=(0.0,0.0) 
interSection1=(2*r,2*r) 
interSection2=(2*r,-2*r) 
f1 = myInstance.faces 
t = myAssembly.MakeSketchTransform(sketchPlane=f1[0],  
                                   sketchPlaneSide=SIDE1,  
                                   origin=(0.0, 0.0, 0.0)) 
s = mdb.models['CellModel-1'].ConstrainedSketch(name='__profile__',  
                                                sheetSize=200,  
                                                gridSpacing=0.5,  
                                                transform=t) 
g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints 
    
s.setPrimaryObject(option=SUPERIMPOSE) 
     
myAssembly.projectReferencesOntoSketch(sketch=s,  
                                       filter=COPLANAR_EDGES) 
     
s.Line(point1=myCutPoints[0], point2=myCutPoints[1]) 
s.HorizontalConstraint(entity=g[9]) 
s.PerpendicularConstraint(entity1=g[7], entity2=g[9]) 
s.CoincidentConstraint(entity1=v[7], entity2=g[7]) 
s.CoincidentConstraint(entity1=v[8], entity2=g[5]) 
s.Line(point1=myCutPoints[2], point2=myCutPoints[3]) 
s.HorizontalConstraint(entity=g[10]) 
s.PerpendicularConstraint(entity1=g[3], entity2=g[10]) 
s.CoincidentConstraint(entity1=v[9], entity2=g[3]) 
s.CoincidentConstraint(entity1=v[10], entity2=g[5]) 
s.Line(point1=myCutPoints[4], point2=myCutPoints[5]) 
s.VerticalConstraint(entity=g[11]) 
s.PerpendicularConstraint(entity1=g[6], entity2=g[11]) 
s.CoincidentConstraint(entity1=v[11], entity2=g[6]) 
s.CoincidentConstraint(entity1=v[12], entity2=g[4]) 
s.Line(point1=middlePoint, point2=myCutPoints[6]) 
s.HorizontalConstraint(entity=g[12]) 
s.PerpendicularConstraint(entity1=g[2], entity2=g[12]) 
s.CoincidentConstraint(entity1=v[13], entity2=g[2]) 
s.EqualDistanceConstraint(entity1=v[0], entity2=v[1], 
midpoint=v[13]) 
s.CoincidentConstraint(entity1=v[14], entity2=g[5]) 
s.EqualDistanceConstraint(entity1=v[4], entity2=v[5], 
midpoint=v[14]) 
s.Line(point1=originPoint, point2=interSection1) 
s.CoincidentConstraint(entity1=v[15], entity2=g[9]) 
s.Line(point1=originPoint, point2=interSection2) 
s.CoincidentConstraint(entity1=v[16], entity2=g[10]) 
f1 = myAssembly.instances['Part-1-1'].faces 
pickedFaces = f1.getSequenceFromMask(mask=('[#1 ]', ), ) 
myAssembly.PartitionFaceBySketch(faces=pickedFaces, sketch=s) 
s.unsetPrimaryObject() 
#------------------------------------------------------------------- 
 
#CREATE PART2 
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s = mdb.models['CellModel-1'].ConstrainedSketch(name='__profile__',  
               sheetSize=200.0) 
g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints 
s.sketchOptions.setValues(viewStyle=AXISYM) 
s.setPrimaryObject(option=STANDALONE) 
s.ConstructionLine(point1=(0.0, -100.0), point2=(0.0, 100.0)) 
s.FixedConstraint(entity=g[2]) 
s.Line(point1=(0.0, 0.0), point2=(20.0, 0.0)) 
s.HorizontalConstraint(entity=g[3]) 
s.PerpendicularConstraint(entity1=g[2], entity2=g[3]) 
s.CoincidentConstraint(entity1=v[0], entity2=g[2]) 
s.ObliqueDimension(vertex1=v[0], vertex2=v[1], 
textPoint=(7.38391780853271, 3.68696308135986), value=Rdie) 
p = mdb.models['CellModel-1'].Part(name='Part-2', 

     dimensionality=AXISYMMETRIC,  
                       type=DISCRETE_RIGID_SURFACE) 
p = mdb.models['CellModel-1'].parts['Part-2'] 
p.BaseWire(sketch=s) 
v2, e1, d2, n1 = p.vertices, p.edges, p.datums, p.nodes 
p.ReferencePoint(point=v2[1])  
#------------------------------------------------------------------- 
 
#INSTANCE PART2 
 
myAssembly=mdb.models['CellModel-1'].rootAssembly 
p = mdb.models['CellModel-1'].parts['Part-2'] 
myInstance = myAssembly.Instance(name='Part-2-1', part=p, 
dependent=OFF) 
myAssembly.translate(instanceList=('Part-2-1', ), vector=(0.0, 2.5,  

    0.0)) 
#------------------------------------------------------------------- 
 
#PART2 SURFACES 
 
s1 = myAssembly.instances['Part-2-1'].edges 
side1Edges1 = s1.getSequenceFromMask(mask=('[#1 ]', ), ) 
myAssembly.Surface(side1Edges=side1Edges1, name='Surf-out') 
     
s1 = myAssembly.instances['Part-2-1'].edges 
side2Edges1 = s1.getSequenceFromMask(mask=('[#1 ]', ), ) 
myAssembly.Surface(side2Edges=side2Edges1, name='Surf-in') 
#------------------------------------------------------------------- 
 
#CREATE A NEW STEP 
 
mdb.models['CellModel-1'].StaticStep(name='Apply Load Step',  
        previous='Initial', timePeriod=20.0,  
        maxNumInc=100000000, initialInc=20.0, minInc=2e-16,  
        maxInc=20.0) 
                                      
mdb.models['CellModel-1'].steps[' 

Apply Load Step'].setValues(nlgeom=ON)                                      
#------------------------------------------------------------------- 
 
#DEFINE CONTACT 
 
mdb.models['CellModel-1'].ContactProperty('IntProp-1') 
mdb.models['CellModel-1'].interactionProperties['IntProp-
1'].NormalBehavior( 
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           pressureOverclosure=HARD, allowSeparation=ON,  
           constraintEnforcementMethod=DEFAULT) 
         
a = mdb.models['CellModel-1'].rootAssembly 
region=a.surfaces['HoleSurface'] 
mdb.models['CellModel-1'].SelfContactStd(name='Int-1',  
          createStepName='Initial',  

surface=region,  
interactionProperty='IntProp-1',    
enforcement=SURFACE_TO_SURFACE,  

          thickness=ON)                                        
                                          
mdb.models['CellModel-1'].ContactStd(name='Int-2',  

 createStepName='Initial') 
mdb.models['CellModel-1'].interactions['Int-2']. 

  includedPairs.setValuesInStep( 
stepName='Initial', 
useAllstar=ON) 

mdb.models['CellModel-1'].interactions['Int-2']. 
contactPropertyAssignments. 

                        appendInStep(stepName='Initial', 
                        assignments=((GLOBAL, SELF, 'IntProp-1'), )) 
#------------------------------------------------------------------- 
 
#CREATE BOUNDARY CONDITIONS 
 
region = myAssembly.sets['Axis'] 
mdb.models['CellModel-1'].XsymmBC(name='BC-1',  

    createStepName='Initial', 
                                  region=region) 
region = myAssembly.sets['Bottom'] 
mdb.models['CellModel-1'].DisplacementBC(name='BC-2', 

createStepName='Initial', 
region=region, u1=UNSET, 
u2=SET, ur3=UNSET, 
amplitude=UNSET, 
distributionType=UNIFORM, 
fieldName='', 
localCsys=None) 

a = mdb.models['CellModel-1'].rootAssembly 
r1 = a.instances['Part-2-1'].referencePoints 
refPoints1=(r1[2], ) 
region = regionToolset.Region(referencePoints=refPoints1) 
mdb.models['CellModel-1'].DisplacementBC(name='BC-3', 
createStepName='Initial',region=region, u1=SET, u2=UNSET, ur3=SET, 

amplitude=UNSET,distributionType=UNIFORM, 
fieldName='', localCsys=None) 

#------------------------------------------------------------------- 
#CREATE LOAD 
 
mdb.models['CellModel-1'].TabularAmplitude(name='Amp-2',  

timeSpan=STEP,  
smooth=SOLVER_DEFAULT,  
data=my_amp)                                    

region = myAssembly.surfaces['Surf-out'] 
mdb.models['CellModel-1'].Pressure(name='Load-2', 

createStepName='Apply Load Step', 
region=region, 
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distributionType=UNIFORM, 
field='', magnitude=PPy, 
amplitude='Amp-2') 

 
mdb.models['CellModel-1'].TabularAmplitude(name='Amp-1',  

timeSpan=STEP,  
smooth=SOLVER_DEFAULT, 
data=my_amp) 

     
region = myAssembly.surfaces['Right'] 
mdb.models['CellModel-1'].Pressure(name='Load-1',  

createStepName='Apply Load 
Step',region=region,distributionT
ype=UNIFORM, field='', 
magnitude=Px, amplitude='Amp-1')                                                                            

#------------------------------------------------------------------- 
 
#MESH 
 
e1 = myAssembly.instances['Part-1-1'].edges 
pickedEdges = e1.getSequenceFromMask(mask=('[#fffffff ]', ), ) 
myAssembly.seedEdgeByNumber(edges=pickedEdges, number=10) 
f1 = myAssembly.instances['Part-1-1'].faces 
pickedRegions = f1.getSequenceFromMask(mask=('[#3ff ]', ), ) 
myAssembly.setMeshControls(regions=pickedRegions, 
technique=STRUCTURED) 
partInstances =(myAssembly.instances['Part-1-1'], ) 
myAssembly.generateMesh(regions=partInstances) 
 
a = mdb.models['CellModel-1'].rootAssembly 
partInstances =(a.instances['Part-2-1'], ) 
a.seedPartInstance(regions=partInstances, size=0.6, 
deviationFactor=0.1) 
a.generateMesh(regions=partInstances) 
#------------------------------------------------------------------- 
 
