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Abstract

The purpose of this thesis is to explore the driving of non-Maxwellian distributions of
particles in high energy density plasmas in a few select cases, with particular reference

to efforts to produce a net gain in energy via inertial confinement fusion (ICF).

Non-Maxwellian distributions are typically short-lived, as distributions are forced toward
equilibrium by collisions, and are rarely static as a net transfer of energy must occur to
sustain them. This makes non-Maxwellian distributions challenging to study with con-
ventional approaches to plasma physics. The strategy adopted in this work to understand
their evolution, and their effects, is a kinetic approach in which particles are individually

accounted for.

The specific cases presented are that of degenerate electrons during the heating of the cold
fuel shell in hotspot ignition schemes, ion-ion inverse bremsstrahlung absorption of laser
radiation, and large-angle Coulomb collisions. New computational algorithms based on
the Monte Carlo technique are presented, and are capable of modelling the salient aspects
of the phenomena explored. Important results which form part of this thesis include
that conventional models underestimate degenerate electron temperatures long after the
plasma ceases to be degenerate, that it may be possible to induce temperatures of keV in
light-ion species with high power, short pulse lasers, and that consideration of large-angle
collisions changes interactions in a plasma in several significant ways. Of most interest
are the ability of large-angle collisions to decrease equilibration times, drive athermal tails
on distribution functions, and increase the overall yield from fusion reactions relative to

small-angle only simulations.



Conventions and Symbols I

Symbol Description
1,7,k Species or particle labels
g; or Z;  Charge or atomic number of particle of species ¢ in units of e
T; Temperature of species i in units of energy
m; Mass of particle of species 7
n; Number density of species i
N; Number of particles, or simulation particles, of species @
T Particle sphere radius of species i, r; = (4mn;/ 3)_1/ 3
0 Total particle sphere radius, rqg = (Z r;3)_1/3
mi;j Reduced mass of species i and j, m;; = mym;/(m; + m;)
P Mass density; or charge density; or resistivity
v Velocity
Vij Relative velocity between i and j, v;; = v; — v;
Vi th Thermal speed of species 1, Ui2,th = 3T;/m;
AD Debye length, A3 =Y nj?;fTé?
AdB The de Broglie wavelength, A\qp = i/ (2muyy,)
Ac Compton wavelength, \c = h/ (mc)
Np Number of particles in a Debye sphere, Np = %ﬂne)\%
g Plasma coupling parameter, g = 1/(n.\3))
Wpe Plasma frequency, wpe = (nee?/ eome)l/ 2
In A;; Coulomb logarithm between i and j
fi(x,v,t) Distribution function of species ¢
C(x) Cumulative density function, C(x) = / ’ f(2')da'
fus(v)  Maxwell-Boltzmann distribution ’
fuc(v)  Distribution from Monte Carlo simulation
fro(v)  Fermi-Dirac distribution
n Degeneracy parameter
Y(r,t)  Wavefunction at position r and time ¢
E Electric field strength
B Magnetic field flux density
J Current density
I Intensity
Ne Relativistic critical density
ag Dimensionless electric wave strength parameter
1474 Absorption or emission in units of energy per unit time per unit volume




Conventions and Symbols II

Symbol  Description

pR Areal density
dsr Down-scattered neutron ratio

10) Electric potential; or azimuthal angle in spherical co-ordinates 0 < ¢ < 27

0 Scattering angle in c.o.m. frame; or polar angle in spherical co-ordinates 0 < 6 <7
X Scattering angle in the laboratory frame

b Impact parameter

b, Impact parameter for scattering through /2 (species labels suppressed)

by Impact parameter based on solving potential equation (species labels suppressed)
be Cut-off impact parameter (species labels suppressed)

0. Cut-off in angle (species labels suppressed)

g—g Differential cross-section

o Total cross-section; or standard deviation of distribution

N
7 Mean of distribution: discrete, yu = % Z x;, or continuous, p = ﬁ ’ xf(z)dx
Z a
L, nth centralised moment of distribution function, p, = [(z — p)" f(z)dz
K Excess kurtosis, k = pi4/0% — 3
X ~ N(p,0?) X distributed normally with mean u and standard deviation o
U~U(a,b) Random number U uniformly distributed on (a, b)
keZ k is a member of the integers
keN k is a member of the natural numbers excluding zero

—~
Qqa
~

o(x)
a? 67 77 A

€uvk

At

€0
Mo

af

Largest integer not greater than z, |z] = max{m € Z | m < z}
Average of quantity z

Kronecker ‘delta function’

Dirac ‘delta function’

Vector and tensor indices

Levi-Civita symbol (anti-symmetric)

Time

Computational timestep in finite difference scheme

Particle weighting in computation, w = n/N

Speed of light in vacuo, 2.9979 x 10® m s~! in S.I. units

Permittivity of free space, 8.8542 x 10712 F - m~! in S.I. units
Permeability of free space, 47 x 1077 N- A2 in S.I. units

Absolute value of the electronic charge, 1.6022 x 10~ C in S.I. units
Reduced Planck’s constant, h = h/27 = 6.63 x 10734/27 J - s in S.I. units
Fine structure constant, ay = 1/137 = €2 /(4mephc)
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Chapter 1
Introduction

This thesis aims to explore the driving of non-Maxwellian distributions in high energy
density plasmas. The plasma conditions examined are similar to those encountered in
attempts to achieve a net gain in energy from inertial confinement fusion (ICF) experi-
ments at the US National Ignition Facility (NIF). The results are split into three different
topics: electron degeneracy, ion-ion inverse bremsstrahlung absorption, and large-angle
collisions. The consequences of the driven non-Maxwellian distributions studied include
changing the rate of fusion reactions, decreasing the rate of absorption of laser energy,

accelerating inter-species equilibration, and modifying transport coefficients.

This Chapter is concerned with the motivation for, and background to, the research
undertaken. §1.1 explains the origins of nuclear fusion, and the continued attempts to
turn fusion into an energy source. §1.2 explains the arguments for fusion as a power
source, particularly from the point of view of meeting Earth’s energy needs in the future
and preventing climate change by offering a clean alternative to fossil fuels. Details of
the basic physics of a self-sustaining fusion reaction - a situation known as ignition - are
discussed in §1.3, including the energy balance in a ‘burning’ plasma, and an overview of
the stages of an ICF plasma as envisaged on NIF. A summary of the content of subsequent

chapters can be found in §1.4.

1.1 Nuclear fusion

Nuclear fusion is the process whereby two ions coalesce to form new ions and an amount
of energy proportional to the total change in mass is released, as according to Einstein’s
mass-energy equivalence principle. This release of energy powers all stars, and has the

highest energy density of any abundant fuel.

21



22 Chapter 1. Introduction

The pioneering science fiction author H. G. Wells is sometimes credited with predicting
the nuclear age, as it is the premise of a story he published in 1914 [1]. However, it was
Eddington who realised that Einstein’s mass-energy equivalence principle meant that
nuclear reactions could be the source of the Sun’s energy. He made a prescient speech on
the topic [2], arguing in 1920 that

“If, indeed, the sub-atomic energy in the stars is being freely used to maintain
their great furnaces, it seems to bring a little nearer to fulfillment our dream
of controlling this latent power for the well-being of the human race, or for

its suicide.”

— A. Eddington

Ernest Rutherford, discoverer of the structure of the atom, was not convinced, saying in
1933 that nuclear energy was “moonshine” [3]. However, three of the four in the nuclear
quartet of a nuclear fission reactor, nuclear fission bomb, and nuclear fusion (or hydrogen)

bomb had been demonstrated by 1952, with only nuclear fusion left.

There were pioneering but poorly funded attempts to build controlled nuclear fusion de-
vices right at the dawn of the nuclear age: in the US in 1938 [3], in Oxford in 1939 by
Peter Thonemann, and by George Thompson and Moses Blackman at Imperial College in
1946, who filed a patent for a ‘pinch’ device [4, 5]. Two doctoral students at Imperial Col-
lege began the UK’s experimental campaign by building a small device in 1949. However,
it was Argentina which really stimulated research into controlled fusion by claiming to
have achieved it in 1951 [6]; the claim turned out to be false but the headlines prompted
better funded research in the UK, US, and the then USSR. Edward Teller, recalling his
time working on the first hydrogen bomb in 1952, said [7]

“No sooner was it done than every politician and every bureaucrat descended

bR

upon us saying, ‘Now you must solve the problem of controlled fusion’.

— E. Teller

Fusion research then began in earnest worldwide. Two strategies for confinement of the
ionised material, plasma (the subject of Chapter 2), emerged; one using magnetic fields,
and the other using implosions of fuel to create the densities and temperatures in which
fusion reactions become self-sustaining. The problem of containing plasma for the length
of time required for fusion reactions to occur was succinctly described by Edward Teller
in 1954 as being [§]
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“...like trying to confine jelly with rubber bands.”

— E. Teller

Teller said this after it became clear that controlled thermonuclear fusion would be far
more difficult to achieve than any of the other parts of the nuclear quartet. The two
methods for confining plasma are known as magnetic confinement fusion (MCF) and
inertial confinement fusion (ICF), both of which aim to achieve a net gain in energy from

the deuterium-tritium fusion reaction.

This thesis is more concerned with ICF, which uses the inertia of the fuel to provide
confinement for just long enough for fusion reactions to take place. The conditions for
fusion created by radiation initiated implosion were first suggested by Klaus Fuchs in 1946,
before he was arrested for spying on the US for the USSR. Stanislaw Ulam at Lawrence
Livermore National Laboratory (LLNL) continued the work, and the first hydrogen bomb
used the ‘Teller-Ulam configuration’” whereby a fission explosion creates a large radiation
field which, via ablative pressure, compresses fuel and ignites fusion reactions. Both the
US and USSR desperately sought peaceful applications of the enormous release of energy,

including, incredibly, landscaping and sealing out-of-control oil wells [2].

Another of the more unusual proposals was setting off a series of hydrogen bombs in
an underground chamber in order to produce energy. The number of bombs required
to do this for practical power generation is, and was considered at the time to be, both
impractical and fearsome. One of the scientists working on this idea, for Teller, was J.
Nuckolls who joined LLNL in the late 1950s [9]. His job was to calculate just how many
bombs it would be possible to explode before the rubbish accumulating at the bottom of
the chamber went critical. While Teller thought that bigger was better, Nuckolls began
to think that smaller bombs might be more sensible, and decided to calculate just how
small a fusion explosion it was possible to make. The idea of ICF came to Nuckolls at this
time, and he realised that a capsule of fuel just a few millimetres across could still explode
and release a more manageable amount of energy. But there was a problem - how could
such a small pellet of fuel be driven? To be a politically acceptable and commercially
viable source of energy, the small fusion explosions would need to be entirely separate

from fission explosions.

In 1960, T. Maiman built the first laser [10] and Nuckolls immediately saw that it could be
the non-nuclear driver of fusion that was needed to make controlled thermonuclear inertial
confinement viable. Between 1960 and 1972, Nuckolls worked on an idea called indirect-

drive, where radiation is absorbed and re-emitted before compressing the fuel, but his
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work was classified. The idea of using lasers to drive fusion had also occurred to scientists
in Britain, where, again, it was classified. Two Soviet scientists also proposed the idea
of inertial confinement fusion in 1963 [2]. In 1972, Nuckolls was permitted to publish a
paper which explained how laser compression of deuterium and tritium could work but,
in order to get past the censors, he had to say that the laser illuminated the fuel directly,
rather than indirectly in the manner he had actually been considering. While much of
the work in Britain, the US, and USSR was still conducted in secret, countries with no
such classification were beginning to do research too. Japan was openly publishing by
the 1980s, which was frustrating for those working on ICF in secret in other countries,
including Paul Drake and John Lindl at LLNL in the US [§],

“You could follow their learning curve. We could have saved them five years

of work.”
—J. Lindl

Secret experiments were undertaken in the late 70s, and throughout the 80s, by the UK
and the US. Though many of the details are still classified, pioneering experiments led by
S. Rose and P. Roberts from the UK demonstrated the first successful implosions of fusion
targets in the 1980s [11] and so proved the concept of small scale radiation implosion. A
subsequent US experiment obtained similar results, and determined that laser energies
of 20 — 100 MJ would be required to ignite capsules [2]. A report on the US programme
states that the tests

“...demonstrated excellent performance, putting to rest fundamental questions

about the basic feasibility of achieving high gain.”

ICF, and its eventual goal of inertial fusion energy (IFE), has been pursued ever since via
a sequence of experimental campaigns on lasers capable of delivering larger and larger
amounts of energy to a target. A system capable of delivering an energy of 1.8 MJ to a
target has been built, and is known as the National Ignition Facility (NIF), and a similar
machine, Laser Mégajoule (LMJ), is being constructed in France. The goal of NIF is to
achieve ignition, that is to create a self-sustaining wave of fusion reactions in an ICF fuel
capsule with a scientific gain in energy of one. This means as much energy is produced
from fusion reactions as is originally delivered to the target. Though this is different
from a true ‘wall plug’ gain, in which the inefficiencies of the laser system are taken into
account, or indeed from the gain needed for commercial feasibility, it is the first and

necessary step in demonstrating the potential of ICF. The basic physics of ignition, and
of ICF, are described in §1.3.
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There are compelling arguments for developing nuclear fusion as a power source. The
strongest is that the fuels currently relied upon to provide electricity, and most other
forms of energy, are not sustainable and will eventually run out. These include coal, oil,
and gas of which there are proven reserves for 162, 51, and 56 years respectively using
known reserves and consumption levels at the end of 2012 [12]. Coal, oil, and gas currently
make up 87% of world primary energy consumption. Proven reserves may not reflect the
true amount of a fuel which is left, but it is unlikely that undiscovered reserves are many
orders of magnitude larger than those which are known, and undiscovered reserves may be
expensive to extract. Much has been made of the shale revolution, which allows extraction
of previously inaccessible oil and gas by ‘fracking’, a method using pressurised water and
chemicals to force oil and gas contained in small fissures in underground rocks to rise
to the surface. The increase in production of gas by this method has been particularly
large in North America, and may allow the US to become self-sufficient in energy. It
will certainly allow the US to produce far less CO4, as burning gas is less polluting than
burning coal or oil. However, fracking is unlikely to be the solution to the global energy
crisis; for the period 2008-2012 the increase in US production of gas was only 1.2%. Over
the same time period, world consumption of gas grew by 1.1% (as did production). Even
with a global doubling or tripling of proven reserves of gas due to fracking, the fossil fuel
horizon will still be in roughly the next 50-150 years, and the energy use of the world will

have to decrease substantially if new methods of power generation are not introduced.

