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Abstract

This thesis is about the nature of proofs in mathematics as it is practiced,
contrasting the informal proofs found in practice with formal proofs in for-
mal systems. In the first chapter I present a new argument against the
Formalist-Reductionist view that informal proofs are justified as rigorous
and correct by corresponding to formal counterparts. The second chapter
builds on this to reject arguments from Gödel’s paradox and incompleteness
theorems to the claim that mathematics is inherently inconsistent, basing
my objections on the complexities of the process of formalisation. Chapter
3 looks into the relationship between proofs and the development of the
mathematical concepts that feature in them. I deploy Waismann’s notion of
open texture in the case of mathematical concepts, and discuss both Lakatos
and Kneebone’s dialectical philosophies of mathematics. I then argue that
we can apply work from conceptual engineering to the relationship between
formal and informal mathematics. The fourth chapter argues for the im-
portance of mathematical knowledge-how and emphasises the primary role
of the activity of proving in securing mathematical knowledge. In the final
chapter I develop an account of mathematical knowledge based on virtue
epistemology, which I argue provides a better view of proofs and mathemat-
ical rigour.
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tency of Informal Mathematics”. This is in the bibliography under (Tanswell
forthcoming).

6



Contents

Introduction 9
0.1 The Twin Faces of Orthodoxy . . . . . . . . . . . . . . . . . . 10
0.2 The Philosophy of Mathematical Practice . . . . . . . . . . . 14
0.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1 A Problem with the Dependence of Informal Proofs on For-
mal Proofs 20
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Minimal Desiderata . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Azzouni’s Derivation-Indicator View . . . . . . . . . . . . . . 25
1.4 A Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Agent-Independent Derivation-Indicators . . . . . . . . . . . . 29
1.6 Agent-Dependent Derivation-Indicators . . . . . . . . . . . . 37
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Saving Proof from Paradox 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Formal and Informal Proofs . . . . . . . . . . . . . . . . . . . 43
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Introduction

Some will think that a mathematical argument either is a proof or

is not a proof. In the context of elementary analysis I disagree,

and believe instead that the proper role of a proof is to carry

reasonable conviction to one’s intended audience. It seems to me

that mathematical rigor is like clothing: in its style it ought to

suit the occasion, and it diminishes comfort and restricts freedom

of movement if it is either too loose or too tight.

— George F. Simmons (Simmons 1991, p. xi)

Proofs have many roles and functions in mathematics and beyond. They

are one of the central and long-standing ways to establish mathematical

truths and eradicate any rational doubt. They can also serve to convince a

stubborn-but-fair audience and to explain why some mathematical state-

ment is true. They contain the methods, techniques and know-how of

mathematics. They make explicit the logical dependencies of mathematical

propositions. They can educate students to understand particular areas of

mathematics and demonstrate acceptable inferential actions at work. They

can be used to test the boundaries of the concepts they use and point to

improvements that might be made. They can step beyond those boundaries

and lead us into paradox. They can tell an engaging mathematical story

and be elegant and beautiful. Finally, they make for a good topic for three

years of philosophy PhD research.

This thesis is about proofs as found in all mathematical settings, from

napkin scribbles to classrooms, and from journal articles to computer-coded

derivations. Naturally, proofs in these different settings vary a great deal
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in how they are presented, and this is something which will be of major

importance throughout the thesis. In particular, there is a difference to be

made between the idealised notion of proof, where each step is explicit and

endorsed by some underlying formal system, and the proofs that mathemati-

cians generally produce in practice. Following the literature, I will therefore

distinguish between these as formal proofs and informal proofs. I will save

an exploration of this distinction for the start of the first chapter.

In the coming five chapters I will be looking at many of the functions of

proofs in turn and in relation to one another. Each of the functions for proofs

will have associated guiding philosophical questions we will want answers to.

Amongst these, though, three topics come to the fore as those which form

the central problems of the thesis and relate to many of the above roles

for proofs. First of all, there is the question of the formality or informality

of proofs and how this affects whether the proofs are correct and rigorous.

Secondly, I shall consider the question of what exactly mathematical rigour

is. Thirdly, the question of the role of proofs and proving in our possession

of mathematical knowledge and in obtaining that knowledge.

The answers that I shall be giving to these questions will stand in con-

trast to two strands of orthodox thinking in the philosophy of mathematics,

which will be worth setting out before we begin with the main body of the

thesis.

0.1 The Twin Faces of Orthodoxy

In (Kitcher & Aspray 1988), Kitcher & Aspray offer an “opinionated in-

troduction” to the philosophy of mathematics, dividing up contemporary

thinking into two streams of thought: the mainstream tradition and the

maverick tradition. The first of these is taken to be following up on the

Fregean quest for foundations, and is characterised in (Ernest 1997) as best

represented by the work found in the edited volume (Benacerraf & Putnam

1983) and will be discussed now. Kitcher & Aspray take the second stream

to originate with Lakatos, and has since broadly grown into the philosophy

of mathematical practice. We will return to that shortly, and Lakatos in

detail in chapter 3.

I want to actually separate out two general families of views captured

under the heading of the mainstream, orthodox tradition for philosophy of
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mathematics. The first set of views, which I shall simply call the Tradition-

alist approach, concerns the kind of questions we are interested in about

mathematical knowledge, focusing on the a priori and privileging knowledge

of mathematical truths. The second view is the associated take on math-

ematical proofs, which I shall refer to as the Formalist-Reductionist view,

which wants proofs to primarily be understood in terms of formal deriva-

tions. This latter umbrella term is taken from (Antonutti Marfori 2010, p.

262) and is intended to capture the focus on formal proofs of the approach

while avoiding conflation with the formalist position in the philosophy of

mathematics. Let us consider these twin faces of orthodoxy in turn.

The first implicit trend in the philosophy of mathematics, which I have

termed the ‘Traditionalist view’, is about the kind of questions that philoso-

phy of mathematics is interested in, in particular in relation to mathematical

knowledge. Primarily, these seem to be about the a priori nature of mathe-

matical knowledge, what enables us to possess it generally and what enables

us to have access to the objects of mathematics to allow for such knowledge

to begin with. There are great historical precedents for these questions, as

these seem to be the kind of questions which concern almost all major fig-

ures in the historical consideration of the nature of mathematics, from Plato

to Descartes, through to Kant and beyond. As a result of the emphasis on

the ontology of mathematics and the problem of how we access it in order

to have mathematical knowledge, the Traditionalist tends to mainly focus

on mathematical truths, or how it is we can come to know true mathemat-

ical facts and what they consist in. Such a prioritisation of truths tends to

come at the expense of systematic discussion of the nature of proof, which

is downplayed as explainable via the Formalist-Reductionist view which we

will turn to shortly. The Traditionalist picture generally tries to account

for mathematical truth then offer a subsidiary picture of proof as delivering

these truths unto us. It is this trend of Traditionalism which is the target of

Rav’s argument that it is proofs rather than truths which are the primary

bearers of mathematical knowledge found in (Rav 1999) which I shall be

looking at in chapter 4.

Now, if you were to press someone who fell broadly into the Traditionalist

camp on the importance of proof, the likely response would be to admit that

there may be issues pertaining to proofs, such as how they deliver a priori or

deductive knowledge. Indeed, the Traditional picture is that proofs provide

11



justification for the truth of the theorems proved, and that they do so in

a special way which elevates mathematical knowledge obtained via proofs

to some especially robust form of knowledge. Such robustness is normally

taken to be the result of the deductive nature of mathematical proofs, where

giving a deductive proof rules out the possibility of error or omission.

The problem comes when we try to apply this Leibnizian ideal of proof

to proofs as found in practice. Real proofs involve general proof techniques

and strategies which may not be easily reducible to anything formal; they

may suppress or omit many steps that would be found in a strict derivation;

they assume varying degrees of knowledge on the part of reader; they can

use diagrams and natural language explanations; and they may be more

aimed at understanding why a claim is true than filling in trivial details.

The gap between the two notions here is often defined in terms of formality ;

that the ideal of proving consists in formal proofs in formal systems, while

those found in practice are called informal proofs. The question then is

how these informal proofs, which constitute the majority of proofs given in

mathematics, meet the standards of rigour expected of mathematics as the

science of deduction.

Our second face of the orthodox view, the Formalist-Reductionist view,

takes a strong stance on the issues of rigour and formality: they take it

that good, correct proofs—that is, proofs which are sufficient to secure the

special kind of mathematical knowledge— just are formal proofs in formal

systems. However, more needs to be said to avoid the following troublesome

triad:

1. Mathematicians have mathematical knowledge gained from correct

proofs.

2. Correct proofs just are formal proofs.

3. Mathematicians only rarely know or encounter any formal proofs.

The first is taken for granted, since proofs are central to the methodology

of mathematics, while the third is a fact of mathematical practice which

is easily observed and corroborated. The second item is the Formalist-

Reductionist assumption, which is meant to complement the Traditionalist

view by answering how proofs deliver a priori and deductive knowledge. Yet,

taken together there is the clear difficulty that formal proofs are meant to be
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the main source of the special kind of knowledge, while simultaneously not

being accessed by the mathematicians who have the mathematical knowl-

edge via proofs.

The extended answer of the Formalist-Reductionist view is that infor-

mal proofs can be justified as good, correct or rigorous via corresponding

formal proofs. Thus, the initial restriction of correct proofs only including

formal ones is relaxed to allow some of the informal proofs to be correct

too, so long as they are related to formal correspondents in the right sort

of way. There are many ways this can be filled out into a full account:

the connection between informal proof and formal proofs could be abbre-

viation/approximation (Mac Lane 1986, p. 377), formalisation, derivation-

indication (Azzouni 2004a), Carnapian explication (Sjögren 2010)1, picking

out a logical form, using the informal proof to convince the reader of the ex-

istence of a formal proof “in the right way” (Burgess 2015) or even that the

informal proof needs to be sufficient for a hypothetical ‘midwife’ logician to

generate the formal proof (Steiner 1975). While the details of these accounts

may vary dramatically, the key thrust of the approach will be to save the

informal proofs of mathematical practice as properly deductive and rigorous

through their formalisations to formal proofs. Formal proofs have all of the

desirable properties, the idea goes, since by squeezing out all gaps we leave

no room for mistakes or omissions, so proofs are fully rigorous according to

our settled logical rules of inference and deductive from the explicitly iden-

tified axioms and granted premises. Informal proofs are somehow matched

up to these ideal, logical, formal proofs and can thus inherit, via what Rav

calls ‘Hilbert’s Bridge’ (Rav 1999, p. 12), the same justification, rigour and

epistemic status.

So how do our two characters, the Traditionalist and the Formalist-

Reductionist, relate to one another? Certainly nothing so strong as one

entailing the other, since one can have Traditionalist pre-occupations while

rejecting the formalistic conception of proofs, while one can believe that

only formal proofs are correct proofs while being markedly unconventional

in your other philoso-mathematical investigations. Nonetheless, the two

positions do interrelate and provide mutual support. For one thing, we

saw that the Traditionalist needs a story to tell which fits with the a priori

and special nature of mathematical knowledge. The Formalist-Reductionist

1Carnap’s notion of explication will be discussed in chapter 3.
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picture at least seems to fit this role without obviously upsetting any of the

requirements the Traditionalist would have for such a story. In fact, the

Formalist-Reductionist view is often the result of Traditionalist motivations

towards a special degree of infallibility that we want from mathematical

knowledge, translating to proofs needing to be formal in order to rule out

errors, illicit assumptions or gaps of reasoning. While the Traditionalist

position is deeply ingrained in the history of the philosophy of mathematics,

Formalist-Reductionist thinking is a much more recent trend, focusing as it

does on the relatively recent notion of formal proofs, seeing formal proofs as

the ultimate solution to these ongoing questions of rigour and fallibility.

My answers will go strongly against the Formalist-Reductionist posi-

tions, arguing against it explicitly in the first two chapters. The Tradition-

alist is a less concrete opponent, and I don’t think that all of what has come

before under this heading is flawed. Nonetheless, I shall be looking at a

broader class of questions about mathematics, following the approach of the

philosophy of mathematical practice. Let us introduce this now.

0.2 The Philosophy of Mathematical Practice

The second stream of thought in modern philosophy of mathematics, accord-

ing to Kitcher & Aspray, is the “Maverick” tradition following the work of

Lakatos.2 A great number of thoughts come out of the Lakatosian approach,

which will be covered in some detail in chapter 3. But while it is fun to see

oneself as a maverick, the rough amalgamation of researchers favouring this

approach is not generally ostracised nowadays and the distinction between

the two is not always so clear3, so we may call the approach the study of

mathematical practice, with the philosophical wing being the philosophy of

mathematical practice.4 For now, I will set out some of the main works that

fall under this heading, though for a fuller and more fine-grained discussion

of the history of the philosophy of mathematical practice see (Van Bendegem

2Lakatos starts this tradition with the famous phrase “You can be my wingman any-
time”. I was unable to trace this quotation, but see (Güz & Eismann 1986) and (Lakatos
1976, fn. 2, p. 62).

3For example, a glance at the membership list for the Association for the Philosophy of
Mathematical Practice will reveal a great many traditional philosophers of mathematics.

4In (Löwe 2016), Löwe discusses to what extent this does form a unified school of
thought or community, as well as the place of philosophy amongst the various disciplines
taking an interest in mathematical practice.
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2014).

Naturally, there were forerunners to the mathematical practice approach

that Lakatos is seen as the early champion of. Later, in chapter 3, I will

discuss G. T. Kneebone who did pre-empt some of the particulars of the

Lakatosian approach but seems to have been widely overlooked. However,

there are also others who are well-known precursors such as George Pólya,

who wrote about heuristics and mathematical reasoning, such as in (Polya

1945), and who is acknowledged as one of the main inspirations for Lakatos

alongside Hegel and Popper. Another work that goes in this direction is

Hardy’s A Mathematician’s Apology (Hardy 1929), which presents mathe-

matics from a mathematician’s point of view. Other major works include

Davis & Hersh’s The Mathematical Experience (Davis & Hersh 1981), Cor-

field’s Towards a Philosophy of Real Mathematics (Corfield 2003) and the

collected volume (Mancosu 2008). We may consider Maddy’s second phi-

losophy project as a similar practice-oriented approach (see Maddy 2007).

One notable absence from the list is the later Wittgenstein, who seems to

have had very little direct influence on the literature, with the exception of

(Avigad 2008).

The methodological issue that arises is how exactly to engage with math-

ematical practice. The researchers one finds at connected conferences span

a diverse set of fields, which might provide a similar span of answers drawing

on philosophy, history, sociology, maths education, psychology and ethnog-

raphy. For one thing, we can rely on reports from practicing mathematicians

and their reflections on what mathematics is, such as those of Hardy, Maddy,

William Thurston (Thurston 1994), Yehuda Rav (Rav 1999) or Tim Gowers

(Gowers 2006). The careful use of case studies and historical episodes is

also common, mirroring their general use in the philosophy of mathematics,

examples found in (Van Kerkhove & Van Bendegem 2008), (Muntersbjorn

2003) and (Schlimm 2011). Sociological studies can be carried out, such as

is done in (MacKenzie 2001). Empirical data collection can also shed light

on what is going on in mathematics, as is done in (Martin & Pease 2013),

(Inglis & Aberdein 2015), (Mejia-Ramos & Weber 2014) and (Geist, Löwe

& Van Kerkhove 2010). All of these combine to paint a rich picture of what

mathematics looks like in practice, and one which provides a stark contrast

with the traditional picture found in the philosophy of mathematics.

Proofs in mathematics form one of the central topics in the study of
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mathematical practices, and the opposition to the Formalist-Reductionist

approach to proofs a unifying theme. Lakatos argues this point strongly

throughout (Lakatos 1976), as do Davis & Hersh (Davis & Hersh 1981),

Thurston (Thurston 1994) and Rav (Rav 1999, 2007). Additionally, further

arguments are made in (Robinson 1991, 2005), (Hersh 1993, 1997), (Detlef-

sen 2008), (Antonutti Marfori 2010), (Larvor 2012, 2016), and (de Toffoli &

Giardino 2014), amongst others. It is this literature to which the arguments

of the first two chapters can be added.

The approach I will be taking to proofs in practice in the coming five

chapters will be a philosophical one, but drawing on quite a range of litera-

ture on mathematical practices and several case studies and examples. The

intention is to demonstrate that there is a great deal of relevant work from

philosophy that can be deployed in the debate about the nature of proofs,

in rejecting the Formalist-Reductionist picture, and in replacing it with a

better account which does accord well with practice.

0.3 Outline

Let us run through what is to come in the five chapters in turn.

Chapter 1 takes on one prominent version of the Formalist-Reductionist

position, Jody Azzouni’s derivation-indicator account. I give a new argu-

ment that this cannot work. The target for the argument is the correspon-

dence supposedly holding between informal proofs and their formal coun-

terparts. I present the dilemma of whether this correspondence is inherent

in the proof and independent of any particular agent who is engaging with

it, or alternatively whether the correspondence is agent-dependent and may

fluctuate between different mathematicians. The latter is a poor fit for the

Formalist-Reductionist view, I argue, so they must commit to the first horn

of the dilemma. However, this fails due to an overgeneration problem, where

a given informal proof might be formalisable to too many substantially dif-

ferent formal proofs. This is problematic because it undermines the prospect

of the questions of rigour and correctness being resolved by the dependence

on the associated formal proofs, which was the main motivation. We need

another set of answers as to why the informal proof only matches to rigorous

and correct formal proofs, meaning that the original Formalist-Reductionist

answer has not made any progress towards an answer.
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In chapter 2, I take on a related set of arguments about the inconsistency

of the concept of proof and the inconsistency of the whole of mathematics.

The first argument comes from both Jc Beall and Graham Priest and is based

on Gödel’s Paradox, the sentence which says of itself that it is informally

unprovable. They suggest that this shows mathematics to be inherently in-

consistent, but I respond that while this may be a paradox, it doesn’t have

the devastating effects on mathematics they claim. The second argument

is a more advanced version of the first and is due to Graham Priest, de-

pending on Gödel’s First Incompleteness Theorem. Briefly put, he argues

that the theorem proves the existence of a true but unprovable statement in

mathematics. But mathematicians agree that all of mathematics can be for-

malised, so therefore we prove the statement and a contradiction, meaning

that the formal system of mathematics is inherently inconsistent. I consider

the relationship between formal and informal proofs, arguing that there are

multiple reasons that the formalisation move is dubious. First of all, there

is the re-emergence of the difficulties from chapter 1, where there may be

many different ways to formalise mathematics and no unique right answer.

Furthermore, we might grant that mathematics can all be formalised, but

even then it requires the extra fact of putting it all into a single formal

system, which we have no reason to accept. My suggestion is that along-

side the usual two axes of consistency and completeness, we can add a third

dimension of formality which explains where arguments such as Priest’s go

astray.

In chapter 3, I consider the nature of mathematical concepts and how

this relates to the formal/informal axis. I begin with a discussion of the

notion from Friedrich Waismann of open texture, where concepts are not

fully delimited for all applications. Next, I go into a detailed investigation

of Imre Lakatos’s Proofs and Refutations, looking at how conceptual devel-

opment in mathematics is coupled to proving activities. I then show that

some key ideas found in Lakatos were also anticipated by G. T. Kneebone’s

earlier work, especially the advocacy of a dialectical philosophy of mathe-

matics. Bringing these topics together I show that there is open texture to

be found in mathematical concepts too. However, spurred by a criticism

from David Corfield, I turn to the question of how the sketched approaches

to mathematical concept development can account for the modern mathe-

matical usage of formal methods and results. For this, I look at two recent
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proposals from conceptual engineering. First, I deploy Sally Haslanger’s

distinction between manifest and operative concepts to account for the gap

between what mathematics looks like in certain areas and how mathemati-

cians reflectively describe it, using the example of set-theoretic foundations.

Second, I see how Kevin Scharp’s replacement strategy for defective concepts

might also be effective in the mathematical realm.

The final two chapters deal with the role of proofs in mathematical epis-

temology. Chapter 4 is specifically about knowledge-how in mathematics.

I begin with a discussion about Yehuda Rav’s argument of Pythiagora the

oracular machine that it is knowledge of proofs which is of primary in-

terest in mathematics. I agree with the general point that knowledge of

methods, techniques, concepts, interrelations and strategies are all impor-

tant, but offer an alternative interpretation of the thought-experiment which

puts these alongside more traditional concerns. From here I discuss the

knowing-how and knowing-that distinction as found in the epistemology lit-

erature, including Gilbert Ryle’s original arguments, Jason Stanley & Timo-

thy Williamson’s modern revival of the debate, and the more recent position

taken by Jennifer Hornsby and David Wiggins, on which knowledge-how and

knowledge-that are in practice closely related and interdependent. Following

this I run through several examples of how this position is reflected in the

realm of mathematical knowledge. I spend some time critically discussing

the previous stance taken by Benedikt Löwe and Thomas Müller that mathe-

matical knowledge of some theorem is context-dependent, in that it involves

having the contextually-specified skills required to prove it. Finally, I em-

phasise the perspective of proving as an activity put forward by Brendan

Larvor, and argue that this is what needs to be focused on in an epistemo-

logical theory for mathematics.

