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Abstract  

Many problems in structural mechanics involve complex principal stress fields that are 

not orthogonal to the geometric axis of the structure. Such problems are often analysed 

with finite elements, but the quality of a finite element solution may be sensitive to the 

orientation of the mesh with respect to the principal axes of stress. This paper presents 

the outline of a procedure to generate well-structured inclined quadrilateral finite 

element meshes for the analysis of thin plate and shell structures. The procedure was 

developed using the commercial FE pre-processor ABAQUS CAE and the Python 

script language, though it may readily be applied in any pre-processor which supports 

an external scripting functionality.  

 

A set of mesh convergence studies using linear buckling analyses are presented on four 

benchmark problems with known analytical solutions to illustrate the effect of inclined 

meshes on the accuracy of the computed solution. These illustrations are intended to 

raise an awareness of the subtle but important relationship between mesh and stress 

field orientation and are presented for the benefit of practising finite element analysts 

in structural engineering.  
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1. Introduction 

The behaviour of plate and shell structures is widely recognised to be among the most 

complex of all classical structural forms. This complexity originates primarily from the 

tendency of such structures to buckle into a deformed shape at a load that is highly 

sensitive to many aspects of the structure and thus difficult to predict with certainty. 

Unsurprisingly, finite element modelling of these structures comes with many 

associated challenges and pitfalls for the unwary [1,2,3], a few of which are illustrated 

in this paper. 
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Fig. 1 – Illustration of a shear buckle in a regular mesh of rectangular elements 

 

The buckling of beams and columns mostly involves relatively simple uniaxial stress 

states. By contrast, many practical problems in plate and shell buckling involve 

complex three-dimensional stress patterns and localised stress conditions. For example, 

the buckling mode of plates and shells that are essentially rectangular in form may be 

in shear at a location associated with a local load introduction or a boundary feature 

such as a support, stiffener, hole or penetration. This is illustrated qualitatively in Fig. 

1 with a simple finite element model showing the typical buckling behaviour of a 45° 

cylindrical panel in a silo with engaged columns. The downward action of the friction 

between the stored granular solid and the silo wall is represented as a uniformly 

distributed vertical load acting on the surface of the panel, which subjects it to global 

shear. The finite element mesh consists of rectangular shell elements that are 
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orthogonal to the geometric axes of the panel, which is the natural way of modelling a 

structure of this kind. It is clear that the resulting global shear buckling mode is caused 

by principal stresses that are not aligned with the axes of the geometry and the mesh. 

This situation provokes the question of whether a rectangular mesh of elements that are 

aligned with the principal axes of stress systematically produces more accurate 

descriptions of the same behaviour. The answer naturally depends on the shape 

functions assumed in the formulation of the finite element.  

 

The issue raised in the above illustration is relevant to many situations where a shell 

structure is subject to unsymmetrical load patterns which inevitably result in local 

shear stress fields. These include, but are not limited to, cylindrical shells under 

meridional 'strips' of load [4,5,6,7], cylindrical silos and conical hoppers under 

eccentric discharge [8,9,10,11], cylindrical silos under wind pressures [12,13], silos on 

bracket supports [14], cylindrical tanks subject to differential settlement [15] and 

axially-compressed cylinders with cut-outs [16]. Additionally, global shear buckling 

modes arise in the modelling of cylindrical tanks subject to transverse shear [17,18] 

and torsion [19,20] which can arise under seismic action. These are but a small portion 

of the publications available on each respective topic. However, in each of those 

mentioned here, the authors modelled their respective structures using regular meshes 

of rectangular elements in the style of Fig. 1 and no mention is made of whether this 

mesh orientation is indeed the optimal one for the given context. 

 

Methods of adaptive meshing and the effects of mesh anisotropy are intensive research 

areas in mechanics. The majority of the effort appears to focus on the field of 

computational fluid dynamics where the modelling of turbulence is particularly 

computationally intensive and mesh optimisation is crucial [21,22,23]. A number of 

recent studies have suggested that finite elements often have a 'preferred' net 

orientation with regard to the contours of a particular field variable. For example, 

D'Azevedo [24] found that changing the orientation of grids of first order triangular 

and quadrilateral elements may yield an order of magnitude improvement in accuracy 

when interpolating convex functions. Troyani et al. [25] found that the orientation of a 

mesh of regular triangular elements has a significant effect on the solution accuracy of 

solid sections under torsion and on the magnitude of the calculated shear stresses. 

