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The emerging interest in using stable bedrock formations for industrial purposes, e.g.,
nuclear waste disposal, has increased the need for understanding microbiological and
geochemical processes in deep crystalline rock environments, including the carbon
cycle. Considering the origin and evolution of life on Earth, these environments may also
serve as windows to the past. Various geological, chemical, and biological processes
can influence the deep carbon cycle. Conditions of CH4 formation, available substrates
and time scales can be drastically different from surface environments. This paper
reviews the origin, source, and cycling of methane in deep terrestrial crystalline bedrock
with an emphasis on microbiology. In addition to potential formation pathways of CH4,
microbial consumption of CH4 is also discussed. Recent studies on the origin of CH4 in
continental bedrock environments have shown that the traditional separation of biotic
and abiotic CH4 by the isotopic composition can be misleading in substrate-limited
environments, such as the deep crystalline bedrock. Despite of similarities between
Precambrian continental sites in Fennoscandia, South Africa and North America, where
deep methane cycling has been studied, common physicochemical properties which
could explain the variation in the amount of CH4 and presence or absence of CH4

cycling microbes were not found. However, based on their preferred carbon metabolism,
methanogenic microbes appeared to have similar spatial distribution among the different
sites.

Keywords: abiotic methane, deep subsurface, Precambrian bedrock, carbon cycle, methanogenesis,
methanotrophy, isotopic fractionation

Introduction and Historical Perspective

Methane is a key compound in the global carbon cycle. In the shallow subsurface CH4
is mainy produced by anaerobic digestion of organic matter. Deeper in the geological
strata CH4 is found in large quantities within sedimentary formations and unconventional
resources, such as shale gas, have also proven to be important reserves of CH4 (Arthur
and Cole, 2014). Other sources of CH4 include methane hydrates and clathrates in deep
lake sediments and seafloor (Walter et al., 2006; Ruppel, 2011; Kretschmer et al., 2015;
Treat et al., 2015). In addition, CH4 is a dominant gas in many Precambrian continental
bedrock formations (Fritz et al., 1987; Karus et al., 1987; Nurmi et al., 1988; Sherwood Lollar
et al., 1993a,b; Ward et al., 2004; Sherwood Lollar et al., 2006; Pitkänen and Partamies,
2007; Hallbeck and Pedersen, 2008a; Stotler et al., 2010; Kietäväinen et al., 2013, 2014).
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Table 1 describes the carbon geochemistry of several continental
study sites in Fennoscandia, South Africa, and North America
within the depth range from few hundredmeters down to 3.4 km.
Microbes involved in methane cycling have been detected in
many of these sites.

The emerging interest in using stable bedrock formations
for industrial purposes (e.g., nuclear waste disposal sites or
carbon dioxide or natural gas storages) has increased the need
for understanding the complete carbon cycling scheme in deep
crystalline rock environments. CH4 can have effects on industrial
utilization of the deep bedrock: It can promote growth of
microorganisms in the subsurface by providing an ample source
of energy and carbon. Increased microbial activity can lead to
pH changes inducing corrosion and alteration of geochemistry
resulting to mineral precipitation and scaling, or mobilization of
hazardous compounds such as radiocarbon, thus damaging the
infrastructure or imposing a risk to the environment. Therefore,
research has been conducted for several years for example related
to the long-term geological disposal of spent nuclear fuel to
deep subsurface facilities in Canada, Sweden, USA, Finland,
and Belgium (Stroes-Gascoyne and West, 1996; Pedersen, 1996;
Fredrickson et al., 2004; Wang and Francis, 2005; Nyyssönen
et al., 2012;Wouters et al., 2013). These studies have provided not
only an understanding of the microbial risks, but also knowledge
of the active microbial communities living in deep geological
surroundings. However, many aspects of origin, source, and
cycling of CH4 in deep continental bedrock environments still
remain poorly understood. These include sources of carbon and
hydrogen in different rock formations, importance of microbial
involvement, timescales and quantities of CH4 production, and
movements within and fluxes from bedrock.

Potential formation pathways of CH4 in deep crystalline
bedrock are presented in Figure 1. In principle, hydrocarbons
can form via two major ways: from break-up of organic matter
(“from big to small”) or due to organic synthesis of small C and H
bearing molecules and further polymerization of these molecules
into higher hydrocarbons (“from small to big”). The first way
includes the formation of thermogenic CH4 and microbial
aceticlastic methanogenesis. The latter includes abiotic organic
synthesis, such as Fischer-Tropsch or Sabatier type reactions,
and microbial hydrogenotrophic methanogenesis. Thus, both
ways can be facilitated by microorganisms but may also occur
inorganically. Not only is CH4 produced but is also consumed
within bedrock by anaerobic and aerobic processes with and
without microorganisms.

The occurrence and major sources for abiotic CH4 was
discussed in a recent review by Etiope and Sherwood Lollar
(2013) and microbial biodiversity in terrestrial subsurface
environments by Fredrickson and Balkwill (2006). Yet it has
been over a decade since the microbial CH4 cycling in deep
subsurface has been reviewed (Kotelnikova, 2002). Since then
the scientific community has been pushing the understanding
of deep carbon cycling to new frontiers. Recent advances
in molecular biological methods, such as high-throughput
sequencing and “omics” methods have expanded the knowledge
of microbial community composition and functions in the
deep biosphere (Teske and Biddle, 2008; Brazelton et al., 2012;

Nyyssönen et al., 2014). The development of new computational
methods for processing, mining and assessing metagenomic
data has provided tools for handling the vast amount of data
generated (e.g., Schloss et al., 2009; Caporaso et al., 2010; Langille
et al., 2013). Some novel methods have been used to assess the
microbial ecology of the deep terrestrial subsurface. For example,
a single-species ecosystem fully independent from surface life
and photosynthesis, gaining energy from sulfate reduction was
discovered at 2.8 km depth from South African gold mine in 2008
by Chivian et al. with metagenomics approach (Chivian et al.,
2008). Nyyssönen et al. (2014) used high-throughput amplicon
sequencing and metagenomics for characterization of the 2.5 km
Outokumpu Deep Drill Hole microbial communities in Finland.

In this review we aim to revise methane cycling within
continental bedrock, as well as to provide an overview
of methodological and conceptual advances in this field
with an emphasis on microbiology. Diversity and variation
of geochemical and microbiological characteristics in CH4
containing deep bedrock environments are introduced through
several case studies. Finally, we point out some key remaining
unknowns and give suggestions for further research.