A decline in demand for energy is extremely unlikely, barring some global crisis. Although
energy use per capita has reduced slightly in OECD countries, it is fast rising in the
countries with the largest populations. The desire to achieve higher living standards in
developing countries has resulted in an increase in energy use, and there is a very strong
correlation between a country’s GDP and its energy use as shown in Fig. 1.1. The most
populous countries are quickly climbing the curve. Though it is feasible that energy use
per capita could be brought to a sustainable level, the world population is growing and
is set to continue to do so for the future, with some stabilisation above 9 billion by 2075
according to a United Nations forecast [13]. The world population since 1960 is shown
in Fig. 1.2. These population driven increases in energy demand will almost certainly

happen against a background of dwindling supply.

There are additional arguments in favour of reducing the use of fossil fuels; they produce
particulate air pollution, which has long-term negative effects on health [14], and they are
a source of geo-political tensions, with some countries using the supply of their natural

resources for political gain.
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Figure 1.1: GDP and electricity generation are strongly correlated. Data from the
OECD/IMF.
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Figure 1.2: World population since 1960. Forecasts indicate continued growth in the
short term, and stabilisation by 2075. Data from the World Bank.

The most discussed negative effect of fossil fuels is the release of CO, and the potential
for global, and possibly irreversible, climate change that a large concentration of COs in
the atmosphere causes. CO, in ppm (parts per million by volume) recently reached a
historic high of 400. Recent reports [15] suggest that stabilisation at 450 ppm of CO,

still gives a ~50% chance of a 2°C rise in global average temperature compared to the
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pre-industrial average temperature. A recent forecast by BP is for carbon emissions from
energy use to increase by 26% between 2011 and 2030, which would mean CO, closer
to 500 ppm than 450 ppm. The ‘dirtiest’ fossil fuel, coal, is also the fastest growing by
consumption [12]. The current UK target, written into law by the 2008 Climate Change
Act, is to reduce emissions of COq by at least 80% by 2050 (relative to 1990 levels).

Pressure to relinquish fossil fuels as the primary source of energy is strong. Unfortunately,
alternatives are not forthcoming. Fossil fuel based electricity generation has a small
geographical footprint, is extremely reliable, is easily scalable, and is cheap relative to
alternatives (ignoring negative externalities). Although renewable technologies are far
less polluting, they do not have these particular advantages. It is unlikely that renewable
technologies such as hydro-electricity, wind, solar, wave, and biomass will be able to
provide all of the energy required by the UK, or the world [16]. Nuclear fission has many of
the advantages of fossil fuels in terms of reliability, scalability, and geographical footprint.
There is enough fissile fuel to last beyond the fossil fuel horizon of 50-100 years, depending
on the costs of extraction and developments in reactor technology, although there is
probably not enough for thousands of years of power. Fission remains deeply unpopular
due to the possibility of nuclear accidents, such as radiation leaks and meltdowns. These
rare, catastrophic events aside, it produces little air pollution. Nuclear fission is also
extremely safe - it has the fewest deaths per joule of electricity generated out of coal,

peat, oil, gas, biomass, hydro-electricity and wind power [16].

It might be expected that a nuclear fusion reactor would be subject to similar rules,
regulations and operational procedures as current fission reactors and so have a similar
level of safety - with two important and beneficial exceptions. The first is that there is
no chance of any runaway process such as meltdown, as only that fuel which is required
is added to the reactor chamber, and the second is that the amount and level of the
radioactive waste from fusion is far less, lasting on the order of a hundred years rather

than on the order of millions.

A final argument in favour of fusion is that the fuel is extremely abundant. Deuterium
occurs naturally: 33 grams in every tonne of seawater. Tritium must be bred in reactors
from Lithium, and it is Lithium which is the limiting factor in deuterium-tritium fusion.
Estimates of how much energy the world’s Lithium could provide if used in fusion reactors
vary, but (assuming extraction from seawater) it is comfortably hundreds of thousands of
years. If deuterium-deuterium fusion could be developed, there would be enough fuel for
millions of years based on current energy consumption and world population. The easy
accessibility of seawater means, in principle, that fusion fuel would be free of the political

issues associated with oil and gas production.
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Given the historical trend for ever growing energy consumption, developing fusion power
can be seen as part of the natural evolution of power production. Widespread fusion
power would allow energy to be generated at a rate unprecedented in human history, and
may initiate a new era of energy use akin to the introduction of steam power, and the

industrial revolution that it catalysed.

1.3 The physics of ignition

In this discussion on the basic physics of ignition, the argument of Atzeni and Meyer-ter-
Vehn'’s comprehensive textbook [17] is followed closely. In a fusion reaction, the amount

of energy released per reaction, @), is proportional to the total change in mass,
0= (S-S
i f

where ¢ and f denote initial and final states respectively. There are many fusion reactions
which produce energy, some of which are shown in Table 1.1. The fusion reaction with
the largest cross-section for reaction at the lowest energy is that between deuterium and
tritium, referred to as ‘d’” and ‘t’ respectively. The energy released is Qg = 17.6 MeV
and the reaction is

d+t— «a (3.5 MeV) +n (14.1 MeV)

All nuclear fusion power schemes must satisfy the fundamental property of producing
more energy than is taken to initiate the fusion reactions. All fusion schemes seek to
achieve a net gain G such that G > 1, in order to prove scientific feasibility. Commercial
feasibility is quite different, and G~30 — 100 or more might be needed. The simplest
scenario is that of a geometry independent, perpetually burning plasma (in which fuel
may be replaced). The energy losses per unit time per unit volume from a plasma can be
described with just two terms accounting for electron-ion bremsstrahlung emission, W,
and loss of energy confinement, 3nT/7g where 7g is an energy confinement time. These
losses are balanced by any auxiliary heating supplied, Wy, and any fusion energy which
is both produced, and then retained, in the plasma. Given neutrons have no charge this
is almost exclusively from the « particles for deuterium-tritium fusion, and so the energy
per unit time per unit volume retained in the plasma is Wsion /5. The factor of 1/5 is
due to conservation of momentum between the neutron and Helium nucleus produced.

Let .
Q _ qusion
Waux
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Reactants Products

d+d — t (1.01 MeV) + p (3.02 MeV)
d+d — He?® (0.82 MeV) + n (2.45 MeV)
d+t — «a (3.5 MeV) + n (14.1 MeV)
d+He? — «a (3.6 MeV) + p (14.7 MeV)
t+t — «a + 2n + 11.3 MeV

t+He3 —% a+p+n+ 121 MeV

t+He? —  «a (4.8 MeV) + d (9.5 MeV)
t+He3 — He® (12.4 MeV) + p (11.9 MeV)
p+Li° —  « (1.7 MeV) + He? (2.3 MeV)
p+Li” — 2« + 17.3 MeV

d+Li° —  2a + 224 MeV

p+Bell — 3a + 8.7 MeV

n+Li° — «a (2.1 MeV) + T (2.7 MeV)

Table 1.1: A selection of exothermic fusion reactions [18].

be the efficiency of the reactor. Ignition is defined as Q = oo, i.e. the fusion reactions
are completely self-sustaining and require no auxiliary power. Ignition is the first goal of

NIF. In order to balance emission and absorption of energy, the plasma must satisfy

. 3nT . 1 1
W - = Wusion _ =
b+ TE f (Q + 5)

Given that .
Winsion = Z—ln2(av)th and; W, = (anﬁx/:?

where (ov) is the fusion reactivity, defined in Appendix C, and C}, is a constant, this gives

3T
(1/Q +1/5)] Qui{ov) — CVT

where the left hand side is known as the confinement parameter [17]. (1.1) is satisfied
for a fusion plasma operating in a steady state. It was originally derived by Lawson [19]

with @ = 2.5 recovering the famous Lawson criterion for fusion power.

Lawson developed equation (1.1) with steady state MCF in mind, and ICF, being a pulsed
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power scheme, benefits from a slightly different perspective. Consider an assembled sphere
of plasma of radius R; at uniform temperature 7" and mass density p. The time that
this sphere remains assembled is limited by the time it takes a rarefaction wave to travel
from the outside of the sphere inwards (assuming zero external pressure on the sphere

surface). The wave travels with the sound speed of the plasma, which is given by

with (m) the average atomic fuel mass. The confinement time of the sphere of fuel is
given by
Ry
Teonf = —
S
so that the position of the wave in time is R(t) = Ry — ¢t. In ICF, the characteristic
time for fusion reactions iS Trusion = @, which allows a Lawson-like expression to be

written;
_ Pl
NTeonf = 77—
(m)ecs
and it can be seen that the areal density, pRy, is of the greatest importance for the
confinement. To calculate the fraction of fuel burnt, the propagation of the rarefaction
wave into the plasma, and the corresponding reduction in the number of fusion reactions
which can take place, must be taken into account. A robust model [20] of the fractional

burn-up in a sphere of plasma taking into account these factors is given by

Jo ~ —pr
urn-up HB + pr
where
Hy = 8cs(m)

{ov)

is the burn parameter, and is given for a wide range of conditions by Hg =~ 6 g cm™2 [21].
It can be shown that heating of the whole sphere of fuel does not guarantee a gain in
energy large enough for inertial fusion energy (IFE). A better strategy for achieving high
gain is the hotspot, or central, ignition scheme which is used on NIF. In this scheme, a
central hotter region with lower mass density provides a ‘spark’ which then ignites the
rest of the fuel.

NIF consists of 192 laser beams delivering a peak power of 500TW in laser energy at a
wavelength A = 1.053um, which is frequency tripled to deliver up to 1.8 MJ onto the
target [22]. The laser beams are incident on a Gold (Au) ‘hohlraum’, or hollow room,

which absorbs the UV light and re-emits it as x-rays with a radiation temperature of
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~300 eV. Inside the hohlraum is a fuel capsule which has a radius of a few millimetres.
The absorption and subsequent re-emission of the radiation has the effect of providing an
even bathing of the fuel capsule with x-rays. ICF with a hohlraum is known as indirect
drive, and the main benefits are that the smoother radiation fields are less susceptible
to hydrodynamic instabilities (such as the Rayleigh-Taylor instability), that ablation by
x-rays is more effective than by electron conduction (the mechanism in direct-drive), and
any non-uniformity of beam intensity is removed [21]. The laser pulse is shaped in time
to produce a series of four shockwaves, which eventually converge inside the fuel capsule.
The internal energy of matter changes as dE = T'dS — PdV, and the succession of shock
waves is designed so as to provide isentropic compression of the capsule, i.e. compression
which eliminates the 7'dS term, which is heat transfer (), as much as possible.
The capsule itself consists of an outer ablation material, for instance diamond-like carbon
or plastic, a cold, dense fuel shell of deuterium-tritium ice, and a central gas fill, also
composed of deuterium and tritium, which are shown in Fig. 1.3:a. Radiation incident
on the capsule causes ablation, and conservation of momentum initiates an implosion
via a rocket-effect. This is shown in Fig. 1.3:b. Subsequent shocks cause the implosion
velocity to increase. When the shocks coalesce and hit the centre, the temperature of
the gas fill jumps, and the shocks are reflected, which slows the implosion. Much of the
kinetic energy of the implosion is converted into internal energy, some compression is still
occurring, and a hotspot forms - a region with a high temperature but relatively low mass
density. The hotspot is surrounded by the shell of colder, much more dense fuel. This
assembled hotspot stage is shown in Fig. 1.3:c. In this type of ICF, the pressure is very
similar across the hotspot and dense shell at this stage, even while the mass density and
temperature are very different.
This is the point at which ignition can occur, if the right conditions are present. Subse-
quent references to p, R and T refer to the hotspot mass density, radius and temperature
respectively. Cold fuel parameters are designated with a subscript ‘c’. The instantaneous
rate of change of energy density (where energy density is €) in the hotspot under isobaric
conditions is given by 1

€

E:Wdep_Wb_We

where W, ~ 31’:‘]6[5;;2 is thermal conduction by electrons across the surface of the hotspot

into the cold fuel, and Wdep is the energy deposited by fusion reactions in the hotspot.
Given that neutrons generally do not stop in the hotspot,

Wdep = fOcWOc = fanusion/5 = faAap2<UU>

where A, has absorbed the constants and f, is the fractional absorption of as in the
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hotspot. The bremsstrahlung emission may be re-written as W, = App*T'/?. Evidently,
the hotspot will heat if Wdep > Wy + We, which is equivalent to

Ry > (AT A\
p Anlov) fo — ALTY?

which is known as the self-heating condition for a hotspot. This is an instantaneous
expression; it does not capture how hotspot conditions change over time and is not the

same as ignition.

A broader perspective is gained from considering a hotspot which expands and accumu-
lates mass. Ignition is equivalent to the expansion of the hotspot into the cold fuel via
the propagation of a ‘burn wave’ of fusion reactions. Energy conservation in a burning
plasma, with M the mass of the hotspot and eM its energy, so that e is specific energy

(energy per unit mass), may be written as

d(eM)
dt

. N4
- <Wa _ Wb) SR — pir Ry

with p = I'gpT pressure, and u = %—If the velocity of the burn wave. I'g is the gas constant

per unit mass for 7" in units of energy. The velocity of the burn wave may be given by
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Figure 1.3: Four schematic diagrams of inertial confinement by spherical implosion.
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assuming that the plasma is an ideal gas with a strong shock propagating through it so

that ” ”
L (ﬁ) _ (%FBTﬁ)
2 \ pe 4 Pe

Using the definition of mass in the hotspot as mass with a specific energy e, the rate of

accretion of mass into the hotspot can be defined as

e% = [Wa (1 - 1) +7,] %m?