#DEFINE NODESETS 
 
n1 = myAssembly.instances['Part-1-1'].nodes 
nodes1 = n1.getSequenceFromMask(mask=('[#230 #0 #1ff #80000000 #ff 
]', ), ) 
myAssembly.Set(nodes=nodes1, name='EdgeNodeSet1') 
 
n1 = myAssembly.instances['Part-1-1'].nodes 
nodes1 = n1.getSequenceFromMask(mask=('[#4c0 #0:2 #1ff0 #1ff00 ]', 
), ) 
myAssembly.Set(nodes=nodes1, name='HoleSurfaceNodeSet1') 
 
 
#FIELD OUTPUT REQUIST 
 
mdb.models['CellModel-1'].fieldOutputRequests['F-Output-
1'].setValues 

(numIntervals=2000,variables=('S', 
'PE', 'PEEQ', 'PEMAG', 'LE', 'U', 
'RF', 'CF',  

            'CSTRESS','COORD')) 
 
mdb.models['CellModel-1'].fieldOutputRequests['F-Output1'].setValues 
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(numIntervals=2000,variables=('S
', 'PE', 'PEEQ', 'PEMAG', 'LE', 
'U', 'RF', 'CF',  

             'CSTRESS','COORD')) 
#------------------------------------------------------------------- 
 
#JOB 
         
mdb.Job(name='VCJob-03-12', model='CellModel-1', description='', 

type=ANALYSIS, atTime=None, waitMinutes=0, waitHours=0, 
queue=None, memory=50, memoryUnits=PERCENTAGE, 
getMemoryFromAnalysis=True, explicitPrecision=SINGLE, 

   nodalOutputPrecision=SINGLE, echoPrint=OFF,  
modelPrint=OFF, contactPrint=OFF, historyPrint=OFF,     
userSubroutine='', scratch='', 

 parallelizationMethodExplicit=DOMAIN,  
       multiprocessingMode=DEFAULT, numDomains=1, numCpus=1)       
         
mdb.jobs['VCJob-03-12'].submit(consistencyChecking=OFF) 
  



228 
 

ii) Python code to create the GT cell model  

 
#------------------------------------------------------------------- 
#This python code creates and runs (in ABAQUS) the Gurson-Tvergaard 
#(GT) model explained in section 4.2.2. 
 
#CreatePartGT.py 
#------------------------------------------------------------------- 
 
from abaqus import * 
from abaqusConstants import * 
import sketch 
import part 
import step 
import regionToolset 
from material import * 
import regionToolset 
import section 
import displayGroupMdbToolset as dgm 
import assembly 
import step 
import interaction 
import load 
import mesh 
import job 
import visualization 
import xyPlot 
import displayGroupOdbToolset as dgo 
import connectorBehavior 
#------------------------------------------------------------------- 
 
#READ q VALUES FROM TEXT FILE 
 
mypath='C:/sa809' 
TextFile = open(mypath+'/read_it.txt','r') 
f=TextFile.readlines() 
q1=float(f[0]) 
q2=float(f[1]) 
q3=float(f[2]) 
TextFile.close() 
#------------------------------------------------------------------- 
 
#READ TEXT FILE 
 
text_file = open(mypath+'/readparameter.txt','r') 
lines=text_file.readlines() 
#------------------------------------------------------------------- 
 
#PARAMETERS 
 
E=120000.0 
v=0.33 
W=2.5 
H=5.0 
Rdie=6.0 
Tstr=lines[0] 
T=float(Tstr) 
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f0str=lines[1] 
f0=float(f0str) 
 
my_amp=((0.0,0.0),(2,0.1),(4,0.2),(6,0.3),(8,0.4),(10,0.5),(12,0.6), 

 (14,0.7),(16,0.8),(18,0.9),(20,1.0)) 
#------------------------------------------------------------------- 
 
#MAXIMUM LOAD APPLIED TO THE CYLINDER 
 
Py=12400 
Px=Py*(3*T+1)/(3*T-2) 
#------------------------------------------------------------------- 
 
#CALCULATING THE LOAD APPLIED TO THE DIE 
 
PPy=Py*(W/Rdie)**2.0 
r=pow(((3.0*f0*H*pow(W,2.0))/4.0),0.33333333) 
#------------------------------------------------------------------- 
 
#GEOMETRY 
 
myPoints=((0,H/2),(W,H/2),(W,-H/2),(0,-H/2)) 
#------------------------------------------------------------------- 
 
#MODEL DEFINITION 
 
myModel = mdb.Model(name='CellModel') 
#------------------------------------------------------------------- 
 
#SKETCH GEOMETRIES 
 
mySketch=myModel.ConstrainedSketch(name='Sketch A', sheetSize=10.0) 
CentreLine=mySketch.ConstructionLine((0,15),(0,0)) 
mySketch.assignCenterline(CentreLine) 
mySketch.rectangle(point1=(0.0, H/2), point2=(W, -H/2)) 
#------------------------------------------------------------------- 
 
#CREATE PART 
 
MyPart=mdb.models['CellModel'].Part(dimensionality=AXISYMMETRIC,  
                                      name='Part1', 
                                      type=DEFORMABLE_BODY)  
MyPart.BaseShell(sketch=mySketch) 
#------------------------------------------------------------------- 
 
#CREATE THE FreeCuttingSteel material and section 
 
myMaterial=mdb.models['CellModel'].Material(name='Material1') 
myMaterial.Density(table=((7.8e-09, ), )) 
myMaterial.Elastic(table=((E, v),)) 
myMaterial.PorousMetalPlasticity(relativeDensity=1-f0, table=((q1, 
q2, q3), )) 
myMaterial.Plastic(table=((50.0, 0.0), (77.49135123, 0.05), 
 (92.68496318, 0.1), (102.9185488, 0.15), (110.8575636, 0.2), 
 (117.434901, 0.25), (123.0976329, 0.3), (128.097914, 0.35), 
 (132.5932383, 0.4), (136.6891598, 0.45), (140.4601843, 0.5), 
 (143.9610364, 0.55), (147.2331995, 0.6), (150.3089364, 0.65),    
 (153.2138781, 0.7), (155.9687552, 0.75), (158.5905939, 0.8), 
 (161.0935641, 0.85), (163.4895965, 0.9), (165.7888385, 0.95), 
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 (168.0, 1.0), (170.1306173, 1.05), (172.1872589, 1.1), 
 (174.1756877, 1.15), (176.10099, 1.2), (177.9676796, 1.25), 
 (179.7797821, 1.3), (181.5409042, 1.35), (183.2542913, 1.4),  
 (184.922875, 1.45), (186.549313, 1.5), (188.136023, 1.55),   
 (189.6852115, 1.6), (191.1988979, 1.65), (192.6789354, 1.7),  
 (194.1270298, 1.75), (195.5447542, 1.8), (196.9335633, 1.85),   
 (198.2948051, 1.9), (199.6297311, 1.95), (200.9395057, 2.0)) 
 
mdb.models['CellModel'].HomogeneousSolidSection(name='Section1', 

material='Material
1', 
thickness=None) 

f = MyPart.faces 
faces = f.getSequenceFromMask(mask=('[#1 ]', ), ) 
region = regionToolset.Region(faces=faces) 
 
MyPart.SectionAssignment(region=region,  
                         sectionName='Section1',  
                         offset=0.0, 
                         offsetType=MIDDLE_SURFACE,  
                         offsetField='') 
#------------------------------------------------------------------- 
 
#INSTANCE THE PART 
 
myAssembly=mdb.models['CellModel'].rootAssembly 
myInstance=myAssembly.Instance(dependent=OFF,  
                       name='Part11', 
                       part=MyPart) 
#------------------------------------------------------------------- 
 
#DEFINE SETS 
 
e1 = myInstance.edges 
edges1 = e1.getSequenceFromMask(mask=('[#1 ]', ), ) 
myAssembly.Set(edges=edges1, name='TOP') 
 
edges1 = e1.getSequenceFromMask(mask=('[#8 ]', ), ) 
myAssembly.Set(edges=edges1, name='Right') 
 
edges1 = e1.getSequenceFromMask(mask=('[#4 ]', ), ) 
myAssembly.Set(edges=edges1, name='Bottom') 
 
edges1 = e1.getSequenceFromMask(mask=('[#2 ]', ), ) 
myAssembly.Set(edges=edges1, name='Axis') 
#------------------------------------------------------------------- 
 
#DEFINE SURFACES 
 
side1Edges1 = e1.getSequenceFromMask(mask=('[#1 ]', ), ) 
myAssembly.Surface(side1Edges=side1Edges1, name='TOP') 
    
side1Edges1 = e1.getSequenceFromMask(mask=('[#8 ]', ), ) 
myAssembly.Surface(side1Edges=side1Edges1, name='Right') 
#------------------------------------------------------------------- 
 
#CREATE PART2 
 
s = mdb.models['CellModel'].ConstrainedSketch(name='__profile__',  
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                  sheetSize=200.0) 
g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints 
s.sketchOptions.setValues(viewStyle=AXISYM) 
s.setPrimaryObject(option=STANDALONE) 
s.ConstructionLine(point1=(0.0, -100.0), point2=(0.0, 100.0)) 
s.FixedConstraint(entity=g[2]) 
s.Line(point1=(0.0, 0.0), point2=(20.0, 0.0)) 
s.HorizontalConstraint(entity=g[3]) 
s.PerpendicularConstraint(entity1=g[2], entity2=g[3]) 
s.CoincidentConstraint(entity1=v[0], entity2=g[2]) 
s.ObliqueDimension(vertex1=v[0], vertex2=v[1], 
textPoint=(7.38391780853271, 3.68696308135986),    value=6.0) 
p = mdb.models['CellModel'].Part(name='Part-2',  

   dimensionality=AXISYMMETRIC,  
            type=DISCRETE_RIGID_SURFACE) 
p = mdb.models['CellModel'].parts['Part-2'] 
p.BaseWire(sketch=s) 
v2, e1, d2, n1 = p.vertices, p.edges, p.datums, p.nodes 
p.ReferencePoint(point=v2[1]) 
#------------------------------------------------------------------- 
 
