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The life cycle of Drosophila orphan 
genes
Nicola Palmieri, Carolin Kosiol, Christian Schlötterer*

Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria

Abstract Orphans are genes restricted to a single phylogenetic lineage and emerge at high 
rates. While this predicts an accumulation of genes, the gene number has remained remarkably 
constant through evolution. This paradox has not yet been resolved. Because orphan genes have 
been mainly analyzed over long evolutionary time scales, orphan loss has remained unexplored. 
Here we study the patterns of orphan turnover among close relatives in the Drosophila obscura 
group. We show that orphans are not only emerging at a high rate, but that they are also rapidly 
lost. Interestingly, recently emerged orphans are more likely to be lost than older ones. Furthermore, 
highly expressed orphans with a strong male-bias are more likely to be retained. Since both lost and 
retained orphans show similar evolutionary signatures of functional conservation, we propose that 
orphan loss is not driven by high rates of sequence evolution, but reflects lineage-specific functional 
requirements.
DOI: 10.7554/eLife.01311.001

Introduction
Orphans are genes with limited phylogenetic distribution and represent a considerable fraction 
(up to 30%) of the gene catalog in all sequenced genomes (Khalturin et al., 2009). Studies conducted 
in different eukaryotes showed that orphans emerge at high rates (Domazet-Loso et al., 2007; 
Wissler et al., 2013). While gene duplication and exaptation from transposable elements often 
result in orphan genes (Toll-Riera et al., 2009), they also originate frequently de novo from non-
coding DNA (Cai et al., 2008; Heinen et al., 2009; Knowles and McLysaght, 2009; Wu et al., 
2011; Yang and Huang, 2011; Xie et al., 2012; Neme and Tautz, 2013; Wu and Zhang, 2013), 
probably through intermediate proto-genes (Carvunis et al., 2012). Compared to evolutionary 
conserved genes, orphans are overall shorter (Lipman et al., 2002), fast evolving (Domazet-Loso and 
Tautz, 2003), have lower and more tissue-restricted expression (Lemos et al., 2005). Moreover, 
they often show testis-biased expression (Levine et al., 2006; Begun et al., 2007), probably due 
to frequent origination in testis (Kaessmann, 2010).

In Drosophila the rate of orphan emergence is particulary high (Domazet-Loso et al., 2007) 
and many orphans become quickly essential (Chen et al., 2010). Although the function of only a 
few orphan genes has been studied, it has been proposed that orphans might serve an important 
role in speciation and adaptation to different environments (Khalturin et al., 2008; Khalturin et al., 
2009; Colbourne et al., 2011). The high rate of orphan origination would predict an increase in 
gene content over time. However, gene content in eukaryotes is remarkably stable compared to 
genome size, as highlighted by Tautz and Domazet-Loso (2011). To solve this paradox Tautz and 
Domazet-Loso proposed that orphans have only a short lifetime (‘rapid-turnover’ hypothesis) 
(Tautz and Domazet-Loso, 2011). Thus, although orphans are continuously created, most of them 
might be lost in a relatively short evolutionary time. Relaxed selective costraints in orphans (Cai 
and Petrov, 2010) might also contribute to the high rate of orphan loss.

Moreover, since orphans are typically identifed by the comparison of distantly related species, 
their evolutionary stability has been so far neglected. This contrasts the comprehensive analysis of 
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evolutionary patterns of gains and losses of non-orphan genes (Hahn et al., 2007). In this study, sev-
eral partially interrelated factors affect gene loss, including gene expression levels, number of protein–
protein interactions, gene dispensability, and rate of sequence evolution (Krylov et al., 2003; Cai and 
Petrov, 2010).

This study focuses for the first time on the evolutionary stability of orphan genes. We investigate 
the factors contributing to orphan loss and find that orphan age, male-biased gene expression, and 
microsatellite content are correlated with orphan stability. Surprisingly, differences in evolutionary rates 
cannot explain orphan loss and we propose that orphan loss is driven by lineage-specific evolutionary 
constraints. Overall, orphan genes are lost at a significantly higher rate than non-orphan genes, 
supporting the ‘rapid-turnover’ hypothesis.

Results
Orphans are commonly detected by BLASTing the genes of a given organism against a set of 
outgroup species (Domazet-Loso and Tautz, 2003; Toll-Riera et al., 2009). A BLASTP cutoff of 
10−3–10−4 was found to be optimal to maximize sensitivity and specificity in Drosophila (Domazet-
Loso and Tautz, 2003). To identify orphans we used a BLASTP cutoff of 10−4 combined with a TBLASTN 
cutoff of 10−4, to exclude genes with unannotated orthologs in other species. Following these 
criteria, we searched in Drosophila pseudoobscura for genes with no sequence conservation in 10 
Drosophila species outside the Drosophila obscura group (Figure 6—figure supplement 1). In 
total, we identified 1152 orphans, corresponding to 7% of all the D. pseudoobscura genes. Our 
estimate is slightly lower than a previous one (Zhang et al., 2010), due to our different filtering 
procedure, but still consistent with a high rate of orphan gain in Drosophila (Domazet-Loso and 
Tautz, 2003; Domazet-Loso et al., 2007; Zhou et al., 2008; Wissler et al., 2013). Our data 
clearly indicate that orphan genes are subject to purifying selection, as they show several hallmarks of 
functional protein-coding sequences (Figures 1, 2). A comparison of orphan genes preserved 
between D. pseudoobscura and D. affinis resulted in a distribution of dN/dS significantly lower 
than 1 with a median of 0.44 (Figure 1—figure supplement 1, one-sided Wilcoxon signed-rank 
test, p<1.0 × 10−15), as expected for protein-coding sequences. Moreover, dN/dS for orphans is 
significantly lower (Mann–Whitney test, p=2.7 × 10−14) than dN/dS calculated on a random set of 
intergenic regions with the same length distribution of orphans (see ‘Materials and methods’, 
section ‘Evolutionary rates’) (Figure 1A). Consistent with this, we also found orphans to be more 

