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Abstract

The purpose of this thesis is to explore the driving of non-Maxwellian distributions of

particles in high energy density plasmas in a few select cases, with particular reference

to efforts to produce a net gain in energy via inertial confinement fusion (ICF).

Non-Maxwellian distributions are typically short-lived, as distributions are forced toward

equilibrium by collisions, and are rarely static as a net transfer of energy must occur to

sustain them. This makes non-Maxwellian distributions challenging to study with con-

ventional approaches to plasma physics. The strategy adopted in this work to understand

their evolution, and their effects, is a kinetic approach in which particles are individually

accounted for.

The specific cases presented are that of degenerate electrons during the heating of the cold

fuel shell in hotspot ignition schemes, ion-ion inverse bremsstrahlung absorption of laser

radiation, and large-angle Coulomb collisions. New computational algorithms based on

the Monte Carlo technique are presented, and are capable of modelling the salient aspects

of the phenomena explored. Important results which form part of this thesis include

that conventional models underestimate degenerate electron temperatures long after the

plasma ceases to be degenerate, that it may be possible to induce temperatures of keV in

light-ion species with high power, short pulse lasers, and that consideration of large-angle

collisions changes interactions in a plasma in several significant ways. Of most interest

are the ability of large-angle collisions to decrease equilibration times, drive athermal tails

on distribution functions, and increase the overall yield from fusion reactions relative to

small-angle only simulations.



Conventions and Symbols I

Symbol Description
i, j, k Species or particle labels

qi or Zi Charge or atomic number of particle of species i in units of e

Ti Temperature of species i in units of energy

mi Mass of particle of species i

ni Number density of species i

Ni Number of particles, or simulation particles, of species i

ri Particle sphere radius of species i, ri = (4πni/3)−1/3

r0 Total particle sphere radius, r0 =
(∑

r−3
i

)−1/3

mij Reduced mass of species i and j, mij = mimj/(mi +mj)

ρ Mass density; or charge density; or resistivity

v Velocity

vij Relative velocity between i and j, vij ≡ vi − vj

vi,th Thermal speed of species i, v2
i,th = 3Ti/mi

λD Debye length, λ2
D =

∑ ε0Ti
niq2i e

2

λdB The de Broglie wavelength, λdB = ~/ (2mvth)

λC Compton wavelength, λC = h/ (mc)

ND Number of particles in a Debye sphere, ND = 4
3πneλ

3
D

g Plasma coupling parameter, g = 1/(neλ
3
D)

ωpe Plasma frequency, ωpe = (nee
2/ε0me)

1/2

ln Λij Coulomb logarithm between i and j

fi(x,v, t) Distribution function of species i

C(x) Cumulative density function, C(x) =

∫ x

0
f(x′)dx′

fMB(v) Maxwell-Boltzmann distribution

fMC(v) Distribution from Monte Carlo simulation

fFD(v) Fermi-Dirac distribution

η Degeneracy parameter

ψ(r, t) Wavefunction at position r and time t

E Electric field strength

B Magnetic field flux density

J Current density

I Intensity

nc Relativistic critical density

a0 Dimensionless electric wave strength parameter

Ẇ Absorption or emission in units of energy per unit time per unit volume



Conventions and Symbols II

Symbol Description
ρR Areal density

dsr Down-scattered neutron ratio

φ Electric potential; or azimuthal angle in spherical co-ordinates 0 ≤ φ < 2π

θ Scattering angle in c.o.m. frame; or polar angle in spherical co-ordinates 0 ≤ θ ≤ π
χ Scattering angle in the laboratory frame

b Impact parameter

b⊥ Impact parameter for scattering through π/2 (species labels suppressed)

bφ Impact parameter based on solving potential equation (species labels suppressed)

bc Cut-off impact parameter (species labels suppressed)

θc Cut-off in angle (species labels suppressed)
dσ
dΩ Differential cross-section

σ Total cross-section; or standard deviation of distribution

µ Mean of distribution: discrete, µ = 1
N

N∑
i

xi, or continuous, µ = 1
b−a

∫ b

a
xf(x)dx

µn nth centralised moment of distribution function, µn =
∫

(x− µ)nf(x)dx

κ Excess kurtosis, κ = µ4/σ
4 − 3

X ∼ N (µ, σ2) X distributed normally with mean µ and standard deviation σ

U ∼ U (a, b) Random number U uniformly distributed on (a, b)

k ∈ Z k is a member of the integers

k ∈ N k is a member of the natural numbers excluding zero

bxc Largest integer not greater than x, bxc = max {m ∈ Z |m ≤ x}
〈x〉 Average of quantity x

δij Kronecker ‘delta function’

δ(x) Dirac ‘delta function’

α, β, γ, ... Vector and tensor indices

εµνκ Levi-Civita symbol (anti-symmetric)

t Time

∆t Computational timestep in finite difference scheme

w Particle weighting in computation, w = n/N

c Speed of light in vacuo, 2.9979× 108 m s−1 in S.I. units

ε0 Permittivity of free space, 8.8542× 10−12 F ·m−1 in S.I. units

µ0 Permeability of free space, 4π × 10−7 N ·A−2 in S.I. units

e Absolute value of the electronic charge, 1.6022× 10−19 C in S.I. units

~ Reduced Planck’s constant, ~ = h/2π = 6.63× 10−34/2π J · s in S.I. units

αf Fine structure constant, αf = 1/137 = e2/(4πε0~c)
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Chapter 1

Introduction

This thesis aims to explore the driving of non-Maxwellian distributions in high energy

density plasmas. The plasma conditions examined are similar to those encountered in

attempts to achieve a net gain in energy from inertial confinement fusion (ICF) experi-

ments at the US National Ignition Facility (NIF). The results are split into three different

topics: electron degeneracy, ion-ion inverse bremsstrahlung absorption, and large-angle

collisions. The consequences of the driven non-Maxwellian distributions studied include

changing the rate of fusion reactions, decreasing the rate of absorption of laser energy,

accelerating inter-species equilibration, and modifying transport coefficients.

This Chapter is concerned with the motivation for, and background to, the research

undertaken. §1.1 explains the origins of nuclear fusion, and the continued attempts to

turn fusion into an energy source. §1.2 explains the arguments for fusion as a power

source, particularly from the point of view of meeting Earth’s energy needs in the future

and preventing climate change by offering a clean alternative to fossil fuels. Details of

the basic physics of a self-sustaining fusion reaction - a situation known as ignition - are

discussed in §1.3, including the energy balance in a ‘burning’ plasma, and an overview of

the stages of an ICF plasma as envisaged on NIF. A summary of the content of subsequent

chapters can be found in §1.4.

1.1 Nuclear fusion

Nuclear fusion is the process whereby two ions coalesce to form new ions and an amount

of energy proportional to the total change in mass is released, as according to Einstein’s

mass-energy equivalence principle. This release of energy powers all stars, and has the

highest energy density of any abundant fuel.

21
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The pioneering science fiction author H. G. Wells is sometimes credited with predicting

the nuclear age, as it is the premise of a story he published in 1914 [1]. However, it was

Eddington who realised that Einstein’s mass-energy equivalence principle meant that

nuclear reactions could be the source of the Sun’s energy. He made a prescient speech on

the topic [2], arguing in 1920 that

“If, indeed, the sub-atomic energy in the stars is being freely used to maintain

their great furnaces, it seems to bring a little nearer to fulfillment our dream

of controlling this latent power for the well-being of the human race, or for

its suicide.”

– A. Eddington

Ernest Rutherford, discoverer of the structure of the atom, was not convinced, saying in

1933 that nuclear energy was “moonshine” [3]. However, three of the four in the nuclear

quartet of a nuclear fission reactor, nuclear fission bomb, and nuclear fusion (or hydrogen)

bomb had been demonstrated by 1952, with only nuclear fusion left.

There were pioneering but poorly funded attempts to build controlled nuclear fusion de-

vices right at the dawn of the nuclear age: in the US in 1938 [3], in Oxford in 1939 by

Peter Thonemann, and by George Thompson and Moses Blackman at Imperial College in

1946, who filed a patent for a ‘pinch’ device [4, 5]. Two doctoral students at Imperial Col-

lege began the UK’s experimental campaign by building a small device in 1949. However,

it was Argentina which really stimulated research into controlled fusion by claiming to

have achieved it in 1951 [6]; the claim turned out to be false but the headlines prompted

better funded research in the UK, US, and the then USSR. Edward Teller, recalling his

time working on the first hydrogen bomb in 1952, said [7]

“No sooner was it done than every politician and every bureaucrat descended

upon us saying, ‘Now you must solve the problem of controlled fusion’.”

– E. Teller

Fusion research then began in earnest worldwide. Two strategies for confinement of the

ionised material, plasma (the subject of Chapter 2), emerged; one using magnetic fields,

and the other using implosions of fuel to create the densities and temperatures in which

fusion reactions become self-sustaining. The problem of containing plasma for the length

of time required for fusion reactions to occur was succinctly described by Edward Teller

in 1954 as being [8]
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“...like trying to confine jelly with rubber bands.”

– E. Teller

Teller said this after it became clear that controlled thermonuclear fusion would be far

more difficult to achieve than any of the other parts of the nuclear quartet. The two

methods for confining plasma are known as magnetic confinement fusion (MCF) and

inertial confinement fusion (ICF), both of which aim to achieve a net gain in energy from

the deuterium-tritium fusion reaction.

This thesis is more concerned with ICF, which uses the inertia of the fuel to provide

confinement for just long enough for fusion reactions to take place. The conditions for

fusion created by radiation initiated implosion were first suggested by Klaus Fuchs in 1946,

before he was arrested for spying on the US for the USSR. Stanislaw Ulam at Lawrence

Livermore National Laboratory (LLNL) continued the work, and the first hydrogen bomb

used the ‘Teller-Ulam configuration’ whereby a fission explosion creates a large radiation

field which, via ablative pressure, compresses fuel and ignites fusion reactions. Both the

US and USSR desperately sought peaceful applications of the enormous release of energy,

including, incredibly, landscaping and sealing out-of-control oil wells [2].

Another of the more unusual proposals was setting off a series of hydrogen bombs in

an underground chamber in order to produce energy. The number of bombs required

to do this for practical power generation is, and was considered at the time to be, both

impractical and fearsome. One of the scientists working on this idea, for Teller, was J.

Nuckolls who joined LLNL in the late 1950s [9]. His job was to calculate just how many

bombs it would be possible to explode before the rubbish accumulating at the bottom of

the chamber went critical. While Teller thought that bigger was better, Nuckolls began

to think that smaller bombs might be more sensible, and decided to calculate just how

small a fusion explosion it was possible to make. The idea of ICF came to Nuckolls at this

time, and he realised that a capsule of fuel just a few millimetres across could still explode

and release a more manageable amount of energy. But there was a problem - how could

such a small pellet of fuel be driven? To be a politically acceptable and commercially

viable source of energy, the small fusion explosions would need to be entirely separate

from fission explosions.

In 1960, T. Maiman built the first laser [10] and Nuckolls immediately saw that it could be

the non-nuclear driver of fusion that was needed to make controlled thermonuclear inertial

confinement viable. Between 1960 and 1972, Nuckolls worked on an idea called indirect-

drive, where radiation is absorbed and re-emitted before compressing the fuel, but his
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work was classified. The idea of using lasers to drive fusion had also occurred to scientists

in Britain, where, again, it was classified. Two Soviet scientists also proposed the idea

of inertial confinement fusion in 1963 [2]. In 1972, Nuckolls was permitted to publish a

paper which explained how laser compression of deuterium and tritium could work but,

in order to get past the censors, he had to say that the laser illuminated the fuel directly,

rather than indirectly in the manner he had actually been considering. While much of

the work in Britain, the US, and USSR was still conducted in secret, countries with no

such classification were beginning to do research too. Japan was openly publishing by

the 1980s, which was frustrating for those working on ICF in secret in other countries,

including Paul Drake and John Lindl at LLNL in the US [8],

“You could follow their learning curve. We could have saved them five years

of work.”

– J. Lindl

Secret experiments were undertaken in the late 70s, and throughout the 80s, by the UK

and the US. Though many of the details are still classified, pioneering experiments led by

S. Rose and P. Roberts from the UK demonstrated the first successful implosions of fusion

targets in the 1980s [11] and so proved the concept of small scale radiation implosion. A

subsequent US experiment obtained similar results, and determined that laser energies

of 20 – 100 MJ would be required to ignite capsules [2]. A report on the US programme

states that the tests

“...demonstrated excellent performance, putting to rest fundamental questions

about the basic feasibility of achieving high gain.”

ICF, and its eventual goal of inertial fusion energy (IFE), has been pursued ever since via

a sequence of experimental campaigns on lasers capable of delivering larger and larger

amounts of energy to a target. A system capable of delivering an energy of 1.8 MJ to a

target has been built, and is known as the National Ignition Facility (NIF), and a similar

machine, Laser Mégajoule (LMJ), is being constructed in France. The goal of NIF is to

achieve ignition, that is to create a self-sustaining wave of fusion reactions in an ICF fuel

capsule with a scientific gain in energy of one. This means as much energy is produced

from fusion reactions as is originally delivered to the target. Though this is different

from a true ‘wall plug’ gain, in which the inefficiencies of the laser system are taken into

account, or indeed from the gain needed for commercial feasibility, it is the first and

necessary step in demonstrating the potential of ICF. The basic physics of ignition, and

of ICF, are described in §1.3.
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1.2 The need for fusion

There are compelling arguments for developing nuclear fusion as a power source. The

strongest is that the fuels currently relied upon to provide electricity, and most other

forms of energy, are not sustainable and will eventually run out. These include coal, oil,

and gas of which there are proven reserves for 162, 51, and 56 years respectively using

known reserves and consumption levels at the end of 2012 [12]. Coal, oil, and gas currently

make up 87% of world primary energy consumption. Proven reserves may not reflect the

true amount of a fuel which is left, but it is unlikely that undiscovered reserves are many

orders of magnitude larger than those which are known, and undiscovered reserves may be

expensive to extract. Much has been made of the shale revolution, which allows extraction

of previously inaccessible oil and gas by ‘fracking’, a method using pressurised water and

chemicals to force oil and gas contained in small fissures in underground rocks to rise

to the surface. The increase in production of gas by this method has been particularly

large in North America, and may allow the US to become self-sufficient in energy. It

will certainly allow the US to produce far less CO2, as burning gas is less polluting than

burning coal or oil. However, fracking is unlikely to be the solution to the global energy

crisis; for the period 2008-2012 the increase in US production of gas was only 1.2%. Over

the same time period, world consumption of gas grew by 1.1% (as did production). Even

with a global doubling or tripling of proven reserves of gas due to fracking, the fossil fuel

horizon will still be in roughly the next 50-150 years, and the energy use of the world will

have to decrease substantially if new methods of power generation are not introduced.

A decline in demand for energy is extremely unlikely, barring some global crisis. Although

energy use per capita has reduced slightly in OECD countries, it is fast rising in the

countries with the largest populations. The desire to achieve higher living standards in

developing countries has resulted in an increase in energy use, and there is a very strong

correlation between a country’s GDP and its energy use as shown in Fig. 1.1. The most

populous countries are quickly climbing the curve. Though it is feasible that energy use

per capita could be brought to a sustainable level, the world population is growing and

is set to continue to do so for the future, with some stabilisation above 9 billion by 2075

according to a United Nations forecast [13]. The world population since 1960 is shown

in Fig. 1.2. These population driven increases in energy demand will almost certainly

happen against a background of dwindling supply.

There are additional arguments in favour of reducing the use of fossil fuels; they produce

particulate air pollution, which has long-term negative effects on health [14], and they are

a source of geo-political tensions, with some countries using the supply of their natural

resources for political gain.
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Figure 1.1: GDP and electricity generation are strongly correlated. Data from the
OECD/IMF.
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Figure 1.2: World population since 1960. Forecasts indicate continued growth in the
short term, and stabilisation by 2075. Data from the World Bank.

The most discussed negative effect of fossil fuels is the release of CO2 and the potential

for global, and possibly irreversible, climate change that a large concentration of CO2 in

the atmosphere causes. CO2 in ppm (parts per million by volume) recently reached a

historic high of 400. Recent reports [15] suggest that stabilisation at 450 ppm of CO2

still gives a ∼50% chance of a 2◦C rise in global average temperature compared to the
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pre-industrial average temperature. A recent forecast by BP is for carbon emissions from

energy use to increase by 26% between 2011 and 2030, which would mean CO2 closer

to 500 ppm than 450 ppm. The ‘dirtiest’ fossil fuel, coal, is also the fastest growing by

consumption [12]. The current UK target, written into law by the 2008 Climate Change

Act, is to reduce emissions of CO2 by at least 80% by 2050 (relative to 1990 levels).

Pressure to relinquish fossil fuels as the primary source of energy is strong. Unfortunately,

alternatives are not forthcoming. Fossil fuel based electricity generation has a small

geographical footprint, is extremely reliable, is easily scalable, and is cheap relative to

alternatives (ignoring negative externalities). Although renewable technologies are far

less polluting, they do not have these particular advantages. It is unlikely that renewable

technologies such as hydro-electricity, wind, solar, wave, and biomass will be able to

provide all of the energy required by the UK, or the world [16]. Nuclear fission has many of

the advantages of fossil fuels in terms of reliability, scalability, and geographical footprint.

There is enough fissile fuel to last beyond the fossil fuel horizon of 50-100 years, depending

on the costs of extraction and developments in reactor technology, although there is

probably not enough for thousands of years of power. Fission remains deeply unpopular

due to the possibility of nuclear accidents, such as radiation leaks and meltdowns. These

rare, catastrophic events aside, it produces little air pollution. Nuclear fission is also

extremely safe - it has the fewest deaths per joule of electricity generated out of coal,

peat, oil, gas, biomass, hydro-electricity and wind power [16].

It might be expected that a nuclear fusion reactor would be subject to similar rules,

regulations and operational procedures as current fission reactors and so have a similar

level of safety - with two important and beneficial exceptions. The first is that there is

no chance of any runaway process such as meltdown, as only that fuel which is required

is added to the reactor chamber, and the second is that the amount and level of the

radioactive waste from fusion is far less, lasting on the order of a hundred years rather

than on the order of millions.

A final argument in favour of fusion is that the fuel is extremely abundant. Deuterium

occurs naturally: 33 grams in every tonne of seawater. Tritium must be bred in reactors

from Lithium, and it is Lithium which is the limiting factor in deuterium-tritium fusion.

Estimates of how much energy the world’s Lithium could provide if used in fusion reactors

vary, but (assuming extraction from seawater) it is comfortably hundreds of thousands of

years. If deuterium-deuterium fusion could be developed, there would be enough fuel for

millions of years based on current energy consumption and world population. The easy

accessibility of seawater means, in principle, that fusion fuel would be free of the political

issues associated with oil and gas production.
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Given the historical trend for ever growing energy consumption, developing fusion power

can be seen as part of the natural evolution of power production. Widespread fusion

power would allow energy to be generated at a rate unprecedented in human history, and

may initiate a new era of energy use akin to the introduction of steam power, and the

industrial revolution that it catalysed.

1.3 The physics of ignition

In this discussion on the basic physics of ignition, the argument of Atzeni and Meyer-ter-

Vehn’s comprehensive textbook [17] is followed closely. In a fusion reaction, the amount

of energy released per reaction, Q, is proportional to the total change in mass,

Q =

(∑
i

mi −
∑
f

mf

)
c2

where i and f denote initial and final states respectively. There are many fusion reactions

which produce energy, some of which are shown in Table 1.1. The fusion reaction with

the largest cross-section for reaction at the lowest energy is that between deuterium and

tritium, referred to as ‘d’ and ‘t’ respectively. The energy released is Qdt = 17.6 MeV

and the reaction is

d + t −→ α (3.5 MeV) + n (14.1 MeV)

All nuclear fusion power schemes must satisfy the fundamental property of producing

more energy than is taken to initiate the fusion reactions. All fusion schemes seek to

achieve a net gain G such that G > 1, in order to prove scientific feasibility. Commercial

feasibility is quite different, and G∼30 − 100 or more might be needed. The simplest

scenario is that of a geometry independent, perpetually burning plasma (in which fuel

may be replaced). The energy losses per unit time per unit volume from a plasma can be

described with just two terms accounting for electron-ion bremsstrahlung emission, Ẇb,

and loss of energy confinement, 3nT/τE where τE is an energy confinement time. These

losses are balanced by any auxiliary heating supplied, Ẇaux, and any fusion energy which

is both produced, and then retained, in the plasma. Given neutrons have no charge this

is almost exclusively from the α particles for deuterium-tritium fusion, and so the energy

per unit time per unit volume retained in the plasma is Ẇfusion/5. The factor of 1/5 is

due to conservation of momentum between the neutron and Helium nucleus produced.

Let

Q =
Ẇfusion

Ẇaux
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Reactants Products

d+d −→ t (1.01 MeV) + p (3.02 MeV)

d+d −→ He3 (0.82 MeV) + n (2.45 MeV)

d+t −→ α (3.5 MeV) + n (14.1 MeV)

d+He3 −→ α (3.6 MeV) + p (14.7 MeV)

t+t −→ α + 2n + 11.3 MeV

t+He3 −→ α + p + n + 12.1 MeV

t+He3 −→ α (4.8 MeV) + d (9.5 MeV)

t+He3 −→ He5 (12.4 MeV) + p (11.9 MeV)

p+Li6 −→ α (1.7 MeV) + He3 (2.3 MeV)

p+Li7 −→ 2α + 17.3 MeV

d+Li6 −→ 2α + 22.4 MeV

p+Be11 −→ 3α + 8.7 MeV

n+Li6 −→ α (2.1 MeV) + T (2.7 MeV)

Table 1.1: A selection of exothermic fusion reactions [18].

be the efficiency of the reactor. Ignition is defined as Q = ∞, i.e. the fusion reactions

are completely self-sustaining and require no auxiliary power. Ignition is the first goal of

NIF. In order to balance emission and absorption of energy, the plasma must satisfy

Ẇb +
3nT

τE
= Ẇfusion

(
1

Q +
1

5

)
Given that

Ẇfusion =
1

4
n2〈σv〉Qdt and; Ẇb = Cbn

2
e

√
T

where 〈σv〉 is the fusion reactivity, defined in Appendix C, and Cb is a constant, this gives

nτE =
3T

1
4

[(1/Q+ 1/5)]Qdt〈σv〉 − Cb
√
T

(1.1)

where the left hand side is known as the confinement parameter [17]. (1.1) is satisfied

for a fusion plasma operating in a steady state. It was originally derived by Lawson [19]

with Q = 2.5 recovering the famous Lawson criterion for fusion power.

Lawson developed equation (1.1) with steady state MCF in mind, and ICF, being a pulsed
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power scheme, benefits from a slightly different perspective. Consider an assembled sphere

of plasma of radius Rf at uniform temperature T and mass density ρ. The time that

this sphere remains assembled is limited by the time it takes a rarefaction wave to travel

from the outside of the sphere inwards (assuming zero external pressure on the sphere

surface). The wave travels with the sound speed of the plasma, which is given by

cs =

√
2T

〈m〉

with 〈m〉 the average atomic fuel mass. The confinement time of the sphere of fuel is

given by

τconf =
Rf

cs

so that the position of the wave in time is R(t) = Rf − cst. In ICF, the characteristic

time for fusion reactions is τfusion = 1
〈σv〉n , which allows a Lawson-like expression to be

written;

nτconf =
ρRf

〈m〉cs
and it can be seen that the areal density, ρRf , is of the greatest importance for the

confinement. To calculate the fraction of fuel burnt, the propagation of the rarefaction

wave into the plasma, and the corresponding reduction in the number of fusion reactions

which can take place, must be taken into account. A robust model [20] of the fractional

burn-up in a sphere of plasma taking into account these factors is given by

fburn-up ≈
ρRf

HB + ρRf

where

HB =
8cs〈m〉
〈σv〉

is the burn parameter, and is given for a wide range of conditions by HB ≈ 6 g cm−2 [21].

It can be shown that heating of the whole sphere of fuel does not guarantee a gain in

energy large enough for inertial fusion energy (IFE). A better strategy for achieving high

gain is the hotspot, or central, ignition scheme which is used on NIF. In this scheme, a

central hotter region with lower mass density provides a ‘spark’ which then ignites the

rest of the fuel.

NIF consists of 192 laser beams delivering a peak power of 500TW in laser energy at a

wavelength λ = 1.053µm, which is frequency tripled to deliver up to 1.8 MJ onto the

target [22]. The laser beams are incident on a Gold (Au) ‘hohlraum’, or hollow room,

which absorbs the UV light and re-emits it as x-rays with a radiation temperature of
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∼300 eV. Inside the hohlraum is a fuel capsule which has a radius of a few millimetres.

The absorption and subsequent re-emission of the radiation has the effect of providing an

even bathing of the fuel capsule with x-rays. ICF with a hohlraum is known as indirect

drive, and the main benefits are that the smoother radiation fields are less susceptible

to hydrodynamic instabilities (such as the Rayleigh-Taylor instability), that ablation by

x-rays is more effective than by electron conduction (the mechanism in direct-drive), and

any non-uniformity of beam intensity is removed [21]. The laser pulse is shaped in time

to produce a series of four shockwaves, which eventually converge inside the fuel capsule.

The internal energy of matter changes as dE = TdS −PdV , and the succession of shock

waves is designed so as to provide isentropic compression of the capsule, i.e. compression

which eliminates the TdS term, which is heat transfer Q, as much as possible.

The capsule itself consists of an outer ablation material, for instance diamond-like carbon

or plastic, a cold, dense fuel shell of deuterium-tritium ice, and a central gas fill, also

composed of deuterium and tritium, which are shown in Fig. 1.3:a. Radiation incident

on the capsule causes ablation, and conservation of momentum initiates an implosion

via a rocket-effect. This is shown in Fig. 1.3:b. Subsequent shocks cause the implosion

velocity to increase. When the shocks coalesce and hit the centre, the temperature of

the gas fill jumps, and the shocks are reflected, which slows the implosion. Much of the

kinetic energy of the implosion is converted into internal energy, some compression is still

occurring, and a hotspot forms - a region with a high temperature but relatively low mass

density. The hotspot is surrounded by the shell of colder, much more dense fuel. This

assembled hotspot stage is shown in Fig. 1.3:c. In this type of ICF, the pressure is very

similar across the hotspot and dense shell at this stage, even while the mass density and

temperature are very different.

This is the point at which ignition can occur, if the right conditions are present. Subse-

quent references to ρ, R and T refer to the hotspot mass density, radius and temperature

respectively. Cold fuel parameters are designated with a subscript ‘c’. The instantaneous

rate of change of energy density (where energy density is ε) in the hotspot under isobaric

conditions is given by
dε

dt
= Ẇdep − Ẇb − Ẇe

where Ẇe ≈ 3AeT 7/2

ln ΛR2 is thermal conduction by electrons across the surface of the hotspot

into the cold fuel, and Ẇdep is the energy deposited by fusion reactions in the hotspot.

Given that neutrons generally do not stop in the hotspot,

Ẇdep = fαẆα = fαẆfusion/5 = fαAαρ
2〈σv〉

where Aα has absorbed the constants and fα is the fractional absorption of αs in the
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hotspot. The bremsstrahlung emission may be re-written as Ẇb = Abρ
2T 1/2. Evidently,

the hotspot will heat if Ẇdep > Ẇb + Ẇe, which is equivalent to

(ρR) >

(
3AeT

7/2/ ln Λ

Aα〈σv〉fα − AbT 1/2

)1/2

which is known as the self-heating condition for a hotspot. This is an instantaneous

expression; it does not capture how hotspot conditions change over time and is not the

same as ignition.

A broader perspective is gained from considering a hotspot which expands and accumu-

lates mass. Ignition is equivalent to the expansion of the hotspot into the cold fuel via

the propagation of a ‘burn wave’ of fusion reactions. Energy conservation in a burning

plasma, with M the mass of the hotspot and eM its energy, so that e is specific energy

(energy per unit mass), may be written as

d (eM)

dt
=
(
Ẇα − Ẇb

) 4

3
πR3 − p4πR2u

with p = ΓBρT pressure, and u = dR
dt

the velocity of the burn wave. ΓB is the gas constant

per unit mass for T in units of energy. The velocity of the burn wave may be given by
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Figure 1.3: Four schematic diagrams of inertial confinement by spherical implosion.
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assuming that the plasma is an ideal gas with a strong shock propagating through it so

that

u =

√
e

2

(
ρ

ρc

)1/2

=

(
3

4
ΓBT

ρ

ρc

)1/2

Using the definition of mass in the hotspot as mass with a specific energy e, the rate of

accretion of mass into the hotspot can be defined as

e
dM

dt
=
[
Ẇα (1− fα) + Ẇe

] 4

3
πR3

If t∗ = R/u is the characteristic hydrodynamic time, then

Kα =
Ẇαt∗
ρe

is the dimensionless ratio of the energy carried by α particles in a time t∗ to the instanta-

neous internal energy of the plasma. For a burn wave to propagate, this must be growing

as a function of time,
t∗
Kα

dKα

dt
> 0

The equations for the hotspot evolution may also be cast in a dimensionless form;

t∗
T

dT

dt
=Kαfα −Kb −Ke − 2

t∗
ρ

dρ

dt
=Kα (1− fα) +Ke − 3

whereKb andKe are defined analogously toKα. Using the approximation that 〈σv〉 ∝ T 2,

which is good for T ≈ 7− 20 keV, this can be written as

t∗
Kα

dKα

dt
=

1

2
(Kα +Kb − 3)

and, as long as this is positive at t = 0, it will remain positive, and cause Kα to grow

indefinitely over time, thus igniting the fuel. Therefore,(
Ẇα − Ẇb

)
t=0

t∗ > 3 (ρe)t=0

is the condition, which may be rewritten as a Lawson-type inequality

ρRT >
9
√

3

4

Γ
3/2
B T 5/2

Aα〈σv〉 − AbT 1/2

(
ρ

ρc

)1/2

=
1.1 (T /keV)1/2

1− 3.47 (T /keV)−3/2

(
ρ

ρc

)1/2

g/cm−2

for the overall ignition and burn wave propagation. Satisfaction of this criterion leads to
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a fully burning plasma, as shown in Fig. 1.3:d.