In chapter 5, I set out one way of giving an account of mathematical

knowledge using the resources of virtue epistemology. The suggestion will

be that both of the main strands of virtue epistemology, reliabilism and

responsibilism, can be adopted to give full and rich accounts of mathematical

knowledge. This approach is previously unexplored and has advantages in

fitting well into the broader picture of knowledge through proving that I have

been drawing. Furthermore, I argue that for the responsibilist mathematical

rigour can be seen as a virtue possessed by mathematical agents, which gives

a new perspective on what rigour amounts to. I finish on a discussion of
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the recent controversy surrounding Shinichi Mochizuki’s proof of the abc

conjecture, showing that virtue-theoretic terminology is already being used

by mathematicians in relation to mathematics.
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Chapter 1

A Problem with the

Dependence of Informal

Proofs on Formal Proofs

[S]hould a naturalist who had never studied the elephant except

by means of the microscope think himself sufficiently acquainted

with that animal? [...] The logician cuts up, so to speak, each

demonstration into a very great number of elementary opera-

tions; when we have examined these operations one after the

other and ascertained that each is correct, are we to think we

have grasped the real meaning of the demonstration? [...] Ev-

idently not; we shall not yet possess the entire reality; that I

know not what which makes the unity of the demonstration will

completely elude us.

— Henri Poincaré (Poincaré 1907, p. 21)

1.1 Introduction

We can distinguish two types of proof: informal proofs and formal proofs (or

proofs and derivations). On the one hand, formal proofs are given an explicit

definition in a formal language: proofs in which all steps are either axioms

or are obtained from the axioms by the applications of fully-stated inference

rules. On the other hand, informal proofs are proofs as they are written and
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produced in mathematical practice. They may make assumptions about the

intended audience’s background knowledge and ability to follow lines of rea-

soning, skip over tedious or routine steps and make reference to semantic

properties and properties of mathematical objects1 without stating these

fully. They also are not confined to formal languages: though mathemat-

ical symbolism may be used, natural language, diagrams and mixed-mode

explanations are freely employed too.

While formal proofs, in our sense, may be defined mathematically in any

number of ways2, informal proofs are much harder to pin down precisely.

One way to identify the objects of discussion is to give a general description

of what they are like, as is done frequently:

[...] what we do to make each other believe our theorems [...] [an]

argument which convinces the qualified, skeptical expert. (Hersh

1997, p. 153)

[...] a kind of meaningful narrative [...] more like a story, or even

a drama, conveyed to us in language calling on our semantic and

intuitive understanding. (Robinson 1991, p. 269)

[...] a conceptual proof of customary mathematical discourse,

having an irreducible semantic content [...] (Rav 1999, p. 11)

[...] a sequence of thoughts convincing a sound mind. (Gödel

1953, p. 341)3

A proof of a theorem in mathematics is what we require to con-

vince ourselves and others of the truth of the statement made

by the theorem. (Feferman 2012, p. 371)

However, the real problem is not giving such a general description of what

informal proofs are like, but it is rather to sort those informal proofs which

are correct and rigorous from those which are not.

1As seen through the ‘Plato-tinted spectacles’ described in (Buldt, Löwe & Müller
2008).

2Avoiding, for the purposes of this work, the need to fully get to grips with what it
means to be formal. For work towards this see (MacFarlane 2000; Dutilh Novaes 2011).

3When I presented this in a talk, Stephen Read pointed out that the sound mind in
question probably refers to Gödel’s mind.
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While we may associate deductive reasoning and logicality with formal

proofs in formal systems, actual mathematics is regularly presented infor-

mally using informal proofs.4 This challenges any proponent of an account

of philosophy of mathematics to also give an account of how proving, as it is

practised, relates to the idealised notion of formal proofs. There are many

routes to take for such an account, from Lakatosian dialectics (see Lakatos

1976), to be discussed in chapter 3, all the way to denying that any mathe-

matics took place before Frege. In this chapter I want to focus on just one

family of responses, wherein the rigour and correctness of informal proofs

is taken to be dependent (in some sense) on associated formal proofs. As

in the introduction, we call this family of views the Formalist-Reductionist

approach.5 There are a number of different connections that informal proofs

can be argued to have to their formal counterparts: reductions, logical forms,

explications, abbreviations, sketches, formalisations, etc. In this chapter I

will look at one particular proposal by Azzouni: that informal proofs indi-

cate underlying formal proofs.6

I will begin by laying out some desiderata that any successful Formalist-

Reductionist account of informal proofs must meet. I will then explain

Azzouni’s view of informal proofs, focusing on the particular connection

between formal and informal proofs that is posited and how well Azzouni’s

view would meet the given desiderata. In section 4 I present a dilemma,

asking whether the link from informal proofs to underlying formal derivation

is an agent-independent one or whether it is dependent on the agent who

is presenting the proof. I take Azzouni to need the former in order to be

successful in obtaining his brand of formalism-reductionism, but in section 5

I will criticise this horn of the dilemma based on a problem of overgeneration.

Azzouni can avoid this problem if he adopts the second horn of the dilemma,

4What is ‘actual mathematics’? The intended answer here is mathematics as it is
practiced but this is only enlightening in that it points to further questions that need
to be addressed, concerning which parts of mathematical practice are relevant. For the
purposes of this thesis I take actual mathematics to simply be that published in mathe-
matics journals, presented at conferences and taught in mathematics classes. A number
of interesting discussions of this question can be found in (Mancosu 2008).

5To emphasise, I specifically avoid calling this simply formalism because the Formalist-
Reductionist stance is broader and may encompass positions that would traditionally fall
outside of the formalist school of thought. For instance, logicism is guided by the thought
that mathematics is part of logic and its approach to proof would fall under the heading
of Formalist-Reductionist, while being deeply opposed to formalism on other grounds.

6The bulk of this position is given in (Azzouni 2004a) and (Azzouni 2005a).
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but in section 6 I will argue that this is not compatible with Azzouni’s

theory. I shall therefore argue that the account is deficient in dealing with the

various desiderata it is aiming to address. Finally, I will conclude that the

fundamental difficulty that prevents Azzouni’s account from being successful

is one that is a general roadblock to successfully providing a Formalist-

Reductionist account of informal proofs.

1.2 Minimal Desiderata of a Formalist-Reductionist

Account of Informal Proofs

In this section I shall lay down the minimal aims that a Formalist-Reductionist

account should achieve in dealing with the problem of informal proofs. By

making these intentions clear from the outset, we will be able to see where

conflicts arise.

We can begin with two desiderata that were already mentioned:

(Rigour) To give an account of how informal proofs are (or can

be said to be) rigorous through their connection to formal proofs.

(Correctness) To distinguish correct informal proofs from in-

correct ones i.e. the connection should only link informal proofs

that are correct to the formal proofs that justify them.

The first of these is precisely the challenge the Formalist-Reductionist faces

in arguing that informal proofs can be rigorous if they are connected to

formal proofs in the right kind of way. The second adds to this the need to

properly distinguish the correct informal proofs from incorrect ones. One

could interpret this as the intention not to overgenerate through the posited

connection: it would be undesirable for the link matching informal proofs to

formal proofs to also associate flawed informal proofs with justifying formal

proofs.

Since informal proofs arise from mathematical practice and the way in

which we engage with and do mathematics, another desideratum is the fol-

lowing:

(Agreement) To explain how, in practice, mathematicians man-

age to consistently converge and agree on the correctness of infor-

mal proofs. (Additionally, to give an account of informal proofs
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that were conceived of long before we had a sufficiently strong

account of formal proofs to support them.)

The main part of (Agreement) is to actually engage with informal proofs

as a social phenomenon; to explain how and why the mathematical com-

munity has employed informal proofs, as well as how the underlying link

the Formalist-Reductionist account argues for relates to this practice. The

addendum presses the requirement further, asking for the account to also

explain how the cumulative nature of mathematics fits with the fact that

fully formal proofs, of the sort required by the Formalist-Reductionist, are

a rather recent discovery. A requirement like this is to avoid the immedi-

ate objection that might be raised: that formal proofs cannot underwrite

informal ones, because historically we have been using the latter far longer.

Now I will impose a stronger demand on the Formalist-Reductionists,

the demand that their account doesn’t simply state what the link is between

formal and informal proof (abbreviating, indicating, logical form etc.) but

that instead it gives some substance to the link.

(Content) To show how the content of an informal proof deter-

mines the structure of the formal proof(s) it maps to.

A reason that informal proofs do present a substantial difficulty is that, in

many ways, they are and appear quite different to any formal proofs. In

answering such a difficulty, then, saying that the relation between them is of

a certain kind is the easy part; showing that it is so is much harder. What

the account needs to provide is an explanation of how exactly the informal

proof can be used to pick out some formal proof or proofs. The picking

out must surely (and at least partially) follow the content of the informal

proof, so the account needs to tell us about how this content determines the

structure of the formal proof that is associated with it.

We may elaborate the above further, to require a response to the partic-

ular tricky cases:

(Techniques) To provide an explanation of apparently inher-

ently informal techniques.

A main example of what is required here is dealing with diagrams in math-

ematics. A legitimate response is to argue for some kind of eliminability
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thesis for diagrams: that all diagrams must be eliminable from proofs en-

tirely. Of course, such an argument would need to be given to complete

the account, and may bring additional commitments. Other examples are

proofs using symmetry, or the ‘untraversed gaps’ described in (Fallis 2003).

1.3 Azzouni’s Derivation-Indicator View

Azzouni’s derivation-indicator view of mathematical practice, as presented

in (Azzouni 2004a, 2005a), takes the link between informal and formal proofs

to be that informal proofs indicate underlying formal proofs.7 In his own

words:

I take a proof to indicate an ‘underlying’ derivation... Since (a)

derivations are (in principle) mechanically checkable, and since

(b) the algorithmic systems that codify which rules may be ap-

plied to produce derivations in a given system are (implicitly

or, often nowadays, explicitly) recognized by mathematicians, it

follows that if proofs really are devices mathematicians use to

convince one another of one or another mechanically-checkable

derivation, this suffices to explain why mathematicians are so

good at agreeing with one another on whether some proof con-

vincingly establishes a theorem. (Azzouni 2004a, p. 84)

The focus here is very much on answering (Agreement), dealing with the

general social conformity regarding good and bad proofs. However, it is clear

that for Azzouni this is closely linked to (Rigour) and (Correctness) in

that the link will explain the agreement in terms of informal proofs being

correct or rigorous due to underlying formal proofs.

An interesting aspect of Azzouni’s view is that the formal proofs are

defined more liberally than usual. He takes them to be located within ‘al-

gorithmic systems’, which are not restricted in the ways we generally take

formal proofs to be:

I’ve already stressed that ‘algorithmic systems’ are restricted nei-

ther to a particular logic, a particular subject-matter, nor even

7Although it should be noted that Azzouni has largely dropped the ‘indicating’ ter-
minology in later developments of the view in (Azzouni 2005b) and (Azzouni 2009) for
reasons we will see in section 1.4.
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to an explicit language (as opposed to something diagrammatic

or pictorial). What is required is that ‘proofs’, however these be

understood, are (in principle) mechanically recognizable. (Az-

zouni 2004a, p. 86)

This has already been criticised (see Rav 2007), with a response from Az-

zouni in (Azzouni 2009), so I shall not take up this discussion here. However,

in the present context the motivation for this view should garner at least

some sympathy, for Azzouni is explicitly trying to leave open a straightfor-

ward route to meeting the demands of (Techniques), in particular those

regarding diagrams as used in mathematics. This focus on diagrammatic

reasoning becomes clearer if we note Azzouni’s reference to another of his

papers analysing diagrammatic reasoning in Euclid’s Elements (Azzouni

2004b), suggesting that he believes diagrammatic proofs do not always need

to be informal, so long as they are given a mechanically checkable structure.8

More on Azzouni’s views of diagrams in mathematics can also be found in

(Azzouni 2013).

Turning now to the question of (Content) and how exactly it is that

derivation-indication links informal proofs to formal ones, Azzouni does not

argue that each informal proof is underwritten by some unique formal proof

in one algorithmic system. That would, he claims, be implausible as an

account of mathematical practice because in reality mathematicians are not

held to one specific inference system. Furthermore, if an account did limit

mathematicians to one specific formal system it would be open to objec-

tions based on incompleteness phenomena.9 Instead, in Azzouni’s view each

informal proof relates to a family of formal proofs which are located in a

number of different algorithmic systems.

It doesn’t much matter where in the family of algorithmic sys-

tems we take ‘the’ derivation indicated by a proof to be located...

since algorithmic systems embedded in one another are so em-

bedded to conserve derivational results, we can take the deriva-

tion indicated to be one located in any algorithmic system within

which the result occurs and is surveyable. (Azzouni 2004a, pp.

8Understanding formal proofs as mechanically checkable ones takes one of the stances
on the debate over what it means to be formal found in (Dutilh Novaes 2011).

9Discussion of the relationship between incompleteness, consistency and proof will be
the subject of chapter 2.
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93–94)

The conservativity requirement holding between algorithmic systems in which

‘the same’ formal proof is located comes closely coupled with a translation

of the ideas up and down systems:

Indeed, provided one is very strict about concept-individuation

conditions, what can be claimed is that the new systems come

with all-new concepts—and the old ones have simply been stip-

ulatively identified with (some of these) new concepts. Such a

stipulative identification of concepts that proves valuable is in-

nocuous solely because of the cumulative way that algorithmic

systems are embedded in one another: none of the old results

regarding the old set of concepts are jettisoned—new material

has only been added. (Azzouni 2004a, p. 98)

Azzouni rightly observes the need to deal with (Techniques) and, specif-

ically, that many informal techniques do not seem to point directly to some-

thing formal. The particular example Azzouni gives is using symmetry, i.e.

doing one part of a proof and then observing that another part is proved

symmetrically. What is understood is that the part of the proof already

given could be easily edited and adjusted to give the other part, though

the exact details of such an adjustment are never given. The solution he

offers is that in the course of informal proofs mathematicians may be using

‘meta-level’ reasoning, which means that the system(s) that the indicated

derivation is located in will be ‘larger’:

When formalized as a derivation, such a proof will necessarily

contain metamathematical elements which naturally drive it into

the form of a derivation in a system strictly larger than one

about, say, the objects officially under study. Mathematicians

automatically ascend to a discussion of what can be taken to

be properties and relations of the relations and properties of the

objects they are proving results about. (Azzouni 2004a, p. 94)

Here, his discussion of how to deal with the case of symmetry additionally

reveals some of the main evidence of what his view on (Content) is. It

appears that aside from these tricky cases of meta-level reasoning and the

like, the actual link from informal proofs to formal ones will usually be a
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straightforward ‘filling in the gaps’-type process. However, in developing

the view further in later work, Azzouni explicitly moves away from this

‘filling in the gaps’ account to a more sophisticated picture separating the

way we come to understand informal proofs (through ‘inference packages’)

from the way that corresponding formal proofs are determined (see Azzouni

2005b, p. 40). For simplicity I focus on the earlier account, but believe that

the problems I raise for it will remain problematic for the mechanisability

requirement still present in the more sophisticated picture.

1.4 A Dilemma

It is now time to start exploring the relation of derivation-indication more

thoroughly. A particularly weak understanding would be to see informal

proofs as a kind of time-saving communicative device, allowing mathemati-

cians to quickly transfer formal proofs by indicating them to one another

using informal proofs. However, this is not Azzouni’s intended meaning; he,

in fact, explicitly rules out the idea that mathematicians need to be aware

of the underlying derivations (“I should add that it isn’t a requirement on

‘indicating’ that mathematicians, generally, be aware that their proofs indi-

cate derivations.” (Azzouni 2005a, fn. 16) or similarly (Azzouni 2009, fn.

17)). So if not this, what is meant by indicating? Since the general intention

is to give an account of (Agreement), (Correctness) and (Rigour), it

appears that what is required is that indication is some kind of dependence

relation, but what properties it should have is just one of many questions

that must be faced to complete the account.

The particular question I propose to press for this account is the fol-

lowing: is derivation-indication agent-dependent or agent-independent?10

Since, in essence, it is a proof that indicates a derivation it is relevant to

ask who the supposed agent in this dilemma is. The proposal is that, on

the one hand, the dependence link could be argued to not involve any kind

of agent (say mathematician, student, listener, reader or anyone else that

is involved in the particular instance of the proof). On the other hand, the

agent-dependent horn of the dilemma suggests that the link from informal to

10This question is very close to the question of whether formalisation is a process that
varies with the agent performing it, like Carnap’s notion of explication (Carnap 1945) or
whether it instead is a process of revealing the ‘deep structure’ of the target phenomenon.
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formal proof may not be fully present in the proof itself, but instead some-

thing over and above generated by the practice of proving or formalising i.e.

something that is added by some involved agent.

In what follows I will examine the two horns of this dilemma, arguing that

Azzouni is proposing an agent-independent link between formal and informal

proof. However, I will contend that taking this horn will not be successful,

based on a problem of the informal proofs corresponding to multiple, non-

equivalent formal proofs. Taking the link to be agent-dependent, I argue,

is not an escape option for the Formalist-Reductionist though, because do-

ing so fails to satisfy the original motivations of the Formalist-Reductionist

enterprise.

1.5 Agent-Independent Derivation-Indicators

In this section I will consider the agent-independent horn of the dilemma, in-

vestigating the correspondence it posits between informal and formal proofs

in order to show the ways in which this correspondence cannot support the

answers to the various desiderata set out above.

Let us consider the following question: does each informal proof relate to

just one unique formal proof or to many of them? We have already seen that

for Azzouni each informal proof relates to a whole family of derivations, due

to the fact that he believes that ‘the’ formal proof is located in a range of

algorithmic systems and, strictly speaking, these are different proofs.11 The

question can be reissued in these terms, though: for some given informal

proof, is there a unique formal proof relative to each algorithmic system it

appears in? In all cases where Azzouni touches on the issue, he seems to

want each informal proof to pick out one unique formal proof per algorithmic

system, within the upper and lower bounds.12

Let us think about this kind of uniqueness, since proof identity conditions

are central to the problem I raise this section.

We already saw in section 1.3 that on the Formalist-Reductionist pic-

ture the informal proofs depend on formal proofs to be able to meet the

11This is because a formal proof is relative to a formal system and language.
12It should be noted that Azzouni, despite attempting to deal with some of the key

issues of mathematical practice and informal proof, is never particularly explicit about
the answers to these questions. Dealing with the various options for what he can and may
want to mean is precisely the current undertaking.
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various desiderata laid out above. In the light of this, the identity of proofs

is highly relevant because it affects which formal proof(s) an informal proof

depends on, and consequently impacts how well the desiderata are met. For

example, if an informal proof does not depend on a unique formal proof

(per algorithmic system) but instead depends on multiple, non-identical or

non-equivalent formal proofs, then this could lead to further difficulties, say,

in satisfying (Rigour) and (Correctness). For it is the underlying formal

proofs that are meant to be ensuring the rigour and correctness of informal

proofs, but if there are multiple different formal proofs simultaneously be-

ing depended upon this undermines the effectiveness of the explanation the

derivation-indicator account gives. For example, what is there then to stop

an informal proof from corresponding to both one correct and one incorrect

formal proof? The point is that if it is the case that the informal proof does

not uniquely determine which formal proof it depends on, then the depen-

dence is far weaker than is required to actually satisfy the desiderata. Once

it is conceded that there are multiple different, non-equivalent formal proofs

underlying some informal proof, we can immediately ask why it is these par-

ticular ones that are selected and what ensures that it is only correct and

rigorous formal proofs that are picked out. Now, if we need an extra step to

clarify why the informal proof only corresponds to just those formal proofs

which do ensure rigour and correctness, then it is this additional step that

is doing all of the philosophical work and the account given has failed to

properly answer the questions posed.

If the underlying formal proof is unique in some sense, then it seems the

structure of the formal proof could, perhaps, be related to the content of

the informal proof and avoid this underdetermination. Such considerations

are also clearly present in Azzouni’s theory: the fact that he writes of the

underlying formal proof in the singular13, even when it is in fact located in

different algorithmic systems with different languages, does not appear to

be accidental. Of course, we did see that this required two extra compo-

nents. Firstly, the moves ‘upwards’ had to be conservative of the derivational

results, to make sure ‘the’ formal proof is still present as one extends the

system. Secondly, we need to be able to identify proofs up and down systems

to ensure they are still the same in this crucial sense. As we saw above, this

is achieved by stipulatively identifying concepts between formal systems. I

13As evidenced by the quotations in section 1.3.
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shall return to these moves once the worry has been further articulated.

In the remainder of this section I will show that the lack of a unique

determination of the formal proofs an informal proof depends on does in-

deed occur and that as a result the problem just described applies to the

derivation-indicator view on the agent-independent horn of the dilemma. I

believe the other horn does not suffer this same problem, as will be discussed

in section 1.6. Another way of describing this problem is as an overgener-

ation problem.14 The idea is not that informal proofs are too resistant to

formalisation but instead that they are not resistant enough. There are mul-

tiple, equally legitimate formal proofs corresponding to any given informal

proof and it is this multitude which throws doubt on there being any deep

philosophical significance to the correspondence at all.

When proposing this overgeneration worry for Formalist-Reductionist

views, something that has often been brought up in response is whether or

not the difference between the various proofs is substantial. The thought

is, presumably, that if the type of difference between the various formal

proofs is only minor or insubstantial, then the proofs may be essentially

the same and so the overgeneration problem loses its bite. However, I do

not find this distinction particularly helpful in avoiding the problem for two

reasons. Firstly, while being essentially the same may hold for two formal

proofs with only some minor change, making lots of minor changes could

add up to a substantial change quite easily. Secondly, I don’t believe there

is any robust way of separating the variations between formal proofs into

substantial and insubstantial ones, but rather think that there is a whole

spectrum of potential variations, ranging from very minor differences all

the way to having no commonalities at all. Nonetheless, I will accept the

distinction for the sake of argument and proceed to why I think there will

be both the smaller and the more substantial variations between the formal

proofs that some given informal proof will depend on.