eLife digest New genes are added to most genomes on a steady basis. A new gene 
can either begin as a copy of an existing gene from elsewhere in the genome, or is created 
entirely ‘from scratch’ from a DNA sequence that had not previously encoded for a protein. 
New genes that are not found in other related species are called orphan genes—and these 
genes can account for up to 30% of all the genes in the well-studied genomes. However, for 
reasons that are not fully understood, the total number of genes in most genomes remains  
fairly constant despite these regular additions. Now, Palmieri et al. have investigated this 
paradox by following the evolutionary fate of orphan genes in a small group of related species of 
fruit fly.

Palmieri et al. discovered that most orphan genes are very short-lived, even though they showed 
clear signals of carrying out important functions. Most orphan genes died out quickly due to mutations 
that made them unable to be expressed as functional proteins, and a small number were deleted 
entirely from the genome. Unexpectedly, new orphan genes were more likely to die out than those that 
had been around for a while.

Palmieri et al. also found that the expression levels of orphan genes determined their probability  
of dying with those genes that were expressed to the highest levels being most likely to persist 
longer. Furthermore, genes that were expressed more in males than in females were also less likely 
to die. The next challenge will be to identify the mechanisms that determine which orphan genes 
survive and which do not.
DOI: 10.7554/eLife.01311.002

http://dx.doi.org/10.7554/eLife.01311
http://dx.doi.org/10.7554/eLife.01311.002


Genes and chromosomes | Genomics and evolutionary biology

Palmieri et al. eLife 2014;3:e01311. DOI: 10.7554/eLife.01311	 3 of 21

Research article

conserved than intergenic regions (Figure 1B, Figure 1—figure supplement 2). The codon usage 
bias of orphans is intermediate to that of old genes and intergenic regions (Figure 1C).

To further test for purifying selection acting on orphans, we used a polymorphism dataset of 45 
strains being re-sequenced for the third chromosome of D. pseudoobscura (‘Materials and methods’). 
We calculated the ratio of synonymous to non-synonymous polymorphism (pN/pS), since it provides 
an indication of purifying selection. We found that pN/pS for orphans is significantly lower compared 
to intergenic regions (Mann–Whitney test, p=0.02182) (Figure 2), and significantly greater for old genes 
(Mann–Whitney test, p<1.0 × 10−15), consistent with purifying selection operating on orphans.

Figure 1. Orphans are subject to purifying selection. (A) dN/dS of D. pseudoobscura and D. affinis orthologs. 
dN/dS is lowest for old genes, but also orphan genes have dN/dS smaller than one. A comparison of orphans 
and intergenic regions shows that dN/dS for orphans is significantly smaller (Mann–Whitney test, p=9.5 × 10−10), 
indicating purifying selection on orphan genes. Intergenic regions were of similar length and chromosomal 
position as the orphan genes. (B) Sequence similarity in HSPs obtained from BLASTing D. pseudoobscura 
genes against the D. affinis genome. Orphans are more conserved than intergenic regions (Mann–Whitney 
test, p=0.00238) and less conserved than old genes (Mann–Whitney test, p<1.0 × 10−15). (C) Codon usage was 
measured by the Codon Adaptation Index (Sharp and Li, 1987). The codon usage of orphans is significantly 
higher than that of intergenic regions (Mann–Whitney test, p<1.0 × 10−15) indicating that orphans are subject 
to purifying selection. In comparison to old genes, orphans have a significantly lower codon usage bias (Mann–
Whitney test–p<1.0 × 10−15). Overall, all three analyses demonstrate that orphans are not annotation artifacts, but 
evolutionary conserved genes.
DOI: 10.7554/eLife.01311.003
The following figure supplements are available for figure 1:

Figure supplement 1. Distribution of dN/dS for orphan genes. 
DOI: 10.7554/eLife.01311.004

Figure supplement 2. Conservation of orphans in the obscura group. 
DOI: 10.7554/eLife.01311.005
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In agreement with studies in other species 
(Domazet-Loso and Tautz, 2003; Toll-Riera 
et al., 2009; Wolf et al., 2009; Cai and Petrov, 
2010; Capra et al., 2010; Carvunis et al., 2012), 
we also find that orphan genes are shorter (median 
length for orphans = 344 bp, median length for 
old genes = 1470 bp), have a lower GC content 
(median GC content for orphans = 0.54, median 
GC content for old genes = 0.55), are expressed 
at lower levels (expression in D. pseudoobscura 
males: mean expression for orphans = 29 FPKM, 
mean expression for old genes = 41 FPKM) 
than old genes (Figure 3). Using CD-Hit (Li and 
Godzik, 2006), we found the fraction of genes 
with a paralog (>90% protein similarity) to be 
similar for orphans (6.9%) and old genes (6.4%). 
Orphans are more enriched in microsatellites, also 
consistent with previous findings in vertebrates 
(Toll-Riera et al., 2012) and rice (Guo et al., 2007). 
Furthermore, unlike mammals (Toll-Riera et al., 
2009), none of the D. pseudoobscura orphans 
was found to be associated with transposable 
elements (see ‘Transposons detection’).