The conditions required for the central ignition scheme on NIF are listed in more detail

in Table D.1 of Appendix D [23, 24]. Direct measurements of these important parameters

of a fuel capsule are made extremely difficult by the small scale, high energy densities,

and short timescales involved, so typically they must be inferred. Several performance

metrics using more easily measurable quantities have been developed to determine how

close ICF experiments are to achieving ignition including the ITF (ignition threshold

factor), ITFX (ignition threshold factor - experimental), and GLC (generalised Lawson

criterion) [25, 26]. The key physical parameters required for ignition on NIF using more

detailed models are

THS = 5− 12 keV and; (ρR)HS > 0.2− 0.5 g cm−2 and; (ρR)fuel > 1 g cm−2

where “HS” refers to a hotspot parameter.
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1.4 Summary of contents

Chapter 2 provides the theoretical background to this work, including a brief overview

of the basic properties of plasmas. The concepts are useful for subsequent chapters,

and several important definitions are included in §2.1, §2.2, and §2.3. §2.4 discusses the

temperature and density regime with which this thesis is primarily concerned, and §2.5

examines possible approaches to calculations in the aforementioned regime.

Chapter 3 details Monte Carlo, the computational method used to obtain many of the

results presented. §3.1 and §3.2 have details of the operation of the code developed, and

§3.3 tests the code on a selection of problems with known analytical solutions.

Chapter 4 has details of an extension to Monte Carlo methods for degenerate plasmas.

Degenerate plasmas occur during compression of the cold fuel shell in hotspot ignition.

The basic properties of degeneracy are set out in §4.2, and of the algorithm in §4.3.

Benchmarking is presented in §4.4, while §4.5 compares conventional models of degener-

ate temperature equilibration against numerical simulation, finding a 21% difference in

electron temperature for ICF relevant conditions.

Chapter 5 is concerned with the phenomenon of ion-ion inverse bremsstrahlung (IIIB)

absorption. §5.2 explains the process, §5.3 some circumstances in which it might be

observable, and §5.4 how it can be modelled. In §5.5, two interesting properties of IIIB

are presented for the first time; the driving of non-Maxwellian distributions, and, through

manipulation of density, mix of ion species, and pulse shape, the heating of light ions to

temperatures in the keV on timescales of femtoseconds.

Chapter 6 forms an introduction to the topic of discrete and large-angle collisions in

plasmas. §6.1 examines the general theory of large-angle scattering, the exact conditions

where large-angle collisions can be expected to occur based on a new model, and large-

angle modifications to the Rutherford cross-section. §6.2 is a review of other work in the

field.

Chapter 7 incorporates the model developed in Chapter 6 into a new computational

method for discrete collisions. The operation of the algorithm is set out in §7.2. Sim-

ulations comparing small-angle and large-angle scattering are presented in §7.3.1, and

simulations of the driving of non-Maxwellian distributions by fusion reactions are pre-

sented in §7.3.2 and §7.3.3. These simulations find that large-angle collisions significantly

decrease equilibration times and drive distributions for which there is a substantial change

in yield relative to both a Maxwellian with the same average energy, and simulations with

no large-angle collisions.

Finally, Chapter 8 concludes with a summary of the main results of this thesis, along

with suggestions for the direction of future research.
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Chapter 2

Theoretical background

2.1 Plasma fundamentals

Qualitatively, plasmas are collections of partially or fully ionised particles which are

quasi-neutral, that is they are neutral above certain length and time scales. Collective

behaviour dominates plasmas as the electromagnetic potential at any point typically has

contributions from a large number of charged particles. The fundamental length scale is

the Debye length,

λ2
D =

∑
i

ε0Ti
niq2

i e
2

(2.1)

where the sum runs over all species. This is the length scale over which a plasma is

shielded; particles separated by distances r > λD do not directly influence one another.

It is also the length scale of neutrality and leads naturally to the notion of a Debye

sphere (a sphere of radius λD) as the volume over which a plasma is approximately

neutral. Quasi-neutrality is a necessary condition for a plasma. Quasi-neutrality is only

satisfied if there are many particles available in a Debye sphere to carry out screening, so

that
4

3
πnλ3

D � 1 (2.2)

and this ensures that collective effects dominate binary collisions. n is the total number

density. Note that this is equivalent to the condition that the ratio of potential energy

to kinetic energy should be small, i.e. (omitting the ion terms in equation (2.1))

g =
e2

ε0TeλD

=
1

neλ3
D

� 1 (2.3)

where g is known as the plasma parameter [27]. Strongly coupled plasmas have g ≈ 1;

weakly coupled implies g −→ 0. It is also a measure of the importance of collisions,

37
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as collision strength is proportional to potential energy. The work presented is only

concerned with collisional plasmas with g > 0.

The time scale over which a plasma is neutral is also a parameter of fundamental impor-

tance. Small perturbations from neutrality set up oscillations in charge carrying species

in a plasma. The highest frequency oscillations are from the most mobile charge carriers,

typically electrons. The reciprocal of this is the time scale of neutrality,

ωpe =

√
nee2

ε0me

The result of this oscillatory behaviour is that the plasma is opaque to electromagnetic

waves with frequencies below the plasma frequency. Note that this oscillation carries no

information as the group velocity is vg = ∂ω/∂k = 0. Taking into account the thermal

energy of the electrons does give a non-zero group velocity. ωpe gives the most basic

plasma time scale, but more involved time scales corresponding to particular processes,

such as the energy loss rate of a high energy particle in a Maxwellian background of plasma

particles, also exist. These standard rates are referred to in this work as Landau-Spitzer

theory [28, 29] and are summarised in Appendix B.

2.2 Rutherford scattering

b

Particle j

Particle i
b

Force

θ

Figure 2.1: Rutherford scattering between two particles i and j with impact parameter
b and scattering angle θ.

A binary collision between two charged point particles occurs via the electromagnetic, or

Coulomb, force. Two charged particles i and j exert an electromagnetic force on each
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other Fij = −Fji where

Fij =
e2qiqj

4πε0r2
ij

and rij is the separation distance. Fig. 2.1 shows a single scattering event between two

charged particles with zero centre-of-mass position velocity. The centre-of-mass frame

scattering angle θ is the angle through which each particle scatters in the centre-of-mass

frame relative to its initial velocity, also in the centre-of-mass frame. The relationship

between impact parameter, b, and θ is [30]

b = b⊥ cot

(
θ

2

)
(2.4)

Note that b⊥ is the impact parameter corresponding to θ = π/2, and is

b⊥ =
e2qiqj
4πε0

1

mijv2
ij

The scattering angle in the laboratory frame, χ, is defined as exit velocity angle relative

to initial velocity angle. For a charged particle i scattering off of particle j it is

cotχ =
V

vi

mi

mij

csc θ + cot θ

where V =
mivi+mjvj
mi+mj

is the velocity of the centre-of-mass position in the laboratory

frame. For an initially stationary target particle j, this reduces to

cotχ =
mi

mj

csc θ + cot θ (2.5)

Using the small-angle approximation in addition to vj = 0 gives the simple relation

χ =
mj

mi +mj

θ

The classical differential cross-section, dσ
dΩ

, is proportional to the probability that a par-

ticle going through a background of other particles of density n undergoes ndσ collisions

per unit length which scatter it into a solid angle dΩ = sin θdθdφ. A schematic of a par-

ticle scattering into dΩ is shown in Fig. 2.2. The classical cross-section based on equation

(2.4) is the Rutherford cross-section in the centre-of-mass frame

dσ

dΩ
=

b2
⊥

4 sin4 θ
2

=

(
e2qiqj
4πε0

)2
1

m2
ijv

4
ij

1

4 sin4 θ
2

(2.6)
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Scattering centre

θ

dϕ

dθ

dϕ

b

db

Figure 2.2: Schematic of scattering showing the solid angle dΩ = sin θdθdφ.

It is the cross-section for binary interactions in non-relativistic charged particle-particle

collisions. Though it is a classical cross-section, the first order quantum mechanical

calculation of the cross-section, using the Born approximation and a Yukawa potential,

produces the same result in the λD −→ ∞ limit (with λD the screening length in the

Yukawa potential).

Interactions in a plasma are not binary because of the large number of particles inter-

acting simultaneously. So, the Rutherford cross-section does not include the complicated

collective behaviour of plasmas or the associated screening at distances on the order of

the Debye length. It is also only appropriate for small-angles, as extra physics begins

to become important at larger angles. This extra physics includes the addition of spin,

indistinguishability, and the nuclear force, and is discussed in Chapter 6. However, most

plasmas are dominated by small-angle, long-range collisions for which a screened Ruther-

ford cross-section is sufficient.

2.3 The Coulomb logarithm

Divergences arise when applying the pure Rutherford differential cross-section to calcula-

tions in plasmas. These divergences are not physical. Removing them gives rise to ln Λ,

the Coulomb logarithm, as the following example illustrates. Consider the lab frame

energy loss dE of a projectile particle i travelling (without loss of generality) in the x-

direction and undergoing collisions with a background of stationary targets of species
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nj

b

dx

db

Figure 2.3: A particle going through an infinitesimal distance dx having collisions with
a stationary background species j of density nj.

j. Let v|com denote a velocity in the centre-of-mass frame, and vij the initial relative

velocity. The final velocity in the lab frame of the projectile is, using equation (2.5) and

that vi|com = vi −V = mijvi/mi,

v′i = v′i|com + V =

(
mijvi
mj

+
mijvi
mi

cos θ,
mijvi
mi

sin θ

)
The final kinetic energy of the projectile is

E ′ =
1

2
miv

′2
i =

1

2
miv

2
i

(
m2
ij

m2
j

+
2m2

ij

mimj

cos θ +
m2
ij

m2
i

)
=

1

2
miv

2
i

[
1 +

2m2
ij

mimj

(cos θ − 1)

]
=

1

2
miv

2
i

[
1 +

2m2
ij

mimj

2 sin2 θ

2

]
The change in kinetic energy is ∆E = E − E ′,

∆E =
1

2
miv

2
i

4m2
ij

mimj

1

1 +
(

b
b⊥

)2 (2.7)

where equation (2.4) is used. In an infinitesimal distance dx the number of encounters

with stationary targets j will be njdx2πbdb, as shown in Fig. 2.3. Multiplying this by

the loss per encounter, ∆E, and integrating over all possible impact parameters gives the
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infinitesimal loss of energy. Then

dEi
dx

= Ei
8πnjm

2
ij

mimj

b2
⊥

∫
b

b2
⊥ + b2

db (2.8)

The integral part, without other constants, evaluates to

lim
b′−→∞

[
1

2
ln
(
b2
⊥ + b2

)]b′
0

which is logarithmically divergent.

The small-angle approximation, and equation (2.4), are often used to set 1
b2/b2⊥+1

≈ b2⊥
b2

in equation (2.8). This results in the expression being divergent as b −→ 0 too, but this

is simply a consequence of using the small-angle approximation. A standard approach

is to use the small-angle approximation, introducing the b −→ 0 divergence, and then

to regulate this divergence by introducing a minimum impact parameter. b⊥ is often

chosen, and this effectively omits hard collisions with θ > π/2. Unless otherwise stated,

in this work the minimum impact parameter is set to zero in integrations similar to

those appearing in equation (2.8), thereby avoiding the large-angle divergence. This is a

simplification which assumes Coulombic point particles which is the adopted convention

throughout. It is possible to set a minimum impact parameter which takes account of

the finite size of the nucleus for the Coulomb force [31].

The small-angle divergence is also unphysical and can be regulated by introducing a

maximum impact parameter. The origin of the small-angle divergence is that, though

the contributions to the cross-section from remote interactions are diminishing due to

distance, the number of remote interactions becomes infinite at large distances. This

is a property of the slow 1/r2 fall-off of the Coulomb force, or, equivalently, that the

Rutherford cross-section implicitly assumes an infinite interaction time. The Rutherford

cross-section is designed for binary collisions, and the cavalier approach of applying it

to a particle undergoing many collisions simultaneously is the origin of the divergence.

However, within a plasma, charges are not free to remotely interact over an infinite

distance for an infinitely long time; there is screening of charges at length scales beyond

λD implying that the upper limit in impact parameter should be λD. This corresponds

to the smallest angle through which a particle may scatter according to equation (2.4)

being
b⊥
λD

= tan
θmin

2
≈ θmin

2
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and the integral becomes

1

2
ln

(
1 +

λ2
D

b2
⊥

)
≈ ln

(
λD

b⊥

)
= ln Λ

which is the Coulomb logarithm. As b⊥ is dependent on the two species involved in

the collision, the Coulomb logarithm may be denoted ln Λij and there are (N2 − N)/2

different values for N distinct plasma species. In general, species labels are implicit on

ln Λ and b⊥. For completeness, the full expression of equation (2.8) is

dEi
dx

=
4πnj
mjv2

i

(
e2qiqj
4πε0

)2

ln Λij (2.9)

The Coulomb logarithm naturally arises in many calculations of quantities of interest

in plasma physics, particularly in the calculation of relaxation times and kinetic cross-

sections. Kinetic cross-sections have the general definition

σk =

∫
(1− cosk θ)dσ, k ∈ N (2.10)

k = 1 gives a quantity known variously as the transport, diffusion, or slowing-down

cross-section due to it being proportional to the loss of directed particle velocity in a

scattering event. With k = 2, the cross-section describes the deflection of particles as it

is proportional to the mean-square increment in transverse particle velocity. All plasma

kinetic cross-sections give rise to a Coulomb logarithm factor [29].

The assertion in §2.2 that small-angle, long-distance interactions dominate plasmas can

be shown by integrating equation (2.8). Small-angles correspond to larger impact pa-

rameters, while small impact parameters correspond to large scattering angles. If the

integral in (2.8) is split [29] into near and far parts In and If with a cut-off determined

by equation (2.4) in the small-angle approximation

θ =
2b⊥
b

< 1

so that the cut-off is 2b⊥

In =

∫ 2b⊥

0

bdb

b2
⊥ + b2

= ln
√

5 ≈ 1

If =

∫ λD

2b⊥

bdb

b2
⊥ + b2

=
1

2
ln

(
λ2

D + b2
⊥

5b2
⊥

)
≈ ln

(
λD

b⊥

)
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where the last step is justified by the condition on the plasma coupling parameter in

equation (2.3) (ignoring ion contributions);

b⊥
λD

∼
e2

ε0mev2
e,th

1

λD

≈ g � 1

so
In
If

∼
1

ln Λ
< 1

and the far interactions dominate the near ones, and small angles contribute more strongly

to the exchange of energy than large angles. This is the justification for most approaches

to plasma physics concentrating on long-range, small-angle interactions. It can be further

seen that the mean square angle of deviation, 〈θ2〉, from an initial direction is also dom-

inated by small-angle collisions. This is equivalent to the k = 2 cross-section in equation

(2.10). The cross-section for a single deflection of θ = π/2 in a ‘hard-sphere’ scattering

collision is σ = πb2
⊥ but the mean square deflection effective ‘cross-section’ taking into

account many small-angle scattering events is

σ〈θ2〉 =

∫
θ2 dσ

dΩ
dΩ =

πb2
⊥

2

∫ θc

θmin

θ2 sin θdθ

sin4(θ/2)

Taking into account only small-angle scattering means cutting off the integration over

angle, and θc = 1 is chosen as the cut-off. Applying the small-angle approximation gives

σ〈θ2〉 =
πb2
⊥

2

∫ 1

θmin

24dθ

θ
= 8πb2

⊥ ln Λ (2.11)

so that the ratio of cross-sections for deflections is σ〈θ2〉/σ = 8 ln Λ. So diffusion in angle

is 8 ln Λ more likely via small-angle collisions than via large-angle collisions. However,

there are situations encountered in Chapters 6 and 7 where ln Λ∼1 or large energy ex-

changes in a single collision are of interest. The effects of near interactions can then be

important enough to warrant inclusion in calculations. It should be stressed that the

Coulomb logarithm is approximate, rather than exact, because the integration limits are

approximate, despite originating from physical insights. As the Coulomb logarithm varies

only weakly with its parameters, this is not generally a problem but it is more of an issue

in the ln Λ∼1 regime.

In this work, the Coulomb logarithm of Gericke, Murillo, and Schlanges [32] is adopted

where

ln Λ =
1

2
ln

(
1 +

b2
max

b2
ref

)
(2.12)
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The effective maximum and minimum impact parameters are defined as

b2
max = λ2

D + r2
0 (2.13)

b2
ref = λ2

dB + b2
⊥ (2.14)

respectively, where particle labels are suppressed, r0 = (4π
∑

i ni/3)−1/3 is the particle

sphere radius, and λdB = max {~/2mivi, ~/2mjvj} is the de Broglie wavelength. The de

Broglie wavelength is introduced because the uncertainty principle ‘smears out’ particles

over ∆x ≥ ~/p for b < ∆x, reducing the energy loss relative to using b⊥ in some circum-

stances [31]. This is a semi-classical correction, and the simplest quantum mechanical

calculation of the kinetic cross-section, using the first order Born approximation, natu-

rally obtains a Coulomb logarithm with a minimum impact parameter of λdB. The root

sum of squares in equations (2.13) and (2.14) ensures continuity between the different

possible values of bmax and bref and, as the Coulomb logarithm is approximate, the slight

overestimation of both maximum and minimum impact parameters is acceptable. There

are many different formulae available for the Coulomb logarithm, and it is difficult to

determine which best reflects reality [33, 32, 34, 35, 36, 37]. Nothing precludes the use

of another of those which are available.

In the context of particle-particle collisions, ln Λ may either be calculated for each collision

using the relevant particle velocities, which is computationally expensive as it must be

carried out many times per timestep, or using the global temperatures for the relevant

species meaning it is just calculated once per timestep for each combination of species.

Using the ‘per collision’ logarithm can make a significant difference to the scattering when

far from thermodynamic equilibrium [38].

Theories which provide models of average plasma behaviour omit ln Λ from the inte-

grations over distribution functions because ln Λ varies slowly with changing energy, es-

pecially if ln Λ � 1. To make useful comparisons against conventional theories using

averaged models, such as Landau-Spitzer, 〈ln Λ〉 is occasionally used in simulations. An

averaged ln Λ only requires changes to equation (2.12) in the bref term;

λdB = max

{
~

2mivi,th
,

~
2mjvj,th

}
b⊥ =

qiqj
4πε0

1

mij

(
v2
i,th + v2

j,th

)
where v2

i,th = 3Ti/mi.
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Throughout the rest of this work, λD is used to mean bmax, and b⊥ to mean bref so that

ln Λ =
1

2
ln

(
1 +

λ2
D

b2
⊥

)
is equivalent to equation (2.12) unless otherwise stated. This is to tidy up notation

and aid understanding. Other modifications to the Coulomb logarithm are sometimes

necessary; these are described in the relevant chapters.

2.4 Regime of interest
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Figure 2.4: Values of ln Λ, using the definition of equation (2.12), over a range of tem-
peratures and densities for an equimolar electron-proton plasma.

This work is concerned with the driving of non-Maxwellian distributions in a few specific

cases. These specific cases are generally in the moderately to strongly coupled regime,

ln Λ ≤ 5, which includes high intensity laser-plasma interactions [39], inertial confinement

fusion [23], degenerate plasmas [40], and stellar cores [41, 42].

Fig. 2.4 shows ln Λ for a range of temperatures and densities, using equation (2.12). Of
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Figure 2.5: ND = 4
3
neλ

3
D for an equimolar electron-proton plasma.

course, different formulae exist for ln Λ, so the number of particles in a Debye sphere is

a more universal measure: ND is shown in Fig. 2.5.

In the ln Λ ≤ 5 regime, distributions take longer to relax because plasma relaxation

times are τ ∝ 1/ ln Λ. Distortions away from Maxwellians take longer to recover with

small ln Λ, and a comprehensive understanding of non-Maxwellian distributions and their

persistence is more necessary. Large-angle scattering and discrete collisions, covered in

Chapters 6 and 7, have been shown to be roughly of importance 1/ ln Λ relative to small-

angle collisions so that the small ln Λ regime also coincides with the effect of large-angle

collisions being largest.

Many of the theoretical tools used for plasmas rely on ND � 1 or ln Λ > 1 and so are

less applicable in the moderately to strongly coupled regime, as is explored in §2.5.

It is useful to express ratios of the fundamental plasma length scales λD, ri, b⊥, and λdB

in a form in which they are convenient functions of typical high energy density plasma

conditions. These ratios are calculated in the most simple case, in which a charge of e is
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assumed for all species. The classical ratio of length scales is

λD

b⊥
=
( ε0
e2

)3/2
√
Ti
ni

4πmijv
2
ij ≈ 52

(Te /keV)3/2√
ne /1031 m−3

for b⊥ for protons and electrons with the assumption that Te > Tp, and taking the electron

only term in the Debye length. This result is halved when using all electron parameters.

For electrons, the de Broglie wavelength can, for λdB > b⊥, be the smaller length scale of

interest;

λD

λdB

=

√
ε0Ti
nie2

2mevth,e

~
≈ 3.38× 1032 Te√

ne
= 17.1

(Te /keV)√
ne /1031 m−3

This occurs when the following ratio is less than one;

b⊥
λdB

=
e2

4πε0

2

mev2
th,e

2mevth,e

~
≈ 8.37× 10−9 1√

Te
= 0.66

1√
(Te /keV)

corresponding to Te > 2.3 keV. The relevant expression for ions requires temperatures in

the MeV.

Finally, for ne = np,

λD

ri
=

√
ε0Te
nee2

(
4πnp

3

)1/3

≈ 2.58

√
(Ti /keV)

(ne /1031 m−3)1/6

is the ratio of the Debye length to the ion sphere radius.

Evidently, the plasma theory breaks down as g −→ 1, but it is useful to have a more

exact quantitative limit to the application of plasma theories so as to avoid their improper

use in conditions for which other physics is dominant. This is particularly true for the

regime under consideration as some of the conditions encountered are very close to the low

temperature, high density regime in which ion-ion correlations cannot be ignored. This

regime is characterised by having g ≥ 1, so that ions become bound to each other. Using

the Coulomb logarithm identified in equations (2.12) and (2.13) means that simulations

should be limited to ln Λ & 2.6, or, equivalently, ND & 10 according to Gericke, Murillo

and Schlanges [32]. This is satisfied for all simulations shown except for some special

cases in Chapter 4 which include modifications appropriate for the lower temperatures

that are considered, and these still satisfy ND & 1.
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2.5 Approaches to plasma physics

A full solution of the equations of motion of particles in a plasma is analytically impossi-

ble, as it is an N -body problem. To make any progress toward calculating properties of

interest, approximations must be made. The properties of interest are non-Maxwellian

distributions and the effects of large-angle collisions, so the merits of each theory with

respect to these properties are given particular emphasis.

The most fundamental theoretical description of the entire classical plasma, without

approximation, comes from Liouville’s theorem [43] which states that the all-particle

distribution function, fN = fN(q1, . . . ,qN ,p1, . . . ,pN , t), is constant along the phase

trajectories of a closed system. The phase space has 6N degrees of freedom, where qi

and pi are generalised co-ordinates and momenta respectively. Liouville’s equation for a

classical plasma at time t is then

∂fN
∂t

+
N∑
i=1

q̇i
∂fN
∂qi

+
N∑
i=1

(
−∂φ

ext
i

∂qi
−

N∑
j=1

∂φij
∂qi

)
∂fN
∂pi

= 0 (2.15)

where φext is any potential external to the plasma and φij is the interaction potential

between particles i and j. This can be transformed into a sequence of N equations,

each relating two single-particle distribution functions, for instance f (n) to f (n+1). This

is known as the Bogoliubov, Born, Green, Kirkwood and Yvon (BBGKY) hierarchy of

equations, and it is exact for a classical plasma [44, 45]. The truncation of the BBGKY

hierarchy at the second term leads to transport theory, the full derivation of which can

be found in [44]. The transport equation is

∂f

∂t
+ v · ∇f + F · ∂f

∂p
= C(f) (2.16)

where C(f) is the rate of change of the distribution function due to collisions, and each

species has its own distribution function f .

With C(f) ≡ 0, Vlasov’s equation for ‘collisionless’ kinetic theory is recovered. ‘Colli-

sionless’ is taken to mean that C(f) is small enough to ignore relative to the other terms

in (2.16). A necessary condition for this to be true is that ν � ω where ν is the effective

collision frequency and ω the frequency of variation of macroscopic fields entering via F.

Vlasov’s equation is not describing a plasma without any collisions; Coulomb collisions

are the only way that each particle can interact with each other particle. However, the

interactions are dominated by long range collisions, at distances on the order of λD, rather

than the short distance binary collisions which dominate gases. These long range inter-

actions are collective and can be represented by a macroscopic field averaged over a large
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number of particles in a similar way to classical fields in electrodynamics. This is why

the collisionless Vlasov equation includes F, and it is assumed that the plasma motion

generating these macroscopic fields is excluded from being considered in the collisional

terms on the right hand side of equation (2.16). The force term F hides a lot of complex-

ity; for a fully self-consistent solution to (2.16) it must include E and B fields both from

external sources and from plasma motion. All fields, with or without C(f) ≡ 0, must

also satisfy Maxwell’s equations;

∇ · E =
ρ

ε0
∇× E = −∂B

∂t

∇ ·B = 0 ∇×B = µ0J + µ0ε0
∂E

∂t

As collisions are of primary interest, only the full transport equation is considered in

subsequent chapters.

In a collisional plasma, C(f) 6= 0, and techniques to evaluate C(f) are required. The

diffusion approximation is one approach to evaluating C(f). As |∆v| /v ∼ θ, |∆v| /v
is small for a single collision if ln Λ � 1 [29]. The small ‘jumps’ in phase space due to

collisions can be regarded as a flux j in velocity space, so that

C(f) =

[
∂f

∂t

]
coll

= −∇v · j

The flux can be written as an infinite series, where each successive term allows the

expression to depart further from a ‘perfect’ continuous flow where only those particles

at the bounding surface of a volume will leave that volume in phase space, rather than

particles in a neighbourhood of the bounding surface. To describe particles which travel

further through phase space (for example, in a situation with large momentum transfer),

more terms in the series are required. The infinite series is

jµ = aµf + bµν
∂f

∂vν
+ cµνα

∂2f

∂vν∂vα
+ · · ·

As the changes in velocity phase space are generally small, the first two terms of the

expansion are taken. These have the interpretation of being a dynamical friction [46] and

a diffusion tensor in velocity space;

jµ =
Fµ
m
f −Dµν

∂f

∂vν

The sum of the flux of i over all species, ji =
∑
j

jij, is implicit. For practical calcu-
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lation the terms of the expansion are used and defined in terms of 〈∆vµ〉, 〈∆vµ∆vν〉,
〈∆vµ∆vν∆vα〉 etc., where [27]

〈∆v〉 =

∫
ψ(v,∆v)∆v d(∆v)

represents the independent probability that v increments by ∆v in a time ∆t, and the

flux becomes

jµ = f〈∆vµ〉 −
1

2

∂

∂vν
(f〈∆vµ∆vν〉)

Equation (2.16) with the above flux is the Vlasov-Fokker-Planck (VFP) equation which

may be succinctly expressed in terms of Rosenbluth potentials [47].

The diffusion approximation as widely used with two terms of the expansion has its

limitations: the truncation of the BBGKY hierarchy means that equation (2.16) is only

applicable on length and timescales greater than λD and 1/ωpe respectively. It is also

constrained to small-angle scattering or ln Λ � 1 as otherwise more than the first two

terms in the expansion of the flux are required. Even for moderately coupled plasmas,

with 2 ≤ ln Λ ≤ 5, another term in the expansion is required [48]. If large-angle scattering

is appreciable, the diffusion approximation breaks down and can fail to take account of the

large jumps in energy or momentum space. There is further discussion of the limitations

of the Fokker-Planck approach, with respect to large-angle collisions, in Chapter 6.

Transport theory is not the only approach to solving problems in plasma physics. Fluid

equations, derived by taking moments of the Vlasov-Fokker-Planck equation, yield an-

other method. They are not closed, and so also require approximations to be made. This

is because each moment equation is coupled to a moment equation of higher order. The

two techniques for closing the equations are to either truncate them, by assuming some

form of the higher moments, or to use an asymptotic expansion of the distribution in a

small parameter ε which is usually the ratio of the mean-free-path for some process to

the length scale of interest for that process,

f(x,v, t) = f0(x,v, t) + εf1(x,v, t) + ε2f2(x,v, t) + · · ·

where it is required that the base distribution function be a Maxwellian,

f0(x,v, t) = n(x)

(
m

2πT (x)

)3/2

exp

[
− mv2

2T (x)

]
so that the system is in equilibrium to zeroth order. The truncation approach leads

to ideal magnetohydrodynamics, which requires a short energy equilibrium time [49]

meaning again that the plasma is never very far from equilibrium. Both fluid approaches



52 Chapter 2. Theoretical background

require some approximations which are not favourable for considering non-Maxwellian

distributions. The plasma is assumed to be close to equilibrium and assumed not to be

collisional. They also rely on ensemble averages, meaning that relatively rare events, such

as large-angle collisions, are effectively ignored.