Geological Methane

Twomain types of geological CH4 are depicted in Figure 1which
summarizes CH4 cycling in the continental deep biosphere.
Of these, thermogenic CH4 is formed from the break-up of
organic matter at elevated temperatures and pressures. This is
thought to be the dominant CH4 type in sedimentary basins
and is the economically most important source of natural gas
(e.g., Galimov, 1988; Milkov, 2011). However, even though
some rocks found in continental shields, most notably black
schists, also originate from organic rich material, the occurrence
and preservation of “fossil” organic compounds in highly
metamorphosed crystalline rocks is questionable (but see Karus
et al., 1987 and Taran et al., 2011 for examples of organic
compounds such as bitumen found in metamorphic and even
igneous rocks of Archaean to Proterozoic age). Instead, carbon
is mostly found in the form of graphite and carbonate minerals.
Thus, and taking into account the low temperatures presently
prevailing in continental shield sites (Table 1), any thermogenic
CH4 component would likely be relic. Where hydrocarbon-
bearing sedimentary formations are nearby, thermogenic CH4
may find its way into metamorphic and igneous rocks by
diffusion or advective flow (Etiope and Martinelli, 2002 and
references therein).

Probably the more important source of geological CH4
in crystalline bedrock environments is abiotic. This refers to
CH4 that has formed from inorganic compounds without the
involvement of biological activity. Abiotic CH4 can be either
magmatic or produced in water-rock reactions, the latter of which
may take place even at low temperatures and pressures (Etiope
and Sherwood Lollar, 2013). Within the habitable zone in the
upper crust, high temperature abiotic CH4 may be provided by
a gas flux from deeper, hotter regions (Figure 1) or leak from
fluid inclusions. However, abiotic CH4 can also potentially form
in situ in low temperature processes which include Sabatier and
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FIGURE 1 | Methane cycling scheme in the deep continental
biosphere. Methane can originate either from low temperature abiotic
reactions in the upper crust, as a gas flux deeper from the crust or
mantle or as a result of microbial activity. CO2 and organic matter are
common carbon sources, while hydrogen can be derived from
breakdown of water in radiolysis, from water-rock interactions or from
microbial metabolism. Biological consumption of CH4 can be divided
to aerobic and anaerobic methane oxidation, the former being more

abundant in shallower depths and the latter in greater depths.
Hydrogenotrophic methanogens use inorganic carbon for the
production of CH4, as aceticlastic or methylotrophic methanogens use
organic carbon molecules, such as formate or acetate. Bacterial
fermentation of complex carbon-containing materials, such as kerogen,
may produce hydrogen and small organic molecules for methanogens.
FTT, Fischer-Tropsch type synthesis of hydrocarbons; ANME archaea,
anaerobic methanotrophic archaea.

Fischer-Tropsch type (FTT) synthesis of CH4 (Jacquemin et al.,
2010; McCollom et al., 2010; Etiope and Sherwood Lollar, 2013;
Zhang et al., 2013). These reactions are most likely catalyzed
by metals, such as Fe and Ni or certain mineral phases, such
as clay minerals (Jacquemin et al., 2010; McCollom et al., 2010;
McCollom, 2013; Etiope and Ionescu, 2014). More detailed
description of the possible mechanisms of abiotic CH4 formation
can be found in recent reviews by Etiope and Sherwood Lollar
(2013) and McCollom (2013).

Microbial Contribution to CH4 Budget in
the Bedrock

Methanogenesis
Microbial methanogenesis is constrained to the domain Archaea.
Methanogens can be divided to two groups depending on their
CH4 production pathways: chemolithoautotrophic methanogens
utilizing solely CO2 and H2 for their cellular building blocks
and energy production and organotrophic methanogens utilizing
an array of different carbon molecules containing methyl group
such as acetate, methanol, methylamines, and methylsulfides as
substrates (Figure 1) (e.g. Garcia et al., 2000; Thauer et al., 2008;
Ferry, 2010, 2011).

Methanogens thrive in many environments considered
extreme from an anthropocentric point of view. These
include deep, dark, isolated, and nutrient-depleted subsurface
environments. Typically methanogenic archaea can be found in
anaerobic environments where all other electron acceptors but
CO2 are limiting. Methanogenic archaea are an essential part
of the microbial communities in deep continental crystalline
biosphere as several studies from over the last 20 years have
demonstrated (Table 1 and e.g., Sherwood Lollar et al., 1993a;
Kotelnikova and Pedersen, 1997, review by Kotelnikova, 2002).

Today, seven methanogenic archaeal orders are known:
Methanopyrales, Methanococcales, Methanobacteriales,
Methanocellales, and Methanomicrobiales (all of which depend
on H2 and CO2 and some of them can utilize formate as carbon
source) and Methanosarcinales (with more versatile carbon
metabolism) (Thauer et al., 2008; Costa and Leigh, 2014). In
addition to these, the representatives of the recently proposed
seventh order “Methanoplasmatales” are methylotrophic
methanogens utilizing methanol, methylamines, and H2 (Paul
et al., 2012; Borrel et al., 2013). Methanogenesis involves several
enzymes and cofactors, resulting in a complex metabolic process.

In all methanogenic pathways, the final step in production
of methane is performed by methyl-coenzymeM reductase.
The gene mcrA, coding for the alpha subunit of this enzyme,
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has been used widely as a marker gene for methanogenesis
in various environmental studies (e.g., Luton et al., 2002;
Chin et al., 2004; Dhillon et al., 2005; Juottonen et al., 2006).
Heterodisulfide reductase, which is required in the final
step of methanogenesis, can be either membrane-bound
(Methanosarcinales) or cytoplasmic (other methanogens). It has
been observed that Methanosarcinales with membrane bound
cytochromes have higher growth yields but methanogens
with cytoplasmic heterosulfide reductase enzyme have
lower threshold level for H2 partial pressure. Consequently,
methanogenesis from carbon dioxide is dependent on hydrogen
ion concentration, while electrons from the methanogenesis
process are bound to hydrogen ions to drive ATP synthase
and ultimately produce the energy for the methanogens
(Thauer et al., 2008). Due to the lower threshold level
for H2, hydrogenotrophic methanogens can outcompete
Methanosarcinales -methanogens in environments with low
hydrogen concentration. There are more hydrogenotrophic
methanogens than methanogens utilizing methylotrophic or
aceticlastic pathways (Liu and Whitman, 2008). Whether this
is because of the hydrogenotrophic CO2-pathway is more
favorable energetically, or hydrogenotrophic pathway being
more ancient and thus has had more time to spread and diversify
in the archaeal populations, or there has been more success in
cultivating hydrogenotrophic methanogens, is still debatable.