Hamide et al. [26] modelled arc welding on a steel plate using a thermo-mechanical 
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analysis with adaptive meshing and found that triangular elements become stretched 

orthogonally to directions of steep temperature gradients while El khaoulani and 

Bouchard [27] applied an automatic mesh adaptation method to model cracking in 

tensile tests of aluminium rods and similarly found that triangular elements eventually 

rearrange to become stretched orthogonally to directions of steep strain gradient. Both 

of the preceding cases effectively lead to an overall mesh rotation. Unfortunately, 

adaptive meshing algorithms are typically complex to implement using commercial 

software, often requiring an a posteriori estimate of the global error, and are beyond 

the expertise of most structural designers. Also, adaptive meshing is usually limited to 

triangular elements which are relatively insensitive to further distortion due to changes 

in nodal coordinates, unlike quadrilateral elements which perform optimally when their 

geometries are close to square and are widely favoured for structural buckling 

analyses. 

 

In structural and solid mechanics, the meshing algorithm in a typical finite element 

pre-processor generates quadrilateral elements that, by default, conform to the primary 

axes of the geometry of the structure.  This usually results in a speedily-generated and 

well-conditioned regular mesh suitable for the analysis of most classical problems in 

structural engineering. Irregular geometries tend to be filled in with numerically-

inferior but geometrically more versatile triangular elements, typically using Delaunay 

triangulation algorithms (e.g. [28,29]). As hypothesised above, the quality of 

predictions in certain problems with relatively simple geometries could benefit from a 

non-standard mesh orientation of regular quadrilateral elements, especially if it places 

the axes of the element in a more favourable orientation relative to the principal axes of 

stress. Additionally, such ‘inclined’ meshes may even enable the use of regular 

quadrilateral elements to model more complex geometries which would otherwise need 

to be meshed freely with lower-order triangular elements. This is especially important 

in nonlinear stability analyses in structural engineering where much is gained in terms 

of accuracy by using quadrilateral and higher-order elements [30,31]. 

 

This paper presents an outline of a procedure for inclined meshing and illustrates its 

effect on two simple geometries: a 2D plate and a 3D cylindrical shell. The numerical 

consequences of inclined meshes of first order elements are subsequently explored 

through mesh convergence studies on four classical linear bifurcation problems taken 



Published in: Finite Elements in Analysis and Design, 73C, 42-54. 

DOI: http://dx.doi.org/10.1016/j.finel.2013.05.004 

from the elastic stability theory of thin plates and shells. These four benchmark 

problems involve a rectangular plate under uniform compression and under uniform 

shear, and a cylinder under uniform axial compression and under uniform torsion. The 

method of mesh generation suggested here may be generalised to other geometries and 

element types, such as 3D solid continuum elements, or even to corresponding 

problems involving thermal, electric or potential fields. Further, although the meshing 

procedure is illustrated using the ABAQUS CAE [31] pre-processor, it may be readily 

implemented in an analogous manner in any other software that supports an external 

scripting functionality (e.g. ANSYS, FEMAP/NASTRAN, COMSOL etc.). 

 

2. Inclined meshing with shell elements 

2.1 Thin 2D rectangular plate 

The task of generating an inclined mesh in a finite element pre-processor is not trivial. 

For a rectangular 2D geometry, the meshing algorithm will automatically generate a 

mesh of quadrilateral shell elements that are orthogonal to the axes of the rectangle. If 

an inclined mesh is desired, it is necessary to begin by partitioning the rectangle into an 

inclined orthogonal grid (Fig. 2) to force the meshing algorithm to conform to the axes 

of this grid rather to that of the original rectangle. This type of partitioning may be 

undertaken manually within a commercial finite element pre-processor, but it is less 

tedious when the process is automated with appropriate use of scripting. Scripting in 

ABAQUS is done with the Python object-based programming language, whereas 

ANSYS and COMSOL use APDL and Matlab-like scripting respectively. 