The distribution of orphans is heterogeneous 
across chromosomes (χ2-test, p<1.0 × 10−15), with 
the X chromosome having the highest fraction 
of orphans. In the obscura group, the two 
X-chromosome arms have a different evolutionary 
history. XL corresponds to Muller’s element A 
and is homologous to the X chromosome in  

D. melanogaster. XR, however, has been recently derived from an autosome (Muller’s element D, 3L in 
D. melanogaster). Analyzing the old-X and neo-X chromosomes separately, we observed a striking 
difference in the number of orphans despite similar chromosome sizes, with the old-X responsible for 
the excess of X-linked orphan genes, and the neo-X showing a similar number of orphans as the auto-
somes (Figure 4). For each chromosomal arm, we computed genomic features in 100 kb windows to 
correlate them with the difference in orphan content between old-X and neo-X. We found that 
average GC content, microsatellite density, transposon density, and length of intergenic regions differ 
between the two chromosomal arms (Figure 5).

We hypothesized that this pronounced difference between the two chromosome arms might 
reflect a different history of X-linkage. If orphan genes emerge at a higher rate on the X-chromosome 
(Levine et al., 2006), the shorter history of X-linkage on the neo-X could explain the paucity of 
orphans on the neo-X compared to old-X. In this case, the difference in orphan number between 
old-X and neo-X chromosomes should date back to the time before the origin of the neo-X, with 
a similar number of orphans originating after the creation of the neo-X. We therefore used the 
genomic sequences of five members of the D. obscura group (D. pseudoobscura [Richards et al., 
2005], D. miranda [Zhou and Bachtrog, 2012], and the de novo assembled D. persimilis, D. lowei, 
and D. affinis) to date the origin of the orphan genes to different ancestral nodes in the phylogenetic 
tree of these species (Beckenbach et al., 1993). We distinguished five groups of genes: old genes 
(non orphans) and four different orphan age classes (Figure 6). Surprisingly, we observed a consistent 
paucity of orphans on XR relative to XL across all age classes (Figure 7). This persistent difference in 
orphan number between XL and XR in all age classes suggests that X-linkage is not sufficient to explain 
the enrichment of orphans on XL. We conclude that the former autosome differs from the ancestral X 
chromosomal arm by a yet unidentified feature that affects the emergence of new orphans.

The analysis of orphans that have putatively lost their function via the acquisition of a stop 
codon or a frame shift causing insertion/deletion (pseudogenized/lost orphans) reveals another 
interesting feature of the XL–XR fusion. The oldest orphans in our dataset (age class 4) show a 

Figure 2. pN/pS for old genes, orphans, and intergenic 
regions. Orphans show a pN/pS intermediate between 
old genes and intergenic regions. Nevertheless,  
pN/pS is significantly smaller for orphans compared 
to intergenic regions (Mann–Whitney test, p<1.0 × 
10−15), indicating coding purifying selection acting on 
orphans.
DOI: 10.7554/eLife.01311.006
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pronounced excess of pseudogenized orphans on XR in D. affinis and D. miranda (Figure 8A). This 
trend was not observed for orphans that emerged on XR after the XL–XR fusion (Figure 8B,C), nor 
for old genes (Figure 8D) and is not due to an increased rate of orphan gain on XR (Figure 9). Since 
the oldest orphans (age class 4) on XR are a mixture of autosomal (i.e., before the fusion) and sex-
chromosomal (i.e., after the fusion) orphans, we speculate that the high rate of pseudogenization 
of orphans on the XR may reflect the new X-linkage of previously autosomal orphans. A previous 
study (Meisel et al., 2009) found that the XR chromosome has experienced a burst of gene duplica-
tions to autosomes after its creation. It is plausible that after the conversion of the XR from autosome 
to sex-chromosome, orphans might have been duplicated to autosomes, whereas the XR ancestral 
copy would have become pseudogenized. To test this hypothesis, we looked for evidence of gene 
duplications for the orphans lost on the XR at node 4 (Figure 6). We aligned the sequences of 
these genes in D. lowei and D. miranda to the respective genomes using BLASTN (cutoff 10−5). 
Upon manual inspection of the alignments, we found that only 1 out of 21 genes in D. miranda 

Figure 3. Comparison of orphans and genes conserved among 10 Drosophila species outside of the obscura 
group. Orphans differ from old genes in various features: (A) gene length (B) GC content, (C) dN/dS (D) percentage 
of microsatellites in coding sequence (E) Codon Adaptation Index (F) gene expression level in D. pseudoob-
scura males (G) gene expression level in D. pseudoobscura females (H) sex-biased expression. Orphans are 
shorter (Mann–Whitney test, p<1.0 × 10−15), have lower GC content (Mann–Whitney test, p=3.9 × 10−7), lower 
codon usage bias (Mann–Whitney test, p<1.0 × 10−15), lower expression (Mann–Whitney test, p<1.0 × 10−15), 
higher proportion of microsatellites (Mann–Whitney test, p=1.8 × 10−4) and higher dN/dS (Mann–Whitney test, 
p<1.0 × 10−15) compared to old genes. Moreover, orphans are more enriched in male-biased genes compared 
to old genes (χ2-test, p<1.0 × 10−15).
DOI: 10.7554/eLife.01311.007
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(gene ID: GA23486) and 1 out of 14 genes in  
D. lowei (gene ID: GA23807) had a second hit 
on an autosome covering at least 50% of the 
length of the query gene. Other genes either pro-
duced a single best hit on the XR chromosome 
or spurious short hits on other chromosomes 
(data not shown). Thus, we conclude that dupli-
cation of orphans cannot explain the excess of 
pseudogenized orphans on XR. Nevertheless, 
our analysis clearly indicates that the emergence 
of the neo-X chromosome influenced the orphan 
dynamics on XR, affecting rates of both gain and 
loss, thus we excluded this chromosome arm for 
our analyses of the rate of orphan turnover.