Another stratagem for deriving results in plasma physics is to examine the propagation of

waves within plasmas. Generally this includes the macroscopic fields E and B satisfying

Maxwell’s equations but also the equations derived from the first three moments of the

Vlasov equation assuming, in the simplest form, no viscosity or heat conduction,

Zeroth moment:
∂n

∂t
+∇ · (nv) = 0

First moment: nm
Dv

Dt
= qn (E + v ×B)−∇p

Second moment:
D

Dt

(
pn−γ

)
= 0

where D/Dt = ∂/∂t+u·∇ is the convective rate of change and v is the velocity, p pressure

and n number density [49]. However this approach is limited by the same factors which

mean that Vlasov’s equation and the general fluid approach are not appropriate, as it is

derived from them.

The complexity, and associated analytical intractability, of plasmas mean that all ap-

proaches are limited by some form of approximation. However, computational techniques

can provide insight into the behaviour of plasmas in situations where more simple analyt-

ical results are not forthcoming. In this work, a particle based computational approach

is taken and used to study non-Maxwellian distributions. The strengths and weaknesses

of this approach are more fully explored in Chapter 3.



Chapter 3

Computation with Monte Carlo

3.1 Introduction

A new code, following Takizuka and Abe’s prescription [50], has been developed for the

study of non-Maxwellian distributions in plasmas in 0D3V. This Chapter explains both

its operation, and its verification by a number of tests.

Monte Carlo methods have their origin in the Second World War [51] and became suc-

cessful due to the arrival of automated computers (as opposed to the use of human

‘computers’). Monte Carlo methods have many applications, including evaluating inte-

grals in many dimensions and evaluating probability density functions [52]. Broadly, it

is a class of methods that relies on using random, or pseudo-random, numbers in order

to make samples of a quantity. In the limit of many samples, the quantity converges to

the correct answer. This is in contrast to methods that employ direct evaluation of a

function with a defined accuracy.

Monte Carlo algorithms for plasmas do not assume a particular distribution function,

and can be adapted to allow any interaction to perturb that distribution function - not

just those which represent small changes in energy or momentum, or only occur over

certain timescales. This is particularly useful in kinetic problems which must be done

self-consistently and with many species. It has been used, for instance, to reproduce and

study the Langdon distribution [53, 54]. In plasmas far from equilibrium, Monte Carlo

techniques can give results closer to molecular dynamics simulations than the Landau-

Spitzer theory [28, 29], partially outlined in Appendix B, or Vlasov-Fokker-Planck codes

[38]. They are also relatively simple computationally, and some Monte Carlo models

for plasmas conserve both energy and momentum. The drawback is that the quality of

53
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the result is dependent on the number of simulation particles, and the quality of the

random number generator. Scaling up Monte Carlo simulations to problems with spatial

extent is very expensive computationally, which is why methods exist [55] to weight

particles to reduce the number required at the cost of explicit conservation of energy,

or to decrease running time by grouping collisions together [56]. The code presented

conserves energy and momentum explicitly. They are not appropriate in the limit of very

strong coupling because of the break down of plasma theory when there are not enough

particles in a Debye sphere to carry out screening. Some PIC (Particle-In-Cell) codes,

specifically those with collisions, have many of the attractive features of Monte Carlo

codes, and extra features such as macroscopic electric and magnetic fields. However,

for the microphysics which is the subject of this thesis, global fields are less important

and there is a trade-off between the inclusion of extra effects and the large number of

particles per cell which would be required in PIC. PIC codes also suffer from numerical

heating. Molecular dynamics simulations offer an even more fundamental approach but

are very computationally intensive. Future research will seek to explore some of the

topics presented using other types of code, with PIC and molecular dynamics codes

strong contenders.

The central limit theorem provides the mathematical underpinning for Monte Carlo codes.

For example, if the desired effect is to recreate a known distribution function with a

number of simulation particles N (where N is many orders of magnitude less than in

reality), then a sequence of independent and identically distributed random variables Xi

with µ the average of the true distribution satisfies

X̂ = lim
N−→∞

√
N

(
1

N

N∑
i=1

Xi − µ
)
−→ X̂ ∼ N (0, σ2)

i.e., the distribution of the left-hand side of the equation tends to a normal distribution

as N −→ ∞. Xi ∼ N (µ, σ2) signifies that Xi is normally distributed with mean µ

and standard deviation σ. The replication of distribution functions improves as 1√
N

. To

check that the desired level of accuracy is reached, µ and higher order moments may be

calculated from simulation and compared to the theoretical values.

A random number generator is required for many of the calculations in the Monte Carlo

code. It is extremely important that the generator can provide uniformly distributed

values without any biases. The robust “ran2” random number generator is used, which

has period > 2 × 1018 [57]. It produces random numbers U ∼ U (0, 1), where U (0, 1)

signifies that a variable is distributed uniformly on the real number line between 0 and

1.
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3.2 Operation

The algorithm followed by the code is shown in Fig. 3.1. Global initial conditions are

set by the user, including species information such as densities, temperatures (or non-

Maxwellian distributions), and number of simulation particles. Particles are represented

in the code by objects which store three dimensions of velocity and the relevant species

type, which links to information such as charge and mass. To initialise the code, particles

must be created in the appropriate number and distribution. The proportions of each

type of particle are given by the ratio of densities of each species with a particle weighting

w such that

ni = wNi ∀ i ; and w =
∑
i

ni/
∑
i

Ni

where ni is the density, and Ni is the number of simulation particles of species i. The

density of electrons is always chosen so as to keep the plasma neutral. Particles are picked

from the relevant distribution functions and t = 0 diagnostics run, both as described in

§3.2.1. The collision loop is then run, beginning with the calculation of λD, ln Λ and ∆t.

The Coulomb logarithm employed is detailed in §2.3. Radiation is neglected.

∆t is taken as being proportional to the shortest relevant physical timescale of change

in the plasma, 1/ν, and some useful values of ν can be found in Appendix B. Typically,

∆t = 1
10ν

, though it must also be set to keep scattering angles relatively small.

3.2.1 Particles and distribution functions

Particles are initialised according to a particular distribution in 0D3V. For distributions

which are everywhere integrable, probability density functions (or distribution functions)

can be integrated to the cumulative density function

∫ x

0

f(x′)dx′ = C(x) and the cumula-

tive density function is normalised such that C(0) = 0 and lim
x→∞
C(x) = 1. The cumulative

density function is inverted to give

C−1(U) = x; U ∈ (0, 1)

This represents a parametrisation of the real number line between 0 and 1 into the space

of the variable. Randomly generated values of U ∼ U(0, 1) in the domain of C−1(U),

generate values of x that occur with frequencies determined by the original probability

density function.

The type of distribution function chosen varies depending on the application, but the
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Initial conditions of density, average
energy and no. of simulation particles

Pick particles from distribution
functions and populate particle lists

Diagnostics at t = 0

Calculate ln Λ, then ∆t

Randomise order of particles in lists

Carry out collisions

Carry out global ef-
fects e.g. acceleration

Run per timestep diagnos-
tics, update global variables

End

Loop over t

Figure 3.1: Schematic of the algorithm used by the Monte Carlo code.
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Figure 3.2: Electron distribution with Te = 1 keV.
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Figure 3.3: vx component of velocity for a deuterium distribution at Td = 0.1 keV.

default is the Maxwell-Boltzmann distribution,

fMB(v)d3v =
( m

2πT

)3/2

exp

(
−mv2

2T

)
d3v

also referred to as a Maxwellian distribution. This is separable into a distribution fMB(vx)

for each direction, with separate standard deviations of σ =
√

T
m

. As Maxwellians are

only properly integrable on the whole domain, otherwise giving an error function, it

is computationally expensive to invert the cumulative density function. An efficient

alternative, the Box-Muller transform [58], is used to determine vi for each direction i



58 Chapter 3. Computation with Monte Carlo

when creating a simulation particle. Four independent random numbers Uj ∈ (0, 1) are

generated, and the components of velocity are given by

vx =

√
−2T

m
ln (U0) sin (2πU1)

vy =

√
−2T

m
ln (U0) cos (2πU1)

vz =

√
−2T

m
ln (U2) cos (2πU3)

Fig. 3.2 is a comparison of simulation against theory for a Maxwellian distribution in

energy, while Fig. 3.3 shows velocity in one direction. Both are taken from the t = 0

diagnostics. Monoenergetic and isotropic distributions,

fMono(E) = δ (E − E0)

are useful for simulating fusion created α-particles, with f(x) = δ(x−x0) the usual Dirac

delta function (a generalised function). For an isotropic distribution with a single energy,

v = (2E0/m)1/2 is the radius of a sphere in velocity space. Randomly choosing a point

on a 2-sphere, then scaling the values by v, gives the components of velocity:

vx =

vy =

vz =

v
√

1− U2 cosφ

v
√

1− U2 sinφ

vU

with U ∼ U [−1, 1] and φ ∼ U [0, 2π). Mono-directional, mono-energetic beams are cre-

ated with a small Gaussian velocity spread in each direction to avoid problems with the

collision routine. A small spread is not unphysical.

In cases where distributions are close to equilibrium, the temperature is output as T =

2〈E〉/3 for each species. Many of the distributions presented are not in equilibrium, but

the output of ‘temperature’ with T = 2〈E〉/3 is employed as a useful reference to other

models. Alternatively, the average energy is presented directly. Distribution functions

in, for example, energy are output by setting constant bin size ∆E over a range, and

recording the counts of each species of particle appearing in the relevant bin relative to

the total number of particles multiplied by the bin size;

f(E,E + ∆E) =
Counts [E,E + ∆E]

NTotal ·∆E
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with NTotal the total number of particles of that species, and E+∆E/2 vs. f(E,E+∆E)

plotted.
∫
f(E)dE = 1 is ensured by this equation as long as the counts are recorded

over the entire energy range.

If the probability density is very non-uniform, a variable bin width distribution function

diagnostic is used which creates a new bin every time (Counts [E,E + ∆E] /NTotal) >

some sensitivity value, which is defined according to the application, but is generally

∼0.05. With large binwidths, the plotting of a point at E + ∆E/2 can be misleading

if much of the probability density actually lies toward, for example, E rather than E +

∆E. A maximum binwidth proportional to the standard deviation of the appropriate

equilibrium distribution prevents this occurring. An example distribution 62 ps into

a simulation is shown in Fig. 3.4 to highlight how this diagnostic can cope with large

energy ranges. The conditions are similar to ICF, but with a large proportion of fusion

created α particles (10%) slowing down and driving a non-Maxwellian tail in a background

population of tritium (not shown) and deuterium. The equivalent Maxwellian has the

same average energy as the simulation distribution. Fig. 3.4 uses the discrete collision

algorithm described in Chapter 7.

Figure 3.4: The variable bin width distribution function diagnostic showing an ICF sce-
nario.
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e1

e2

e3

vij

Δvij

v'ij

θ

ϕ

Figure 3.5: The scattering in the frame of relative velocity, with vij = vij ê3.

3.2.2 Scattering

Which particles collide in a single timestep is determined by selecting pairs or triplets

from lists of particles with neighbouring particles selected using the groupings algorithm

of Takizuka and Abe [50]. To ensure that scattering is not carried out on the same pairs

every timestep, the particles are randomly re-ordered each timestep, using a Fisher-Yates

shuffle [59].

For two particles i and j, the relative velocity is vij. In the frame of the relative velocity,

in which vij = vij ê3, a scattering through the centre-of-mass scattering angle θ in a time

∆t produces a new relative velocity vector
0

0

vij

 7→

vij sin θ cosφ

vij sin θ sinφ

vij cos θ


where φ ∼ U(0, 2π]. The geometry in this frame is shown in Fig. 3.5. The new particle

velocities are given by

v′i = vi + ∆vijmij/mi (3.1)

v′j = vj −∆vijmij/mj (3.2)

Note that although ∆vij is non-zero in general in a collision, ∆vij ≡ 0 ensuring conser-

vation of energy, and conservation of momentum is ensured trivially by equations (3.1)

and (3.2).

The scattering angle θ is not taken directly from the Rutherford cross-section because
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of the divergence at θ = 0, and because most plasmas are dominated by the multiple

small-angle scattering regime. A statistical argument for the behaviour of the scattering

angle is described succinctly in Jackson [31];

Since successive collisions are independent events, the central limit theorem

implies that for a large number of collisions, Ncoll, the distribution in angle

will be approximately Gaussian around the forward direction with a mean

square angle 〈
Θ2
〉

= Ncoll

〈
θ2
〉

Angular brackets signify an average value. 〈θ2〉 is most often calculated using the small-

angle approximation so that

〈
θ2
〉

=
1

σ

∫
θ2 dσ

dΩ
dΩ =

πb2
⊥

2σ

∫
θ2 sin θ

sin4 (θ/2)
dθ =

8πb2
⊥

σ

∫
dθ

θ
= 8πb2

⊥ ln Λ/σ (3.3)

The number of collisions in a distance ∆s is given by Ncoll = nσ∆s = nσvij∆t with

n = min {ni, nj} and ∆t the timestep, so

〈
Θ2
〉

= n∆tvij8πb
2
⊥ ln Λ

where ln Λ = 1
2

ln
(
b2⊥+λ2D
b2⊥

)
. A number of terms have been omitted due to the small-angle

approximation but their inclusion makes almost no difference to the value of 〈Θ2〉. Pσ1 is

the probability of a collision using the 1st kinetic cross-section, using the definition of the

kinetic cross-sections found in equation (2.10). There is a simple relation between 〈Θ2〉
and this probability; 1 − cos θ ≈ θ2/2 so 〈Θ2〉 = 2Pσ1 . With 〈Θ2〉 computed, randomly

generated values of θ ∼ N (0, 〈Θ2〉) are used as the scattering angles in the particle-

particle collisions. To perform the generation of θ from random numbers U1, U2 ∼ U(0, 1),

a Box-Muller transform [58] is used;

θ =
√
−2 〈Θ2〉 ln (U1) cos (2πU2)

If |θ| > π, θ is chosen using θ ∼ U(0, π) but the timestep should be set so as to avoid

this. If there is an odd number of particles in a list in which pairs of particles are to be

collided, the first three are combined in three pairs and scattering angles selected from a

normal distribution with half the usual variance.

For computational efficiency, Takizuka and Abe use δ ≡ tan θ
2
, and choose δ ∼ N (0, 〈Θ2〉 /4).

Then

sin θ =
2δ

1 + δ2
and; 1− cos θ =

2δ2

1 + δ2
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and all the terms in ∆vij can be written in terms of δ. The small-angle approximation

appears in 〈θ2〉, and also in the three equations for δ. The small-angle approximation

leads to errors of up to 10% in ∆vij at θ = π/4, and greater errors for θ > π/4 when using

the δ approximation. To avoid this, ∆t can be set small enough to ensure
√
〈Θ2〉 < 5π/33

so that P (|θ| > |π/4|) < 10%, but in the code θ ∼ N (0, 〈Θ2〉) is used directly and only

the small angle approximation in equation (3.3) is retained.

3.2.3 Fusion of deuterium and tritium

The code has an option to include the T(d,n)4He fusion reaction. There are two versions

of inclusion of this reaction; one is a diagnostic mode and the other self-consistently

produces α particles by using up deuterium and tritium particles. The former is limited

to recording the rate of fusion reactions for the given conditions and comparing it to

a Maxwell-Boltzmann distribution with the same average energy. It does not remove

fused particles, nor does it release the energy or products of fusion. It is used only as

a convenient way to compare the instantaneous reactivity for a set of conditions. The

Bosch and Hale [60] parametrisation of both the fusion cross-section and the reactivity

for Maxwell-Boltzmann deuterium and tritium distributions with average temperature T

is used as the comparison value. The fusion reactivity for two particles i and j (always

either deuterium and tritium, or tritium and deuterium) is

〈σFvij〉 =

∫ ∫
fi(vi)fj(vj)σF(vij)vijdvidvj (3.4)

in units of volume per unit time, and the rate per unit volume per unit time is

dR

dV
=

ninj
1 + δij

〈σFvij〉

The Bosch Hale reactivity is 〈σFvij〉MB. Full details of the fusion parametrisation can be

found in Appendix C. Fig. 3.6 shows the code running with the diagnostic fusion output,

and there is good agreement with both the Bosch and Hale parametrisation (shown) and

other reference values [18] (not shown).

The second mode of operation, which is considerably more computationally intensive,

is one in which fusion reactions cause deuterium and tritium particles to be removed

and replaced with the charged fusion products (neutrons are neglected). A succession of

deuterium and tritium collisions takes place after the Coulomb scattering algorithm is

run in each timestep. The number and pairings are the same as with the Takizuka and

Abe Coulomb collision algorithm. Over all collisions the theoretical α particle number
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Figure 3.6: The first mode of operation; 〈σFvij〉 for equimolar deuterium and tritium
Maxwellian distributions over a range of temperatures.

Figure 3.7: The second mode of operation in a 10 keV burning deuterium-tritium plasma,
showing the creation of α particles.
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density for those simulation collisions is recorded;

nα(t+ ∆t) = nα(t) +
1

NColls

∑
Colls

σF(vij)vijni(t)nj(t)∆t (3.5)

Fusion occurs for the two particles if, for a random U ∼ U(0, 1),

U ≤ PFuse ≡ σF(vij)vij min{ni, nj}∆t

In the case of fusion, the particles are removed from interactions in the code and

V =
vimi + vjmj

mi +mj

which is the velocity of the centre of mass frame, is stored for each pair. α particles

are then created for every successful fusion collision. They are created as being isotropic

in the frame of the fusion collision, with Eα = 1
2
mαv

2
0 = 3.54 MeV, but are thermally

broadened by using the laboratory frame velocity

vα,lab. = v0 + V

If N fusion reactions occur, the new densities and number of simulation particles used

by the simulation are

Nα(t+ ∆t) = Nα(t) +N

nα(t+ ∆t) = w (Nα(t) +N)

Ni,j(t+ ∆t) = Ni,j(t)−N
ni,j(t+ ∆t) = w (Ni,j(t)−N)

but equation (3.5) is also recorded. Note that the densities predicted by these two meth-

ods should broadly agree, but that (3.5) is continuously recorded and nα(t+ ∆t) is based

upon the discrete number of collisions using a Monte Carlo process, and so is subject to

greater noise. The latter is used for the simulation in order to be consistent with the

number of α particles created. To ease computation, simulations using this mode of oper-

ation are always started with at least one α particle but, for a large enough total number

of simulation particles, the initial nα corresponding to this one particle is many orders of

magnitude less than that of other species of interest. Comparison against theory is similar

to in the first mode of operation, being given by the Bosch and Hale parametrisation of

the reactivity, 〈σF(vij)vij〉MB. The updated values of the Maxwell-Boltzmann theoretical
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comparison after a timestep has passed are

nα(t+ ∆t) = 〈σF(vij)vij〉MBni(t)nj(t)∆t+ nα(t)

Nα(t+ ∆t) = 〈σF(vij)vij〉MBni(t)nj(t)∆t/w +Nα(t)/w

An example of the code running with creation of α particles is shown in Fig. 3.7, with

initial conditions of Maxwellian deuterium and tritium distributions with nd = nt =

2× 1030 m−3, Tt = Td = 10 keV and nα = 1025 m−3 corresponding to just one numerical

α particle. The predicted simulation nα is given by equation (3.5), but the actual value

is nα = wNα so is subject to statistical noise. However, the agreement between them is

good and improves as Nα increases. The agreement with the reference, the Bosch Hale

parametrisation of nα(t), is also good.

3.3 Tests

The code must be robust in producing known analytical results, and also in dealing

with arbitrary distribution functions. Various tests of its robustness are applied using an

averaged Coulomb logarithm. Another test may be found in Figs. 5.4 and 5.5 of Chapter

5, but is more relevant to the other work presented in that Chapter.

3.3.1 Landau-Spitzer theory

The Monte Carlo code is benchmarked against Landau-Spitzer theory [28, 29] (see Ap-

pendix B). The ratio of the rates of energy loss (νE), stopping power (νs), perpendicular

diffusion (ν⊥) and parallel diffusion (ν‖) are shown in Fig. 3.8. The timestep is the mini-

mum over all species of 1/50νij, where νij is the basic relaxation rate defined in Appendix

B. Each data point is made up of over 40,000 test α particles in an electron-deuterium

background with roughly 4.5 million simulation particles. The agreement with Landau-

Spitzer theory is generally strong but does suffer from noise, and the rate of energy loss

goes through a discontinuity, as it changes sign, at 〈E〉 = T , with T the background

temperature. ln Λ is held fixed in this simulation. The median values for all of the rates

are within 3%, and this increases to ∼5% with a factor 5 decrease in particle number and

timestep.

Temperature equilibration is shown in Fig. 3.9, with nd = ne = 2× 1030 m−3 and Te,0 =
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Figure 3.8: Ratios of Monte Carlo rates to Landau-Spitzer rates over a range of 〈E〉/T
values.
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Figure 3.9: Temperature equilibration from a simulation shown against Landau-Spitzer
theory.
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Te(t = 0) = 0.5 keV, Td,0 = 1 keV. The rate of change of temperature is

dTi
dt

= νTij (Tj − Ti)

with νTij from equation (B.1). The route through temperature taken by the simulation

shows differences compared to Landau-Spitzer but the time taken to reach 90% of the

final temperature is the same to within 2%. The noise is statistical, while the differences

in route through temperature are probably due to slight departures from the perfect

Maxwell-Boltzmann distributions which the Landau-Spitzer theory assumes.

The resistivity of a plasma, ρµν , is given by the generalised Ohm’s Law [28]. Adopting

the notation of Epperlein and Haines [61], and Braginskii [62], the transport coefficient

for resistivity is given by

(ene)
2Eµ = αµνJ

ν = α‖bµbνJ
ν + α⊥εµνγb

νεγδκJδbκ − α∧εµνγbνJγ

where Jµ is current density, bµ = Bµ/
√
BνBν is the unit vector in the direction of the

magnetic field and εµνγ is the Levi-Civita symbol. The Einstein summation convention

applies, so that repeated indices are implicitly summed over. In the limit of Bµ → 0,

α‖ = α⊥(0). Adopting this limit, restricting current density to the x-direction, and

assuming isotropic global variables otherwise, only the x components of the resistivity

tensor remain and ρ ≡ ρxx = Ex/Jx. Using simple first order transport theory without

electron-electron collisions, a scenario also known as the Lorentz limit, the resistivity is

ρ = 3meni
ln Λ

e2

( −qie2

4πε0me

)2 [∫ ∞
0

∂f

∂v
v6dv

]−1

(3.6)

for f(v) the distribution function of the electrons. For a Maxwell-Boltzmann distribution,

there is an analytical expression:

ρMB =

(−qie2

4πε0

)2 √
me

16e2

ni
ne

ln Λ

(
2π

Te

)3/2

(3.7)

The dimensionless transport coefficient for resistivity is αc‖, and is constructed as

αc‖ = α‖
τ

mene

where

τ−1 =
4
√

2πni ln Λie

3
√
meT

3/2
e

(
qie

2

4πε0

)2
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is the inverse of the mean electron-ion collision time. Fig. 3.10 shows the simulation value

of αc‖ in the Lorentz limit for a Maxwellian against the prediction of equation (3.7) with

the same conditions as the simulation, and also against the value listed in Epperlein and

Haines’ article [61].

3.3.2 Relaxation to equilibrium

Figs. 3.11, 3.12, 3.13 and 3.14 are snapshots of the relaxation of an initial delta function

relaxing to a Maxwellian. The initial beam is mono-energetic with f(E, t = 0) = δ(E −
E0), E0 = 1.5 keV and νt = ν(t)t 6= ν(t = 0)t. There is a significant change of scale

between the first three figures due to the initial rapid relaxation from f(E) = δ(E−E0).

Another useful check on isotropy is kurtosis, which is examined for an arbitrary direction

of velocity. Excess kurtosis is defined as κ = µ4/σ
4 − 3, where

µn =

∫
(vx − µ)n f(vx)dvx

is the nth centralised moment of the distribution function of vx and σ is the standard

deviation in the x-direction. It takes the value of zero for a (shifted) Gaussian, and its

evolution to zero from an initially negative value is shown in Fig. 3.15, with red vertical

lines marking the slices through time corresponding to Figs. 3.11, 3.12, 3.13 and 3.14.

The first two slices, at ν(t)t = 0 and ν(t)t = 1/5, are too close to distinguish on the scale

of the graph. 〈E〉 = 1.5 keV throughout, with a final temperature of T = 1 keV.
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Figure 3.10: αc‖ from simulation, theory, and a reference value [61], shown against ν(t)t.

Figure 3.11: Delta function relaxation at t = 0.
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Figure 3.12: Delta function relaxation at νt = 1/5.

Figure 3.13: Delta function relaxation at νt = 5.
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Figure 3.14: Delta function relaxation at νt = 50.

Figure 3.15: Excess kurtosis of vx from an initial mono-energetic delta function as it
relaxes to a Maxwellian distribution. Red vertical lines correspond to slices through time
shown in Figs. 3.11, 3.12, 3.13 and 3.14.
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Chapter 4

A Monte Carlo algorithm for

degenerate plasmas

4.1 Introduction

In this Chapter, a procedure for performing Monte Carlo calculations of degenerate plas-

mas is presented, and much of it is drawn from published work [63]. At the heart of

the degenerate Monte Carlo scheme is the code described in detail in Chapter 3, with

modifications which allow Fermi-Dirac distribution functions and scattering via a Pauli

blocked binary collision approximation.

Modelling degenerate plasmas is of interest in ICF, during compression of the cold fuel

and capsule shell [21, 40, 64] and for putting fusion energy more directly into ion species

[65], and in astrophysical situations such as white dwarf stars [41]. Relevant ICF problems

are degenerate thermal equilibration and the stopping of high energy ions by degenerate

electrons. Yield is particularly sensitive to electron-ion equilibration, with simulations

of direct-drive implosions showing a ∼10% difference across several different models of

temperature relaxation [35]. The stopping power of degenerate electrons at very high

densities is also of interest in athermal fusion, a topic explored in §6.2.1. The algorithm is

benchmarked against degenerate electron-ion equilibration and the degenerate resistivity

transport coefficient from unmagnetised first order transport theory. The code is also

applied to the cold fuel shell and α particle equilibration problem of ICF.

It is not appropriate in the limit of very strong coupling because of the eventual break

down of the plasma theory underlying the Monte Carlo code in Chapter 3. It is noted that

Monte Carlo techniques with degenerate capabilities have been developed for studying

73
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transport in semi-conductors [66] but no such method exists for fully-ionised plasmas.

Some of the techniques described are potentially applicable to other types of codes, for

example, Particle-In-Cell (PIC) codes.

4.2 Degenerate plasmas

This discussion is with respect to degenerate electrons but the process is the same for any

fermion. Applying the anti-commutation relation for identical fermions to free electrons

gives rise to the Fermi-Dirac distribution [67];

fFD(E)dE =
(2me)

3/2

2ne~3π2

√
EdE

exp{ E
Te
− η}+ 1

(4.1)

where η is the degeneracy parameter. f(E)dE is normalised to 1, and the equation

∫
(2me)

3/2

2ne~3π2

√
EdE

exp{ E
Te
− η}+ 1

= 1 (4.2)

defines η as a function of ne and Te. The occupancy function is the measure of the

proportion of states occupied at energy E, and is given by

fo(E) =
1

exp{ E
Te
− η}+ 1

= fFD(E)/g(E) (4.3)

where g(E)dE = (2me)
3/2

2ne~3π2

√
EdE is the density of states between E and E+dE. η −→ −∞

corresponds to the classical limit in which the distribution function becomes a Maxwell-

Boltzmann distribution. η −→∞ is the fully degenerate limit in which all of the particles

are at energies below or equal to the Fermi energy, EF , and the occupancy function

becomes a step function

g(E) = 1, E ≤ EF ; g(E) = 0, E > EF

where

EF =
~2

2me

(
3π2ne

)2/3

is the Fermi energy. For a non-Maxwellian distribution, temperature and average energy

no longer satisfy Te = 2
3
〈E〉. In the case of the Fermi-Dirac distribution, particles retain

an energy even in the Te −→ 0 limit as lower energy states have limited capacity and

become fully occupied, so that remaining particles occupy energy states higher than the
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ground state. In the zero temperature limit,

η −→ EF
Te

and η −→∞ (4.4)

There are many choices for the Coulomb logarithm, as specified in §2.3. Degenerate

modifications to ln Λ are necessary because of the disparity between temperature and

average energy, and because degenerate plasmas tend to occur at high density. The code

does not explicitly require a particular Coulomb logarithm, and any could be used in the

algorithm, as long as it includes degeneracy effects. There are logarithms available which

include degeneracy corrections [68, 69]. In the simulations presented, Gericke, Murrillo

and Schlanges’ Coulomb logarithm number 6 [32] is employed as described in §2.3 but

averaged over all simulation particles. However, due to the possibility of encountering the

Te −→ 0 limit, Te is replaced by the ‘effective’ temperature defined by T ′e =
√
T 2
F + T 2

e

where TF is the Fermi temperature TF = EF . This is the same approximation as used by

several authors including Brown and Haines [70], and Brysk, Campbell and Hammerling

[71] who demonstrate that it matches Salpeter’s [72] relation, where the Te −→ 0 limit

is avoided by multiplying by a factor I1/2(η)/I ′1/2(η), to within 5% for any η. Ij(η) is the

jth complete Fermi-Dirac integral (see Appendix A),

Ij(η) =
1

Γ(j + 1)

∫ ∞
0

tj

et−η + 1
dt

4.3 Algorithm

The Monte Carlo code is adapted to include Pauli blocking and the ability to initialise

species with Fermi-Dirac distributions if required. As outlined in §3.2.1, distributions f(x)

which are everywhere integrable, can be integrated to the cumulative density function

C(x), and the cumulative density function inverted so that randomly generated values

of U ∼ U(0, 1) which are in the domain of C−1(U) generate values of x that occur with

frequencies determined by the original probability density function f(x).