 

The partitioning procedure is initiated by generating corresponding pairs of horizontal 

and vertical reference points in the plane of the rectangular surface, as illustrated in 

Fig. 2a. The line joining each corresponding pair of points forms an angle α with the 

horizontal axis. The reference points need not be physically on the surface of the 

rectangle that is to be meshed, but they should be positioned so that lines joining any 

ordered pair of reference points dissect the rectangle entirely. The full partition grid 

should then be generated gradually line by line (Figs 2b & 2c). The user should take 

care in the script to update the geometry of the rectangular surface after every such 

partition and assign it to memory. Otherwise subsequent partitions will be applied on 

the original unpartitioned surface leading to the wrong outcome. Once the rectangular 
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surface is fully partitioned, the nodes may be seeded and the mesh generated in the 

usual manner. The majority of the rectangular surface is thus meshed with orthogonal 

quadrilateral shell elements having the appropriate angle of inclination to the 

horizontal, while minor irregular regions near the boundaries may be filled in with 

triangular elements with the same order of shape function. The adverse effect of these 

irregular regions naturally diminishes as the mesh resolution is increased. A reasonable 

spacing between adjacent datum points is sufficient to ensure a correct mesh 

orientation, even for finer meshes. It is not necessary to generate very fine partitioning 

in order to obtain a fine mesh. 

 

 

α 
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according to vertical  

datum points 

 

c) Second pass - partitioning 

according to horizontal  

datum points 

 Key: 

Horizontal datum points 

Vertical datum points 

 

Internal partition line 

External parition line (ignored) 

α 
 

Angle of inclination  

Fig. 2 – Progressive partitioning of a 2D plate into a well-structured inclined 

orthogonal grid 

 

2.2 Thin 3D cylinder 

The method of meshing a 3D cylinder with inclined regular quadrilateral shell 

elements is significantly more complex due to the additional dimension. If to imagine 

the 3D cylinder as a rolled-up 2D rectangular strip, a mesh could be generated on the 

2D rectangle in a manner similar to Fig. 2 and then mapped onto the 3D cylinder by an 

appropriate transformation, a method known as parametric meshing [28]. Though this 

would be the most efficient technique, commercial pre-processors do not support 

parametric meshing (i.e. a surface can only be meshed directly). It is thus again 
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necessary to employ creative partitioning to force the meshing algorithm to conform to 

the axes of an inclined curvilinear grid, rather than of the original cylinder. This is 

achieved by partitioning the 'face' of the cylinder according to a family of adjacent 

orthogonal helices. Scripting is essential here. 

 

A helix H of radius r may be defined by specifying either its angle of inclination to the 

horizontal axis α or the number of turns np (not necessarily integer) per length L. These 

are related by: 

2 tanpL rnπ α=          (1) 

Let a helix H1m be generated parametrically as follows ( 1 10, 2 pnθ π ∈   ): 
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A second helix H2m, orthogonal to the one above, may then be generated by 

( 2 20, 2 pnθ π ∈   ): 
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In the above, P1 and P2 represent the pitch of helices H1m and H2m respectively which is 

the change in the global z coordinate per 2π radians of the circumferential parameter θ1 

or θ2. The subscript m indicates that this is the m-th such pair of orthogonal helices, 

each pair being positioned at a circumferential offset θm given by: 

2
m m

M

π
θ =  where [ ]0, 1m M∈ −  for a total of M pairs of orthogonal helices (4) 

 

The partitioning procedure begins by generating datum points at the coordinates of the 

first H1m helix (Eq. 2) with m = 0 (Eq. 4). The cylinder is partitioned incrementally and 

in 'real time' according to the helical curve that is gradually generated on the cylinder 

'face' between two immediately adjacent datum points along the same helix. The same 

operation is performed on an M number of H1-type helices, each separated by a 

circumferential offset of 2π/M (Eq. 4). The procedure is then repeated on a further M 

number of orthogonal H2-type helices (Eq. 3). The resulting partition is illustrated in 
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Fig. 3 for an inclination angle α of 45°. Once the cylinder surface is fully-partitioned, 

the mesh may be generated in the usual manner. Irregular regions near the top and 

bottom boundaries of the cylinder may be filled in with triangular elements of the same 

order. This procedure may become computationally expensive with very fine mesh 

resolutions. 

 

 

Fig. 3 – Progressive partitioning of a 3D cylinder according to orthogonal helices 

 

3. Benchmark Test #1: linear buckling analysis of a thin 2D plate 

under uniform axial compression 

The first benchmark test to be considered was the linear-elastic buckling analysis of a 

thin plate subject to uniform in-plane compression along one pair of opposite edges, 

with pinned boundary conditions along all edges to prevent out-of-plane 

displacements. The classical thin-plate buckling solution [32,33] for this load case 

gives the critical shell edge load Ncl as: 
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Fig. 4 - System geometry and critical bifurcation mode for the plate under uniform 

axial compression  

 

In Eq. 5 above, m is the wavelength parameter which should be chosen to minimise k. 