For each age class, we determined the number 
of pseudogenized orphans (Tautz and Domazet-
Loso, 2011). In the D. persimilis lineage, orphan 
pseudogenization can be studied for three dif-
ferent age classes. If orphans of all age classes 
were functionally equivalent, no difference in 
the rate of orphan pseudogenization would be  

expected. We observe, however, that the fraction of orphan pseudogenes decreases with age 
(Figure 10). The D. miranda lineage also shows a higher loss of young orphan genes. The relatively 
small number of observations, however, precludes statistical testing of this trend. Overall, orphan 
genes are lost significantly more often than old genes (Fisher’s exact test, p=3.3 × 10−8), consistent 
with the rapid turnover hypothesis. The unequal conservation of orphans of different age classes 
is also apparent after normalizing by coding sequence length (Figure 11), to account for the fact 
that longer coding sequences (CDS) have a greater chance of acquiring ORF-disrupting mutations. 
When looking at the distribution of premature termination codons (PTC) along the open reading 
frame (ORF) of all genes, we observed that PTCs are enriched at the beginning and at the end of 
the ORF (Figure 12), consistent with previous results in D. melanogaster (Lee and Reinhardt, 
2012) and D. pseudoobscura (Hoehn et al., 2012). Since ORF-disrupting mutations occuring at 
the end of the ORF might have little impact on gene function, we redefined pseudogenes by con-
sidering only ORF-disrupting mutations localized in the first half of the ORF and confirmed that 
orphans of age class 3 are lost more often than those of age class 4 (Figure 13). Age class 2 was 
intermediate, most likely not reflecting a biological phenomenon, but due to a high sampling var-
iance associated with the small number of observations (9 orphans). Finally, the pattern is also 
robust to a more conservative criterion for ortholog assignment (see ‘Annotation of the obscura 
species’, Figure 14).

To determine features associated with the differences in disabling mutations among orphans from 
different age classes, we contrasted orphans lost in D. lowei and/or D. persimilis (lost orphans) vs 
orphans conserved in all the obscura species (conserved orphans). Genes in both classes evolve at the 
same rate, are of similar length, and have similar codon usage bias (Figure 15A–E). Conserved orphans 
have a higher GC content, contain fewer microsatellites, are expressed at a higher level and are more 
male-biased (Figure 15B,D–F,G,H) compared to lost orphans. Conserved orphans tend to increase 
their expression level as they become older (Figure 16A), whereas the opposite pattern is true for lost 
orphans (Figure 16B).

Orphan genes are frequently expressed in the testis (Levine et al., 2006; Begun et al., 2007) 
and have a male-biased gene expression pattern (Metta and Schlötterer, 2008). This pattern could 
be generated by pervasive gene expression in testis, which facilitates the functional recruitment of 
non-specific expression (Kaessmann, 2010). Another explanation is that expression in testis does 
not require a complex architecture of regulatory modules (Sassone-Corsi, 2002; Kleene, 2005; 
Kaessmann, 2010), so that fewer substitutions are required to obtain a functional regulatory module 
for expressing a novel gene in testis compared to other tissues. We scrutinized these explanations 
by comparing the fraction of male-biased genes among orphan genes from different age classes. 
Unexpectedly, the fraction of male-biased genes increases with the age of the orphan genes 

Figure 4. Chromosomal distribution of old genes 
and orphan genes. Orphans are overrepresented on 
the old-X. The number of orphan genes on the neo-X 
(XR) is significantly lower than on the old-X (XL) 
(χ2-test, p<1.0 × 10−15).
DOI: 10.7554/eLife.01311.008
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(Figure 17). This increase of male-biased orphans among the older age classes is the result of a 
preferential loss of orphans with an unbiased gene expression (Figure 18). To confirm that male-
biased gene expression is associated with orphan retention rather than emergence, we analyzed 
the sex-bias in D. miranda for orphans with and without an open reading frame. Consistent with 
the gene expression pattern in D. pseudoobscura, we found that lost orphans have a significantly 
lower male-bias in D. miranda (Figure 19). We conclude that the previously reported male-biased gene 
expression of orphan genes is not the result of a preferential recruitment of male-biased transcripts, 
nor do orphans gradually acquire male-biased gene expression. Rather, male-biased orphans are 
more likely to be retained.

Discussion
Our study provides the missing link to understand orphan dynamics. Until now, orphan evolution was 
primarily studied on long phylogenetic branches. Although this approach is well suited to discover 
new orphans, it does not allow tracing the evolution of orphans. Previous studies showed a high rate 
of orphan gain, which is not reflected in an increase in gene number. To resolve this apparent paradox, it 
has been postulated that orphans must be lost at a high rate as well (Tautz and Domazet-Loso, 2011). 
In this study, we used the framework of closely related species in the obscura group to study the 
patterns of orphan gain and losses. We show that orphans not only emerge at high rates, but that 
they are also rapidly lost (Figure 10). Interestingly, most losses (∼76%) were due to disabling mutations 
rather than deletions of the orphan gene. Although under equilibrium conditions the number of 