If t. = R/u is the characteristic hydrodynamic time, then

 Wat,
==

Ka

is the dimensionless ratio of the energy carried by « particles in a time ¢, to the instanta-
neous internal energy of the plasma. For a burn wave to propagate, this must be growing

as a function of time,

t. dK,
K, dt

The equations for the hotspot evolution may also be cast in a dimensionless form;

>0

t.dT

T Ko fa — Ky — Ko — 2
T dt / b

t.dp

=P Ko (1 fo) + Ko -3
T (1= fa) +

where Ky, and K, are defined analogously to K,. Using the approximation that (ov) oc T2,
which is good for T'~ 7 — 20 keV, this can be written as
te dK, 1

— (K, + K, —
% @ g HetK—3)

and, as long as this is positive at ¢ = 0, it will remain positive, and cause K, to grow

indefinitely over time, thus igniting the fuel. Therefore,
<Wa — Wb) te > 3(pe),_o
t=0

is the condition, which may be rewritten as a Lawson-type inequality

F3/2T5/2 1/2 1.1(T /k 1/2 1/2
ovi T (£)" - LBy

4 Agfov) — ATV \p. ) 1-347(T /keV) 2 \pe

pRT >

for the overall ignition and burn wave propagation. Satisfaction of this criterion leads to
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a fully burning plasma, as shown in Fig. 1.3:d.

The conditions required for the central ignition scheme on NIF are listed in more detail
in Table D.1 of Appendix D [23, 24]. Direct measurements of these important parameters
of a fuel capsule are made extremely difficult by the small scale, high energy densities,
and short timescales involved, so typically they must be inferred. Several performance
metrics using more easily measurable quantities have been developed to determine how
close ICF experiments are to achieving ignition including the ITF (ignition threshold
factor), ITFX (ignition threshold factor - experimental), and GLC (generalised Lawson
criterion) [25, 26]. The key physical parameters required for ignition on NIF using more

detailed models are
Tus =5—12keV and; (pR)ys > 0.2—05gcem™? and; (pR)y, > 1gcm >

where “HS” refers to a hotspot parameter.
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1.4 Summary of contents

Chapter 2 provides the theoretical background to this work, including a brief overview
of the basic properties of plasmas. The concepts are useful for subsequent chapters,
and several important definitions are included in §2.1, §2.2, and §2.3. §2.4 discusses the
temperature and density regime with which this thesis is primarily concerned, and §2.5
examines possible approaches to calculations in the aforementioned regime.

Chapter 3 details Monte Carlo, the computational method used to obtain many of the
results presented. §3.1 and §3.2 have details of the operation of the code developed, and
§3.3 tests the code on a selection of problems with known analytical solutions.
Chapter 4 has details of an extension to Monte Carlo methods for degenerate plasmas.
Degenerate plasmas occur during compression of the cold fuel shell in hotspot ignition.
The basic properties of degeneracy are set out in §4.2, and of the algorithm in §4.3.
Benchmarking is presented in §4.4, while §4.5 compares conventional models of degener-
ate temperature equilibration against numerical simulation, finding a 21% difference in
electron temperature for ICF relevant conditions.

Chapter 5 is concerned with the phenomenon of ion-ion inverse bremsstrahlung (I1IB)
absorption. §5.2 explains the process, §5.3 some circumstances in which it might be
observable, and §5.4 how it can be modelled. In §5.5, two interesting properties of I11B
are presented for the first time; the driving of non-Maxwellian distributions, and, through
manipulation of density, mix of ion species, and pulse shape, the heating of light ions to

temperatures in the keV on timescales of femtoseconds.

Chapter 6 forms an introduction to the topic of discrete and large-angle collisions in
plasmas. §6.1 examines the general theory of large-angle scattering, the exact conditions
where large-angle collisions can be expected to occur based on a new model, and large-

angle modifications to the Rutherford cross-section. §6.2 is a review of other work in the

field.

Chapter 7 incorporates the model developed in Chapter 6 into a new computational
method for discrete collisions. The operation of the algorithm is set out in §7.2. Sim-
ulations comparing small-angle and large-angle scattering are presented in §7.3.1, and
simulations of the driving of non-Maxwellian distributions by fusion reactions are pre-
sented in §7.3.2 and §7.3.3. These simulations find that large-angle collisions significantly
decrease equilibration times and drive distributions for which there is a substantial change
in yield relative to both a Maxwellian with the same average energy, and simulations with
no large-angle collisions.

Finally, Chapter 8 concludes with a summary of the main results of this thesis, along

with suggestions for the direction of future research.
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Chapter 2

Theoretical background

2.1 Plasma fundamentals

Qualitatively, plasmas are collections of partially or fully ionised particles which are
quasi-neutral, that is they are neutral above certain length and time scales. Collective
behaviour dominates plasmas as the electromagnetic potential at any point typically has
contributions from a large number of charged particles. The fundamental length scale is
the Debye length,

2
n;q;e?

T:
=5 0 (2.1)

where the sum runs over all species. This is the length scale over which a plasma is
shielded; particles separated by distances r > Ap do not directly influence one another.
It is also the length scale of neutrality and leads naturally to the notion of a Debye
sphere (a sphere of radius Ap) as the volume over which a plasma is approximately
neutral. Quasi-neutrality is a necessary condition for a plasma. Quasi-neutrality is only
satisfied if there are many particles available in a Debye sphere to carry out screening, so
that

4 3

§7T’I”L>\D >1 (2.2)

and this ensures that collective effects dominate binary collisions. n is the total number
density. Note that this is equivalent to the condition that the ratio of potential energy

to kinetic energy should be small, i.e. (omitting the ion terms in equation (2.1))

e? 1

= = 1 2.3
g EOTe/\D ne)\% < ( )

where ¢ is known as the plasma parameter [27]. Strongly coupled plasmas have g = 1;

weakly coupled implies ¢ — 0. It is also a measure of the importance of collisions,

37
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as collision strength is proportional to potential energy. The work presented is only

concerned with collisional plasmas with g > 0.

The time scale over which a plasma is neutral is also a parameter of fundamental impor-
tance. Small perturbations from neutrality set up oscillations in charge carrying species
in a plasma. The highest frequency oscillations are from the most mobile charge carriers,

typically electrons. The reciprocal of this is the time scale of neutrality,

Nee?

“pe = €0
The result of this oscillatory behaviour is that the plasma is opaque to electromagnetic
waves with frequencies below the plasma frequency. Note that this oscillation carries no
information as the group velocity is v, = Ow/0k = 0. Taking into account the thermal
energy of the electrons does give a non-zero group velocity. wpe gives the most basic
plasma time scale, but more involved time scales corresponding to particular processes,
such as the energy loss rate of a high energy particle in a Maxwellian background of plasma
particles, also exist. These standard rates are referred to in this work as Landau-Spitzer

theory [28, 29] and are summarised in Appendix B.

2.2 Rutherford scattering

Particle i

Particle j

Figure 2.1: Rutherford scattering between two particles ¢ and j with impact parameter
b and scattering angle 6.

A binary collision between two charged point particles occurs via the electromagnetic, or

Coulomb, force. Two charged particles ¢ and j exert an electromagnetic force on each
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other F;; = —F;; where ,
_€74iq5
dmeor;

]

and r;; is the separation distance. Fig. 2.1 shows a single scattering event between two
charged particles with zero centre-of-mass position velocity. The centre-of-mass frame
scattering angle 6 is the angle through which each particle scatters in the centre-of-mass
frame relative to its initial velocity, also in the centre-of-mass frame. The relationship

between impact parameter, b, and 6 is [30]

o (2) »

Note that b, is the impact parameter corresponding to § = 7/2, and is

2
e“qiq; 1
4meg mijvfj

b, =

The scattering angle in the laboratory frame, y, is defined as exit velocity angle relative
to initial velocity angle. For a charged particle 7 scattering off of particle j it is
\%4 m;

coty = —
U; mij

cscl + cot 6

where V = %Zjvﬂ is the velocity of the centre-of-mass position in the laboratory

frame. For an initially stationary target particle j, this reduces to

cot y = i esc + cot (2.5)
m;

Using the small-angle approximation in addition to v; = 0 gives the simple relation

m;
=3 ¢
X m; -+ mj

do
) 407

ticle going through a background of other particles of density n undergoes ndo collisions

The classical differential cross-section is proportional to the probability that a par-
per unit length which scatter it into a solid angle d©2 = sin #dfd¢. A schematic of a par-
ticle scattering into df2 is shown in Fig. 2.2. The classical cross-section based on equation

(2.4) is the Rutherford cross-section in the centre-of-mass frame

2 2.0\ 2
do b _ (e qzq]) 1 1 (2.6)

PN 2.4 440
df? 4sin® g dreg /) mivp; dsin®
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Scattering centre
b

&

Figure 2.2: Schematic of scattering showing the solid angle dQ2 = sin 8dfd¢.

It is the cross-section for binary interactions in non-relativistic charged particle-particle
collisions. Though it is a classical cross-section, the first order quantum mechanical
calculation of the cross-section, using the Born approximation and a Yukawa potential,
produces the same result in the A\p — oo limit (with Ap the screening length in the

Yukawa potential).

Interactions in a plasma are not binary because of the large number of particles inter-
acting simultaneously. So, the Rutherford cross-section does not include the complicated
collective behaviour of plasmas or the associated screening at distances on the order of
the Debye length. It is also only appropriate for small-angles, as extra physics begins
to become important at larger angles. This extra physics includes the addition of spin,
indistinguishability, and the nuclear force, and is discussed in Chapter 6. However, most
plasmas are dominated by small-angle, long-range collisions for which a screened Ruther-

ford cross-section is sufficient.

2.3 The Coulomb logarithm

Divergences arise when applying the pure Rutherford differential cross-section to calcula-
tions in plasmas. These divergences are not physical. Removing them gives rise to In A,
the Coulomb logarithm, as the following example illustrates. Consider the lab frame
energy loss dE of a projectile particle i travelling (without loss of generality) in the -

direction and undergoing collisions with a background of stationary targets of species
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Figure 2.3: A particle going through an infinitesimal distance dx having collisions with
a stationary background species j of density n;.

Jj. Let V]com denote a velocity in the centre-of-mass frame, and v;; the initial relative
velocity. The final velocity in the lab frame of the projectile is, using equation (2.5) and

that Vi‘com =V; — V = mijvi/mi,

MU M U; mi;v; .
Vi = Vieom + V= —2= 4+ —2= cosf, ——sin 0
m; m; m;

The final kinetic energy of the projectile is

1 1 m2. 2m2 m2,
E = —mﬂ/2 = —mﬂ}-2 ( 4+ — Y cosf + 23)
2 ms o mym; m;
1 2m?,
= —mv? [1 + —2 (cos ) — 1)}
2 mgm;
1 2m?; 7
= —mv} [1 + —L-25in? —]
2 m;my;

The change in kinetic energy is AE = E — F/,

1 4m?; 1
AE = —m;v? J

L

(2.7)

where equation (2.4) is used. In an infinitesimal distance dz the number of encounters
with stationary targets j will be n;dz27bdb, as shown in Fig. 2.3. Multiplying this by

the loss per encounter, AF, and integrating over all possible impact parameters gives the
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infinitesimal loss of energy. Then

m2.
(Ziz _ Ei87;ZJmanJ bi/bii—bzdb (2.8)
The integral part, without other constants, evaluates to
. 1 2 2 v
Jim {5 In (b7 + b )} 0
which is logarithmically divergent.
The small-angle approximation, and equation (2.4), are often used to set m 7 l;ig

in equation (2.8). This results in the expression being divergent as b — 0 too, but this
is simply a consequence of using the small-angle approximation. A standard approach
is to use the small-angle approximation, introducing the b — 0 divergence, and then
to regulate this divergence by introducing a minimum impact parameter. b, is often
chosen, and this effectively omits hard collisions with # > 7/2. Unless otherwise stated,
in this work the minimum impact parameter is set to zero in integrations similar to
those appearing in equation (2.8), thereby avoiding the large-angle divergence. This is a
simplification which assumes Coulombic point particles which is the adopted convention
throughout. It is possible to set a minimum impact parameter which takes account of

the finite size of the nucleus for the Coulomb force [31].

The small-angle divergence is also unphysical and can be regulated by introducing a
maximum impact parameter. The origin of the small-angle divergence is that, though
the contributions to the cross-section from remote interactions are diminishing due to
distance, the number of remote interactions becomes infinite at large distances. This
is a property of the slow 1/7? fall-off of the Coulomb force, or, equivalently, that the
Rutherford cross-section implicitly assumes an infinite interaction time. The Rutherford
cross-section is designed for binary collisions, and the cavalier approach of applying it
to a particle undergoing many collisions simultaneously is the origin of the divergence.
However, within a plasma, charges are not free to remotely interact over an infinite
distance for an infinitely long time; there is screening of charges at length scales beyond
Ap implying that the upper limit in impact parameter should be Ap. This corresponds
to the smallest angle through which a particle may scatter according to equation (2.4)
being
by Omin __ Omin

_:t ~
T 2
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1 A2 AD
“In(1+22 ) ~mIn(Z) =lnA
QD( +bi> n(’u) !

which is the Coulomb logarithm. As b, is dependent on the two species involved in
the collision, the Coulomb logarithm may be denoted InA;; and there are (N? — N)/2

different values for N distinct plasma species. In general, species labels are implicit on

and the integral becomes

In A and b, . For completeness, the full expression of equation (2.8) is

, - e2a.q.\ 2

- 2
dz mjv; \ 4me

The Coulomb logarithm naturally arises in many calculations of quantities of interest
in plasma physics, particularly in the calculation of relaxation times and kinetic cross-

sections. Kinetic cross-sections have the general definition
o) = /(1 —cos"f)do, k€N (2.10)

k = 1 gives a quantity known variously as the transport, diffusion, or slowing-down
cross-section due to it being proportional to the loss of directed particle velocity in a
scattering event. With k = 2, the cross-section describes the deflection of particles as it
is proportional to the mean-square increment in transverse particle velocity. All plasma

kinetic cross-sections give rise to a Coulomb logarithm factor [29].