Given some informal proof, it is straightforward to see that there must

be a selection of formal proofs that it corresponds to just from the minor and

insubstantial variations that can be introduced. Examples I have in mind

are variable-renaming; changing the order of independent lemmas; switching

14I have adopted this terminology from Etchemendy’s attacks on the reductive view
of logical consequence in (Etchemendy 2008). Furthermore, I believe the spirit of the
arguments Etchemendy gives is very close to those deployed here.
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between inter-definable logical constants; changing the order you prove bi-

conditionals (i.e. starting right-to-left or left-to-right) etc. Of course, the

kind of changes that are minor will depend on the particular proof, since at

times these rather innocuous differences can be relevant (or even crucial) to

the success of the proof. This not only supports my claim that the distinction

between minor and substantial differences is not a robust one, but also the

more general argument I am making that even the minor differences can

potentially cause problems for the agent-independent position.

Now Azzouni has essentially two options. He can stick to his guns, as it

were, and insist that for any given informal proof there is just one formal

proof per algorithmic system, in which case he fails to capture basic intu-

itions about formal proof identity concerning these minor variations, say,

as well as being exposed to a worry about the arbitrariness of the partic-

ular proof that underlies the informal proof. Alternatively, he can accept

that there is instead some equivalence class of formal proofs in each system

matching up to any informal proof. In this case, for some given informal

proof and an appropriate algorithmic system, there is a class of formal proofs

that the informal proof indicates. It seems obvious that Azzouni should take

the latter option; given that he accepts inter-system identity of proof, intra-

system identity does not appear to be any more problematic.

However innocuous intra-system identity may seem, it is in fact deeply

problematic, even in cases of insubstantial variation. To begin, a concern is

that even though we have seen some suggestions for the acceptable minor

variations listed above, if the minor variations do still keep the given formal

proof ‘essentially the same’, then we would certainly like a more complete

description of the kind of variations that are acceptable. With this comes

the further need to justify such choices and convince us that adding up

the differences will not eventually amount to a more substantial change.

Considering the huge variety of systems that we could be talking about

here, these demands will not realistically be met. The rhetorical point,

though, is that the granularity of the notion of proof identity in play will

have a bearing on how well the theory holds up under scrutiny.

Even if there are answers to the questions of the previous paragraph,

this does not settle the matter concerning proof identity. Azzouni’s theory,

for good reason, identifies proofs between different algorithmic systems via

the stipulative identification between concepts and conservative translations
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between the systems. Again, if we were dealing with just a single formal

proof in each algorithmic system then this process might work, but if there is

an equivalence class of formal proofs underlying some informal proof in each

algorithmic system, then once again there are technical issues that must be

addressed. Even when the variations are minor relative to some particular

algorithmic system, those differences could be exacerbated and enlarged by

the translation between systems. Formal proofs that were essentially the

same (in the sense of being in the same equivalence class) in one system

could, for all we know, be translated to proofs that are no longer the same

according to the equivalence conditions in that other algorithmic system.

Suppose we have two formal proofs P and Q in algorithmic system A that are

both in the equivalence class underlying some informal proof, then translate

them in Azzouni’s sense to some other algorithmic system B. There is no

guarantee that the translations t(P ) and t(Q) will be in the equivalence class

for the informal proof in system B.

There are two ways that one might try to avoid this concern of iden-

tity and translation: by appeal to conservativity and stipulative identity.

Conservativity ensures that no results are jettisoned when moving between

algorithmic systems, so we are safe in the knowledge that whatever we have

a proof for in the weaker system will also have a proof in the stronger one.

Yet this is certainly not enough to avoid the problem, since the way it is

posed does not require the result to disappear, rather that the translation

may take minor differences and make them substantial in the translation

process. This can certainly happen if the result is still present in the new

system. The fact that the identification between systems is stipulative can

also not do any work here, because as we saw above the stipulative identity is

only argued to be innocuous thanks to the conservativity. Now I argue that

when it comes to formal proof identity, the stipulation of identity might not

be innocuous (in that substantial differences might creep into proofs during

translation) and that conservativity does not allow a way out of this fact,

therefore making use of stipulative identity would beg the question.

So much for minor variations; what of more substantial ones? Are there

ways in which the underlying formal proofs can differ which amount to sig-

nificant and sizeable differences? I believe that there certainly are and will

now give an example where this can be seen. First, though, I want to give

some thought as to what ‘substantial’ differences could be like. There is a
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sense in which the type of differences is constrained by the informal proof

that the formal proofs all correspond to, yet this constraint does not, I argue,

prevent substantial differences from appearing. The two most straightfor-

ward places to see this are in the treatment of mathematical objects and

the mathematical dependencies a theorem has. Firstly, the treatment of the

objects of an informal proof have to give some formal reconstruction of the

objects in terms of relevant properties (at least those that are used in the

proof). How the objects are represented in the formal system, then, will

affect how the formal details of the proof go. Even for these details there

may be multiple different ways to do things (totally ignored in the informal

proof). Together we get different formal constructions (which will only have

to overlap in some crucial properties) with different technical details. Of

course, differences in the representation will have knock-on and snowballing

effects the further through the proof we go, as the different representations

and details of the formal proofs cascade along. After all, the exacting nature

of formal proofs brings with it a delicate balance that must be maintained

for the proof to be correct. Secondly, by representing the proof in different

places, the mathematical dependencies that the proof has will be altered to

support the type of specific inferences that may be made in that system.

From all of these factors, the appearance of variations between the formal

proofs that are substantial should be expected.

Let us flesh this out with a concrete example. The one I have in mind

is that of the mutilated chessboard.15 The statement and proof are the

following:

An ordinary chess board has had two squares—one at each end

of a diagonal—removed. There is on hand a supply of 31 domi-

nos, each of which is large enough to cover exactly two adjacent

squares of the board. Is it possible to lay the dominos on the

mutilated chessboard in such a manner as to cover it completely?

(Black 1946, p. 157)

It is impossible ... and the proof is easy. The two diagonally

opposite corners are the same color. Therefore their removal

leaves a board with two more squares of one color than of the

15This example is central in (Robinson 1991) and can also be found in (Black 1946)
and (Gardner 1988).
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other. Each domino covers two squares of opposite color, since

only opposite colors are adjacent. After you have covered 60

squares with 30 dominos, you are left with two uncovered squares

of the same color. These two cannot be adjacent, therefore they

cannot be covered by the last domino. (Gardner 1988, p. 28)

This example has intentionally been chosen as one which is intuitively cor-

rect, rigorous and understandable but also has a great deal of freedom re-

garding the underlying formal derivations that Azzouni’s theory is commit-

ted to. Another advantage of this proof is that it has been formalised a

number of times in different systems as a good example of informal reason-

ing that is tricky to capture formally. The standard way that the various

attempts tend to approach the problem is reconstructing it set-theoretically,

after this was issued as a challenge in (McCarthy 1995), with such attempts

found in (Bancerek 1995; Rudnicki 1995; Subramanian 1994). These repre-

sent the board as sets of co-ordinates and then define an adjacency relation

on the sets of co-ordinates with a tiling making use of this relation. How-

ever, this is not the only approach that can be taken, as is demonstrated by

Paulson in (Paulson 2001), who instead makes use of inductive definitions

for the set of dominoes and the tiling, which then allows crucial properties

to be proved by rule induction. Furthermore, in (Subramanian 1996), Sub-

ramanian takes another distinct approach, in terms of states (of the chess

board) and actions (of placing dominoes on the board), with a focus on

modelling finite state machines.

Inspection of these various different formal versions of the same informal

proof shows that substantial differences do appear. Let us consider these

differences in turn.

Firstly, the different representations of the various objects of the proof

lead to major differences in the way that the main steps in the proof are

formalised. The representation obtained by defining tilings in the direct set-

theoretic way, inductively or over states, are different ways of giving formal

accounts of the various parts of the informal proof. Taking these different

approaches actually results in changing the significant steps in the proof.

For instance, in (Paulson 2001) the rule induction does a great deal of the

work for proving various facts, while the (Subramanian 1996) version has to

add a large number of additional, almost trivial facts to make the proof go

through.
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Secondly, these different representations also lead to different require-

ments for how the technical details in between the major steps are cashed

out, with no obvious way to translate these between the systems. On the

first approach, a number of extra details are added to pick out the right set-

theoretic facts and make these particular details form into a correct proof.

On the second, the inductive definitions are added to the set-theoretic com-

ponents to allow several of the sub-proofs to be completed in substantially

different ways. The third approach has to add lots of extra details to en-

sure that the numbers of coloured squares are well-behaved moving between

states.

Thirdly, invoking such different representations means that the proof

is dependent on different mathematical facts and background assumptions,

which is to say that we arrive at a proof with different dependencies. In our

chess board example we can point to the difference between a reliance on

set theory alone, the soundness of rule induction and the logic of the state

machines, as well as a whole selection of minor discrepancies.

Finally, since the formal proofs are all in different systems, we see the

additional problem that each system adds to the formal proof a number

of system-specific artefacts. These seem to be totally without correlates,

should we want to attempt to translate between the systems.

All of these are examples of substantial and sizeable differences in formal

derivations corresponding to the informal proof of the mutilated chess board

example. As such it should now be clear that substantial variations do exist

in underlying formal proofs and that the problem of overgeneration described

above is in full force against the derivation-indicator account.

One common response that Azzouni would usually have open is, inter-

estingly, not available in this case. The response would be that Azzouni

could give up the need for translations between systems and simply rely on

the fact that for each relevant algorithmic system there exists a formal proof

that corresponds to the informal one. So long as this property of existence

is preserved when moving between algorithmic systems, as Azzouni holds

is constantly happening in mathematical practice, the derivation-indicator

account can be maintained.16 The reason this path is not open on this

occasion is that my objection is one of overgeneration. In effect, I am in-

16Thanks to an anonymous referee for this suggestion as to how the objection may be
avoided.
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sisting that this type of mere existence of corresponding formal proof is

not sufficient for the correspondence to provide adequate solutions to the

problems of (Rigour) and (Correctness). Furthermore, giving up the

translations between systems also concedes the point that there are multi-

ple different and non-equivalent formal proofs underlying an informal proof,

leading back into the need for an additional explanation of how it is that

the derivation-indication only picks out correct proofs etc. Such a retreat

does not, therefore, avoid the problems we have seen.

As a final point against the agent-independence of underlying formal

proofs, I add that the problems of the identity and uniqueness of formal

proofs strike me as the easier ones to handle compared to questions about

the identity of informal proofs. There are very strong intuitions concern-

ing which informal proofs are the same and which are not (an issue that

is, for example, important to properly crediting mathematicians for their

new discoveries). Presumably, in trying to examine mathematical practice,

at least some attention should be paid to ideas of informal identity. An

even broader line of difficulties would emerge from this though, concerning

whether informal proofs which are informally identical should indicate the

same classes of formal proofs and if not, why not.

All of the above follows Azzouni along the agent-independent horn of

the dilemma. Taking the other horn would make matters like this far easier

to deal with, since which equivalence class of formal proofs (both inter- and

intra-system) underlies the informal proof would depend on the particular

agent and circumstances of the informal proof. Unfortunately, the second

horn cannot be what Azzouni wants because it does not suffice to establish

the Formalist-Reductionist claims, as I will argue in the next section.

1.6 Agent-Dependent Derivation-Indicators

So let us consider the other horn of the dilemma, which has it that the formal

proof(s) underlying any given informal one are agent-dependent and supplied

over and above what is already present in the proof itself. This horn would

yield great benefits: there would be readily available practical evidence that

proofs can be linked to formal derivations from the field of Formal Mathe-

matics, in which there is an ever-growing collection of computer-checkable
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formal counterparts for well-known mathematical proofs.17 At least on the

surface, the success of this grand formalisation project should add great cre-

dence to the idea that informal proofs can be linked to derivations. Formal

Mathematics is very clearly agent-dependent, with different mathematicians

converting different informal proofs to equally different derivations (as we

saw in the mutilated chess board example). In this section I will make the

case that the agent-dependent horn of the dilemma is, unfortunately, not

available to Azzouni or other Formalist-Reductionists.

Firstly, as we have seen, Azzouni insists that the agents need not be

aware of the indicated derivation that underlies the informal proof they are

communicating. This in itself seems to put a stop to agent-dependence for

Azzouni, for if the formal proof depends on agents who have no access to the

formal proof there is little hope of success in this direction. Furthermore, one

of the main desiderata for Azzouni, that of (Agreement), would be left in a

far more precarious position. For the social agreement on what constitutes

a correct proof is explained in terms of the indicated derivations, but if

the link is now agent-dependent then there is no given reason why any two

people will have the same class of derivations underlying the informal proof.

In this case, mathematics could then end up as a lot of talking past one

another.

The original reasons for wanting to reject the notion that mathemati-

cians are aware of the underlying formal derivations are good ones. Firstly,

this simply does not match up to the reality of mathematical practice. Sec-

ondly, this would fail to answer the clause of (Agreement) which asks for

an explanation of mathematics done long before there were formal proofs in

mathematics. Finally, formal proofs for mathematics tend to be long and

unwieldy therefore not the kind of thing that are ‘easy’ to know. In (Pelc

2009), it is argued that the formal counterparts to informal proof of the-

orems that have already been proved may very well not just be currently

inaccessible to us, but beyond the physical limits of our universe to ever

check.18 By avoiding having the mathematicians aware of the underlying

derivations, Azzouni will be sidestepping these three concerns. Except, if

Azzouni were to now take the second horn of the dilemma then these wor-

ries would be back with a vengeance. For in that case he would need to

17In mechanical proof-checkers such as Coq, Mizar, Isabelle, etc.
18See also (Boolos 1987) for another unwieldy formal proof for a clear informal one.
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explain how the link from informal to formal proofs can be agent-dependent

while the agent may nonetheless have no access to the formal proof, which

is precisely the type of worry he was attempting to sidestep.

Generalising somewhat to other Formalist-Reductionist arguments, there

is an even more crucial reason that they should not want to accept that their

link is agent-dependent. This is that whatever the posited link may be from

informal proofs to their formal counterparts, this link is one of dependence.

The entire project is aimed at explaining the utility of informal proofs in

terms of formal proofs, with their philosophically more straightforward ac-

count of logic and deductive reasoning. The desiderata of (Correctness)

and (Rigour) can be tackled by taking advantage of the dependence of in-

formal proofs on formal ones to import the story of rigour or correctness we

have for the latter. However, if we make this link agent-dependent, then the

clear waters are muddied once again by the complicated relationship that

the posited link has with the mathematicians themselves. For the entire

point of the undertaking is to resolve the tricky problem of the practical,

real-life side of mathematics in the philosophically simpler terms of formal

derivations. If the posited link is agent-dependent, the very difficulty that

we were resolving simply re-emerges at another level. In short, the attempt

to answer the problem of informal proofs in mathematical practice will find

itself once again dealing with the practical difficulties of formalisation. This

should be unacceptable to any Formalist-Reductionist account.

1.7 Conclusion

Having seen that the agent-dependent approach is not compatible with the

Formalist-Reductionist aims, let me now return to the first horn of the

dilemma and give a reason as to why an independent link from informal

proofs to underlying formal ones is going to be particularly hard to establish.

The reason is embodied in the desideratum of (Content). To success-

fully give the type of account that the Formalist-Reductionist is after, one

has to go from the informal, implicit, gappy and often hidden structure of

the informal proof to a fully explicit formal proof, which has picked out ev-

erything down to the smallest details. But one of the obvious reasons that

formal proofs are rarely employed in practice is that these minutiae will get

in the way of explanation, comprehension and communication of proofs. The
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result is, unsurprisingly, that they are often left out. What follows, then, is

that the link is adding extra structure and detail in going from informal to

formal proofs.

In section 1.5 we saw the mutilated chess board and a selection of sub-

stantially different ways that it can be made formal. Although such multiple

realisations of the formal proof’s corresponding to informal ones don’t pose

such a problem to a weaker, agent-dependent notion of formalisation, if we

want an independent link this is a serious problem because it compels us

to go beyond the link to explain which realisation is the correct one or how

they can all be correct, and as we have seen neither option is particularly

easy. The difficulty of filling in the leaps made in informal proofs is further

compounded by the fact that proofs have a great deal of structure, which

means that how we fill in a gap at one point can and does affect the options

for later stages of the proof. Believing that the answers to these techni-

calities is somehow already present in the proof and determined is entirely

misguided.

The moral, then, is that satisfying (Content) is really quite a chal-

lenging problem. Interestingly, the problem is one that extends far beyond

Azzouni’s particular proposal to Formalist-Reductionist projects generally.

Whether one wants to reduce all mathematics to formal derivations, claim

that informal proofs reveal a complete logical form, or any other proposal

in this direction, the hard problem of (Content) is a serious roadblock.
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Chapter 2

Saving Proof from Paradox:

Gödel’s Paradox and the

Inconsistency of Informal

Mathematics

Every formal system is thus incomplete in two respects: 1 insofar

as there are propositions undecidable within it, and 2 insofar

as there are notions that cannot be defined within it [...] Thus

we are led to conclude that, although everything mathematical

is formalizable, it is nonetheless impossible to formalize all of

mathematics in a single formal system [...]

— Kurt Gödel (Gödel 1935, p. 389)

2.1 Introduction

Is mathematics consistent? While in practice we generally proceed as if it

is, for dialetheists such as Priest in (Priest 1987), mathematics is one of the

main battlegrounds on which to establish that inconsistencies do indeed arise

and require their dialetheist solutions. In this chapter I shall consider two

related avenues of argument that have been used to make the case for the in-

consistency of mathematics: firstly, paradoxes which lead to contradictions

internal to mathematics and, secondly, the incompatibility of completeness
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and consistency established by Gödel’s incompleteness theorems. These two

strands of argument are closely connected, for the most apparently prob-

lematic paradox in the case of mathematics is Gödel’s paradox, that of the

sentence which says of itself that it is unprovable, which is closely related

to common constructions of Gödel sentences for formal systems whereby we

get to the balancing act between completeness and consistency.

My response to the two lines of dialetheist argument will bring in con-

siderations from the philosophy of mathematical practice on the nature of

informal proofs. One thing I will argue for is that we should add to the two

axes of completeness and consistency a third axis of formality and informal-

ity. Given this third axis, we can consider the dialetheist arguments in two

different ways. At the informal end, the previously problematic paradoxes

may be genuine, but I argue that there is no compelling reason to see them

as internal to mathematics. Meanwhile, at the formal end of the scale, con-

siderations of the practical role of formalisation in mathematics will allow

me to make a positive case for incompleteness over inconsistency without

begging the question against the dialetheists. My main conclusion will be

that the dialetheist arguments considered do not establish that mathematics

is inherently inconsistent.

Answering the ultimate question of whether mathematics is consistent

from this perspective which encompasses informal proofs and mathematical

practice would, I believe, be a major undertaking, and one which I am not

intending to complete here. The intention is rather to take the first step

in this direction by demonstrating that the matter is not already settled,

since the standard arguments from Gödel’s theorems and the paradox of

provability do not succeed. In fact, I believe these arguments fall apart

through a number of the assumptions they need about informal proofs, the

nature of mathematics and the process of formalisation, so I shall proceed

to raise these objections in turn.

To begin, section 2.2 will introduce the key distinction between formal

and informal proofs that my arguments will focus on. Next, in section 2.3 I

will lay out what Gödel’s paradox is and why I do not take it to be a concern

for mathematics. In section 2.4 I present Priest’s longer argument for the

inconsistency of informal mathematics based on the application of Gödel’s

first incompleteness theorem to informal mathematics and the conclusions

he draws from this concerning the inherent inconsistency of informal math-

42



ematics. In section 2.5, I argue that the way of understanding formalisation

on which Priest’s argument succeeds is a bad one, then show that a better

understanding means the argument no longer goes through. In sections 2.6

and 2.7, I argue against the thought that we can formalise mathematics as

a single theory, proposing that a better thought would be to approach for-

malisation in a fragmented way. Finally, in section 2.8 I consider formality

and informality as a third axis, and a final argument against Priest that he

changes the subject in switching between the formal and the informal.

2.2 Formal and Informal Proofs

Before we can begin, we need to be sufficiently clear on the distinction

between formal and informal proofs, as this will play a central role in the

remainder of this chapter.1

Formal proofs are those which are studied in logic and proof theory,

and may be defined in the usual way. For example, we might define a

formal language, give rules for well-formed formulae in that language, specify

axioms to be taken as basic and lay down inference rules for stepping between

formulae. A formal proof (relative to such a specified system) will be a

(usually finite) sequence of formulae where each is either an axiom or follows

stepwise from previous formulae by an application of one of the inference

rules, where the final formula is a statement of what was to be proven and

is thus established as a theorem in the system.

However, formal proofs are rarely seen in actual mathematical practice.

Instead the type of proofs that are employed by mathematicians in their

daily activities, teaching and published work tend to be very different. In

most cases no formal language is specified, axioms are rarely given and

inferences are not confined to just the basic rules. Steps in these proofs

can rather be leaps, and they can invoke the background knowledge of the

target audience, the semantic understanding of the terms being employed,

visualisation, diagrams and topic-specific styles of reasoning. Let us call

proofs in this sense informal proofs. Although this would be extremely

unsatisfying as a definition, it is certainly not intended as such as one of the

1A terminological note: while I speak of ‘informal proofs’ and ‘formal proofs’, some
of the literature on this subject instead speaks of ‘proofs’ and ‘derivations’ to get at the
same distinction. In (Priest 1987), Priest also uses the term ‘näıve proof’ to refer to the
informal proofs.
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main challenges for philosophers of mathematical practice is to pin down

exactly what counts as a good, legitimate, correct and rigorous informal

proof and filling this out further would take me beyond the scope of this

chapter. Nonetheless, there is a good deal of literature that does deal with

this issue that elaborates on the distinction I am invoking (see Robinson

1991; Hersh 1997; Rav 1999; Leitgeb 2009; Antonutti Marfori 2010; Larvor

2012).