Figure 5. Comparison of genomic features among autosomes, old-X and neo-X. (A) GC content in 100 kb windows, (B) Microsatellite density in 
100 kb windows, (C) Transposon density in 100-kb windows, (D) Length of intergenic regions, (E) Recombination rate. GC content is significantly greater 
on the neo-X compared to old-X for 10 kb windows (Mann–Whitney test, p=0.00020), but not for 100 kb windows (Mann–Whitney test, p=0.1092). 
Microsatellite density is significantly higher on the neo-X for both windows of 10 kb (Mann–Whitney test, p=1.9 × 10−12) and 100 kb (Mann–Whitney 
test, p=0.00025). Transposon density is significantly lower on the neo-X for both windows of 10 kb (Mann–Whitney test, p<1.0 × 10−15) and 100 kb 
(Mann–Whitney test, p=4.6 × 10−12). Intergenic regions are significantly shorter on the neo-X compared to the old-X (Mann–Whitney test, p=7.4 × 10−9). 
Recombination rate does not differ significantly between old-X and neo-X (Mann–Whitney test, p=0.629).
DOI: 10.7554/eLife.01311.009
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losses balances the number of orphan gains, here, we observed a surplus of orphan gains (Figure 6). 
We caution that this discrepancy probably does not imply an increase of gene number, but rather 
reflects the limited evolutionary time to acquire mutations. Using a rather conservative criterion 
for disabling mutations, either premature stop codons or frameshift indels, we have probably not 
identified all orphans that have lost their function. Furthermore, we do not account for the possi-
bility of loss of function due to changes in gene regulation.

Importantly, codon usage bias, dN/dS values and sequence conservation clearly suggest that 
orphan genes are functionally constrained and these constraints do not differ among orphans that are 
conserved in the obscura group and those that lost function in at least one species of the group. 
Hence, it may be possible that orphan loss is stochastic and reflects weak purifying selection. 
Nevertheless, lost orphans differ in some aspects from conserved ones. Orphans that are lost contain 
more microsatellite stretches and have a lower, less sex-biased gene expression than retained ones. 
Furthermore, we also found that the rate of orphan loss decreases with orphan age, a result consistent 
with orphans serving a functional role only temporarily. Previous work suggested that orphans are 
important for adaptation to novel environments (Khalturin et al., 2009; Colbourne et al., 2011), but 
it is also possible that orphans contribute to stabilize new connections in gene networks (Capra et al., 
2010; Warnefors and Eyre-Walker, 2011) and become obsolete once such new connections have 
been optimized. Our data suggest that orphans become quickly functional, which is reflected in their 
codon usage bias, dN/dS ratio and sequence conservation.

The chromosomal translocation resulting in the neo-X chromosome provides another interesting 
perspective on the evolution of orphan genes. Despite the fact that the neo-X is now fully dosage 

Figure 6. Orphan gain and losses in the Drosophila obscura group. Schematic phylogenetic tree of the Drosophila 
obscura group species according to Beckenbach et al. (1993) with D. melanogaster as outgroup. Genes conserved 
between D. pseudoobscura and 10 non-obscura Drosophila species correspond to age class 5 (old genes). For each 
age class the number of gene gains is shown in black. Orphans lost at a given branch are indicated in red. Note that 
losses at internal branches cannot be calculated, since all the orphans are present in D. pseudoobscura. Losses in 
D. affinis cannot be unambiguously assigned due to the absence of an additional obscura outgroup.
DOI: 10.7554/eLife.01311.010
The following figure supplements are available for figure 6:

Figure supplement 1. Schematic tree of the Drosophila species analyzed in this study. 
DOI: 10.7554/eLife.01311.011
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Figure 7. Chromosomal distribution of orphans of different age classes. In each age class orphans are underrepresented 
on the neo-X (XR) compared to old-X (XL) (Age class 4: χ2-test, p=6.3 × 10−9; age class 3: χ2-test, p=4.4 × 10−5; age 
class 2: χ2-test, p=0.00590; age class 1: χ2-test, p=0.00876; D. pseudoobscura specific: χ2-test, p=0.00030).
DOI: 10.7554/eLife.01311.012

Figure 8. Orphans predating the XL-XR fusion are preferentially lost on the neo-X. For three terminal branches (D. lowei, 
D. miranda, and D. persimilis) the fraction of lost genes for each age class is shown. Each autosome and both X-chromosome 
arms are shown in different color. At node 4, where the neo-X originated, we observed the highest rate of orphan 
pseudogenization on the neo-X (A). Notably, this effect is not seen for younger orphans (B and C) neither for old genes (D).
DOI: 10.7554/eLife.01311.013
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compensated (Abraham and Lucchesi, 1974), 
and has obtained a similar base composition as the 
XL (Gallach et al., 2007), we noted that the 
translocation resulted in a preferential loss of 
orphan genes on the neo-X. Since this pattern is 
restricted to orphans that most likely originated 
before the chromosomal fusion, we argue that 
the change in chromosomal environment has 
affected the function of orphan genes, most likely 
via expression differences. We speculate that 
the selective advantage conferred by these 
orphans has diminished, which resulted in a 
higher loss rate. Interestingly, the elevated rate 
of orphan loss after the neo-X formation seems 
to be still ongoing. This differential loss of 
orphan genes point in a similar direction as the 
observation that the gene composition of the 
neo-X has been altered by gene duplication 
(Meisel et al., 2009). Hence, both (orphan) gene 
loss and duplication contribute to fast gene 
content remodeling on a newly formed sex chro-
mosome in Drosophila.