Methane Oxidation
In addition to methane-producing archaea, the deep subsurface
environments host microbes utilizing CH4 for their sole source
of carbon and energy, called methanotrophic microorganisms
(Figure 1). Electron acceptors can vary from oxygen to sulfate,
nitrate and nitrite, iron and manganese (Hanson and Hanson,
1996; Orphan et al., 2002; Raghoebarsing et al., 2006; Beal et al.,
2009; Knittel and Boetius, 2009; Ettwig et al., 2010; Haroon
et al., 2013). As most of the deep crystalline bedrock habitats are
mainly anaerobic, other electron acceptors than oxygen could be
more relevant in these environments. Nevertheless, the detection
of both aerobic and anaerobic methanotrophs from deep
crystalline bedrock prove that both of these microbial groups
have a niche in the depths (Table 1) (Kalyuzhnaya et al., 1999;
Chi Fru, 2008; Hirayama et al., 2011; Nyyssönen et al., 2012;
Bomberg et al., 2015; Purkamo et al., 2015; Rajala et al., 2015).
In addition, aerobic methylotrophs appear to frequently occupy
geological lignite and coal formations that are usually considered
anaerobic, at depths of over 1 km (Mills et al., 2010; Stępniewska
et al., 2013, 2014). Anaerobic methanotrophic archaea (ANME
archaea) are frequently found from deep subseafloor sediments
(e.g., Mills et al., 2003; Knittel et al., 2005; Lazar et al., 2011a,b)
and even in deeply buried Juan de Fuca Ridge flank basalts (Lever
et al., 2013). They are more rarely encountered in continental
deep biosphere. However, ANME archaea have been recently
detected in groundwaters in Olkiluoto of the Fennoscandian
Shield, Finland (Nyyssönen et al., 2012; Bomberg et al., 2015).

Aerobic Methane Oxidation
Representatives of aerobic methanotrophic bacteria can be
found from alpha- and gamma-proteobacterial families and

class Verrucomicrobiae. Aerobic methanotrophs use two types
of biosynthesis pathways for incorporation of methane, either
serine pathway or ribulose monophosphate pathway (RuMP)
(Chistoserdova et al., 2009; Nazaries et al., 2013).

The aerobic methanotrophic bacteria have distinct
intracellular membrane features. These intracellular membranes
are arranged as stacks of disc-shaped features or as paired
membranes following the brim of the cell interior. Methane
monooxygenase, the key enzyme of aerobic CH4 oxidation is
located in these intracellular membrane structures. Methane
monooxygenase mediates the first step of methanotrophy
by oxidation of CH4 to methanol. Two types of methane
monooxygenases exist: membrane-bound particulate MMO,
which is the common type and soluble cytoplasmic MMO that
is found irregularly in a few methanotrophic strains. Soluble
methane monooxygenase can oxidize a wide range of different
types of substrates from simple alkanes to cyclic compounds,
thus evoking industrial interest (Bowman, 2006).

Anaerobic Oxidation of Methane (AOM)
All but one currently recognized anaerobic methanotrophs are
archaea. The single exception is a bacterium Methylomirabilis
oxyfera, which will be discussed in the next paragraph.
Anaerobic methanotrophic archaea often referred to as
ANME archaea usually live in a symbiotic relationship
with sulfate reducers and are therefore abundant in sulfate-
methane transition zones (SMTZ). SMTZs can be found in all
anaerobic aquatic ecosystems where sulfate is available, such
as marine sediments and deep terrestrial crystalline bedrock
formations (e.g., Knittel and Boetius, 2009; Bomberg et al.,
2015). ANME-1 and ANME-2 groups are usually associated with
deltaproteobacterial Desulfosarcina and Desulfococcus. There is
limited evidence that some ANME-2 archaea can form symbiotic
relationships with alpha-proteobacterial Sphingomonas sp. or
with betaproteobacterial Burkholderia sp. (Orphan et al., 2001,
2002; Knittel and Boetius, 2009). In addition, ANME-2d archaea
have been demonstrated to oxidize CH4 and reduce nitrate in
co-culture with an anaerobic ammonia oxidizer Kuenenia sp.
(Haroon et al., 2013). Iron and manganese oxide minerals can
be used as electron acceptors for anaerobic methane oxidation
(Beal et al., 2009). ANME-3 archaea are typically associated with
Desulfobulbus -type of sulfate reducers (Knittel and Boetius,
2009).

The only bacterial representative of an anaerobic methane
oxidizer was found in anaerobic sediment from a Dutch canal
and is candidatively named Methanomirabilis oxyfera (Ettwig
et al., 2010). These peculiar bacteria grow anaerobically reducing
nitrite to dinitrogen by nitric oxide dismutation simultaneously
producing oxygen as an intermediate during this process within
the cell. Oxygen is then used in the aerobic oxidation of CH4 to
methanol with methane monooxygenase inside the cell.

The biochemical mechanism of anaerobic methane oxidation
remains elusive. One hypothesis is that ANME archaea are
reversing the methanogenic pathway and taking into use the
key enzymes of this pathway. Released hydrogen from this
process is removed by reducing electron acceptors such as
sulfate by the syntrophic partner of ANMEs (Hallam et al.,
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2004; Knittel and Boetius, 2009). Results from metagenomic
studies have fortified the reverse methanogenesis hypothesis
(Krüger et al., 2003; Meyerdierks et al., 2005). Another suggested
mechanism is acetogenic methanotrophy, in which acetate
and hydrogen are produced from two molecules of CH4, or
from CO2 and CH4 and subsequently consumed by sulfate
reducing bacteria (SRB). Yet another proposed hypothesis
involves CO2 reducing, methane-oxidizing archaea producing
methyl sulfides following a pathway similar to methanogenesis.
In this methylogenesis model, methyl groups are transferred to
sulfide allowing the regeneration of coenzyme M. SRB capable
of utilizing methyl sulfides are crucial partner in these type
of AOM consortiums (review by Caldwell et al., 2008 and
references within). While SRB have in general a significant role
in AOM, a recent study by Milucka et al. (2012) showed that
methanotrophic ANME-2 archaea can perform dissimilatory
sulfate reduction without the syntrophic sulfate-reducing
bacterial partner.