#INSTANCE PART2 
 
myAssembly=mdb.models['CellModel'].rootAssembly 
p = mdb.models['CellModel'].parts['Part-2'] 
myInstance = myAssembly.Instance(name='Part-2-1', part=p,  

   dependent=OFF) 
myAssembly.translate(instanceList=('Part-2-1', ), vector=(0.0, 2.5,  

0.0)) 
#------------------------------------------------------------------- 
 
#PART2 SURFACES 
 
s1 = myAssembly.instances['Part-2-1'].edges 
side1Edges1 = s1.getSequenceFromMask(mask=('[#1 ]', ), ) 
myAssembly.Surface(side1Edges=side1Edges1, name='Surf-out') 
     
s1 = myAssembly.instances['Part-2-1'].edges 
side2Edges1 = s1.getSequenceFromMask(mask=('[#1 ]', ), ) 
myAssembly.Surface(side2Edges=side2Edges1, name='Surf-in') 
#------------------------------------------------------------------- 
 
#CREATE A NEW STEP 
 
mdb.models['CellModel'].StaticStep(name='Apply Load Step1',  
                                   previous='Initial',  

     timePeriod=24.0,  
                                   maxNumInc=100000000,  

     initialInc=24.0, minInc=2e-16,   
     maxInc=24.0) 

                                      
                                      
mdb.models['CellModel'].steps['Apply Load 
Step1'].setValues(nlgeom=ON)  
mdb.models['CellModel'].rootAssembly.regenerate() 
#------------------------------------------------------------------- 
 
#DEFINE CONTACT 
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mdb.models['CellModel'].ContactProperty('IntProp-1') 
mdb.models['CellModel'].interactionProperties['IntProp-
1'].NormalBehavior(pressureOverclosure=HARD, 

 allowSeparation=ON,  
          constraintEnforcementMethod=DEFAULT)                                                         
mdb.models['CellModel'].ContactStd(name='Int-2',  

     createStepName='Initial') 
mdb.models['CellModel'].interactions['Int2'].includedPairs.setValues 
InStep(stepName='Initial', useAllstar=ON)mdb.models[ 

'CellModel'].interactions['Int2']. 
contactPropertyAssignments.appendInStep( 
stepName='Initial', assignments=((GLOBAL, SELF, 
'IntProp-1'), )) 

#------------------------------------------------------------------- 
 
#CREATE BOUNDARY CONDITIONS 
 
region = myAssembly.sets['Axis'] 
mdb.models['CellModel'].XsymmBC(name='BC-1', 
createStepName='Initial', region=region) 
region = myAssembly.sets['Bottom'] 
mdb.models['CellModel'].DisplacementBC(name='BC-2',  

createStepName='Initial', 
region=region, u1=UNSET, 
u2=SET,ur3=UNSET, 
amplitude=UNSET,                                       
distributionType=UNIFORM, 
fieldName='', localCsys=None) 

 
a = mdb.models['CellModel'].rootAssembly 
r1 = a.instances['Part-2-1'].referencePoints 
refPoints1=(r1[2], ) 
region = regionToolset.Region(referencePoints=refPoints1) 
mdb.models['CellModel'].DisplacementBC(name='BC-3',  

createStepName='Initial',  
region=region, u1=SET, 
u2=UNSET, ur3=SET, 
amplitude=UNSET,  
distributionType=UNIFORM, 
fieldName='', localCsys=None) 

#------------------------------------------------------------------- 
 
#CREATE LOAD 
 
mdb.models['CellModel-1'].TabularAmplitude(name='Amp-2',  

 timeSpan=STEP,  
smooth=SOLVER_DEFAULT,  
data=my_amp)                                    

region = myAssembly.surfaces['Surf-out'] 
mdb.models['CellModel-1'].Pressure(name='Load-2', 

createStepName='Apply Load Step', 
region=region, 
distributionType=UNIFORM, 
field='', magnitude=PPy, 
amplitude='Amp-2') 

 
mdb.models['CellModel-1'].TabularAmplitude(name='Amp-1',  

timeSpan=STEP,  
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smooth=SOLVER_DEFAULT, 
data=my_amp) 

     
region = myAssembly.surfaces['Right'] 
mdb.models['CellModel-1'].Pressure(name='Load-1',  

createStepName='Apply Load 
Step',region=region,distributionType=U
NIFORM, field='', magnitude=Px, 
amplitude='Amp-1')                                  

#------------------------------------------------------------------- 
 
#MESH 
 
partInstances =(myAssembly.instances['Part11'], ) 
myAssembly.seedPartInstance(regions=partInstances, size=0.5,  

    deviationFactor=0.1) 
myAssebly = mdb.models['CellModel'].rootAssembly 
e1 = myAssembly.instances['Part11'].edges 
pickedEdges = e1.getSequenceFromMask(mask=('[#2 ]', ), ) 
myAssembly.seedEdgeByNumber(edges=pickedEdges, number=20) 
myAssembly = mdb.models['CellModel'].rootAssembly 
e1 = myAssembly.instances['Part11'].edges 
pickedEdges = e1.getSequenceFromMask(mask=('[#5 ]', ), ) 
myAssembly.seedEdgeByNumber(edges=pickedEdges, number=10) 
myAssembly = mdb.models['CellModel'].rootAssembly 
e1 = myAssembly.instances['Part11'].edges 
pickedEdges = e1.getSequenceFromMask(mask=('[#8 ]', ), ) 
myAssembly.seedEdgeByNumber(edges=pickedEdges, number=20) 
myAssembly = mdb.models['CellModel'].rootAssembly 
f1 = myAssembly.instances['Part11'].faces 
pickedRegions = f1.getSequenceFromMask(mask=('[#1 ]', ), ) 
myAssembly.setMeshControls(regions=pickedRegions,  

   technique=STRUCTURED) 
myAssembly = mdb.models['CellModel'].rootAssembly 
partInstances =(myAssembly.instances['Part11'], ) 
myAssembly.generateMesh(regions=partInstances) 
 
a = mdb.models['CellModel'].rootAssembly 
partInstances =(a.instances['Part-2-1'], ) 
a.seedPartInstance(regions=partInstances, size=0.6, 
deviationFactor=0.1) 
a.generateMesh(regions=partInstances) 
#------------------------------------------------------------------- 
 
#CREATE ELEMENTSET 
 
e1 = myAssembly.instances['Part11'].elements 
elements1 = e1.getSequenceFromMask(mask=('[#ffffffff:6 #ff ]', ), ) 
myAssembly.Set(elements=elements1, name='WHOLE') 
     
 
#FIELD OUTPUT REQUIST 
 
mdb.models['CellModel'].FieldOutputRequest(name='F-Output-1',  

createStepName='Apply 
Load 
Step1',numIntervals=200, 
variables=('S', 'PE', 
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'PEEQ', 'U', 'RF', 'CF', 
'VVF')) 

#------------------------------------------------------------------- 
 
#JOB 
 
mdb.Job(name='GTJob-03-12', model='CellModel', 
        description='examine the effect of triaxiality',  

  type=ANALYSIS,atTime=None, waitMinutes=0, waitHours=0,  
  queue=None, memory=50, memoryUnits=PERCENTAGE,   
  getMemoryFromAnalysis=True,  

        explicitPrecision=DOUBLE, nodalOutputPrecision=FULL,  
        echoPrint=OFF, modelPrint=OFF, contactPrint=OFF,  
        historyPrint=OFF, userSubroutine='',  
        scratch='', parallelizationMethodExplicit=DOMAIN,  
        multiprocessingMode=DEFAULT, numDomains=1, numCpus=1) 
 
mdb.jobs['GTJob-03-12'].submit(consistencyChecking=OFF) 
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iii) Python code to extract the coordinates of the void 

#------------------------------------------------------------------- 
#This python code extracts the XY coordinates of the void (profile 
#of the void as explained in section 4.1.3)during deformation. The 
#data is written into a ABAQUS report file (xyCoordReport.rpt). 
 
 
#xyReport.py 
#------------------------------------------------------------------- 
 
from abaqus import * 
from abaqusConstants import * 
import __main__ 
import section 
import regionToolset 
import displayGroupMdbToolset as dgm 
import part 
import material 
import assembly 
import step 
import interaction 
import load 
import mesh 
import job 
import sketch 
import visualization 
import xyPlot 
import displayGroupOdbToolset as dgo 
import connectorBehavior 
#------------------------------------------------------------------- 
 
#CREATING XY DATA 
 
o1=session.openOdb(name='c:/sa809/CM4R.odb') 
session.viewports['Viewport: 1'].setValues(displayedObject=o1) 
odb = session.odbs['c:/sa809/CM4R.odb'] 
session.xyDataListFromField(odb=odb, outputPosition=NODAL, 
variable=(('COORD', NODAL, ((COMPONENT, 'COOR1'), (COMPONENT, 
'COOR2'),)), ), nodeSets=('HOLESURFACENODESET1', )) 
#------------------------------------------------------------------- 
 
#WRITING REPORT 
 
a=odb.rootAssembly.nodeSets['HOLESURFACENODESET1'].nodes[0] 
l=len(a) 
myLabelsx=[] 
myLabelsy=[] 
myxyData=[] 
for i in range(0,l): 
    bx=a[i].label 
    myLabelsx.append(bx) 
    myC1Label='COORD:COOR1 PI: PART-1-1 N: '+str(bx) 
    x = session.xyDataObjects[myC1Label] 
    myxyData.append(x)     
for i in range(0,l): 
    by=a[i].label 
    myLabelsy.append(by) 
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    myC2Label='COORD:COOR2 PI: PART-1-1 N: '+str(by) 
    y = session.xyDataObjects[myC2Label] 
    myxyData.append(y)        
session.writeXYReport(fileName='c:/sa809/xyCoordReport.rpt', 

    appendMode=OFF, xyData=myxyData) 
 

iv) Python code to extract the coordinates of the VC cell 

#------------------------------------------------------------------- 
#This python code extracts the XY coordinates of the cell (profile 
#of the cell as explained in section 4.1.3) during deformation. The 
#data is written into a ABAQUS report file (ReadTotalVolume.rpt). 
 