A number of the differences between these two types of proof will af-

fect the assessment of whether the arguments I am considering successfully

establish that mathematics is inconsistent. Gödel’s first incompleteness the-

orem relates to proof as an explicitly defined, formal notion attached to a

formal system and one of my main counter-arguments in what is to come

is that this will not transpose across to apply to informal proofs. Gödel’s

proof tells us about the limits of formal systems which meet certain condi-

tions, like having a certain degree of expressive power, being able to prove

a certain amount of basic mathematics (enough to allow for the required

coding etc.) and having an effective procedure for enumerating its theo-

rems. What will be required for the dialetheist line to work, then, will be

to show that informal proofs are close enough to formal ones to even be-

gin applying these conditions. I will argue to the contrary that informal

proofs are sufficiently different from formal proofs that the argument does

not succeed. Some key differences of informal proofs that will play a role

later include the social and contextual components of whether such a proof

is successful or not; the partially-fragmented nature of modern (informal)

mathematics; and the fact that informal mathematics extends to include

diagrammatic proofs which have more intuitive inferential rules. Finally,

even if the dialetheist arguments manage to establish that informal proofs

can be formalised appropriately, there will still be the need to show that the

conditions are met.2

Before getting the details of the argument from Gödel’s theorems, let

me assess whether a simpler argument from paradox outlined by Beall is

sufficient to show that mathematics is inconsistent.

2In (Priest 1987), Priest argues that these conditions will be met. I believe that the
flawed step in the argument is the earlier one of formalisation (as will be covered in section
2.5), so I will not actively engage in a discussion about whether this formalisation will
have an effective calculus etc.

44



2.3 Gödel’s Paradox and Beall’s Argument

The first argument I will consider is based on Gödel’s paradox. Let us begin,

therefore, by examining the paradox:

GP: This sentence is (informally) unprovable.

Suppose GP is false; then it is informally provable. Since we take our infor-

mal mathematical proofs to establish mathematical truths, it follows that

GP is also true. Yet this contradicts the assumption that GP is false, so

using proof by contradiction we establish that GP is true. However, since

we have just proved GP, it is informally provable. But GP states that it is

unprovable, so it must be false. Contradiction.

Now consider how it is that this paradox might show that mathematics

is inconsistent. Beall gives the following argument:

There seems to be little hope of denying that [GP] is indeed

a sentence of our informal mathematics. Accordingly, the only

way to avoid the above result is to revert to formalising away the

inconsistency— a response familiar from the histories of näıve

set theory, näıve semantic theory, and so on. If one does this,

however, then (by familiar results) one loses completeness, which

can be regained only by endorsing inconsistency. Either way,

then, we seem to be led to inconsistent mathematics. (Beall

1999, p. 324)

Setting aside the option to formalise away the inconsistency until section

2.4, the initial argument is that since GP is part of mathematics and GP

leads to an inconsistency, it must therefore be that there is an inconsistency

in mathematics. In the rest of this section I will undertake the (purportedly

hopeless) task of denying that GP is part of mathematics.

The only sensible suggestion as to why GP should be part of mathemat-

ics, it would seem, is that GP concerns the broadly mathematical concept

of informal provability. I contend, though, that this is not sufficient to make

GP a statement of mathematics. The reason is that I take the concept of

informal proof to be used to talk and reason about mathematics without it

being a part of the subject matter of mathematics. While the former is ob-

vious, for the paradox to render mathematics inconsistent we actually need

the latter, more contentious claim. Of course, I hold that informal proof
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and provability are very important notions in talking about mathematics,

but it is crucial to emphasise that these are notions about mathematics. To

establish that the paradox will render mathematics inconsistent, though, we

need the extra claim that it is a part of informal mathematics. In general,

a statement being about mathematics and a statement being part of math-

ematics can coincide, but certainly don’t always. Consider the following:

(1) Mathematics is traditionally done on blackboards.

(2) This square building with 12m sides must have an area of 144m2.

(3) 111, 111, 111× 111, 111, 111 = 12, 345, 678, 987, 654, 321.

(4) Ron likes bacon and eggs.

Here (1) is a statement about mathematics but is not itself a part of mathe-

matics. In contrast, (2) is a mathematical statement which is being applied

to a situation, so in a relevant sense is not about mathematics. The third

item is both mathematical as a statement and about a mathematical fact,

while the fourth sentence is neither. Since these two notions can be pulled

apart with minimal effort, that a sentence falls under one of them certainly

can’t constitute a reason to think that it falls under the other. It can

therefore be concluded that the notion of informal provability being about

mathematics is not sufficient to establish that GP falls within mathematics.

One can also give positive arguments as to why informal provability

should not be considered a concept within mathematics. For example, the

lack of a precise mathematical definition we observed in section 2.2 clearly

supports the claim that informal provability is not a notion within the sub-

ject matter of mathematics. Nor does it interrelate with other mathematical

concepts in the way that standard mathematical concepts do (such as, for

example, group, integer, derivative, line, etc.). The only notable conceptual

link it has is with truth, as exploited by the paradox, but if anything the

informal notion of truth in mathematics (before being formalised into some

formal theory of truth) will belong to the same category of notions about

mathematics that are not within mathematics.

By denying that informal provability is a concept within informal math-

ematics, it can consequently also be denied that GP is a sentence of our

informal mathematics. It is thus reasonable to deny that Beall has showed

that informal mathematics is inconsistent by using GP. This certainly does
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not provide an ultimate solution to Gödel’s paradox, but it does keep the

derived inconsistency out of mathematics and allows us to set aside the

paradox to be solved in line with whatever one’s favourite solution is to

paradoxes generally.3

Now, let me note two things about what has gone on here which will

be recurrent throughout the chapter. Firstly, although this section does not

solve Gödel’s paradox, this is not really necessary for the purposes of the

current project. Beall, Priest and others have a substantial case for the

inconsistency of natural languages, a case which is not the target of this

chapter and would have to be addressed separately if one were so inclined.

For both of these authors the claim that mathematics is inconsistent is

an additional one that is supported by additional argumentation and it is

precisely these arguments which I am targeting. Thus, by rejecting that

Gödel’s paradox is part of mathematics, what has been done is to show

that these additional arguments do not cover more ground than the original

case for the inconsistency of natural languages and therefore don’t provide

added support for dialetheism from the realm of mathematics. Secondly, the

separation between being part of mathematics and the concepts used about

mathematics is not just a way to re-introduce the object language/meta-

language distinction for informal mathematics. A separation of languages is

not important because the point is not really one about languages, instead

it is about the subject-matter of mathematics. While we may use GP to

argue that the concept of informal provability is inconsistent, this does no

more work than the liar or any other semantic paradox unless it infects the

realm of mathematics. As such, showing that informal proof is not the kind

of thing to be investigated mathematically blocks the argument considered

in this section.

3A final note on Beall: although the argument I am criticising is from an older paper,
the response offered here would fit well with Beall’s more recent work in (Beall 2009). The
suggestion I have made may be appropriated to make the case that informal proof should
join truth in the category of useful devices, which when introduced bring ‘merely’ semantic
paradoxes as by-products or ‘spandrels’ without thereby rendering the base language (in
this case, that of mathematics) inconsistent.
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2.4 Priest’s Argument for the Inconsistency of In-

formal Mathematics

In Chapter 3 of (Priest 1987), entitled “Gödel’s Theorem”, Priest makes use

of Gödel’s paradox in the same way as Beall subsequently went on to do,

arguing that it shows that informal mathematics is inconsistent. In Priest’s

case, however, it is given as the culmination of a longer argument which

aims to show that informal proof satisfies the conditions for Gödel’s first

incompleteness theorem in such a way as to lead to its inconsistency. This

section will focus on explaining the details of Priest’s argument.

Priest wants to show that informal proof is susceptible to Gödel’s first

incompleteness theorem. The first hurdle is that the theory of informal

proofs is, on the surface at least, not formal and hence not immediately

susceptible to Gödel’s theorem. Priest addresses this in the following way:

It should be said at once that naive proof, or at least the naive

theory it generates, is not a formal theory in the sense of the

theorem; but it is accepted by mathematicians that informal

mathematics could be formalised if there were ever a point to

doing so, and the belief seems quite legitimate. The language of

naive proof, a fragment of English, could have its syntax tidied

up so that it was a formal language, and the set of näıve theorems

expressed in this language would be deductively closed. Hence

we may, without injustice, talk about the naive theory as if it

were a formal theory. (Priest 1987, p. 41)4

In section 2.5, I will claim that Priest’s reasoning fails to go through at this

point. For now, though, let us complete Priest’s argument that informal

proof satisfies the conditions of Gödel’s theorem. The other pieces that

Priest needs are that the formalised theory can express all recursive functions

and that the proof relation of the formalised theory is recursive. He rightly

takes the first requisite to be obviously satisfied and the second to be the

4As the target of his argument, Priest needs to explain what he takes näıve or informal
mathematics to be exactly. He says:

Proof, as understood by mathematicians (not logicians), is that process of
deductive argumentation by which we establish certain mathematical claims
to be true. (Priest 1987, p. 40)

His distinction is, in effect, the same as the distinction between formal and informal
mathematics as found in section 2.2 and throughout this thesis.
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contentious one, listing a number of possible objections and his replies. A

discussion of these would be irrelevant to the purposes of this chapter, so

for now we shall grant that the formalised proof relation is recursive.

Given that Priest has now established that informal proof satisfies the

conditions of Gödel’s theorem, the thrust of his argument is as follows:

For let T be (the formalisation of) our naive proof procedures.

Then, since T satisfies the conditions of Gödel’s theorem, if T

is consistent there is a sentence ϕ which is not provable in T ,

but which we can establish as true by a naive proof, and hence

is provable in T . The only way out of the problem, other than

to accept the contradiction, and thus dialetheism anyway, is to

accept the inconsistency of naive proof. So we are forced to admit

that our naive proof procedures are inconsistent. But our naive

proof procedures just are those methods of deductive argument

by which things are established as true. It follows that some

contradictions are true; that is, dialetheism is correct. (Priest

1987, p. 44)

Priest soon makes the link between ϕ and Gödel’s paradox. For if we take ϕ

to be the formalisation of GP5, the inconsistency of section 2.3 will quickly

re-emerge within the formalisation of informal mathematics. A key point

is that a standard move towards incompleteness over inconsistency is to

separate the object language from the meta-language, but that here we are

dealing with informal proof and informal mathematics, for which there is no

such distinction, meaning that the orthodox move towards incompleteness

is not available. Indeed, this is the entire point of focusing the argument on

informal mathematics.

The conclusion that Priest draws is that we are left with true contradic-

tions and dialetheism.6 Informal mathematics is seen to be inconsistent, but

5The matter is somewhat more complicated than this suggests, of course. Milne
discusses in (Milne 2007) the many ways that Gödel sentences can be constructed and
what exactly they ‘say’.

6Not just this, though, since Priest takes it that the theory given by the formalisation
of informal mathematics can prove its own soundness and hence must be able to give its
own semantics. From here he takes it to follow that it must be able to prove the T-schema
for this theory inside the theory, giving him all of the paradoxes he describes as semantic
(as opposed to set-theoretic paradoxes). For example, he lists the liar, Grelling’s paradox,
Berry’s paradox, Richard’s paradox and Koenig’s paradox as falling under the umbrella
of semantic paradoxes. In fact, then, Priest argues that “Our naive theory is semantically
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even more penetratingly he can claim that there is no escape from this appli-

cation of the incompleteness theorems to informal mathematics and so “[...]

we might say that our naive proof procedures are not just contingently in-

consistent, but essentially so [...] dialetheism is inherent in thought.” (Priest

1987, pp. 47–48) That dialetheism is inherent in thought is one of the main

claims of In Contradiction, supported by several pillars of argument. The

argument described here that informal mathematics is essentially inconsis-

tent forms one of these pillars, but I shall now argue that this pillar will not

hold any weight.

2.5 Formalising Mathematics

The move from the informal version of mathematics to a formalisation

thereof is, in my opinion, too quick. By endorsing the claim that mathe-

maticians take it that informal mathematics can be formalised, Priest moves

from the informal theory to the formal one without much consideration of

what this move entails or how the mathematicians he is invoking conceive of

the formalisation process. For one thing, Priest might not want to endorse

the näıve claims of mathematicians at all, since they most likely take math-

ematics to also only be consistent. If such claims were definitive it might

thus spell the end of dialetheism.

Nevertheless, it is worth considering how exactly the idea that mathe-

matics should be formalisable will work precisely. In the first half of this

section I discuss two options, along with how they interact with Priest’s ar-

gument. The first follows a straightforward interpretation of Priest’s claim

but is shown to fail as an account of the formalisation of informal mathemat-

ics. The second avoids the problems with the first but, I argue, no longer

lets Priest’s argument go through.

2.5.1 A First Option

Let us call the first option many-one formalisation.7 The idea is that one

takes the entirety of informal mathematics and tidies up the fragment of

closed and inconsistent. By contrast, any consistent theory cannot be semantically closed.”
(Priest 1987, p. 47)

7The ‘many’ here is due to the fact that it might end up being case that multiple
informal proofs are mapped to the same formal proof.
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natural language expressing it to give a formal language. All of the informal

theorems will have particular formal counterparts expressed in this one for-

mal language, and the set of these formalised theorems is then deductively

closed. For the first option, we consider this as the one single correct formal

counterpart for the informal mathematics, a type of super-theory8 of math-

ematics, in which all the current basic assumptions and their consequences

are contained. This mirrors a standard idea of formalisation involving a

routine procedure of ‘filling in the gaps’ as is discussed, for instance, in the

debate between Rav (Rav 1999, 2007) and Azzouni (Azzouni 2004a, 2005a)

though ultimately rejected by both. Since the formalisation that occurs is

crucial to the application of Gödel’s first incompleteness theorem to infor-

mal mathematics, it would be very convenient for Priest’s argument if the

picture that is sketched here is the correct one, as this would take formali-

sation to effectively reduce informal mathematics to something formal, and

thereby allow the argument to proceed.

Unfortunately, we have good reason to think that this picture cannot be

correct. It is obvious that tidying-up syntax is not going to be a many-one

mapping. If we start with the natural-language versions of our mathematical

theorems, there will be a whole selection of ways in which we can reproduce

these theorems in some particular formal language. Even translating very

simple fragments of mathematics into simple formal systems can easily lead

to a plurality of results. Scaling this up to include all of mathematics

exacerbates this problem significantly. Add to that the fact that we don’t

start with a particular formal language that we are to be translating the

informal into, but instead generate it “on the fly” based on the syntax of

our informal mathematics. That there will only be one possible result is not

very plausible.9

Note also that the conversion of informal mathematics into this super-

theory is not really like the standard conversion of informal mathematics

into some ‘foundational’ theory such as ZFC set theory, which is potentially

8I use the terms ‘super-theory’ and ‘super-system’ throughout this chapter. I do not
intend anything of the ‘super-’ prefix besides emphasising that it is all-encompassing of
mathematics in the way described.

9An anonymous referee suggests that we may be able to distinguish between a plurality
of results which are equivalent under translation and those which genuinely disagree.
I believe, however, that this will not save the argument. In the critical discussion of
Azzouni’s formalist account of proofs in chapter 1, I have argued that such a move is not
going to deliver the substantial kind of formalisation required for the argument to proceed.
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what Priest has in mind for the mathematicians that he invokes. For if

this were the case we would quickly find ourselves with the Benacerrafian

problem that there are a large number of different adequate representations

for our informal concepts (see Benacerraf 1965). This would lead us out of

the first option and its super-theory, into a picture where there are multiple

different formalisations of informal mathematics.

I would like to emphasise here that the worry I am raising with the

generated super-theory is nothing to do with its inconsistency (for such a

theory would undoubtedly be inconsistent) and as such it is not open to the

usual charge of begging the question against the dialetheist.

2.5.2 A Second Option

As a second option, Priest could hold that the formalisation process for all

mathematics that he is after is actually a case of many-many formalisation.

As I have already argued, there may be many different formalisations of

mathematics, which Priest can accept as the case in order to avoid the

problems presented against the many-one formalisation picture. In essence,

this approach is embracing the plurality of formalisations as opposed to

letting it become a problem.

However, accepting this path immediately adds an extra complication to

the argument, in that now Priest’s claims about the formalised version of

informal proof must implicitly be quantifying over formalisations. In par-

ticular, each time he mentions the formalised version of a proof of informal

mathematics, there is no one thing this refers to but instead a selection of

different formalised versions of the informal proof. The next natural ques-

tion to follow this up with is how to determine which formalisations fall

under this quantification for any given proof. Put another way: which for-

malisations of informal mathematics will be adequate and acceptable? For

example, a formal language which is too expressively weak to even state

standard theorems would be inadequate and unacceptable. The question,

then, comes down to finding (and defending) criteria of adequacy for these

formalisations of informal mathematics.

Formalisation, as it is being conceived of here, is not a process of ex-

posing an underlying logical form already present in the informal proof, or

any thought in this direction. I take this to be the case because informal

proofs will underdetermine the language, system and structure that such a
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proof would adhere to and have. It is instead taken to be a process that

is inextricably linked to the context in which it occurs. Relevant factors

include the agent performing the formalisation, their purposes in doing so

and the formal theory they intend to formalise the given informal proof into.

It might be useful here to consider an analogy to Carnap’s notion of explica-

tion (as in Carnap 1945) where there is also no definitive fact of the matter

as to what the correct explication is for some given concept. Instead the

different results are compared and evaluated using pragmatic measures such

as usefulness, simplicity, explanatoriness and precision.

In a similar way, there could be a whole range of formalisations that can

be of varying degrees of usefulness in making some informal piece of math-

ematical reasoning fully formal. In Priest’s formalisation of all of informal

mathematics we may find a number of different results which are of vary-

ing degrees of usefulness, explanation, accuracy, simplicity etc. Of course,

amongst these there may be a number of formalisations that we would want

to recognise as inadequate, such as that in the above example of an expres-

sively weak language. We want some way of excluding these examples of

‘bad’ formalisations of informal mathematics from being implicitly quanti-

fied over in Priest’s argument. However Priest would want to go about this

project, we can see that it adds significant philosophical ground that needs

to be supplemented to the argument in question before it goes through.10

2.6 On Mathematical Super-Theories

A new worry that emerges from the consideration of different formalisations

concerns the reliance on one (or indeed many) mathematical super-theories.

Since we have seen the analogy to Carnap and want to evaluate our for-

malisations using pragmatic principles, we must consider whether unified

mathematical super-theories, in the sense that Priest has proposed, are in-

deed the best when evaluated in this way. In this subsection I will briefly

consider three reasons why this might not be the case.

Before I begin, though, let us just make explicit why for Priest’s argu-

ment there is now the need to formalise all of informal mathematics in one

10An anonymous referee proposes an additional argument against Priest based on this
section: that the translation on the many-many case is not effective means that informal
proof can therefore not meet the minimum requirements for falling under Gödel’s theorems.
Grist to the mill!
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go, in its entirety, into a super-theory. If this is not done another key step of

the argument cannot go through, namely the step where it is insisted that

the Gödel sentence is indeed provable. If we were to replay the argument just

in arithmetic, for example, we would code in (the formalisation of) informal

provability in arithmetic and soon discover the Gödel sentence is not prov-

able in this formalisation. But here we would be free to take the traditional

lesson that this is just a limitation on the formalisation, which may well be

incomplete.11 It is only by squeezing out all room for this incompleteness

by quantifying over all mathematics and informal proof simpliciter that the

argument could hope to successfully establish that the answer is actually

inconsistency rather than mere incompleteness.12

Let us now consider why this super-theory will run into difficulties.

One worry may be that different fields or areas of mathematics might be

best served by different formal systems, or even different styles of formal sys-

tems. For example, the study of algebra, set theory and geometry all appear

very different at first glance, and so it may be that they are best served by

being formalised into different formal systems (say, with different proof rules

which better track the kinds of inferences made in these fields). Of course,

the judgment here must be relative to some purpose of formalisation, but

we may take the purpose at hand to be (something like) giving a formal

reconstruction of the informal proofs, which tracks the inferential steps that

were being used. To justify this, recall that Priest’s treatment of informal

mathematics as a formal theory was meant to be “without injustice”.

The first problem I am proposing, then, is that it might be that differ-

ent formal systems, which are tailored to different sub-areas of mathematics,

might allow the more accurate reconstruction of the reasoning present in the

informal proofs for those different areas. It also seems that Priest cannot

point to the fact that the super-system(s) he is after are those that repre-

sent a ‘tidying up’ of the fragment of natural language that mathematics is

expressed in, because the point that is being pressed here is that this talk

is an over-simplification of a more complex process.

Relatedly, the second concern I have is that diagrammatic proofs may

11And we are well used to theories being incomplete for more reasons than Gödel
theorem. For instance, Peano arithmetic also has examples like Goodstein’s theorem and
the Paris-Harrington theorem.

12Note that this cannot be avoided by insisting that the Gödel sentence must be part
of näıve arithmetic without running afoul of the distinction of section 2.3.
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lead to a significant worry for Priest. In referring to the “fragment of En-

glish” that informal mathematics is expressed in, Priest seems to miss a

wide selection of mathematics that is communicated pictorially. Pictures

can serve to communicate mathematical facts, but can also function as com-

ponents of informal proofs or proofs in their entirety (see Nelsen 1993, 2000).

How is this to be accommodated in the super-systems which are meant to

formalise all of informal mathematics? What will the formalisation process

do to diagrammatic proofs? If they are simply to be eliminated, this once

again means that informal mathematics is undergoing a drastic change in

the formalisation process. Alternatively, there are formal systems for dia-

grams which may serve to formalise some of the diagrammatic proofs. For

example, there is work towards formal systems of mathematical diagrams in

(Manders 2008) and more explicitly in (Mumma 2010) and (Avigad, Dean

& Mumma 2009). However, we are now engaged in a project of making the

super-systems, which originally sounded straightforwardly close to informal

mathematics, encompass much broader pieces of mathematical reasoning.