Origin of Substrates for Methanogenesis in Deep
Crystalline Rock Biosphere
Biological production and consumption of CH4 in deep
crystalline bedrock is illustrated on the right in Figure 1.
Abiotically produced carbon dioxide and hydrogen provide a
useful source of carbon and energy for chemolithoautotrophic
methanogens (Pedersen, 1997, 2000; Chapelle et al., 2002;
Nealson et al., 2005; Schrenk et al., 2013). Within crystalline
bedrock H2 needed for autotrophic CH4 synthesis can be
produced during water-rock interactions such as serpentinization
and other iron oxidation reactions (McCollom and Bach, 2009;
Neubeck et al., 2011; Mayhew et al., 2013). It can also be
produced through the dissociation of water molecules by energy
released from radioactive decay, i.e., in radiolysis (Vovk, 1987;
Lin et al., 2005a,b). The source of hydrogenmay also be microbial
(reviews by e.g., Nandi and Sengupta, 1998; Wang and Wan,
2009). Fermentative bacteria producing H2, such as clostridia
have been detected in several deep continental rock formations
(e.g., Moser et al., 2003; Rastogi et al., 2010; Itävaara et al.,
2011b; Purkamo et al., 2013; Schrenk et al., 2013). Overall,
H2 is common in these environments (Sherwood Lollar et al.,
2014). Inorganic carbon can be found as carbonate minerals,
graphite, and dissolved in groundwater (DIC). The speciation of
DIC is controlled by pH. In alkaline conditions, typical of deep
groundwaters within crystalline rocks, DIC is commonly found
in the form of bicarbonate (HCO−

3 ) and the concentrations may
be quite low (Table 1).

In addition to inorganic carbon, methanogens can utilize
organic compounds possibly produced in abiotic reactions, such
as serpentinization of olivine-bearing ultramafic rocks (Lang
et al., 2012). This principle can be turned inside out; in a
recent review, Schrenk et al. (2013) suggested that heterotrophs
might be the primary producers in serpentinizing environments.
Thus, these heterotrophs utilizing organic materials (produced
in abiotic reactions in deep Earth’s crust or mantle) biologically
produce inorganic end-products such as H2 and CO2. These
can be used by organisms considered autotrophic, such as
hydrogenotrophic methanogens.

Methanogenic archaea can also have the same function in
the deep biosphere as in surface ecosystems, i.e., contributing
to the degradation of organic matter in anaerobic conditions.
Crystalline rock formations may contain refractory organic
carbon materials such as kerogen or bitumoids for example in
interlayers of black shales or black schist (Karus et al., 1987;
Taran et al., 2011). During the formation of these rocks through
diagenesis andmaturation of sedimentary organic matter, carbon
content, and aromaticity increase and volatile hydrocarbons
usually migrate away (e.g., Strąpoć et al., 2011; Buseck
and Beyssac, 2014). Further increase in temperature during
metamorphosis will eventually turn the residual carbonaceous
matter into graphite.

There are reports of microbes utilizing organic material
trapped in sedimentary rocks such as shales and sandstones.
Kerogen of black shales can be the sole carbon source for
heterotrophs, such as Clostridium -type of bacteria, which in
turn can support methanogenesis through the production of
substrates for methanogens (Krumholz et al., 1997; Petsch et al.,
2001, 2005). For example, clostridial fermenters can provide H2
and carbon to methanogens in a syntrophic consortium (Kimura
et al., 2010; Rosewarne et al., 2013a,b). Thus, methanogens living
in a syntrophic relationship with specialized bacteria can mediate
anaerobic biodegradation of refractory complex compounds
comparable to those found within crystalline bedrock (Strąpoć
et al., 2011 and references within).

Fungal contribution to degradation of refractory material,
such as organic polymers and polyaromatic hydrocarbons is
well known (e.g., Haritash and Kaushik, 2009; Harms et al.,
2011). In addition, fungal degradation of refractory organic
matter of black shale has been demonstrated (Wengel et al.,
2006). As the presence of fungi in deep Fennoscandian bedrock
has been verified (Ekendahl et al., 2003; Sohlberg et al., 2015),
fungi with the capacity for degradation of refractory and ancient
organic and inorganic materials and efficient elemental cycling in
addition to bioweathering ability might play a role in providing
carbon sources for microbial methanogenesis in deep continental
crystalline bedrock environments.

Organic matter from dead microbial biomass is an additional
source of carbon in deep biosphere. Bacteriophages are present in
deep crystalline bedrock groundwater. If these viruses are active
and lytic, they can control the numbers of living microorganisms
and therefore increase the dead cell mass in the deep subsurface
(Kyle et al., 2008). Recently, Pedersen (2013) concluded that
bacteriophages control the cell numbers in flow cells operating in
in situ conditions in deep crystalline bedrock. The cell number
in the flow cells never exceeded the cell densities observed in
pristine groundwater (Pedersen, 2013).

Carbon sources for biological CH4 cycling can be
anthropogenic and derived from the surface environments, such
as in deep subsurface storage facilities for carbon dioxide or oil.
Introduction of such carbon sources to microbial communities
in the deep subsurface might induce a formidable activation
of dormant microbes as Rajala et al. (2015) demonstrated.
H2 can be released through a chemical reaction between
freshly crushed rock and water for example during drilling
and blasting of rock (Kita et al., 1982), or oxidation of metals
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such as iron casing which is often used to support drill hole
walls.

To summarize, H2 seems to be abundant and available in
continental crust (Sherwood Lollar et al., 2014). Despite the
several possible sources of organic carbon in the crystalline rock
formations discussed above, organic carbon is either absent,
scarce or available only as a refractorymaterial (Fredrickson et al.,
1997; Fredrickson and Balkwill, 2006). Likewise, concentrations
of dissolved inorganic carbon in deep bedrock formations are
commonly low (Table 1). Thus, it might be carbon which
actually limits the formation of CH4 and other hydrocarbons in
continental bedrock.