The assertion in §2.2 that small-angle, long-distance interactions dominate plasmas can
be shown by integrating equation (2.8). Small-angles correspond to larger impact pa-
rameters, while small impact parameters correspond to large scattering angles. If the
integral in (2.8) is split [29] into near and far parts I, and I; with a cut-off determined
by equation (2.4) in the small-angle approximation

2b,

0=——<1
;<

so that the cut-off is 2b

1 pdb
I, = —  —Inv5=~1
/0 b2+ b2 nv5

I_/*D bdb 1. A+ b2 e
Ty, 4022 502 )\ by
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where the last step is justified by the condition on the plasma coupling parameter in
equation (2.3) (ignoring ion contributions);
b ik 62 1

)\D eomevith )\D

SO
In 1 <1
]f IHA

and the far interactions dominate the near ones, and small angles contribute more strongly
to the exchange of energy than large angles. This is the justification for most approaches
to plasma physics concentrating on long-range, small-angle interactions. It can be further
seen that the mean square angle of deviation, (6?), from an initial direction is also dom-
inated by small-angle collisions. This is equivalent to the k = 2 cross-section in equation
(2.10). The cross-section for a single deflection of § = 7/2 in a ‘hard-sphere’ scattering
collision is ¢ = wb% but the mean square deflection effective ‘cross-section’ taking into

account many small-angle scattering events is

/ 92_ 10 - ™ /96 62 sin 6d
7% o sin?(0/2)

mi

Taking into account only small-angle scattering means cutting off the integration over

angle, and 0, = 1 is chosen as the cut-off. Applying the small-angle approximation gives
1

_ wbt 21d6

7= Ty 0

= 87b% In A (2.11)
Omin
so that the ratio of cross-sections for deflections is o2y /0 = 8In A. So diffusion in angle
is 8In A more likely via small-angle collisions than via large-angle collisions. However,
there are situations encountered in Chapters 6 and 7 where In A~1 or large energy ex-
changes in a single collision are of interest. The effects of near interactions can then be
important enough to warrant inclusion in calculations. It should be stressed that the
Coulomb logarithm is approximate, rather than exact, because the integration limits are
approximate, despite originating from physical insights. As the Coulomb logarithm varies
only weakly with its parameters, this is not generally a problem but it is more of an issue

in the In A~1 regime.

In this work, the Coulomb logarithm of Gericke, Murillo, and Schlanges [32] is adopted

where )

1 bmax
A= (1+ 5 > (2.12)

ref
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The effective maximum and minimum impact parameters are defined as

Do = A+ 70 (2.13)

max

respectively, where particle labels are suppressed, ro = (47 ). n;/ 3)71/ % is the particle
sphere radius, and A\qg = max {h/2m;v;, i/2m;v;} is the de Broglie wavelength. The de
Broglie wavelength is introduced because the uncertainty principle ‘smears out’ particles
over Az > h/p for b < Az, reducing the energy loss relative to using b, in some circum-
stances [31]. This is a semi-classical correction, and the simplest quantum mechanical
calculation of the kinetic cross-section, using the first order Born approximation, natu-
rally obtains a Coulomb logarithm with a minimum impact parameter of \gqg. The root
sum of squares in equations (2.13) and (2.14) ensures continuity between the different
possible values of by, and by and, as the Coulomb logarithm is approximate, the slight
overestimation of both maximum and minimum impact parameters is acceptable. There
are many different formulae available for the Coulomb logarithm, and it is difficult to
determine which best reflects reality [33, 32, 34, 35, 36, 37]. Nothing precludes the use

of another of those which are available.

In the context of particle-particle collisions, In A may either be calculated for each collision
using the relevant particle velocities, which is computationally expensive as it must be
carried out many times per timestep, or using the global temperatures for the relevant
species meaning it is just calculated once per timestep for each combination of species.
Using the ‘per collision’ logarithm can make a significant difference to the scattering when

far from thermodynamic equilibrium [38].

Theories which provide models of average plasma behaviour omit In A from the inte-
grations over distribution functions because In A varies slowly with changing energy, es-
pecially if InA > 1. To make useful comparisons against conventional theories using
averaged models, such as Landau-Spitzer, (In A) is occasionally used in simulations. An

averaged In A only requires changes to equation (2.12) in the by term;

\ h h
= Imax
B 2mivi,th’ ijvmth

b, = qiq; 1
47’[‘60 my; (Uiz,th + U]%th)

2 _
where v; ), = 3T;/m;.
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Throughout the rest of this work, A\p is used to mean by,.,, and b, to mean b, so that

1 Py
InA = 5111 <1+b—2)

is equivalent to equation (2.12) unless otherwise stated. This is to tidy up notation
and aid understanding. Other modifications to the Coulomb logarithm are sometimes

necessary; these are described in the relevant chapters.

2.4 Regime of interest

108

107} ;
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@v//v
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Figure 2.4: Values of In A, using the definition of equation (2.12), over a range of tem-
peratures and densities for an equimolar electron-proton plasma.

This work is concerned with the driving of non-Maxwellian distributions in a few specific
cases. These specific cases are generally in the moderately to strongly coupled regime,
In A <5, which includes high intensity laser-plasma interactions [39], inertial confinement

fusion [23], degenerate plasmas [40], and stellar cores [41, 42].

Fig. 2.4 shows In A for a range of temperatures and densities, using equation (2.12). Of
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Figure 2.5: Np = %ne)\% for an equimolar electron-proton plasma.

course, different formulae exist for In A, so the number of particles in a Debye sphere is

a more universal measure: Np is shown in Fig. 2.5.

In the InA < 5 regime, distributions take longer to relax because plasma relaxation
times are 7 o< 1/InA. Distortions away from Maxwellians take longer to recover with
small In A, and a comprehensive understanding of non-Maxwellian distributions and their
persistence is more necessary. Large-angle scattering and discrete collisions, covered in
Chapters 6 and 7, have been shown to be roughly of importance 1/1In A relative to small-
angle collisions so that the small In A regime also coincides with the effect of large-angle

collisions being largest.

Many of the theoretical tools used for plasmas rely on Np > 1 or InA > 1 and so are

less applicable in the moderately to strongly coupled regime, as is explored in §2.5.

It is useful to express ratios of the fundamental plasma length scales Ap, r;, b, and A\qg
in a form in which they are convenient functions of typical high energy density plasma

conditions. These ratios are calculated in the most simple case, in which a charge of e is
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assumed for all species. The classical ratio of length scales is

A 32 [T, T, /keV)*?
LA (6—0) —drmv & 52 (T /keV)
by e? n; ! V/ne /1030 m—3

for b, for protons and electrons with the assumption that 7, > 7,,, and taking the electron
only term in the Debye length. This result is halved when using all electron parameters.
For electrons, the de Broglie wavelength can, for Aqg > b, be the smaller length scale of

interest;

A T 2m vip o T. T, /keV
D= [ T & 838 x 107 = 17 e /keV)

AdB h NS /1ne /1031 m—3

This occurs when the following ratio is less than one;

b 22 2mume
Lo B = TMelhe 837 x 107 —= = 0.66——
Aap dmegmevy,, R VT, (T, /keV)

corresponding to T, > 2.3 keV. The relevant expression for ions requires temperatures in

the MeV.

Finally, for n, = n,,

T nee?

Ao el (4, 1/3 958 (T; /keV)
3 ’ (ne /1031 m_3)1/6

is the ratio of the Debye length to the ion sphere radius.

Evidently, the plasma theory breaks down as ¢ — 1, but it is useful to have a more
exact quantitative limit to the application of plasma theories so as to avoid their improper
use in conditions for which other physics is dominant. This is particularly true for the
regime under consideration as some of the conditions encountered are very close to the low
temperature, high density regime in which ion-ion correlations cannot be ignored. This
regime is characterised by having g > 1, so that ions become bound to each other. Using
the Coulomb logarithm identified in equations (2.12) and (2.13) means that simulations
should be limited to In A 2 2.6, or, equivalently, Np 2 10 according to Gericke, Murillo
and Schlanges [32]. This is satisfied for all simulations shown except for some special
cases in Chapter 4 which include modifications appropriate for the lower temperatures

that are considered, and these still satisfy Np 2 1.
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2.5 Approaches to plasma physics

A full solution of the equations of motion of particles in a plasma is analytically impossi-
ble, as it is an N-body problem. To make any progress toward calculating properties of
interest, approximations must be made. The properties of interest are non-Maxwellian
distributions and the effects of large-angle collisions, so the merits of each theory with

respect to these properties are given particular emphasis.

The most fundamental theoretical description of the entire classical plasma, without
approximation, comes from Liouville’s theorem [43] which states that the all-particle
distribution function, fy = fn(qy,---,dx,Pys--->Px, 1), is constant along the phase
trajectories of a closed system. The phase space has 6N degrees of freedom, where q;
and p, are generalised co-ordinates and momenta respectively. Liouville’s equation for a

classical plasma at time ¢ is then

N

Oy N Ofy |~ (005 00y | Ofy
or T 2%y T o =0 2.15
o+ 2%9q, T2\ Toa "2 0q, ) b, (2.15)

where ¢! is any potential external to the plasma and ¢;; is the interaction potential
between particles ¢ and j. This can be transformed into a sequence of N equations,
each relating two single-particle distribution functions, for instance f™ to f+1. This
is known as the Bogoliubov, Born, Green, Kirkwood and Yvon (BBGKY) hierarchy of
equations, and it is exact for a classical plasma [44, 45]. The truncation of the BBGKY
hierarchy at the second term leads to transport theory, the full derivation of which can
be found in [44]. The transport equation is

of of

— -Vf+F.-—=C 2.16

ot TV VIHE 5 =C() (2.16)
where C'(f) is the rate of change of the distribution function due to collisions, and each

species has its own distribution function f.

With C(f) = 0, Vlasov’s equation for ‘collisionless’ kinetic theory is recovered. ‘Colli-
sionless’ is taken to mean that C'(f) is small enough to ignore relative to the other terms
in (2.16). A necessary condition for this to be true is that ¥ < w where v is the effective
collision frequency and w the frequency of variation of macroscopic fields entering via F.
Vlasov’s equation is not describing a plasma without any collisions; Coulomb collisions
are the only way that each particle can interact with each other particle. However, the
interactions are dominated by long range collisions, at distances on the order of \p, rather
than the short distance binary collisions which dominate gases. These long range inter-

actions are collective and can be represented by a macroscopic field averaged over a large
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number of particles in a similar way to classical fields in electrodynamics. This is why
the collisionless Vlasov equation includes F, and it is assumed that the plasma motion
generating these macroscopic fields is excluded from being considered in the collisional
terms on the right hand side of equation (2.16). The force term F hides a lot of complex-
ity; for a fully self-consistent solution to (2.16) it must include E and B fields both from
external sources and from plasma motion. All fields, with or without C(f) = 0, must

also satisfy Maxwell’s equations;

vE=" VxE=_B
€0 ot

OE

V-B=0 V x B = pod + poco—-

ot

As collisions are of primary interest, only the full transport equation is considered in

subsequent chapters.

In a collisional plasma, C(f) # 0, and techniques to evaluate C(f) are required. The
diffusion approximation is one approach to evaluating C(f). As |Av|/v ~ 0, |Av]| /v
is small for a single collision if In A > 1 [29]. The small ‘jumps’ in phase space due to
collisions can be regarded as a flux j in velocity space, so that

The flux can be written as an infinite series, where each successive term allows the
expression to depart further from a ‘perfect’ continuous flow where only those particles
at the bounding surface of a volume will leave that volume in phase space, rather than
particles in a neighbourhood of the bounding surface. To describe particles which travel
further through phase space (for example, in a situation with large momentum transfer),
more terms in the series are required. The infinite series is

af o0 f

ju = auf + buu% + Cuuam T

As the changes in velocity phase space are generally small, the first two terms of the
expansion are taken. These have the interpretation of being a dynamical friction [46] and
a diffusion tensor in velocity space;

Fy

0
Ju=tf = Dt

=L
" 0w,

The sum of the flux of ¢ over all species, j;, = Z Jij» is implicit. For practical calcu-
J




2.5 Approaches to plasma physics 51

lation the terms of the expansion are used and defined in terms of (Av,), (Av,Auv,),

(Av,Av,Av,) etc., where [27]

(Av) = /w(v,Av)Av d(Av)

represents the independent probability that v increments by Av in a time At, and the

flux becomes v
Ju = f{Av,) — 200, (f(Av,Avy))
Equation (2.16) with the above flux is the Vlasov-Fokker-Planck (VFP) equation which

may be succinctly expressed in terms of Rosenbluth potentials [47].

The diffusion approximation as widely used with two terms of the expansion has its
limitations: the truncation of the BBGKY hierarchy means that equation (2.16) is only
applicable on length and timescales greater than Ap and 1/wp. respectively. It is also
constrained to small-angle scattering or In A > 1 as otherwise more than the first two
terms in the expansion of the flux are required. Even for moderately coupled plasmas,
with 2 <In A < 5, another term in the expansion is required [48]. If large-angle scattering
is appreciable, the diffusion approximation breaks down and can fail to take account of the
large jumps in energy or momentum space. There is further discussion of the limitations

of the Fokker-Planck approach, with respect to large-angle collisions, in Chapter 6.