Materials and methods
Species data collection
An individual species sample of D. affinis (stock 
number 140120141.02) was ordered from the 
Drosophila Species Stock Center (https://stock-

center.ucsd.edu/info/welcome.php) and sequenced on the Illumina GAIIx following the paired-end library 
preparation protocol (version Illumina 1.7) in two runs (run 1: read length = 101 bp, insert size = 230 bp; 
run 2: read length = 101 bp, insert size = 550 bp). Short genomic reads for D. lowei (accessions 

Figure 9. No change in orphan gain on the neo-X 
chromosome. The percentage of orphan genes on the 
neo-X chromosome remains constant through time 
(indicated by age classes).
DOI: 10.7554/eLife.01311.014

Figure 10. Young orphan genes are more likely to 
be lost. The barplot shows the fraction of orphans that 
has acquired a frameshift or premature stop codon  
(i.e., lost function). For D. lowei, D. miranda, and D. 
persimilis, the fraction of lost orphans is shown for 
different age classes. Orphans are more likely to be lost 
than old genes. Both the D. miranda and D. persimilis 
lineage show that younger orphans are more likely to 
lose function than older ones.
DOI: 10.7554/eLife.01311.015

Figure 11. Young orphan genes are more likely to be 
lost: accounting for CDS length. To test if the short CDS 
of orphans affects the pattern that young orphans are 
more likely to lose function, we normalized the 
percentage of losses by the median CDS length of 
genes at that node.
DOI: 10.7554/eLife.01311.016
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SRX091466 and SRX091467) and D. persimilis 
(accession SRX091471) were downloaded from 
the Sequence Read Archive (http://www.ncbi.
nlm.nih.gov/sra). The genome of D. miranda was 
downloaded from NCBI (GenBank Assembly ID 
GCA_000269505.1). The genome of D. pseudoo-
bscura was downloaded from FlyBase (release 
2.23).

Assembly of the obscura species
Reads for D. affinis, D. lowei, and D. persimilis 
were trimmed using the Perl script trim_fastq.pl 
(parameters –quality-threshold 20 −−min-length 
40) from PoPoolation (Kofler et al., 2011). For 
each species, a de novo assembly (parameters: 
min-contig-length 200) was performed using 
CLC Genomics Workbench 4.6 (http://www.
clcbio.com/products/clc-genomics-workbench/), 
followed by scaffolding with nucmer (parameters: 
–c 30 –g 1000 –b 1000 –l 15) against the D. pseu-
doobscura genome. Average coverage per 
assembled genome was calculated by realigning 
the reads against the contigs of the respective 

Figure 12. Distribution of premature stop codons (PTCs) along the ORF for all genes containing PTCs. PTCs are 
enriched at the beginning and at the end of the ORF in each species.
DOI: 10.7554/eLife.01311.017

Figure 13. Young orphan genes are more likely to be lost: 
considering only frameshifts and premature stop codons 
occurring in the first half of the ORF. We repeated the 
analysis shown in Figure 10 by considering only frameshifts 
and premature stop codons occurring in the first half of the 
ORF to define a conservative set of pseudogenes, since 
disrupting mutations occurring at the end of the ORF 
are likely to have little impact on the gene function.
DOI: 10.7554/eLife.01311.018
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species with Bowtie 2.1.0 (parameters: --very-
fast) and selecting only reads with mapping 
quality >20.

Annotation of the obscura 
species
The annotation of D. affinis, D. lowei, D. miranda, 
and D. persimilis is based on orthology to D. 
pseudoobscura using Exonerate 2.2.0 (parame-
ters: -model protein2genome–bestn 1 -show-
targetgff), by aligning the longest isoform of D. 
pseudoobscura proteins extracted from a recent 
re-annotation of D. pseudoobscura (Palmieri 
et al., 2012) to the genomes of D. affinis, D. lowei, 
D. miranda, and D. persimilis. For each gene, 
the best unambiguous hit was retained. To 
remove non-informative hits, we also required a 
minimum fraction of the gene to be recovered. 
Since the sequence conservation of orthologs 
decreases with divergence time, the expected 
length of the ortholog depends strongly on the 
phylogenetic distance between query and sub-
ject sequence. To apply consistent criteria for 
all species, we empirically determined the  
expected fraction of a gene with sequence  
homology. Based on genes that are conserved 

between D. pseudoobscura and the 10 Drosophila species outside the obscura clade (old genes) 
(Figure 6—figure supplement 1), we determined the distribution of the fraction of the genes that 
could be aligned. As cutoff the value we used the 5th percentile of the distribution of aligned pro-
tein length of old genes. This resulted in a threshold of 47% for D. affinis, 52% for D. lowei, 59% 
for D. miranda and 53% for D. persimilis. Hence, only orphan orthologs that showed a fraction of 
aligned coding sequence higher than the empirically determined cutoffs were retained. In addition to 
this ortholog set, we generated an alternative, more conservative ortholog set. For this one, at 
least one of the flanking genes of D. pseudoobscura was required to be in synteny with the respec-
tive orthologs in D. affinis, D. miranda and D. persimilis. D. lowei was not considered in the syn-
teny analysis since most of the genes in this species are flanked by genomic gaps, due to the shorter 
contig length of the D. lowei assembly (Table 1), which caused many contigs to contain only a single gene 
(Table 2), thus precluding proper synteny assignments. Assembly and annotation of all the species are 
available at http://popoolation.at/affinis_genome, http://popoolation.at/lowei_genome, http://
popoolation.at/miranda_genome and http://popoolation.at/persimilis_genome. Detailed annotation 
statistics for each gene are available at 10.5061/dryad.hq564 (Palmieri et al., 2014).

Detection of orphan genes
D. pseudoobscura proteins corresponding to the longest isoform for each gene were aligned using 
BLASTP (E < 10−4) and TBLASTN (E < 10−4) against the published proteomes and genomes of 10 
Drosophila species outside the obscura group (D. melanogaster, D. simulans, D. sechellia, D. erecta, 
D. yakuba, D. ananassae, D. willistoni, D. mojavensis, D. virilis, D. grimshawi). Genes without BLAST 
hits and without annotated orthologs in FlyBase (gene orthologs release 09-2011) were classified as 
orphans.