At the very least, this is a non-trivial undertaking which involves construct-

ing a mixed-mode formal system which combines traditional syntactic com-

ponents with formal diagrammatics. The work just cited suggests that this

might be possible in certain respects, but it is certainly no mere triviality.

A deeper worry, however, is that we are now able to question whether it will

even be possible to capture all of the mathematical reasoning that occurs

in informal proofs in formal systems, without doing violence to the source

material. I shall return to this line of thought in section 2.8.

A third problem we encounter for the mathematical super-theory can

draw on Priest’s own considerations of mathematical pluralism in (Priest

2012). Modern mathematical investigation extends to examining which re-

sults obtain from adopting different logics to work in. Yet if all the various

investigations of different logics are taken to be part of informal mathemat-

ics, what happens when we formalise them into the one super-theory? Not

only do we face the prospect of systems collapsing into one another, but the

more alarming danger of triviality looms. Observe that some of the logics

we might want to use will include the principle of explosion, most notably

classical logic. As soon as a contradiction arises somewhere in the system

(which is exactly what Priest’s argument is attempting to force), immedi-

ately it follows that the whole super-system is trivialised. This is regardless
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of whether we think that there is something philosophically wrong with

classical mathematics, and the principle of explosion in particular, since we

are just formalising informal mathematics as we found it. This worry also

doesn’t rely on logical pluralism, instead just the more uncontroversial fact

of logical plurality.13 In the case of this worry, Priest’s argument will still go

through but using the fact that a trivial super-system is also inconsistent,

which is hardly a desirable result.

2.7 Fragmented Formalisations

The counter-suggestion to formalising all of informal mathematics simulta-

neously into one super-theory, with which we have seen some serious difficul-

ties, is that the formalisation process may be one that can only be successful

when done in a fragmented way. The suggestion is that constructing a for-

mal system is achievable when we take smaller “chunks” of mathematics

that we want to formalise, just not when we want to take it all at the same

time. Such an understanding would provide reasonable solutions to dealing

with the problems of previous section, without giving up the possibility of

formalising parts of mathematical reasoning.

Let us see why switching from the idea of a super-theory to the frag-

mented approach is not a good option if we want to maintain Priest’s argu-

ment that informal mathematics is inconsistent by Gödel’s First Incomplete-

ness Theorem. The issue is that the argument relies on capturing informal

mathematics fully to insist that the sentence ϕ, which is unprovable in the

formalised version of informal mathematics but is nonetheless established by

informal proof, must also by provable in the formalised system. If, however,

it fails to obtain that any one theory does successfully formally represent

all of informal mathematics as a whole, then it cannot be insisted that the

last step holds. The point is that we get to the fact that the sentence must

be true in the system because the system includes all informal mathemat-

ical reasoning. If we do not guarantee this, then the inconsistency is not

guaranteed either.

Undermining this last step is sufficient for giving a criticism of Priest’s

argument, but what we have seen so far forms a deeper difficulty. Priest’s

13I take it that, as mathematicians, we don’t need to commit ourselves to the truth, in
some philosophical sense, of the mathematics that is being carried out.

56



more general project in In Contradiction is to re-examine the balance be-

tween completeness and consistency, insisting that it is the latter we jettison

in light of Gödel’s theorems rather than the former, which is the orthodox

choice. Recall that in section 2.3 we set aside Beall’s use of the same bal-

ancing act, where he suggests that when formalising mathematical reason-

ing we are returned to the completeness/consistency dichotomy. What has

implicitly been done here, then, is to use considerations of the process of

formalisation to give an independent motivation for why we might prefer to

end up with an incomplete system when formalising informal proofs, without

making reference to any concerns about consistency.

2.8 On The Formal and The Informal

For all that has been said, I think there is another more devastating ob-

jection to Priest’s argument. In part 2.5.1 we saw that the idea that there

would only be one formalised counterpart of informal mathematics would

not hold any water. However, it was only on this reading that it seemed

acceptable to treat informal mathematics as if it were a formal theory, at

least superficially, stemming from the fact that there was one ‘body’ of infor-

mal mathematics and one formalisation thereof. Nonetheless, having been

discussing the difficulties involved in formalising theories, it should now be

clearer that there was something fishy going on in this step of the argument.

The objection is the following: by moving from informal proof to a for-

malised version thereof, Priest’s argument is guilty of changing the subject.

The argument intended to show that informal proof was inconsistent, and

not just coincidentally but inherently so. Yet, almost immediately in the

reasoning, to get the application of the incompleteness results off the ground,

Priest needs the subject of his argument to be a formal theory. The answer,

therefore, is that mathematics is not a formal theory and that transforming

it to be one will do an injustice to its source material. The argument speaks

as if the multiple representations that informal mathematics can have as

formal systems are identical to the informal mathematics itself, but this is

just a confusion of distinct things.

While Priest was looking to demonstrate that informal mathematics was

inherently inconsistent, an option that is now on the table is that mathemat-

ical reasoning is inherently informal, a view common in the mathematical
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practice literature (e.g. Larvor 2012), or that it may be inherently incom-

plete, or indeed both. The thought would then, in these cases, be that

no formal system would suffice to adequately capture mathematics in its

entirety. Indeed, this is the traditional lesson that people take from the in-

completeness results, but this standard result relies on the question-begging

move from consistency to incompleteness. Now, though, we have seen inde-

pendent motivations for thinking so and rejecting the argument, motivations

stemming from mathematical practice and paying attention to formalisation

as a process.

Priest’s challenge was looking to adjust the balance between consistency

and completeness in favour of the latter over the former. But now, by con-

sidering the third axis of formality and informality, we have obtained a way

to defend incompleteness over inconsistency in the formal setting without

begging the question, and to see incomplete and inconsistent systems as

both serving purposes which may be justified by pragmatic principles. For

the argument relies on a number of assumptions about the nature of for-

malisation which allow one to easily and without injustice take informal

mathematics into formal mathematics. I have, to the contrary, argued that

this distinction runs deep and cannot be bypassed lightly, meaning that ar-

guments that work for formal theories cannot be straightforwardly applied

to informal mathematics, and ultimately that Priest’s argument does not go

through.
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Chapter 3

Mathematical Concepts:

Open-Texture, Dialectics and

Engineering

Proof suggests new mathematics. The novice who studies proofs

gets closer to the creation of new mathematics. Proof is mathe-

matical power, the electric voltage of the subject which vitalizes

the static assertions of the theorems.

— Philip J. Davis & Reuben Hersh (Davis & Hersh 1981, p.

151)

3.1 Introduction

In this chapter I will explore something deeply connected to the over-arching

theme of proofs and their formality: the nature of mathematical concepts.

For proofs feature and operate on mathematical concepts and as such the

degree of formality or informality of a proof is closely related to the exactness

of those concepts it deploys. If one believes, like the Formalist-Reductionist,

that informal proofs correspond to formalised counterparts, then one should

also see mathematical concepts as having exact, formal definitions which

can be deployed in those formal proofs. Conversely, rejecting this idea leads

to the opportunity to be more historically sensitive in seeing that mathe-

matical concepts develop over time. Furthermore, we can also be more open
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to the possibility of mathematical concepts not being fully fixed in their

applications.

The philosophy of mathematical practice is heavily influenced by Imre

Lakatos on precisely these issues. Lakatos thought that mathematical con-

cepts were not fully fixed, but instead are changed and developed through the

proofs they appear in. One way to fill out what this means could be through

Waismann’s notion of open texture, where a concept is open-textured when

it is not fully delimited for all potential applications. The first half of this

chapter will bring out the connection between Waismann’s open-texture and

Lakatos’s dialectical approach to the philosophy of mathematics. With the

door hereby open to ongoing conceptual development in mathematics, in the

second half of the chapter I look to connect these ideas to recent work on

conceptual engineering. I will suggest that deploying particular distinctions

and strategies pertaining to conceptual change found in the conceptual en-

gineering literature is a promising route for integrating the formal/informal

axis discussed in the previous chapter with change of concepts in math-

ematics. This will ultimately leave us with three major questions. One

that underlies the conceptual engineering literature concerns whether the

concepts are to be revised or replaced. A second question is whether all

mathematical concepts need to be changed or just some. Finally, we can

wonder if conceptual change is needed for all mathematical contexts or just

some restricted range of them. Of course, the answers relate to one another

and jointly contribute to a view on mathematical conceptual change. I shall

return to these questions at the end of the chapter.

The precise plan for this chapter is as follows. In section 3.2 I will start

by explaining what Waismann holds open texture to be, and comparing

it to Shapiro’s more recent usage of the term, showing that the two are

very close but are different in the particular phenomena they intend to pick

out. Next, in section 3.3, we shall explore Lakatos’s Proofs and Refutations,

focusing on the roles of concepts and proofs. Following this, in section

3.4 I will briefly cover G. T. Kneebone, a figure who has received little to

no attention but pre-empts Lakatos in several crucial respects in proposing

a dialectical philosophy of mathematics. In section 3.5, I will bring the

three figures together and discuss how Waismann’s notion of open texture

is a useful way of describing aspects of the Lakatosian and Kneebonian

accounts. However, we will also see that open texture is just one tool in
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the toolbox for the contemporary undertaking of conceptual engineering,

introduced in section 3.6. Indeed, it has been argued in (Corfield 1997)

that Lakatos fails to appreciate the amount of formal and axiomatic work

that is involved in modern mathematics. In response to this I suggest that

we can draw on this new work in conceptual engineering to supplement

the Lakatosian picture of concepts. In sections 3.7 and 3.8, I consider two

examples of this: Haslanger’s distinction between manifest and operative

concepts and Scharp’s replacement strategy, showing how these might apply

to the mathematical concepts found in mathematical practice.

3.2 Waismann and Open Texture

Let us begin by investigating what it is for a concept to display open tex-

ture, as it is used by Waismann in (Waismann 1968) and Shapiro in (Shapiro

2006).1 It should be noted that although Shapiro follows Waismann in gen-

eral, the exact characterisation of open texture does shift somewhat between

them. I shall set out the two definitions and see how closely they agree.

The main difference between the two seems to come down to the differ-

ence between the potential for sharpening concepts versus the potential for

extending the domain of the concepts.

Waismann introduces the term ‘open texture’ through examples such as

the following regarding our concept of cat :

What, for instance, should I say when that creature later on

grew to gigantic size? Or if it showed some queer behaviour

usually not to be found with cats, say, if, under certain condi-

tions, it could be revived from death whereas normal cats could

not? Shall I, in such a case, say that a new species has come

into being? Or that it was a cat with extraordinary properties?

(Waismann 1968, p. 119)

Further examples include people who show the unusual feature of disappear-

ing and re-appearing, someone who is old enough to remember King Darius

and a lump of gold which emits a new kind of radiation. The point is that

in such surprising situations the concepts we possess do not settle whether

1Shapiro’s book has an appendix focussed entirely on Waismann’s account of open
texture (Shapiro 2006, pp. 210-215).
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these are just unusual manifestations of the familiar concept or the appear-

ance of some new thing entirely. Waismann links this up to two crucial

points: (1) that our concepts are only delimited in some possible directions

and not others, and (2) what he calls “the essential incompleteness of an

empirical description” (Waismann 1968, p. 121).

Waismann never gives an explicit definition of open texture2, but the

relevant property found in the examples appears to be that of (1): that

the concepts we deploy and use to understand the world around us are

not delimited in all possible ways. Indeed, let us take this as the central

component of Waismann’s account of open texture to give the following

definition:

Open Texture 1 (OT1) A concept or term displays open texture iff there

are possible objects falling outside of the standard domain of applica-

tion for which there is no fact of the matter as to whether they fall

under the concept or not.

In other words, Waismann’s idea of open texture concerns the potential to

expand concepts to new or larger domains. Concepts generally do have

a standard domain of application, a range of practical situations in which

we know which objects do and do not fall under that concept. Picking

Waismann’s examples, we are usually good at identifying and agreeing on

which things are and aren’t cats (in contrast with any other pets we might

see), humans (in contrast to shop dummies) and lumps of gold (in contrast

to other metals).3 However, these normal domains do not cover all potential

applications and his examples provide cases where we are asked to apply the

concepts beyond the standard situations, and there is no fact of the matter

as to whether the objects in question should fall under the relevant concepts

or not. Shapiro puts it as follows:

2It may be that open texture itself is the sort of thing that avoids full specification,
such that the concept of open texture is itself open-textured. Such considerations are
familiar from the literature on vagueness. The connection between open texture and
vagueness will be discussed shortly.

3Note the contrastivist spirit of how I have described this agreement on the standard
domains of application and disapplication. Waismann doesn’t have an explicit story of how
we pick out these domains, but seems to favour empirical descriptions. These don’t seem
incompatible if the empirical descriptions are only fine enough to separate out particular
examples from others. The contrastivist pull also seems to be present in the Bartha
quote below. On the other hand, we can just read the contrast here as providing cases of
application and disapplication which are clear in practice.
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We language users introduce terms to apply to certain objects or

kinds of objects, and, of course, the terms are supposed to fail to

apply to certain objects or kinds of objects. As we introduce the

terms, and use them in practice, we cannot be sure that every

possible situation is covered. (Shapiro 2006, p. 210)

A good way to think about this is presented by Bartha in terms of hard and

easy cases:

Typically, the decision about whether the predicate applies in-

volves a nontrivial comparison to paradigm cases or prototypes.

There will be “easy cases” where there is general agreement that

the predicate does or does not apply, and “hard cases” where

applicability is open to debate. (Bartha 2010, p. 9)

Importantly, open texture does not require that we have already identified

such areas of openness, only that it is possible that there are such areas.

The mere potential for new situations to arise in which we can question how

the concepts are applied is enough. We do not need to know in advance

which kinds of questions will push us outside of the standard domain of

application, and in fact we usually don’t know this in advance and usually

don’t predict the difficult situations that might arise for our application of

concepts.

Shapiro’s account of open texture is slightly different. In (Shapiro 2006),

Shapiro is arguing for an account of vagueness which incorporates a strong

flavour of open texture. However, we can observe that the definition he uses

is not quite the same:

Suppose, again, that a is a borderline case of P . I take it as

another premise that, in at least some situations, a speaker is free

to assert Pa and free to assert ¬Pa, without offending against

the meanings of the terms, or against any other rule of language

use. Unsettled entails open. The rules of language use, as they

are fixed by what we say and do, allow someone to go either way.

Let us call this the open-texture thesis. (Shapiro 2006, p. 10)

We may take the characterisation here to be definitional of open texture in

the sense he uses it:
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Open Texture 2 (OT2) A concept or term displays open texture iff there

are cases for which a competent, rational agent may acceptably assert

either that the concept applies or that it disapplies.

While Waismann’s account of open texture is about the extent to which

a concept is delimited, in contrast Shapiro’s definition is about competent

language users being able to go either way on whether or not a term should

be applied or a proposition asserted. What seems to be driving this definition

in the text, though, is that the open texture in OT2 will be applicable to

borderline cases, thus also includes the potential for competent agents to

go about deciding one way or another and sharpening the concepts. The

difference becomes less marked, however, if we realise that on Waismann’s

account, in going beyond a concept’s standard domain a competent speaker

can go either way on the application of the term corresponding to the open-

textured concept, as we have on Shapiro’s definition.

The main difference between the two definitions is with respect to vague-

ness, through which we see that Shapiro’s notion is somewhat broader in a

certain sense. On Shapiro’s account borderline cases of vague terms can

count as open-textured because we can sometimes go either way on whether

the term applies or not, while on Waismann’s definition these will still fall

within the standard domain of application (even if they might be hard to

decide) so wouldn’t count as cases of open texture. For example, taking a

paradigm case of vagueness such as bald, there will be some borderline cases

in which it isn’t clear whether the head in question is bald or not, satisfy-

ing the second definition, nonetheless if the person whose hairline is under

discussion is a normal one then this will be within the standard domain of

application and disapplication of the term ‘bald’ so the first definition will

not be satisfied. However, the term ‘bald’ will still be open-textured on the

first definition because of the possibility of other hard cases not previously

considered, say a two-headed person—maybe where one head has no hair

and the other has some— how do we apply a term like ‘bald’ then? An

interesting upshot, then, will be that the two definitions seem to agree on

the extension of which concepts count as open-textured, because any con-

cepts which permit the vagueness Shapiro is interested in where competent

users are allowed to settle borderline cases either way (thereby satisfying

OT2) will happen to have cases outwith their standard domain of applica-

tion for which there is no fact of the matter (thus also satisfying OT1) by
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the ubiquity of the latter phenomenon. Similarly, if there is no fact of the

matter regarding these non-standard cases, it would be strange to insist that

a rational agent could not be free to settle it either way if we do choose to

extend the cases in this direction.4

Nonetheless, there is clearly a difference in the kind of phenomenon the

two notions are intended to capture. Shapiro’s definition is aimed at the

broader idea which incorporates both open texture in Waismann’s sense

and vagueness, by focusing on the openness in the agent’s settling of the

hard cases. In contrast, Waismann is more concerned with the openness

of new cases and potential applications which the concepts might be put

to. Indeed, Waismann does compare open texture to vagueness, describing

open texture as “something like possibility of vagueness” (Waismann 1968,

p. 120), which is explained as follows:

...a term like ‘gold’, though its actual use may not be vague, is

non-exhaustive or of an open texture in that we can never fill

up all the possible gaps through which a doubt may seep in.

(Waismann 1968, p. 120)

As Shapiro points out (Shapiro 2006, p. 211), Waismann does not say

much more concerning vagueness and certainly doesn’t offer an account.

However, I believe that I have here identified the source of the differences

in the two definitions and their intended phenomena: Shapiro is interested

in the sharpening of terms, with the openness to decide either way, while

Waismann is concerned about how our terms apply to entirely new cases

which might arise.

As a final component in setting out the nature of open texture and Wais-

mann’s definition of it, let us return to point (2) left aside above, concerning

the “the essential incompleteness of an empirical description”. Indeed, I

think this will be useful in elaborating on what is meant by a domain of ap-

plication. The main idea concerns how we describe and define our concepts

or terms5, where Waismann says:

4Although it might well be that there are other demands on a rational agent which
push them one way or the other, changing the picture I am sketching here. For example,
one choice might be rationally preferable over another to remain consistent with the way
other concepts have been settled.

5One thing I have not yet discussed is the difference between a concept and a term,
i.e. whether these are meant to be mental, linguistic or something else. Clearly, Shapiro’s
notion leans far more towards the linguistic side and thus towards ascribing open texture
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A term is defined when the sort of situation is described in which

it is to be used. (Waismann 1968, p. 122)

Waismann’s idea is that the difference between complete and incomplete

descriptions and definitions is crucial. A complete description exhausts all

the details of its subject and a complete definition “anticipates and settles

once for all every possible question of usage” (Waismann 1968, p. 122).

Conversely, an incomplete description can be extended with more details

that haven’t previously been mentioned and an incomplete definition fails

to anticipate and settle usage. Waismann’s point is that most descriptions

of things we find in the world will be incomplete, but even further this

incompleteness will not be settled as we add further details:

[H]owever far I go, I shall never reach a point where my descrip-

tion will be completed: logically speaking, it is always possible

to extend my description by adding some detail or other. Every

description stretches, as it were, into a horizon of open possibili-

ties: however far I go, I shall always carry this horizon with me.

(Waismann 1968, p. 122)

Similarly, according to Waismann a definition will not be able to anticipate

all eventualities meaning “the process of defining and refining an idea will

go on without ever reaching a final stage” (Waismann 1968, p. 123). A

standard domain of application and disapplication, then, might just pick out

those cases which a definition does anticipate and straightforwardly applies

to, which is just to say: Bartha’s “easy cases”.

Let us briefly return to an issue footnoted earlier: whether the notion

of open texture is itself open-textured. The question is very similar to

that of higher-order vagueness, where if we take vagueness to be about

having borderline cases, there are further borderlines as to where those first

borderlines start and finish. That is to say, the conception of what counts as

a borderline case is itself vague. There are several problems pertaining to the

fact that it seems that we may be able to iterate the vagueness of borderlines

of borderline onwards indefinitely, problems which I shan’t cover further but

are discussed with regards to Shapiro’s open-texture account of vagueness by

to terms. Waismann, however, was unsurprisingly less clear on this matter, switching
between concept-talk and term-talk. This is not something I intend to resolve here, nor
do I think much hangs on it for my discussion.
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Greenough in (Greenough 2005). With open texture being defined in both

OT1 and OT2 using other terms which are not given full specifications, I

believe that these terms are prone to open texture and thereby open texture

itself is too. For instance, OT1 refers to domains and, indeed, concepts

and it is not hard to suppose that unexpected cases and interpretations

may arise for these. Even more so, OT2 is in terms of rational, competent

agents, and these will certainly face new cases.6 One could even claim that

the slight shift in the intended usage of open-texture from Waismann’s view

to Shapiro’s demonstrates an instance of the expansion of the domain to

include vagueness as a kind of open texture.

To finish, given that we are going to be investigating mathematical con-

cepts, it is interesting to see that Waismann’s main comparison for the

essentially incomplete empirical terms are the concepts found in mathemat-

ics. For example, he takes the description of a triangle by giving the side

lengths to be complete and discusses enumerating all possible situations in

chess to leave no room for new possibilities to emerge. Put explicitly:

Goldbach’s hypothesis [...] may be undecidable [...] But this

in no way detracts from the closed texture of the mathemati-

cal concepts. If there is no such thing as the (always present)

possibility of the emergence of something new, there could be

nothing like the open texture of concepts. (Waismann 1968, pp.

123-124)

But I believe Waismann is wrong on both the claims that mathematical

concepts are closed-textured and that there is no possibility in the mathe-

matical case of new possibilities arising. Let us turn to Lakatos to see how

this might be the case.