The Fermi-Dirac distribution is not integrable so this process cannot be done analyti-

cally, and numerical methods of calculating the inverse cumulative distribution function

must be used. Numerical computations of energy values for initialising particles employ

Hörmann and Leydold’s algorithm [73]. It requires evaluations of f(E), C(E) and initial

boundary conditions. The domain of C−1(U) is split into equally spaced sub-intervals

and a cubic Hermite polynomial Hn(U) is used to interpolate values of E given U , with

C(E)n ≤ U ≤ C(E)n+1. Cubic Hermite polynomials have advantages over other methods
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of interpolation of the same order because they are a local approximation, rather than

a global one: if any interval does not reach the required level of approximation to the

inverse cumulative distribution function, new points can be inserted locally without re-

computing all interpolation points. Another advantage is that there is a relatively simple

algorithm, which terminates if f(E) is continuous, that can guarantee the monotonic-

ity of Hn(U) ∀ n by creating new interpolation points [74]. Linear interpolation is also

guaranteed to be monotonically increasing, but the number of points required for the

same level of approximation to C−1(U) is generally reduced by an order of magnitude or

more by using cubic interpolation [73]. For the entire interpolation process, the maximal

acceptable error

εU = max
U∈[Un,Un+1]

|C(Hn(U))− U |

can be specified, and intervals are split until this is satisfied for every n. The result is a

table of values of [Un = C(xn), xn, f(xn)].

With the creation of the table, values of U can be generated and the appropriately

distributed values of E found. An indexed search is used to speed up the process of

selecting an appropriate E for the given value of U [75]. Components of velocity are

selected, and for isotropic distributions the method is the same as described in §3.2.1.

Initialised Fermi-Dirac distributions relax to Maxwell-Boltzmann distributions without

Pauli blocking. To prevent this, all processes which lead to a change in a fermionic sim-

ulation particle’s energy, such as scattering or acceleration by an electric field, must be

subject to Pauli blocking. The blocking process must prevent electrons being scatter-

ing into an energy state E if that state is already occupied. The occupancy function,

equation (4.3), is the measure of the proportion of states occupied at energy E. fo(E)

takes values between 0 and 1 and, from the point of view of simulation, indicates whether

a particular energy changing process should be blocked or not. The probability of ac-

cepting a change in electron energy to final energy E ′ should be P = 1− fo(E ′) so that

fully occupied states admit no more particles. This is consistent with the (1 − f0(E ′))

factor in the effective cross-section in equation (15) of Brysk’s derivation of degenerate

stopping and equilibration rates [76], and also in equation (7.1) of Brown and Singleton’s

Boltzmann collision operator with Fermi-Dirac statistics [69], which relaxes distributions

to Fermi-Dirac distribution functions. The probability of accepting a new energy state is

dependent on the degeneracy, so that the classical limit of η −→ −∞, fo(E ′) −→ 0 ∀ E ′
is reproduced. Fig. 4.1 shows a Fermi-Dirac distribution generated by the code at the

start of a simulation, and its associated occupancy function.

To perform the Pauli blocking on changes in particle energy such that the final energy is

E ′, the Monte Carlo simulation generates a random U ∼ U(0, 1) and uses the following
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procedure

For U ∼ U(0, 1) and E ′

block the change if U < fo(E
′);

accept the change if U > fo(E
′).

(4.5)

For two-body processes, such as fermion-fermion scattering, this has a natural extension;

with final energies E ′1 and E ′2, if,

U < fo(E
′
1) + fo(E

′
2)− fo(E ′1)fo(E

′
2)

is true then the process is Pauli blocked. fo(E
′) = 0 ∀ E ′ for non-degenerate particles.

Fig. 4.2 shows that including the Pauli blocking algorithm maintains the Fermi-Dirac

distribution function.

The average electron energy is recorded from the Monte Carlo simulation. However,

diagnosing the electron temperature and degeneracy parameter from the average energy

is non-trivial. The method employed is to is calculate the probability density function

from simulation, fMC(En)dE, in a number of bins. Then Te, and therefore η by equation

(4.2), can be varied until the root sum of square differences between the simulation

distribution and the Fermi-Dirac distribution is minimised. The root sum of squares is√∑
n

(fMC(En)dE − f(En, Te, η)dE)2

A golden section search [57] is used for the minimisation of the root sum square, and

calculation of Te. Initial guesses of T ∗ ≈ Te and bounding values Tmax and Tmin are

required for the golden section search, where Tmin < T ∗ < Tmax. As

〈E〉 =
3
√
π

8

Te
ne

(2meTe)
3/2

~3π2
I3/2 (η) (4.6)

where lim
η−→−∞

〈E〉 =
3

2
Te, and lim

η−→∞
〈E〉 =

3

5
EF ,

T ∗ =

√
(2〈E〉/3)2 − (2EF/5)2

is used as the initial guess, with Tmax and Tmin given, for example, by T ∗±10% respectively.
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Figure 4.1: The degenerate Monte Carlo algorithm producing a 0D3V Fermi-Dirac dis-
tribution of electrons, for Te = 100 eV, ne = 8 × 1031 m−3 and η = 4.2. It is shown
against Maxwell-Boltzmann and Fermi-Dirac distributions with the same parameters.
There is good agreement between the analytic, and numerically generated, Fermi-Dirac
distributions. INSET: The occupation function sampled from the simulation distribution
function.
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Figure 4.2: Simulations of initialised Fermi-Dirac distributions after a few timesteps
both with (top) and without (bottom) Pauli blocking. The distribution with Pauli block-
ing matches the analytical Fermi-Dirac distribution with the same parameters, but the
distribution with Pauli blocking disabled relaxes to a Maxwellian.
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Figure 4.3: Equilibration with a range of starting electron and deuterium temperatures
and densities, classified by initial electron degeneracy, η. The ratios shown are of the
time taken to reach 90% of the final temperature as given by numerical simulation. Ratio
A is of the degenerate Monte Carlo equilibration rate to the degenerate equilibration
rate. Ratio B is of the degenerate numerical equilibration rate to the non-degenerate
equilibration rate. The numerical equilibration rate to non-degenerate equilibration rate
ratio for η = 8.1 is omitted as the non-degenerate electron temperature never reached
90% of the final temperature.

4.4 Tests

The rate of energy loss of an ion in a background of Fermi-Dirac electrons is given by

Brysk [76] as

dEi
dt

= 4

(
qie

4πε0

)2
(3Te − 2Ei)m

2
e ln Λie

3πmi~3 (1 + e−η)
(4.7)

for degenerate conditions in which Ti/mi � Te/me with i representing ion species only.

It is the degenerate analogue of the Landau-Spitzer energy loss equation in Appendix B.

The Landau-Spitzer theory fails for weakly to strongly degenerate plasmas. Degenerate

electron-ion temperature equilibration is given by

dTi
dt

=
∑
i

νie(Te − Ti) (4.8)

with

νie =
8

3

(
qie

4πε0

)2
m2
e ln Λie

πmi~3 (1 + e−η)
(4.9)

from equation (4.7).

Fig. 4.3 compares the non-degenerate rate, the degenerate rate, and the degenerate Monte
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Carlo algorithm for a range of degeneracies, with varying initial temperatures and den-

sities. The numerical equilibration rate to non-degenerate equilibration rate ratio for

η = 8.1 is omitted as the non-degenerate electron temperature never reaches 90% of the

final temperature. This is because it is implicitly assumed that Te = 2
3
〈E〉e in the non-

degenerate rate. The total energy in the degenerate case is higher though, as degenerate

particles retain an energy even in the Te −→ 0 limit. In scenarios where η drops over

time, equation (4.6) forces Te to rise for fixed 〈E〉e. In a situation with Ti,0 > Te,0, this

means that the classical Te,f may never reach the same, or a fraction of the same, value as

in the degenerate case. An extreme case illustrates this more clearly; initial temperatures

of two species, ions and electrons, with Ti,0 � Te,0 give a classical end temperature of

Tf = (Ti,0 + Te,0)/2 ≈ Ti,0/2 for both electrons and ions. But if Te,0 � TF � Ti,0 and the

ions provide enough energy to force the electron distribution to become Maxwellian, the

end temperature will be Tf ≈ (Ti,0 + TF )/2 > Ti,0/2. The η = 8.1 data point has a lower

Ti,0/Te,0 ratio than that at the highest η plotted, but TF/Ti,0 is higher so the disparity in

final temperatures between the classical and degenerate cases is expected.

The agreement between the degenerate equilibration rate and the degenerate Monte Carlo

equilibration rate is good for a range of initial values of the degeneracy, but does show

variation. The origin of this variability is the inherent noisiness of Monte Carlo simu-

lations, but in general the models agree to within 3% of the theoretical value averaged

across all equilibration tests. There is a slight upward trend in Ratio A, that is the ratio

of the time taken to reach 90% of the final temperature of the Monte Carlo algorithm

relative to theory as governed by equation (4.8). This slight trend is probably partly

due to small errors in diagnosing Te from the Monte Carlo simulation, and partly due to

evaluation of (4.8). In the degenerate theory, computation of new values of Te and η using
d〈E〉e
dt

from (4.8) self-consistently is non-trivial, and there are leading order corrections to

(4.9) which are of relative size ∼Time/Temi. All of these are sources of error which are

worse at high degeneracy, but which affect the time taken to reach equilibration only

slightly for regimes of physical interest.

To further verify the algorithm, it is applied to a problem with a known theoretical re-

sult; the resistivity of a degenerate plasma. The problem is restricted in the same way as

described in §3.3.1; it is first order, unmagnetised transport theory with isotropic tem-

perature and pressure conditions in which resistivity is simply given by ρ = Ex/Jx for a

current density in the x direction. The relevant integral is given by equation (3.6) but

with the Fermi-Dirac distribution function so that f(v) = f(E)dE/4πd3v, and f(E) is

taken from equation (4.1). Unlike the Maxwell-Boltzmann resistivity for this scenario,

there is no analytical form of ρFD so it is calculated by numerical integration for com-

parison against simulation in Fig. 4.4. In keeping with other literature and Fig. 3.10, the
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Figure 4.4: αc‖ given by the Monte Carlo algorithm against αc‖ for Maxwell-Boltzmann

and Fermi-Dirac distributions according to equation (3.6), with the same Te. Electron-
electron collisions are omitted and there is no blocking of the acceleration by the applied
electric field. The initial degeneracy is η = 2.5.

dimensionless transport coefficient for resistivity, αc‖, is plotted in Fig. 4.4. For reference,

the equivalent αc‖ for a Maxwellian is also shown. All three approaches are in the Lorentz

limit, and have no Pauli blocking of the acceleration by the electric field.

4.5 Results

A use of the code in a regime in which the theoretical rates presented are not applicable

is explored. There are situations in ICF in which the validity condition of equations

(4.7) and (4.9) are violated, for instance in the interaction between a population of fusion

produced alpha particles and a background of cold, dense electrons. The algorithm as

described is capable of modelling both of these features. Fig. 4.5 shows a situation with

parameters approximately similar to inertial confinement fusion; an isotropic distribution

of monoenergetic fusion produced alpha particles interacting with a cold fuel shell of

deuterium, tritium and electrons. In both simulation and theory, the α particles start as

a delta function with (4.7) being the appropriate theoretical comparison and 〈Eα〉 = 3.54

MeV. Equation (4.9) produces the same result as (4.7) even as the distribution function

relaxes if the ln Λ dependence on Ei is ignored, as is common practice. This is because

the single occurrence of Ei on the right hand side of equation (4.7) always yields 〈E〉i =
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Figure 4.5: An equilibration scenario with parameters approximately similar to inertial
confinement fusion. Only electrons and deuterons are shown. The analytical model is
that of the degenerate rate given by equation (4.7). The evolution of the simulation η
over time is shown in Fig. 4.6.

Figure 4.6: The degeneracy parameter of the numerical simulation in Fig. 4.5 over time
from an initial value of η = 3.2.



4.5 Results 83∫
fi(E)EdE when integrated over the ion distribution function. The energy spread of

α particles is less than 2% by 40 fs into the simulation. At the start of the simulation,

Tα/mα > Te/me, and η = 3.2. The evolution of η is shown in Fig. 4.6. The main result

of the simulation is that more energy is deposited into ions, and less energy into electrons

at early times. At later times, the electrons become hotter than equation (4.7) predicts.

The electrons do not remain degenerate for very long, having η < −4 after just 10 fs, but

the initial difference means that the overall evolution is different, even when the electron

temperature is reaching keV from an initial background temperature of just T = 12.5 eV.

The deuterium is 33% hotter according to simulation, though the absolute difference is

small. More importantly, as electrons and ions will subsequently equilibrate, the electrons

are 21% hotter according to simulation and the absolute temperature difference of 0.34

keV is larger. Densities are nd = nt = 1.2× 1030 m−3 and nα = nd/10.

This degenerate modification to a Monte Carlo code successfully reproduces theoretical

results for degenerate plasmas and can be used to study the microphysics of degenerate

plasmas in ICF.
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Chapter 5

Ion-ion inverse bremsstrahlung

5.1 Introduction

Bremsstrahlung, or ‘braking radiation’, of electrons is the process whereby an electron

emits energy in the form of radiation when being accelerated. In plasmas, this often oc-

curs in the field of the nucleus of an ion [27]. The reverse process, inverse bremsstrahlung

(IB) [77], also happens; an electron under the influence of an external electric field collides

with the nucleus of an ion, and its trajectory and momentum are changed. The electron is

undergoing diffusion in velocity space, and field energy is converted into electron thermal

energy. It is just one of many absorption mechanisms in the interaction of short pulse

lasers with dense matter, which in general depend upon many factors such as laser inten-

sity, electron density gradient, pulse shape, pulse polarisation, pulse incidence, electron

mean free path, and so on [78]. Electron-ion inverse bremsstrahlung (IB) is a common,

and often dominant, absorption mechanism in laser-plasma interactions with ne ≈ nc and

1012 W cm−2 µm2 < Iλ2
µ < 1017 W cm−2 µm2, with λµ the laser wavelength measured in

microns. This Chapter examines whether inverse bremsstrahlung could allow ion species

with different charge-to-mass ratios to absorb energy directly from radiation.

The radiation considered is a linearly polarised electromagnetic (EM) wave. For a laser

pulse, the electric field has the form

E(x, t) = E0(x) sin (ωt+ φ)

where

E2
0 =

2I

cε0

is the square of the amplitude of the electric field, I is the intensity of the laser pulse and

φ is the initial phase. In the non-relativistic case, particles i in a linearly polarised laser

85
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field have the equation of motion

mi
dvi
dt

= qieE0 sin (ωt+ φ)

Taking E0 to be uniform in space, charged particles oscillate with

vi(t) = −qieE0

miω
cos (ωt+ φ) + C ≡ vosc cos (ωt+ φ) + C (5.1)

where C is an integration constant. So

vosc = −qieE0

miω

As plasmas are opaque to electromagnetic waves with frequencies ω < ωpe, and ωpe is

dependent on electron density, there is a critical density n′c above which material mostly

reflects incoming radiation. From the definitions, the critical density is

n′c =
ω2ε0me

e2

Relativistic mass increase of electrons occurs with high intensity lasers so that me −→
〈γ〉me, where the Lorentz factor γ =

(
1− ve

c

)−1/2
is averaged over all electron velocities.

A useful definition is that of the dimensionless electric wave strength parameter

a0 =
eE0

meωc

with me the electron rest mass [79]. It measures the transverse momentum imparted

by an oscillating laser field upon an electron in units of mec, and a0 ≥ 1 corresponds

to the relativistic regime. For linearly polarised laser beams 〈γ〉 =
√

1 + a2
0/2 and the

relativistically corrected critical density is

nc = n′c〈γ〉 = n′c

√
1 + a2

0/2 (5.2)

This increases the effective critical density if a0 > 0, and subsequent references to critical

density are synonymous with the relativistically corrected version.

Isotropic distributions of electrons in a plasma as a function of speed, v, satisfy∫ ∞
0

4πv2f(v)dv = ne
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Figure 5.1: Three theoretical super-Gaussians with different values of m; m = 2 is a
Maxwellian while m = 5 is the Langdon distribution.

The equilibrium distribution is given by the Maxwellian,

fMB(v) = ne

(
me

2πTe

)3/2

exp

[
−mev

2

2Te

]
Langdon first explored the eponymous non-Maxwellian distributions driven by electron-

ion inverse bremsstrahlung (IB) heating [53] in the absence of electron-electron collisions.

Subsequent work on IB [54, 80, 81, 82] showed that both laser absorption and thermal

conductivity [83] are reduced by Langdon distributions. The advanced treatments also

find that the inclusion of more physics in the kinetic equations, such as electron-electron

collisions, leads to a more general class of driven distributions which are self-similar.

Following Matte et al. [82], the isotropic distributions being driven by electron-ion IB

take the form

fm(v) = Cm exp {− (v/vm)m}

where

v2
m =

3Te
me

Γ(3/m)

Γ(5/m)
and; Cm =

ne
4π

m

Γ(3/m)v3
m

Γ(z) is the gamma function defined in Appendix A and m ∈ [2, 5]. m = 2 gives the

Maxwell-Boltzmann distribution, m = 5 gives the Langdon distribution and any distri-

bution with m > 2 is known as a super-Gaussian, some examples of which are shown in
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Fig. 5.1. For electron-ion IB,

α = Zi
v2

osc

v2
e

and; m(α) = 2 + 3/
(
1 + 1.66/α0.724

)
with v2

e = Te/me. Other authors modified Langdon’s absorption rates for higher intensity

regimes [84, 85]. The persistence of super-Gaussians in laser heated systems has prompted

much work on super-Gaussian transport theory, particularly in relation to ICF [86, 87].

5.2 Ion-ion inverse bremsstrahlung (IIIB)

Figure 5.2: Schematic diagram of ion-ion inverse bremsstrahlung in the zero average
momentum frame. Two ion species (spheres) undergo an oscillation in velocity space
(solid lines) due to an applied field, followed by a collision in which they acquire a
component of velocity transverse to the original direction of the field (dashed lines).
Charge-to-mass ratios are inverse to the size of particle shown.

The difference in charge-to-mass ratios between species is key to the effect of IB absorp-

tion of laser radiation; it would hardly occur at all in a fully kinetic plasma consisting

of particles of identical charge-to-mass ratio in a perfectly spatially uniform but time

varying laser pulse. The absorption is not completely zero, for instance, with electrons,

the non-vanishing time derivative of the electron-electron quadrupole moment and rela-

tivistic electron mass increase are sources of (inverse) bremsstrahlung, but these effects
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are second-order [88, 89]. That the difference in charge-to-mass ratio gives rise to the

largest contribution to electron-ion IB implies the effect could also happen with ions of

different charge-to-mass ratios.

This process, ion-ion inverse bremsstrahlung (IIIB) absorption, is analogous to electron-

ion IB. Fig. 5.2 is a schematic of the process for a linearly polarised laser field in the

frame of zero average momentum (the zero momentum frame, or ZMF), showing that

ions individually gain extra kinetic energy from their collisions during oscillation by the

field. IIIB was first recognised by Mjolsness and Ruppel (M&R) [90] under the guise of

driven collisional ion heating; the term IIIB is adopted in this work. Many of the tools

developed to study electron-ion IB are based on me/mi � 1, with ion masses taken to be

infinite in some treatments. These approaches will not be useful for IIIB, and a full kinetic

treatment of all ion species is required. The smaller differences in charge-to-mass ratios

between ion species, relative to electrons and ions, mean that much higher intensities are

likely to be needed if significant heating due to IIIB absorption is to occur. IIIB begins

to happen with I ∼ 1019 − 1023 W cm−2 for which intensities electrons are very much in

the relativistic, and possibly in the QED, regime.

The huge advances in high power lasers have opened up this regime of high intensity laser-

plasma physics. Phenomena such as relativistic transparency, ion acceleration to ∼MeV

energies [91, 92, 93], and enhanced absorption of laser energy [94], have been observed.

Focused intensities of up to 1022 W cm−2 have been demonstrated [95], and the next

generation of lasers will increase this by an order of magnitude [39]. Electron-positron

pair-production, either by counter-propagating laser beams [96, 97, 98], or by striking an

overdense solid [99], are expected to occur with focused intensities of 1023 W cm−2 and

above, bringing laser-plasma interactions into a regime in which quantum electrodynamics

(QED) theory must be included, and a0 > 100. Access to this high-intensity regime

is only currently available with short pulse lasers having durations of femtoseconds or

picoseconds. Pulse shape becomes an important consideration for such short timescales,

and the physics of the interaction becomes very complex.

IIIB is different to many of the other processes considered in this regime as it deposits

energy directly into ion species; most absorption mechanisms primarily heat or acceler-

ate electrons with ions subsequently gaining energy via either space-charge fields or by

electron-ion equilibration. Anything which changes ion energies, or distribution functions,

could have an effect on processes associated with laser-plasmas including fusion (particu-

larly in direct-drive ICF [100] and beam fusion [101]), transport theory, and applications

which require very monoenergetic ion sources e.g. hadron therapy [102].

M&R consider two ion species in a spatially uniform, time varying but unenveloped (no

overall temporal shape) linearly polarised laser pulse. Electron motion and equilibration
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are ignored and the distribution function of the ion species is assumed to satisfy

fi(v) =

(
mi

2πTi

)3/2

exp

{
− mi

2Ti
[v − vosc cos(ωt+ φ)]2

}
(5.3)

with Ti the temperature in the ZMF. Unless otherwise stated, temperatures are always

given in the ZMF. A VFP equation is solved for the evolution of the two ion temperatures

as a function of time and laser intensity and approximate equations for the time taken

to heat ion species to a particular temperature given. The initiation of thermonuclear

fusion is considered: a CO2 laser with I = 4×1019 W cm−2 delivering 50 kJ in ∼10−11 s is

predicted to heat deuterium and tritium ions to T ≥ 4 keV. There are currently no laser

systems which could satisfy these conditions. IIIB is worth revisiting with knowledge

of modern laser systems which can typically deliver higher intensities over shorter times

than M&R foresaw.

The exploration of IIIB extends the work of M&R in several ways: there is no constraint

on the distribution function of the ions, temporally non-uniform pulse shapes are used,

and the effects of using more than two ion species are numerically simulated. M&R do

suggest that mixing of three ion species could lower the constraints on laser power, but

the VFP model they use does not allow quantitative evaluation of the effect.

As the interactions and absorption mechanisms of this regime of plasmas are so complex

in the high intensity regime, the effect of IIIB is studied in isolation from other processes

and ignoring depletion of the energy in the field, though physical situations where IIIB

might occur are briefly discussed in §5.3.

5.3 Occurrence of IIIB

There are several situations where IIIB might occur, essentially they rely on space-charge

fields due to electrons being absent for long enough for IIIB heating to take place. Mag-

netic fields are not considered for ions as vi ×B < E.

One obvious way to remove the complexity of electrons is to remove the electrons them-

selves, as with a laser pulse striking a non-neutral plasma comprised entirely of ions.

The collisionless skin depth is larger due to the absence of electrons, becoming λsk = c
ωpi

and ωpi ∼ ωpe
√
Zime/mi with niZi ≈ ne. However the densities of such plasmas are

extremely limited [103], being of the order of 1013 ions per cubic metre. The cylindri-

cal volume heated is restricted in radius by the beam waist and in length by either the

Rayleigh range, zR, or the ion collisionless skin depth, depending on the ion density.
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Assuming λ = 1µm, zR < λsk for realistically achievable densities. Non-neutral plasmas

have very long confinement times, and there are few loss mechanisms at work in a pure ion

plasma, the most obvious being ion-ion bremsstrahlung emission. The ion temperature

could be diagnosed from this emission, or by using a long-pulse probe beam.

Laser pulses propagating into dense gas jets could provide a scenario where IIIB occurs,

but this is not considered.

A third scenario is a linearly polarised electromagnetic (EM) wave orthogonally incident

on a foil assumed to be ionised (even for high Z ions). There are several recognised mech-

anisms for ion acceleration in such a scenario; target normal sheath acceleration [104],

radiation pressure acceleration [93], ‘breakout afterburner’ [105], and Coulomb explosion

[106]. The range of intensities specified covers all of these acceleration mechanisms but

the predominant interest is in I > 1021 W cm−2.

For a foil with thickness l on the order of the collisionless skin depth λsk = c/ωpe and

density nc, the dominant regime is then Coulomb explosion, or directed Coulomb explo-

sion [107] in which some ‘light-sail’ radiation pressure acceleration occurs [92]. A laser

incident on a thin foil evacuates electrons from the focal spot via the eve × B force,

leaving ions behind and setting up a charge-separation field parallel to the direction of

laser propagation of E|| = enel/(2ε0). Ions are subsequently accelerated by this field and

gain an energy of the order of the Coulomb energy [108], Ei ≈ mec
2a2

0. This acceleration

takes time, during which the EM field of the laser is still interacting with the ions, and

the ions mostly obtain directed, rather than thermal, energy as they are accelerated in

the direction of the charge-separation field.

For thin foils with l ≈ λsk it can be assumed that the field is constant over a cylinder

which is as long as the foil itself, and which has a radius of approximately a few λ.

Heating by IIIB absorption would have to act before the Coulomb explosion of the ions

causes them to be ejected from the focal spot of the laser, and before the ion density

drops significantly below its initial value of ni(t = 0). This assumes a high-contrast laser

pulse. It is important to know just how long the ions remain before being ejected from

the focal spot. Fourkal et al. [106] note that the acceleration time for protons is relatively

long, t ∼ 100/ωpe, and they develop a model for both the position and density of ions over

time. Even for I ∼ 1024 W cm−2 at the relativistic critical density, 1/ωpe is roughly 60 fs.

An ion density drop by an order of magnitude would change the interaction significantly;

Fourkal’s expression implies that this does not happen for a 30 fs pulse on a thin foil

until the pulse is finished. Bulanov et al. [102] estimate that 1/ωpi is the explosion

time, which means protons explode by time
√

mp
me
/ωpe. The times are more restrictive

for high Z. Taking these limitations into consideration, the analysis of IIIB for a laser
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striking a thin foil should be restricted to pulse lengths of 30 fs or below, ensuring the

interaction between ions and the EM wave is still taking place at a density sufficiently

close to ni(t = 0), and that the electric field transverse to the beam motion is dominated

by the laser field, E, rather than the space-charge field Esc. The space-charge field and

acceleration are not prohibitive to the heating mechanism as long as E ·Esc ≈ 0 and the

bulk velocity gained by the ions is predominantly longitudinal. Ions must not be ejected

from the focal spot by the laser oscillations: the field parallel displacement is given by

x‖ =
eE0Zi
ω2mi

= 7.45× 10−20λ2
µ

Zi
Ai

√(
I / W cm−2) m

where any thermal velocity is ignored and Ai is the mass number of ion i. For deuterium

with I = 1023 W cm−2 and λ = 1µm this is 12nm, much less than the focal spot size

which is on the order of λ. For such high intensities, any fusion produced α particles

emitted anti-parallel to the field would be temporarily trapped. Transport effects, such

as hotter ions losing energy to neighbouring, colder plasma regions are ignored in this

simple model of a transiently non-neutral ion plasma. It is possible that two counter-

propagating beams incident on a thin foil such that the eve×B force is eliminated could

also give enough time for IIIB to occur. In practice, beams are not perfectly spatially

uniform and typically have a Gaussian spatial profile across the focal spot. This creates

a gradient in the electric field, i.e. E = E (x). The ponderomotive force,

Fν =
−e2

4meω2
∇νE

αEα

then forces electrons down the field density gradient and out of the focal spot [109].

This sets up a transverse space-charge field Esc, but some laser cycles could pass before

Esc > E. A specially designed spatial profile of the beams could limit the escape of

electrons from the focal spot, and the creation of Esc. For instance, a profile with two

equally sized peaks either side of a region of lower intensity would stop particles escaping

from the centre of the heating region.

The calculations performed in §5.4 and §5.5 nominally have the thin foil scenario in

mind but it is not clear based on this analysis that any significant heating could occur

before the Coulomb explosion takes place. However, any volume with the ion density and

spatially uniform, time varying fields described would produce the same heating, so the

exact description of a suitable laser-target configuration is left to future work and the

rate of heating is presented in abstraction from any specific configuration.
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5.4 Modelling of IIIB

In the ZMF, the oscillation by the field causes the ions to have a velocity given by equation

(5.1) which is transverse to the direction of beam propagation. Two ion species, i and j,

gain a time-dependent relative velocity induced in the direction of the field of

vij(t) =
eE0

ω
cos(ωt+ φ)

(
Zi
mi

− Zj
mj

)
It is assumed that ions undergoing this motion interact with other ions via small-angle

collisions, and this drives the heating.