Transport theory is not the only approach to solving problems in plasma physics. Fluid
equations, derived by taking moments of the Vlasov-Fokker-Planck equation, yield an-
other method. They are not closed, and so also require approximations to be made. This
is because each moment equation is coupled to a moment equation of higher order. The
two techniques for closing the equations are to either truncate them, by assuming some
form of the higher moments, or to use an asymptotic expansion of the distribution in a
small parameter ¢ which is usually the ratio of the mean-free-path for some process to

the length scale of interest for that process,
fx,v,t) = fo(x,v,t) + efi(x, v, 1) + 2 fo(x, v, 1) + -
where it is required that the base distribution function be a Maxwellian,

fol, v, 1) = n(x) <2£(x> ) N b [_ 2%;]

so that the system is in equilibrium to zeroth order. The truncation approach leads

to ideal magnetohydrodynamics, which requires a short energy equilibrium time [49]

meaning again that the plasma is never very far from equilibrium. Both fluid approaches
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require some approximations which are not favourable for considering non-Maxwellian
distributions. The plasma is assumed to be close to equilibrium and assumed not to be
collisional. They also rely on ensemble averages, meaning that relatively rare events, such

as large-angle collisions, are effectively ignored.

Another stratagem for deriving results in plasma physics is to examine the propagation of
waves within plasmas. Generally this includes the macroscopic fields E and B satisfying
Maxwell’s equations but also the equations derived from the first three moments of the

Vlasov equation assuming, in the simplest form, no viscosity or heat conduction,

0
Zeroth moment: 8_72: +V-(nv)=0
. Dv
First moment: = qn (E+vxB)—Vp
D
Second moment: Dt (pn_”) =0

where D/Dt = 9/0t+u-V is the convective rate of change and v is the velocity, p pressure
and n number density [49]. However this approach is limited by the same factors which
mean that Vlasov’s equation and the general fluid approach are not appropriate, as it is

derived from them.

The complexity, and associated analytical intractability, of plasmas mean that all ap-
proaches are limited by some form of approximation. However, computational techniques
can provide insight into the behaviour of plasmas in situations where more simple analyt-
ical results are not forthcoming. In this work, a particle based computational approach
is taken and used to study non-Maxwellian distributions. The strengths and weaknesses

of this approach are more fully explored in Chapter 3.




Chapter 3

Computation with Monte Carlo

3.1 Introduction

A new code, following Takizuka and Abe’s prescription [50], has been developed for the
study of non-Maxwellian distributions in plasmas in 0D3V. This Chapter explains both

its operation, and its verification by a number of tests.

Monte Carlo methods have their origin in the Second World War [51] and became suc-
cessful due to the arrival of automated computers (as opposed to the use of human
‘computers’). Monte Carlo methods have many applications, including evaluating inte-
grals in many dimensions and evaluating probability density functions [52]. Broadly, it
is a class of methods that relies on using random, or pseudo-random, numbers in order
to make samples of a quantity. In the limit of many samples, the quantity converges to
the correct answer. This is in contrast to methods that employ direct evaluation of a

function with a defined accuracy.

Monte Carlo algorithms for plasmas do not assume a particular distribution function,
and can be adapted to allow any interaction to perturb that distribution function - not
just those which represent small changes in energy or momentum, or only occur over
certain timescales. This is particularly useful in kinetic problems which must be done
self-consistently and with many species. It has been used, for instance, to reproduce and
study the Langdon distribution [53, 54]. In plasmas far from equilibrium, Monte Carlo
techniques can give results closer to molecular dynamics simulations than the Landau-
Spitzer theory [28, 29|, partially outlined in Appendix B, or Vlasov-Fokker-Planck codes
[38]. They are also relatively simple computationally, and some Monte Carlo models

for plasmas conserve both energy and momentum. The drawback is that the quality of

23
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the result is dependent on the number of simulation particles, and the quality of the
random number generator. Scaling up Monte Carlo simulations to problems with spatial
extent is very expensive computationally, which is why methods exist [55] to weight
particles to reduce the number required at the cost of explicit conservation of energy,
or to decrease running time by grouping collisions together [56]. The code presented
conserves energy and momentum explicitly. They are not appropriate in the limit of very
strong coupling because of the break down of plasma theory when there are not enough
particles in a Debye sphere to carry out screening. Some PIC (Particle-In-Cell) codes,
specifically those with collisions, have many of the attractive features of Monte Carlo
codes, and extra features such as macroscopic electric and magnetic fields. However,
for the microphysics which is the subject of this thesis, global fields are less important
and there is a trade-off between the inclusion of extra effects and the large number of
particles per cell which would be required in PIC. PIC codes also suffer from numerical
heating. Molecular dynamics simulations offer an even more fundamental approach but
are very computationally intensive. Future research will seek to explore some of the
topics presented using other types of code, with PIC and molecular dynamics codes

strong contenders.

The central limit theorem provides the mathematical underpinning for Monte Carlo codes.
For example, if the desired effect is to recreate a known distribution function with a
number of simulation particles N (where N is many orders of magnitude less than in
reality), then a sequence of independent and identically distributed random variables X

with p the average of the true distribution satisfies

N
X . 1 X )
X —NthOOvN (NZ;XZ-—,LL> — X ~ N(0,0%)
i.e., the distribution of the left-hand side of the equation tends to a normal distribution
as N — oo. X; ~ N(u,0?) signifies that X; is normally distributed with mean p
and standard deviation o. The replication of distribution functions improves as \%N To
check that the desired level of accuracy is reached, ;o and higher order moments may be

calculated from simulation and compared to the theoretical values.

A random number generator is required for many of the calculations in the Monte Carlo
code. It is extremely important that the generator can provide uniformly distributed
values without any biases. The robust “ran2” random number generator is used, which
has period > 2 x 10'® [57]. It produces random numbers U ~ U (0, 1), where U (0,1)
signifies that a variable is distributed uniformly on the real number line between 0 and
1.
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3.2 Operation

The algorithm followed by the code is shown in Fig. 3.1. Global initial conditions are
set by the user, including species information such as densities, temperatures (or non-
Maxwellian distributions), and number of simulation particles. Particles are represented
in the code by objects which store three dimensions of velocity and the relevant species
type, which links to information such as charge and mass. To initialise the code, particles
must be created in the appropriate number and distribution. The proportions of each
type of particle are given by the ratio of densities of each species with a particle weighting
w such that

n; =wN; Vi; and w:Zni/ZNi

where n; is the density, and N; is the number of simulation particles of species i. The
density of electrons is always chosen so as to keep the plasma neutral. Particles are picked
from the relevant distribution functions and ¢t = 0 diagnostics run, both as described in
§3.2.1. The collision loop is then run, beginning with the calculation of A\p, In A and At.
The Coulomb logarithm employed is detailed in §2.3. Radiation is neglected.

At is taken as being proportional to the shortest relevant physical timescale of change
in the plasma, 1/v, and some useful values of v can be found in Appendix B. Typically,

At = ﬁ, though it must also be set to keep scattering angles relatively small.

3.2.1 Particles and distribution functions

Particles are initialised according to a particular distribution in 0D3V. For distributions

which are everywhere integrable, probability density functions (or distribution functions)
can be integrated to the cumulative density function [ f(2")dz’ = C(z) and the cumula-

0
tive density function is normalised such that C(0) = 0 and lim C(z) = 1. The cumulative
Tr—00

density function is inverted to give
C'(U)=z; Ue€(0,1)

This represents a parametrisation of the real number line between 0 and 1 into the space
of the variable. Randomly generated values of U ~ U(0,1) in the domain of C~1(U),
generate values of x that occur with frequencies determined by the original probability

density function.

The type of distribution function chosen varies depending on the application, but the
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Initial conditions of density, average
energy and no. of simulation particles

¥

Pick particles from distribution
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Figure 3.1: Schematic of the algorithm used by the Monte Carlo code.
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Figure 3.2: Electron distribution with 7, = 1 keV.
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Figure 3.3: v, component of velocity for a deuterium distribution at 7; = 0.1 keV.

default is the Maxwell-Boltzmann distribution,

5 _ (. m 3/2 _mV2 3
fMB(V)d”_<27rT> eXp( or )T

also referred to as a Maxwellian distribution. This is separable into a distribution fyg(v.)
for each direction, with separate standard deviations of ¢ = \/g . As Maxwellians are
only properly integrable on the whole domain, otherwise giving an error function, it
is computationally expensive to invert the cumulative density function. An efficient

alternative, the Box-Muller transform [58], is used to determine v; for each direction ¢
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when creating a simulation particle. Four independent random numbers U; € (0,1) are

generated, and the components of velocity are given by

=27 .
Ve =\ = In (Uyp) sin (27U7)
=27
Uy = Tll’l (Uo) COS (27TU1)
=27
v, =1/ —— In (Us) cos (27Us3)
m

Fig. 3.2 is a comparison of simulation against theory for a Maxwellian distribution in
energy, while Fig. 3.3 shows velocity in one direction. Both are taken from the ¢ = 0

diagnostics. Monoenergetic and isotropic distributions,
fMono(E) =9 (E - EO)

are useful for simulating fusion created a-particles, with f(x) = §(x — z¢) the usual Dirac
delta function (a generalised function). For an isotropic distribution with a single energy,
v = (2Ey/ m)l/ % is the radius of a sphere in velocity space. Randomly choosing a point

on a 2-sphere, then scaling the values by v, gives the components of velocity:

v, = vv1—U?cos¢
vy = vV1—U?sing

v, = vU

with U ~ U[—1,1] and ¢ ~ U|0,27). Mono-directional, mono-energetic beams are cre-
ated with a small Gaussian velocity spread in each direction to avoid problems with the

collision routine. A small spread is not unphysical.

In cases where distributions are close to equilibrium, the temperature is output as T' =
2(E)/3 for each species. Many of the distributions presented are not in equilibrium, but
the output of ‘temperature’ with 7' = 2(F)/3 is employed as a useful reference to other
models. Alternatively, the average energy is presented directly. Distribution functions
in, for example, energy are output by setting constant bin size AFE over a range, and
recording the counts of each species of particle appearing in the relevant bin relative to

the total number of particles multiplied by the bin size;

Counts [E, E + AFE]

NEE+AE) = ——5 ~"3F
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with Nrota the total number of particles of that species, and E+AE/2 vs. f(E, E4+AFE)
plotted. [ f(E)dE = 1 is ensured by this equation as long as the counts are recorded

over the entire energy range.

If the probability density is very non-uniform, a variable bin width distribution function
diagnostic is used which creates a new bin every time (Counts[F, E + AFE] /Nrota) >
some sensitivity value, which is defined according to the application, but is generally
~0.05. With large binwidths, the plotting of a point at £ + AFE/2 can be misleading
if much of the probability density actually lies toward, for example, E rather than F +
AFE. A maximum binwidth proportional to the standard deviation of the appropriate
equilibrium distribution prevents this occurring. An example distribution 62 ps into
a simulation is shown in Fig. 3.4 to highlight how this diagnostic can cope with large
energy ranges. The conditions are similar to ICF, but with a large proportion of fusion
created « particles (10%) slowing down and driving a non-Maxwellian tail in a background
population of tritium (not shown) and deuterium. The equivalent Maxwellian has the
same average energy as the simulation distribution. Fig. 3.4 uses the discrete collision

algorithm described in Chapter 7.
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Figure 3.4: The variable bin width distribution function diagnostic showing an ICF sce-
nario.
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€4

Figure 3.5: The scattering in the frame of relative velocity, with v;; = v;;€;.

3.2.2 Scattering

Which particles collide in a single timestep is determined by selecting pairs or triplets
from lists of particles with neighbouring particles selected using the groupings algorithm
of Takizuka and Abe [50]. To ensure that scattering is not carried out on the same pairs
every timestep, the particles are randomly re-ordered each timestep, using a Fisher-Yates
shuffle [59].

For two particles ¢ and 7, the relative velocity is v;;. In the frame of the relative velocity,
in which v;; = v;;€3, a scattering through the centre-of-mass scattering angle 6 in a time

At produces a new relative velocity vector

0 v;; sin 6 cos ¢
0 | 7 | vijsinfsing
o v;; cos 0
where ¢ ~ U(0,2r]. The geometry in this frame is shown in Fig. 3.5. The new particle
velocities are given by

V; =vV; + Avijmij/mi (31)

V., =V; — Avijmij/mj (32)

/
J

Note that although Av;; is non-zero in general in a collision, Av;; = 0 ensuring conser-
vation of energy, and conservation of momentum is ensured trivially by equations (3.1)

and (3.2).

The scattering angle 0 is not taken directly from the Rutherford cross-section because
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of the divergence at # = 0, and because most plasmas are dominated by the multiple
small-angle scattering regime. A statistical argument for the behaviour of the scattering

angle is described succinctly in Jackson [31];

Since successive collisions are independent events, the central limit theorem
implies that for a large number of collisions, N, the distribution in angle
will be approximately Gaussian around the forward direction with a mean

square angle
(67) = Nean (6°)

Angular brackets signify an average value. (6?) is most often calculated using the small-

angle approximation so that

1 do b3 02 sin 6 b2 dé
02\ == [ 9?°—d0 = L/ d6 = L/—:8 b2 In A 3.3
(o) 0/ a0 20 | sin*(6/2) s | g =8l (33

The number of collisions in a distance As is given by Ny = noAs = nov;; At with

n = min {n;,n;} and At the timestep, so

(6%) = nAtv;;87b7 In A

where In A = % In (”2{{% > A number of terms have been omitted due to the small-angle
approximation but their inclusion makes almost no difference to the value of (02). P,, is
the probability of a collision using the 1st kinetic cross-section, using the definition of the
kinetic cross-sections found in equation (2.10). There is a simple relation between (©?)
and this probability; 1 — cosf ~ 6?/2 so (6%) = 2P,,. With (©?) computed, randomly
generated values of § ~ N (0,(©?)) are used as the scattering angles in the particle-
particle collisions. To perform the generation of 6 from random numbers Uy, Uy ~ U(0, 1),

a Box-Muller transform [58] is used;

0 = /—2(02)In (U,) cos (2rl5)

If |§| > m, 6 is chosen using 6 ~ U(0,7) but the timestep should be set so as to avoid
this. If there is an odd number of particles in a list in which pairs of particles are to be
collided, the first three are combined in three pairs and scattering angles selected from a

normal distribution with half the usual variance.