3.3 Lakatos and Proofs & Refutations

Imre Lakatos’s Proofs & Refutations was published posthumously in 1976

as a book edited by John Worrall and Elie Zahar, including additional work

developed from his 1961 PhD Thesis. Previous to this the dialogue sections

had also appeared as a series of four articles as (Lakatos 1963a,b,c,d). In the

6It is already not uncommon to hear computers discussed as a case outwith the stan-
dard domain of application, where we might have reasons to count them as agents in
relevant respects.
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main parts of the text, Lakatos presents a classroom dialogue of a teacher

and students named after letters of the Greek alphabet, discussing various

proofs of Euler’s conjecture for polyhedra, which links the vertices (V), edges

(E) and faces (F) by the formula V − E + F = 2. The brilliance lies in

the fact that the dialogue is also a rational reconstruction of the historical

development of the proofs, counter-examples and concepts involved, where

the various students are used as representatives of various historical positions

and reactions. Sometimes this is in a very direct sense, with footnotes to

the text indicating that the words of the students are quotes from various

mathematicians. All of the main ideas that Lakatos presents are important

to the themes of this thesis, so it is worth going through them in some

detail.7 In particular, for the current setting, the account of mathematical

concepts and their dialectical development will provide us with the main

version of the view which takes mathematical concepts to change over time

rather than being timeless and immutable.

3.3.1 A Briefing on the Proof and Responses to Counterex-

amples

Let us spend a moment on the mathematical case study which Lakatos uses.

The dialogue opens with a statement of the problem: that all polyhedra

satisfy the formula V −E+F = 2, followed by a purported proof8 (originally

stemming from Cauchy) which proceeds roughly by the following method.

1. Imagine a polyhedron to be made of a thin surface of rubber. Then we

can remove one face and stretch the remainder flat onto a surface, for

which we then must show V − E + F = 1 (having removed one face).

2. Triangulate the flat network that the previous step delivered. That is,

for any face that is not already a triangle, we add diagonals and keep

doing so until all faces are triangulated. Since we add an edge and a

face for each diagonal, the equation isn’t affected.

3. Remove triangles from the triangulated network one by one. For this

either we remove an edge and a face, or we remove two edges, a vertex

7It should be noted, though, that I am just focusing on Proofs & Refutations, so will
not spend time on Lakatos’s other papers on mathematics or the philosophy of science.

8One of the big points concerns what proofs amount to, so the exact status of the
various proofs doesn’t divide neatly into correct proofs and merely purported ones.
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and a face. In both cases, the equation V − E + F = 1 is unaffected.

4. Ultimately, we are left with a single triangle, for which V − E + F =

3− 3 + 1 = 1 as required.

Despite indicating that many historical figures were fully convinced by the

above as a proof of Euler’s conjecture (Lakatos 1976, p. 8, fn. 2), the de-

scription of the method as a ‘proof’ does not last long in the dialogue. Im-

mediately the students are suspicious of all three main steps in the method.

For example, the third step fails if one removes a triangle from the inside of

the triangulated network, and furthermore can fail if we choose the wrong

order of removing faces, as pointed out by student Gamma (Lakatos 1976,

p. 11).

Prompted by the different kinds of problems that arise, the Teacher dis-

tinguishes between local counterexamples and global counterexamples. Global

counterexamples present a counterexample to the theorem, while local coun-

terexamples demonstrate a flaw in a lemma. For instance, the cases just

mentioned which are brought up by Gamma are local counterexamples to

the third step in the proof. Further examples appear of polyhedra which

can’t always be stretched flat after removing a face, such as the nested

cubes, or can’t necessarily be triangulated, such as the crested cube with

its ring-shaped face, which therefore are local counterexamples to steps 1

and 2 respectively. For the nested cubes and the crested cube, though, the

equations are V −E+F = 4 and V −E+F = 3 respectively, meaning they

are also global counterexamples to Euler’s conjecture.

Lakatos reviews numerous possible responses to the problematic cases

that arise, again made concrete by the footnotes revealing that these were

all positions taken by historical figures. Let us review the responses in turn

with some comments on how well they work.

Method 1: The Method of Surrender

A single counterexample refutes the conjecture as effectively as

ten. The conjecture and its proof have completely misfired.

Hands up! You have to surrender. —Gamma (Lakatos 1976,

p. 13)

The response offered by Gamma is passed over rather quickly, mainly be-

cause it offers very little. The idea is that if a global counterexample appears
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to a conjecture, then the conjecture is false and must be abandoned. Such

a response might be appropriate in some cases, and might seem natural to

modern mathematicians, but the response is too extreme in that it also is

clear that we are unlikely to hit on the right answers on our first attempt,

and yet the ways in which we go wrong can be informative in improving

and refining the key ideas, something which is a main point that Lakatos is

making.

Method 2: The Method of Monster-Barring

It is the ‘criticism’ that should retreat. It is a fake criticism. The

pair of nested cubes is not a polyhedron at all. It is a monster, a

pathological case, not a counterexample. —Delta (Lakatos 1976,

p. 14)

The response espoused by Delta is that of monster-barring, in which global

counterexamples are themselves rejected as not being genuine instances of

the key concepts, and therefore should be rejected as counterexamples too.

For instance, in the text numerous polyhedra are proposed which are coun-

terexamples to the conjecture, but Delta offers new definitions of the concept

of ‘polyhedron’ which each add additional necessary conditions which serve

to rule out the tricky cases and thereby the counterexamples. This is aptly

mocked in the text with the ‘definition’ of a polyhedron as anything which

satisfies the conjecture (Lakatos 1976, p. 16), revealing the ad hoc nature of

ruling out problematic cases. In essence, the notion of a polyhedron “defines

the domain of application” (Martin & Pease 2013, p. 102) for the conjec-

ture and thus deciding on what counts as a polyhedron can be employed to

decide whether the theorem will remain valid or not. Initially, the stream of

new definitions given by Delta are seen as contracting the concept of poly-

hedron to rule out the many examples that have already been encountered9,

but monster-barring is given a second hearing later in the book, where the

student Pi suggests that it may be that Delta was merely scrambling for

definitions to defend a view of what counted as a polyhedron which had

seemed natural but turned out to be näıve:

Let us go back to the time of the first explorers of our subject.

9Despite protestations from Delta: “I do not contract concepts. It is you who expand
them.” (Lakatos 1976, p. 21)
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[...] For the polyhedra they had in mind, the conjecture was

true as it stood and the proof was flawless. Then came the

refutationists. In their critical zeal they stretched the concept

of polyhedron, to cover objects that were alien to the intended

interpretation. —Pi (Lakatos 1976, p. 84)

This discussion of what delimits concepts and their application will be rel-

evant to the notion of open texture when we return to it later.

Method 3: The Method of Exception-Barring

No conjecture is generally valid, but only valid in a certain do-

main that excludes exceptions. —Beta (Lakatos 1976, p. 24)

The method here is to endorse the positive aspects of monster-barring,

namely to give a precise characterisation of the domain of validity for the

conjecture, while avoiding the endless moves just intended to not have to

give up the theorem to counterexamples. Of course, the precision with which

the domain can be picked out is quickly undermined for a distinctly Wais-

mannian reason: the Teacher points out the possibility of new cases arising

which show that the excluded exceptions might not be the only problematic

cases. Under pressure, Beta is left to retreat into smaller and smaller do-

mains while still failing to arrive at any confidence that these domains are

necessarily safe, i.e. that the theorem will be true for all cases there.

Method 4: The Method of Monster-Adjustment

Monsters don’t exist, only monstrous interpretations. One has

to purge one’s mind from perverted illusions, one has to learn

how to see and how to define correctly what one sees. —Rho

(Lakatos 1976, p. 31)

The method of monster-adjustment works not by rejecting the global coun-

terexamples, but instead by changing the way they are interpreted. In

particular, this can work by changing our understanding of sub-concepts.

The motivating case in the text is how to interpret the small stellated do-

decahedron. In the text this shape is introduced as having twelve star-

pentagon faces, twelve vertices only at the tips and thirty edges, whereby

V −E+F = 12−30+12 = −6, which means that the stellated dodecahedron
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does not satisfy the Euler conjecture. However, Rho’s suggestion is to see

the faces instead as the individual triangles, thereby reinterpreting the shape

as a “triangular hexacontaeder”. On this reading, there are sixty triangular

faces, vertices joining them all to a total of thirty two, and edges on each of

the triangular faces adding up to ninety. Now V −E+F = 32−90 + 60 = 2

satisfying the Euler conjecture.

What is interesting in what the method of monster-adjustment brings

out is the deep way in which concepts in mathematics are interrelated. Eu-

ler’s conjecture does not merely rely on the concept of a polyhedron, but

also on a range of related and interrelated concepts, especially the concepts

of face, edge and vertex. Changing the interpretation of these will result in a

different outcome for the Euler formula. While the change of interpretation

in the one case considered might be a good one or not, the reason that it is

not taken up much beyond its initial proposal seems to be that it is severely

limited in scope.10

Method 5: The Method of Lemma-Incorporation

I build the very same lemma which was refuted by counterexam-

ple into the conjecture, so that I have to spot it and formulate it

as precisely as possible, on the basis of a careful analysis of the

proof. —Teacher (Lakatos 1976, p. 36)

The idea here is that many global counterexamples will also be local coun-

terexamples to certain lemmas in the proof. For example, many of the

problematic examples for polyhedron fail on the first step of the proof of

flattening out the polyhedron minus one face onto a surface, so the Teacher’s

method is to restrict the domain of validity for the theorem to the domain

where the first lemma does indeed hold. The difference from exception-

barring, then, is that exception-barring is ad hoc in ruling out examples as

they arise, whereas lemma-incorporation is intended to achieve similar ends

but by analysing what went wrong in the proof and adding restrictions to

improve it. Thus lemma-incorporation has a reason for the exceptions it

10The method of monster-adjustment is brought up again at (Lakatos 1976, pp. 38-39,
fn. 2). Here it concerns the positing of hidden faces and edges to show that counterex-
amples are Eulerian after all. Lakatos is not impressed and rightly so: if one can posit
these willy-nilly then nearly any proposed polyhedron can be adjusted to fit the Euler
conjecture.
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introduces: these are the restrictions generated by examining why and how

local counterexamples undermine the proof steps and how to avoid them.

On the downside, lemma-incorporation is seen as still too tied to exception-

barring methods. The lemmas one builds in might be sufficient to mark out a

safe domain, but still this is not guaranteed, as is evidenced by the Teacher

needing to backtrack on the exact lemmas incorporated into Euler’s con-

jecture. Furthermore, the listing of proof-generated restrictions without a

record of why they are given is the main feature of the Deductivist approach

which Lakatos criticises, something we will return to later.

Method 6: The Method of Proof(s) and Refutations

[O]ne cannot put proofs and refutations into separate compart-

ments. —Lambda (Lakatos 1976, p. 49)

The method of proof and refutations (soon re-dubbed to the titular method

of proofs and refutations) is the final methodology emerging from the others,

and the main approach advocated by Lakatos. This method, according to

Lakatos, encapsulates the dialectical development of mathematical concepts,

proofs and theories. The method proceeds by four stages (see Lakatos 1976,

p. 127):

1. A näıve conjecture.

2. A ‘proof’ is offered for the conjecture, where ‘proof’ is not a success

term but instead represents a “rough thought-experiment” where the

näıve conjecture is decomposed into a series of lemmas or subconjec-

tures.

3. Global counterexamples are found.

4. ‘Proof re-examined’: the global counterexample is examined and found

to also be a local counterexample to particular lemmas in the original

proof. A re-examination of the problematic lemmas leads to incorpo-

rating restrictions into the conjecture, or a development of the concepts

being deployed (to proof-generated concepts) which can then be used

to state an improved conjecture-and-proof pair.

Of course, the central example of Euler’s conjecture presents a rational re-

construction and Lakatos points out that therefore this is not an exact pat-

tern that will be followed in general. The third and fourth stages might
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be bound up more closely, such as if a careful proof-analysis uncovers the

counterexamples. The responses in the fourth item show a fork in the road,

where several mathematically interesting things might happen, ranging from

a simple restriction on the domain of validity to the creation of a new concept

through the proof-analysis. In many ways this method is the culmination

of the lessons learned from the various other methods considered, taking on

their positive attributes as part of the heuristic, while minimising their var-

ious problems. While the four stages describe the main idea of this method,

further discussion reveals that there are additional important stages that of-

ten feature in the analysis of proofs with an end to mathematical discovery

and development. These are (see Lakatos 1976, p. 128):

5. Checking related proofs of other theorems to see if any of the new

concepts or lemmas occur in them, which might show that these are

of additional importance.11

6. Checking accepted consequences of the original conjecture.

7. Converting counterexamples into new examples and thereby revealing

new fields of inquiry.

These additional steps broaden out the scope of where the process is taking

place, rather than being limited to a particular conjecture, proof and their

various developments, instead these additional stages acknowledge that the

conjectures and theorems are not isolated from surrounding mathematics.

The link between the method of proofs and refutations and the develop-

ment of concepts is what we shall turn to next.

3.3.2 Concepts and a Dialectical Philosophy of Mathematics

One of the major themes of Proofs and Refutations, is the development and

change of mathematical concepts, as well as the close connection this has to

practices of proving.

A particularly important notion for conceptual change in Lakatos is that

of the heuristic counterexample. These serve not to refute the theorem as

logically false, but to show that it falls short in its scope. In particular,

11This stage is shown clearly at work in Lakatos’s description of the discovery of uniform
convergence in (Lakatos 1976, Appx. I).
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these may be cases of relevant examples which are not covered by the theo-

rem or concepts as they stand. In the central example, the initial proof only

applied to a very limited class of polyhedra and so many of the counterexam-

ples initially appeared to be logical ones. However, in the reconsideration of

monster-barring discussed above, it emerges that the initial concept of poly-

hedron may not have been intended to apply to the broad class of examples

that were raised in the dialogue. As such, these were instances of heuristic

counterexamples, in that they showed the limited scope of the notions in-

volved in the proof. What we shall return to in section 3.5 is the echoes of

Waismann in this: one can see heuristic counterexamples as falling outside

of the standard domains of application and disapplication, showing thereby

the poverty of the concepts with respect to the larger domain.

Initially, the class begins with poorly delineated, näıve concepts of things

such as polyhedron, edge, vertex and face. This comes out particularly

clearly, for instance, in the difference between treating polyhedra as hollow

surfaces and treating them as solid objects, which both appear early on. As

the students examine more problems with the initial proof and counterexam-

ples to the initial conjecture, they start to change their concepts in response

to the challenges that appear. Lakatos’s term for the concepts that emerge is

proof-generated concepts. Proof-generated concepts are those concepts that

arise from the näıve concepts we begin with through the method of proofs

and refutations. Lakatos is careful to point out, though, that it would be

inaccurate to see them as simply specifications, generalisations, expansions

or the like of the näıve concepts:

The impact of proofs and refutations on naive concepts is much

more revolutionary than that: they erase the crucial naive con-

cepts completely and replace them by proof-generated concepts.

—Pi (Lakatos 1976, pp. 89–90)

So what has gone on is that the method of proofs and refutations involves the

identification of (1) flawed or limited lemmas and (2) what has gone wrong in

particular instances that have been encountered, drawing out the problems

in them and incorporating additional conditions to give a new proof which

is not subject to the counterexample. However, through repeated iterations

of the cycle of proofs and refutations, the fresh conditions can form into new

concepts. As Larvor puts it:
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If this pattern is repeated sufficiently often, these conditions may

accumulate to the point where they collectively define a new

concept. (Larvor 1998, p. 13)

In fact, it seems that what has gone on in the dialogue is something more

intricate than this. As was noted in describing monster-adjustment and dis-

cussed by Larvor immediately after the above quote, mathematical concepts

are deeply intertwined, such as in the relations between ‘polyhedron’, ‘face’

and ‘edge’. It is not at all clear that you can change one without changing

the other related concepts. For example, in the case of the ‘urchin’ (that is,

the stellated dodecahedron) the difference between seeing it as having star-

pentagram faces as opposed to triangular faces is fully intertwined with how

one counts the edges, i.e. whether one sees each face as having five or ten

edges. But this does not seem to necessarily fall out of simply putting to-

gether new conditions as they appear through proof-analysis, without some

associated conceptual analysis.

Of course, that an analysis of the proofs is required to see the place of

the concepts within them, and to generate new ones, is just part of Lakatos’s

very idea. For one thing, the listed rules of the method of proofs and refu-

tations are not strict rules but instead an attempt to induct the reader into

a different methodology for the philosophy of mathematics. Observe the

difference between the two summaries given of the method of proofs and

refutations. The first description of the method of proofs and refutations

(Lakatos 1976, p. 50) is given as a list of general rules, putting them in an

imperitival form stating how one should go about applying the method. The

later summary of the method (which I have used above) is a description of

the stages of the pattern of mathematical discovery. Clearly these two de-

scriptions are not the same12, and the reason is that neither an overly-specific

set of rules nor a description of the patterns of mathematical discovery are

meant to capture the methodology in full. Rather the method of proofs

and refutations is part of Lakatos’s broader project of offering a dialectical

philosophy of mathematics.

Already this provides an answer to a particular criticism offered by Fe-

ferman in his response to Lakatos:

12Most papers that describe the method of proofs and refutations seem to ignore this
fact, simply setting out one of the descriptions. e.g. (Corfield 1997, p. 100). Ernest
does better, setting out only one description but observing the different functions that the
method plays (Ernest 1997, pp. 117–118).
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A related question is whether the method of proofs and refuta-

tions is supposed to be descriptive or normative. It seems at best

that it could be descriptive of progress since 1847. But much of

the tenor of the discussion leads one to view it as normative.

(Feferman 1978, p. 316)13

Of course there is the potential for confusion here. The first description

of the method of proofs and refutations in terms of rules seems to fit a

normative reading, while casting it in the light of stages in a pattern of

mathematical discovery seems to fall into a descriptive reading. The an-

swer is, I believe, that this is a false dichotomy. For one thing, the dialogue

is a rational reconstruction, so is intended as neither an entirely accurate

description14 nor simply to declare how to go about discovering new math-

ematical theorems, concepts and proofs. Rather, it is meant partially as a

demonstration that mathematical discovery is a rational process predomi-

nantly driven by mathematical ends. Certainly, this involves both normative

and descriptive elements, but Feferman is wrong to expect it to fall neatly

into one or the other.

Dialectical philosophy of mathematics has several major features which

distinguish it from the more traditional approaches, as described in (Larvor

2001). Larvor sets out the following key points of what such a dialectical

philosophy of mathematics involves on the Lakatosian programme:

Internal Stance: To see that “changes in the body of mathematics nor-

mally take place for mathematical reasons” (Larvor 2001, p. 215)

While this is certainly defeasible (mathematical changes can take place

due to many other factors), the idea is to see that the development

of mathematics follows a rational pattern, rather than one marked by

arbitrary decision or spontaneous insights.

Human Minds in Mathematics: “Dialectical philosophy [...] typically

recognises that human minds, however fallible, are the only available

vehicles for the greater rationality of science.” (Larvor 2001, p. 215)

13The year 1847 is significant as the year Lakatos mentions the method of proofs and
refutations to have been discovered by Seidel, (see Lakatos 1976, p. 131, p. 139). I have
changed the emphasis in the quote here from underlining to italics.

14Lakatosian wit tells us a little about his view on the relationship between history and
its reconstruction: “Pi’s statement, although heuristically correct (i.e. true in a rational
history of mathematics) is historically false. (This should not worry us: actual history is
frequently a caricature of its rational reconstructions.)” (Lakatos 1976, p. 84)
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Concepts Over Propositions: To be interested in the nature and devel-

opment of concepts, ahead of the propositions that involve them. Lar-

vor notes this to be something Lakatos follows Hegel on.

Dialectical and Formal Logic: The previous item involves a split be-

tween dialectical and formal logic, where dialectical argument develops

concepts while formal logic keeps them fixed to avoid fallacious equiv-

ocation.

Different Notions of Rigour: Another idea rooted in Hegel, that the

“formal and dialectical logics have different aims and incompatible

standards of rigour; so we ought not to mix them up.” (Larvor 2001,

p. 217).

Ontological Neutrality: dialectical philosophy of mathematics has noth-

ing to say on the ultimate ontological and metaphysical basis of math-

ematics, since the methodology makes neither assumptions concerning

them nor does it have any way of deciding between rival accounts.

All of these are, of course, evident in Lakatos’s work towards building this

dialectical school of philosophy of mathematics. The “fundamental dialecti-

cal unity of proof and refutation” (Lakatos 1976, p. 37) is at play precisely

because this dialectical approach is to be found in the method of proofs and

refutations. After all, the subtitle of the book is that of “The Logic of Math-

ematical Discovery” and in the work we find that this logic is a dialectical

one too, besides the formal logic which dominates traditional philosophy of

mathematics. The existence of heuristic counterexamples in mathematics

demonstrates the need for a rigorous method for dealing with them and the

conceptual change that they bring about.

3.3.3 Fallibilism and Formality

Let us now turn to another aspect of Lakatos’s philosophy: fallibilism about

mathematical knowledge. In the introduction, Lakatos presents his work as

a new step in the battle for certainty:

In this great debate [between sceptics and dogmatists], in which

arguments are time and again brought up to date, mathematics

has been the proud fortress of dogmatism. Whenever mathemat-

ical dogmatism of the day got into a ‘crisis’, a new version once
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again provided genuine rigour and foundations, thereby restor-

ing the image of authoritative, infallible, irrefutable mathematics

[...] Most sceptics resigned themselves to the impregnability of

this stronghold of dogmatist epistemology. A challenge is now

overdue. (Lakatos 1976, p. 5)

The dogmatist position in mathematics which is Lakatos’s (indirect) target

is that of the formalist, or in keeping with our terminology, the Formalist-

Reductionist. As always, the Formalist-Reductionist takes pieces of knowl-

edge of mathematical propositions to be certain and infallible as a result

of formal, logical proofs. The advent of modern logic brings with it the

‘fortress’ of dogmatism, settling what it is for a proof to be immune to doubt,

error and leaps of reasoning. Closely related to the Formalist-Reductionist

position is the deductivist approach, discussed in the second appendix if

Proofs & Refutations.