There is evidence that the assumption of small-angle collisions breaks down for electron-

ion IB absorption in a strong laser field [110, 111] due to either Coulomb focusing, also

known as the parachute effect, or quasi-capture. Both effects rely on the electron os-

cillation amplitude being smaller than the average distance between ions. In Coulomb

focusing, electrons are launched into the ion potential parallel to the oscillating field,

while in quasi-capture electrons are launched orthogonally. The origin of the large-angle

collisions, and associated increase in absorption, is the combination of oscillatory motion

and mutual attraction between electron and ion causing electrons to become temporarily

captured by one ion, repeatedly colliding until a large-angle collision imparts sufficient

momentum for the electron to escape. The effect is stronger in the vei � vth,ei limit,

where

v2
th,ei = 2

(
Te
me

+
Ti
mi

)
Due to the mutual repulsion between ions, it seems unlikely that this complicated be-

haviour exists for IIIB absorption and the regime of interest for IIIB is vij ≈ vth,ij.

Jones et al. [112] give a dynamical friction heating rate, into which the expression for

the time-dependent relative velocity can be inserted to give a rate for the change in

temperature due to IIIB(
dTij
dt

)
IIIB

=

(
ZiZje

2

4πε0

)2
16
√
πnj ln Λij

3mivij
ξ

(
vij
vth

)
(5.4)

where

ξ(x) =

√
π

2
erf (x)− x exp

(
−x2

)
(5.5)

and is shown in Fig. 5.3. erf (x) is the error function, and is defined in Appendix A. Note

that the equation for the rate of change of temperature is similar, but slightly simpler,
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than the expression given by M&R. The total energy absorbed is Ẇ = Ẇi + Ẇj where

Ẇi =
3

2
ni

(
dTij
dt

)
IIIB

(5.6)

Electron motion and collisions are ignored as the primary interest is in IIIB, and because

the timescales considered are typically much shorter than electron-ion equilibration times.

Taking i and j to be arbitrary ion species, and e to represent electrons, the ratio of IIIB

absorption, (5.4), to electron-ion equilibration between e and i assuming vij ≈ vth,ij is

(dTij/dt)IIIB

(dTie/dt)Equil.

≈ Z2
j

me

vth,ij

ln Λij

ln Λie

nj
ne

(
Ti
mi

+
Te
me

)3/2

(Te − Ti)−1

The equilibration time is given in Appendix B. Taking ln Λij ∼ ln Λie and v2
e = Te/me �

Ti/mi,
(dTij/dt)IIIB

(dTie/dt)Equil.

≈ Z2
j

nj
ne

ve
vth,ij

which is satisfied for sufficiently high ion density and hot electrons. This ignores the

relativistic mass increase of the electrons, which can be significant, but is unimportant

for the coupling if vth,ij � c.

It is also interesting to note that IIIB always dominates ion-ion equilibration;

(dTij/dt)IIIB

(dTij/dt)Equil.

≈
v2

th,ij

5

(
Tj
mj

− Ti
mj

)−1

Figure 5.3: ξ (x), equation (5.5).
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using that, for x = vth,ij/vij, ξ(x)/x ∼ 0.2 assuming vij ≈ vth,ij. Both of these relations

require vij(t) 6= 0, so are only true during the pulse. Ion-ion equilibration is automatically

included in numerical simulations.

An adaptation to the Monte Carlo code of Chapter 3 introduces the effects of a laser

pulse into simulations. An acceleration of

a =
E0eZi
mi

sin (ωt+ φ)

is applied to each ion, resulting in a change in velocity of v′ = v + a∆t for each timestep

∆t. The timestep must be set to some fraction of the shortest timescale of interest in the

simulation; normally this would be the equilibration time. The motion through velocity

space caused by the laser must also be fully resolved with a∆t� v. Successive oscillations

of the laser pulse introduce numerical heating via the uncertainty in momentum. Simu-

lations begin with 〈mv〉2 ≈ 0 for each species (i.e. no net momentum within statistical

limitations). At the end of each simulation it is checked that (〈mv〉)2 � 〈(mv)2〉 which

implies a good level of momentum conservation. Output temperatures are in the ZMF

and are calculated from T = 2〈E〉/3 where 〈E〉 is obtained from equation (5.3). This

means that any systematic inaccuracies due to residual momentum should be eliminated.

The average ln Λ is used.

High intensity lasers typically have short pulse lengths so that the pulse shape becomes

a parameter. Uniform pulse shapes may be used but the default is a Gaussian shaped

pulse, with

E(t) = E0 sin (ωt+ φ) cos2 [ωd (t− th)]

th is the time halfway through the pulse, ωd = π/tp is the decay period of the pulse, and

tp is the pulse duration.

The code is tested against electron-ion IB and compared to both a Maxwellian (m = 2)

and a Langdon (m = 5) distribution in Figs. 5.4 and 5.5. α = 2, electron-electron

collisions are disabled and Z = 1 with just one ion species. The pulse is spatially and

temporally uniform. Fig. 5.4 shows the distribution at the start of the simulation, and

Fig. 5.5 at t
τie

= 8 where τie is the t = 0 value. The agreement with the m = 5 super-

Gaussian is not exact, but this is expected as α changes over time. The results are in

excellent agreement with those performed by Jones and Lee [54] (see their Fig. 5).

This test confirms that the additions to the code of Chapter 3 are appropriate for studying

IIIB in isolation from other processes.
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Figure 5.4: A simulation of electron-ion IB against the Maxwellian and Langdon distri-
butions; all distributions are in the ZMF. α = 2.

Figure 5.5: Fig. 5.4 at t = 8τie(t = 0), showing the electron distribution becoming a
super-Gaussian.
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Figure 5.6: Ion-ion inverse bremsstrahlung absorption of laser radiation with 30 fs Gaus-
sian pulses (peak intensities shown) at the relativistic critical density with protons and
12C. The absorbed energy shown is 〈E〉p + 〈E〉C, with the theory referring to equation
(5.6).

5.5 Results

Fig. 5.6 shows absorption according to equation (5.6) and Monte Carlo simulations over

a range of intensities and using initial temperatures T ≤ 1 eV. The ions are an equimolar

mix of protons and 12C. A Gaussian pulse shape of duration 30 fs is used; peak intensities

are shown. The average energy absorbed including both species for the whole simula-

tion is plotted, with each simulation performed at the relativistic density nc (given by

equation (5.2)) for that intensity, and each pulse having a wavelength of 1µm. Though

the absorption is higher at higher intensities, keeping the density constant would not

necessarily show the same relationship. The agreement with (5.6) is good for the lower

densities and intensities, but is worse for higher densities and intensities. The most likely

cause is departures from the simple model of two shifted Maxwellian distributions with

perfect ion-ion relative speeds of vij(t), indeed it will be shown that it is possible for

non-Maxwellians to be driven, which tend to reduce absorption relative to a Maxwellian.

Intensities above 1023 W cm−2 are not currently feasible. However, the absorption is

dependent on pulse shape in addition to intensity, density and Z. Using equation (5.6),

an optimal E0 for heating can be derived. If x = vij/vth,ij, then taking d
dx

(
dT
dt

)
IIIB

= 0
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Figure 5.7: Three numerical simulations of different (temporal) pulse shapes. The ion
species are fully ionised hydrogen and carbon, with an electron density of ne = 2.4 ×
1029 m−3 (kinetic electrons not included).

gives, to a good approximation, x ≈ 3/2 as the largest positive root. Replacing cos and

sin with their average values of 1/
√

2, the optimum value of the electric field for heating

is a peak value of

E0 =
3ω

e

(
Ti
mi

+
Tj
mj

)1/2(
Zi
mi

− Zj
mj

)−1

(5.7)

for i given Ti, Tj, nj, Zi, Zj etc. In Fig. 5.7 the performance of this ‘optimum’ electric

field is compared with pulses with two other shapes; uniform and Gaussian. Each has the

same average intensity of I = 2.07× 1019 W cm−2 over 30 fs. The field for the optimum

pulse is calculated every timestep. A pulse of wavelength 1µm is used, and the ion species

are fully ionised equimolar hydrogen and 12C. Only the hydrogen temperature is shown

as it is much higher than the carbon temperature. Toward the end of the simulation,

the proton temperature using the Gaussian pulse actually drops from its peak value; this

is because energy is being lost to Carbon through ion-ion equilibration. The optimum

pulse gives a 34% higher final temperature than the Gaussian pulse, and both strongly

outperform the uniform pulse.

In electron-ion IB, non-Maxwellian distributions are driven if the rate of energy deposition

into electrons by IB is faster than the electrons can self-thermalise. A similar situation

can occur in IIIB; the condition for driving a non-Maxwellian in i for IIIB between i and
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j is

τH
i < τii

where τH
i = Tini/Ẇi is the e-folding time for heating and τii is the ion-ion self-equilibration

time (see Appendix B). The condition becomes

Ti
mi

(
18

[
Z2
j

Z2
i

ξ(x)

x

]2

− 1

)
>

Tj
mj

(5.8)

With the optimum pulse ξ(x)/x ≈ 0.35, and the condition is satisfied if Ti
mi

(
441Z4

j

200Z4
i
− 1
)
>

Tj
mj

. The derivation relies on both distributions being close to shifted Maxwellians; if j is

far from equilibrium then the condition may not apply. Fig. 5.8 shows the distribution

function of protons in an Au-proton mix with nAu = np = 5.0 × 1028 m−3 being heated

by an optimum pulse with λ = 1µm. The snapshot is taken after 14 self-thermalisation

times have passed (using the t = 0 value of vp). The protons reach an m = 5 super-

Gaussian, just as electrons do when being strongly heated. It is not really a surprise that

this occurs, as the situation is somewhat similar to electron-ion IB with Au playing the

role of the ion and protons the role of the electrons. The Au distribution (not shown)

remains Maxwellian.

An optimum pulse heating a mix of ion species with Zi = Zj and vi ∼ vj would not satisfy

equation (5.8). To demonstrate this case, deuterium and tritium are used. The distri-

butions of both show small signs of deviation from a Maxwellian, but only temporarily.

The distribution of deuterium is shown, at its largest deviation from a Maxwellian, in

Fig. 5.9. The tritium distribution is closer to a Maxwellian. Though these ion species are

being driven with the optimum pulse, their similar masses mean that exchange of energy

between them is relatively effective, giving a greater capacity to absorb distortions away

from equilibrium. Deuterium comes closest to fulfilling equation (5.8), explaining why it

has a larger deviation from a Maxwellian. For physical ion species only a small difference

in Z and m (assuming the charge-to-mass ratios do not cancel) will result in the lighter

ion species being driven with an m > 2 distribution.

One of the limitations of the analytical approach originally taken by M&R is that it is

limited to two species of ion. The absorption equation, (5.6), does not apply to more

than two species either. However, the Monte Carlo code is able to introduce a third

species. If the optimum pulse defined in equation (5.7) is used to maximise the heating

rate between any two of the three or more ion species present, a combination of ion-ion

equilibration and IIIB will heat the remaining ion species.

A case of interest for producing fusion reactions is that of a large mass, high Z species
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Figure 5.8: Distribution function of protons in an equimolar mix of protons and Au being
heated by the optimum pulse. This situation satisfies the condition, given in equation
(5.8), for driving a non-Maxwellian distribution in the protons. v2

p = Tp(t)/mp with Tp
measured in the ZMF.
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combined with deuterium and tritium. The similar masses of deuterium and tritium mean

that the optimum field for heating them with the high Z species will not be very different

quantitatively. Au is chosen as a ‘driving’ ion species due to its high Z. The effect of

IIIB on a nAu = nd = nt mix of cold Au, deuterium and tritium at the mass density of

Au of 19.3 g cm−3 is shown in Fig. 5.10. The pulse shape is optimised for IIIB absorption

between deuterium and Au, with a linearly polarised laser pulse of duration 30 fs. The Au

is assumed to be fully ionised; further work would be required to establish whether this

is the case for the thin foil scenario suggested in §5.3. The results shown are converged in

the sense that halving the timestep and doubling the number of simulation particles leaves

the result unchanged. In Fig. 5.10, non-Maxwellian distributions are driven in both light

ion species. These distributions, taken at t ≈ 2τ(t = 0) for both deuterium and tritium,

are shown in Fig. 5.11. The distributions are clearly super-Gaussians with 2 < m < 3.5.

In Fig. 5.10, extremely high deuterium and tritium temperatures are achieved by using

the optimum pulse and including Au as a dopant. Shorter interaction times, on the order

of 15 fs, still produce temperatures of around 10 keV. More realistic mixtures of Au,

deuterium and tritium could be expected to reach similar light ion temperatures, and

fusion within the heated volume. Given the approximations made in calculating the final

temperature, the possibility of transport or space-charge effects in reducing or disrupting

the absorption, and the thinness of the foil, a more comprehensive model would be needed

to determine the yield.
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Figure 5.9: The maximum distortion away from a Maxwellian for deuterium being heated
by an optimum pulse with λ = 1µm, in an equimolar deuterium-tritium mix. v2

d =
Td(t)/md with Td in the ZMF.
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Figure 5.10: Top: Temperatures in the ZMF of a numerical simulation of a 30 fs laser
pulse on equimolar Au, deuterium and tritium. Bottom: The intensity of the laser pulse
over time. The pulse is optimised for IIIB between deuterium and Au and has λ = 1µm.
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Figure 5.11: Light ion non-Maxwellian distribution functions being driven by t ≈ 2τ(t =
0) in an Au-d-t mix, using a laser pulse optimised for absorption between deuterium and
Au with λ = 1µm. v2

i = Ti(t)/mi with Ti measured in the ZMF. Left: Tritium. Right:
Deuterium.



Chapter 6

Discrete collisions and large-angle

scattering

6.1 Theory of discrete collisions

Many texts discuss the two different regimes of interaction in a plasma, the ‘near’ or

‘close’ collisions and the ‘remote’ ones [29, 113, 114, 115]. In Chapter 2, the relative

importance of large- to small-angle scattering is established for basic cases of energy

exchange, ∼1/ ln Λ, and loss of momentum, ∼1/8 ln Λ. With ln Λ � 1 or g � 1, small-

angle collisions dominate interactions.

These relations are approximate, and more precise definitions of what constitutes a large-

angle, or ‘close’, collision allow an exploration of the phenomena that they are associated

with. For the purposes of this work, the terms discrete collision and large-angle collision

are more useful. Discrete interactions are those which have a short enough interaction

time relative to the other timescales of the plasma to allow them to be taken to be

instantaneous, and only involve two particles. They are true binary collisions. Large-

angle collisions are those in which a significant transfer of energy or momentum occurs

in one collision, so that the trajectory of a particle post-collision departs appreciably

from its original trajectory. Discrete may be used interchangeably with near or close

collisions, meaning those for which the impact parameter b is small. Though not all

discrete collisions involve a large deflection, the term large-angle collision has also been

used to mean near collision because discrete collisions often involve large deflections. All

large-angle scattering is as a result of discrete collisions, but the reverse is not always

true. Discrete collisions are in contrast to ‘multiple’ collisions, in which a test particle is

simultaneously interacting with a large number of other particles in the plasma. In most

105
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plasmas, the cumulative effect of the multiple collisions is far stronger than the discrete

collisions which gives the relative importances for energy and momentum exchange of

O(1/ ln Λ).

There are two different, but equivalent, pictures of the origin of the different regimes of

interaction. The first is based on the distance over which the interaction acts, the second

is based on the time the interaction takes to occur.

The first is motivated by the long range of the Coulomb force. A charged test particle

going through a plasma is constantly being pushed and pulled in different directions due

to the overall effective force of many other charged particles. This is multiple, small-

angle scattering, in which the assumptions of the pure Rutherford cross-section are not

applicable. Rutherford assumes two particles interacting solely with one another. In the

multiple scattering case, the strongest influence on the test particle is not due to any

single other particle but due to the ensemble of particles within a Debye length of the

test particle. As the Coulomb force is proportional to r−2, there must be some finite

distance where the contribution to the electromagnetic potential from one single other

charged particle becomes dominant over the rest of the ensemble. Let this distance be

denoted bc; the impact parameter where the cross-over between multiple scattering and

discrete scattering occurs. At impact parameters below bc, the interaction is discrete and

the scattering angle is limited to being above θc = θc(bc) from equation (2.4). This can

force discrete interactions to involve large deflection angles, in which case the average

transfer of energy and momentum will be far higher per collision than with a remote

interaction. The remote interactions are restricted to impact parameters b > bc. Cohen,

Spitzer and Routly [115], Trubikov [29], and Perkins and Cullen [113] all work within this

picture. The former note that if there were no large deflections at all, then the change

to plasma distribution functions would be fully described by a diffusion equation. It is

also noted that the omission of the close, discrete encounters will introduce more errors

as λD/b⊥ gets smaller - corresponding to small ln Λ. Cohen, Spitzer and Routly also

recommend that the interaction be split into a Boltzmann type collision operator and

multiple scattering, diffusion terms dealt with by VFP, with the regimes of interaction

being b = 0 to b = bc and b = bc to b = λD respectively. As the regime of most interest

at the time of publication of the article was λD � b⊥, the authors suggested that the

Boltzmann collision part of the change to the distribution function be ignored but that

bc −→ 0 could be used to approximately include the effect of close encounters in the

diffusion terms. This remains the convention, even for small ln Λ.

Sivukhin [114] discusses the second picture, starting from an acknowledgement that the

apparent divergence in the Rutherford cross-section when considering increasingly small
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deflections is because the cross-section is no longer applicable. The reason is that Ruther-

ford implicitly assumes an infinite interaction time, but actually the time for a remote

interaction is constrained. This approach yields non-divergent expressions for momentum

transfer but the remote interactions are still effectively cut-off at λD. Discrete collisions

are then those which have an interaction time which is so short that it is effectively

instantaneous relative to the timescale for undergoing collisions with more than one par-

ticle, and a ‘full’ Rutherford collision takes place. The discrete and multiple interactions

are effectively split by bc such that the Coulomb logarithms in the momentum exchange

expression are ln bc
b⊥

and ln λD
bc

respectively. The approach to the discrete collisions is

discussed, and a strategy of either ignoring them or approximating them with remote

collisions (using bc = 0) recommended, with a statement that “Such an approach... can-

not pretend to give a completely adequate description of the true situation.”

These two approaches suggest that there is a cross-over impact parameter b = bc which

separates the discrete and multiple collisions, without giving a physically motivated value

for it.

Due to the dominance of multiple scattering, conventional approaches to plasma physics,

such as those outlined in §2.5, do not attempt to account for large-angle collisions either

because they are subject to a constraint equivalent to g � 1, because they do not permit

large deviations from equilibrium distribution functions, or because they approximate

discrete collisions as multiple collisions by including all b down to b = 0 in calculations.

This is justified for ln Λ� 1.

However, even for moderately coupled plasmas, with 2 . ln Λ . 5, the inclusion of the

effects of large-angle collisions is necessary [48, 116] in order to get the fundamental rate

of exchange of momentum and energy correct. Fig. 2.4 shows typical values of ln Λ,

while Fig. 2.5 shows ND = 4
3
πneλ

3
D, the number of particles in a Debye sphere, which

typically has to satisfy ND � 1 for conventional approaches to plasma physics to be

valid. Plasmas with ln Λ∼1 include a great many areas of research and practical interest

including high intensity laser-plasma interactions [39], inertial confinement fusion [23],

degenerate plasmas [40], and stellar cores [41, 42].

Possible changes to the fundamental rates of exchange and equilibration due to the rel-

ative strength of discrete and multiple scattering could have consequences for the shape

and evolution of distribution functions, fusion reactivities, and associated neutron emis-

sion spectra, and transport. Despite large-angle collisions being secondary in number to

small-angle collisions, there may be situations where the large transfers of energy and

momentum per collision change the evolution of a plasma dramatically. Fusion is an

interesting example; large-angle collisions could create high energy particles capable of
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fusing right under the peak of the fusion cross-section and thus have a disproportionately

large effect on reactivity. It is not only that the changes in energy are large that could

lead to new effects, but also that they are discontinuous. This means areas in energy

space may be occupied much earlier in time than might be expected from conventional

models; an analogy is the loss of energy by an electron due to synchrotron emission - the

discontinuous energy loss predicted by quantum electrodynamics broadens the electron

energy spectrum relative to the classical continuous energy loss model [117].

A way of examining the inclusion of near interactions could be a useful tool in under-

standing plasmas where ln Λ is small. The introduction of a cross-over impact parameter

of b = bc separating the discrete and multiple collisions, and a method of properly ac-

counting for large-angle collisions, are required to facilitate this.

As an example, the first kinetic cross-section given by equation (2.10) is used with a

cut-off; though the Coulomb logarithm will be the same with any kinetic cross-section.

σ1 =
πb2
⊥

2

∫
(1− cos θ) sin θ

sin4
(
θ
2

) dθ =
πb2
⊥

2

[
8 ln

(
sin

θ

2

)]
(6.1)

From cot θ
2

= b
b⊥

,

sin2 θ

2
=

b2
⊥

b2
⊥ + b2

so
πb2
⊥

2

[
8 ln

(
sin

θ

2

)]
= 2πb2

⊥

[
ln

(
b2
⊥

b2
⊥ + b2

)]
A cut-off at bc : 0 < bc < λD splits σ1 into two distinct cross-sections; σ1 = σ1,M + σ1,D

σ1,M = 2πb2
⊥ ln

(
b2
⊥ + λ2

D

b2
⊥ + b2

c

)
= 4πb2

⊥ ln ΛM

σ1,D = 2πb2
⊥ ln

(
b2
⊥ + b2

c

b2
⊥

)
= 4πb2

⊥ ln ΛD

with logarithms ln ΛM and ln ΛD having absorbed a factor of 1/2. ‘M’ and ‘D’ correspond

to multiple and discrete scattering respectively. Note that the partial cross-sections have

the following properties:

lim
bc−→0

σ1,D = 0

lim
bc−→0

σ1,M = σ1

lim
bc−→b⊥

σ1,D = 2πb2
⊥ ln 2 ≈ πb2

⊥
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6.1.1 A physically motivated cut-off in impact parameter

bc is effectively a slider between discrete and multiple scattering, but there is no obvious

physically motivated value for it. Trubnikov [29] suggested that the cut-off should be

bc = 2b⊥ so that

σ1,M = 2πb2
⊥ ln

(
b2
⊥ + λ2

D

5b2
⊥

)
≈ 4πb2

⊥ ln Λ

σ1,D = 4πb2
⊥ ln

(√
5
)
≈ 4πb2

⊥

The ratio is
σ1,D

σ1,M

≈ 1

ln Λ

a relationship frequently occuring in the literature [48, 118] as being proportional to the

large-angle corrections to multiple scattering. However, that choice of cut-off, bc = 2b⊥,

is arbitrary and independent of density. Ballabio et al. [119] choose a cut-off of bc =

5.67b⊥. The other conventional approach is to approximate discrete collisions as multiple

scattering collisions by allowing bc −→ 0. Then the limits of the integration in equation

(6.1) run over all values, b ∈ (0, λD)⇔ θ ∈ (π, θmin), so that the conventional first kinetic

cross-section is recovered.

A more physically motivated value of bc is desirable. One approach would be to try

and extract a value of bc from molecular dynamics (MD) simulations. Classical MD

simulations have several potential problems which make this approach impractical, but

the most important is that interactions in classical MD are often cut-off at short ranges

using an arbitrary ‘smoothing parameter’. This is introduced to stop electrons becoming

infinitely bound to ions, but, because it is important on the same length scales as discrete

scattering, the value of bc determined this way would be sensitive to the value of the

smoothing parameter, itself often set to be ∆tvij, and therefore is not determined by

fundamental physics.

A physically motivated value of bc based on fundamental physics can be obtained by

taking bc to be proportional to the impact parameter at which the potential from one

neighbouring particle is higher than the sum of the potentials of all other charged particles.

Let the value of the cut-off based on this premise be bφ. Finding bφ requires an assumption

about the form of the potential. David [120] found that a Yukawa potential, screened

by λD, is a very good fit to the potential observed in molecular dynamics simulations

even for strongly coupled plasmas with g ∼ 1 (see David’s Fig. 5.2(c)). Let i, j, and

k, represent charged particles in a plasma, rather than species in the plasma. Between
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particles i and j, the Yukawa potential of j on i is

φji(rj) =
qje

4πε0

e−rj/λD

rj

where rj = |rj| is the distance of j from i. From the point of view of i, bφ is the value of

rj which satisfies

φji(rj) =
∑
k 6=i,j

φki(rk) (6.2)

where j is the nearest neighbour (of its species) of i and k runs over all other particles.

Substituting in rj = bφ(j, i) in (6.2),

φji(bφ) =
qje

4πε0

e
−
bφ
λD

bφ
=
∑
k

qke

4πε0

e
− rk
λD

rk
(6.3)

Calculating rk time-dependently is as difficult as solving Liouville’s equation, so an av-

erage model is used. Let s represent a species in the plasma. In the average model, it

is assumed that the distance to the nearest particle of species s will be approximately

found from letting 4
3
πr3

sns = 1. This is the single species equivalent of the particle sphere

radius r0 defined in §2.3 as r0 = (4π
∑

i ni/3)−1/3. Let

rs ≡ rs:1 =

(
3

4πns

)1/3

(6.4)

then, the next nearest particle of species s will be given by 4
3
πr3

s:2ns = 2, and the mth,

where m ∈ N, by

rs:m = m1/3rs (6.5)

That the average distances between particles obey this relation is a strong assumption.

Holtsmark theory, [46, 121] and references therein, gives the electric field distribution

from a test point due to an ensemble of particles. Its application to a plasma with

Debye shielding assumes that the potential is completely cut-off at r > λD, and gives

the highest probability density for electric fields at distances roughly between 0.8r0 and

1.3r0 for ND =∞ and ND = 3 respectively. This supports the choice of r0 as the average

distance to the next nearest neighbour, but it is still an approximate theory.

With equation (6.5), equation (6.3) becomes

φji(bφ) =
∑
s

∑
m

qse

4πε0

e−m
1/3rs/λD

m1/3rs
(6.6)
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Figure 6.1: Values of x = r0/λD in an equimolar deuterium-tritium plasma.

Figure 6.2: bφ for an equimolar deuterium-tritium plasma in units of 10−12 m.
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Figure 6.3: bφ/b⊥ for an equimolar deuterium-tritium plasma.

where s is species, m runs over all particles which are members of species s, and it is

assumed that the plasma has enough particles such that the m −→∞ limit can be taken,

not an unreasonable assumption for most plasmas given that successively higher terms

contribute less. The sum is not trivial. Firstly it must converge. Taking am = e−m
1/3x

m1/3

with x = rs/λD as the mth term of the sequence, convergence can be determined using

the integral test, which sets a function f(m) = am and demands f(m) be a positive,

decreasing function ∀ m ∈ [1,∞). Then,

F (k) =

∫ k

1

f(m)dm =

∫ k1/3

1

3ye−yxdy =

[
−3

x
e−yx

(
y +

1

x

)]y=k1/3

y=1

using the substitution y = m1/3. Then, for some finite number C,

lim
k−→∞

F (k) = C

guarantees that the series converges [122]. The behaviour of the ratio of terms

lim
m−→∞

am+1

am
= lim

m−→∞

(
m+ 1

m

)1/3

exp
{
x
[
m1/3 − (m+ 1)1/3

]}
= 1

implies that the convergence may be logarithmic, meaning that Sk =
k∑

m=1

am converges
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very slowly using term by term evaluation. This presents difficulties for brute force

calculation.

However, if the terms up to m = k > 1 are summed, the remainder may be approximated

by an integral because the convergence is so slow;

∞∑
m=k

e−m
1/3x

m1/3
≈
∫ ∞
k

e−m
1/3x

m1/3
dm =

3

x
e−k

1/3x

(
k1/3 +

1

x

)

giving the complete expression

S ≈ Sk +
3

x
e−k

1/3x

(
k1/3 +

1

x

)
≡ SA(k) (6.7)

This must be able to deal with a range of x = r0/λD ∝ n1/6/T 1/2 values as shown in

Fig. 6.1 for a deuterium-tritium plasma. The most stringent limit is for small values of x

with many, many particles in a Debye sphere, with the minimum being x ∼ 0.01. In the

limit of x −→ 0, the series becomes the over-harmonic series and no longer converges;

physically this is because the limit corresponds to having no Debye shielding. Large values

of x cause the series to converge more rapidly, but not necessarily the approximation

SA(k). A parameter scan of x to find the smallest k giving a converged value of the

ratio of SA(k) to S5×109 (taken to be the ‘converged’ value) found that larger values of

x required higher values of k, but using k = 50 never produced an error of more than

0.15% for x ∈ [0.01, 10]. The equation to solve for bφ(j, i) is then

φji(bφ) =
∑
s

qse

4πε0rs
SA(k) (6.8)

where k = 50 is used, and the dependence of SA(k) on species s is suppressed. This

equation is solved computationally using the Van Wijngaarden-Dekker-Brent method

[123, 57].

b⊥(i, j) is symmetric in i and j, and λD is the same for all particles. Physically it is

expected that bφ be symmetric also; bφ = bφ(i, j) = bφ(j, i), where bφ(i, j) is the solution

if the potential on the left hand side is φij. Physically, it seems reasonable that bc be

symmetric. However, bφ is not symmetric if there are two species with different charges,

because φij 6= φji but the right-hand side of equation (6.8) remains the same. For qi < qj,

bφ(j, i) < bφ(i, j) because j is more strongly coupled into all other particles than i. This

method of finding a cut-off is based on discrete scattering dominating multiple scattering,

and thus requires both particles to see their collision as being a true binary collision. The

correct value of bφ resulting from numerically solving equation (6.6) will therefore be the
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lower of the two values of bφ, meaning the equation need only be solved once for each

pair i, j - the one with the smallest charge q.

