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Abstract

The genomes of related species contain valuable information on the history of the considered taxa. Great apes in
particular exhibit variation of evolutionary patterns along their genomes. However, the great ape data also bring new
challenges, such as the presence of incomplete lineage sorting and ancestral shared polymorphisms. Previous methods for
genome-scale analysis are restricted to very few individuals or cannot disentangle the contribution of mutation rates and
fixation biases. This represents a limitation both for the understanding of these forces as well as for the detection of
regions affected by selection. Here, we present a new model designed to estimate mutation rates and fixation biases from
genetic variation within and between species. We relax the assumption of instantaneous substitutions, modeling sub-
stitutions as mutational events followed by a gradual fixation. Hence, we straightforwardly account for shared ancestral
polymorphisms and incomplete lineage sorting. We analyze genome-wide synonymous site alignments of human, chim-
panzee, and two orangutan species. From each taxon, we include data from several individuals. We estimate mutation
rates and GC-biased gene conversion intensity. We find that both mutation rates and biased gene conversion vary with
GC content. We also find lineage-specific differences, with weaker fixation biases in orangutan species, suggesting a
reduced historical effective population size. Finally, our results are consistent with directional selection acting on coding
sequences in relation to exonic splicing enhancers.

Key words: phylogenetics-population genetics model, mutation rates, biased gene conversion, rate heterogeneity, coding
sequence evolution, primates evolution.

Introduction
The increased availability of sequenced genomes both from
closely related species and from individuals of the same spe-
cies, offers a great opportunity to study the speciation and
evolutionary history of populations at different timescales,
provided we can properly model the process of sequence
evolution using inter- and intraspecific data together. The
role of mutation and selection are of particular interest in
this context. Mutation introduces genetic diversity, the raw
material of evolution. Natural selection, along with neutral
fixation biases and random genetic drift, can cause alleles
newly introduced by mutations to increase in frequency
and reach fixation. For comparative analysis that aim to
detect selection and identify functional elements, disentan-
gling the contribution of these forces is important.

In the past, phylogenetic methods focused on interspecies
data, whereas population genetics was mainly concerned
with intraspecies patterns. Classical population genetics
methods can test the presence of selection, but do not in-
clude divergence data from multiple species (except as out-
groups, see e.g., McDonald and Kreitman 1991; Schneider
et al. 2011). Standard phylogenetic models instead infer sub-
stitution rates but not mutation rates and fixation biases.
There are a few exceptions, for example, the mutation-selec-
tion codon model of Yang and Nielsen (2008). This model

assumes the same nucleotide mutational process for all
codon positions, and estimates a fitness parameter for each
codon, allowing to test the presence of selection on codon
usage from interspecies data.

Some methods use both population genetics and phylo-
genetics models. For example, it is possible to estimate
phylogenetic trees by reconstructing the genealogies of indi-
viduals from different species using the multi-species coales-
cent. Liu (2008) assumes no recombination within genes and
free recombination among genes. RoyChoudhury et al. (2008)
assume no new mutations, so that all the divergence among
taxa originates from change in allele frequencies in standing
variation. This method has been recently generalized to allow
new mutations along the population tree, but is still limited
to bi-allelic sites (Bryant et al. 2012). All these coalescent-
based methods assume neutrality.

Wilson et al. (2011) proposed a combined phylogenetic-
population genetics approach that analyzes population
data from different species and estimates a distribution of
selective coefficients in coding regions. Recently, Gronau
et al. (2013) developed a model similar to that of Wilson
et al. (2011) and applied it to noncoding sequence data.
Both the latter methods assume a standard substitution
model along the phylogeny relating the species, and require
all polymorphisms to be recent. In fact, the population ge-
netics model allowing for intraspecific differences is only used
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at the tips of the tree, and not in inner phylogenetic branches
and nodes.

Here, we introduce a POlymorphism-aware phylogenetic
MOdel (PoMo), that, similarly to the model of Wilson et al.
(2011), uses both polymorphism and divergence data simul-
taneously. However, for PoMo, we do not assume that poly-
morphisms originate from recent mutations. In our
phylogenetic continuous-time Markov chain, polymorphisms
are present both at terminal and ancestral nodes of the spe-
cies tree. In this way, we can naturally account for ancestral
shared polymorphisms (Clark 1997) and incomplete lineage
sorting (Maddison and Knowles 2006; Pollard et al. 2006).
Furthermore, by not assuming stationarity, reversibility,
context-independence or mutational strand-symmetry, our
model can describe complex mutational scenarios (Hwang
and Green 2004; Polak and Arndt 2008). We show using
simulations that, with our new model, we can accurately
infer relative mutation rates and fixation biases, and that
the inferences are robust to changes in demography.

One of the most intriguing aspects of the human genome
is its exceptional heterogeneity. Base substitution rates differ
among nucleotides, nucleotide contexts, genomic regions,
and chromosomes (for a review see Hodgkinson and Eyre-
Walker 2011). Knowing the intensity and variability of both
mutation and fixation biases, whether due to selection or
other forces such as biased gene conversion, is fundamental
for interpreting evolutionary patterns (Ratnakumar et al.
2010). For example, coding sequence is a major determinant
of fitness and adaptation (Eyre-Walker and Keightley 2007),
but undergoes peculiar evolutionary forces, with transcribed
sequences evolving differently from the rest of the genome,
showing, for example, strand-specific substitution rates
(Hwang and Green 2004). It is therefore appealing to use
synonymous sites as a neutral reference for coding sequence
evolution, although selection can affect evolution of synony-
mous sites involved in the splicing process (Chamary et al.
2006; Parmley and Hurst 2007). Furthermore, mutation and
fixation biases can have severe consequences on the fitness of
individuals and populations (Galtier et al. 2009; Hodgkinson
and Eyre-Walker 2011).

We performed a comprehensive study of evolutionary pat-
terns of synonymous sites in great apes (humans [Homo sa-
piens], chimpanzees [Pan troglodytes], and orangutans [Pongo
abelii and Pon. pygmaeus]). By using PoMo on polymorphism
and divergence data simultaneously, we were able to over-
come the limitations of previous studies, in particular disen-
tangling the contributions of mutation and fixation biases to
the evolution of synonymous sites. We first estimate global
patterns of coding sequence evolution in great apes genome-
wide, including a comparison of lineage-specific trends. Then,
we show evidence in favor of variation in mutation and fix-
ation rates between genomic regions with different base com-
position, contributing to the long-standing debate regarding
the origin and maintenance of GC-content variation (Eyre-
Walker and Hurst 2001). Finally, we consider variation in evo-
lutionary patterns within exons, examining evidence suggest-
ing recent directional selection on synonymous sites.