For computational efficiency, Takizuka and Abe use § = tan £, and choose § ~ N (0, (©%) /4).

Then
20 262

1552 and; 1—608921+52

sinf =
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and all the terms in Av;; can be written in terms of §. The small-angle approximation
appears in (6?), and also in the three equations for §. The small-angle approximation
leads to errors of up to 10% in Av;; at § = 7/4, and greater errors for § > 7/4 when using
the ¢ approximation. To avoid this, At can be set small enough to ensure \/@ < 5m/33
so that P(|0] > |r/4|) < 10%, but in the code § ~ N (0, (©?)) is used directly and only

the small angle approximation in equation (3.3) is retained.

3.2.3 Fusion of deuterium and tritium

The code has an option to include the T(d,n)4He fusion reaction. There are two versions
of inclusion of this reaction; one is a diagnostic mode and the other self-consistently
produces « particles by using up deuterium and tritium particles. The former is limited
to recording the rate of fusion reactions for the given conditions and comparing it to
a Maxwell-Boltzmann distribution with the same average energy. It does not remove
fused particles, nor does it release the energy or products of fusion. It is used only as
a convenient way to compare the instantaneous reactivity for a set of conditions. The
Bosch and Hale [60] parametrisation of both the fusion cross-section and the reactivity
for Maxwell-Boltzmann deuterium and tritium distributions with average temperature 7'
is used as the comparison value. The fusion reactivity for two particles ¢ and j (always

either deuterium and tritium, or tritium and deuterium) is

(oFvij) ://fi(Vz‘)fj(Vj)UF(Uij)UijdVide (3.4)

in units of volume per unit time, and the rate per unit volume per unit time is

dR . nin;
v 1+

The Bosch Hale reactivity is (opv;;)mp. Full details of the fusion parametrisation can be
found in Appendix C. Fig. 3.6 shows the code running with the diagnostic fusion output,
and there is good agreement with both the Bosch and Hale parametrisation (shown) and

other reference values [18] (not shown).

The second mode of operation, which is considerably more computationally intensive,
is one in which fusion reactions cause deuterium and tritium particles to be removed
and replaced with the charged fusion products (neutrons are neglected). A succession of
deuterium and tritium collisions takes place after the Coulomb scattering algorithm is
run in each timestep. The number and pairings are the same as with the Takizuka and

Abe Coulomb collision algorithm. Over all collisions the theoretical o particle number
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density for those simulation collisions is recorded;

na(t + At) = no(t) + or (vij)vigni(t)n; (t) At (3.5)

N,
Colls Colls

Fusion occurs for the two particles if, for a random U ~ (0, 1),

U < Pruse = 0r(vij)vi min{ng, n; }At

In the case of fusion, the particles are removed from interactions in the code and

- v,m; + ij]'

N m; + m;
which is the velocity of the centre of mass frame, is stored for each pair. « particles
are then created for every successful fusion collision. They are created as being isotropic
in the frame of the fusion collision, with F, = %mavg = 3.54 MeV, but are thermally

broadened by using the laboratory frame velocity
Valab. = Vo + V

If N fusion reactions occur, the new densities and number of simulation particles used

by the simulation are

No(t+ At) = N, (t) + N
ne(t + At) = w (N, (t) + N)

N;j(t+ At) = N;;(t) — N
n;;(t+ At) = w (N, ;(t) — N)

but equation (3.5) is also recorded. Note that the densities predicted by these two meth-
ods should broadly agree, but that (3.5) is continuously recorded and n,(t 4+ At) is based
upon the discrete number of collisions using a Monte Carlo process, and so is subject to
greater noise. The latter is used for the simulation in order to be consistent with the
number of « particles created. To ease computation, simulations using this mode of oper-
ation are always started with at least one « particle but, for a large enough total number
of simulation particles, the initial n, corresponding to this one particle is many orders of
magnitude less than that of other species of interest. Comparison against theory is similar
to in the first mode of operation, being given by the Bosch and Hale parametrisation of

the reactivity, (op(v;;)vij)ms. The updated values of the Maxwell-Boltzmann theoretical
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comparison after a timestep has passed are

no(t + At) = (or (vij)vij)meni(t)n; () At + na(t)
No(t + At) = (or(vij)vij)msni(t)n; (£) At /w + Ny (t)/w

An example of the code running with creation of «a particles is shown in Fig. 3.7, with
initial conditions of Maxwellian deuterium and tritium distributions with ng = n, =
2x 103 m=3, T, = T; = 10 keV and n, = 10?® m~3 corresponding to just one numerical
« particle. The predicted simulation n, is given by equation (3.5), but the actual value
is n, = wN, so is subject to statistical noise. However, the agreement between them is
good and improves as NN, increases. The agreement with the reference, the Bosch Hale

parametrisation of n,(t), is also good.

3.3 Tests

The code must be robust in producing known analytical results, and also in dealing
with arbitrary distribution functions. Various tests of its robustness are applied using an
averaged Coulomb logarithm. Another test may be found in Figs. 5.4 and 5.5 of Chapter

5, but is more relevant to the other work presented in that Chapter.

3.3.1 Landau-Spitzer theory

The Monte Carlo code is benchmarked against Landau-Spitzer theory [28, 29] (see Ap-
pendix B). The ratio of the rates of energy loss (vg), stopping power (vs), perpendicular
diffusion (v, ) and parallel diffusion () are shown in Fig. 3.8. The timestep is the mini-
mum over all species of 1/50v;;, where v;; is the basic relaxation rate defined in Appendix
B. Each data point is made up of over 40,000 test a particles in an electron-deuterium
background with roughly 4.5 million simulation particles. The agreement with Landau-
Spitzer theory is generally strong but does suffer from noise, and the rate of energy loss
goes through a discontinuity, as it changes sign, at (£) = T, with T the background
temperature. In A is held fixed in this simulation. The median values for all of the rates
are within 3%, and this increases to ~5% with a factor 5 decrease in particle number and

timestep.

Temperature equilibration is shown in Fig. 3.9, with ng =n, =2 x 10 m™ and T, =
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T.(t =0) = 0.5 keV, Ty = 1 keV. The rate of change of temperature is

dr,
5 = v (= T)

with 1/1-7]7 from equation (B.1). The route through temperature taken by the simulation
shows differences compared to Landau-Spitzer but the time taken to reach 90% of the
final temperature is the same to within 2%. The noise is statistical, while the differences
in route through temperature are probably due to slight departures from the perfect

Maxwell-Boltzmann distributions which the Landau-Spitzer theory assumes.

The resistivity of a plasma, p,,, is given by the generalised Ohm’s Law [28]. Adopting
the notation of Epperlein and Haines [61], and Braginskii [62], the transport coefficient

for resistivity is given by
(ene)2 E, = ouJ” = aybub,J” + OzLeuwbyew‘s“ngﬁ — ap€uy b7

where J, is current density, b, = B, /v/B,B" is the unit vector in the direction of the
magnetic field and €,,, is the Levi-Civita symbol. The Einstein summation convention
applies, so that repeated indices are implicitly summed over. In the limit of B, — 0,
o) = ay(0). Adopting this limit, restricting current density to the a-direction, and
assuming isotropic global variables otherwise, only the x components of the resistivity
tensor remain and p = p,, = E,/J,. Using simple first order transport theory without

electron-electron collisions, a scenario also known as the Lorentz limit, the resistivity is

—agie2 \2 [ [ -1
p=3men,~M( ¢ ) UO ?vﬁdv} (3.6)

e?2 \4dmeome. v

for f(v) the distribution function of the electrons. For a Maxwell-Boltzmann distribution,

there is an analytical expression:

2\ 2 3/2
-4 Ve T4 2

47eg 16e2 n, T;

The dimensionless transport coefficient for resistivity is ozﬁ, and is constructed as

T

c __
ap =
mMeNe

where

T

-1 _ 4\/ 27?’)% In Aie %'62 2
3 meTe? \4meg
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is the inverse of the mean electron-ion collision time. Fig. 3.10 shows the simulation value
of af in the Lorentz limit for a Maxwellian against the prediction of equation (3.7) with
the same conditions as the simulation, and also against the value listed in Epperlein and

Haines’ article [61].

3.3.2 Relaxation to equilibrium

Figs. 3.11, 3.12, 3.13 and 3.14 are snapshots of the relaxation of an initial delta function
relaxing to a Maxwellian. The initial beam is mono-energetic with f(E,t = 0) = §(E —
Ey), Ey = 1.5 keV and vt = v(t)t # v(t = 0)t. There is a significant change of scale
between the first three figures due to the initial rapid relaxation from f(E) = §(E£ — Ey).
Another useful check on isotropy is kurtosis, which is examined for an arbitrary direction

of velocity. Excess kurtosis is defined as k = jy/0* — 3, where

o = [ (02 = )" Fo) e,

is the nth centralised moment of the distribution function of v, and ¢ is the standard
deviation in the z-direction. It takes the value of zero for a (shifted) Gaussian, and its
evolution to zero from an initially negative value is shown in Fig. 3.15, with red vertical
lines marking the slices through time corresponding to Figs. 3.11, 3.12, 3.13 and 3.14.
The first two slices, at v(t)t = 0 and v(t)t = 1/5, are too close to distinguish on the scale
of the graph. (E) = 1.5 keV throughout, with a final temperature of T'=1 keV.
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Chapter 4

A Monte Carlo algorithm for

degenerate plasmas

4.1 Introduction

In this Chapter, a procedure for performing Monte Carlo calculations of degenerate plas-
mas is presented, and much of it is drawn from published work [63]. At the heart of
the degenerate Monte Carlo scheme is the code described in detail in Chapter 3, with
modifications which allow Fermi-Dirac distribution functions and scattering via a Pauli

blocked binary collision approximation.

Modelling degenerate plasmas is of interest in ICF, during compression of the cold fuel
and capsule shell [21, 40, 64] and for putting fusion energy more directly into ion species
[65], and in astrophysical situations such as white dwarf stars [41]. Relevant ICF problems
are degenerate thermal equilibration and the stopping of high energy ions by degenerate
electrons. Yield is particularly sensitive to electron-ion equilibration, with simulations
of direct-drive implosions showing a ~10% difference across several different models of
temperature relaxation [35]. The stopping power of degenerate electrons at very high
densities is also of interest in athermal fusion, a topic explored in §6.2.1. The algorithm is
benchmarked against degenerate electron-ion equilibration and the degenerate resistivity
transport coefficient from unmagnetised first order transport theory. The code is also

applied to the cold fuel shell and « particle equilibration problem of ICF.

It is not appropriate in the limit of very strong coupling because of the eventual break
down of the plasma theory underlying the Monte Carlo code in Chapter 3. It is noted that

Monte Carlo techniques with degenerate capabilities have been developed for studying

73
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transport in semi-conductors [66] but no such method exists for fully-ionised plasmas.
Some of the techniques described are potentially applicable to other types of codes, for
example, Particle-In-Cell (PIC) codes.

4.2 Degenerate plasmas

This discussion is with respect to degenerate electrons but the process is the same for any
fermion. Applying the anti-commutation relation for identical fermions to free electrons

gives rise to the Fermi-Dirac distribution [67];

3/2
fon(E)AE = (2m.) VEdE

= 4.1
2n h3m? eXp{T% —n}+1 (4.1)

where 7 is the degeneracy parameter. f(FE)dFE is normalised to 1, and the equation

3/2
/ (2m..) VEdE (42)

2n h37? exp{% —n}+1 -
defines 1 as a function of n. and T.. The occupancy function is the measure of the

proportion of states occupied at energy E, and is given by

1
Cexp{f —nt+1

Jo(E) = frp(E)/g9(E) (4.3)

where g(EF)dE = (22::;;:22 VEAE is the density of states between E and E4+dE. 5 — —o0
corresponds to the classical limit in which the distribution function becomes a Maxwell-
Boltzmann distribution. n — oo is the fully degenerate limit in which all of the particles
are at energies below or equal to the Fermi energy, Er, and the occupancy function

becomes a step function
g(E)=1, E<Ep; g(E)=0,E>FEp

where

By = - (3n7nc)

is the Fermi energy. For a non-Maxwellian distribution, temperature and average energy
no longer satisfy T, = % (E). In the case of the Fermi-Dirac distribution, particles retain
an energy even in the 7, — 0 limit as lower energy states have limited capacity and

become fully occupied, so that remaining particles occupy energy states higher than the
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ground state. In the zero temperature limit,

E
" and n — oo (4.4)

e

n—

There are many choices for the Coulomb logarithm, as specified in §2.3. Degenerate
modifications to In A are necessary because of the disparity between temperature and
average energy, and because degenerate plasmas tend to occur at high density. The code
does not explicitly require a particular Coulomb logarithm, and any could be used in the
algorithm, as long as it includes degeneracy effects. There are logarithms available which
include degeneracy corrections [68, 69]. In the simulations presented, Gericke, Murrillo
and Schlanges’ Coulomb logarithm number 6 [32] is employed as described in §2.3 but
averaged over all simulation particles. However, due to the possibility of encountering the
T. — 0 limit, T, is replaced by the ‘effective’ temperature defined by 77 = \/m
where T is the Fermi temperature Tw = Er. This is the same approximation as used by
several authors including Brown and Haines [70], and Brysk, Campbell and Hammerling
[71] who demonstrate that it matches Salpeter’s [72] relation, where the 7, — 0 limit
is avoided by multiplying by a factor I1/2(n)/1] (1), to within 5% for any n. I;(n) is the
jth complete Fermi-Dirac integral (see Appendix A),

L) = — /Oo —
TG )y et

4.3 Algorithm

The Monte Carlo code is adapted to include Pauli blocking and the ability to initialise
species with Fermi-Dirac distributions if required. As outlined in §3.2.1, distributions f(x)
which are everywhere integrable, can be integrated to the cumulative density function
C(x), and the cumulative density function inverted so that randomly generated values
of U ~ U(0,1) which are in the domain of C~!(U) generate values of x that occur with
frequencies determined by the original probability density function f(x).