Geochemical Methods to Study Origin,
Source, and Cycling Of CH4 - Principles
and Limitations

Stable Isotope Composition of CH4
The attempts to separate different CH4 sources are mainly based
on the isotopic composition of CH4. Typically this includes the
determination of stable isotope ratios of carbon (13C/12C) and
hydrogen (2H/1H, also called D/Hwhere D stands for deuterium)
separately. The resulting isotopic compositions are commonly
reported using δ-notation per mill (�) relative to the isotopic
composition of H and C in sea water (VSMOW, Vienna Standard
Mean Ocean Water and VPDB, Vienna Pee Dee Belemnite):

δ2H =
(

(2H/1H)sample

(2H/1H)VSMOW
−1

)
×1000

δ13C =
(
(13C/12C)sample

(13C/12C)VPDB
−1

)
×1000

Fundamentals of stable isotope methods in geochemistry can
be found from books by Clark and Fritz (1997) and Hoefs
(2004). In brief, the isotopic composition of CH4 (or any
chemical substance) is controlled by equilibrium and kinetic
isotope effects, which arise from equilibrium isotope exchange
and differences in reaction rates, respectively. Equilibrium
isotope effects are mainly dependent on temperature. Kinetic
fractionation is related to incomplete and unidirectional
reactions such as those associated with microbial metabolism,
and will lead to the depletion of lighter isotopes (12C and 1H)
in the reaction product. These principles also form the basis
for traditional classification of CH4with δ13C vs. δ2H diagram
(Schoell, 1980;Whiticar, 1999; Etiope and Sherwood Lollar, 2013;
Etiope and Schoell, 2014).

The isotopic composition of CH4 is ultimately dependent
on the starting material(s) and is further affected by microbial
activity, openness of the system, temperature and time, to
name a few. Along with increasing amount of data from
various settings, it has become clear that CH4 from different
origins may have similar isotopic composition. For example,
unusual 13C enriched microbial CH4 has been found from
saline substrate limited environments (Kelley et al., 2012; Tazaz
et al., 2013). Carbon limited conditions were also thought to

be responsible for 13C enriched metabolic products found from
the Lost City Hydrothermal Field by Bradley et al. (2009).
Valentine et al. (2004a) found that the fractionation associated
with methanogenesis was correlated with temperature and
metabolic rate. Likewise, abiotic CH4 may have a wide range
of isotopic compositions. When compared to both microbial
and thermogenic CH4, abiotic CH4 is typically enriched in
13C (Etiope and Sherwood Lollar, 2013). However, abiotic CH4
produced in laboratory experiments has been rather depleted in
13C, down to around −50 � VPDB (Horita and Berndt, 1999;
Taran et al., 2007).

Difference in the source of hydrogen (methyl group
vs. water) forms the basis for separating aceticlastic from
autotrophic microbial CH4 by means of hydrogen isotopic
composition of CH4 (Sugimoto and Wada, 1995; Whiticar,
1999). Hydrogenase enzymes are known to rapidly equilibrate
the isotopic compositions of H2 and H2O (Sugimoto and
Wada, 1995; Valentine et al., 2004b). Furthermore, hydrogen
isotope fractionation in the system CH4-H2O-H2 can be used
as a thermometer in a system where isotopic equilibrium
has been attained, or it may help to reveal the amount of
kinetic fractionation caused by biological processes (Bradley and
Summons, 2010; Suda et al., 2014).

After formation, the isotopic composition of CH4 may change
as the result of isotope exchange and equilibration, kinetic
fractionation by abiotic or microbial oxidation (either aerobic
or anaerobic) or migration (e.g., Coleman et al., 1981; Whiticar,
1999; Etiope et al., 2011). Compared to carbon, information
on the CH4 source carried by hydrogen may be more easily
lost by isotope exchange, especially when geological time scales
are considered (Ni et al., 2011; Reeves et al., 2012). A further
complication is brought up by mixing of CH4 originating from
different sources.

Co-existing CO2 and C2+ Hydrocarbons
CO2 is usually a minor constituent in deep groundwaters within
crystalline bedrock and, because of high pH typical for these
environments, is mainly found in its dissolved form as HCO−

3
(e.g., Clark and Fritz, 1997; Frape et al., 2003). Nevertheless,
considering CO2 is a potential carbon source for both microbial
and abiotic CH4, it would be essential to know its isotopic
composition (or the isotopic composition of DIC at least) in
order to study the origin of CH4. 13C depleted DIC has also
been used as an indication of microbial CH4 oxidation as kinetic
fractionation caused by this process will favor depletion of 13C
in the product CO2 (Kotelnikova, 2002; Onstott et al., 2006).
When recorded in minerals, such as calcite, this isotopic shift
has been used for tracing carbon cycling in the past (e.g.,
Schidlowski, 2001; Drake and Tullborg, 2009; Sahlstedt et al.,
2010).

Information on the origin and cycling of CH4 may also be
obtained by comparing the abundance of CH4 to longer chained
(“higher” or C2+) hydrocarbons. Longer chained hydrocarbons
most commonly found in deep groundwaters within crystalline
rocks are ethane and propane (Fritz et al., 1987; Nurmi et al.,
1988; Sherwood Lollar et al., 1993a,b; Haveman et al., 1999; Ward
et al., 2004; Kietäväinen et al., 2013). As microbial processes
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produce almost solely CH4 and not higher hydrocarbons, the
ratio between CH4 and C2+ is very high (>103), while CH4
produced by thermogenic break-up of organic matter tends to
contain significant amounts of C2+ compounds (e.g., Whiticar,
1999). Hydrocarbon formation due to abiotic organic synthesis
at geologically relevant conditions is more poorly constrained
(McCollom, 2013). Formation of longer chained alkanes and
alkenes is a typical feature of FTT synthesis (e.g., Taran et al.,
2007; McCollom et al., 2010; Zhang et al., 2013). However,
no longer chained hydrocarbons were formed in the low
temperature (298 K) FTT experiment conducted by Jacquemin
et al. (2010) using CO2 and H2 as starting materials. The study
by Horita and Berndt (1999) also suggest that the CH4 to C2+
ratio of abiotic gas might be closer to that of microbial than
thermogenic gas. To summarize, variation in the CH4 to C2+
ratio of abiotic gas should be expected. Moreover, mixing of
gases originating from different sources as well as microbial and
inorganic reactions are capable of modifying the CH4 to C2+
ratio. For example, the ratio will be increased by both abiotic and
microbial oxidation of CH4. Decrease in the ratio will take place if
longer hydrocarbons are consumed inmicrobial CH4 production
(Zengler et al., 1999).