In deductivist style, all propositions are true and all inferences

are valid. Mathematics is presented as an ever-increasing set of

eternal, immutable truths. Counterexamples, refutations, criti-

cism cannot possibly enter. An authoritarian air is secured for

the subject with disguised monster-barring and proof-generated

definitions and with the fully-fledged theorem, and by suppress-

ing the primitive conjecture, the refutations, and the criticism of

the proof. Deductivist style hides the struggle, hides the adven-

ture. (Lakatos 1976, p. 142)

The deductivist style thus also encompasses a presentational style of defin-

ing concepts, setting out theorems and providing proofs, which separates

these from the dialectical environment in which they were created. Indeed,

Lakatos suggests that mathematics would be greatly improved if we pre-

sented mathematics in the heuristic style which makes explicit the growth

of the theorem, proof and concepts involved.

The challenges to the Formalist-Reductionist, the deductivist and the

dogmatist, then, come from presenting an alternative picture of mathemat-

ics and its development. By making the dialectical logic of mathematical

discovery clear, it demonstrates that mathematics cannot be equated with its

formal shadow, that mathematical concepts change and emerge from mathe-

matical practices, and that the status of mathematical theorems will change
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as they and the concepts they feature change. In a way, this deflates some of

the radicalism that talk of fallibilism—and indeed scepticism— might sug-

gest, for the sense in which mathematical statements are fallible is merely as

the by-product of the idea that concepts and theories are changeable through

dialectical logic. Meanwhile, this doesn’t cast doubt in a more radical sense,

as Larvor puts it:

[I]t has been and will remain the case that an apple taken to-

gether with two oranges makes three pieces of fruit. (Larvor

1998, p. 36)

The point is more subtle than the radical sense of fallibilism. Larvor con-

tinues:

It is also the case that an apple released in mid-air will fall to

earth. Nevertheless, in both cases the theoretical apparatus we

use to describe and to account for the phenomenon is highly

complex and open to criticism. (Larvor 1998, p. 36)

Ultimately, then, the sense of fallibilism which we find in Lakatos is about

the fact that we don’t find certainty in having established some mathemat-

ical theory because that theory will always been open to potential change,

revision and development in light of new counterexamples, new ideas and

new mathematics. One might even see the major part of the project as

being the attempt to show that this does not collapse into pure subjectivity

and that there are good mathematical criteria for these kinds of dialectical

changes.

Moving on for the moment, what is of particular interest to consider

for our purposes is the distinction between formal and informal proofs in

Lakatos’s picture. In arguing against ‘formalism’ and ‘deductivism’ so widely,

there is a point of view which is natural to Lakatos: that informal proofs are

the central method of mathematical demonstration, with their own associ-

ated notion of rigour operative in differentiating correct and incorrect proofs.

While at time controversies do arise, these are beneficial for mathematics in

that they drive the development of proofs and concepts, as discussed above.

Conversely, formal proofs and the purely deductive picture of mathematics

cannot underlie the rigorousness of proofs as they appear in mathematics

nor can they account for mathematical discovery. In fact, in the second
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chapter of Proofs & Refutations Lakatos has the student Epsilon go through

a separate proof of the Euler conjecture in the ‘Euclidean’ style, where the

theorem and concepts are translated into the language of vector algebra:

I analysed our concepts of polyhedra and showed that they are

really vector algebraic concepts. I translated the circle of ideas of

the Euler-phenomenon into vector algebra, thus displaying their

essence. Now I am certainly proving a theorem in vector algebra,

which is a clear and distinct theory with perfectly known terms,

neat and indubitable axioms, and with neat, indubitable proofs.

—Epsilon (Lakatos 1976, p. 118)

The class raise several problems for this line of thinking. Firstly there are

the standard worries of whether the translation fully captures the informal

concepts they are formalising and whether the ‘certain’ system is guaranteed

to be consistent.15 This, of course, relates closely to the discussions of

chapters 1 and 2. Moreover, though, the Lakatosian view seems to be that

while such a translation does successfully limit the counterexamples that

may appear within the theory, it also loses out on much which we had

before the translation:

[Y]ou may push out the original problem into the limbo of the

history of thought— which in fact you do not want to do. (foot-

note: This process is very characteristic of twentieth-century for-

malism.) —Alpha (Lakatos 1976, p. 122)

and

Epsilon wanted, “in virtue of a series of startling definitions to

save mathematics from the sceptics”, but what he saved was at

best some crumbs. —Gamma (Lakatos 1976, p. 123)

The standard idea in this direction, then, is that we can formalise any math-

ematics we choose, but formality is balanced against meaning and so fully

formalising leads to theories devoid of meaning, pushing content into the

meta-mathematical interpretation.

15Indeed, Epsilon admits that they must

[...] forget about the old meaning. I create freely the meaning of my terms
while scrapping old vague terms. —Epsilon (Lakatos 1976, p. 122)
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There is some dispute over where Lakatos stands on this exactly, though.

On the one hand, there are Davis & Hersh (Davis & Hersh 1981, pp. 345–

359) and Larvor in (Larvor 1998, pp. 33-34), offering a reading much like

the above, but on the other hand there are Worrall & Zahar, the editors

of Proofs and Refutations, who insert several substantial footnoted com-

ments into the book offering an alternative reading, backed up by Corfield

in (Corfield 1997) who defends their interpretation of Lakatos. In the in-

serted footnotes, Worrall & Zahar suggest that Lakatos is mistaken about

the need to reject the infallibilist idea that “deductive, inferential intuition

is infallible” (Lakatos 1976, p. 138), writing in their footnote that:

This passage seems to us mistaken and we have no doubt that

Lakatos, who came to have the highest regard for formal deduc-

tive logic, would himself have changed it. First order logic has

arrived at a characterisation of the validity of an inference which

[...] does make valid inference essentially infallible. (Lakatos

1976, fn. 4, p. 138)

Both Davis & Hersh and Larvor see Worrall & Zahar as making mistakes

of the precise sort that Lakatos is arguing strongly against. Firstly, Davis

& Hersh argue that the mistake is one of conflating mathematical proof

with its formal representation as a derivation in some fixed formal system.

In essence, they accuse Worrall & Zahar of Formalist-Reductionist thinking,

and reject it for several of the classical reasons. Secondly, Larvor argues that

their mistake is to focus on language-statics rather than language-dynamics.

That is, the fallibility is not of the logical validity in some given system (say,

first-order logic) but rather that the counterexamples will be heuristic in a

way that might lead to change or abandonment of the system altogether.

Corfield sets out a defence of Worrall & Zahar against Davis & Hersh’s

criticism, trying to show that Lakatos was more conservative than they

appreciated. The claim is that while they are correct that Lakatos focuses

on informal mathematics, and that most mathematics found in practice

is informal, in fact Lakatos made a distinction between different levels of

informality. The difference lies between informal proofs proper and ‘quasi-

formal’ proofs which really are formal proofs with some of the interim steps

left out or supressed. Corfield then says:

Thus, while Davis and Hersh imagine that Lakatos’s account of
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informal mathematics extends to present day proofs in estab-

lished branches of mathematics, surely the majority of the es-

timated 200,000 produced each year, Lakatos himself wishes to

count them as ‘almost formal’ or ‘quasi-formal’. (Corfield 1997,

p. 115)

Furthermore, the point is that formal systems, logic and axiomatics do play

a major role in modern mathematics and that even in these cases the de-

velopment of new concepts does not cease, but instead works alongside the

axioms. With respect to axiomatics, their role in mathematical discovery

is brought out particularly clearly by Schlimm in his case study of lattice

theory in (Schlimm 2011).

In general, I think that Corfield’s reading, along with that of Worrall

& Zahar, cannot be right. The claim that most modern proofs are quasi-

formal rather than informal, and as such are not subject to the Lakatosian

arguments, strikes me as entirely wrong. Indeed, the central argument of my

first chapter, that of the over-generation of formalisations relative to some

given informal proof, stands strongly against such a view. The Formalist-

Reductionist line seems to hold that the modern work in formal mathematics

supports their view of proofs, as is made explicit by Corfield:

Given the stabilization that has occurred in the idea of what

constitutes a rigorous proof, this gives them [Davis & Hersh]

little room for manoeuvre against their formalist adversaries.

(Corfield 1997, p. 117)

I think the advantage of my argument against such a view is precisely that

it draws so directly on work in formalisation, showing that the idea that

modern proofs are no longer informal in a strong sense is false, but also

delivering the fact that formal mathematics projects are no help in defending

against the criticisms of the informalist camp. In addition to this argument,

it seems wholly unlikely that the Formalist-Reductionist interpretation of

Lakatos is correct when read in the context of the rest of the text. For

instance, the opening passage quoted above on the constant retreat of the

dogmatist in the face of sceptical challenges, and it being time to finally

storm the stronghold of dogmatism in mathematics, makes for a poor fit

with the acceptance that actually most modern mathematics is suitably

infallible by virtue of being quasi-formal.
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Despite believing that Corfield is totally mistaken in following the Wor-

rall & Zahar interpretation, I do think there is a point to his argument that

cannot be ignored. That point is that the Lakatosian framework does not

fit well with the methodology of modern mathematics. Axiomatisations,

formalisms and metamathematical results are used alongside traditional, in-

formal proving; the relationship between syntactic proofs and associated

model theory is highly complex and fruitful; reverse mathematics offers gen-

uine insights into the provability strength of mathematical statements; and

computational mathematics is developing at a phenomenal rate. The point

is that while I have been stressing the importance of taking informal math-

ematics and proof seriously, this has to be taken alongside formal methods

rather than instead of them. I think Corfield is right to stress that the

strict dichotomy found in the Lakatosian picture between fruitful and con-

tentful informal mathematics and the sterile and static formal theories does

not fully do justice to modern mathematical practice. I will come back to

this final point shortly as a motivation for investigating whether other work

towards conceptual development, conceptual change and conceptual engi-

neering might be fruitfully applied to the case of mathematics. Before then,

let us consider another dialectical proposal for mathematics: that of G. T.

Kneebone.

3.4 Kneebone on Mathematics

While Lakatos is the leading figure we turn to in defending the kind of di-

alectical account of proofs and mathematical concepts described above, such

as being credited as the source of the maverick tradition in (Kitcher & As-

pray 1988), there is another figure who espouses views similar in certain key

respects but has received seemingly no attention: G. T. Kneebone. This

despite the fact that Kneebone pre-dates Lakatos, writing in the 1950s al-

ready.16 In his papers (Kneebone 1955, 1957), he discusses the relationship

between intuitive and rigorous mathematics, the fixity of mathematical con-

cepts, and dialectical versus deductive mathematics.17 In this section I will

briefly run through Kneebone’s main views and arguments, bringing out the

16The plot thickens: in the LSE archives there exists some Kneebone-Lakatos corre-
spondence. Future work ahoy!

17Despite being two papers, these do have the advantage of being explicit in his views
rather than exposing them through the dialogue form that Lakatos uses.
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similarity to the Lakatosian position.

The starting point for Kneebone is the consideration of the role of logic in

mathematics. Tracing the emphasis on symbolic logic and the formalisation

of mathematical reasoning back through mathematical history18, he places

particular emphasis on Peano as seeing the formalisation of mathematics as

a move away from intuition towards rigour:

Peano, on the other hand, realized that if complete rigour is to

be achieved intuition must be banished completely from mathe-

matical argument. (Kneebone 1957, p. 206)

Peano’s project was of major influence on two of the big schools of thought

in the philosophy of mathematics: Logicism and Formalism. The former

encapsulated by the Principia Mathematica project by Russell and White-

head19, intending to define all mathematical concepts in terms of explicitly

logical ones, reduced mathematical rigour to formal, logical rigour. Formal-

ism, headed up by Hilbert, aimed to formalise all of mathematics in order

to allow us to prove that it is consistent. Of course, the failures of both

are well-known: the axiom of infinity Russell needed was not purely logical,

the various class-theoretic paradoxes stood in the way of a näıve picture of

classes and membership, and Gödel’s theorems seemed to undermine the

possibility of consistency proofs which were more reliable than that which

one is proving consistent. From this Kneebone concludes:

The failure of both undertakings suggests that the relationship

between mathematics and logic may perhaps have been wrongly

understood, and prompts reconsideration of the nature of this

relationship. (Kneebone 1957, p. 210)

The answer, according to Kneebone, is to acknowledge the divide between

formal logic with its notion of logical validity and dialectical reasoning:

18Although it is worth remarking that Kneebone’s picture of history is shaky at best, for
example describing Logicism and Formalism as sequential rather than the actual relation-
ship between the two. In fact, he says “Up to this point in the history of the philosophy of
mathematics the idea of rigour had developed naturally and smoothly” (Kneebone 1957,
p. 207) which seems even further from the truth than Lakatos’s rational reconstruction of
history. The bumpy history of the development of rigour is covered in (Kleiner 1991).

19Kneebone sets Frege aside as having had little influence on philosophers besides
Russell, which might be true historically of Frege’s time, but is another amusing reminder
of the age of the paper.
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Mathematics, on the face of it, is completely undialectical; but

this is only appearance, and it is my thesis in this paper that

the basically dialectical character of mathematics is precisely the

feature that has been neglected hitherto. (Kneebone 1957, p.

212)

Taking the earlier list of features of dialectical philosophy of mathematics

in the vein of Lakatos, as set out by Larvor, we can now run through and

see some of these same features at play in Kneebone’s work.

To begin, the ‘internal stance’ of seeing mathematical developments come

about for rational, mathematical reasons is certainly not as fully developed

as Lakatos’s detailed case studies but is implicitly present in Kneebone’s

consideration of historical examples which cannot be fully explained on the

purely deductivist model, such as in his discussion of Kummer’s ideal fac-

tors. More explicitly, Kneebone acknowledges that mathematics must not

be separated from those that practice it, the human agents, but that this

gives rise to one of the puzzling aspects of a dialectical logic for mathematics:

that it is both personal and impersonal. He says:

[I]n so far as mathematical thinking is dialectical it appears to

be both personal and impersonal at the same time. It is per-

sonal because thinking is a process that can only take place in

the minds of individual mathematicians, and impersonal because

it produces a body of mathematical knowledge that is accessi-

ble to every individual mathematician, and valid for all alike.

(Kneebone 1957, pp. 220–221)

The solution to this puzzle is that the mathematicians who are carrying out

the mathematics are embedded in particular cultural traditions, and that

concepts within these manage to span the personal and impersonal divide:

The concepts of the cultural tradition are thus part of the mind’s

equipment and at the same time part of the structure of the

known world, and they are able therefore to be both personal

and impersonal together. (Kneebone 1957, p. 221)

Next, the emphasis on concepts and conceptual development instead of see-

ing mathematics as a body of propositions is also undoubtedly central to

Kneebone’s dialectical philosophy of mathematics:
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[W]hereas deductive reasoning operates with fixed concepts, which

might be represented by the symbols of a logical calculus, di-

alectical reasoning always brings about development of concepts.

(Kneebone 1957, p. 212)

Mathematics is usually thought of, by philosophers of the subject

no less than by those who take it more for granted, as a body

of propositions. But although it is true that the mathematics of

the textbooks is such a propositional edifice, propositions are by

no means all that the creative mathematician is concerned with.

(Kneebone 1957, p. 215)

As we have already seen, Kneebone separates out deductive and dialectical

aspects of mathematics, but additionally he is clear in the fact that these

must come with separate notions of rigour :

There is rigour of demonstration and also rigour of dialectical

development, and the two are by no means the same. (Kneebone

1957, p. 222)

On Larvor’s last point, ontological neutrality, we don’t find anything explicit,

although the desire to see beyond the limitations of logicism, formalism and

intuitionism (which take mathematical ontology to reside in the world, in

language and in the mind respectively) to a dialectical form of justification

beyond them seems to indicate sentiments in this direction.

While Kneebone’s position is covered briefly in just the two papers, from

looking at the various aspects of his introduction of a dialectical philosophy

of mathematics, we can see that it largely aligns with the aims and positions

Lakatos has in engaging in such a project in general. Indeed, often the

language the two use is incredibly close, such as concerning the difference

between dynamics and statics:

In other words for the purposes of philosophy we have to conceive

of [dialectical] rigour in dynamical not in statical terms—as the

rigour of a process which yields knowledge, not of a system of

propositions which summarize a particular state of knowledge.

(Kneebone 1957, p. 223)

Heuristic is concerned with language-dynamics, while logic is

concerned with language-statics. —Pi (Lakatos 1976, p. 93)
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In actual fact, the importance of the dynamics underlying mathematical

activities will be a major point we shall return to in chapter 4.

While the two are close in their positions on many things, there are

some notable differences between them, most markedly the role of proofs

and refutations. Lakatos’s study is deeper precisely because it begins the

process of delivering on the investigation of how a dialectical development

of mathematical concepts might play out (which is strongly connected to

proving practices and the discovery of counterexamples) something which for

Kneebone is only the ultimate aspiration. Even then, there is no suggestion

that proofs and counterexamples have any particularly important role in

the dialectical story for Kneebone. Another point of difference between the

two is their attitudes towards formal logic: Kneebone seems content for

formal logic to stand supreme as the canon for correct, rigorous deduction

(something which I have argued against in chapter 1) while Lakatos seems

to reject this.

In summary, it seems that Kneebone managed to slip through the cracks

of history. While Lakatos is seen as one of the guiding figures of the philoso-

phy of mathematical practice, Kneebone appears to have missed out on any

widespread acknowledgement for his work. Nonetheless, Kneebone’s ideas

about the need to step towards a dialectical philosophy of mathematics are

worth taking seriously alongside Lakatos’s.

3.5 The Open Texture of Mathematical Concepts

Having discussed Lakatos at length and then the similar direction found in

Kneebone, let us now connect this to Waismann’s notion of open texture.

Recall that Waismann claimed that mathematical concepts display closed

texture, in contrast with empirical concepts which are open-textured. The

aim now is to reject Waismann’s position here by applying Lakatos and

Kneebone’s arguments concerning conceptual development in mathematics

to show that mathematical concepts do display open texture after all. This

has been noted as a central point to be taken from Lakatos by several au-

thors, such as Shapiro in (Shapiro 2006, 2013), Schlimm in (Schlimm 2012)

and mentioned by Bartha at (Bartha 2010, p. 10). Let us go through the

argument first, then consider what the other authors have to say in turn.

The big point of putting together Waismann and Lakatos is that math-
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ematical concepts can display open texture. Heuristic counterexamples fall

outside of the domain of application and disapplication as it stands, showing

that these are too narrow in that there are interesting and pertinent cases

which have not been covered by the accepted definitions. The first defini-

tion of open texture in OT1 is precisely this, so the existence of heuristic

counterexamples with respect to some concept in mathematics is enough to

show that that concept displays open texture. The second definition in OT2,

concerns the freedom rational agents have to go either way on the applica-

tion of the term. With respect to the heuristic counterexamples there does

seem to be a rational freedom to choose different responses. While Lakatos

does poke fun at the more simplistic implementations of monster-barring,

monster-adjustment etc. the ultimate upshot of the dialectical approach is

that there is the mathematical freedom to respond and develop the concepts

in a way that a purely deductivist approach cannot accommodate.

Waismann takes open texture of concepts to be the result of a lack of full

delimitation and definition of when a concept or term applies. The reason

he takes this to hold for empirical concepts and not mathematical concepts

boils down to this. On the one side, Waismann sees empirical descriptions

as never being able to anticipate all potential cases and possibilities that

might arise concerning their applications. Recall:

Every description stretches, as it were, into a horizon of open

possibilities: however far I go, I shall always carry this horizon

with me. (Waismann 1968, p. 122)

On the other side, Waismann suggests that this kind of endless possibility of

new cases arising is not applicable to mathematics, with its strict, explicit

definitions. But this is where he is mistaken, as demonstrated by Lakatos

and Kneebone. Indeed, Kneebone cites Waismann’s notion of open texture

in (Kneebone 1955, p. 37) as one way in which conceptual development oc-

curs.20 If one restricts oneself to deductive logic and ignores the development

20The exact quote is:

One of the ways in which conceptual evolution is actually brought about has
been described by Waismann, who has drawn attention to the open texture of
empirical concepts. Such concepts are never finally and completely defined,
as concepts can be in pure mathematics. (Kneebone 1955, p. 37)

While this might seem to go against the open texture of mathematical concepts and agree
with Waismann on their closed texture instead, the wider context of the quote shows that
more is going on. Since this is the earlier paper by Kneebone, he has not fully articulated
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of mathematical concepts, ideas and theories then this may sound convinc-

ing. However, it seems clear that Lakatos has put this myth to rest; that

there are ongoing developments and discoveries which are driven by reasons

internal to mathematics and require a dialectical philosophy of mathemat-

ics. In light of this, there is little question that mathematical concepts can

display open texture just as much as empirical concepts do.

One issue that this ties into is that of the formality of mathematics.