The Fermi-Dirac distribution is not integrable so this process cannot be done analyti-
cally, and numerical methods of calculating the inverse cumulative distribution function
must be used. Numerical computations of energy values for initialising particles employ
Hormann and Leydold’s algorithm [73]. It requires evaluations of f(E), C(E) and initial
boundary conditions. The domain of C~*(U) is split into equally spaced sub-intervals
and a cubic Hermite polynomial H,(U) is used to interpolate values of E given U, with

C(E), <U < C(E);+1. Cubic Hermite polynomials have advantages over other methods
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of interpolation of the same order because they are a local approximation, rather than
a global one: if any interval does not reach the required level of approximation to the
inverse cumulative distribution function, new points can be inserted locally without re-
computing all interpolation points. Another advantage is that there is a relatively simple
algorithm, which terminates if f(E) is continuous, that can guarantee the monotonic-
ity of H,(U)V n by creating new interpolation points [74]. Linear interpolation is also
guaranteed to be monotonically increasing, but the number of points required for the
same level of approximation to C~!(U) is generally reduced by an order of magnitude or
more by using cubic interpolation [73]. For the entire interpolation process, the maximal
acceptable error

= C(H,(U))-U
v UG[g}fE{nHH ( ( )) |

can be specified, and intervals are split until this is satisfied for every n. The result is a
table of values of [U, = C(x,,), Tn, f(2,)].

With the creation of the table, values of U can be generated and the appropriately
distributed values of E found. An indexed search is used to speed up the process of
selecting an appropriate E for the given value of U [75]. Components of velocity are

selected, and for isotropic distributions the method is the same as described in §3.2.1.

Initialised Fermi-Dirac distributions relax to Maxwell-Boltzmann distributions without
Pauli blocking. To prevent this, all processes which lead to a change in a fermionic sim-
ulation particle’s energy, such as scattering or acceleration by an electric field, must be
subject to Pauli blocking. The blocking process must prevent electrons being scatter-
ing into an energy state E if that state is already occupied. The occupancy function,
equation (4.3), is the measure of the proportion of states occupied at energy E. f,(E)
takes values between 0 and 1 and, from the point of view of simulation, indicates whether
a particular energy changing process should be blocked or not. The probability of ac-
cepting a change in electron energy to final energy E’ should be P =1 — f,(E’) so that
fully occupied states admit no more particles. This is consistent with the (1 — fo(£"))
factor in the effective cross-section in equation (15) of Brysk’s derivation of degenerate
stopping and equilibration rates [76], and also in equation (7.1) of Brown and Singleton’s
Boltzmann collision operator with Fermi-Dirac statistics [69], which relaxes distributions
to Fermi-Dirac distribution functions. The probability of accepting a new energy state is
dependent on the degeneracy, so that the classical limit of n — —o0, f,(E') — 0V E’
is reproduced. Fig. 4.1 shows a Fermi-Dirac distribution generated by the code at the

start of a simulation, and its associated occupancy function.

To perform the Pauli blocking on changes in particle energy such that the final energy is

E’, the Monte Carlo simulation generates a random U ~ U(0,1) and uses the following
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procedure

block the change if U < f,(E');

’

For U ~U(0,1) and £’ (4.5)

accept the change if U > f,(E').

For two-body processes, such as fermion-fermion scattering, this has a natural extension;

with final energies F/ and EY, if,

U< fo(ED + fo(Eé) - fo(Ei)fo(Eé)

is true then the process is Pauli blocked. f,(E’) = 0V E’ for non-degenerate particles.
Fig. 4.2 shows that including the Pauli blocking algorithm maintains the Fermi-Dirac

distribution function.

The average electron energy is recorded from the Monte Carlo simulation. However,
diagnosing the electron temperature and degeneracy parameter from the average energy
is non-trivial. The method employed is to is calculate the probability density function
from simulation, fyc(F,)dFE, in a number of bins. Then T,, and therefore n by equation
(4.2), can be varied until the root sum of square differences between the simulation

distribution and the Fermi-Dirac distribution is minimised. The root sum of squares is

\/Z (Fuc(E)AE — f(Ey Toon)dE)?

A golden section search [57] is used for the minimisation of the root sum square, and
calculation of T,. Initial guesses of T* ~ T, and bounding values T,., and T, are

required for the golden section search, where Tr;, < T < Tax. As

_3VA T (2m.T.)"?

(By = VT2l p ) (4.6)
: 3 , 3
where lim (FE) = =-T,, and lim (F) = —Ep,
n—>—00 2 n—>00 5

T = \J(E)/3) — (2B, /5)"

is used as the initial guess, with Ty, and Ty, given, for example, by T*+10% respectively.
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Figure 4.1: The degenerate Monte Carlo algorithm producing a 0D3V Fermi-Dirac dis-
tribution of electrons, for T, = 100 eV, n, = 8 x 103 m™3 and n = 4.2. It is shown
against Maxwell-Boltzmann and Fermi-Dirac distributions with the same parameters.
There is good agreement between the analytic, and numerically generated, Fermi-Dirac
distributions. INSET: The occupation function sampled from the simulation distribution
function.
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Figure 4.2: Simulations of initialised Fermi-Dirac distributions after a few timesteps
both with (top) and without (bottom) Pauli blocking. The distribution with Pauli block-
ing matches the analytical Fermi-Dirac distribution with the same parameters, but the
distribution with Pauli blocking disabled relaxes to a Maxwellian.
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Figure 4.3: Equilibration with a range of starting electron and deuterium temperatures
and densities, classified by initial electron degeneracy, n. The ratios shown are of the
time taken to reach 90% of the final temperature as given by numerical simulation. Ratio
A is of the degenerate Monte Carlo equilibration rate to the degenerate equilibration
rate. Ratio B is of the degenerate numerical equilibration rate to the non-degenerate
equilibration rate. The numerical equilibration rate to non-degenerate equilibration rate
ratio for n = 8.1 is omitted as the non-degenerate electron temperature never reached
90% of the final temperature.

4.4 Tests

The rate of energy loss of an ion in a background of Fermi-Dirac electrons is given by

Brysk [76] as
(4.7)

dE; _4 ( gie )2 (3T. — 2E;) m?In A,
dt 4meq 3mm;h? (1 4 eM)

for degenerate conditions in which 7;/m; < T./m. with i representing ion species only.
It is the degenerate analogue of the Landau-Spitzer energy loss equation in Appendix B.
The Landau-Spitzer theory fails for weakly to strongly degenerate plasmas. Degenerate

electron-ion temperature equilibration is given by

d7;
= > vie(T. - T)) (4.8)

with

8 ( qie \’ 2In Ay
Vie =2 () ——e (4.9)
3 \4dmey ) mm;h3 (1 + e )

from equation (4.7).

Fig. 4.3 compares the non-degenerate rate, the degenerate rate, and the degenerate Monte
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Carlo algorithm for a range of degeneracies, with varying initial temperatures and den-
sities. The numerical equilibration rate to non-degenerate equilibration rate ratio for
n = 8.1 is omitted as the non-degenerate electron temperature never reaches 90% of the
final temperature. This is because it is implicitly assumed that 7T, = %(E)e in the non-
degenerate rate. The total energy in the degenerate case is higher though, as degenerate
particles retain an energy even in the 7, — 0 limit. In scenarios where 7 drops over
time, equation (4.6) forces T, to rise for fixed (E).. In a situation with 7}y > T, ¢, this
means that the classical T, y may never reach the same, or a fraction of the same, value as
in the degenerate case. An extreme case illustrates this more clearly; initial temperatures
of two species, ions and electrons, with T;o > T, give a classical end temperature of
Ty = (Tio+T1.p)/2 = T;0/2 for both electrons and ions. But if T, ¢ < Tr < T} and the
ions provide enough energy to force the electron distribution to become Maxwellian, the
end temperature will be Ty ~ (T 0+ TF)/2 > T; /2. The n = 8.1 data point has a lower
T;0/T. ratio than that at the highest n plotted, but 7%/T; ¢ is higher so the disparity in

final temperatures between the classical and degenerate cases is expected.

The agreement between the degenerate equilibration rate and the degenerate Monte Carlo
equilibration rate is good for a range of initial values of the degeneracy, but does show
variation. The origin of this variability is the inherent noisiness of Monte Carlo simu-
lations, but in general the models agree to within 3% of the theoretical value averaged
across all equilibration tests. There is a slight upward trend in Ratio A, that is the ratio
of the time taken to reach 90% of the final temperature of the Monte Carlo algorithm
relative to theory as governed by equation (4.8). This slight trend is probably partly
due to small errors in diagnosing 7, from the Monte Carlo simulation, and partly due to
evaluation of (4.8). In the degenerate theory, computation of new values of T, and 7 using
% from (4.8) self-consistently is non-trivial, and there are leading order corrections to
(4.9) which are of relative size ~T;m,/T.m;. All of these are sources of error which are
worse at high degeneracy, but which affect the time taken to reach equilibration only

slightly for regimes of physical interest.

To further verify the algorithm, it is applied to a problem with a known theoretical re-
sult; the resistivity of a degenerate plasma. The problem is restricted in the same way as
described in §3.3.1; it is first order, unmagnetised transport theory with isotropic tem-
perature and pressure conditions in which resistivity is simply given by p = E,/J, for a
current density in the x direction. The relevant integral is given by equation (3.6) but
with the Fermi-Dirac distribution function so that f(v) = f(E)dE/4rxd®v, and f(F) is
taken from equation (4.1). Unlike the Maxwell-Boltzmann resistivity for this scenario,
there is no analytical form of pgp so it is calculated by numerical integration for com-

parison against simulation in Fig. 4.4. In keeping with other literature and Fig. 3.10, the
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Figure 4.4: o given by the Monte Carlo algorithm against el for Maxwell-Boltzmann
and Fermi-Dirac distributions according to equation (3.6), with the same T,. Electron-
electron collisions are omitted and there is no blocking of the acceleration by the applied
electric field. The initial degeneracy is n = 2.5.

dimensionless transport coefficient for resistivity, aﬁ, is plotted in Fig. 4.4. For reference,
the equivalent ozﬁ for a Maxwellian is also shown. All three approaches are in the Lorentz

limit, and have no Pauli blocking of the acceleration by the electric field.

4.5 Results

A use of the code in a regime in which the theoretical rates presented are not applicable
is explored. There are situations in ICF in which the validity condition of equations
(4.7) and (4.9) are violated, for instance in the interaction between a population of fusion
produced alpha particles and a background of cold, dense electrons. The algorithm as
described is capable of modelling both of these features. Fig. 4.5 shows a situation with
parameters approximately similar to inertial confinement fusion; an isotropic distribution
of monoenergetic fusion produced alpha particles interacting with a cold fuel shell of
deuterium, tritium and electrons. In both simulation and theory, the a particles start as
a delta function with (4.7) being the appropriate theoretical comparison and (E,) = 3.54
MeV. Equation (4.9) produces the same result as (4.7) even as the distribution function
relaxes if the In A dependence on E; is ignored, as is common practice. This is because

the single occurrence of E; on the right hand side of equation (4.7) always yields (E); =
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Figure 4.5: An equilibration scenario with parameters approximately similar to inertial

confinement fusion. Only electrons and deuterons are shown. The analytical model is

that of the degenerate rate given by equation (4.7). The evolution of the simulation 7
over time is shown in Fig. 4.6.
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Figure 4.6: The degeneracy parameter of the numerical simulation in Fig. 4.5 over time
from an initial value of n = 3.2.
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[ fi(E)EAE when integrated over the ion distribution function. The energy spread of
« particles is less than 2% by 40 fs into the simulation. At the start of the simulation,
To/ma > T./m., and n = 3.2. The evolution of 1 is shown in Fig. 4.6. The main result
of the simulation is that more energy is deposited into ions, and less energy into electrons
at early times. At later times, the electrons become hotter than equation (4.7) predicts.
The electrons do not remain degenerate for very long, having n < —4 after just 10 fs, but
the initial difference means that the overall evolution is different, even when the electron
temperature is reaching keV from an initial background temperature of just 7" = 12.5 eV.
The deuterium is 33% hotter according to simulation, though the absolute difference is
small. More importantly, as electrons and ions will subsequently equilibrate, the electrons
are 21% hotter according to simulation and the absolute temperature difference of 0.34

keV is larger. Densities are ng = n; = 1.2 x 103 m= and n, = ng4/10.

This degenerate modification to a Monte Carlo code successfully reproduces theoretical
results for degenerate plasmas and can be used to study the microphysics of degenerate

plasmas in ICF.
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Chapter 5

Ion-ion inverse bremsstrahlung

5.1 Introduction

Bremsstrahlung, or ‘braking radiation’, of electrons is the process whereby an electron
emits energy in the form of radiation when being accelerated. In plasmas, this often oc-
curs in the field of the nucleus of an ion [27]. The reverse process, inverse bremsstrahlung
(IB) [77], also happens; an electron under the influence of an external electric field collides
with the nucleus of an ion, and its trajectory and momentum are changed. The electron is
undergoing diffusion in velocity space, and field energy is converted into electron thermal
energy. It is just one of many absorption mechanisms in the interaction of short pulse
lasers with dense matter, which in general depend upon many factors such as laser inten-
sity, electron density gradient, pulse shape, pulse polarisation, pulse incidence, electron
mean free path, and so on [78]. Electron-ion inverse bremsstrahlung (IB) is a common,
and often dominant, absorption mechanism in laser-plasma interactions with n. ~ n. and
10" W em™ pm? < IA2 < 10" W em™? pm?, with A, the laser wavelength measured in
microns. This Chapter examines whether inverse bremsstrahlung could allow ion species

with different charge-to-mass ratios to absorb energy directly from radiation.