Taking, for example, bc ≈ bφ, gives a physically motivated cut-off but it is still approx-

imate. At bφ, the interactions of all other particles are equally as strong as those from

the nearest neighbour, so some bc < bφ is more likely to be a realistic answer. Values

of bφ for an equimolar deuterium-tritium(-electron) plasma over a wide range of tem-

peratures and densities are shown in Fig. 6.2. Also informative is how the value of bφ

changes relative to b⊥ as this determines θc, and b⊥ is the preferred value of the cut-off for

several authors. The ratio, shown in Fig. 6.3, is very stable over a wide range of temper-

atures and densities. Taking bc = bφ/e to give a bc safely in the pure Rutherford regime,

bc = 〈b⊥〉 appears to be a good approximation for equimolar deuterium and tritium in

ICF conditions. However, this turns out to be a special case and bφ can depart from 〈b⊥〉
substantially, so that the approximation cannot be used in general.

This theory strongly relies on the approximations about the average locations of other

particles and the form of the potential, and an improved theory would take account of

these in a more satisfactory way. It represents a first step toward a theory of the relative

strength of large-angle collisions based on physical reasoning.

6.1.2 Advanced discrete collisions

Although this chapter is primarily concerned with the effects on a plasma of large-angle

Coulomb collisions, much of the previous work in this area concerns both Coulomb col-

lisions, sometimes beyond pure Rutherford scattering, and ‘large-angle’ collisions due to

the nuclear force. In order to understand the context of the work of this chapter, and pos-

sible directions of future work, a brief overview of the extra physics of elastic scattering

which might be important for a plasma in a more advanced model is presented. However,

it should be stressed that this physics is not currently included in the computational

model described in Chapter 7.

The Rutherford cross-section, dσ
dΩ R

, is a classical approximation and assumes that species

are non-relativistic, have no spin, and are point particles. Corrections to it are rarely

considered in plasmas, but are common in particle physics where much higher colli-

sion energies are typical. Even the first order quantum mechanical calculation of the

Rutherford cross-section, using the first Born-Approximation with a Yukawa potential

φ(r) = qe
4πε0

e−r/λD
r

, recovers exactly the same cross-section in the small angle limit though

with λdB as the minimum impact parameter rather than b⊥. The corrections and devi-

ations from pure Rutherford scattering are mostly at large angles. The most relevant
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additional physics at large-angle for Coulomb collisions in plasmas are particle indistin-

guishability, spin statistics and the nuclear force via NES (nuclear elastic scattering).

The consequences for the cross-section of including each of these is briefly examined.

Indistinguishability modifies the cross-section for scattering like particles. The conse-

quence of indistinguishability is that particles cannot be tracked through collisions, and

scattering through θ appears as likely as scattering through π−θ. The explanation of this

phenomena is that the cross-section for like-particle scattering is the sum of the Feynman

diagrams at first order, which contains contributions from both the t and the u channels.

While the t-channel is Rutherford scattering, the u-channel is the ‘switch’ between the

two indistinguishable particles. The extra channel introduces a second divergence associ-

ated with Debye shielding, at θ = π, for scattering in a plasma. It should be stressed that

the extra channel can only contribute if the interaction happens on quantum lengthscales,

i.e. a Compton wavelength for electron-electron scattering. This means it is unlikely to

happen at small-angles, as they correspond to greater distances. The wavefunctions of

the particles must be close enough to overlap; otherwise the interaction is classical. So

the inclusion of indistinguishability is only relevant at large-angles.

Introducing spin further complicates cross-sections. Considering first order fermion point-

particle scattering, the switch in the u-channel between two anti-commuting particles

leads to a relative sign change between the contributions from each channel in the total

scattering amplitude M, where

dσ

dΩ
=

1

64π2(EA + EB)2

pf
pi
|M|2

is the differential cross-section. This is for initial particles A and B with initial and final

magnitudes of momentum pi and pf respectively. Furthermore, the scattering amplitude

must be averaged over all incoming and outgoing spin states. At relativistic velocities,

spin states can be flipped by the magnetic contribution to the scattering; this regime

is not considered. The averaging over spins leads to the u- and t-channel scattering

contributions, but also interference between them [124] yielding the differential cross-

section
dσ

dΩ
=
b2
⊥
4

(
1

sin4 θ
2

+
1

cos4 θ
2

− 1

sin2 θ
2

cos2 θ
2

)
(6.9)

known as the non-relativistic Møller cross-section. Though the field theory viewpoint

of channels and successive contributions is useful in examining the origin of the terms

in the scattering amplitude, it still only provides a cross-section which is tractable in

the non-relativistic limit and is restricted to point-particle interactions without a nuclear

force contribution.
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Figure 6.4: The cross-section of equation (6.13) against the Rutherford cross-section for
proton-proton scattering at a relative collision velocity of 1.5 × 105 m s−1. Interference
from the third term in (6.13) causes the oscillatory behaviour.

NES, from the nuclear force, introduces nuclear structure. It not only changes the ion-

ion scattering cross-section but also introduces a neutron-ion cross-section. NES has its

origin in strong force interactions between all quarks with the strong force equivalent of

charge, ‘colour’. Though ions and neutrons are colour neutral, they are not uniformly

so and just as van der Waals’ forces exist between molecules but are much weaker than

the bonding between individual atoms, so baryons in close contact may exert nuclear

forces on each other which are much weaker than the strong force interactions holding

quarks together. NES can be thought of as a discrete scattering process because it is

dwarfed by the Coulomb scattering cross-section for small-angles (and, correspondingly,

large physical separations). It is also a relatively high energy process; it is much smaller

than Coulomb scattering cross-section for collision energies below 1 MeV. However, for

neutron-ion scattering, it is always the dominant scattering mechanism in a plasma.

In order to unify spin, NES, and indistinguishability, it is necessary to adopt the quantum

mechanics viewpoint of particles as wavefunctions which can scatter off of each other. This

theory relies on finding forms for the scattering amplitudes of individual forces, such as
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the Coulomb and nuclear forces [125, 126].

The evolution of a wave packet ψ(r, t) representing a particle after scattering is given by

a plane wave part, changed only by a phase factor, and a scattered spherical wave which

is a radially expanding image of the initial wave packet,

ψ(r, t) = ψ(r− v0t, t)e
iω0t +

fk0(r̂)

r
ψ(rk̂0 − v0t, 0)eiω0t

This assumes that the initial wave is scattered fairly continuously as a function of k.

fk0(r̂) is the scattering amplitude, and the differential cross-section is given by

dσ

dΩ
= |fk0(r̂)|2 (6.10)

The Coulomb scattering amplitude, which gives the classical Rutherford cross-section, is

[126, 125]

fC(θ) =
b⊥

2 sin2 θ
2

exp
[
−in ln

(
sin2 θ/2

)
+ iπ + 2iη0

]
where n = − qiqj

4πε0~vij and η0 = arg Γ(1 + in). To include spin for identical particles, a

symmetrisation or anti-symmetrisation, for bosons and fermions respectively, must be

performed on the scattering amplitude f(θ) to give the differential cross-section [126];

dσ

dΩ
= |f(θ)± f(π − θ)|2 (6.11)

= |f(θ)|2 + |f(π − θ)|2 +
(−1)2s

2s+ 1
2R [f(θ)f(π − θ)] (6.12)

For Coulomb collisions alone, f(θ) = fC(θ), the resulting cross-section is equivalent to

the non-relativistic quantum field theory result of equation (6.9) but with an extra factor

retained in the third term [127],

dσ

dΩ
=
b2
⊥
4

[
1

sin4( θ
2
)

+
1

cos4( θ
2
)

+
(−1)2s

2s+ 1

cos
(αf c

v
ln tan2 θ

2

)
sin2( θ

2
) cos2( θ

2
)

]
(6.13)

This is shown in Fig. 6.4 for proton-proton scattering vs. the Rutherford cross-section,

(dσ/dΩ)R. The effects of identical particles having spin are considered in other work [128,

113]. The relevant cases for ICF are composite spin-0 (α-particles), spin-1/2 (electrons,

protons, tritons), and composite spin-1 (deuterons).

Including NES means adding the scattering amplitude fN(θ) so that the total cross-



118 Chapter 6. Discrete collisions and large-angle scattering

section, for non-identical particles, is

dσ

dΩ
= |fC(θ) + fN(θ)|2

In general, the form of fN(θ) is not trivial. NES can substantially change the cross-

section, an example is α-deuteron scattering which has a large resonance at Eα = 2.1

MeV, Ed � 2.1 MeV, which doubles the total cross-section. NES also dominates Coulomb

scattering for all angles θ > π/4, for α-d and α-t scattering with Eα = 3.54 MeV [119].

For identical particles, the symmetrisation must be carried out on the total scattering

amplitude f(θ) = fC(θ) + fN(θ) as in equation (6.11). Over a wide range of different

cross-sections, centre-of-mass frame collision energies of around 1 MeV are the turning

point where NES effects begin to contribute. Cross-sections including NES are available

for many scattering pairs including proton-proton [127], α-t and α-d [119], and neutron-d

and neutron-t [129]. The methods used to obtain these cross-sections vary and the full

details are beyond the scope of this work.

A full treatment of large energy transfers in a plasma requires the inclusion of some or

all of these effects, depending on the application. Some work is required to determine

the exact conditions in which they start to become important, but they are all short-

distance, large-angle effects which do not occur in a classical plasma. The different

cross-sections discussed produce further complications by giving rise to slightly different

Coulomb logarithms, e.g. in the relativistic Møller cross-section [130]. Not discussed here,

there are also important inelastic scattering processes and break-up reactions at work in

a fusion plasma [131]. Another point to note is that large-angle Coulomb collisions may

be modified so that the minimum impact parameter is not set to zero (see the derivation

of the Coulomb logarithm in §2.3), and the finite nature of the charge distribution of

individual particles thereby taken into account [31]. Again, the inclusion of all of these

effects is left for future work.

Large-angle Coulomb collisions are a topic arguably less well explored in previous work

than the other effects discussed. It is the aim of this work to develop a robust predictive

capability for large-angle Coulomb collisions, but the methods employed are compatible

with the future inclusion of the other effects.
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6.2 Applications and models

6.2.1 Athermal chain-reaction fusion

A series of articles examining the effects of large-angle collisions, either Coulomb, NES

or both, has led to several authors concluding that a critical chain of athermal fusion

reactions might be possible. This is not thermonuclear fusion, in which reactions occur

due to a high enough bulk temperature, but fusion in which an athermal population of

ions exists, undergoes most of the fusion reactions in the plasma, and replenishes itself

via the slowing of those fusion products. The process is that initial fusion produced par-

ticles, charged and neutral, which have very high energies may, via large-angle collisions

of both kinds, knock bulk ions up to energies far higher than the bulk average. These

athermal ions will then be much more likely to fuse, either with other athermal particles

or with particles in the bulk population, due to the fusion cross-section peaking at much

higher energies than the bulk average. Fig. 6.5 shows a figure of a typical deuterium

distribution in equilibrium at 2 keV, 5 keV and 10 keV, and also the fusion cross-section

found in Appendix C. For the right conditions, the reaction will become self-sustaining,

but determining the relevant physics and the regime in which this could possibly happen

is a difficult problem, partly because of the need to include large-angle collisions. These

chains cannot happen with only small-angle, multiple scattering alone; that only permits

small transfers of energy. Large-angle collisions, in contrast, allow a few high energy

particles to transfer a significant fraction of their energy in a single collision in addition

to suffering smaller continuous losses. An extra interesting facet to this is that the onset

of electron degeneracy at very high densities could mean more of the energy of fusion

products goes into up-scattering bulk ions to become athermal ions, as the largest con-

tribution to continuous stopping of fast particles comes from electrons. Electrons radiate

via bremsstrahlung, have a short self-equilibration time (so that athermal populations

do not persist), and have a long equilibration time with ions due to the electron to ion

mass ratio. Energy which goes into electrons is therefore less useful for fusion reactions

than energy going into ion species. Exploring electron degeneracy as a process to slow

the absorption of energy by electrons [65] is, in part, the motivation of Chapter 4.

Evans [128] considers the energy loss of a fast deuteron (Ed > 2.5 MeV) in a hot deuterium

plasma (Te > 10 keV) in order to determine whether the addition of NES makes a

significant difference to the energy deposition of deuterons up-scattered by large-angle

collisions. Evans also introduces an explicit large-angle component of the Rutherford

cross-section by splitting the Coulomb stopping into continuous and discrete parts, the

former covering electron-ion interactions and ion-ion interactions with θ ≤ θc with θc
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an arbitrary cut-off in angle. In a discretised spherical geometry fast particles are in an

assumed Maxwellian background of electrons and ions. For collisions, ions are picked from

the Maxwellian background to scatter with and, if both are athermal after the collision,

they are both followed. There is continuous loss as a function of time or distance, and

a probability for undergoing large-angle collisions with θ > θc which is handled using a

Monte Carlo approach. NES is included, and deuterons are assumed to be composite

bosons with a spin of 1 for the purposes of deuteron-deuteron scattering. ln Λ is modified

so as not to overcount stopping powers: rather than values θ ∈ (θmin, π), θ ∈ (θmin, θc) is

taken. The Monte Carlo decision on whether to allow a large-angle collision is determined

in a similar way to a subsequent work by Brueckner, Brysk and Janda (BBJ) [132], whose

notation is adopted. Let σL(E) be the ‘large-angle’ cross-section for collisions only taking

into account the range θ ∈ (θc, π), and dE/dx be the continuous loss with the modified

ln Λ, i.e. taking into account θ ∈ (θmin, θc). The probability of i having a large-angle

collision with a background ion j of density nj while crossing a slab of plasma dx and

slowing by dE is

σLnjdx = σLnj

(
dE

dx

)−1

dE ≡ −L(E)dE

The probability of having no large-angle interaction in this infinitesimal slab is 1 +

L(E)dE. If S(E,E ′) is the probability of j losing energy from E to E ′ by continuous loss

only, and subsequent crossings are independent, then the probability for E −→ E ′ + dE ′

can be found iteratively; S(E,E ′ + dE ′) = (1 + L(E ′)dE ′)S(E,E ′). Re-arranging gives,

lim
dE′−→0

S(E,E ′ + dE ′)− S(E,E ′)

dE ′
= L(E ′)S(E,E ′)

integrating this gives S(E,E ′) =

∫ E′

E

L(E ′′)S(E,E ′′)dE ′′, which has solution

S(E,E ′) = exp

[
−
∫ E

E′
L(E ′′)dE ′′

]
(6.14)

Note that this satisfies the property that S(E0, En) =
∏

0≤m<n

S(Em, Em+1) ∀ m,n ∈ Z.

Evans uses equation (6.14) to determine whether a collision occurs or not over an energy

interval, and, in a similar manner to BBJ, defines the probability for a large-angle collision

to scatter i from E to E ′ as

P (E,E ′|collision at E)dE ′ =
dσL(E,E ′)

dE ′
dE ′

σL(E)

Analogous probabilities exist for NES. Using this formulation, Evans finds large differ-
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ences in the stopping of fast (Ed∼4.5 MeV) deuterium ions between using continuous

stopping versus large energy change Coulomb collisions and NES but only for Te > 10

keV at liquid density. The general effect is to increase the overall stopping power.

Before adopting the above system of equations, Brueckner and Brysk [133] derived prob-

abilities for stopping via large-angle collisions based on averaging the nuclear interaction

and incorporating it into a continuous stopping power of the form dE/dx. Although the

BBJ article uses a more advanced model, the original Brueckner and Brysk formulation

raises an interesting possibility when considering the slowing of fast particles; that a

fast particle could, in the course of its slowing, knock-on a sufficient number of ions to

produce an ever-growing chain of fusion reactions, products and knock-ons. The specific

example of an α particle slowing in a deuterium-tritium plasma is used, assuming a cold

background of deuterium and tritium ions from which recoils could be produced. The

results show that, dependent upon electron temperature, the original α gives rise to as

many as 0.2 additional athermal fusion reactions with ne = 1033 m−3. This ignored the

discrete nature of NES, neutrons, and the background deuterium and tritium temper-

atures. It also ignored secondary knock-ons, particles two collisions removed from the

original fusion created α particles. This increase in fusion reactivity cannot be predicted

using small-angle methods, as no high energy recoils are created and the bulk remains

cold.

BBJ [132] extended the analysis of Brueckner and Brysk considerably by considering

discrete NES, neutrons, and defining a system of probabilities for energy loss (via any

mechanism), for recoil generation and for reaction. Iteration over many discrete collisions,

with continuous loss in-between, gives rise to Volterra equations (defined in Appendix A)

of the form

P (E,E ′) = P (1)(E,E ′) +

∫ E

E′′
P (1)(E,E ′′)P (E ′′, E ′)dE ′′

where the superscript denotes the probability for one discrete collision along with con-

tinuous loss as described by equation (6.14). The limitations of this system of equations

are that it assumes the athermal population to be a perturbation to an equilibrium dis-

tribution, and that there is again a cut-off, in energy rather than angle, which modifies

the integration limits and ln Λ. The cut-off is determined in this case by computational

limitations, with the switch over to continuous loss taking place for changes in energy, ε,

less than the size of one unit of the computational energy grid. There is an implicit as-

sumption that multiple scattering may be approximated by binary collisions to arbitrary

small values of ε = E−E ′ within computational limits. The most interesting result is on

athermal chains with neutrons, which finds that an initial fusion created neutron (ignor-

ing thermal broadening) produces an average of 1.05 α particles as a product of all of the
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reactions of its recoils before they thermalise. This is for Te = 30 keV and ne = 1033 m−3.

This is not a self-consistent calculation as it depends upon the athermal population of

ions being small relative to the bulk population. However, these perturbations “could

push an otherwise submarginal plasma past the ignition point”.

Other authors [134, 135, 136] created a similar model but in the form of a full balance

equation for the athermal particles resulting from injecting a flux of particles of species

k at energy E0. The balance is found by equating terms accounting for absorption and

scattering out of the energy range (E,E + dE), down-scattering and up-scattering into

the energy interval, creation of particles by reactions, and creation of particles by external

sources for species i as a result of the injection of k. The assumptions are that there is a

bulk cold plasma, that the athermal population has reached a steady state, and that only

external sources contribute to the creation of particles in the energy interval (E,E+dE).

This gives, for flux φi(E) = ni(E)vi,

φi(E)
∑
j

nj

∫
σij(E,E

′′)dE ′′ −
∑
j

nj

∫
φi(E

′)σij(E
′, E)dE ′

=
∂

∂E

{
φi(E)

[(
−dE

dx

)
ie

+
∑
j

nj
n

(
−dE

dx

)
ij

]}

+ ni
∑
j

∫
φj(E

′)σji(E
′, E ′ − E)dE ′ + δikδ(E − E0) (6.15)

The first term is scattering out of the energy interval, the second is those down-scattered

into the interval, and n =
∑
ni. Integration limits are set by kinematics. The first term

on the right hand side represents continuous loss, which has been removed from the first

term on the left hand side and only covers energy exchanges such that ε/E � 1 with ε

smaller than a computational energy grid unit, and again the assumption that multiple

scattering and binary collisions are completely interchangeable. Though not explicitly

clear, ln Λ would need to be modified in the continuous loss terms to avoid overestimating

stopping. The last term represents the external source, and the remaining term is ions

created by recoil from other particles. In the final paper in the series, the plasma is

considered to be cold for the purposes of scattering but thermal for the continuous loss

terms, and heating of the bulk by athermal ions is not considered. The flux is calculated

for energies from 15.7 keV upwards, and a chain-reaction in a cold deuterium-tritium

plasma is expected at ion densities greater than 8.4× 1033 m−3, with neutrons the main

contributor to the chains.

Equation (6.15), even though it is simplified from the full problem, is difficult to solve self-

consistently as all of the particle fluxes are coupled both to themselves, and to each other.
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In [135], a simpler ‘multi-group’ model is detailed which, though requiring an initial guess

for the form of the flux, is more amenable to numerical solution. The assumption that a

steady state is reached is used, even if the equation is only applied for the ‘first generation’

of particles. Since different particles take different times to slow down, it is not clear that

the first generation is a useful concept. To calculate the degree of criticality, φi(E) is

solved in the first generation, and the source of particles h in the second generation is

given by

Shk =
∑
i

∑
j

nj

∫
φi(E)σijh(E)dE

where σijh represents the cross-section for production of h by i and j, and the k signifies

that it was the injection of particles of type k which originally drove the athermal distri-

bution function. The highest eigenvalue of the matrix with components Shk is taken as

being the multiplicative factor for generation-to-generation production of particles and

summed geometrically, after Brueckner and Brysk [133], to find the result of an infinitely

long chain of generations. This assumes both that the chain can be infinitely long, and

that no change to the bulk plasma properties occurs during the generation of the chain

of fast particles. With these assumptions, an athermal chain-reaction can proceed at

densities close to ∼5 × 1033 m−3, compared to expected ICF peak hot spot densities of

∼1031 m−3 [23].

The various attempts to understand critical athermal fusion reactions imply that large-

angle collisions, NES, neutrons, and even spin are all factors to include in models. Of

these, the inclusion of neutrons appears to be the most important. Averaging out the

effect of NES into a continuous stopping term can increase the number of fusion reactions

compared to discrete NES. This is because continuous slowing via NES takes an energetic

particle through the entire energy range, while discrete collisions lead to large jumps in

energy space, potentially missing out sensitive regions where recoils are likely to be created

with energies corresponding to the peak of the fusion cross-section (see Fig. 6.5). For this

reason, discrete NES is more realistic. The issue of a cut-off between continuous loss

terms and large energy transfer terms is ever present too, with the consensus being to

allow ε −→ 0 to within the capabilities of computation. This effectively assumes that

as many as possible of the collisions are pure Rutherford scattering, which is a strong

assumption. The models also generally use a cold background. As stopping powers are

dependent on temperature, including a thermal bulk is necessary.

These models are all perturbative or assume a steady state, and this combined with them

being relatively complicated from a computational point of view makes them unattractive

for solving the full problem self-consistently. However, the ideas behind athermal fusion

are worth pursuing because, even though the densities required by previous work currently
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seem unrealistic, possible changes to ignition conditions are of great interest to ICF.

6.2.2 Driving non-Maxwellian distributions

The athermal populations in §6.2.1 are considered separately from the bulk population

of ions, or employ assumptions about the bulk. The effects of large-angle collisions on

models including the entire distribution function are considered. Much of the work done

in this area has focused on magnetic confinement fusion (MCF), particularly with respect

to collisions between beam-injected ions and bulk distribution ions.

Stroud and Gilligan [137] examined large-angle Coulomb collisions between an injected

beam and a background in the context of MCF, finding that non-Maxwellians are driven.

The enhancement in reactivity found is greater with a thermal, rather than cold, back-

ground population. High-energy tails on Maxwellian distribution functions solely from

NES in the absence of any beam-injection, have also been identified, both using an av-

eraged model for NES [138, 139, 140, 141, 142] and using the discrete model of equation

(6.15) [143]. The lowering of the ignition conditions NES causes is for advanced fuels

and high electron temperatures, Te ≥ 30 keV. Kamelander devised a hybrid VFP-NES

equation to consider the effects of NES on ICF, finding that the cross-section for d − d
scattering was greatly modified for Ed > 1 MeV [144]. The method does not include

large-angle Coulomb collisions due to the stopping power being handled by the VFP

equation, equation (2.16), and a similar technique employed by Andrade and Hale [145]

notes that the inclusion of NES in a Fokker-Planck formulation makes VFP sensitive

to θc. Andrade and Hale show, in their Figs. 1–4, that scattering cross-sections taking

into account NES for several combinations of d, t and α ions are as much two orders of

magnitude greater with ∼MeV particle energies than Rutherford scattering alone would

predict.

Ryutov [146], and Helander [147], note that tails on distribution functions are an inher-

ent property of plasmas. By taking the background to be cold, ignoring the thermal

broadening of fusion created α particles, and ignoring any Z 6= 1 drag on α particles, a

distribution function for the high energy tail of ions of charge Z is given as

fi(vi) =
16

3 ln 2

nαni
νiv6

i

(
qie

2

4πε0

)2
mα

m2
i (mα +mi)

2− 3vi
v∗i

+
(
vi
v∗i

)3

, vi < v∗i ;

0, vi > v∗i ;
(6.16)

where νi is the collision frequency due to electrons and ions and v∗i is the maximum

possible initial recoil speed of i after collision with α. The high energy tail is introduced

as a possible diagnostic for the loss of particles to the walls of a tokomak.
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The idea of using the high energy tail as an α diagnostic in MCF is extended in a paper

by Gorini, Ballabio and Källne [148]. Assuming an average total cross-section of 1.1

barn in α + t and α + d NES, and using Monte Carlo techniques for the fusion reaction

kinematics, a neutron spectrum due to the suprathermal population fusing is found. The

work is refined in a subsequent paper [119] which considers thermally broadened fast ion

sources and much more advanced NES cross-sections. Their treatment of the scattering

cross-section includes spin, the Coulomb force, and the nuclear force with phase shifts

up to L = 3. The inclusion of the higher order phase shifts means that the resonances

in the α + t and α + d cross-sections are included. These resonances, in their Figs. 2–6,

greatly modify the cross-section. Of particular note is the α + d resonance at Eα = 2.1

MeV which doubles the total cross-section. In both cases, the NES total cross-section for

α with d or t becomes approximately equal to, or greater than, the Coulomb total cross-

section for collisions with α particles at Eα = 3.54 MeV. The authors find it necessary to

specify a cut-off in angle in order to carry out the cross-section calculations, and choose an

arbitrary lower limit in the centre of mass frame of θmin = 20◦, equivalent to bc = 5.67b⊥.

The analysis of Ballabio et al. looks at the first generation of fast recoils from a thermally

broadened source of fusion created α particles. The slowing of the α, d, and t particles

is handled by a Vlasov-Fokker-Planck equation of the form

1

v2

∂

∂v

(
v3νifi

)
= −Qi (6.17)

where Qi is the source term of ions of type i. A distribution function based on the

particles from this source slowing down is plotted, but the slowing neglects both NES

and large-angle Coulomb collisions. This may not be a good approximation as the NES

cross-section between a 1 MeV deuteron and a thermal deuteron is several times larger

than for a 3.54 MeV α and a thermal deuteron [141]. Fisher [149] predicts the distribution

functions of fast ions and neutron spectra using a similar source term approach, where

the only slowing of created fast ions is due to small-angle collisions with electrons.

The first experimental observation of a non-Maxwellian distribution due to α particle

knock-ons was seen in the JET (Joint European Torus) MCF reactor [150]. The flux of

charged particles with energies 0.8 ≤ E ≤ 1.2 MeV found by a neutral particle analyser

was much larger than expected from the slowing of fusion created α particles. The flux

appears before α particles created by fusion could reasonably be expected to have slowed

to the energy range, whereas deuterons which have been knocked-up to high energies by

large-angle collisions could appear in the flux immediately after fusion reactions begin.

Subsequently, a neutron emission spectrum consistent with the athermal ion population

predicted by Ballabio et al. was found on JET [151]. Though the model due to Ballabio,
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Ryutov, and others, appears strong, some experimental evidence from JET suggests that

it could substantially underestimate the size of the athermal ion population [152, 153]

even when including all possible NES rates in a VFP equation. This may be an indication

that the simplified slowing model in equation (6.17) is not sufficient, either because of

the lack of large-angle Coulomb collisions, the averaging out of the NES interaction, or

both.

Non-Maxwellian distributions in ICF have been considered in other work. Sherlock and

Rose [154] found that a Monte Carlo approach [50] with only small-angles showed that no

deviation to Maxwellian ion distributions is caused by the slowing of fusion produced α

particles. A VFP model [155] including bremsstrahlung, inverse bremsstrahlung, Comp-

ton scattering, and light-ion fusion but no large-angle scattering or neutrons, showed

little difference between Maxwellian averaged fusion rates and those taking into account

the non-equilibrium distributions of fusion products. Some non-Maxwellian behaviour

in tritium is driven by the d + d −→ p (3 MeV) + t (1 MeV) reaction, which has a

50% probability. Almost all of the non-equilibrium particles are products of fusion, and

ρ ∼ 1000 g/cm−3 corresponding to the relatively cold fuel surrounding the hotspot of an

ICF capusle. The lack of large-angle collisions is acknowledged in both of these works.