This is usually achieved by taking m as the aspect ratio a/b rounded down to the 

nearest integer.  For an aspect ratio of 2, the correct linear bifurcation mode is a single 

sine half-wave in the direction transverse to the applied load (x) and a full sine wave in 

the direction parallel to the load (y). The parameters E, ν and t represent the elastic 

modulus, Poisson's ratio and the plate thickness respectively. The numerical model, 

boundary conditions and critical buckling mode are illustrated in Fig. 4. The analyses 

were performed using ABAQUS v. 6.10.1 [31]. 

 

Quadrilateral-dominated meshes of increasing resolution were generated assuming 

inclinations of α = 0, 15, 30 and 45 degrees to the horizontal using the partitioning 

procedure described previously. It may be seen in Fig. 5 that the ABAQUS CAE 



Published in: Finite Elements in Analysis and Design, 73C, 42-54. 

DOI: http://dx.doi.org/10.1016/j.finel.2013.05.004 

meshing algorithm has trouble generating 'clean' inclined meshes for coarse element 

sizes, a problem that diminishes as the mesh resolution is increased. The most regular 

meshes were obtained for α = 0° and 45°. The meshes were chosen to consist of the 

ABAQUS S4R general-purpose 4-node reduced-integration shell elements, with 

triangular S3R elements as filler for the irregular boundary regions. The shear-flexible 

S4R element is widely used in computational studies within the shell buckling research 

community. Each mesh thus consisted of elements with a consistent order of shape 

function. An elastic modulus of E = 200GPa and a Poisson's ratio of ν = 0.3 were 

assumed, while the width to thickness ratio b/t was taken as 100. The results of the 

mesh convergence study are presented in Fig. 6 as the plot of the percentage difference 

between the numerical solution NFE and the classical solution Ncl (Eq. 5) against the 

total number of the degrees of freedom (dofs) in the model. This information is 

presented in an alternative manner in Fig. 7 with the inverse of the number of dofs on 

the horizontal axis, possibly a clearer way of showing a variation with a dependent 

variable that tends to infinity. A number of observations may now be made.  

 

Firstly, the numerical solution converges to a limiting value that is approximately 0.7% 

below than the classical result. This difference may be attributed to the fact that the 

formulation of a shear-flexible shell finite element is more complete with respect to the 

kinematic relations than what is assumed in the analytical treatment which is based on 

a Kirchhoff thin-plate approximation [30]. The difference is very small because of the 

particularly simple pre-buckling stress state governed solely by membrane equilibrium 

with the applied load and involving no plate bending (where the kinematic relations 

would play a more important role). Further, the plate assumed in these analyses has a 

b/t ratio of 100, which is not very thin, thus a discrepancy of this order of magnitude is 

to be expected. Indeed, a set of additional analyses on a plate with b/t = 1000 revealed 

a much smaller limiting difference of approximately 0.05% and a similar outcome in 

terms of the effects of mesh orientation.  
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Fig. 5 - Increasingly fine inclined finite element meshes used for the analysis of the plate 

 



Published in: Finite Elements in Analysis and Design, 73C, 42-54. 

DOI: http://dx.doi.org/10.1016/j.finel.2013.05.004 

Secondly, the convergence occurs 'from above' as a consequence of the Rayleigh-Ritz 

principle [34]. As stated above, the pre-buckling stress state in this structure is 

completely dominated by membrane equilibrium with the applied axial compressive 

load. The destabilising stresses are thus evaluated 'correctly'. However, the 

displacement field of the finite element model is a piecewise linear approximation to 

the 'real' solution, an over-constraint which inevitably leads to an excessive stiffness in 

the system. In order to compensate for this additional stiffness, the critical buckling 

load will be higher than it should be and will therefore converge to the correct value 

'from above' as the mesh resolution increases. 