New Approaches
We developed a new approach PoMo that uses polymor-
phism and divergence data simultaneously, and can estimate
relative mutation rates, disentangling them from fixation
biases in their contribution to substitution patterns. Similar
to classical phylogenetic approaches (reviewed in Whelan
et al. 2001), our model is a continuous-time Markov chain.
We assume that a phylogenetic tree relates the species con-
sidered, and that nucleotide sequences evolve along it.
Phylogenetic methods usually include only a reference
genome for each species considered, and ignore intraspecies
diversity. Here, in contrast, we use data from multiple within-
population individuals to infer allele frequencies for each
taxon (fig. 1A and see Materials and Methods). Similar to
classical phylogenetic approaches, we model all sites as inde-
pendent and discard haplotype structure. This way, we ignore
information regarding recombination events, but we also
bypass the problem of accounting for all possible coalescent
trees, which is of elevated computational complexity when
considering large samples (Dutheil et al. 2009).

We include polymorphisms as states of the Markov chain,
in addition to the four nucleotide states of classical nucleotide
models. In fact, in our Markov chain, two nucleotides can be
present simultaneously at one site for one species/population.
If a polymorphism is present at a tip, it means that the cor-
responding species has an observed polymorphism at the
corresponding site and at the corresponding allele frequency
(fig. 1B and see Materials and Methods).

Although classical models assume instantaneous substitu-
tions, we separate the mutation and fixation processes. In
fact, we model sequence evolution as a gradual process
made by small allele frequency changes (fig. 1C and see
Materials and Methods). As in classical phylogenetic
models, the states in inner nodes/branches are usually un-
known. This uncertainty is accounted for by considering the
probability of each possible combinations of ancestral states
via the Felsenstein pruning algorithm (Felsenstein 1981). In
PoMo, we add the possibility of polymorphisms at various
allele frequencies at inner nodes and branches (fig. 1D and see
Materials and Methods). This means that we account for
ancestral polymorphisms and in particular for ancestral
shared polymorphisms (Charlesworth et al. 2005) and incom-
plete lineage sorting (when two speciation events are sepa-
rated by a lapse of time not sufficient for polymorphisms to
reach fixation, see Maddison and Knowles 2006). The param-
eters in PoMo do not merely describe substitution rate, but
are also informative of mutation rates, fixation biases, root
nucleotide frequencies and branch lengths. All these param-
eters are estimated by maximum likelihood (ML) (fig. 1E and
see Materials and Methods).

Although many genomes (including the human genome)
are not in base composition equilibrium, most phylogenetic
models assume equilibrium and reversibility for convenience
(Squartini and Arndt 2008). Here, we do not assume equilib-
rium or reversibility. Furthermore, because mutations in
human coding sequences are thought to be strand-asymmet-
ric and context-dependent (Hwang and Green 2004; Polak
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and Arndt 2008), we explicitly account for, and measure, both
phenomena (see Materials and Methods).

Results

Simulations

To assess the precision of our methods in parameter estima-
tion, we performed forward population genetics simulations
with simuPOP (Peng and Kimmel 2005) on a phylogenetic
tree. Our simulations closely mimic the features (divergence

and diversity) of the great ape data set (see Materials and
Methods). We reliably inferred the simulated parameter
values when more than 105 sites were provided (fig. 2 and
supplementary figs. S10–S12, Supplementary Material
online), far fewer than in the real data set (� 2�106, see
Materials and Methods). We observed errors at levels of
� 5% or below for branch lengths and ancestral and equi-
librium nucleotide frequencies, and at most 10% for relative
mutation rates. The intensity of selection was slightly

Fig. 1. Parameter estimation with PoMo. (A) Data from synonymous sites of each of the four species considered are collected. For each species, 10
alleles are sampled (the figure depicts data from a single site). (B) Each site of each species is associated with a state in PoMo10 according to its allele
counts. (C–D) Given a set of parameter values, the likelihood of each site is calculated. (C) Transition probabilities between nodes are calculated
according to the PoMo10 rate matrix. For simplification, the figure shows only two alleles, while the full model has four alleles (supplementary table S9,
Supplementary Material online). (D) Following the Felsenstein pruning algorithm (Felsenstein 1981), we sum probabilities over all combinations of states
at inner nodes. (E) The likelihood of all sites is combined, and the process is iterated with different parameter values until we find those that maximize
the likelihood. These values (mutation rates, fixation biases, and root nucleotide frequencies) are our final estimates.
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underestimated, and required more data for acceptable infer-
ence (fig. 2 and supplementary fig. S12, Supplementary
Material online). This bias is probably due to the small
number of polymorphic states used and to the fact that we
ignore sampling variance.

We measured the running time of our method on simu-
lated data (supplementary table S8, Supplementary Material
online). ML estimations required less than 30 min on a single

processor (2.66 GHz 6-Core Intel Xeon) for both the basic
PoMo10 and the asy-CpG-PoMo10b models for a genome
scale data set (up to 500 kB). This suggests that PoMo could
be applied to genome-wide data from dozens of species
simultaneously, that the state space could be expanded to
include a larger virtual population (table 1), or to incorporate
more model parameters to describe complex evolutionary
scenarios.
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Fig. 2. Performance for simulated data. Mutational and frequency parameters simulated were as estimated in the highest GC-content bin (see Materials
and Methods). Intensity of selection for GC versus AT was set to 4Nes ¼ 1. On X axis is the number of sites in the data set used. Each box plot
represents 10 simulations. The errors in the estimation, on the Y axis, were calculated as the Euclidean distance between the vector of estimated
parameters and the true values, normalized by the Euclidean norm of the true vector. (A) Error in estimation of: fixation biases (6 entries vector, one for
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estimation of: branch lengths (green), ancestral nucleotide frequencies (pink), and equilibrium nucleotide frequencies (yellow). (C) Estimates of: GC
versus AT fixation bias (blue), GC* in sites not preceded by C and not followed by G (yellow), GC* in sites not preceded by C and followed by G (green),
and GC* in sites preceded by C and followed by G (red). The horizontal dashed lines represent the respective true values used for the simulations.
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We also performed simulations including up to four dif-
ferent demographic events (bottleneck, expansion, migration,
and reduction) in the same phylogeny (see Materials and
Methods). Our approach proved robust in these cases (sup-
plementary figs. S13–S15, Supplementary Material online).
Demographic events usually bias estimation of selection in
population genetics methods that use only polymorphism
data (Haddrill et al. 2005; Keightley and Eyre-Walker 2007;
Zeng and Charlesworth 2009). In contrast, we not only con-
sider the site frequency spectrum, but also divergence
patterns.