#TotalVolume.py 
#------------------------------------------------------------------- 
from abaqus import * 
from abaqusConstants import * 
import __main__ 
import section 
import regionToolset 
import displayGroupMdbToolset as dgm 
import part 
import material 
import assembly 
import step 
import interaction 
import load 
import mesh 
import job 
import sketch 
import visualization 
import xyPlot 
import displayGroupOdbToolset as dgo 
import connectorBehavior 
#------------------------------------------------------------------- 
 
#CREATING XY DATA 
o1=session.openOdb(name='c:/sa809/CM4R.odb') 
session.viewports['Viewport: 1'].setValues(displayedObject=o1) 
odb = session.odbs['c:/sa809/CM4R.odb'] 
session.xyDataListFromField(odb=odb, 
outputPosition=NODAL,variable=(('COORD', NODAL, ((COMPONENT, 
'COOR1'),(COMPONENT, 'COOR2'), )), ), nodeSets=('EDGENODESET1', )) 
#------------------------------------------------------------------- 
 
#WRITING REPORT 
 
a=odb.rootAssembly.nodeSets['EDGENODESET1'].nodes[0] 
l=len(a) 
myLabelsx=[] 
myLabelsy=[] 
myxyData=[] 
 
for i in range(0,l): 
    bx=a[i].label 
    myLabelsx.append(bx) 
    myC1Label='COORD:COOR1 PI: PART-1-1 N: '+str(bx) 
    x = session.xyDataObjects[myC1Label] 



237 
 

    myxyData.append(x) 
 
for i in range(0,l): 
    by=a[i].label 
    myLabelsy.append(by) 
    myC2Label='COORD:COOR2 PI: PART-1-1 N: '+str(by) 
    y = session.xyDataObjects[myC2Label] 
    myxyData.append(y)       
session.writeXYReport(fileName='c:/sa809/ReadTotalVolume.rpt', 

    appendMode=OFF, xyData=myxyData)  
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v)  Python code to extract vvf of the GT cell model 

 
#------------------------------------------------------------------- 
#This python code extracts the vvf of the GT cell model (see section 
#4.2) during deformation. The data is written into a text file  
#(VvfReport.txt). 
 
 
#VVFreport.py 
#------------------------------------------------------------------- 
 
import sys, os 
from abaqus import* 
from abaqusConstants import* 
from caeModules import * 
#------------------------------------------------------------------- 
 
# POINT AT FILES: 
 
mypath='C:/sa809' 
 
FOLDER = mypath 
 
os.chdir(FOLDER) 
for filename in os.listdir('.'): 
 filelist = open(mypath+'/GTJob-03-12.odb','a')     
 
 
odb=session.openOdb(name=mypath+'/GTJob-03-12.odb') 
     
session.viewports['Viewport: 1'].setValues(displayedObject=odb) 
session.viewports['Viewport: 1'].view.setValues(nearPlane=43.3078, 

farPlane=76.6444, width=38.4285, height=19.2364, 
cameraPosition=(-22.5167, 5.17008, 48.8967), 
cameraUpVector=(-0.602818, -0.140808, -0.785356))  

odb = session.odbs[mypath+'/GTJob-03-12.odb']   
#------------------------------------------------------------------- 
 
#EXTRACT DATA 
 
session.xyDataListFromField(odb=odb, 
outputPosition=INTEGRATION_POINT, 

    variable=(('VVF',INTEGRATION_POINT,),), 
    steps=('Apply Load Step1',),elementSets= 
    ('WHOLE', )) 

x1 = session.xyDataObjects['VVF PI: PART11 E: 1 IP: 1'] 
#------------------------------------------------------------------- 
 
#ASSIGN DATA TO VARIABLE 
 
VVF=[] 
TIME=[] 
NoElem=200 
for i in range(1, NoElem+1): 
    a= 'VVF PI: PART11 E:',i, 'IP: 1' 
    b= 'VVF PI: PART11 E:',i, 'IP: 1' 
    c= 'VVF PI: PART11 E:',i, 'IP: 1' 



239 
 

    d= 'VVF PI: PART11 E:',i, 'IP: 1' 
    a1=str(a)    
    b1=str(b) 
    c1=str(c) 
    d1=str(d) 
    a11='' 
    b11='' 
    c11='' 
    d11='' 
    for j in a1: 
        if j!='('and j!=')'and j!=','and j!=','and j!="'": 
            a11=a11+j 
    for k in b1: 
        if k!='('and k!=')'and k!=','and k!="'": 
            b11=b11+k 
    for h in c1: 
        if h!='('and h!=')'and h!=','and h!="'": 
            c11=c11+h 
    for l in d1: 
        if l!='('and l!=')'and l!=','and l!="'": 
            d11=d11+l         
    ipoint1 = session.xyDataObjects[a11] 
    ipoint2 = session.xyDataObjects[b11] 
    ipoint3 = session.xyDataObjects[c11] 
    ipoint4 = session.xyDataObjects[d11] 
     
    aveipoint=[] 
    time=[] 
    for j in range(0,len(ipoint1)): 
        timetemp=ipoint1[j][0] 
        time.append(timetemp)          
 

  tmp=float((float(ipoint1[j][1])+float(ipoint2[j][1])+ 
  float(ipoint3[j][1])+float(ipoint4[j][1])))/4 

        aveipoint.append(tmp) 
    VVF.append(aveipoint) 
    TIME=time 
 
aveVVF=[] 
for j in range(0,len(ipoint1)): 
    sum=0 
    for i in range(0,NoElem): 
        sum=sum+VVF[i][j] 
    aveVVF.append(sum/NoElem) 
     
 
myoutput='' 
 
f=open(mypath+'/VvfReport.txt','w') 
for i in range(0,len(TIME)): 
    myoutput=str(TIME[i])+','+str(aveVVF[i])+'\n' 
    f.write(myoutput)  
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vi) MATLAB code for optimisation 

 
%------------------------------------------------------------------- 
%This MATLAB code creates a graphical user interface (GUI) explained 
%in section 4.2.3. 
  
%Interface.m 
%------------------------------------------------------------------- 
 
function varargout = Interface(varargin) 
% INTERFACE M-file for Interface.fig 
 
% Begin initialization code  
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Interface_OpeningFcn, ... 
                   'gui_OutputFcn',  @Interface_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code  
 
% --- Executes just before Interface is made visible. 
function Interface_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
% --- Outputs from this function are returned to the command line. 
function varargout = Interface_OutputFcn(hObject, eventdata, 
handles)  
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
 
function triaxiality_Callback(hObject, eventdata, handles) 
 
% --- Executes during object creation, after setting all properties. 
function triaxiality_CreateFcn(hObject, eventdata, handles) 
 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function fo_Callback(hObject, eventdata, handles) 
function fo_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
 
mypath=get(handles.e_path,'string'); 
 
triaxiality=str2num(get(handles.triaxiality,'string')); 
fo=str2num(get(handles.fo,'string')); 
dlmwrite([mypath 
'\readparameter.txt'],[triaxiality;fo],'newline','pc','precision','%
.5f'); 
dos(['"' mypath '\CreateVC' '" ' '"' mypath '"']); 
Optimisation 
function e_path_Callback(hObject, eventdata, handles) 
 
% --- Executes during object creation, after setting all properties. 
function e_path_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
 
%------------------------------------------------------------------- 
%This MATLAB code includes the optimization function, where initial 
%guess, constraints and tolerances are defined. 
 
%Optimisation.m 
%------------------------------------------------------------------- 
 
handles=guidata(Interface); 
mypath=get(handles.e_path,'string'); 
myJobname='sh1' 
 
% Get the XY coordinates of the void and cell of the VC model  
dos(['"' mypath '\xyReport' '" ' '"' mypath '"']); 
dos(['"' mypath '\TotalVolume' '" ' '"' mypath '"']); 
 
%initial guess 
p0=[1 1 1] 
 
%first run 
figure 
runonce0(p0,mypath); 
 
%Constraints 
lb=[1.0 0.75 2.0]; 
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ub=[2.0 1.25 4.0]; 
clc 
A=[]; 
b=[]; 
Aeq=[]; 
beq=[]; 
 
%Pattern Search 
options=psoptimset('display','iter','MaxIter',100,'PlotFcn',{@psplot
bestf,@psplotbestx}); 
[p,F,exitflag,output]=patternsearch(@MyCost,p0,A,b,Aeq,beq,lb,ub,[],
options) 
 
% Genetic Algorithm 
%options = gaoptimset('display','iter','MutationFcn', 
%    @mutationadaptfeasible,'PlotFcn', 
%    {@gaplotbestf,@gaplotbestindiv}); % 
      'StallTimeLimit',100, 
%x = ga(@MyCost,3,A,b,Aeq,beq,lb,ub,[],options) 
 
%Last run 
figure 
runonce(p,myJobname,mypath) 
q=p 
F 
dlmwrite('q-history.txt',[p F],'-append','newline','pc') 
 
 
%------------------------------------------------------------------- 
%This MATLAB code will be run only once at the beginning of the 
%calibration process to plot the vvf versus time graphs for GT and 
%VC cell models for initial guess of [q1=1,q2=1 and q3=1]. 
  