 

 

Fig. 6 - Mesh convergence with total dofs for the plate under axial compression 
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Fig. 7 - Mesh convergence with inverse of dofs for the plate under axial compression 

 

Lastly, meshes inclined at 15° and 30° performed only marginally worse than the 

regular rectangular mesh (α = 0°), suggesting that the accuracy of the solution or the 

rate of convergence is not very sensitive to the mesh orientation. The exception to this 

proved to be the mesh inclined at 45°, which performed particularly poorly. For 

example, 87% and 103% more dofs were required to achieve 2% and 1% errors 

respectively with the limit value for α = 45° than for the regular rectangular mesh. The 

reason for this is that elements with α = 45° are subject to pure shear when the plate is 

under uniform axial compression. These results therefore support the hypothesis that 

the orientation of the elements with respect to the principal axes of stress may be an 

important consideration in the finite element modelling of problems in structural 

mechanics, since there may exist a particularly unfortunate orientation at which the 

convergence of the inclined mesh will be at its worst. 

 

4. Benchmark Test #2: linear buckling analysis of a thin 2D plate 

under uniform shear 

The second benchmark test to be performed was the linear-elastic buckling analysis of 

a rectangular plate under uniform edge shear. The classical solution gives [32,33] the 

critical value of edge shear Nxy,cl as: 
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2
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The above value of k is based on an approximate solution to a complex minimisation 

problem and is known to have an error of the order of 1% (further details may be found 

in the above reference). The geometry, boundary conditions and critical linear buckling 

mode for this problem are illustrated in Fig. 8. The same types of meshes were 

employed using ABAQUS as for the first benchmark test (Fig. 5) with the same 

assumed angles of inclination. 
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Fig. 8 - System geometry and critical bifurcation mode for the plate under uniform 

edge shear 

 

The results of the mesh convergence analyses for the plate under uniform edge shear 

are presented in Figs 9 and 10 in a similar manner to the plate under axial compression. 

The convergence of NFE/Nxy,cl occurs 'from above' for the plate under shear, for similar 

reasons as for the plate under axial compression. The analyses for the plate with b/t = 

100 converge to a limiting value that is approximately 1.2% lower than Eq. 6, while a 

complementary set of analyses performed on a much thinner plate (not shown) with b/t 
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= 1000 converges to a limiting difference of approximately 0.8% while exhibiting a 

similar relationship with the mesh orientation. These values are consistent with the 

order of magnitude error that Eq. 6 is known to have [32]. The smaller limiting 

difference for b/t = 1000 may be explained by the fact that such a thin plate 

corresponds more closely to the Kirchhoff thin-plate assumptions of the analytical 

solution (Eq. 6) than a plate with b/t = 100. 

 

In direct contrast to the plate under axial compression, the regular mesh (α = 0°) now 

exhibits the slowest rate of convergence because for this particular system the 'default' 

mesh orientation subjects the elements directly to pure shear and thus requires the 

finest meshes to achieve a desired accuracy. The best performance was found in almost 

equal measure for the meshes with α = 30° and 45°, whose inclined elements are 

closest to being orthogonal to the midline through the buckle which is at tan
-1

(a/b) = 

tan
-1

(2) ≈ 63° to the horizontal. In particular, the regular mesh with α = 0° required 

40% and 45% more elements than α = 45° to achieve a 2% and 1% error respectively 

to the limit value. Interestingly, even an inclination of 15° already exhibits a noticeable 

improvement in performance over the regular mesh with α = 0°, requiring only 14% 

and 20% more elements than α = 45° to achieve the same respective percentage errors 

as noted above. This is significant because many finite element analysts may use the 

regular rectangular mesh for this problem simply on the basis that the plate is also 

rectangular and without being aware that this most obvious 'default' mesh orientation is 

also the least suitable for this particular problem.  
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Fig. 9 - Mesh convergence with total dofs for the plate under edge shear 

 

 

Fig. 10 - Mesh convergence with inverse of dofs for the plate under edge shear 
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5. Benchmark Test #3: linear buckling analysis of a thin 3D cylinder 

under uniform axial compression 

The next benchmark test to be performed was the linear buckling analysis of a 3D 

axisymmetric cylinder under uniform axial compression. This is a ubiquitous standard 

case in the analysis of thin cylindrical shells and one with a well-understood, albeit 

complex, behaviour. The classical solution [32,33] for the critical axial load Pcl, 

assuming pinned boundary conditions at either end, is given by:   

2cl clP rtπ σ=  where 

( )23 1
cl

Et

r

σ

ν

=

−

      (7) 