Analysis of Great Apes Whole-Exome Data

We extracted synonymous sites from coding sequence align-
ments of different species (human, chimp, and orangutan)
and different individuals within species (see Materials and
Methods). From these sites, using PoMo, we inferred relative
mutation rates, fixation biases, and nucleotide frequencies at
equilibrium and at the root. We first estimated global pat-
terns from whole-exome data, then focused on variation be-
tween lineages, regions with different GC content, and sites in
different positions within exons.

Global Estimates of Mutation Rates

Using different variants of PoMo, we estimated relative mu-
tation rates from the global data set. Unsurprisingly, transi-
tions (mutations between A and G and between C and T) had
higher rates than transversions (the remaining mutations), in
particular when CpG context was not accounted for (fig. 3A).
We compared our results with those of Lynch (2010), who
measured the rate of new deleterious nonsense and missense
mutations in humans. We find notable differences; in partic-
ular, Lynch (2010) estimated lower transition rates relative to
transversions (fig. 3A). One explanation for this is that mis-
sense and nonsense mutations are enriched in transversions
(see Discussion, supplementary information, and fig. S1,
Supplementary Material online).

Regions near the transcription start site undergo peculiar
substitutional patterns, with, in particular, reduced CpG con-
text effects (Polak and Arndt 2008). Consistent with these
observations, our hypermutability estimates greatly differ be-
tween first exons and other exons (fig. 3B). After removing
first exons, our relative mutation rate estimates are very sim-
ilar to the phylogenetic estimates of (Duret and Arndt 2008;
fig. 3B), despite the fact that they did not account for fixation
biases and did not restrict their analysis to coding sequences.

Previous studies have suggested the presence of strand-
asymmetric substitution rates in human transcribed

sequences (Hwang and Green 2004; Polak and Arndt 2008),
and different asymmetries in different regions of the tran-
script (Polak and Arndt 2008). For this reason, we included
strand-specific mutation and fixation biases in PoMo (see
Materials and Methods, model asy-CpG-PoMo10b). Our anal-
yses with this model support the idea that substitutional
asymmetries are due to mutation rates, and not fixation
biases (fig. 3C). Furthermore, we detected the same muta-
tional asymmetries as predicted by Polak and Arndt (2008),
and, again as expected based on the latter study, first exons
show different asymmetries from the other exons (supple-
mentary fig. S3, Supplementary Material online).

Global Estimates of GC-Biased Gene Conversion and
Base Composition

Although fixation biases can be caused by directional selec-
tion, the genome-wide fixation bias favoring GC over AT al-
leles in mammals is generally attributed to GC-biased gene
conversion (gBGC; Duret and Galtier 2009). The effect of
gBGC is similar to selection (Nagylaki 1983), and therefore
the intensity of gBGC is usually expressed in terms of 4Nes.
After accounting for context dependencies and mutational
asymmetries (see Materials and Methods, model asy-CpG-
PoMo10b), our estimate of gBGC is 4Nes ¼ 0:62, and is dif-
ferent from 0 according to both the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion
(BIC). On the other hand, accounting for differences in fitness
between G and C, and between A and T does not improve the
fit of the model according to AIC or BIC. We note, however,
that the inferred fixation biases depend on the mutation
model (supplementary fig. S4, Supplementary Material online;
Hernandez et al. 2007).

Estimates of root, present and equilibrium nucleotide fre-
quencies show that base composition is not at equilibrium in
great apes, with GC content decreasing over time (supple-
mentary fig. S5, Supplementary Material online).

Lineage-Specific Estimates

Global patterns presented earlier should be interpreted as
averages along the phylogenetic tree considered. However,
substitution patterns vary considerably. For example, Polak
et al. (2010) showed that the equilibrium GC content (GC*)
in orangutan genes is lower than that in human and chim-
panzee. GC* is determined by the GC/AT bias in substitution
rates, and differences in substitution biases can be caused by
changes in mutation rates or fixation biases. We investigated
whether orangutan differs in mutation rates and/or fixation
biases from human and chimpanzee. We allowed parameters
to differ between the human–chimp lineage (comprising the
human and chimpanzee branches, and the branch of their
ancestor) and the orangutan lineage (comprising the two
orangutan branches, and the branch of their ancestor).
Allowing lineage-specific fixation biases and mutation rates
resulted in improvements in both AIC (25.31) and BIC (12.83)
scores (see table 2 for details). Our estimate of gBGC intensity
in human–chimp was almost double that in orangutan
(� 0:7 vs. � 0:35; table 2), even when we allowed different

Table 1. Computing Times Required with Increasing N.

PoMo10 PoMo20 PoMo30 PoMo40

Number of states 58 118 178 238

CPU time (s) 112 513 3,465 4,946

NOTE.—Running times for ML estimation of model parameters. Values shown rep-
resent numbers of seconds for a data set with 105 sites and simulated with high GC
content, selection for GC and context-dependency. Estimations were performed with
the standard multi-threaded version of HyPhy (HYPHYMP) on a Mac OS X with
2.66 GHz 6-Core Intel Xeon processors.
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mutation rates in different lineages. We conclude that a lower
gBGC, possibly due to reduced effective population size, con-
tributed to the lower GC* estimated in orangutan.

Variation among Exons

One well-studied aspect of genomic variation in mammals is
GC content (Bernardi 2000; Eyre-Walker and Hurst 2001).
Previously, either variation in mutation biases (reviewed in
Duret 2009; Hodgkinson and Eyre-Walker 2011), gBGC (Duret
and Galtier 2009), or selective pressure (Bernardi 2000), have

been suggested to cause variation in GC content in mammals,
but until now, no analytical framework was available to infer
the relative importance of these processes. Our new approach
represents a great opportunity for disentangling, and quanti-
fying, mutational, and fixation biases variation.