6.2.3 ICF

Diagnosing conditions in the centre of an imploding NIF capsule presents real technical

challenges. One of the most important parameters is the areal density, ρR, which must

reach ∼1 g cm−2 in the fuel and ∼0.3 g cm−2 in the central hotspot of T ∼ 5 keV for

ignition to occur. Neutron time-of-flight (nTOF) spectrometers and a magnetic recoil

spectrometer (MRS) are used to sample neutrons escaping from implosions and diagnose

ρR and its asymmetries, ion temperature and yield. The calculation of ρR > 0.3 g cm−2

depends upon the down-scattered neutron ratio (dsr), a measurement of

dsr =
no. neutrons with (10–12) MeV

no. neutrons with (13–15) MeV

which is, to first order, proportional to ρR ignoring 3D geometrical effects [156]. Taking

into account the geometry of NIF, the quantitative relationship is found to be [157, 158]

ρRtotal

(
g cm−2

)
= (20.4± 0.6)× dsr

ρRfuel

(
g cm−2

)
= (18.5± 0.5)× dsr

The dsr is primarily caused by fusion created neutrons being down-scattered by NES
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collisions with thermal fuel ions. However, this process does not capture the entire

possible spectrum of neutron energies as other processes can also contribute including

the t(n,2n) and d(n,2n) break-up reactions, n+p and n+12C elastic scattering, n+12C

inelastic scattering, and less probable fusion reactions [131]. The plastic ablator is the

source of C and p ions. Large-angle scattering, including via Coulomb collisions [131],

are a source of another, less probable, change to neutron spectra: tertiary neutrons [159].

Up-scattered fuel ions have a greater cross-section for fusion when colliding with bulk

fuel ions due to the shape of the fusion cross-section, shown in Fig. 6.5. These produce

so-called tertiary neutrons which can reach energies of up to 30 MeV, but kinematically

can also be a source of neutrons in both of the energy ranges feeding into the dsr. This

is in addition to their chance of knocking-on other fuel ions as they leave the dense fuel.

These knock-ons, and their effects on the dsr, are unimportant for low yields but could

become a useful diagnostic as yields increase beyond 1015 neutrons, especially as they

dominate spectra for energies > 16 MeV, and have consequences for measuring dsr. If

many knock-ons are produced, then this area has much overlap with §6.2.2 and §6.2.1, and

a fully consistent approach to understanding their propagation will be required. Recent

results from NIF [160] with an unexpectedly large low energy neutron tail may be an

indication that current models do not account for all of the athermal processes which

occur, but the difficulty of taking account of various experimental response functions

may also provide an explanation.

6.2.4 Summary

§6.2.2, §6.2.3, and §6.2.1 outline several reasons why large-angle collisions are of great

interest; the possibility of athermal fusion chains, the driving of non-Maxwellian distri-

butions, and diagnostically. Understanding exactly what conditions of temperature and

density could produce critical fusion (with large-angle collisions) is a particular goal, as

it could inform future fusion schemes. Less extreme distortions away from Maxwellian

distributions, which are not critical, will still have consequences for fusion reactivity,

down-scattered neutron ratios and equilibration time. Attempts to extend VFP models

into the moderately coupled regime have produced results which are slightly different

[48, 118] and it would be useful to determine which is more likely using a completely

different approach.

However, the models currently used to study large-angle collisions are rarely self-consistent.

They can be roughly grouped into two camps; flux models and VFP models. Flux mod-

els, such as in equation (6.15), model just the athermal part of the distribution function
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under the assumption that the feedback on the bulk is negligible, even when the chain

is critical. The introduction of an arbitrary cut-off in energy or scattering angle is also

necessary to avoid the small-angle divergence. The cut-off is not chosen based on physical

insight, but chosen based on computational limitations. Sivukhin’s argument that parti-

cle interaction times may not be arbitrarily long imply that this is not true, because, in

most cases, only partial scattering can occur between two particles before the scattering

between other nearby particles takes over. The interactions of many fluxes of particles in

these models are very difficult to solve, and the simplifications which yield results are not

realistic - for instance the assumption that a steady state (∂ni(E)/∂t=0) is established in

equation (6.15). Even in a simplified form, the equations only yield the ‘first-generation’

of athermal particles, but given that stopping power has a strong energy dependency the

results are not easily interpreted as a function of time.

VFP models inherently do not include Coulomb large-angle collisions. A cut-off in scat-

tering angle is again an issue, implicitly for Coulomb collisions because of the VFP model

or explicitly when including NES or integrating over cross-sections. The mixed model,

used by Ballabio et al. [119] and others, uses a Maxwellian averaged α particle production

spectrum and a numerically integrated source term for fast ions. This gives a good indi-

cation of the first-generation of fast ions given a θc, but the slowing of fast ions is handled

with the VFP equation without any large-angle collisions, so the athermal distribution is

likely to be incorrect, especially when considering time evolution. Experimental evidence

that the Ballabio model underestimates the athermal ion population is consistent with

this [152, 153].

The implication is that a more self-consistent model including large-angle collisions of

both types is required. The most desirous features are thermal background populations,

large-angle collisions applied to both slowing and creation of particles, no restriction on

the size of perturbations to bulk distributions, time evolution, and a physically motivated

approach to large-angle collisions.
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Figure 6.5: Deuterium Maxwellian distributions for three different temperatures alongside
the deuterium-tritium cross-section for fusion.
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Chapter 7

Discrete collisions with Monte Carlo

7.1 Motivation

The only Monte Carlo approach in Chapter 6 is that of Sherlock and Rose [154], which

did not include discrete or large-angle collisions, nor did it explicitly conserve momentum.

The Monte Carlo technique outlined in Chapter 3 has strengths relevant for large-angle

scattering problems; it includes thermal broadening because energy and momentum are

conserved, it allows self-consistent time evolution of distribution functions, and it is com-

putationally simple. There are some issues. One is that the accuracy of the distribution

functions scales as 1/
√
N , another is that the code is 0D. The former problem depends

upon using enough particles in simulations, while the latter is an acceptable compromise

given the technique allows the problems associated with other models to be sidestepped.

Useful comparisons highlighting the effects of discrete collisions can then be made against

other 0D theories; particularly those of temperature equilibration and yield, as these have

the greatest consequences for ICF. This Chapter presents an extension of Monte Carlo

codes to include discrete and large-angle collisions.

7.2 Operation

To introduce discrete collisions, two different methods to generate angles given a cut-off

in impact parameter of bc are required; one for multiple scattering, and one for discrete

scattering.

In multiple scattering, the Monte Carlo algorithm is much the same as described in

Chapter 3 except that the derivation of 〈Θ2〉 has an impact parameter which is limited

131
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Calculate PD

Is U < PD? Ncolls = bPDc

Is Ncolls = 0?
U <

PD − bPDc?

Increment
Ncolls by one

Carry out Ncolls discrete colli-
sions; recalculate PD after each

Update 〈Θ2〉, carry
out multiple scattering

Yes

Yes

No

Yes

No

No

Figure 7.1: The scattering algorithm for two particles with multiple and discrete scatter-
ing. U ∼ U(0, 1).
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to b ∈ (bc, λD). As noted in Chapter 3, 〈Θ2〉 = 2Pσ1 with 〈Θ2〉 the variance of the

distribution used to select the angles for small-angle scattering. So the variance modified

to only include multiple, small-angle scattering with a cut-off at bc is

〈Θ2〉 = nvij∆t8πb
2
⊥ ln ΛM = 2Pσ1,M

For discrete scattering, the differential cross-section is given by the Rutherford scattering

formula
dσ

dθ
=

dσ

dΩ
2π sin θ =

πb2
⊥

2

sin θ

sin4
(
θ
2

)
and the full cross-section is

σD =
πb2
⊥

2

∫ π

θc

sin θ

sin4
(
θ
2

)dθ = πb2
⊥

(
1

sin2( θc
2

)
− 1

)
= πb2

c

The species labels are implicit on θc, bc and b⊥. The probability of a discrete collision in

a timestep ∆t is PD = nvij∆tπb
2
c . The discrete scattering probability density function

given that a discrete collision occurs is defined as

PD(θ)dθ =
1

σD

dσ

dθ
dθ

CD(x) is the cumulative density function for discrete collisions;

CD(x) =

∫ x

θc

PD(θ)dθ = −b
2
⊥
b2
c

[
1

sin2
(
θ
2

)]x
θc

To find values of scattering angle, random numbers U ∼ U(0, 1) are generated and used

with the inverse cumulative distribution function;

θ = C−1
D (U) = 2 sin−1

[(
b2
⊥

b2
⊥ + b2

c(1− U)

)1/2
]

with the sign taken to be positive or negative with equal probability. Note that C−1
D (1) = π

and C−1
D (0) = θc.

A schematic of the operation of the full scattering algorithm for two particles is shown in

Fig. 7.1. If the probability of a discrete collision identically vanishes, i.e. PD ≡ 0, then the

algorithm automatically reverts to multiple scattering only. It is possible that PD > 1,

in which case bPDc collisions are carried out with an extra collision if U < PD − bPDc.
U is not being re-used as at least one collision is assured if PD > 1, and the random
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number comparison is only applied to the non-integer portion of PD in any situation.

These measures ensure that the number of discrete collisions is insensitive to ∆t, for ∆t

sufficiently small.

Further evidence of the independence of timestep can be seen in Figs. 7.2 and 7.4 which

show an isotropic beam of fusion created α particles slowing down in an equimolar

deuterium-tritium background for bc = b⊥ and bc = bφ respectively. The multiple scatter-

ing algorithm is turned off in these simulations, so any change is due to the large-angle

algorithm alone. The two values of timestep, ∆t, and ∆t/5, show little difference in

either the slowing of the beam or the distribution function of the background deuterium,

shown in Figs. 7.3 and 7.5. This scenario would show up any discrepancy due to ∆t.

The temperatures are the same for each species for different ∆t to better than 1%. The

distribution functions for deuterium are numerically slightly different. This is due to the

random nature of Monte Carlo, and is only noticeable in regions where the statistics are

poor. It causes the stratification effect particularly evident in Fig. 7.5 despite using a

total of 3 million simulation particles. The cumulative distribution functions are not no-

ticeably different as the tail contributes a relatively small amount of the total probability

density. Changing ∆t with both types of collision enabled, multiple and discrete, also

has no effect on the results obtained.

What constitutes ‘sufficiently small’ can be quite restrictive for discrete collisions, de-

pending on the value of bc. The discrete collision frequency between i and j is

νD
ij = min {ni, nj} vijπb2

c

where the species labels on bc are suppressed. This gives ∆t = 1/10νD as the computa-

tional timestep appropriate for discrete collisions. Its value relative to the timescales for

small-angle collisions depends upon the model used. The minimum timestep across all

relevant collision frequencies (from discrete or multiple scattering) is always used.

Using bc = b⊥, PD ∝ v−3
ij , and there is a possibility that PD � 1 even with a physically

sensible value of ∆t. For fixed bc, PD ∝ vij and PD � 1 may still happen. If, for any

bc, PD � 1 the discrete scattering is undertaken multiple times up to a maximum limit.

These situations are analogous to the multiple scattering case of generating |θ| > π, and,

to avoid unnecessary looping of the algorithm when PD � 1, the Takizuka and Abe

approach of using a θ ∼ U(0, π) is adopted.

For three particles combined in three pairs, 〈Θ2〉/2 is used for collisions instead of 〈Θ2〉
for multiple collisions (as in Chapter 3). For discrete collisions, the analogous probability

is PD so three particles combined in three pairs have a probability for a discrete collision

of PD/2 between the pairs.
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Figure 7.2: α slowing using bc = b⊥ with different timesteps.

Figure 7.3: Distribution function of deuterium with bc = b⊥ at 500 fs.
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Figure 7.4: α slowing using bc = bφ with different timesteps.

Figure 7.5: Distribution function of deuterium with bc = bφ at 6.65 ps.
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The original Monte Carlo scattering algorithm [50] has O (N) operations for N compu-

tational particles. This is based on the statistical argument briefly outlined in Chapter

3. That statistical argument is not true for discrete collisions using the Rutherford cross-

section. If all collisions, on any length scale, were dealt with as a pair particle interaction

(such as in pure molecular dynamics simulations), it would be necessary to carry out N2

collisions for N computational particles. This is not the case for the discrete algorithm,

because the number of distinct collisions of both types is (1 +PD)N for N computational

particles (with the extra factor relative to multiple scattering only due to the inclusion

of the discrete collisions). PD = nvij∆tπb
2
c does not depend on the number of com-

putational particles and so is not O(N), which means that the algorithm still requires

(1 + PD)N = O(N) operations rather than O(N2). The assumption that discrete colli-

sions may only happen with impact parameters of b ≤ bc severely restricts the number

of pairs of particles which can have discrete collisions, and it is this assumption which

restricts the order of PD.

7.3 Results

7.3.1 Comparing multiple and discrete scattering

Fig. 7.6 shows the effects of different values of bc for millions of samples (per individual

plot) of the same deuterium-tritium collision, with parameters in Table 7.1. A longer

than normal timestep is used to better show the features of the probability distribution

function. Each count is a scattering event, so even if no discrete collision occurs it

is counted as a θ = 0 scattering event, which is why there is an anomalous point at

θ = 0 for all plots. If successive discrete collisions occur, they are counted separately.

bc = 0 corresponds to the multiple scattering only case, and the distribution is a Gaussian

with an anomalous data point from all of the θ = 0 ‘large-angle’ collisions. With bc 6=
0, the discrete scattering begins to occur but, for bc < b⊥, only at θ > π/2 and in

rare events. Increasing bc increases the probability of a discrete collision, as expected,

but the probability density is added progressively toward the centre rather than at the

extreme wings of the distribution. This means that the change to the particle energies

and momenta will be less extreme. In the extreme bc = λD/10 case, the discrete and

multiple scattering distributions overlap.

That some values of scattering angle are not obtainable with some values of bc may

appear unphysical but both of the distributions are dependent on timestep. Longer

timesteps broaden the multiple scattering distribution, but in practice ∆t must be kept
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Figure 7.6: The probability distribution function of scattering angles from millions of
samples of the same deuterium-tritium collision with particle energies of 2 keV each and
plots in order of increasing bc. The exact parameters are shown in Table 7.1.

Quantity Value

nd, nt 2× 1030 m−3

Ed, Et 2 keV

λD 1.2× 10−10 m

b⊥ 2.8× 10−13 m

bφ 6.9× 10−13 m

∆t 1.4× 10−15 s

Table 7.1: Values of parameters from Fig. 7.6.
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small to keep simulations physical and this restricts the horizontal extent of the multiple

scattering portion of the distribution. So the apparent inability to reach some values in

angle is actually due to the timestep, and the cumulative effect of subsequent multiple

scattering will effectively broaden the distribution. Changing timestep has no effect on

the breadth of the distribution due to discrete collisions, as this is determined solely by

θc, but it does alter the height of the distribution - lowering it for shorter timesteps.

This example is for the same particles repeatedly collided; averaging over many particles

drawn from Maxwellian distributions will naturally smooth out the clean cut-off due to

different values of b⊥ for each collision.

Fig. 7.6 implies that discrete collisions will decrease timescales of exchange of energy and

momentum as bc increases, but also suggest that smaller (but non-zero) bc will force dis-

tributions further away from equilibrium. This is because small bc corresponds to a large

θc and also a relatively small chance of a discrete collision. So bulk distribution particles

may be up-scattered by a rare discrete collision with another, more energetic particle such

that the final energy is much greater than the average of the bulk distribution. It will

have a similarly small chance of a second discrete collision, so that it cannot easily return

to the bulk though it will eventually via multiple scattering. This means that there is

an optimal value of bc for producing non-Maxwellian distributions. In general, a small

(large) rate out of scattering out of the bulk means a small (large) rate of scattering back

to the bulk: the size of any distortion away from a Maxwellian is self-limiting.

The consequences for scattering of using the physically motivated bc = bφ model are

explored. Realistic values of bφ for a range of temperatures and densities are shown in

Fig. 6.2. Given that equilibration times and departure from Maxwellians are dependent

on θc(bφ), it is interesting to examine its values over a wide range of physical conditions,

as shown in Fig. 7.7 for an equimolar deuterium-tritium plasma. Also of interest is the

modification to the Coulomb logarithm. Using the general change in logarithm for a

cut-off of bc of

ln ΛM =
1

2
ln

(
b2
⊥ + λ2

D

b2
⊥ + b2

c

)
(7.1)

ln ΛD =
1

2
ln

(
b2
⊥ + b2

c

b2
⊥

)
(7.2)

values of ln ΛD/ (ln ΛD + ln ΛM) using bc = bφ are plotted in Fig. 7.8.

Fig. 7.7 and Fig. 7.8 have an interesting conclusion; that large-angle collisions, and the

relative importance of discrete collisions, occur in two opposite areas of temperature

space using the bc = bφ model. Large-angle collisions are relatively independent of den-

sity, with a slight preference for higher densities. This behaviour is because large-angle
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Figure 7.7: θc (bc = bφ) for an equimolar deuterium-tritium plasma.

Figure 7.8: Ratio of Coulomb logarithms using bc = bφ for an equimolar deuterium-tritium
plasma.
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collisions require bc ≈ b⊥ but the likelihood of discrete collisions relative to multiple col-

lisions requires bc � b⊥. Very few discrete collisions occur for higher temperatures and

low densities due to smaller values of bφ, and many more occur at high density and at

temperatures relevant to fusion though with smaller average θc. However, θc in Fig. 7.7

is the average over a Maxwellian so hides that some collisions, with sufficiently large b⊥,

will be large-angle.

The consequences of changing bc for temperature equilibration are shown in Fig. 7.9 for

deuterium and electrons. The Landau-Spitzer and bc = 0 rates are, as expected, very

similar to those shown in Fig. 3.9 of §3.3. Note that despite bφ(d, t) > b⊥(d, t) in Fig. 6.3,

in general b⊥(e, i) > bφ(e, i) with i an arbitrary ion. bφ has a very similar solution for all

possible pairs of species while b⊥ varies depending on temperature. If (Te/2Ti) /(me/mi+

1) < 1, which is true for ions and electrons in equilibrium, then b⊥(e, i) > b⊥(i, i) and

often b⊥(e, i) > bφ(e, i) even though bφ(i, i) > b⊥(i, i). The faster equilibration times in

Fig. 7.9 are correlated with larger values of bc. The excess kurtosis (not shown) has no

consistent positive or negative trend, and it appears that the distribution functions of

both species remain Maxwellian. Table 7.2 lists the parameters used, and Figs. 7.7 and

7.8 imply that this is a regime in which there is a good chance of discrete collisions but

where the collisions are themselves not very large in angle, which is consistent with no

excess kurtosis but faster equilibration times. Seen as though Td,0 > Te,0 and electrons

have a short self-equilibration time, it is not a situation in which it is likely for non-

Maxwellians to develop. This leads to an important and interesting result; the large

decrease in equilibration time with increasing bc cannot be attributed to distortions of

the distribution functions and must be solely due to the increased rates of energy transfer

from discrete collisions.

The equilibration time relative to bc = 0 is shorter by roughly a third for bc = b⊥, and

half for bc = bφ. That such large differences in equilibration time are found is surprising,

especially as they exist even with the conservative (relative to other authors - see §6.1)

value of bc = bφ. It should be re-iterated that ln Λ becomes ln ΛM (see equation (7.1))

for the bc 6= 0 cases, so the multiple scattering contribution to equilibration is reduced.

Quantity Value

nd, ne 2× 1030 m−3

Td 1 keV

Te 0.5 keV

Table 7.2: Values of parameters used in Fig. 7.9.
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Figure 7.9: Temperature equilibration between electrons and deuterium with different
values of bc.
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Given this, that overall equilibration times should be reduced is not immediately obvious

or predictable. This temperature equilibration simulation lends support to other work

[48] that energy losses are faster in moderately coupled plasmas than small-angle collisions

alone would allow.

7.3.2 Driving non-Maxwellian distributions in ICF

Sherlock and Rose looked for non-Maxwellian distributions being driven by fusion created

α particles using a small-angle Monte Carlo approach with a background electron fluid

[154]. The parameters are shown in Table 7.3, and are those specified for the hotspot in

a perfect deuterium-tritium implosion [23] (see Appendix D for a Table of ICF implosion

parameters). The temperature used by Sherlock and Rose is relatively cold; it is expected

that the hotspot will reach T ∼ 4 − 5 keV for self-sustaining burn. The conditions are

reproduced in simulations using the code described in §7.2 with the exception that there is

creation of α particles and the electrons are fully kinetic. The yield is shown in Fig. 7.10,

and there is little difference between different values of bc. There is not enough energy

from fusion to create a burn wave, so the number of fusion reactions increases only linearly

with time.

A similar simulation, with a higher starting temperature of Td = Tt = Te = 5 keV,

is shown in Figs. 7.11, 7.12, and 7.18, which are the temperature, yield, and excess

kurtosis respectively over time of the three values of bc. The expected ‘burn’ time for

an ICF capsule filled with deuterium and tritium is ∼18 ps (see Appendix D), but the

macroscopic parameters of a fully burning plasma may change over this timescale, and

so the simulation is only run for ∼10 ps. Loss mechanisms, such as bremsstrahlung

emission, and α particle escape, are ignored. Also omitted are the less likely fusion

reactions involving d+ d and t+ t.

The temperature, here taken to be 2〈E〉/3, shows great variation over the three models

and is shown in Fig. 7.11. There is no loss mechanism included, so the increased yield of

Quantity Value

ρd = mdnd 0.5× 300 g cm−3

nd, nt, ndt/2 4.52× 1031 m−3

Td, Tt 2 keV

nα ndt/103, or ndt/10

Table 7.3: Values of parameters used by Sherlock and Rose [154].
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the bc = b⊥ model feeds straight back onto the temperature of the electrons, deuterium,

and tritium. Fig. 7.12 shows the yield, which is very similar at early times, when all

species except the αs are in equilibrium. As α particles are created, energy is transferred

firstly to electrons, which can be seen in Fig. 7.11 for bc = 0 and bc = bφ. In the b⊥

simulation, the ions are heated at a very similar rate to the electrons up until t = 6 ps,

and an increased yield relative to bc = bφ and bc = 0 becomes apparent as early as t = 1.5

ps.

Given Fig. 6.3, which shows that bφ/b⊥ > 1 for deuterium and tritium for a wide range of

temperatures and densities, it is surprising that the largest difference relative to bc = 0 is

for bc = b⊥ and not for bc = bφ. The reason is that b⊥(e, α) > bφ(e, α), and the electrons

are heated first. The electrons have a short self-equilibration time and show no deviation

from a Maxwellian for any bc. Energy transferred to the electrons then heats up the ions,

with a rate that is again faster for bc = b⊥. This pathway heats the bulk of the ions, and

so is responsible for the increase in yield (rather than an athermal tail).

Evidence for this comes from the low excess kurtosis for b⊥ at early times which is shown

in Fig. 7.18, and that the α particles with Eα > 3.54 MeV only ever make up a very

small part of the α particle population. This can be seen in the distribution functions in

Figs. 7.14, 7.15, and 7.16 which are taken at t = 6 ps. Figs. 7.19, 7.20, and 7.21 show

the distributions for all three values of bc of deuterium and α particles at the respective

maximum excess kurtosis for deuterium. They corroborate that most of the α particles

are created by bulk deuterium and tritium; the biggest α population above Eα = 3.54

MeV (marked on the figures) is for bc = bφ and is around 2% of the total α population.

Figure 7.10: The yield using different values of bc with parameters from Table 7.3 except
that nα is determined by fusion reactions.
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Figure 7.11: Temperature over time using different values of bc, α particles not shown.
T = 2〈E〉/3. Note that the runaway temperatures are because of the feedback between
higher fusion rates at higher temperatures, and the release of energy which fusion reac-
tions cause. The high temperatures are not a direct result of the discrete collisions, but
do cause the runaway to happen more quickly relative to bc = 0.
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Figure 7.12: The yield over time using different values of bc compared against the theo-
retical yield of an implosion with the bc = 0 temperature-density history.

Figure 7.13: Ratio of simulation yield to prediction by theory of yield from a Maxwellian
with the same average energy.
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Figure 7.14: The deuterium distribution with bc = 0 at t = 6 ps.

Figure 7.15: The deuterium distribution with bc = bφ at t = 6 ps.
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Figure 7.16: The deuterium distribution with bc = b⊥ at t = 6 ps.
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Figure 7.17: The deviation from a Maxwellian with the same average energy for bc = bφ
at two different times during an ICF implosion.
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Figure 7.18: The excess kurtosis over time for the three different models.

Figure 7.19: The maximum excess kurtosis distribution for deuterium using bc = 0.
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Figure 7.20: The maximum excess kurtosis distribution for deuterium using bc = bφ.

Figure 7.21: The maximum excess kurtosis distribution for deuterium using bc = b⊥.



7.3 Results 151

Of course, there is some lag between maximum excess kurtosis and maximum athermal

α production: a time-integrated neutron spectrum would be needed to provide stronger

evidence. Tritium distributions show similar behaviour to the deuterium distributions,

but are generally closer to equilibrium. The distributions show qualitative similarities

with Ballabio et al.’s [119] simulations, particularly in the thermal broadening of the α

particles, but their model is quite different. It is briefly described in §6.2.2.

The average effect of increasing bc (equivalent to increasing the probability of discrete

collisions) is to decrease the equilibration time between all species, as is shown by the

correlation between increasing bc and decreasing Te − Ti in Fig. 7.11. This is consistent

with the temperature equilibration simulation in §7.3.1.

By t = 4 ps, the bφ distribution is showing an increase in yield relative to the theory and

to the bc = 0 simulation too. By t = 6 ps, the increases in yield are 20% and 69% for

bφ and b⊥ respectively, and are growing over time. At the end of the simulations, the

bc = b⊥ model has a yield which is approximately three times higher than the bc = 0

simulation, while the bc = bφ model produces a yield which is ∼46% higher. It seems

that any increase in the number of discrete collisions will produce an increase in yield

relative to considering only small-angle collisions.

The reason that bφ produces a larger deviation from a Maxwellian consistently is that, for

the transfer of an amount of energy which would drive a particle out of the bulk, b⊥ > bφ.

This means that discrete collisions are less likely with bφ, but that when they do occur,

they produce larger angles. As up-scattering and down-scattering rates are approximately

the same, any particles taken out of the bulk distribution by a discrete collision then have

a small probability for losing their energy and returning to it in another discrete collision.

Gradual energy loss by multiple scattering is also happening, but takes longer to return

particles to the bulk. Contrast this with bc = b⊥ where the probability of a discrete

collision is much bigger, but in both ‘directions’, so that particles can return to the bulk

more easily. Also, the minimum angle (θc = π/2) in a discrete collision is smaller for b⊥

than it is for bφ. For b⊥, the distortions are smaller, and less durable, but higher average

bulk energies earlier in time mean that it produces a higher yield.

An interesting feature is the increase in excess kurtosis with time of the bc = bφ deuterium

and tritium distributions, as shown in Fig. 7.18 for deuterium. The trend appears to be

for the distribution to depart further and further from equilibrium, with more of the

population in the athermal tail. However, the relative numbers are still small. By the

end of the simulation, at t ≈ 10 ps, the population in the tail (defined relative to a

Maxwellian fitted with T = 2〈E〉/3) is still less than 0.5% implying that the athermal

contribution to yield is not significant. Eventually, depletion will naturally limit the

excess kurtosis.
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A more complete picture of the effect of small changes in the distribution functions can

be found from the ratio of yield from the simulation relative to a Maxwellian with the

same average energy as that simulation for each of the values of bc. This is shown in

Fig. 7.13. The comparison is made to the Bosch-Hale expression for fusion reactivity, as

described in Chapter 3 and Appendix C. Fig. 7.13 displays some interesting behaviour;

there appears to be some systemic error in the early time yield showing a ratio greater

than one. This is before a non-Maxwellian can have been established. In addition to

the systematic error, small initial increases relative to a Maxwellian are apparent, as the

particles which are most likely to fuse do so at the start of the simulation. After this

initial high point, all of the rates reduce relative to the theory.

The bc = bφ distribution function, taken at two different times and shown in Fig. 7.17,

provides some explanation of this. (fMC − fMB) dE is plotted against E and, towards the

end of the simulation, it is evident that the bulk of the distribution function is depleted

relative to a Maxwellian for E∼50− 150 keV. This approximately coincides with where

the largest contribution to fusion reactions would be coming from for a Maxwellian, thus

explaining the drop in yield relative to theory. The low energy end of the distribution

is enhanced, as is the tail. These are explained by particles low in energy being unlikely

to fuse (despite existing in greater numbers) and the tail being enhanced by the slowing

of fusion products as seen on the log-log figures. This is true for all three simulations,

but bc = bφ is chosen as the relationship is particularly clear. The bc = b⊥ simulation

shows depletion and enhancement too, but is less easy to interpret due to noise. For all

simulations, a comparison against a Maxwellian with the same average energy does not

accurately predict the yield in Fig. 7.13. The difference grows faster for the two bc 6= 0

cases but is also apparent for bc = 0, implying that none of the distributions remain

Maxwellian. This is particularly interesting in the bc = 0 case, which might be expected

to agree with a perfect Maxwellian.

An alternative explanation is that the disparity in average energy between deuterium

and tritium might be causing the difference in yield relative to two Maxwellians with the

same temperature. Throughout the simulations, the difference in average energy between

deuterium and tritium attains a maximum of less than 3% for all models over all time,

and is generally much less. This small difference in temperature seems unlikely to be the

cause of the difference in yield seen in Fig. 7.13.