A further approach is to compare the isotopic compositions of
longer chained hydrocarbons and CH4. In typical thermogenic
gas, the isotopic composition of carbon proceeds toward more
13C depleted compositions in the series propane-ethane-methane
while isotopic depletion of 13C along with increasing chain length
(reversed pattern) has been suggested to characterize abiotic
hydrocarbons (e.g., Sherwood Lollar et al., 2002; Zhang et al.,
2013). Both trends can be explained by reaction kinetics, as
lighter 12C will both break and react faster. However, similarly to
the concentration data, isotopic trends obtained from laboratory
scale production of abiotic hydrocarbons vary (McCollom, 2013).
Furthermore, it is not uncommon to see patterns in natural
samples which are somewhere between these two. Zhang et al.
(2013) proposed that different trends could be related to thermal
history. According to their study, cracking of earlier formed
longer chained hydrocarbons with increasing temperature would
produce a typical thermogenic pattern while the reversed carbon
isotope trend could be preserved in decreasing temperature.
Kinnaman et al. (2007) found that large isotopic enrichment
of both 2H and 13C in the substrate was associated with
aerobic microbial CH4 oxidation. Thus the isotopic pattern
could likely be changed by microbial processes. They also
found that the fractionation clearly decreased with increasing
chain length and/or when the substrate became limiting. This
has important implications for deep continental subsurface
environments which are characteristically substrate-limited.
There, isotope fractionation by microbial processes is expected
to diminish and may even be absent if the substrate is completely
consumed.

Other Co-existing Gases
In addition to carbon containing gases, other co-existing gases
such as noble gases and N2 can be used to trace the origin of
CH4. A major drawback related to using co-existing gases is the
possible decoupling of these gases and CH4.

As they are inert, noble gases are very useful in tracing
gas migration. For example they may be used to distinguish
between mantle and crustal sources of gases (Kipfer et al., 2002;
Prinzhofer, 2013; Sano and Fischer, 2013). Noble gases have also
been used to determine residence times of deep groundwaters
within crystalline shields in Canada (Bottomley et al., 1990;
Greene et al., 2008; Holland et al., 2013), Fennoscandia
(Kietäväinen et al., 2014; Trinchero et al., 2014), and South Africa
(Lippmann et al., 2003). These studies have revealed ancient
fluids within these formations extending from several millions of
years to over a billion years old. Even though the information
on residence times obtained from noble gases is indirect, and
often comes with high uncertainties, it can be potentially utilized
in estimating timing and rates of CH4 production as well as
isolation of the subsurface ecosystems. Examples of this method
are included in the studies by Lin et al. (2006b) and Schlegel et al.
(2011).

Isotopic composition of N2 in groundwaters of the
Fennoscandian and Canadian shields was used by Sherwood
Lollar et al. (1993a) to show that hydrocarbons were not
related to shallow atmosphere derived fluids but originated
from the crystalline basement. Attempts to separate between
inorganic and organic sources of hydrocarbons may also benefit
from determination of N2 isotopes, as 15N depleted values are
suggested to be representative of organic origin (Sano et al.,
1993; Zhu et al., 2000; Etiope et al., 2011). As N2 is the main
constituent of air, atmospheric contamination during sampling
or analysis is a real risk to be aware of.

Radiocarbon
Attempts have also been made to estimate the age of CH4 by
using radiocarbon (14C) dating. One such study was performed
by Slater et al. (2006) among the deep continental bedrock sites
in Witwatersrand Basin, South Africa. By comparing the 14C
isotopic composition of DIC and CH4 they concluded that the
majority of the CH4 was produced in the distant past. Potential
problems of this method include the contamination of typically
CO2-undersaturated groundwater samples by atmospheric CO2,
and recent formation of CH4 from ancient (or “14C dead”)
carbon source. In the former case, the apparent age of DIC
may be underestimated, while in the latter case CH4 from on-
going processes could be interpreted as ancient. Nevertheless, 14C
determination could help with tracing the carbon source. For
example, Stotler et al. (2010) found that the carbon source for
CH4 in the Lupin mine in Canada was older than could be dated
with 14C, i.e., more than 50 ka.

Clumped Isotopes
Recently, clumped isotope methods have also been developed
which are capable of determining the isotopologues of CH4
molecules (Stolper et al., 2014; Wang et al., 2015). Potential
applications of the method include determination of CH4
formation temperature (CH4 thermometry), and detection of
kinetic isotope fractionation, both of which might be used in
separating biotic from abiotic CH4 (Stolper et al., 2014; Wang
et al., 2015). More applications are expected when this method
comes more widely attainable.
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Microbes Involved in Methane Cycling in
the Fennoscandian Shield and Other Deep
Precambrian Continental Subsurface
Environments

Outokumpu Deep Drill Hole
Formation waters at the 2.5 km deep scientific drill hole in
Outokumpu, eastern Finland are characterized by high salinity
and abundant dissolved gas phase of which CH4 covers up to
80 vol-% (Table 1). The bedrock in Outokumpu is composed
of several geochemically different rock types. These include
serpentinites which have gained a lot of attention recently in
the studies of abiotic CH4, along with black schists which
contain abundant C. To date, Outokumpu Deep Drill Hole is the
deepest site within the Fennoscandian Shield where CH4 cycling
microbes have been studied.

Marker genes for methanogenesis, mcrA were detected
throughout the drill hole water column to 1500m depth with
a quantitative PCR assay (Itävaara et al., 2011a). Thus the
existence of methanogens in Outokumpu could be verified, even
though the copy numbers in a ml of drill hole water were
essentially low (around 1 × 102 copies mL−1). The overall ratio
of methanogens vs. total number of bacteria was less than 1%.
Cloning of the methanogenesis marker gene from the drill hole
water suggested that at depths of 900m or shallower, aceticlastic
Methanosarcina were present in the methanogenic communities.
Methylotrophic Methanolobus -type of OTUs were detected by
cloning and high-throughput sequencing methods from 1.1, 1.3,
and 1.5 km depths (Nyyssönen et al., 2014; Purkamo et al., 2015).
Lithology of the latter depths is dominated by serpentinites and
black schists and statistically corresponds with the detection of
mcrA genes ofMethanolobus (Västi, 2011; Purkamo et al., 2015).
Majority of the mcrA clones and pyrosequenced archaeal 16S
rRNA OTUs from the deepest part of the drill hole (1.9 km
depth and below) were related to Methanobacterium -associated
methanogens (Nyyssönen et al., 2014; Purkamo et al., 2015).
Further proof for autotrophic methanogenesis in the deepest part
of the drill hole was received from the metagenome of the sample
from 2.3 km depth, in which genes involved in autotrophic
methanogenesis were detected (Nyyssönen et al., 2014).