 

In the finite element model, the load Pcl was applied through a reference point linked to 

the nodes of one end of the cylinder by a rigid body kinematic coupling, which also 

ensured that this end remained circular during the analysis. This reference point was 

then restrained against radial and circumferential displacement. The other end of the 

cylinder was left unloaded but restrained against all displacements. The shell was free 

to undergo axial rotation at either end. The cylinder was assumed to have an aspect 

ratio of l/r = 7 (i.e. 'medium' length) and a radius to thickness ratio of r/t = 100. The 

critical buckling mode is predicted analytically to be a global 'chequerboard' pattern 

with approximately ncl ≈ 0.909√(r/t) ≈ 9 square waves around the circumference, 

though in fact very many modes are almost simultaneously critical for this load case 

[2,35]. An elastic modulus of E = 200GPa and a Poisson's ratio of ν = 0.3 were again 

assumed. First-order finite element meshes (ABAQUS shell elements S4R + S3R as 

filler) of increasing resolution were generated with angles of inclination of 0, 15, 30 

and 45 degrees to the horizontal according to the helical partitioning procedure 

described earlier. 
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Fig. 11 - Mesh convergence with total dofs for the cylinder under uniform axial 

compression 

 

 

Fig. 12 - Mesh convergence with inverse of dofs for the cylinder under uniform axial 

compression 

 

The convergence of PFE/Pcl is illustrated in Figs 11 and 12. The analyses converge to a 

critical value that is approximately 2.3% lower than the analytical solution Pcl (Eq. 7). 
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This difference may again be attributed to the fact that the analytical solution is based 

on the 'Donnell' form of equilibrium equations with simplified kinematic relations 

appropriate for 'thin' shells [36], whereas the formulation of the general-purpose S4R 

shell finite element includes more complete kinematic relations. The helical mesh 

inclined at α = 45° exhibits the slowest convergence and the least accurate prediction 

of the critical buckling load because the elements are subject to pure shear, consistent 

with the behaviour of the axially-compressed plate (Figs 6 and 7). However, the 

regular mesh with α = 0° achieves a superior accuracy with fewer elements only at 

first, and eventually the meshes with α = 30° and 45° require 70% and 54% 

respectively fewer dofs than α = 0° to achieve a 1% level of error with the limit value. 

This suggests that the optimal mesh orientation for this deceptively simple load 

condition may actually be an inclined one. It is not immediately clear why this is so. 

 

An even more curious finding, and one that is harder to explain, is why meshes with α 

= 0° (consistently) and 15° (only partially) converge 'from above' as expected based on 

the Rayleigh-Ritz principle [34], but meshes with α = 30° and 45° appear to converge 

'from below'. The reason for this may lie in the fact that the boundary conditions have a 

more complex influence on the pre-buckling stress state for a 3D cylinder than for a 2D 

plate. In particular, the cylindrical shell must undergo axial bending in order to 

maintain compatibility with the radial restraint at the bottom boundary, thus the pre-

buckling membrane stress state is no longer governed by membrane equilibrium alone. 

The stresses near the bottom boundary are therefore overestimated as they are 

dependent on a displacement field that is overly stiff due to its piecewise linear 

constraint, which in turn leads to an underestimated critical buckling load. This effect 

appears to dominate when the mesh is inclined, giving convergence 'from below', but 

not for a regular or a gently inclined mesh where convergence is instead 'from above'. 

It is not yet clear why the inclination of the mesh leads to such a fundamental change 

in the convergence behaviour of this system. 
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Fig. 13 – Computed linear bifurcation modes for the cylinder under axial compression 
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The computed buckling modes are shown in Fig. 13 for the different mesh resolutions 

and inclinations. The modes for the three coarsest meshes with α = 0° are of the 

'axisymmetric' type with a single circumferential wave and what appears to be an 

abrupt variation near the bottom end that may be attributed to the unrestrained axial 

rotation at this boundary condition and linear element shape functions. More 

importantly, though the critical buckling load clearly converges to the same value 

regardless of mesh orientation (correct to within 0.1% of the critical load for the 

regular mesh), the critical buckling modes are quite different. For the finest mesh 

resolutions, a mesh with α = 0° exhibits a 'chequerboard' pattern of square buckles with 

7 circumferential waves, but a mesh with α = 45° predicts 8 waves instead. Meshes 

with α = 15° and 30° exhibit interesting 'spiral' buckling modes that appear to follow 

the angle of the helical mesh. The reason for this is that the helical nature of the mesh 

acts as a very minor imperfection which, though too minor to influence the critical 

load, is significant enough to bias the buckling mode to lie in a more favourable 

orientation relative to the axis of the helix. The near-simultaneous occurrence of many 

distinctly different critical buckling modes very close to the same critical value is a 

manifestation of the particularly acute imperfection sensitivity of the axially-

compressed cylinder [35]. 