We binned exons according to their GC content at syn-
onymous sites (GC4) from lowest to highest, so that all bins
have roughly the same number of sites (� 3:25�105). GC4
strongly correlates with regional GC content (Clay et al. 1996;
Duret and Hurst 2001; Eyre-Walker and Hurst 2001). We then
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Fig. 3. Estimates of mutation rates in great apes. (A) Estimates of relative mutation rates by Lynch (2010) in humans (blue) and PoMo10 on
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estimated mutation rates and fixation biases for each bin
separately. Although most mutation rates vary only slightly,
CpG hypermutability shows very large differences, being
strongest in GC-poor exons and weakest in GC-rich exons
(fig. 4A). Among the other mutation rates, most noticeably,
�AC increases with GC content. These results are robust to
the number of bins used, and to the exclusion of short exons
(supplementary figs. S6 and S7, Supplementary Material
online).

gBGC also increases with GC content, ranging from� 0:2
to � 1:2 (fig. 4B). Even after removing the potential biases
coming from the first and second exons of each gene (fig. 3B),
mutation rates and gBGC still vary between the extreme GC
bins according to both AIC and BIC scores (table 3; supple-
mentary table S2, Supplementary Material online). Although
we accounted for many mutational biases, modeling site var-
iation in total mutation rates still resulted in a model im-
provement according to AIC and BIC (supplementary
table S7, Supplementary Material online). This suggests that
more context-dependent or cryptic factors in mutation rate
variation exist (Hodgkinson et al. 2009).

It has been inferred that GC content of GC-rich regions is
decreasing in mammals (Duret et al. 2002; Belle et al. 2004; Gu
and Li 2006). Alvarez-Valin et al. (2004) claimed that this
result can be explained with a bias in the method of inference
(parsimony), and the presence of context-dependent muta-
tions, regional variation, indels, and alignment errors. Here, we
account for these problems by using an ML context-depen-
dent model, and by analyzing synonymous sites of closely
related species (which are expected to contain negligibly
few alignment errors and indels). Although we observe that
GC* is highest in GC-rich exons, the difference in GC* among
bins is considerably smaller than the difference in present or
root GC content, meaning that base composition is becoming
homogenous across the genome (fig. 5). Furthermore, except
for the GC-poorest bin, GC* is always lower than present and
root GC content. Number of bins used and exclusion of short
exons did not affect these results (supplementary fig. S8,
Supplementary Material online).

Variation within Exons

Finally, we addressed the issue of variation in evolutionary
patterns between exonic positions. Different regions within

an exon can vary in substitutional and compositional trends.
50- and 30-ends of nonterminal exons are GC-poorer than
exon centers, and have stronger codon usage bias (Willie
and Majewski 2004). This has been interpreted as the effect
of selection on splicing motifs (reviewed in Chamary et al.
2006). In agreement with this hypothesis, codon usage bias in
exon boundaries fits splicing motifs more than in exon cen-
ters (although not for every amino acid, Parmley and Hurst
2007). We analyzed variation in mutation and fixation biases
within exons. We excluded terminal exons and divided sites in
3 bins. The 50-bin contained the first 5 synonymous sites in
each exon; the 30-bin contained the last 5 sites; the central bin
contained all the remaining sites. On each bin, we then esti-
mated mutation rates and fixation biases as before.

We observe a higher GC content in exon centers, but ex-
tremely similar equilibrium frequencies in all bins (fig. 6A).
Mutation rates do not vary noticeably (supplementary fig.
S9B, Supplementary Material online). However, there are dif-
ferences in fixation biases, with boundary sites showing pref-
erence for A over T, and the opposite pattern in exon centers
(fig. 6B). Models that allow for these differences are preferable
according to AIC, but not BIC (table 4; supplementary table
S3, Supplementary Material online). Nevertheless, estimated
differences are larger than expected just by error according to
simulations (cf. supplementary figs. S9C and D, Supplemen-
tary Material online).

Discussion
Understanding intensity and variation of mutation and
fixation biases is fundamental for the interpretation of evo-
lutionary patterns. With our new model, PoMo, and with
genome-scale data of within and between-species diversity,
we disentangled and estimated mutational and fixation biases
at synonymous sites of great apes.

Our estimates of mutation rates considerably differ from
those of Lynch (2010), the only previous study, to our knowl-
edge, that inferred relative mutation rates in humans while
accounting for fixation biases (fig. 3A). Part of the difference
might be due to the timescale considered (recent mutations
in Lynch 2010, polymorphism and divergence here), and to
the fact that we also include data from other great apes.
However, we think that most of the discrepancy derives
from transversions being over-represented in the missense

Table 2. Lineage-Specific Models.

Model Number of Parameters AIC Score BIC Score gBGC in Human–Chimp gBGC in Orangutan

No lineage specificity (null)a 37 — — 0.62 0.62

2 gBGCb 38 �25.31 �12.83 0.72 0.35

2 gBGC, 2 h lCT, 2 h lc
GA 40 �23.69 13.76 0.72 0.35

2 gBGC, 2ld
�� 56 �321.12 �83.94 0.69 0.39

NOTE.—Comparison of models allowing for variation between the hominid lineage (human, chimp, and the branch from their ancestor to the root) and the orangutan lineage
(Bornean and Sumatran orangutan and the branch from their ancestor to the root). gBGC is measured as the scaled fitness difference 2Nes between GC and AT alleles (we set
sA ¼ sT and sC ¼ sG).
aThe Null model asy-CpG-PoMo10b.
bDifferent gBGC in the two lineages.
cDifferent gBGC and CpG hypermutability (h�CT and h�GA) for the two lineages.
dDifferent gBGC and mutation rates (for every mutation type) in the two lineages.
We show AIC and BIC differences with respect to the Null model. The best BIC and AIC scores are underlined.
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and nonsense mutations (Gilis et al. 2001; De Maio et al. 2013)
considered by (Lynch 2010; supplementary information and
supplementary fig. S1, Supplementary Material online). Our
analysis shows that estimates of relative mutation rates using
phylogenetic data, as in Duret and Arndt (2008), are prefer-
able, but for further comparative studies we suggest to use
estimates from models accounting for fixation biases such as
PoMo.