The radiation considered is a linearly polarised electromagnetic (EM) wave. For a laser

pulse, the electric field has the form
E(x,t) = Eo(x) sin (wt + ¢)

where
B 21

2
Ey
C€g

is the square of the amplitude of the electric field, [ is the intensity of the laser pulse and

¢ is the initial phase. In the non-relativistic case, particles ¢ in a linearly polarised laser

85
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field have the equation of motion

dv;
mid—: = q;eEp sin (wt + ¢)

Taking Eq to be uniform in space, charged particles oscillate with

giekly

i(t) = —
vilt) = =7 =

cos (wt + @) + C' = voge cos (wt + ¢) + C' (5.1)

where C' is an integration constant. So

. gieko

UOSC -

m;w

As plasmas are opaque to electromagnetic waves with frequencies w < wpe, and wp, is
dependent on electron density, there is a critical density n/. above which material mostly
reflects incoming radiation. From the definitions, the critical density is

2
o W7 €M

n,=

e2

Relativistic mass increase of electrons occurs with high intensity lasers so that m, —
(v)me, where the Lorentz factor v = (1 — %)71/ % is averaged over all electron velocities.

A useful definition is that of the dimensionless electric wave strength parameter

eEO

MeWC

ag =

with m, the electron rest mass [79]. It measures the transverse momentum imparted
by an oscillating laser field upon an electron in units of m.c, and ag > 1 corresponds
to the relativistic regime. For linearly polarised laser beams (y) = /14 a2/2 and the

relativistically corrected critical density is

ne =n.{y) =n.\/1+a3/2 (5.2)

This increases the effective critical density if ag > 0, and subsequent references to critical

density are synonymous with the relativistically corrected version.

Isotropic distributions of electrons in a plasma as a function of speed, v, satisfy

/00 4rv? f(v)dv = n,
0
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Figure 5.1: Three theoretical super-Gaussians with different values of m; m = 2 is a
Maxwellian while m = 5 is the Langdon distribution.

The equilibrium distribution is given by the Maxwellian,

me \ 2 mev?
oo (5 5

21T, 2T,

Langdon first explored the eponymous non-Maxwellian distributions driven by electron-

ion inverse bremsstrahlung (IB) heating [53] in the absence of electron-electron collisions.
Subsequent work on IB [54, 80, 81, 82] showed that both laser absorption and thermal
conductivity [83] are reduced by Langdon distributions. The advanced treatments also
find that the inclusion of more physics in the kinetic equations, such as electron-electron
collisions, leads to a more general class of driven distributions which are self-similar.
Following Matte et al. [82], the isotropic distributions being driven by electron-ion IB
take the form

fm(v) = Crexp {= (v/vm)"}

where
Ne m

2 3Te F(S/m)
Me 47 T(3/m)v3,

Um = . T(5/m)

and; C,, =

['(z) is the gamma function defined in Appendix A and m € [2,5]. m = 2 gives the
Maxwell-Boltzmann distribution, m = 5 gives the Langdon distribution and any distri-

bution with m > 2 is known as a super-Gaussian, some examples of which are shown in
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Fig. 5.1. For electron-ion IB,

U2

a= ZZ»UL? and; m(a)=2+3/(1+1.66/a’™*)

with v2 = T, /m.. Other authors modified Langdon’s absorption rates for higher intensity
regimes [84, 85]. The persistence of super-Gaussians in laser heated systems has prompted

much work on super-Gaussian transport theory, particularly in relation to ICF [86, 87].

5.2 Ion-ion inverse bremsstrahlung (1IIB)

Figure 5.2: Schematic diagram of ion-ion inverse bremsstrahlung in the zero average
momentum frame. Two ion species (spheres) undergo an oscillation in velocity space
(solid lines) due to an applied field, followed by a collision in which they acquire a
component of velocity transverse to the original direction of the field (dashed lines).
Charge-to-mass ratios are inverse to the size of particle shown.

The difference in charge-to-mass ratios between species is key to the effect of IB absorp-
tion of laser radiation; it would hardly occur at all in a fully kinetic plasma consisting
of particles of identical charge-to-mass ratio in a perfectly spatially uniform but time
varying laser pulse. The absorption is not completely zero, for instance, with electrons,
the non-vanishing time derivative of the electron-electron quadrupole moment and rela-

tivistic electron mass increase are sources of (inverse) bremsstrahlung, but these effects
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are second-order [88, 89]. That the difference in charge-to-mass ratio gives rise to the
largest contribution to electron-ion IB implies the effect could also happen with ions of

different charge-to-mass ratios.

This process, ion-ion inverse bremsstrahlung (IIIB) absorption, is analogous to electron-
ion IB. Fig. 5.2 is a schematic of the process for a linearly polarised laser field in the
frame of zero average momentum (the zero momentum frame, or ZMF), showing that
ions individually gain extra kinetic energy from their collisions during oscillation by the
field. I1IB was first recognised by Mjolsness and Ruppel (M&R) [90] under the guise of
driven collisional ion heating; the term IIIB is adopted in this work. Many of the tools
developed to study electron-ion IB are based on m./m; < 1, with ion masses taken to be
infinite in some treatments. These approaches will not be useful for ITIB, and a full kinetic
treatment of all ion species is required. The smaller differences in charge-to-mass ratios
between ion species, relative to electrons and ions, mean that much higher intensities are
likely to be needed if significant heating due to IIIB absorption is to occur. I1IB begins
to happen with I ~ 10" — 10%> W ¢cm ™2 for which intensities electrons are very much in

the relativistic, and possibly in the QED, regime.

The huge advances in high power lasers have opened up this regime of high intensity laser-
plasma physics. Phenomena such as relativistic transparency, ion acceleration to ~MeV
energies [91, 92, 93], and enhanced absorption of laser energy [94], have been observed.
Focused intensities of up to 102 W cm™? have been demonstrated [95], and the next
generation of lasers will increase this by an order of magnitude [39]. Electron-positron
pair-production, either by counter-propagating laser beams [96, 97, 98], or by striking an

2 and

overdense solid [99], are expected to occur with focused intensities of 10?3 W cm™
above, bringing laser-plasma interactions into a regime in which quantum electrodynamics
(QED) theory must be included, and ag > 100. Access to this high-intensity regime
is only currently available with short pulse lasers having durations of femtoseconds or
picoseconds. Pulse shape becomes an important consideration for such short timescales,

and the physics of the interaction becomes very complex.

ITIB is different to many of the other processes considered in this regime as it deposits
energy directly into ion species; most absorption mechanisms primarily heat or acceler-
ate electrons with ions subsequently gaining energy via either space-charge fields or by
electron-ion equilibration. Anything which changes ion energies, or distribution functions,
could have an effect on processes associated with laser-plasmas including fusion (particu-
larly in direct-drive ICF [100] and beam fusion [101]), transport theory, and applications

which require very monoenergetic ion sources e.g. hadron therapy [102].

M&R consider two ion species in a spatially uniform, time varying but unenveloped (no

overall temporal shape) linearly polarised laser pulse. Electron motion and equilibration




90 Chapter 5. Ion-ion inverse bremsstrahlung

are ignored and the distribution function of the ion species is assumed to satisfy

filv) = ( o )3/2 exp { — 2V — Ve cos(wt + ) } (5.3)

27T 2T

with T} the temperature in the ZMF. Unless otherwise stated, temperatures are always
given in the ZMF. A VFP equation is solved for the evolution of the two ion temperatures
as a function of time and laser intensity and approximate equations for the time taken
to heat ion species to a particular temperature given. The initiation of thermonuclear
fusion is considered: a CO, laser with I = 4x 10 W cm ™2 delivering 50 kJ in ~10~'" s is
predicted to heat deuterium and tritium ions to 7" > 4 keV. There are currently no laser
systems which could satisfy these conditions. IIIB is worth revisiting with knowledge
of modern laser systems which can typically deliver higher intensities over shorter times
than M&R foresaw.

The exploration of IIIB extends the work of M&R in several ways: there is no constraint
on the distribution function of the ions, temporally non-uniform pulse shapes are used,
and the effects of using more than two ion species are numerically simulated. M&R do
suggest that mixing of three ion species could lower the constraints on laser power, but

the VFP model they use does not allow quantitative evaluation of the effect.

As the interactions and absorption mechanisms of this regime of plasmas are so complex
in the high intensity regime, the effect of IIIB is studied in isolation from other processes
and ignoring depletion of the energy in the field, though physical situations where I11B

might occur are briefly discussed in §5.3.

5.3 Occurrence of II1I1B

There are several situations where II1IB might occur, essentially they rely on space-charge
fields due to electrons being absent for long enough for IIIB heating to take place. Mag-

netic fields are not considered for ions as v; x B < E.

One obvious way to remove the complexity of electrons is to remove the electrons them-
selves, as with a laser pulse striking a non-neutral plasma comprised entirely of ions.
The collisionless skin depth is larger due to the absence of electrons, becoming Ag = w;
and wy; ~ wpe\/m with n;Z; ~ n.. However the densities of such plasmas are

extremely limited [103], being of the order of 10! ions per cubic metre. The cylindri-

cal volume heated is restricted in radius by the beam waist and in length by either the

Rayleigh range, zg, or the ion collisionless skin depth, depending on the ion density.
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Assuming A = lum, zp < Ay for realistically achievable densities. Non-neutral plasmas
have very long confinement times, and there are few loss mechanisms at work in a pure ion
plasma, the most obvious being ion-ion bremsstrahlung emission. The ion temperature

could be diagnosed from this emission, or by using a long-pulse probe beam.

Laser pulses propagating into dense gas jets could provide a scenario where IIIB occurs,

but this is not considered.

A third scenario is a linearly polarised electromagnetic (EM) wave orthogonally incident
on a foil assumed to be ionised (even for high Z ions). There are several recognised mech-
anisms for ion acceleration in such a scenario; target normal sheath acceleration [104],
radiation pressure acceleration [93], ‘breakout afterburner’ [105], and Coulomb explosion
[106]. The range of intensities specified covers all of these acceleration mechanisms but

the predominant interest is in I > 102 W cm ™.

For a foil with thickness I on the order of the collisionless skin depth Ay = ¢/wpe and
density n., the dominant regime is then Coulomb explosion, or directed Coulomb explo-
sion [107] in which some ‘light-sail’ radiation pressure acceleration occurs [92]. A laser
incident on a thin foil evacuates electrons from the focal spot via the ev, x B force,
leaving ions behind and setting up a charge-separation field parallel to the direction of
laser propagation of Ej = en.l/(2¢;). lons are subsequently accelerated by this field and
gain an energy of the order of the Coulomb energy [108], E; &~ m.c?a?. This acceleration
takes time, during which the EM field of the laser is still interacting with the ions, and
the ions mostly obtain directed, rather than thermal, energy as they are accelerated in

the direction of the charge-separation field.

For thin foils with | &~ Ay it can be assumed that the field is constant over a cylinder
which is as long as the foil itself, and which has a radius of approximately a few A.
Heating by ITIB absorption would have to act before the Coulomb explosion of the ions
causes them to be ejected from the focal spot of the laser, and before the ion density
drops significantly below its initial value of n;(t = 0). This assumes a high-contrast laser
pulse. It is important to know just how long the ions remain before being ejected from
the focal spot. Fourkal et al. [106] note that the acceleration time for protons is relatively
long, t ~ 100/w,., and they develop a model for both the position and density of ions over
time. Even for I ~ 10** W cm™? at the relativistic critical density, 1/ wpe 1s roughly 60 fs.
An ion density drop by an order of magnitude would change the interaction significantly;
Fourkal’s expression implies that this does not happen for a 30 fs pulse on a thin foil
until the pulse is finished. Bulanov et al. [102] estimate that 1/w,; is the explosion
time, which means protons explode by time \/§ Jwpe. The times are more restrictive

for high Z. Taking these limitations into consideration, the analysis of IIIB for a laser
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striking a thin foil should be restricted to pulse lengths of 30 fs or below, ensuring the
interaction between ions and the EM wave is still taking place at a density sufficiently
close to n;(t = 0), and that the electric field transverse to the beam motion is dominated
by the laser field, E, rather than the space-charge field Ey.. The space-charge field and
acceleration are not prohibitive to the heating mechanism as long as E - E;. =~ 0 and the
bulk velocity gained by the ions is predominantly longitudinal. Tons must not be ejected

from the focal spot by the laser oscillations: the field parallel displacement is given by

GE()Z'

i — Zz —
el =745 x 10 2°Aizi\/(l /W em™?) m

)=

where any thermal velocity is ignored and A; is the mass number of ion 7. For deuterium
with 7 = 10%* W em™2 and A = 1pum this is 12nm, much less than the focal spot size
which is on the order of A\. For such high intensities, any fusion produced a particles
emitted anti-parallel to the field would be temporarily trapped. Transport effects, such
as hotter ions losing energy to neighbouring, colder plasma regions are ignored in this
simple model of a transiently non-neutral ion plasma. It is possible that two counter-
propagating beams incident on a thin foil such that the ev, x B force is eliminated could
also give enough time for II1IB to occur. In practice, beams are not perfectly spatially
uniform and typically have a Gaussian spatial profile across the focal spot. This creates

a gradient in the electric field, i.e. E = E (x). The ponderomotive force,

F, V,EYE,

4mew?
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