The bedrock fracture zones represent different microbial
community as the drill hole at the same depth. When observing
the intrinsic archaeal communities in bedrock fracture zones
at different depths of Outokumpu bedrock, Purkamo et al.
(2013) confirmed that hydrogenotrophic Methanobacteriaceae
were dominating the archaeal community in the fracture
zones at 500 and 2260m levels. In addition, a small part of
the archaeal community at these depths contained aceticlastic
Methanosarcina. The results were based both on DNA and RNA,
thus it can be presumed that these methanogens were active
in these fractures. Despite of confirmed methanogenic activity
in Outokumpu, CH4 is 13C rich (Table 1). Thus, it cannot
be classified as microbial within traditional limits for isotopic
composition of biological CH4.

In addition to methanogens, the existence and activity
of methanotrophic microbes in Outokumpu groundwater is

established. By cloning of the marker gene for particulate
methane monooxygenase enzyme (pmoA), Purkamo et al. (2015)
demonstrated that aerobic methanogens are part of the microbial
communities at 600, 900, and 1500m depths of the drill hole
water column. All clones in this study were affiliated with a
γ-proteobacterial Methylomonas methanica. Rajala et al. (2015)
verified that methanotrophs at 500m fracture zone could be
rapidly activated with CH4, methanol and sulfate. No ANME-
associatedmcrAwas found in these studies, suggesting either that
an another type of anaerobic methane oxidation pathway than
reverse methanogenesis could be more likely in Outokumpu,
or aerobic oxidation of CH4 by bacteria is more likely in
Outokumpu, or the mcrA primers used in these studies do not
detect ANME-type ofmcrA.

Olkiluoto
Olkiluoto in southwestern Finland is the future repository site
for nuclear waste. The bedrock in Olkiluoto is comprised of
migmatitic mica gneisses. Similarly to Outokumpu, the deep
groundwater in Olkiluoto is anaerobic and saline (Nyyssönen
et al., 2012). Concentration of CH4 is among the highest
observed today from any Precambrian crystalline bedrock
site (Table 1). The microbial communities in different parts
and depths of Olkiluoto site have been under observation
for several years. Traditional most probable number (MPN)
cultivation methods have described methylotrophs in shallow
depths and methanogens to the depth of at least 450m.
Methanogens were present in small numbers, 1 × 100
from 1 × 101 cells mL−1 (Pedersen et al., 2008). Using
molecular biological methods, Nyyssönen et al. (2012) reported
that the majority of mcrA clones acquired from shallow
(< 400m) depths of different drill holes in Olkiluoto fell
within a metabolically diverse group of methanogens, namely
Methanosarcinales. In addition, Methanoregula boonei of the
Methanomicrobiales mcrA sequences were detected, while
hydrogenotrophicMethanobacteriales -type of mcrA were found
below 500m depth. ThemcrA copy numbers detected with qPCR
varied from less than 200 copies to below detection limit mL−1 of
groundwater. Apparently the archaeal communities are diverse
in Olkiluoto but methanogenic archaea represent only a minority
ranging from 10 to 0.4 % of the archaeal community (Bomberg
et al., 2014).

Nyyssönen et al. (2012) detected mcrA of putative anaerobic
methane oxidizers, i.e., ANME archaea in a single sample
from 350m depth. In addition, this sample had the highest
number of mcrA gene copies, 660 copies mL−1. This depth is
considered to be within the sulfate-methane transition zone in
the Olkiluoto bedrock. A flow cell cultivation study provided
further evidence of existence of ANME archaea in Olkiluoto
(Pedersen, 2013). In addition, it was shown that the active
archaeal communities at depths of from 300 to 800m inOlkiluoto
consisted of, among others, ANME-2D archaea (Bomberg et al.,
2015). These findings of ANME archaea are further proof for the
hypothesis of Pedersen et al. (2008) that the anaerobic oxidation
of methane is an active microbial process in the Olkiluoto
bedrock.
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Äspö, Laxemar, and Forsmark
Another important Fennoscandian shield sites where deep
biosphere studies have been conducted are in Sweden. Probably
the most famous is the Äspö Hard Rock Laboratory (HRL) that
has been running since 1995, in addition to Laxemar-Simpevarp
and Forsmark which have been suggested for the final repository
sites for nuclear waste. Äspö HRL extends to 450m depth
in porphyritic granite/granodiorite bedrock, whereas Forsmark
lithology comprises of granites and Laxemar-Simpevarp granites
and quartz monzodiorite (Table 1). Both salinity and CH4
concentrations are much lower in all Swedish sites compared
to Olkiluoto and Outokumpu (Table 1). To our knowledge,
no information on isotopic composition of CH4 detected at
the Swedish sites exists. Pedersen (1997) demonstrated that
methylotrophic and aceticlastic methanogens dominated at
shallower depths above 200m, where more organic carbon was
available. In the deeper depths where organic carbon content
was lower, autotrophic methanogens were more frequent.
Kotelnikova et al. (1998) isolated an autotrophic methanogen
from Äspö groundwater, Methanobacterium subterraneum.
Hallbeck and Pedersen (2008a, 2012) found low numbers of
methanogens based on the most probable number method from
samples of all these three sites.

In addition to methanogens, methanotrophs have also
been detected from deep bedrock of Äspö and Forsmark.
Clone libraries of methanotrophy marker gene pmoA were
dominated by Methylomonas and Methylocystis (Chi Fru,
2008). Methylomonas and Methylobacter dominated enrichment
cultures from Äspö groundwater from below 400m depth
(Kalyuzhnaya et al., 1999). To conclude, methanotrophs are
detected approximately at the same depths in all Fennoscandian
Shield sites, mainly above 1 km.