The strongest fixation bias that we detected favors GC
over AT. In mammals, this phenomenon is generally attrib-
uted to gBGC. We inferred slightly lower estimates of gBGC

than previous studies. Spencer et al. (2006) estimated the
intensity of gBGC in the human genome from the allele fre-
quency spectrum, while Lynch (2010) contrasted mutational
patterns with nucleotide frequencies. The first approach con-
siders the recent evolutionary past, while the second is infor-
mative of the fixation bias in the long term, probably on the
scale of hundreds of millions of years (Duret et al. 2002). Our
approach is intermediate, as it considers polymorphisms and
divergence, but not base composition. Lynch (2010) esti-
mated a gBGC intensity of 4Nes � 0:99, which was within
the range 0:5 < 4Nes < 1:3 from Spencer et al. (2006). We
estimate 4Nes to be � 0:62. Although these values are not
necessarily comparable, we recognized some additional
causes for the small discrepancy. First, our method tends to
slightly underestimate gBGC (fig. 2; supplementary fig. S12,
Supplementary Material online). Second, we studied human–
chimpanzee–orangutan data, and not only human. We ob-
served a lower intensity of gBGC on the orangutan lineage
(� 0:35 vs. � 0:7 of the human–chimp lineage; table 2). A
lower fixation bias in favor of GC nucleotides causes a shift in
substitution rates towards AT, and therefore a reduction in
GC*. A reduction in GC* in orangutan was previously ob-
served by Polak et al. (2010). We suggest that the most
likely explanation for reduced gBGC fixation bias 4Nes in
orangutan is a difference in historical effective population
size (Ne), and not in the molecular repair bias itself (s). This
is consistent with studies suggesting that Ne in orangutan was
smaller than on human–chimp lineage: 65,000� 30,000 for
the human–chimp ancestor and 45,000� 10,000 for the
human–chimp–gorilla ancestor (Hobolth et al. 2007), in
contrast to 26,800� 6,700 for the Bornean and Sumatran
orangutan ancestor (Mailund et al. 2011).
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Fig. 4. Variation in fixation biases and mutation rates with base composition. Exon alignments were binned in 6 classes according to GC content. On
Y axis, we show parameter estimates for each bin, on X axis are bins ordered by increasing GC content. Error bars show the profile likelihood 95%
confidence intervals. If not visible, confidence intervals are too small. (A) Estimation of mutation rates with CpG-PoMo10. Values on the Y axis represent
mutation rates normalized by ð�AC +�AG +�AT +�CA +�CGÞ. mAC stands for mutation rate from A to C, etc. hmCT stands for CpG hypermutability.
(B) Estimation of fixation biases with the strand-specific asy-CpG-PoMo10b. GC–sAT represents the apparent selective advantage of GC versus AT, sC–
sA between C and A, sG–sA between G and A, and sT–sA between T and A.

Table 3. Modeling Variation among Exons.

Model Number of
Parameters

AIC Score BIC Score

Nulla 39 — —

Mutb 57 �983.35 �778.42

Selc 42 �242.59 �208.44

Mut-Seld 60 �982.14 �743.06

Mut (G = C)e 55 �988.19 �806.04

Mut-Sel (G = C)f 56 �987.16 �793.62

NOTE.—Comparison of models for variation in evolutionary patterns with respect to
GC content. All exons were separated in six bins according to GC content. We
estimated model parameters on the first and the last bins jointly.
aasy-CpG-PoMo10b with no difference between bins.
bDifferent mutation rates ��� for the two bins.
cDifferent selection coefficients s� .
dBoth different mutation rates ��� and selection coefficients s� .
eDifferent mutation rates ��� , and the constraints sG ¼ sC and sA ¼ sT.
fDifferent mutation rates ��� and selection coefficients s� , and the constraints
sG ¼ sC and sA ¼ sT.
We show AIC and BIC differences with respect to the Null model. The best BIC and
AIC scores are underlined.
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Furthermore, we investigated variation of mutation and
fixation biases along the exome with respect to present GC
content. Regional variation in GC content is one of the most
fascinating aspects of mammalian genomes, but its causes
and consequences are still not well understood. Although
some authors suggested that selection is the cause of GC

content variation origin and maintenance (Bernardi 2000),
most studies proposed neutral explanations, such as variation
in mutation rates (Fryxell and Zuckerkandl 2000; Fryxell and
Moon 2005) or gBGC (Duret and Galtier 2009). Here, we
jointly estimated variation in mutation and fixation biases,
therefore accounting for possible confounding effects of one
on the other. We conclude that mutation rates (and in par-
ticular CpG hypermutability) and gBGC vary with base com-
position (fig. 4). Nevertheless, GC content decreases, and over
time becomes more homogeneous across the genome (fig. 5),
as concluded by previous studies as well (Duret et al. 2002,
2006; Meunier and Duret 2004). One of the possible explana-
tions for the homogenization of GC content are changes in
the recombination map, and therefore in gBGC intensity
(Auton et al. 2012). Otherwise, a reduction in effective pop-
ulation size may have led to a decrease in the intensity and
variation of gBGC effects. Additional studies on different
mammalian clades are necessary to determine the most
likely scenarios.

Finally, we measured differences in evolutionary patterns
between exon centers and boundaries. Previous studies of
base composition suggested that synonymous sites in differ-
ent exonic positions are subject to different selective pressures
due to splicing motifs (reviewed in Chamary et al. 2006). We
confirmed these trends; in fact, we measured a fixation bias
favoring A over T in boundaries of nonterminal exons, and T
over A in exon centers (fig. 6B). This observation cannot be
explained with gBGC, and is consistent with expectations of
the hypothesis of selection on exonic splicing enhancers, since
those are A-rich and T-poor (Parmley and Hurst 2007).
However, our findings are only marginally significant, and
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Fig. 6. Variation within exons. Synonymous sites were binned according to their position within exons. The first and the last exon of each gene were
excluded. The first 5 synonymous sites in each exon were assigned to the 50-bin, the last 5 to the 30-bin, the remaining to the central bin. On the X axis is
the bin considered, on the Y axis are shown, respectively: (A) root, present, and equilibrium GC content, estimated with PoMo10; (B) fixation biases
estimated with asy-CpG-PoMo10b. In 50- and 30-bins the number of sites is � 3� 105, in the other two � 6� 105. Error bars show the profile
likelihood 95% confidence intervals.
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they might be improved by including more individuals from
more species in the future.