%runonce0.m 
%------------------------------------------------------------------- 
 
function F=runonce0(p,mypath); 
 
myfile=[mypath '\read_it.txt']; 
dlmwrite(myfile,p','newline','pc','precision','%.4f'); 
 
%Run bat files 
dos(['"' mypath '\CreatePartGT' '" ' '"' mypath '"']); 
dos(['"' mypath '\VVFreport' '" ' '"' mypath '"']); 
 
%read GT data 
M=dlmread('VvfReport.txt'); 
timeGT=M(:,1); 
VVFGT=M(:,2); 
 
%read VC data 
outerfile='ReadTotalVolume.rpt'; 
innerfile='xyCoordReport.rpt'; 
[vv,timeVC]=readabaqusreport(innerfile); 
[vt,timeVC]=readabaqusreport(outerfile); 
VVFVC=vv./vt; 
VVFGTi=interp1(timeGT,VVFGT,timeVC); 
VVFGTi=VVFGTi'; 
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plot(timeGT,VVFGT,'o') 
hold all 
plot(timeVC,VVFVC,'.'); 
plot(timeVC,VVFGTi,'x'); 
grid on; 
F=norm(VVFGTi-VVFVC); 
F 
dlmwrite('VVFGTi0.txt',[timeVC 
VVFGTi'],'newline','pc','delimiter','\t'); 
 
%------------------------------------------------------------------- 
%This MATLAB code reads ReadTotalVolume.rpt and XYCoordReport.rpt 
%files and calculates the vvf of the VC cell model. 
 
%readabaqusreport.m 
%------------------------------------------------------------------- 
 
function [myv,time]=readabaqusreport(filename) 
 
fid=fopen(filename); 
 
for i=1:3  
    L=fgetl(fid); 
end 
 
l4=fgetl(fid); 
 
Ci=find(L=='N'); 
NoOfNodes=length(Ci); 
 
for j=1:NoOfNodes 
    mystr=L(Ci(j)+3:Ci(j)+6); 
    NodeNo(j)=str2num(mystr); 
end 
 
myformat='%f'; 
for i=1:NoOfNodes 
    myformat=[myformat ' %f']; 
end 
 
A=fscanf(fid,myformat,[NoOfNodes+1 inf]); 
B=A'; 
 
time=A(1,:)'; 
 
NoOfProfiles=length(time); 
 
ix=2:(length(A(:,1))-1)/2+1; 
iy=(length(A(:,1))-1)/2+2:length(A(:,1)); 
for j=1:NoOfProfiles 
    P{j}={A(ix,j) A(iy,j) 0 NodeNo(1:NoOfNodes/2)'}; 
end 
 
y0=P{1,1}{1,2}; 
[y0sorted,ip]=sort(y0,'descend'); 
 
for i=1:NoOfProfiles 
    Ps{1,i}{1,1}=P{1,i}{1,1}(ip); 
    Ps{1,i}{1,2}=P{1,i}{1,2}(ip); 
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    Ps{1,i}{1,3}=P{1,i}{1,3}; 
    Ps{1,i}{1,4}=P{1,i}{1,4}(ip); 
end 
 
for i=1:NoOfProfiles 
    x=Ps{1,i}{1,1}; 
    y=Ps{1,i}{1,2}; 
    area=pi*x.^2; 
    v(1)=0; 
    for j=2:length(x) 
        v(j)=pi*(x(j)^2+x(j-1)^2+x(j)*x(j-1))/3*abs((y(j)-y(j-1))); 
    end 
    Ps{1,i}{1,3}=sum(v); 
end 
 
for i=1:NoOfProfiles 
    x=Ps{1,i}{1,1}; 
    y=Ps{1,i}{1,2}; 
    %hold all 
    %plot(x,y,'.');hold 
    %pause 
end 
for i=1:NoOfProfiles 
    myv(i)=Ps{1,i}{1,3}; 
end 
 
%------------------------------------------------------------------- 
%This MATLAB code defines the cost function (see section 4.2.5, 
%equation 4.11) 
 
%MyCost.m 
%------------------------------------------------------------------- 
 
function F=MyCost(p); 
handles=guidata(interface); 
 
%Writing parametrs file 
mypath=get(handles.e_path,'string'); 
myfile=[mypath '\read_it.txt']; 
dlmwrite(myfile,p','newline','pc','precision','%.4f'); 
 
%Run bat files 
dos(['"' mypath '\CreatePartGT' '" ' '"' mypath '"']); 
dos(['"' mypath '\VVFreport' '" ' '"' mypath '"']); 
 
%read GT data 
M=dlmread('VvfReport.txt'); 
timeGT=M(:,1); 
VVFGT=M(:,2); 
 
%read VC data 
outerfile='ReadTotalVolume.rpt'; 
innerfile='xyCoordReport.rpt'; 
[vv,timeVC]=readabaqusreport(innerfile); 
[vt,timeVC]=readabaqusreport(outerfile); 
 
%grid on; 
VVFVC=vv./vt; 
VVFGTi=interp1(timeGT,VVFGT,timeVC); 
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VVFGTi=VVFGTi'; 
 
F=norm(VVFGTi-VVFVC); 
dlmwrite('q-history.txt',[p F],'-append','newline','pc') 
 
%------------------------------------------------------------------- 
%This MATLAB code will be run only once at the end of the 
%calibration process to plot the vvf versus time graphs for GT and 
%VC cell models for the optimized q parameters. 
 
%runonce.m 
%------------------------------------------------------------------- 
 
function F=runonce(p,jobname,mypath); 
myfile=[mypath '\' 'read_it.txt']; 
dlmwrite(myfile,p','newline','pc','precision','%.4f'); 
 
%Run bat files 
dos(['"' mypath '\CreatePartGT' '" ' '"' mypath '"']); 
dos(['"' mypath '\VVFreport' '" ' '"' mypath '"']); 
 
%read GT data 
M=dlmread('VvfReport.txt'); 
timeGT=M(:,1); 
VVFGT=M(:,2); 
 
%read VC data 
outerfile='ReadTotalVolume.rpt'; 
innerfile='xyCoordReport.rpt'; 
[vv,timeVC]=readabaqusreport(innerfile); 
[vt,timeVC]=readabaqusreport(outerfile); 
VVFVC=vv./vt; 
VVFGTi=interp1(timeGT,VVFGT,timeVC); 
VVFGTi=VVFGTi'; 
plot(timeGT,VVFGT,'o') 
hold all 
plot(timeVC,VVFVC,'.'); 
plot(timeVC,VVFGTi,'x'); 
grid on; 
F=norm(VVFGTi-VVFVC); 
dlmwrite('VVFVC.txt',[timeVC 
VVFVC'],'newline','pc','delimiter','\t'); 
dlmwrite('VVFGTi.txt',[timeVC 
VVFGTi'],'newline','pc','delimiter','\t'); 
myfolder=[mypath '/' jobname] 
mkdir(myfolder); 
copyfile('VVFVC.txt',[myfolder '/VVFVC.txt']) 
copyfile('VVFGTi.txt',[myfolder '/VVFVGTi.txt']) 
copyfile('VVFGTi0.txt',[myfolder '/VVFGTi0.txt']) 
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Appendix C: Pattern Search and Genetic Algorithm parameters  

i) Pattern Search 

Option Description Values 

Cache 

With Cache set 
to 'on', patternsearchkeeps a history of 
the mesh points it polls and does not poll points 
close to them again at subsequent iterations. Use 
this option if patternsearch runs slowly 
because it is taking a long time to compute the 
objective function. If the objective function is 
stochastic, it is advised not to use this option. 

'on' | {'off'} 

CacheSize Size of the history Positive scalar | {1e4} 

CacheTol 

Positive scalar specifying how close the current 
mesh point must be to a point in the history in 
order for patternsearch to avoid polling it. 
Use if 'Cache' option is set to 'on'. 

Positive scalar | {eps} 

CompletePoll Complete poll around current iterate 'on' | {'off'} 
CompleteSearc
h 

Complete search around current iterate when the 
search method is a poll method 'on' | {'off'} 

Display Level of display 'off' | 'iter' | 'diag
nose' | {'final'} 

InitialMeshSi
ze Initial mesh size for pattern algorithm Positive scalar | {1.0} 
InitialPenalt
y Initial value of the penalty parameter Positive scalar | {10} 

MaxFunEvals Maximum number of objective function 
evaluations 

Positive integer 
| {2000*numberOfVari
ables} 

MaxIter Maximum number of iterations 
Positive integer 
| {100*numberOfVaria
bles} 

MaxMeshSize Maximum mesh size used in a poll/search step Positive scalar | {Inf} 
MeshAccelerat
or Accelerate convergence near a minimum 'on'| {'off'} 

MeshContracti
on 

Mesh contraction factor, used when iteration is 
unsuccessful Positive scalar | {0.5} 

MeshExpansion Mesh expansion factor, expands mesh when 
iteration is successful Positive scalar | {2.0} 

MeshRotate Rotate the pattern before declaring a point to be 
optimum 'off' | {'on'} 

OutputFcns Specifies a user-defined function that an 
optimization function calls at each iteration 

Function handle or cell 
array of function handles 
| {[]} 

PenaltyFactor Penalty update parameter Positive scalar| {100} 

PlotFcns Specifies plots of output from the pattern search 

@psplotbestf | @pspl
otmeshsize | @psplot
funcount |@psplotbes
tx | {[]} 

PlotInterval Specifies that plot functions will be called at 
every interval {1} 

PollingOrder Order of poll directions in pattern search 'Random'| 'Success'| 
{'Consecutive'} 
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PollMethod Polling strategy used in pattern search 

{'GPSPositiveBasis2
N'} | 'GPSPositiveBa
sisNp1'|'GSSPositiv
eBasis2N'| 'GSSPosi
tiveBasisNp1'|'MADS
PositiveBasis2N'| '
MADSPositiveBasisNp
1' 

ScaleMesh Automatic scaling of variables {'on'} | 'off' 