Witwatersrand and Other Deep Precambrian
Continental Subsurface Study Sites
Another widely studied deep biosphere is located in the
Witwatersrand Basin in South Africa. The geological formation
is composed of quartzite and shale with overlying basaltic
and andesitic rocks, on top of the schist basement (Ward
et al., 2004). Several sites in the Witwatersrand Basin have
been studied and methanogenic as well as ANME archaea have
been detected with cloning of 16s rRNA gene (Takai et al.,
2001; Ward et al., 2004; Moser et al., 2005; Lin et al., 2005a,
2006a,b; Gihring et al., 2006). CH4 is a common constituent of
the gas phase in all of these sites (Table 1). A wide range of
isotopic compositions have been reported, including 13C poor
CH4. In the Beatrix mine methanogens have been detected
from 718 to 1390m depths (Ward et al., 2004). At the depth
of 866 mbls (BE16) Methanobacterium—type of clones were
most abundant, while other detected methanogens affiliated
with aceticlastic Methanosarcina and Methanosaeta (Lin et al.,
2006a). The archaeal communities in the Evander mine at the
depth of 1950m (EV818) were composed of Methanosarcina,
Methanosaeta in addition to Methanolobus (Ward et al., 2004;
Gihring et al., 2006). Methanobacterium-type hydrogenotrophic
methanogens were found typically in deeper samples in the
Witwatersrand Basin, such as from theMponeng andDriefontein

mines from over 2.7 km depth (Moser et al., 2005; Gihring
et al., 2006). In the Driefontein mine site D8A, at more
than 3 km depth the archaeal community comprised about
10% of the total microbial community and was dominated by
Methanobacterium (Moser et al., 2005). Methanobacterium -
affiliating 16s rRNA sequences were detected also from the
Mponeng mine at 2825m depth (Lin et al., 2005a). Aceticlastic
methanogens were typically found in depths shallower than
2 km at the Witwatersrand Basin whereas hydrogenotrophic
methanogens such as Methanobacterium dominated at deeper
depths. Gihring et al. (2006) suggested that high temperature and
reducing conditions were the determining geochemical factors
for the occurrence of Methanobacteriales in the fractures of the
Witwatersrand Basin.

Anaerobic oxidation of methane in the deep subsurface in the
Witwatersrand Basin is plausible, while archaeal 16s rRNA clones
similar to methanotrophic ANME-1 archaea in Driefontein
dolomitic aquifer and the Evander mine sites have been detected
(Gihring et al., 2006).

Although life in the deep biosphere has been characterized
in several sites as discussed above, there are some studies
from deep continental bedrock sites where methanogens and
methanotrophs could not be detected. These include the
subsurface groundwaters from Palmottu, Kivetty, Romuvaara,
and Hästholmen areas in the Fennoscandian Shield (Haveman
et al., 1999; Haveman and Pedersen, 2002). Methanogenic
archaea have not been detected from Kloof mine in the
Witwatersrand Basin (Takai et al., 2001; Ward et al., 2004; Kieft
et al., 2005). Neither did Onstott et al. (2009) detect any archaea
from the Canadian Shield site in the Lupin mine. These results
might indicate either real absence of methane cycling microbes at
the sites or could be due to extremely low numbers of cells and/or
inadequate sensitivity of analytical methods or because acquiring
representative samples at field conditions is often challenging.

Conclusions and Future Prospects

The possibility of abiotic CH4 synthesis at low temperatures,
together with findings of methanogenic microbes indicates
that the formation of CH4 is an on-going process in deep
Precambrian continental bedrock. In addition, the detection of
aerobic, and recently also anaerobic methanotrophs deep within
crystalline bedrock provide ecological evidence of microbial
contribution to CH4 consumption in these environments. So far,
the identified carbon sources of microbes range from inorganic
CO2 to CH4 and other small organic carbon molecules, but
there are intriguing hypotheses on microbial utilization of
refractory organic carbon of minerals. Thus, the participation
of heterotrophic microbes in carbon cycling in deep crystalline
bedrock should not be dismissed.

As deep continental crystalline bedrock environments are
commonly carbon-deprived, the traditional isotopic separation
between biologically produced and abiotically produced CH4 can
be difficult. When carbon sources are limited, the small amount
of carbon available will be utilized without the preference for
lighter isotope that is considered to happen in “normal” (surface)
circumstances with abundant organic carbon. In addition,
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microbial activities, such as syntrophy or competition, especially
in substrate-limited environments, can result to similar isotopic
composition of CH4 produced in abiogenic reactions. Thus,
further studies are needed especially considering the effect of
syntrophy or competitiveness of microbial species, substrate
availability and reaction rates on the isotopic composition of
CH4. Furthermore, more studies on different forms of inorganic
carbon (including minerals) available for both abiotic and
biological organic synthesis will be advantageous.

Metabolically diverse methanoges were found at shallower
depths while hydrogenotrophic methanogenesis appeared to be
more common at greater depths throughout the sites. However,
transition between the zones is not sharp and the depth varies
among the sites. Considering the evolution of methanogenesis,
the hydrogenotrophic pathway may be as old as life itself
on Earth, while the capability to use acetate is considered
to have evolved more recently during the Cambrian period
(Costa and Leigh, 2014 and references within). As the oldest
bedrock fluids are dated to be Precambrian (over 1 billion years
old; Holland et al., 2013) it will be interesting to see if there
are any methanogenic communities in these isolated fracture
fluids, and will the hydrogenotrophic pathway dominate in these
communities, as the hypothesis of the methanogenesis evolution
implies. Similarly, further studies on depth dependence and the
extent of isolation of different methanogens can shed light on the
evolution of deep bedrock biosphere as well as CH4 cycling.

Growing industrial interest in utilizing deep rock formations
as a natural resource such as mining of valuable metals or
extracting shale gas, as storage for CO2, hydrocarbons or other
fuels, as a part of infrastructure such as traffic tunnels, and
production of geothermal heat and/or energy has increased the
need for understanding the origin, source and cycling of CH4
in these environments. The natural state of the bedrock will
be disturbed during these activities and release, production,
and consumption of CH4 can affect industrial operations. CH4
may enhance biological activity by providing energy and carbon
for microbial communities. In turn, this may increase the

concentrations of reactive compounds such as hydrogen and
sulfide, especially in the presence of SO4, and change pH of
the system thus increasing the corrosion risk. As a gaseous
component, CH4 can also be important in mobilization of
radiocarbon.

In order to understand CH4 cycling at depths, and the
role of microorganisms within it, it is important to study the
environmental conditions such as reduction-oxidation potential,
isolation, and availability of substrates of the particular site
together with microbiology. Geochemical methods may help to
identify biotic from abiotic sources of CH4. Yet, no common
characteristics in terms of pH, T, depth, lithology, abundance,
and isotopic composition of CH4 could have been determined
which would serve as diagnostic tools for estimating importance
of microbial contribution in CH4 cycle in these environments.
However, potential of new findings exists in all continental
regions as to date very few sites have been studied at great
detail or even superficially. For example, such studies would
be beneficial in some Canadian Shield sites where extensive
geochemical data on CH4 is available and world’s oldest isolated
bedrock fluids have been identified. In Sweden, on the other
hand, more detailed geochemical characterization, including
isotopic analyses could be helpful. In addition, development
of new geochemical and microbiological methods, such as
clumped isotopes and high-throughput sequencing can open new
opportunities also in this field.
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