Michta et al. [155] also see deviations from equilibrium distributions of deuterium and

tritium in small-angle only simulations using a VFP code. There are significant differ-

ences with the simulations presented, including a higher density of ρ = 1000 g cm−3 (the

cold fuel shell density), and the inclusion of more fusion reactions and radiation. Another
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important difference is the lack of reaction-in-flight ions in their simulations. Their defi-

nition of equilibrium is based on two points on the distribution function, E1, f(E1) and

E2, f(E2) with energies of keV or less and a bulk temperature defined as

Tbulk = (E2 − E1) ln

(
f(E1)

√
E2

f(E2)
√
E1

)
The percentage of particles not in equilibrium is given by

1− feq = 1−
√
πT

3/2
bulk

2
√
E1

f(E1) exp (E1/Tbulk)

for each species. A possible future direction is to introduce these definitions as diagnos-

tics and compare them for different values of bc, allowing a clearer distinction between

distributions which have the same average energies but quite different fusion reactivity.

This would allow a more in-depth discussion of the effects observed in Fig. 7.13, and

comparison with Michta et al.’s results. It seems reasonable that the discrete simulations

will give a higher proportion of non-equilibrium particles than Michta et al. found for

small-angle collisions only, according to the above definition.

A consequence of this work which might soon be apparent on NIF is that any inference

about average energy made from the number of neutrons produced assuming Maxwellian

distributions only will be incorrect when the yield curves separate in Fig. 7.12. This cor-

responds to fractional burn-ups greater than ∼0.2% for discrete collisions (both models)

and ∼1% for small-angle collisions only. The average energy inferred from the yield based

on a Maxwellian will be lower than the average energy in reality, because the yield for

the same average energy is always reduced relative to a Maxwellian as shown in Fig. 7.13.

This is for the particular parameters used, but the results of §7.3.3 indicate that the

behaviour is general.

If any extra yield is only from the bulk of the distributions in the discrete simulations,

then the down-scattered neutron ratio (dsr) may not be adversely affected. However,

more work is needed in this area to determine just how much of a change to the dsr the

small changes relative to a Maxwellian make; the distribution functions provide only a

snapshot and a time-integrated neutron spectrum would be a better diagnostic.

It is worth speculating about what change to dsr is affected by the departures away from

perfect Maxwellian ion distribution functions. A value of dsr based on a Maxwellian

might expect fewer high energy neutrons than would be produced by the distributions

found in the simulations, which have depleted bulks and enhanced tails. Any excess

of neutrons with energies above 14 MeV could slow down slightly and be brought into
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the 13 − 15 MeV range, thus increasing the value of the denominator in the dsr despite

the neutrons having actually been down-scattered due to a large ρR. The relationship

between fuel ρR and dsr taking into account the implosion geometry on NIF, but not the

discussed effect, is [157, 158]

ρRfuel

(
g cm−2

)
= (18.5± 0.5)× dsr

So the dsr would need to be more than 2.5% different to be noticeable in implosions on

NIF.

Some consideration should be given to the effect of discrete collisions on the ρR require-

ment for α particle stopping on NIF. This is generally taken to be ρR ∼ 0.2− 0.5 g/cm2

in order to completely stop α particles in the hotspot. The discrete collisions have two

relevant effects; the first is to very slightly broaden the distribution of αs such that

more escape, but this is a weak effect given the extent of thermal broadening seen in

the simulations. The second effect is that the rates of energy loss, to ions and electrons,

are increased relative to what might be expected from Landau-Spitzer theory using the

Coulomb logarithm in §2.3. The overall consequence is that lower ρR values may be

sufficient in order to stop most α particles in the hotspot.

7.3.3 Athermal chain-reaction fusion

The work described in §6.2.1 implies that the high energy products of fusion could cause

a cascade of recoil particles which are more likely to fuse, starting a runaway chain. This

is in contrast to thermonuclear fusion, where high bulk temperatures produce fusion re-

actions. The conditions recommended in the literature for athermal fusion, n∼1033 m−3

and T∼30 keV, are extreme, and constitute a burning plasma in themselves - the tem-

perature and density are far higher than is expected on NIF. With a large amount of

bulk fusion occurring, the most interesting effect of athermal fusion would be a yield

which is substantially higher than might otherwise be expected from thermal models. If

so, achieving those extreme conditions would be particularly desirable for future fusion

schemes.

The Monte Carlo code with discrete collisions and variable bc is used on a simulation

with the initial conditions as specified in Table 7.4. The work cited in §6.2.1 found that

NES (including between neutrons and ions) is important or essential for these chains

to proceed. The code does not currently implement NES, so only large-angle Coulomb

collisions are present. The hallmarks of athermal chains will be a large tail on the

deuterium and tritium distribution functions, and an ever broadening high energy (above
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∼4 MeV) population of α particles which can only have been created from the fusion

of recoils. Successively higher generations of recoils fusing will create successively higher

energy α particles, and the high energy tail of the αs will be broadened.

The yield is shown in Fig. 7.22, and all three models show very quick fuel burn, reaching

over 2% burn-up before 10 fs. The bc = b⊥ model clearly outperforms the others in terms

of yield in the middle of the simulation. This again seems to be due to equilibration

rather than an athermal population as there is only a small tail. A quicker equilibration

time allows the part of the distribution most likely to fuse be replenished more easily, and

the bulk temperature to increase more rapidly. This is why the difference relative to the

Maxwellian theoretical values, shown in Fig. 7.23, are smaller for bc = b⊥ than for bc = bφ

even though b⊥ > bφ for the important burn wave energy exchanges. There may still exist

a fleeting athermal tail and athermal α population. A fleeting non-runaway athermal

population is much less interesting than a chain, and would only have consequences for

the neutron spectrum. This is because neutron spectra are partially ‘frozen’ in time due

to their small cross-section for interaction when leaving the fuel, at least for the purposes

of diagnostics.

A difference in expected yield (relative to the equivalent Maxwellian) is also perceptible in

the bc = 0 case, implying again that the distribution functions of deuterium and tritium

are being distorted by depletion even with small-angle scattering only. A linear plot of

that distortion at t = 44 fs is shown in Fig. 7.25. This is not surprising in a burning

plasma. The differences between the models initially grow over time, but are eventually

limited by depletion, and the yield of all models shows signs of convergence of yield by

t = 44 fs.

Surprisingly, the bc = 0 simulation is the furthest behind in yield relative to the others.

The combination of distortions produced in the bc 6= 0 simulations give a yield which is

quite similar to assuming a Maxwellian distribution throughout by t = 44 fs, especially for

bc = bφ which is overtaken in yield by the Maxwellian equivalent of the bc = 0 simulation.

The effect of large-angle collisions on yield attains a maximum value for bc = b⊥ of

more than 30% (relative to the bc = 0 simulation) in the middle of the simulation before

Quantity Value

nd, nt 5× 1033 m−3

Td, Tt 20 keV

nα 6× 1027 m−3

Table 7.4: Athermal fusion parameters.
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reducing again at later times.

The smaller increases in yield seen in these simulations relative to the more NIF-like

simulation in §7.3.2 are most likely due to the hotter burning temperature. A hotter

burning temperature brings the upper end of the bulk of the ion distribution functions

into contact with the peak of the fusion cross-section (see Fig. 6.5). So the largest yield

will be associated with the largest probability density in that region. As bc = b⊥ has the

shortest equilibration time, it is hotter sooner than the theoretical Maxwellian equivalent

of the bc = 0 simulation, and so the probability density around the peak of the fusion

cross-section is larger earlier on - explaining why it does better than the other models.

However, for bc = bφ, the depletion around the peak of the cross-section is noticeable in

both Figs. 7.28 and 7.29, as is the enhancement of the tail. But the severe effects on

the yield of the bulk depletion are not countered by the appearance of a tail, because

the energies are too high to substantially increase the rate of fusion reactions. Hence

the overall yield being overtaken by the theoretical Maxwellian equivalent of the bc = 0

simulation, despite bc = bφ having a faster equilibration time. It is not clear whether

including loss mechanisms would decrease the energy of the tail for bc = bφ enough to

increase the yield, but it is possible.

The hallmarks of athermal chain reactions are not strong as the populations of α particles

above 4 MeV are actually fairly consistent at a few percent for all three models (at

the same time). The broadening of the α distribution is similar for each model, with

bc = bφ having only a very marginally broader distribution of αs despite having a striking

athermal deuterium tail as shown in Fig. 7.28 and Fig. 7.29. Smaller, noisier depletions

of the distribution can be observed for bc = 0 and bc = b⊥, corresponding to the smaller

differences relative to the theoretical value in Fig. 7.23. The tail in the bc = bφ simulation

does appear to be transient from the excess kurtosis in Fig. 7.30, which is not surprising

as so much of the fuel is burnt towards t = 44 fs that the pressure away from equilibrium

grows far less strong. Overall, the evidence for athermal chains is poor and the increases in

yield due to discrete collisions appear due to the bulk, rather than the tail, are dependent

on the model, and are also dependent on the time the fuel is assembled. Most surprisingly,

the yields of all models are less than predicted by Maxwellian distributions with the same

average energy and density history by between 10% and 15% due to depletions in the

distribution function.
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Figure 7.22: Yield over time using different values of bc compared against the theoretical
yield of an implosion with the bc = 0 temperature-density history.

Figure 7.23: Ratio of simulation yield to prediction by theory of yield from a Maxwellian
with the same average energy.
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Figure 7.24: The distribution for deuterium using bc = 0 at t = 44 fs.
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Figure 7.25: (fMC − fMB) dE for bc = 0 at t = 44 fs.
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Figure 7.26: The distribution for deuterium using bc = b⊥ at t = 44 fs.
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Figure 7.27: (fMC − fMB) dE for bc = b⊥ at t = 44 fs.
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Figure 7.28: The distribution for deuterium using bc = bφ at t = 44 fs.
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Figure 7.29: (fMC − fMB) dE for bc = bφ at t = 44 fs.
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Figure 7.30: The excess kurtosis for deuterium for all three models.
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Chapter 8

Conclusion

8.1 Summary of results

In Chapter 1, the motivation for this thesis is set out: to understand processes driving

non-Maxwellian distributions in high energy density physics, with particular reference

to ongoing efforts to produce fusion power. Much of the discussion is on the moder-

ately to strongly coupled regime, with ln Λ ≤ 5, as distributions are slower to relax to

equilibrium, collisions become important, and even the equilibrium distribution can be

non-Maxwellian.

The basic computational tool used is Monte Carlo, with various modifications developed

specifically for studying particular phenomena. The extensions of Monte Carlo methods

to include fusion in Chapter 3, to degenerate plasmas in Chapter 4, for ion-ion inverse

bremsstrahlung absorption of laser radiation in Chapter 5, and for large-angle collisions

in Chapter 7, are hopefully a new and helpful resource in themselves.

Beyond the development of tools which other researchers may find of use, several inter-

esting physical results have been obtained.

In Chapter 4, an algorithm is developed which successfully produces known results for the

equilibration and resistivity of Fermi degenerate plasmas. It is found that conventional

degenerate temperature equilibration does not give the correct evolution of temperature

for ions or electrons in conditions relevant to the heating of the cold fuel shell by fusion

produced α particles in ICF. This result is true even though the electrons are only tran-

siently degenerate. After 40 fs, deuterium and electrons are found to be 33% and 21%

hotter respectively than standard equilibration models predict, with an absolute differ-

ence of roughly 0.3 keV in the electron temperature long after the degeneracy parameter

is below η = −5. Much of the material in Chapter 4 has been published [63].

163
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The phenomenon described as ion-ion inverse bremsstrahlung (IIIB) absorption is studied

in Chapter 5. Previous work is extended with a brief discussion of physical scenarios

conducive to IIIB in §5.3, and, in §5.4, a simple expression for the rate of heating for

dE0/dt = 0 is found by adapting previous results. A method for finding the optimum laser

pulse for heating by IIIB is described in §5.5, and conditions on driving non-Maxwellian

distributions in ion species by IIIB are presented and confirmed by simulation. The

distributions found are the ion-ion equivalent of Langdon distributions. For the first time,

simulations of IIIB with a mixture of several ion species are presented. In favourable

conditions, it is demonstrated that a mixture of light and high Z ions combined with

the optimum pulse for heating could produce light ion temperatures above 10 keV on

timescales of femtoseconds with lasers of I > 1022 W cm−2.

A review of the theory and research undertaken on discrete and large-angle collisions

is presented in Chapter 6. For the first time, the effects and possible applications of

discrete collisions are drawn together as a single reference resource in §6.2. For Coulomb

collisions, definitions of small-angle, multiple scattering and discrete, possibly large-angle,

scattering are developed based on the impact parameter of the two scattering particles.

An entirely new theory of how to calculate the cut-off in impact parameter, bc, between

multiple and discrete scattering based on the potential between a single charged particle

and all other plasma particles is described in §6.1. The cut-off based on the theory is

bc = bφ and, as bφ < b⊥ for most interactions, it is a conservative value of the cut-off

compared with the values of bc ≥ b⊥ typically used in other work. Also included is an

overview of other effects which are important in the context of large-angle scattering in

plasmas, some of which may become increasingly relevant in burning plasmas.

Chapter 7 uses the results and discussion of Chapter 6 in computational simulations. A

Monte Carlo code capable of undertaking both discrete and multiple scattering is devel-

oped in §7.2. The differences between multiple and discrete collisions are explored in §7.3,

and it is found that distortions to distribution functions due to a higher probability of

discrete collision are self-limiting, so that there must exist an intermediate value of cut-

off in impact parameter for which the largest and most persistent distortions away from

Maxwellian distributions exist. Using the potential-based model developed in Chapter

6, it is found that discrete collisions are more likely in dense, cold conditions while the

chance of those discrete collisions being large-angle is greater for high temperatures and

only increases slightly with increasing density, and then only at the highest physically

achievable densities. Given the reduction in the multiple scattering ln Λ when splitting

collisions into multiple and discrete contributions, it is not intuitive that the transfer of

energy between two distributions should be increased by the inclusion of discrete colli-

sions. However, for both discrete collision models tested, the temperature equilibration
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time is decreased by a factor of either 2 or 3 relative to small-angle collisions only. This

effect genuinely seems to be the result of energy being exchanged more quickly rather than

due to distortions to distribution functions. Previous work also suggests this reduction

in moderately coupled plasmas [48] but without consensus as to the exact relationship,

and this is the first time the effect has been shown with a model not based on the VFP

equation.

Two ICF-like scenarios are simulated in §7.3. The results found for the NIF-like sim-

ulation in §7.3.2 with small-angle collisions only are in agreement with Michta et al.’s

[155] work showing that non-Maxwellian distributions may be temporarily driven with

small-angle collisions only. This is in contrast to similar work by Sherlock and Rose [154]

though that is performed at a lower temperature.

A much greater difference relative to Maxwellian distributions is seen in simulations

which include discrete collisions. These simulations show athermal tails developing on

both deuterium and tritium distributions. The size of the tail is dependent on the model

used, but both large-angle models seem to predict little direct effect of the athermal

tail on the yield as the population of athermal αs produced is similar to the small-angle

only case. The small population of athermally produced α particles suggests that there

are few consequences of athermal tails for the down-scattered neutron ratio, but better

diagnostics are needed to confirm this.

Interestingly, the overall yield is increased (relative to small-angle collisions only) with

discrete collisions, and it is determined that faster equilibration times due to discrete

collisions are the cause. This is corroborated by the temperature evolution of the NIF-

like discrete collision simulations; the ions get hotter, faster - much hotter for the bc = b⊥

simulation. Increases in the absolute yield (relative to small-angle only simulations) of

20% and 69% are seen by t = 6 ps for the two discrete models using bc = bφ and bc = b⊥

respectively. This difference grows over time, and the bc = b⊥ simulation reaches three

times the yield of the small-angle only simulation after t = 10 ps, at a fractional burn-up

of 9.6%, while the bc = bφ ends with a 46% higher yield at a fractional burn-up of 4.7%.

The quantitative value of yield at late times could change if loss mechanisms were taken

into account, but a higher yield relative to small-angle collisions only is still likely.

As the fractional burn-up is increased, it is reasonable to expect the yields of all models

to converge, but non-igniting ICF experiments have a very small fractional burn-up and

even igniting spheres are unlikely to surpass 30%. For the NIF-like conditions simulated

in §7.3.2, the size of the difference in yield between simulations becomes apparent at a

fractional burn-up of ∼0.08%, and current ICF experiments are producing a fractional

burn-up of less than 0.01%. As the experimental neutron yield increases on NIF, these

effects could become apparent.
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A simulation of the conditions suggested for athermal chain-reaction fusion are examined

in §7.3.3, though they are at a much higher temperature and density than is envisaged

on NIF. These simulations exhibit many of the same qualities as the NIF-like simulation

in §7.3.2 but the increased yield for the two discrete simulations, relative to the small-

angle only simulation, still appears to be due to faster equilibration and not an athermal

chain of fusion reactions. That the α particle population above ∼4 MeV is again not

enhanced for the simulations with discrete collisions implies that this is the case. At the

high temperature considered (Ti,0 = 20 keV), the tail of the distribution is well above the

cross-section for deuterium-tritium fusion, which further suggests that the chain effect is

not occurring, and cannot occur. Much of the literature describes the inclusion of nuclear

elastic scattering (NES) as key to athermal chain-reaction fusion, and the omission of this

class of scattering processes means that athermal chains cannot be completely ruled out.

In §7.3 it is found that, despite increases in absolute yield, all simulations display a

reduction in yield relative to what would be expected for a Maxwellian with the same

average energy. It is hypothesised that this is due to a depletion in the regions of the

distribution function which contribute most strongly to the reactivity, and there is some

evidence to support this. The kinetic models predict as much as 10%, and at least 3%,

less yield than for a Maxwellian with the same average energy in NIF-like conditions,

with the biggest differences for the largest cut-off in impact parameter. The difference

increases to over 10% for the more extreme conditions simulated in §7.3.3. This has two

very significant consequences.

Firstly, experimentally determined values of total yield cannot always be used to infer

the average energy of the distribution function, or to determine a temperature for a

Maxwellian distribution. The average energy deduced in such a manner will be lower

than in reality, because the yield for the same average energy is always reduced relative

to what would be expected for a Maxwellian. Secondly, the depletion and enhancement of

the distribution function relative to a Maxwellian could cause an artificial increase in the

denominator of the down-scattered neutron ratio (dsr), and mean that the value of ρR is

underestimated. This effect becomes apparent at fractional burn-ups greater than ∼0.2%

for discrete collisions and ∼1% for small-angle collisions only in NIF-like conditions of a

hotspot temperature of T = 5 keV.

8.2 Future research

The work undertaken for this thesis has highlighted a number of interesting avenues to

explore in future research.
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Collisional simulations of ion-ion inverse bremsstrahlung in complex geometries are de-

sirable as they would allow the likelihood of the effect being observable in experiments

on high power laser facilities to be determined. PIC codes are an ideal way to do this,

as they also include the important space-charge effects which limit the duration of the

interaction of the electromagnetic field of the laser with the ions. The effects of a spatial

profile of the laser, impossible to include in 0D Monte Carlo, are also easily determined in

non-0D PIC codes. Another feature important for future research is the inclusion of the

ionisation of the high Z ion, as the heating scales as Z2 and the heating rate determines

the temporal pulse shape for optimal heating. One further case where ion-ion inverse

bremsstrahlung could occur is with a black-body radiation field, though this is signifi-

cantly more complicated than with inverse bremsstrahlung absorption of laser radiation.

One aspect not explored in this work is whether ion-ion bremsstrahlung emission could

occur, how large an effect it could be, and in what conditions. For example, high Z im-

purities from the ablator mixing into an ICF hotspot could cause ion-ion bremsstrahlung

emission with deuterium and tritium. This effect will be far smaller than electron-ion

bremsstrahlung, but could be of interest, and would certainly be tractable for two ion

species i and j in the mi/mj −→ 0 limit.

There is great scope for further research on discrete collisions. That the equilibration

time is reduced by their inclusion even without significant distortions to distribution

functions implies that they could have effects on other properties of plasmas. It is clear

that stopping powers are affected for high energies from the simulations in §7.3.2. It

is reasonable to expect a change to transverse diffusion with discrete, and particularly

large-angle, collisions. Given that electrons were found to play an important role in the

transfer of energy, the consequences of large-angle collisions on electron conduction might

also be studied.

Developing an analytical framework which could properly account for the effects of large-

angle collisions is desirable; though the methods outlined in this work can be used to

study their effects, the computation required relative to evaluation of the Landau-Spitzer

formulae in Appendix B make it prohibitive for many applications. Simple formulae that,

for example, approximated the decrease in equilibration time with large-angle collisions

(taking bc as a parameter) would be of much more use to the wider plasma physics

community. Additionally, simple analytical models of the modifications to processes due

to the development of athermal tails on distributions, or more general enhancement and

depletion relative to a Maxwellian distribution, would be useful.

In terms of the fundamental theory of discrete collisions, some of the assumptions which

are used in the derivation of bφ as the cut-off in impact parameter could be relaxed in
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order to create a stronger argument for the value of bc. This is important, as the effect

of discrete collisions is sensitive to bc and there is no consensus on what an appropriate

value is.

Various processes not examined could also drive non-Maxwellian distributions in ICF, and

though these are generally secondary effects relative to the processes already included,

they may have a discernible effect on the evolution of distribution functions, particularly

in simulations of ICF. Specifically, the deuterium-deuterium fusion reaction produces

tritium at Et = 1 MeV, and would be likely to occur in the tail of deuterium in the ICF-

like simulations considered in §7.3. Previous work [155] shows that an athermal tritium

tail occurs due to this reaction. There are other light-ion fusion reactions which could be

included.

A key process not included is nuclear elastic scattering (NES). This could significantly

change the evolution of distribution functions, particularly in the high energy parts and

in burning plasmas. As is explained in §6.2.1, NES must be included as a discrete energy

loss mechanism and the methods developed for discrete Coulomb collisions could be used

for NES in a future code. NES, especially between neutrons and ions, is considered to

be the key to athermal chains of fusion reactions, as reviewed in §6.2. There are other

processes involving neutrons, such as break-up reactions, and the inelastic scattering

processes, that would also be desirable but would have a smaller effect on the evolution

of distribution functions due to their smaller cross-sections. Some consideration should

be given to the other high energy scattering phenomena such as spin, indistinguishability,

and finite-size particles.

Further work on athermal fusion which included the effects of degeneracy, large-angle

Coulomb collisions and NES would give a very strong indication as to whether the chains

of fusion reactions could ever produce runaway reactions. Another possibility to explore

is whether the inclusion of energy loss mechanisms could actually make the chain stronger

by limiting the energies in the tail of the ion distribution functions (whilst maintaining

their probability density).

The computational diagnosis of the simulations presented is a focus for future research,

particularly the equivalent bulk temperature and percentage of particles not in equilib-

rium (in the context of non-Maxwellian distributions). From Figs. 7.13 and 7.23 it is

clear that even small deviations from a Maxwellian produce significant changes to fusion

reactivity. A robust metric is needed, and would allow for better comparisons with other

work.

A highly desirable diagnostic capability is that of a time-integrated neutron spectrum.

This would shed further light on any athermal fusion reactions taking place in the tails of
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distribution functions as (without NES) neutrons are ‘frozen in’ after they are produced.

Thermal broadening of the neutron energy spectrum above 15 MeV would be an indication

that tail reactions are happening, even in the simulations where ions are only transiently

in the athermal tail (such as bc = b⊥). A combination of neutron spectra and NES would

allow any microphysics effects of large-angle collisions on the important down-scattered

neutron ratio (dsr) to be determined. Given that this is a measurable parameter of huge

importance to the NIF campaign for ignition (dsr being directly proportional to ρR to

first order), a change in dsr due to any distortion away from a Maxwellian would be

significant.

The results presented are mostly concerned with nuclear fusion using deuterium and

tritium through the central ignition scheme being pursued at NIF. However, there are

many other prospective fusion schemes which could also be influenced by large-angle

collisions. There is already some work on large-angle collisions in MCF, and modelling

the experimentally observed data, with the inclusion of NES, is one attractive future

option. It would also be of interest to consider the effect of discrete and large-angle

collisions on fusion schemes which have yet to be explored with a full scale experimental

facility, including magnetised liner inertial fusion [161, 162] and shock ignition [100].
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Appendix A

Mathematical functions

The lower incomplete gamma function:

Γ(z, x) =
2√
π

∫ x

0

tz−1e−tdt

The gamma function:

Γ(z) =
2√
π

∫ ∞
0

tz−1e−tdt = lim
x−→∞

Γ(z, x)

The jth complete Fermi-Dirac integral:

Ij(η) =
1

Γ(j + 1)

∫ ∞
0

tj

et−x + 1
dt

The error function:

erf (x) =
2√
π

∫ x

0

e−t
2

dt =
1

2
Γ
(
1/2, x2

)
The generalised Riemann zeta function:

ζ(x, z) =
∞∑
n=0

1

(z + n)x

Volterra equations (of the second kind):

g(x) = f(x) +

∫ x

x0

K (x, y, g(y)) dy, x0 ≤ x

where K (x, y, g(y)) and f(x) are known, and g is unknown.
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Appendix B

Landau-Spitzer theory

This appendix summarises the Landau-Spitzer equations of a plasma [28, 29, 18] in SI

units for a test particle i in a background field of particles j with a Maxwellian distribu-

tion. The convention in this work is that the change is the energy or momentum lost by

i to j. The relaxation times are given by 1/νij = τij. Also,

xij =
mjv

2
i

2Tj

Γ(3/2, x) ≡ Γ 3
2
(x) is the lower incomplete gamma function defined in Appendix A, and

is calculated numerically [57] in the Monte Carlo code.

νij =
4π ln Λijnj
m2
i v

3
i

(
e2qiqj
4πε0

)2

Energy loss:
dEi
dt

= νEijEi = 2νij

[
mi

mj

Γ 3
2
(xij)− Γ′3

2
(xij)

]
Ei

Slowing down:
dvi
dt

= νsijvi = νij

(
1 +

mi

mj

)
Γ 3

2
(xij)vi

Transverse diffusion:

d

dt
(vi − v̄i)

2
⊥ = ν⊥ijv

2
i = 2νij

[(
1− 1

2xij

)
Γ 3

2
(xij) + Γ′3

2
(xij)

]
v2
i

Parallel diffusion:
d

dt
(vi − v̄i)

2
‖ = ν

‖
ijv

2
i = νij

Γ 3
2
(xij)

xij
v2
i
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Equilibration between two Maxwellian distributions; the change in temperature of species

i is:
dTij
dt

= νTij (Tj − Ti)

νTij =
8
√
π

3

√
2mi

mj

(
e2qiqj
4πε0

)2

ln Λijnj

(
Ti +

mi

mj

Tj

)−3/2

(B.1)



Appendix C

Fusion cross-section

Fusion reactivity is given by

〈σFvij〉 =

∫ ∫
fi(vi)fj(vj)σF(vij)vijdvidvj (C.1)

in units of volume per unit time; reactions per unit volume per unit time are given by

dR

dV
=

ninj
1 + δij

〈σFvij〉

This work is only concerned with fusion between Deuterium and Tritium, the T(d,n)4He

reaction. The Bosch and Hale [60] fusion cross-section parametrisation is used, with

energy in keV and cross-sections in milli-barns;

σF (E) =
S(E)

E expBG/
√
E

where

S(E) =
A1 + E(A2 + E(A3 + E(A4 + E · A5)))

1 + E(B1 + E(B2 + E(B3 + E ·B4)))

It is applicable for E = 0.5− 559 keV.

Due to the difficultly of evaluating equation (C.1), a parametrisation of 〈σFvij〉 averaged

over Maxwellian distributions at a temperature T is used, also due to Bosch and Hale
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and so consistent with the fusion cross-section.

〈σFvij〉 = C1 · θ
√
ξ/(mrc2T 3)e−3ξ

θ = T

[
1− T (C2 + T (C4 + T · C6))

1 + T (C3 + T (C5 + T · C7))

]−1

ξ =

(
B2
G

4θ

)1/3

It is applicable for T = 0.2−100 keV. The values of the constants are shown in Table C.1

Coefficient Value

BG

(√
keV

)
34.3827

A1 6.927× 104

A2 7.454× 108

A3 2.050× 106

A4 5.2002× 104

A5 0

B1 6.38× 101

B2 −9.95× 10−1

B3 6.981× 10−5

B4 1.728× 10−4

mrc
2 (keV) 1124656

C1 1.17302× 10−9

C2 1.51361× 10−2

C3 7.51886× 10−2

C4 4.60643× 10−3

C5 1.35000× 10−2

C6 −1.06750× 10−4

C7 1.36600× 10−5

Table C.1: Fusion parametrisation values



Appendix D

ICF Parameters

Table D.1 shows typical parameters [21, 23, 163, 24] of an indirect-drive central ignition

implosion using deuterium and tritium. ‘HS’ refers to hotspot, fuel to the dense fuel shell,

and values given are indicative rather than exact. As a burning capsule has different

behaviour to a one which does not ignite, the values for an igniting capsule with α energy

deposition are used.
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Quantity Value

(ρR)HS 0.4 g/cm2

(ρR)fuel 1 g/cm2

RHS 35 µm

ρHS 100 g/cm3

ρfuel 1000 g/cm3

Fuel layer thickness 10µm

THS 5 keV

dsr 0.07

tburn 18 ps

tbang 21 ns

Peak laser power 500TW

Fuel mass 0.2 mg

Total mass of capsule 3 mg

Capsule diameter 2 mm

Implosion velocity 370 km/s

Table D.1: Typical values of ICF parameters
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