SearchMethod Type of search used in pattern search 

@GPSPositiveBasis2N 
| 
@GPSPositiveBasisNp
1 | 
@GSSPositiveBasis2N 
| 
@GSSPositiveBasisNp
1 | 
@MADSPositiveBasis2
N | 
@MADSPositiveBasisN
p1 | @searchga | 
@searchlhs | 
@searchneldermead | 
{[]} 

TimeLimit Total time (in seconds) allowed for optimization Positive scalar | {Inf} 
TolBind Binding tolerance Positive scalar | {1e-3} 
TolCon Tolerance on constraints Positive scalar | {1e-6} 

TolFun 
Tolerance on function, stop if both the change in 
function value and the mesh size are less 
than TolFun 

Positive scalar | {1e-6} 

TolMesh Tolerance on mesh size Positive scalar | {1e-6} 

TolX Tolerance on variable, stop if both the change in 
position and the mesh size are less than TolX Positive scalar | {1e-6} 

UseParallel Compute objective functions of a poll or search in 
parallel 'always' | {'never'} 

Vectorized 
Specifies whether functions are vectorized, 
see Vectorize the Objective and Constraint 
Functions 

'on' | {'off'} 
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ii) Genetic Algorithm (GA) 

Option Description Values 
CreationFcn Handle to the function that creates the 

initial population 
@gacreationuniform | 
@gacreationlinearfeasib
le 

CrossoverFcn Handle to the function that the algorithm 
uses to create crossover children 

@crossoverheuristic | 
{@crossoverscattered} | 
@crossoverintermediate 
| @crossoversinglepoint 
| @crossovertwopoint | 
@crossoverarithmetic 

CrossoverFract
ion 

The fraction of the population at the next 
generation, not including elite children, 
that is created by the crossover function 

Positive scalar | {0.8} 

Display Level of display 'off' | 'iter' | 
'diagnose' | {'final'}  

DistanceMeasur
eFcn 

Handle to the function that computes 
distance measure of individuals, 
computed in decision variable or design 
space (genotype) or in function space 
(phenotype) 

{@distancecrowding,'phe
notype'} 

EliteCount Positive integer specifying how many 
individuals in the current generation are 
guaranteed to survive to the next 
generation. Not used in gamultiobj. 

Positive integer | {2} 

FitnessLimit Scalar. If the fitness function attains the 
value of FitnessLimit, the algorithm 
halts.  

Scalar | {-Inf} 

FitnessScaling
Fcn 

Handle to the function that scales the 
values of the fitness function 

@fitscalingshiftlinear 
| @fitscalingprop | 
@fitscalingtop | 
{@fitscalingrank} 

Generations Positive integer specifying the maximum 
number of iterations before the algorithm 
halts 

Positive integer |{100} 

HybridFcn Handle to a function that continues the 
optimization after ga terminates 
or 
Cell array specifying the hybrid function 
and its options structure 

Function handle | 
@fminsearch | 
@patternsearch | 
@fminunc | @fmincon | 
{[]} 
or 
1-by-2 cell array | 
{@solver, 
hybridoptions}, where 
solver = fminsearch, 
patternsearch, fminunc, 
or fmincon {[]} 

InitialPenalty Initial value of penalty parameter Positive scalar | {10} 
InitialPopulat
ion 

Initial population used to seed the genetic 
algorithm; can be partial 

Matrix | {[]} 

InitialScores Initial scores used to determine fitness; 
can be partial 

Column vector | {[]} 

MigrationDirec
tion 

Direction of migration 'both' | {'forward'} 

MigrationFract
ion 

Scalar between 0 and 1 specifying the 
fraction of individuals in each 

Scalar | {0.2} 
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subpopulation that migrates to a different 
subpopulation 

MigrationInter
val 

Positive integer specifying the number of 
generations that take place between 
migrations of individuals between 
subpopulations 

Positive integer | {20} 

MutationFcn Handle to the function that produces 
mutation children 

@mutationuniform | 
@mutationadaptfeasible 
| {@mutationgaussian} 

OutputFcns Functions that ga calls at each iteration Function handle or cell 
array of function 
handles | {[]} 

ParetoFraction Scalar between 0 and 1 specifying the 
fraction of individuals to keep on the first 
Pareto front while the solver selects 
individuals from higher fronts 

Scalar | {0.35} 

PenaltyFactor Penalty update parameter Positive scalar | {100} 
PlotFcns Array of handles to functions that plot 

data computed by the algorithm 
@gaplotbestf | 
@gaplotbestindiv | 
@gaplotdistance | 
@gaplotexpectation | 
@gaplotgeneology | 
@gaplotmaxconstr | 
@gaplotrange | 
@gaplotselection | 
@gaplotscorediversity | 
@gaplotscores | 
@gaplotstopping  

PlotInterval Positive integer specifying the number of 
generations between consecutive calls to 
the plot functions  

Positive integer | {1} 

PopInitRange Matrix or vector specifying the range of 
the individuals in the initial population  

Matrix or vector | 
[0;1] 

PopulationSize Size of the population Positive integer | {20} 
PopulationType String describing the data type of the 

population 
'bitstring' | 'custom' 
| {'doubleVector'} 
Note that linear and 
nonlinear constraints 
are not satisfied when 
PopulationType is set 
to 'bitString' or 
'custom'. 

SelectionFcn Handle to the function that selects 
parents of crossover and mutation 
children 

@selectionremainder | 
@selectionuniform | 
{@selectionstochunif} | 
@selectionroulette | 
{@selectiontournament} 

StallGenLimit Positive integer. The algorithm stops if 
there is no improvement in the objective 
function for StallGenLimit consecutive 
generations. 

Positive integer | {50} 

StallTimeLimit Positive scalar. The algorithm stops if 
there is no improvement in the objective 
function for StallTimeLimit seconds. 

Positive scalar | {Inf} 

TimeLimit Positive scalar. The algorithm stops after 
running for TimeLimit seconds. 

Positive scalar | {Inf} 

TolCon Positive scalar. TolCon is used to 
determine the feasibility with respect to 

Positive scalar | {1e-
6}  
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nonlinear constraints. 
TolFun Positive scalar. The algorithm runs until 

the cumulative change in the fitness 
function value over StallGenLimit is less 
than TolFun. 

Positive scalar | {1e-
6}  

UseParallel Compute fitness functions of a 
population in parallel. 

'always' | {'never'} 

Vectorized String specifying whether the 
computation of the fitness function is 
vectorized  

'on' | {'off'} 
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Appendix D: Where UMAT fits into ABAQUS/Standard 

Figure below shows the basic flow of data and actions from the start of an 

ABAQUS/Standard analysis to the end of a step and indicates where a UMAT is fit 

into ABAQUS / Standard. It is important to note that the UMAT is run at each 

increment and for each iteration. In this figure a circle signifies a decision point in 

the code or a specific state (i.e. beginning of an increment) during the analysis and a 

rectangle signifies an action that is taken during the analysis. 

 

Figure D1- Flow of data and actions from the start of an ABAQUS/Standard analysis to the 

end of a step1. 

                                                           
1 (ABAQUS training manual, Writing User Subroutine with ABAQUS, available at 
http://imechanica.org/files/Writing%20User%20Subroutines%20with%20ABAQUS.pdf) 

Beginning of analysis
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Start of step
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YesNo

No
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Appendix E: The void elimination UMAT (FORTRAN code), the 
Gurson UMAT provided by TATA is not included. 

C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C   UMAT for VOID ELIMINATION MODEL 
C 
C     MYHT: Healing time,MTSEQ: equivalent stress,MYP: hydrostatic      
C pressure 
C     MYHPERCENT: healing percentage, CPERCENT: closure percentage,      
C  TIMECLOS: closure time 
C     MYELS: element status, MYINDEX: element index 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1  RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,TIME,DTIME, 
     2  TEMP,DTEMP,PREDEF,DPRED,CMNAME,NDI,NSHR,NTENS, 
     3  NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT, 
     4  DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 
 
 INCLUDE 'aba_param.inc' 
  
 CHARACTER*8 CMNAME 
 
 DIMENSION STRESS(NTENS),STATEV(NSTATV), 
     1     DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 
     2     STRAIN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
     3     PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 
    
C PROPERTIES 
      DIMENSION MYRES(PROPS(22),6) 
 PARAMETER (ZERO=0.000000000) 
  
 REAL*8 TOLD,TNEW 
 REAL*4 MYHT 
 REAL MYP,MYVVFF,MYHPERCENT,CPERCENT 
 REAL MYf_0,MYDOTEPS_0, TIMECLOS ,DelT 
  s 
 INTEGER TOTALELEM,COUNT,MYELS,MYINDEX,NCALL 
   
  
 SAVE MYINDEX, MYHPERCENT, CPERCENT, NCALL,TOLD 
  
 MYDOTEPS_0 = PROPS(6)     !strain rate 
 MYf_0      = PROPS(11)   !initial VVF 
 TOTALELEM  = PROPS(22)    !total number of elements 
 MYVVFF     = PROPS(23)    !VVF at closure 
 DelT       =DTIME    
                             
      IF (STATEV(1).EQ.ZERO) THEN            
                
        STATEV(1) =1     
        STATEV(3) =MYf_0    !void volume fraction 
        STATEV(6) =ZERO     !element status 
        STATEV(7) =ZERO     !TIMECLOS 
        STATEV(8) =ZERO      
        STATEV(9) =ZERO     !MYHT 
        MYHPERCENT=ZERO 
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        CPERCENT  =ZERO 
        NCALL     =1.0 
      ENDIF 
                  
      IF (MYHPERCENT.GE.100.0) THEN 
          PRINT *,' ' 
          PRINT *,'HEALING COMPLETED ... ' 
          PRINT *,' ' 
      ENDIF 
       
      MYINDEX =MYINDEX+1 
      MYHT    =STATEV(9) 
      TIMECLOS=STATEV(7) 
                   