 

6. Benchmark Test #4: linear buckling analysis of a thin 3D cylinder 

under uniform end torque 

The final benchmark test to be considered was the linear buckling analysis of a 

cylinder subject to uniform torsion at one end. Timoshenko and Gere [32] offer the 

following approximate analytical formula for the critical torque moment Tcl for 

medium-length shells based on the simplified Donnell kinematic relations: 

22cl clT r tπ τ=  where 
( )

( )
32 0.75

2

2 2
4.39 1 0.0257 1

1
cl

Et l

rtl
τ ν

ν

 
= + −  

−  
 (8) 

The finite element model was constructed in the same manner as for the cylinder under 

axial compression, except that a torque Tcl (moment about the vertical axis) was 

applied through the end reference point in place of the axial load. The same model 

geometry and first-order element mesh orientations were also assumed. 
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Fig. 14 - Mesh convergence with total dofs for the cylinder under uniform end torque 

 

 

Fig. 15 - Mesh convergence with inverse of dofs for the cylinder under uniform end 

torque 
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Fig. 16 – Computed linear bifurcation modes for the cylinder under uniform end torque 



Published in: Finite Elements in Analysis and Design, 73C, 42-54. 

DOI: http://dx.doi.org/10.1016/j.finel.2013.05.004 

The results of the mesh convergence analyses and corresponding linear bifurcation 

modes are illustrated in Figs 14, 15 and 16 respectively in a manner similar to the 

previous benchmark test. The analyses converge to a critical value of torque 

approximately 5.8% higher than that given by the analytical formula (Eq. 8), an error 

whose order of magnitude was acknowledged by the authors of that equation [32]. The 

mesh with α = 45° exhibits by far the fastest convergence in terms of degrees of 

freedom because the elements are oriented optimally with respect to the global 

membrane shear introduced into the shell by the end torque. By contrast, the 'default' 

regular mesh with α = 0° exhibits the poorest performance because the elements 

themselves are now directly under shear. In fact, the regular rectangular mesh requires 

532% more dofs to achieve a 1% error with the limit value than the inclined mesh with 

α = 45°. Further, the system exhibits similarly contrasting convergence properties 

('from above' vs. 'from below') for the same angles of inclination as the cylinder under 

axial compression, suggesting that this phenomenon persists for different load cases 

and is dependent on the angle of inclination of the mesh but apparently not on its 

relative orientation with respect to the principal axes of stress. Lastly, it may be seen 

from the critical buckling modes in Fig. 16 that the correct mode is captured by even 

the coarsest meshes regardless of angle of inclination, a reflection of the imperfection 

insensitivity of the cylinder under this load condition [35]. 

 

Conclusions 

1) This paper outlines a procedure to generate well-structured inclined quadrilateral 

finite element meshes for the stress and buckling analyses of rectangular plate and 

cylindrical shell structures.  

 

2) The meshing procedure may be generalised to other types of structures and to 

analogous problems in other engineering disciplines. It may be readily applied using 

any finite element pre-processor which supports an external scripting functionality.  
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3) A set of mesh convergence studies on four benchmark tests with known analytical 

solutions was performed to illustrate that a regular orthogonal finite element mesh 

composed of quadrilateral shell elements performs quite differently depending on its 

orientation relative to the principal axes of stress in the structure.  

 

4) It was shown that a regular orthogonal finite element mesh may possess a global 

orientation that is optimal with respect to the principal axes of stress. An optimally-

oriented mesh requires significantly fewer elements to achieve a desired accuracy in 

predicting the correct buckling load and mode.  

 

5) In particular, it was shown that first-order quadrilateral shell elements perform 

particularly poorly when placed in a configuration that subjects them to pure shear. 

Depending on the geometry of the structure and on the loading, the default mesh 

orientation may actually be the worst. 
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