In conclusion, we presented a new phylogenetic model,
PoMo, that can infer mutation and fixation biases from pat-
terns of polymorphisms and divergence in populations/
species related by any arbitrary history. We provide the soft-
ware to replicate our analyses that assumes a sample of 10
sequences per species. This is a limitation of our implementa-
tion, and not of the model. In fact, the number of haplotypes
considered from each population as well as the number of sites
do not represent a considerable computational burden for our
methods. Furthermore, as PoMo10 has fewer states than a
codon model, it can be applied to phylogenies spanning sev-
eral dozens of taxa (Seo and Kishino 2009; Gil et al. 2013).

PoMo can also be applied to the estimation of phyloge-
netic trees from population data. In fact, it has the potential
to improve the resolution of short branches (relative to Ne),
where classical methods for phylogenetic inference often fail
due to incomplete lineage sorting and shared ancestral poly-
morphisms. These issues can already be accounted for by
either making strong assumptions regarding recombination
events (independent loci and no recombination within loci,
see e.g., Heled and Drummond 2010) or by computationally
demanding hidden Markov model approaches (Mailund et al.
2011). But, unlike PoMo, neither method is applicable to large
numbers of individuals within-species, due to many possible
coalescent trees.

Until now there are only few clades with genome-wide
population data available from multiple species, such as pri-
mates and model organisms. This number is expected to
grow in the near future, providing great opportunities to
understand changes in evolutionary patterns.

Materials and Methods

Polymorphism-Aware Phylogenetic Models
Model Background
Phylogenetic substitution models represent DNA evolution as
a continuous-time Markov process along a phylogenetic tree

t (for a review see Whelan et al. 2001). Different sites are
generally assumed to evolve independently. Each point of t
represents a taxon at an instant, and tree bifurcations corre-
spond to speciation events. Another common assumption is
homogeneity: the evolutionary process does not change
through time and among species. Nucleotide substitution
models associate the points of t to elements of the state
space fA, C, G, Tg with certain probabilities. If a point of t
is in state C, it means that the corresponding taxon, at the
corresponding time, had nucleotide C at the considered site
of the genome. The phylogeny tips correspond to present,
observable states.

States assigned to taxa can change in time, and the con-
tinuous-time Markov process modeling these changes is de-
fined by an instantaneous rate matrix Q. Each entry QIJ of Q,
with I 6¼ J, is the rate at which nucleotide I is replaced by
nucleotide J. Given Q, for any branch b of length t in t it is
possible to calculate the transition probability matrix
PðtÞ ¼ eQt. Entry PIJðtÞ of PðtÞ is the probability that the
end of branch b is in state J, conditioned on the start being
in state I. Matrix P(t) is used to calculate the likelihood Lð�Þ of
any parameter values y via the Felsenstein pruning algorithm
(Felsenstein 1981). The likelihood is the conditional probabil-
ity of the data D given y. Data D consist of DNA sequence
alignments. Parameter estimates can be obtained by ML, that
is, by determining the parameter values y that maximize the
likelihood function.

State Space
Our new models are similar in most aspects to standard
phylogenetic nucleotide substitution models described ear-
lier. The most important difference is that we expand the
state space. We do not only include four states associated
to nucleotides, but also further states representing polymor-
phisms. Nucleotide states in the new models represent sites
with a fixed allele. Assuming at most two alleles per site per
time per taxon, there exist six types of polymorphisms deter-
mined by the alleles simultaneously present in a taxon:
fA,Cg, fA,Gg, fA,Tg, fC,Gg, fC,Tg, and fG,Tg. We define
PoMo N (POlymorphism-aware MOdel with virtual popula-
tion size N) as a phylogenetic model with N – 1 polymorphic
states for each type of polymorphism. PoMo N state space has
therefore 4 + 6ðN� 1Þ elements, which means that any
taxon at any considered time point can be assigned to any
of the 4 + 6ðN� 1Þ states. The N – 1 states associated to the
same polymorphism type represent different allele frequen-
cies within a virtual population of N haploid individuals. For
example, polymorphic state i (1 � i � N� 1) of type fA,Cg
represents a frequency of i/N for allele A and ðN� iÞ=N for
allele C in a virtual population of N + 1 haploid individuals.

Definition of Instantaneous Rates
It is a common practice in population genetics to approxi-
mate the dynamics of a large real population with those of a
small virtual population (Keightley and Eyre-Walker 2007;
Kaiser and Charlesworth 2009; Zeng and Charlesworth
2009). To our knowledge, we present the first application of
this approach to phylogenetics. We assume that the real pop-
ulation has effective population size Ne, mutation rate per

Table 4. Modeling Variation within Exons.

Model Number of
Parameters

AIC Score BIC Score

Nulla 39 — —

Mutb 57 �12.39 212.31

Selc 42 0.56 38.01

Mut-Seld 60 �20.54 241.62

Sel (G = C)e 40 �4.69 7.80

Mut-Sel (G = C)f 58 �12.58 224.60

NOTE.—Comparison of models for variation in evolutionary patterns between exon
center and exon boundaries. A boundary bin includes 5 sites from 50- and 30-ends of
each exon. A second center bin includes all the remaining sites. Model parameters
were estimated on both boundary and center bins jointly.
aasy-CpG-PoMo10b with no difference between bins.
bDifferent mutation rates ��� for the two bins.
cDifferent selection coefficients s� .
dBoth different mutation rates ��� and fitness coefficients s� .
eDifferent sGC vs. sAT fitness.
fDifferent mutation rates ��� and sGC vs. sAT fitness.
We show AIC and BIC differences with respect to the Null model. The best BIC and
AIC scores are underlined.
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generation�IJ from allele I to J, fitness parameter sI for allele I,
and number of generations �t. We define our virtual popula-
tion as evolving according to a Moran model (Moran 1958)
with population size N, mutation rate per generation�IJ from
allele I to J, fitness parameter sI for allele I, and number of
generations t. The dynamics of a virtual population with
properly scaled mutation rate (4Ne �� � 4N�) and selection
coefficient (2Ne�s � 2Ns), are a good approximation of the
real population, if time is scaled by the population size in both
cases (t/N for the virtual population and �t=Ne for the real one)
and if N is sufficiently large (Zeng and Charlesworth 2009,
observed that even with N as small as 10 reasonable results
could be achieved).