Polymorphism analysis
Illumina reads for 45 D. pseudoobscura strains were downloaded from NCBI (Sequence Read Archive, 
accession SRP017196). Reads were trimmed using PoPoolation (Kofler et al., 2011) and a total of 
3.5 million reads was randomly extracted for each strain and combined into a single FASTQ file. The 
combined reads were treated as a Pool-Seq dataset and mapped to the FlyBase D. pseudoobscura 
genome release 2.23 with BWA (Li and Durbin, 2009) (parameters -o 1 -n 0.01 -l 200 -e 12 -d 12) on 

Figure 14. Young orphan genes are more likely to be 
lost: the conservative set of orthologs. We repeated 
the analysis shown in Figure 10 by restricting it to 
orthologs for which at least one flanking gene is 
identified in the same contig (see ‘Annotation of the 
obscura species’). Due to the substantially reduced 
number of orphans in the older age classes, we 
combined age class 3 and 4.
DOI: 10.7554/eLife.01311.019
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a hadoop cluster using DistMap (Pandey and Schlötterer, 2013). From the resulting BAM file, PCR 
duplicates were removed with Picard (http://picard.sourceforge.net) using the tool MarkDuplicates.jar 
(parameters REMOVE_DUPLICATES = true, VALIDATION_STRINGENCY = SILENT). Proper-pairs with 
mapping quality >20 were extracted with samtools (version 0.1.18) (Li et al., 2009). Indels were 
detected with PoPoolation using the script identify-genomic-indel-regions.pl (parameters--min-count 
2 --indel-window 5) and masked from the reference genome prior to SNP calling. Coverage was 
subsampled to 50X for all the chromosomes. Only SNPs on the 3rd chromosome were considered in all 
analyses, since a balancer chromosome was used to extract the 3rd chromosome, precluding an 

Figure 15. Features of conserved orphans vs lost orphans measured in D. pseudoobscura. (A) Gene length (B) GC 
content, (C) dN/dS (D) percentage of microsatellites in coding sequence (E) Codon Adaptation Index (F) gene 
expression levels in D. pseudoobscura males (G) gene expression levels in D. pseudoobscura females (H) 
sex-biased expression. Gene length (Mann–Whitney test, p=0.7235) and evolutionary rates (Mann–Whitney test, 
p=0.5835) are not significantly different between conserved and lost orphans. Lost orphans have higher GC content 
(Mann–Whitney test, p=0.00325), lower expression in D. pseudoobscura males (Mann–Whitney test, p=0.00012) 
and females (Mann–Whitney test, p=0.00230) and a higher microsatellite content (Mann–Whitney test, p=0.00049) 
compared to conserved orphans. Lost orphans are enriched in unbiased genes compared to conserved orphans 
(χ2-test, p=0.02611).
DOI: 10.7554/eLife.01311.020
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unbiased polymorphism analysis for the remaining 
chromosomes. SNPs were called with the 
PoPoolation script Variance-sliding.pl (parameters--min- 
coverage 10 --min-count 2 --max-coverage  
500 --min-qual 20 --window-size 500 --step-size 
500 --fastq-type sanger--pool-size 45).

Calculation of orphan gains  
and losses
Orphan gains and losses (pseudogenizations) 
were inferred by Dollo parsimony. Based on the 
phylogenetic tree of Figure 6, a gene was 
assigned as gained at a given node if an intact 
ortholog was present in both external branches 
of the subtree corresponding to that node. For 
example, a gene having an intact ORF in D. 
lowei but not in D. affinis was classified as 
gained at node 3 (Figure 6). A gene was consid-
ered to be lost at a terminal branch if at least 
one ORF-disrupting mutation (frameshift/pre-
mature stop codon) was present in the gene at 
that branch and two intact ORFs were detected 
at both external leaves (Wang et al., 2006). The 

relatively high coverage of our assemblies (Table 1) makes unlikely that disrupting mutations are 
sequencing errors. In D. affinis for instance, only 8 genes had an average coverage lower than 20x.

A gene was considered as completely deleted in a species if no ortholog was detected in that 
species and no BLASTP (E < 10−4) or TBLASTN (E < 10−4) hit was found. Deletions were not 

Figure 16. Conserved and lost orphans differ in their 
gene expression pattern. Expression intensity and sex 
bias in D. miranda for orphans conserved in all the 
obscura species (conserved orphans) vs orphans that 
pseudogenized in D. lowei and/or D. persimilis (lost 
orphans). Expression is calculated in males for orphans 
of age classes 3 and 4. Expression level increases with 
age for conserved orphans (A), while it decreases for 
lost orphans (B).
DOI: 10.7554/eLife.01311.021

Figure 17. The proportion of male-biased 
orphans increases with age. Sex-biased expression 
was measured in D. pseudoobscura for orphans 
belonging to different age classes and for old genes 
(age class 5).
DOI: 10.7554/eLife.01311.022

Figure 18. Conservation of orphans is correlated with 
male-biased gene expression. Orphans with male-
biased gene expression in D. pseudoobscura were 
grouped into classes according to expression bias 
strength. The fraction of conserved orphans in each bin 
shows a significant positive correlation with expression 
bias (Spearman’s rho = 0.811, p=0.02692). This 
correlation suggests that orphans with a more 
pronounced male-biased expression tend to persist 
longer than less male-biased orphans. No similar trend 
was seen for female-biased orphans (Spearman’s rho = 
0.78262, p=0.1176).
DOI: 10.7554/eLife.01311.023
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considered into analyses of gene turnover, 
since they cannot be distinguished from missing 
annotations.