      IF (MYINDEX.GT.TOTALELEM) MYINDEX=1       
       

TNEW=TIME(2)  
 
      IF (MYINDEX.EQ.8.0) TOLD=TNEW     ! 8 integration points 
 
      IF ((TNEW.GT.TOLD).AND.(MYINDEX.EQ.1)) THEN  
          NCALL=1     
      ELSE 
          IF ((MYINDEX.EQ.1).AND.(TOLD.EQ.TNEW)) NCALL=NCALL+1        
      ENDIF           
       
      IF((STATEV(3).GT.ZERO).AND.(STATEV(3).LE.MYVVFF) 
     1   .AND.(MYHPERCENT.LT.100.0).AND.(STATEV(6).NE.2.0))THEN 
 
             CALL PRINCIPALSTRESS(STRESS,MYP,NTENS) 
 
             IF (STATEV(8).NE.1.0) THEN 
                STATEV(8)=1.0 
                TIMECLOS=TIME(2)  
                STATEV(6)=1.0 ! Element closed 
 
                IF (NCALL.EQ.1.0) 
     1              CPERCENT =CPERCENT+(1.0/TOTALELEM)*100.0 
                 
                CALL HealTime(MYP,MYDOTEPS_0,MYHT,MYVVFF,MYINDEX) 
                        
                STATEV(9)=MYHT 
                STATEV(7) =TIMECLOS 
             ENDIF 
 
             CALL FindF(MYP,MYDOTEPS_0,MYVVFF,STATEV(3),DelT) 
               
             IF ((TIME(2).GE.((MYHT+TIMECLOS))).AND. 
     1          (STATEV(6).EQ.1.0)) THEN 
                 STATEV(6)=2.0 ! Element healed 
                 STATEV(3)=ZERO 
                 IF(NCALL.EQ.1.0)  
     1              MYHPERCENT=MYHPERCENT+(1.0/TOTALELEM)*100.0 
             ENDIF 
             OPEN(UNIT=311,FILE= 
 1      'G:/umat13/HP.TXT' 
 2      ,FORM='FORMATTED') 
             IF(NCALL.EQ.1.0) WRITE(311,*)'HP1=',MYHPERCENT,'CP=', 
     1                        CPERCENT,'Time=',Time(2),'P=',MYP                      
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      ENDIF 
 
      CALL UMAT2(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN,TIME, 
     3      DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,NDI, 
     3 NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 
     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KIN) 
           
  RETURN 
  END  
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
       
      SUBROUTINE PRINCIPALSTRESS(STRESS,MYP,NTENS) 
       
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
      REAL II,III,Q,R,S,T,MYP 
      COMPLEX STRESSP1, STRESSP2, STRESSP3 
      REAL*8 I,STRESS(NTENS) 
 
      I = STRESS(1)+STRESS(2)+STRESS(3) 
      II = STRESS(1)*STRESS(2)+STRESS(2)*STRESS(3)+ 
     1 STRESS(1)*STRESS(3)-(STRESS(4)**2+STRESS(5)**2+STRESS(6)**2) 
      III = STRESS(1)*STRESS(2)*STRESS(3)+2*STRESS(4)*STRESS(5)* 
     1 STRESS(6)-(STRESS(1)*STRESS(4)**2+STRESS(2)*STRESS(5)**2+ 
     2 STRESS(3)*STRESS(6)**2) 
 
      Q = (3*II-I**2)/9 
      R = (-9*I*II+27*III+2*I**2)/54 
      S = (R+(Q**3+R**3)**(0.5))**(1/3) 
      T = (R-(Q**3+R**3)**(0.5))**(1/3) 
 
      STRESSP1 = S+T+(1/3)*I 
      STRESSP2 = (-1/2)*(S+T)+(1/3)*I+(1/2)*i*3**0.5*(S-T) 
      STRESSP3 = (-1/2)*(S+T)+(1/3)*I-(1/2)*i*3**0.5*(S-T) 
      MYP = -I/3.0 
       
      END 
 
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
C     Calculates healing time 
      
      SUBROUTINE HealTime(MYP,MYDOTEPS_0,MYHT,MYVVFF,MYINDEX)  
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
      INCLUDE 'aba_param.inc' 
     
    Real g,DELVVF,VVF,Y,SUM,DELf,dg,VVF1 
     Real r0,T,h0 
     Real half 
     Real MYP,MYDOTEPS_0,MYHT,MYVVFF,MYf 
     PARAMETER (ZERO=0) 
     Integer N, I,MYINDEX 
       
     half     = 0.5 
     N        = 80.0       
    r0       = 5E-3        
     T        = 1273.15 
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     VVF1     = MYVVFF  
     h0        = 1E-2       
C Calculate subinterval length 
C and initialize the approximating SUM and vvf 
 DELVVF = -VVF1/REAL(N) 
 VVF    = VVF1 
 SUM    = 0.0 
C Now calculate  
      OPEN(UNIT=308,FILE= 
     1 'G:/umat13/dfdtp.TXT' 
     2 ,FORM='FORMATTED') 
      
      OPEN(UNIT=309,FILE= 
     1 'G:/umat13/MYf.TXT' 
     2,FORM='FORMATTED')  
       
      DO 10 I = 1, N 
         
        MYf = VVF 
 
        Y1 = g(r0,MYf,T,MYP,MYDOTEPS_0,h0) 
                         
        DELf = DELVVF 
   
        VVF=VVF+DELVVF 
        MYf = MYf + DELf 
         
        IF (I.EQ.N) THEN  
            MYf   =1.0E-18 
            VVF =1.0E-18 
        ENDIF 
         
        IF (MYf.LT.ZERO) THEN  
            MYf=1.0E-10 
        ENDIF 
 
        Y2 = g(r0,MYf,T,MYP,MYDOTEPS_0,h0) 
        dg = Y2+Y1 
        Y=(Y1+Y2)/2.0*DELf 
        SUM = SUM + Y  
         
  10  CONTINUE 
      MYHT=SUM 
      End 
 
C%%%%%%%%%%%%%%%%%%%%%% 
C The integranl g(f)   
C Pilling model 
C%%%%%%%%%%%%%%%%%%%%%% 
     
      FUNCTION g(r0,MYf,T,MYP,MYDOTEPS_0,h0) 
       
      Real g,denom,denomdf,TOL,half,zero,rh 
      Real K,SurfEn,d,Dgbc,Ap,Qp,np,Apl,Qpl,npl,Ra,Qgb,AV 
      REAL r0,MYf,T,MYP,MYDOTEPS_0,MYVVF 
      Real sigmaz, sigmatheta, sigmar, sigma, Dgb, r, edot, edotr 
      Real dfdtp, dfdtd, dfdtt, dvdtd,h0,dtdfd,dtdfp  
      Integer Ni    
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      AV       = 1.78E-29   !Atomic volume 
 K        = 1.38E-23   !Boltzman constant 
 Dgbc     = 3.0E-12    !Grain boundary diffusion coefficient 
 SurfEn   = 1.7        !Surface energy 
 d        = 3.0E-5     !Grain size 
      half     = 0.50 
      zero     = 0.0  
      TOL      = 1e-20  
      Ap       = 3.80E+4    !Rate constant for plastic flow 
      Qp       = 150000.0   !Activation energy for plastic flow 
      np       = 1.43       !Stress exponent for plastic flow 
      Apl      = 7.5E-2     !Rate constant for creep 
      Qpl      = 150000     !Activation energy for plastic flow 
      npl      = 4.3        !Creep stress exponent 
      Ra       = 8.314      !Gas constant 
      Qgb      = 202000.0   !Activation energy 
      pi       = 3.141593    
           
      rh=r0*(MYf)**half 
      sigmaz=-(MYP*1000000.0)*r0**2/(r0**2-rh**2)/1000000.0  
      sigmar=((MYP*1000000.0)-2*SurfEn/r0)*((Myf)**half-1)/ 
     1       (1-MYf)/1000000.0  
      sigmatheta=((-MYP*1000000.0)-2*SurfEn/r0)*((Myf)**half+1)/ 
     1           (1-MYf)/1000000.0 
      sigma=(half*((sigmar-sigmatheta)**2+(sigmatheta-sigmaz)**2+ 
     1    (sigmaz-sigmar)**2))**0.5 
       
      edot=(Ap*exp(-Qp/(Ra*T))/T)*sigma**np+ 
     1     (Apl*exp(-Qpl/(Ra*T))/T)*sigma**npl 
      edotr=edot/sigma*(sigmar-half*(sigmatheta+sigmaz))       
      dfdtp=-2*edotr*(1-MYf) 
      denom=Log(1/MYf)-((1-MYf)/2.0) 
      Ni=int(1+MYf*h0/d) 
      Dgb=Dgbc*exp(-Qgb/(Ra*T)) 
       
      IF (denom.LT.TOL) THEN  
          denom=TOL 
      ENDIF 
       
      dvdtd=-(2*pi*Dgb*(sigmaz*1000000.0)/(K*T)*(1-MYf)/ 
     1      denom)*AV 
      dfdtd=-Ni*(dvdtd/(pi*r0**2*h0*MYf)) 
      denomdf=(dfdtd+dfdtp) 
      IF (denomdf.eq.zero) THEN  
          denomdf=1e-20 
      ENDIF 
      dfdtt=1.0/denomdf 
     g=dfdtt 
      RETURN 
      END         
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      SUBROUTINE FindF(MYP,MYDOTEPS_0,MYVVFF,STATEV3,DelT) 
C     Calculates void volume fraction from Pilling model.          
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      INCLUDE 'aba_param.inc' 
     
    Real r0,T,h0,DelT 
     Real MYP,MYDOTEPS_0,MYVVFF 
     REAL*8 STATEV3,MYfN,DELTAF 
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      MYfN     = STATEV3 
      T        = 1273.15 
     h0       = 1E-2 
      r0       = 5E-3  
               