We make the assumption that the scaled mutation rate

(4Ne ��) is low, and allow mutations only at monomorphic
sites in our virtual population (Vogl and Clemente 2012).
Therefore, while our model is four-allelic, only two alleles
can be present simultaneously in one population at a site.
We represent the polymorphic state with i virtual individuals

carrying allele I, and N – i carrying allele J, as
�

i I
N� i J

�
.

The probability that the virtual population in a polymor-

phic state
�

i I
N� i J

�
evolves to the state

�
i + 1 I

N� ði + 1Þ J

�
in a single virtual generation is

Mi,i + 1
IJ ¼

ið1 + sJ � sIÞ

ið1 + sJ � sIÞ+ ðN� iÞ
�

N� i

N
: ð1Þ

Similarly, the probability to evolve from
�

i I
N� i J

�
to�

i� 1 I
N + 2� i J

�
is

Mi,i�1
IJ ¼

N� i

ið1 + sJ � sIÞ+ ðN� iÞ
�

i

N
: ð2Þ

The probability with which a new allele is introduced in the
virtual population, that is, of evolving from monomorphic

state I to polymorphic state
�

N� 1 I
1 J

�
in one virtual

generation is

MN,N�1
IJ ¼ N�IJ: ð3Þ

Within a single generation no other changes are allowed, in
fact, virtual allele counts can only increase or decrease by one
per generation. We call MN the matrix of probabilities of allele
frequency changes for one generation. Matrix MN has dimen-
sion equal to the number of states, 4 + 6ðN� 1Þ.

The last step in defining our model is transforming the
Markov chain from discrete-time (in number of generations)
into continuous-time. A continuous-time Markov chain is
defined by its instantaneous rate matrix Q. We set the instan-
taneous rate matrix of our continuous-time process as
QN :¼ NðMN � IÞ, where I is the identity matrix. Then, the
probabilities of state changes in coalescent time t/N will be
given by P t

N

� �
¼ eQN

t
N, where t as before represents the

number of virtual generations, but can now take noninteger
values. We list the entries of the rate matrix QN in supple-
mentary table S9, Supplementary Material online.

After fitting the matrix QN to real data by ML, we esti-
mated the scaled fitness parameters in the real population
(2NesI) as 2NsI. The four fitness parameters (sA, sC, sG, and
sT) are defined up to an additive constant, and therefore
correspond to three free parameters. When only gBGC is
expected to drive fixation biases, we set sA ¼ sT and
sC ¼ sG, reducing the number of free parameters describing
fitness differences to one. Likewise, we estimated the scaled
mutation rates (4Ne�IJ) as 4N�IJ.

Root Frequencies
Stationarity and reversibility are common and mathemati-
cally convenient assumptions for phylogenetic models, but
are often not realistic (Galtier and Gouy 1995; Yang and
Roberts 1995; Akashi et al. 2006; Gu and Li 2006). Here, we
do not assume them. Because of nonstationarity of our
model, state frequencies might change along t, and root
state frequencies p might differ from the observed frequen-
cies. To define the 4 + 6ðN� 1Þ entries of p, we use three
additional free parameters (�A, �C, and �G, where
�T :¼ 1� �A � �C � �G) representing relative frequencies
of fixed nucleotides at the root.

The root frequency of the polymorphic state with i virtual
individuals carrying allele I, and N – i carrying allele J is:

�i
IJ ¼ �pol �J�JI

1

i

� �
+ �I�IJ

1

N� i

� �� �
=Knorm, ð4Þ

where Knorm is a normalization factor, so that all root frequen-
cies of polymorphic states sum up to �pol. Under neutrality
and rare mutations, the expected proportion of polymorphic
sites with derived allele count i in a sample of N individuals is
proportional to 1/i (e.g., see eq. 4.20 in Wakeley 2009). A root
polymorphism can be derived from both alleles present in the
population, we therefore take into account both possibilities
in equation (4). The proportion of polymorphic states at the
root, �pol, is not a free parameter, but is set equal to the
observed proportion of polymorphic states. In fact, �pol

could not be reliably estimated via ML, and its value did
not affect the estimation of other parameters noticeably (sup-
plementary information and table S1, Supplementary
Material online). The root frequency of a fixed state I is
�Ið1� �polÞ.

PoMo10
All results in this study are based on PoMo10 (PoMo N with
N = 10). PoMo10 has 58 states: 4 fixed states and 54 polymor-
phic states. In fact, for each of the 6 pairs of alleles
(fA,Cg, fA,Gg, fA,Tg, fC,Gg, fC,Tg, and fG,Tg), there are 9
polymorphic states for the possible allele counts
(f9,1g, f8,2g, . . . ,f1,9g). Therefore, PoMo10 has lower com-
putational cost than a standard codon model (61 states),
allowing genome-wide analysis of phylogenies with consider-
able numbers of species. PoMo10 approximates real popula-
tion dynamics with those of a virtual population of 10
individuals. Although this is a rough approximation, it is ex-
pected to be sufficient for parameter estimation (Zeng and
Charlesworth 2009, also confirmed by our simulations re-
sults). Smaller values of N generally resulted in considerable
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biases (supplementary fig. S16, Supplementary Material
online).

For each species and site considered, we randomly ex-
tracted a sample of haploid size 10 (see Description of
Data), and trivially associated the observed allele frequencies
to the corresponding virtual frequency state, ignoring sam-
pling variance. A limitation of PoMo10 is that it requires 10
sampled sequences for each species. A larger N is expected to
result in improved estimates, but at computational costs
(table 1).

PoMo10 Extensions: CpG Hypermutability and
Strand-Asymmetry
When we assume no context-dependency or strand-asymme-
try, we define six free parameters to describe mutation biases,
one for each unordered pair of nucleotides (�AC; �AG, etc.).
Yet, mutation rates in mammals show strong dependency on
the neighboring bases (Hwang and Green 2004). We extended
PoMo10 to include the strongest context dependency, the
hypermutability of CpG (nucleotide C followed by G) toward
TpG or CpA. This is accounted for by an extra parameter
h�CT that describes the mutation rate from C to T and
from G to A in a CpG context. We call this model CpG-
PoMo10 (for detailed description of rates see supplementary
information, Supplementary Material online). To estimate pa-
rameters of CpG-PoMo10, we only used synonymous sites
whose preceding and following bases are constant among
the considered species. We generally have three free param-
eters describing nucleotide frequencies at the root, but with
context dependency this number increases to 12 to account
for different frequencies in different CpG contexts.