Expression analysis
Four RNA-Seq datasets of D. pseudoobscura 
males and females (strains ps94 and ps88  
from the ArrayExpress database—accession 
E-MTAB-1424), together with two RNA-Seq 
samples of D. miranda males and females from 
the Sequence Read Archive (accessions 
SRX106024, SRX106025), were used for expres-
sion analysis. For each sample, reads were 
trimmed using PoPoolation (Kofler et al., 2011) 
and aligned to the genome of the respective 
species with GSNAP version 2012-07-12 (Wu 
and Nacu, 2010) (parameters: –N 1). Only 
proper pairs mapping unambiguously to one 
position were retained. Expression in FPKM 
was calculated with Cufflinks version 1.2.1 
(parameters: -F 0.10 –j 0.15 –I 300000). For D. 
pseudoobscura sex-bias was calculated using 
the package DESeq (Anders and Huber, 2010), 
treating the strains as two biological replicates for 
each sex and applying an FDR = 0.1. Differential 
expression between D. miranda males and females 
was calculated for both species using the log2 
fold change on the normalized expression counts 
using the normalization protocol implemented 
in the R package DESeq (Anders and Huber, 
2010) version 1.10.1.

Codon usage bias
Codon usage bias was calculated using the  
R package seqinr (function cai) based on the  
D. pseudoobscura codon usage table down-
loaded from http://www.kazusa.or.jp/codon/cgi- 
bin/showcodon.cgi?species=7237.

Evolutionary rates
Coding sequences of D. pseudoobscura and D. 

miranda orthologs without frameshifts/stop codons were aligned using PRANK (Loytynoja and 
Goldman, 2005) (parameters: –codon). To test for purifying selection on orphans, dN/dS was com-
pared between orphans and a set of randomly selected intergenic regions. This set was generated 
as follows: (1) we identified the intergenic regions from the D. pseudoobscura annotation from 
Palmieri et al. (2012), (2) for each CDS belonging to an orphan gene we extracted all the inter-
genic regions longer than that CDS, (3) we randomly selected one intergenic region and we 
extracted from that a random subregion with the same length of a given orphan CDS, (4) this pro-
cedure was repeated for all orphan CDS, resulting in a set of intergenic regions with the same 
length distribution as orphan CDSs. These regions were aligned with BLASTN (cutoff 10−5) to the 
D. affinis genome and for each region the best hit was kept and realigned with PRANK (default 
parameters) to the D. pseudoobscura query sequence. Each alignment was truncated at the 5’end 
to get an alignment length, which is a multiple of 3. Internal stop codons were replaced by Ns. The 
ratio of the rates of nonsynonymous and synonymous substitutions per gene (dN/dS) was meas-
ured using Markov models of codon evolution and maximum likelihood methods implemented in 
PAML (Yang, 2007).

Figure 19. Comparison of strength of sex-biased gene 
expression for conserved and lost orphans in D. 
miranda. A sex-biased gene expression larger than zero 
indicates a higher gene expression intensity in males 
than in females (male-biased gene expression). 
Conserved orphans have significantly higher male-
biased expression than lost orphans (Mann–Whitney 
test, p=0.03158).
DOI: 10.7554/eLife.01311.024
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Comparison of genomic features among old-X, neo-X,  
and autosomes
To shed light on the differences in orphan number between XL and XR, different features were 
compared among old-X, neo-X, and autosomes in D. pseudoobscura (unassembled contigs were 
not considered in this analysis): (A) GC content was calculated with the R package seqinr for 100 kb 
sliding windows along each chromosome (B) microsatellite density was calculated using SciRoKo 3.4 
(Kofler et al., 2007) (parameters: -mode mmfp–l 15 –r 3 –s 15 –p 5 –seedl 8 –seedr 3 –mmao 3) for 
100 kb sliding windows along each chromosome; (C) transposon density was estimated with RepeatMasker 
3.2.9 (parameters: –q–gff -nolow–norna–species drosophila) for 100 kb sliding windows along each 
chromosome; (D) length of intergenic regions were calculated using BEDTools (-complement) by inter-
val subtraction between genome and gene coordinates; (E) recombination rates for different windows 
were taken from McGaugh et al. (2012).

Microsatellite detection
Microsatellites were detected on the transcript sequences of the longest isoform for each D. pseudoo-
bscura gene using the tool SciRoKo 3.4 (Kofler et al., 2007) (parameters: -mode mmfp–l 15 –r 3 –s 
15 –p 5 –seedl 8 –seedr 3 –mmao 3).

Transposons detection
Genomic annotation of transposons was performed in D. pseudoobscura using RepeatMasker 3.2.9 
(parameters: –q–gff -nolow–norna–species drosophila). Only transposons longer than 50 bp and not 
overlapping with microsatellites (see ‘Microsatellite detection’) were retained. We required for an 
orphan to contain a full transposon sequence in one of its exons in order to classify it as associated 
with a transposon.

Table 1. De novo assembly statistics

D. affinis D. lowei D. persimilis

Number of contigs 28,946 106,465 17,387

N75 9,478 1,218 10,359

N50 25,160 3,230 24,172

N25 49,062 7,357 49,047

Minimum length 121 162 147

Maximum length 216,903 87,164 204,742

Average length 5,183 1,388 7,736

Total bp 150,030,247 147,756,871 134,501,523

Average coverage 51 X 92 X 44 X

The D. miranda genome was available at NCBI, thus no de novo assembly was made for this species.
DOI: 10.7554/eLife.01311.025

Table 2. Orthology annotation statistics

D. affinis D. lowei D. miranda D. persimilis

Total genes 14,287 14,952 15,282 14,995

Genes with frameshifts/PTC* 1,233 1,266 1,171 898

Mean number of genes  
per contig

3.4 1.6 – 3.4

Median number of genes  
per contig

2 1 – 2

Maximum number of genes  
per contig

35 24 – 37

*PTC = Premature termination codons.
DOI: 10.7554/eLife.01311.026
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