      DELTAF= DF(MYfN,T,MYP,MYDOTEPS_0,r0,h0,DelT) 
      IF (DELTAF.LT.MYfN) THEN 
         MYfN=MYfN+DELTAF 
      ELSE 
         MYfN=0.0 
      ENDIF 
      STATEV3=MYfN 
      RETURN 
      END 
C%%%%%%%%%%%%%%%%%%%%%% 
C Function DF 
C%%%%%%%%%%%%%%%%%%%%%% 
 
      FUNCTION DF(MYfN,T,MYP,MYDOTEPS_0,r0,h0,DelT) 
       
      Real DF,denom,denomdf,TOL,half,zero 
      REAL B1,B2,B,DelT 
      Real K,SurfEn,d,Dgbc,Ap,Qp,np,Apl,Qpl,npl,Ra,Qgb,AV 
      REAL r0,rh,T,MYP,MYDOTEPS_0,MYVVF 
      Real sigmaz, sigmatheta,sigmar,sigma,Dgb,edot,edotr 
      Real dfdtp, dfdtd, dfdtt, dvdtd,h0,dtdfd,dtdfp  
      REAL*8 MYfN 
      Integer Ni 
 
      AV       = 1.78E-29 
 K        = 1.38E-23 
 Dgbc     = 3.0E-12 
 SurfEn   = 1.7 
 d        = 2.0E-5    
      half     = 0.50 
      zero     = 0.0  
      TOL      = 1e-20  
      Ap       = 3.80E+4 
      Qp       = 150000.0  
      np       = 1.43 
      Apl      = 7.5E-2  
      Qpl      = 150000  
      npl      = 4.3  
      Ra       = 8.314 
      Qgb      = 202000.0  
      pi       = 3.141593 
 
      rh=r0*(MYfN)**half  
      sigmaz=(-MYP*1000000.0)*r0**2/(r0**2-rh**2)/1000000.0  
      sigmar=((MYP*1000000.0)-2*SurfEn/r0)*((MyfN)**half-1)/ 
     1       (1-MYfN)/1000000.0  
      sigmatheta=((-MYP*1000000.0)-2*SurfEn/r0)*((MyfN)**half+1)/ 
     1           (1-MYfN)/1000000.0 
      sigma=(half*((sigmar-sigmatheta)**2+(sigmatheta-sigmaz)**2+ 
     1    (sigmaz-sigmar)**2))**0.5  
      edot=(Ap*exp(-Qp/(Ra*T))/T)*sigma**np+ 
     1     (Apl*exp(-Qpl/(Ra*T))/T)*sigma**npl 
      edotr=edot/sigma*(sigmar-half*(sigmatheta+sigmaz)) 
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      dfdtp=-2.0*edotr*(1.0-MYfN)       
      Ni=int(1.0+MYfN*h0/d) 
      Dgb=Dgbc*exp(-Qgb/(Ra*T))     
      B1=-Ni*2.0*AV/K    !*Dgb*(sigmaz*1000000.0) 
      B2=Dgb*(sigmaz*1000000.0)/(T*r0**2.0*h0) 
      B=B1*B2 
                   
      denom=Log(1.0/MYfN)-((1.0-MYfN)/2.0) 
      DF = (B*(1.0-MYfN)/(MYfN*denom)-2.0*edotr*(1.0-MYfN)) 
     1     *DelT 
      RETURN 

      END
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Appendix F:  

(i) Products of  rolling 

The ingot or the continuous casting product is hot rolled into a bloom or a slab. 
Blooms have a square cross section greater than 230 cm2. Slabs have a rectangular 
cross section greater than 100 cm2. Blooms and slabs are further rolled into parts 
such as plate, sheet, strip, coil, billets, bars and rods. Many of these products will be 
the starting material for subsequent manufacturing operations such as forging, sheet 
metal working, wire drawing, extrusion, and machining.  

 

Figure F1- Metal forming process hierarchy of rolling operations in modern manufacturing 

industry2. 

(ii) Different rolling mill configurations 

A roll mill consists of rolls stands, bearings, housing, motors, and other mechanical 
equipment. Rolling mills are different in the type, number, and position of rolls. 
Rolling mill arrangements commonly used in manufacturing industry today include 
the two high mill, the three high mill, the four high mill and the cluster mill as shown 
in figure below. 

                                                           
2 Image from: The library of manufacturing, available at 
http://thelibraryofmanufacturing.com/metal_rolling.html 



260 
 

 
Figure F2-Different types of metal rolling mills: (a) Two high rolling mill, (b) Three high 

rolling mill, (c) four high rolling mill and (d, e) Cluster mills. 

 

  

(a) (b) (c)

(d) (e)
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Appendix G: Non uniform porosity distribution (PYTHON Code) 

i) Linear distribution of porosity 

from abaqus import * 
from abaqusConstants import * 
import __main__ 
import section 
import regionToolset 
import displayGroupMdbToolset as dgm 
import part 
import material 
import assembly 
import step 
import interaction 
import load 
import mesh 
import job 
import sketch 
import visualization 
import xyPlot 
import displayGroupOdbToolset as dgo 
import connectorBehavior 
 
mymodelname='B-Roll-3D-25SA' 
myinp      ='C:/sa809/Billet.inp' 
mycae      ='C:/sa809/Billet.cae' 
mypartname ='PRODUCT-1' 
myset      ='Set-sa' 
fo=0.03 
 
# Read from a cae file 
openMdb(pathName=mycae) 
mymodel = mdb.models[mymodelname].rootAssembly 
session.viewports['Viewport: 1'].setValues(displayedObject=mymodel) 
myelements= mymodel.allSets[myset].elements 
mynodes   = mymodel.allSets[myset].nodes 
ne        = len(myelements) 
nn        = len(mynodes) 
npe       = len(myelements[0].connectivity) 
xmin      = [] 
xmax      = [] 
xm        = [] 
ymin      = [] 
ymax      = [] 
ym        = [] 
nlabels   = [] 
 
for k in range(0,nn): 
 nlabels.append(mynodes[k].label) 
for i in range(0,ne): 
 x=[] 
 y=[]  
 for j in range(0,npe): 
  nlabel=myelements[i].connectivity[j]   
  nindex=nlabels.index(nlabel+1)   
  tmp=mynodes[nindex].coordinates[0] 
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  tmpp=mynodes[nindex].coordinates[1] 
  x.append(tmp) 
  y.append(tmpp) 
 xmin.append(min(x)) 
 xmax.append(max(x)) 
 xm.append((min(x)+max(x))/2.0) 
 ymin.append(min(y)) 
 ymax.append(max(y)) 
 ym.append((min(y)+max(y))/2.0) 
 
myfile=open('c:/sa809/NONUNIF.txt', 'w') 
f     =[] 
c     =min(ym)-(max(ym)-min(ym))/(max(xm)-min(xm))*min(xm) 
for i in range(0,ne): 
 yl    =(max(ym)-min(ym))/(max(xm)-min(xm))*xm[i]+c 
 if ym[i]>=yl: 
   ftmp =-fo*(ym[i]-max(ym))/(max(ym)-min(ym)) 
 else: 
   ftmp =-fo*(xm[i]-max(xm))/(max(xm)-min(xm)) 
 f.append(ftmp) 
 myfile.write(str(myelements[i].label)+'    '+str(xm[i])+'    
'+str(ym[i])+'    '+str(f[i])+'\n') 
myfile.close() 
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i) Gaussian distribution of porosity 

 
from abaqus import * 
from abaqusConstants import * 
import __main__ 
import section 
import regionToolset 
import displayGroupMdbToolset as dgm 
import part 
import material 
import assembly 
import step 
import interaction 
import load 
import mesh 
import job 
import sketch 
import visualization 
import xyPlot 
import displayGroupOdbToolset as dgo 
import connectorBehavior 
 
mymodelname='B-Roll-3D-25SA' 
myinp      ='C:/sa809/Billet.inp' 
mycae      ='C:/sa809/Billet.cae' 
mypartname ='PRODUCT-1' 
myset      ='Set-sa' 
fo=0.03 
sigx=50.0 
sigy=50.0 
 
# Read from a cae file 
openMdb(pathName=mycae) 
mymodel = mdb.models[mymodelname].rootAssembly 
session.viewports['Viewport: 1'].setValues(displayedObject=mymodel) 
 
myelements= mymodel.allSets[myset].elements 
mynodes   = mymodel.allSets[myset].nodes 
ne        = len(myelements) 
nn        = len(mynodes) 
npe       = len(myelements[0].connectivity) 
xmin      = [] 
xmax      = [] 
xm        = [] 
ymin      = [] 
ymax      = [] 
ym        = [] 
nlabels   = [] 
for k in range(0,nn): 
 nlabels.append(mynodes[k].label) 
 
for i in range(0,ne): 
 x=[] 
 y=[]  
 for j in range(0,npe): 
  nlabel=myelements[i].connectivity[j]   
  nindex=nlabels.index(nlabel+1)   
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  tmp=mynodes[nindex].coordinates[0] 
  tmpp=mynodes[nindex].coordinates[1] 
  x.append(tmp) 
  y.append(tmpp) 
 xmin.append(min(x)) 
 xmax.append(max(x)) 
 xm.append((min(x)+max(x))/2.0) 
 ymin.append(min(y)) 
 ymax.append(max(y)) 
 ym.append((min(y)+max(y))/2.0) 
 
myfile=open('c:/temp610/nonunif2/NONUNIF.txt', 'w') 
f     =[] 
yo    =min(ym) 
xo    =min(xm) 
for i in range(0,ne): 
 ftmp     =fo*exp(-((xm[i]-xo)**2.0/(2.0*sigx**2.0)+(ym[i]-
yo)**2.0/(2.0*sigy**2.0))) 
 f.append(ftmp) 
 myfile.write(str(myelements[i].label)+'    '+str(xm[i])+'    
'+str(ym[i])+'    '+str(f[i])+'\n') 
myfile.close() 
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Appendix H: 
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