We further extended CpG-PoMo10 to account for hyper-
mutability of transversions in CpG context (from CpG to
ApG, GpG, CpC, and CpT). The resulting model, CpG-
PoMo10b, has two additional free mutational parameters
(for details see supplementary information, Supplementary
Material online).

Finally, we accounted for strand-specificity of mutation
rates (Hwang and Green 2004; Polak and Arndt 2008). In
the resulting model, asy-CpG-PoMo10b, the constraints for
strand-symmetry (e.g.,�AG ¼ �TC) are relaxed, and therefore
9 extra free mutational parameters are necessary with respect
to CpG-PoMo10b, for a total of 18 (for details see supplemen-
tary information, Supplementary Material online).

Model Implementation
In this study, we assume that the tree topology is known and
fixed (supplementary fig. S17, Supplementary Material
online), and we estimate all branch lengths in the 4-species
rooted tree. Lists of number of free parameters for different
models are included in tables 2–4.

Parameter estimation was performed via ML with the con-
jugate gradient algorithm implemented in HyPhy (Pond et al.
2005). For this purpose, we produced custom scripts in HyPhy
Batch Language (supplementary file S1 [Supplementary
Material online] describes asy-CpG-PoMo10b and PoMo10
for the case sG ¼ sC and sA ¼ sT). We always estimated all
free parameters simultaneously. The scripts that we provide
require 10 sequences sampled from each species. This is a

limitation of the present state of our software, but not of
the model (table 1 and discussion). We used different starting
points for the conjugate gradient iterations on the whole real
data set, and observed consistency of different optimization
runs (supplementary information and supplementary fig. S2,
Supplementary Material online).

Description of Data
Great Apes Data Set
We constructed an exome-wide, inter- and intraspecies data
set of alignments of 4-fold degenerate (synonymous) sites
from H. sapiens, P. troglodytes, Pon. abelii, and Pon. pygmaeus
(respectively human, chimpanzee, and Sumatran and
Bornean orangutan).

First, CCDS (Pruitt et al. 2009) alignments of H. sapiens,
P. troglodytes, and Pon. abelii (references hg18, panTro2, and
ponAbe2) were downloaded from the UCSC genome browser
(http://genome.ucsc.edu, last accessed August 8, 2013). Only
CCDS alignments satisfying the following requirements were
retained for the subsequent analyses: divergence from human
reference below 10%, no gene duplication in any species, start
and stop codons conserved, no frame-shifting gaps, no gap
longer than 30 bases, no nonsense codon, no gene shorter
than 21 bases, no gene with different number of exons in
different species, or genes in different chromosomes in differ-
ent species (chromosomes 2a and 2b in nonhumans were
identified with human chromosome 2). From the remaining
CCDSs (9,695 genes and 79,677 exons), we extracted synon-
ymous sites. We only considered third codon positions where
the first two nucleotides of the same codon were conserved in
the alignment, as well as the first position of the next codon.

Then, population data were added to the species align-
ments. Human single nucleotide polymorphisms (SNPs) from
59 Yoruban (Nigerian) individuals (haploid sample size
� 118) sequenced from the 1,000 genomes pilot project
(1000 Genomes Project Consortium 2010) were downloaded
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/, last accessed
August 8, 2013) and included the alignments. Similarly, we
added SNP data of 10 western chimpanzee individuals (hap-
loid sample size �20) sequenced by the PanMap project
(Auton et al. 2012) and downloaded from ftp://birch.well.
ox.ac.uk/haplotypes/ (last accessed August 8, 2013).
Orangutan SNP data for the two species considered, each
with five sequenced individuals (haploid sample size� 10,
Locke et al. 2011), were kindly provided to us by X. Ma (in
preparation) and are now available online (http://www.ncbi.
nlm.nih.gov/projects/SNP/snp_viewTable.cgi?type=contact&
handle=WUGSC_SNP&batch_id=1054968, last accessed
August 8, 2013). We sub-sampled 10 alleles without replace-
ment for each species and site. The final total number of
synonymous sites included was 1,950,006 (for more details
on real data sets see supplementary tables S4–S6, Supplemen-
tary Material online).

The collection of all synonymous site alignments in the
great apes data set in valid format for PoMo10 is provided as
supplementary file S2, Supplementary Material online.
Custom scripts to convert SNP data from VCF v4.0 format
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into PoMo10 states, and to convert multi-species alignments
into HyPhy input files, are also provided as supplementary file
S3, Supplementary Material online.

Simulations
We simulated a population of 50 diploid individuals evolving
according to a phylogenetic tree (supplementary fig. S17,
Supplementary Material online), where a branch bifurcation
represents the duplication and split of a population. Evolution
was simulated according to a Wright–Fisher model with
sexual reproduction using simuPOP (Peng and Kimmel
2005) and custom Python scripts. Phylogeny and mutation
rates were set so to have similar divergence and diversity levels
to those in real data (supplementary table S4, Supplementary
Material online).

First, we simulated five scenarios, in which we progressively
added demographic events. The first scenario consisted of a
constant-size population phylogeny. In the second scenario,
we added a bottleneck on the human branch. In the third, we
made a population expansion follow the bottleneck. In the
fourth, we further added migration between the two orang-
utan species. Finally, we reduced population size in the
second half of the chimpanzee branch (for further details
about simulated demographic events see supplementary in-
formation, Supplementary Material online).

In a second set of simulations, we included CpG context.
We used root frequencies and mutation rates as estimated
from GC-rich and GC-poor bins (the extreme bins in figs. 4
and 5; for a detailed description of mutational parameters in
simulations, see supplementary information, Supplementary
Material online). For both the GC contents considered, we
simulated three selective regimes with a GC versus AT fitness
difference of 4Nes 2 f1,0,� 1g, for a total of six scenarios. For
each scenario, we simulated 106 independent sites, and then
sub-sampled data sets of varying sizes (ranging from 104 to
5� 105 sites), with 10 replicates for each size.

Supplementary Material
Supplementary files S1–S3, figures S1–S18, and tables S1–S9
are available at Molecular Biology and Evolution online (http://
http://mbe.oxfordjournals.org/).
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