Above, I discussed the controversy over Lakatos’s attitude to modern math-

ematics, according to Worrall & Zahar, Davis & Hersh, Larvor and Corfield,

where the issue is over whether something like first-order logic captures some

infallible inference patterns and thus whether modern mathematics is still

subject to the kind of dialectical developments Lakatos and Kneebone de-

scribe. Implicit in Waismann’s suggestion that mathematical concepts are

closed-textured is the perspective on which modern logic has succeeded in

pinning down mathematical concepts exactly for all applications.21 But on

the more natural reading of the core idea of a dialectical philosophy of math-

ematics, such a perspective presents a mistakenly narrow view of mathemat-

ics. We should agree with Corfield that formal systems and axiomatisations

both play important roles in mathematics, but as I have argued in the pre-

vious chapters of this thesis, even in modern mathematics there are good

reasons to want to keep both formal and informal proofs as essential parts

of mathematics which play dual roles.22 One important role for informal

the difference between deductive and dialectical theories of mathematics, instead focusing
on concrete and abstract modes of thinking. After mentioning Waismann, he discusses
how conceptual development comes about, where he presents an example of the way in
which conceptual development occurs particularly through the use of analogy, which takes
as its object mathematical concepts:

An example of a different kind, in which the analogy is not merely heuristic,
may be seen in the extended use of such geometrical concepts as “point” and
“space” in modern mathematics. Here the analogy goes very deep, for what
has happened is that a logical structure has been isolated which is exemplified
in classical geometry and which can now be seen to pervade the greater part
of pure mathematics. It is to this development of the analogical mode of
thinking that mathematics owes much of its recent spectacular progress.
(Kneebone 1955, p. 40)

Certainly this appears to be more in the direction of his later picture and in agreement
with Lakatos.

21In the quote at the end of section 3.2, Waismann mentions undecidability, which
suggests to me that he held the corresponding Formalist-Reductionist type view of proofs
as fixed relative to formal systems.

22We can now also reframe the problem with Priest’s argument for the inconsistency
of mathematics. The arguments I offered against this in terms of formalisations being
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mathematics more generally is its place in a dialectical process, wherein

concepts display open texture and can thus be extended and developed as

new ideas arise.

Let us turn now to briefly consider the other authors who have also

connected Lakatos’s views with the notion of open texture.

In the articles cited, Shapiro is discussing the notion of computability and

whether or not we can hope for a mathematical proof of the Church-Turing

thesis. We needn’t go into the details of this, but the aim Shapiro has is

of showing that the mathematical notion of computability has developed in

a broadly Lakatosian sense, and that the informal notion of computability

that they began with displayed open texture. It is in this context that

Shapiro discusses both open texture and the Lakatosian framework, making

it explicit that he takes one of Lakatos’s main ideas to be that mathematical

concepts display open texture. Referring to Lakatos’s case study of the Euler

conjecture, he says:

[T]he notion of polyhedron exhibited what Waismann calls open-

texture. This open-texture did not prevent mathematicians from

working with the notion, and proving things about polyhedra.

Still, at the time, it simply was not determinate whether a pic-

ture frame counts as a polyhedron. (Shapiro 2006, p. 432)

Shapiro also discusses the translation of the main notions such as polyhedron

into set-theoretic terminology, such as in Epsilon’s vector algebra version of

the proof:23

The student [Epsilon] then gives a fully formal (or at least easily

formalizable) proof of a generalization of Eulers theorem from

these definitions. The only residual question left, it seems to

me, is the extent to which the set-theoretic definition captures

the essence of the original, pre-theoretic (or at least pre-formal)

fragmented into different systems which are useful for different purposes, stem from this
direction of thought, of formal and informal mathematics playing useful interdependent
roles. Meanwhile, the view that all of mathematics can be straightforwardly formalised
is Formalist-Reductionist in its approach and misses out on the broader perspective that
the dialectical model can offer.

23Shapiro treats the vector algebra proof as a set-theoretic one. We may suppose for
the sake of argument that there is nothing substantial in the differences between these,
without conceding that this is ultimately true.

91



concept of polyhedron. Lakatos had that exactly right. (Shapiro

2013, p. 167)

So Shapiro suggests that the formalised versions of the concepts do not

display open texture, and are properly fixed up to certain considerations:

One can perhaps claim, now, that the final, austere and rigorous

set-theoretic definition of “polyhedron”—as a set of “vertices,”

“edges,” and “faces” under certain conditions—is not subject to

open texture. Its boundaries are as determinate as one could

wish—assuming that there is no flexibility concerning the logic

or the underlying set-theoretic model theory. (Shapiro 2013, p.

168)

There is frequently flexibility over logic and set-theoretic model theory, as

Shapiro well knows, so the ultimate security here is hardly unchangeable.

However, the point is just that formal and axiomatic systems are powerful

tools for fixing meanings within a particular domain and that mathemati-

cians are very good on agreeing on large stretches of mathematics in this

way. What is interesting is that Shapiro might be right that even if we

encounter new mathematical possibilities that had not previously been con-

sidered concerning set theory or its related logic, the open texture seems

to be located in the meta-language now and no longer applying to the for-

malised definitions of the concepts discussed by Lakatos directly.

Shapiro also brings out nicely the connection between Waismann and

Lakatos concerning the questions surrounding the identity of concepts. Re-

call Lakatos quoted above saying:

The impact of proofs and refutations on naive concepts is much

more revolutionary than that: they erase the crucial naive con-

cepts completely and replace them by proof-generated concepts.

—Pi (Lakatos 1976, pp. 89–90)

But there is the obvious problem that there are two possibilities (which I

have thus far kept in play alongside one another) which are either that the

concepts are replaced with entirely different concepts, or else that they are

revised, developed and extended in a way that is consistent with them being

fundamentally the same concept. On the latter take, Kneebone says:
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There is frequently enough affinity between the concepts involved

in a succession of accounts of the same body of experience, or

of related bodies, for it to be legitimate to speak of changes

undergone by a single enduring concept; and so we have the idea

of conceptual evolution. (Kneebone 1955, pp. 38–39)

Shapiro quotes Waismann on the response to this dichotomy which is to

mostly not worry about the difference:

[T]here are no precise rules governing the use of words like ‘time,’

‘pain,’ etc., and that consequently to speak of the ‘meaning’ of a

word, and to ask whether it has, or has not changed in meaning,

is to operate with too blurred an expression (Waismann 1951, p.

53)

While concepts and expressions are developed in the dialectical accounts

they offer of mathematics, whether this ultimately is about replacing con-

cepts or revising them will come down to how coarse or fine the identity

conditions are.

Moving on to Schlimm (Schlimm 2012) and Bartha (Bartha 2010), these

authors both discuss Lakatos in terms connected to Waismann’s open tex-

ture. Schlimm’s central thesis is that we should be pluralists about mathe-

matical concepts, accepting both Fregean and Lakatosian concepts in math-

ematics. These are summarised as follows:

According to the first, concepts are definite and fixed; in con-

trast, according to the second notion they are open and subject

to modifications. (Schlimm 2012, p. 128)

The difference here clearly matches the difference as I have been deploying it

between Lakatos’s dynamic, dialectical approach and the more traditional,

static approach. The characterisation of Lakatosian concepts has them as

“subject to modifications” and “fluid” (Schlimm 2012, p. 43), which is not

quite open texture by either of the definitions we have seen above. However,

Schlimm does discuss the term ‘open-textured’ with reference to Bartha’s

work and Bartha, in turn, applies the framework explicitly to Lakatos:

Very similar observations apply to mathematics. There are open-

textured mathematical concepts. Lakatos (1976) famously re-

constructs the reasoning that leads us to include or exclude
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certain objects from the category of regular polyhedra. Here,

too, open-textured concepts are the ones under investigation.

(Bartha 2010, p. 10)

Bartha’s ultimate point is one about the role of analogy in reasoning and

argumentation, which we may set aside. Nonetheless, this is another recog-

nition of the close proximity between Waismann’s ideas on open texture and

Lakatos’s ideas on mathematical concepts.

3.6 Conceptual Engineering in Mathematics

Taking stock for a moment, we have now seen that one of the ideas underly-

ing a dialectical philosophy of mathematics, be it Lakatos’s or Kneebone’s,

is that mathematical concepts are not fully fixed and immune to change but

instead display open texture, developing in response to new examples, ideas

and methods that arise through mathematical practice.

For all that, though, there are two remaining issues for this claim con-

cerning the open texture of mathematical concepts.

The first of these outstanding issues is that there is more going on in the

dialectical philosophy of mathematics than the simplistic picture on which

we have open-textured mathematical concepts, find new examples which

are not covered by them, expand the concept to apply or disapply, repeat.

While at times this pattern might be operative, the reason for dedicating

so much space to the Lakatosian and Kneebonian frameworks is that these

are significantly more broad and more subtle. A better conclusion, in light

of this, would be that open texture is one feature of mathematical concepts

which participates in the more complex patterns of conceptual change and

evolution.

This leads us to the second remaining issue: that even this broader frame-

work does not seem to be enough to give an account of modern mathematics.

As discussed above, Corfield has presented the case that a lot of mathemat-

ics now is bound up with axiomatic systems and formal provability, in a

way not captured by the Lakatosian story of proofs and refutations. In fact,

axiomatics, formal derivations, metamathematics and computational math-

ematics are involved in large parts of the modern mathematical landscape,

including discovery, and I fully agree that if we are to adequately account for

mathematical concepts we need a picture which also sees the interaction be-
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tween informal and formal mathematics, and proofs in particular, as playing

an important, rational role in the dialectical development of concepts.

What I propose to do in the remainder of this chapter is to explore some

more recent work on the nature of concepts and apply this specifically to

mathematical concepts. In particular, I shall draw on some recent work

which falls under the general heading of conceptual engineering. Conceptual

engineering extends beyond the well-known philosophical method of concep-

tual analysis to include a more active participation in knocking down bad

or defective concepts and building new ones as we want them to be. The

term seems to come from Blackburn where he says:

I would prefer to introduce myself as doing conceptual engineer-

ing. For just as the engineer studies the structure of material

things, so the philosopher studies the structure of thought. Un-

derstanding the structure involves seeing how parts function and

how they interconnect. It means knowing what would happen

for better or worse if changes were made. This is what we aim

at when we investigate the structures that shape our view of the

world. Our concepts or ideas form the mental housing in which

we live. We may end up proud of the structures we have built. Or

we may believe that they need dismantling and starting afresh.

But first, we have to know what they are. (Blackburn 1999, p.

1)

The idea is not new to Blackburn, though. A more traditional modern

starting point which leads in a similar direction would be Carnap’s method

of explication. According to Carnap explication is

[...] the transformation of an inexact, prescientific concept, the

explicandum, into a new exact concept, the explicatum. (Carnap

1950, p. 3)

The purpose of explication is to gain new understanding and insight into

this explicandum, but importantly it aims to revise an informal or natural

language concept, to end up with a more scientifically acceptable concept

which is useful in academic research, for instance.24 In other words, the

24This does lead to some amusing mismatches in practice. See
http://www.mrlovenstein.com/comic/643
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purpose is to serve as a more fruitful and precise concept for the more

exacting demands of scientific realms. Carnap held that explication should

be guided by the following principles: similarity of the explicatum to the

explicandum, exactness, fruitfulness and simplicity. These allow us to assess

how good an explication is, but ultimately there may be several different

explications which do well by the different criteria. For Carnap, then, there

is no single correct explication, rather it is guided by our specific purposes

and motivations for going about the process in the first place.

While Carnapian explication may be a kind of conceptual engineering,

it does not cover the whole spectrum of possible approaches. Indeed, in

their (Burgess & Plunkett 2013a,b), Burgess & Plunkett emphasise that

conceptual engineering has a large normative component.25 They identify

four areas where conceptual engineering is already taking place, calling on

philosophers to investigate this methodology more widely. These four areas

are about personal identity through time; inconsistency, truth and logic;

fundamental metaphysics; and race and gender.

The two examples of conceptual engineering I draw on fit into the second

and last of these. The idea will be to see how the treatment of concepts

in these separate domains might be transferred to mathematical concepts

and, in particular, we are looking for a way to see how the open-textured,

informal concepts usually deployed in proofs can work with and alongside

formal definitions and derivations to spur the development of concepts and

the growth of mathematics more generally.

3.7 Haslanger’s Manifest and Operative Concepts

Haslanger’s ameliorative project is ambitious, wide-ranging and has impor-

tant political and social ramifications. I shan’t go into depth on the project,

but the central idea is the following. Beginning from the philosophy of race

and gender, while we might want to investigate and describe how we deploy

racial or gender terms, or explicate these to get to more robust categories,

Haslanger argues that there is another project: to investigate the pragmatics

of how this language is used and whether it serves our purposes. Haslanger

says:

25Their term is actually ‘conceptual ethics’, precisely because of the normative aspects
of such an approach to concepts.
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What is the point of having these concepts? What cognitive

or practical task do they (or should they) enable us to accom-

plish? Are they effective tools to accomplish our (legitimate)

purposes; if not, what concepts would serve these purposes bet-

ter? (Haslanger 2000, p. 33)

In response to these questions, within feminist and anti-racist theorising

one purpose we have is to move towards and achieve social justice. But the

language of race and gender terms are part of sustaining the oppression of

the groups it picks out. The ameliorative approach then, looks to come up

with concepts of ‘gender’, ‘race’, ‘man’, ‘woman’, ‘black’, ‘white’ etc. which

best suit our purposes in exposing and fighting injustice, oppression and

inequality. To this end, Haslanger gives definitions of these terms which

build in the subordination and power dynamics which they are associated

with. For instance, to be a woman in part involves being subordinated along

some dimension in virtue of the social role ascribed to women (see Haslanger

2000, pp. 42–43).

The ameliorative project itself falls under the general heading of con-

ceptual engineering, in that constructing new, ideal concepts is part of the

process of bringing about equality. For now, though, I want to pick out just

one distinction which Haslanger makes frequent use of, such as in (Haslanger

& Saul 2006) and (Haslanger 2012), between manifest and operative con-

cepts. The insight here is that the concepts that we deploy in our practices

do not always align with the concepts we take ourselves to be deploying.

The manifest concept is that which we take ourselves to be using or work-

ing with, while the operative concept is that which we are actually putting

into practice.

Many examples are used to give substance to it actually being rather

common in practice for manifest and operative concepts to part ways. In

(Haslanger 2005) the example is of what counts as being late to school

(or ‘tardy’), with the difference between the official school policy and its

practical implementation providing two different concepts. In (Haslanger &

Saul 2006, pp. 99–100), Haslanger & Saul use the example of what counts

as a parent, with the concept splitting between a manifest concept being

the biological parents, and the operative concept of primary care-giver. In

(Haslanger 2012, p. 92), the example is that of the concept of being cool.

While cool dudes and the ‘in-group’ take themselves to be applying some
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objective standards of what is and isn’t cool (allowing a distinction between

being cool and merely acting cool), in the end coolness is just the product of

the interests and standards of the in-group, according to Haslanger. These

simple examples lead up to the big one:

As in the case of “cool,” we debunk the idea of Woman’s Na-

ture and find two concepts at work: The manifest concept of

Woman’s Nature—understood as defining what women are by

nature in traditional terms—is an illusion; the operative con-

cept being masked by it is constitutively constructed in terms of

men’s (socially conditioned) sexual responses. (Haslanger 2012,

pp. 93–94)

Further to the distinction in place, Haslanger adds the third notion of a

target concept, which is the concept which

[...] all things considered (my purposes, the facts, etc.), I should

be employing. In the ideal case, I adjust my practice and my

self-understanding to conform to the target concept. (Haslanger

& Saul 2006, p. 16)

This adds the normative component and the conceptual engineering, where

we are able to reflect on, construct, and choose which concepts suit us and

our purposes best.

Moving back to the realm of mathematical concepts, there are two levels

at which we can identify a similar distinction at work. The first is in the

deployment of mathematical concepts as we have been discussing so far in

this chapter, while the second is at the level of concepts about mathematics

(as discussed in chapter 2) such as the concept of proof itself. Let us consider

these both in turn.

We might think that the relationship between informal mathematical

concepts and formalisations thereof follows the manifest versus operative dis-

tinction in the following way. Formal definitions and definitions in axiomatic

systems can be seen as useful for a number of reasons already described,

such as their relative exactness, investigating foundations for mathematics,

unifying systems, computational mathematics, metamathematics etc. The

work of figures such as Frege, Russell, Whitehead and Hilbert (plus many

others besides) demonstrated that large-scale formalisation was possible. A
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favourite point of Azzouni’s is to emphasise the widespread success of Frege’s

project and that of Russell & Whitehead’s Principia Mathematica in their

translational endeavours, e.g. (Azzouni 2005b, p. 19) and (Azzouni 2009, p.

10). The point being that the failure of näıve comprehension does not take

away from much of the successful formalisation that went on, as is taken ad-

vantage of by the neo-Fregeans for example. As such, it is not surprising to

find that there is often the view that these are ultimately what mathemat-

ical concepts pick out. On the other hand, the way we learn mathematics

is very much about being inducted into particular mathematical practices,

which lead more naturally to the informal concepts.26 As such, the operative

concepts which we learn through mathematics education do not necessar-

ily coincide with the manifest concepts which mathematicians might take

themselves to be using.

To make this more concrete, let us look at an example: set-theoretic

foundations. Declarations to the effect that mathematics is at its core just

set theory are ubiquitous in philosophy of mathematics, especially as es-

poused by mathematicians. Here are some samples (though opening up a

random selection of set theory textbooks will be enough to furnish you with

further examples):

[T]he mathematicians identify the natural numbers with the fi-

nite von Neumann ordinals. So, contrary to received wisdom, I

suggest that philosophers follow mathematical practice and iden-

tify the natural numbers with the finite von Neumann ordinals.

[...] Numbers are sets. (Steinhart 2002, p. 356)

and

All branches of mathematics are developed, consciously or un-

consciously, in set theory or some part of it. (Levy 1979, p.

3)

and

Set theory is the foundation of mathematics. All mathematical

concepts are defined in terms of the primitive notions of set and

membership. In axiomatic set theory we formulate a few simple

26Being inducted into a practice is an important way of obtaining knowledge how. This
will be the focus of the next chapter.
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axioms about these primitive notions [...] From such axioms, all

known mathematics may be derived. (Kunen 1980, p. xi)

and

All this is in stark contrast to what we now regard as the answer

to the question what mathematical entities exist? The working

practitioner of classical mathematics can answer the question

with one word — sets. Every mathematical entity is a set and

all sets are objects, some of them being infinite objects. (Clark

2009, p. 347)

and

[M]athematical objects (such as numbers and differentiable func-

tions) can be defined to be certain sets. And the theorems of

mathematics (such as the fundamental theorem of calculus) then

can be viewed as statements about sets. (Enderton 1977, p. 10)

Or slightly more cautiously:

[A]xiomatic set theory is often viewed as a foundation of math-

ematics: it is alleged that all mathematical objects are sets,

and their properties can be derived from the relatively few and

elegant axioms about sets. Nothing so simple-minded can be

quite true, but there is little doubt that in standard, current

mathematical practice, “making a notion precise” is essentially

synonymous with “defining it in set theory”. Set theory is the of-

ficial language of mathematics, just as mathematics is the official

language of science. (Moschovakis 2006, p. vii)27

You get the picture. Frequently these claims are in the opening pages of

introductory texts for students, setting out from the start the manifest con-

cepts for all of mathematics.

However, in practice mathematicians mostly are not doing set theory.

In the Levy quote above he even says as much with the admission that the

set theory supposedly underlying all mathematics might be unconscious.28

27Mathematics as the language of science is an allusion to a well-known quote by
Galileo.

28This is also reminiscent of Azzouni’s claims that mathematicians don’t need to be
aware of underlying derivations, as discussed in chapter 1.
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The operative concepts will vary with the situation and who is deploying

them, of course, but I contend that frequently these will come apart from

the manifest, set-theoretic concepts. There is a traditional exemplification

of the manifest and operative concepts I have just described coming apart,

that found in (Benacerraf 1965). With the excellent story of two children

educated by “militant logicists” to truly believe that all mathematics boils

down to set theory, Benacerraf shows how quickly problems can arise. For

the children have been taught different set-theoretic representations of the

natural numbers: one knows the von Neumann ordinals, the other the Zer-

melo ordinals. There are then examples of theorems for one of the children

which are false for the other, such as 3 ∈ 17 or whether any n-membered set

can be put into one-one correspondence with the set n itself. Importantly,

for my purposes, these issues can’t be resolved by asking other people:

Attempts to settle this by asking ordinary folk (who had been

dealing with numbers as numbers for a long time) understand-

ably brought only blank stares. (Benacerraf 1965, p. 54)

Why is this so understandable? Because it is common knowledge that, while

the orthodox foundationalism declares that all mathematics reduces to set

theory, this is simply not what is found in practice. Not just that, but the

manifest concepts of the foundational picture come apart from the operative

concepts in direct mathematical ways, as claims about the membership rela-

tion holding between numbers don’t even make sense unless you are working

directly with sets. Now, it could be argued that the two representations are

not on equal footing. Steinhart, for instance, in (Steinhart 2002) argues for

the unique correctness of the von Neumann representation by what is es-

sentially monster-barring, inventing additional demands and conditions on

the concept of number which would give Lakatos a field day. Even still, this

does not undermine the fact that those not separately trained in set theory

would be baffled about statements of the form 3 ∈ 17.

To extend the example somewhat further, observe that representing

numbers in set theory is a straightforward and well-known construction.

But many of the claims about set-theoretic reductions talk of almost all of

mathematics, which includes a huge deal more. If we consider as an exam-

ple low-dimensional topology, explored excellently in (de Toffoli & Giardino

2014), it seems likely that the mathematicians working in this area do not
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know any actual set-theoretic construction corresponding to their concepts,

so even if they were to agree to the claim that mathematics is founded in

set theory, this would not be reflected in their operative concepts. However,

even if we were to find those who did happen to know how to translate the

main concepts into set theory, de Toffoli & Giardino demonstrate that the

kind of operations licenced by the topological concepts are often visual, di-

agrammatic and manipulative (in a tactile sense)— far removed from those

which one would find in the austere setting of set theory.29 So the opera-

tive concepts, i.e. the concepts as employed in practice, are not going to be

set-theoretical.

The foregoing does not stand against formalisation and representation

of mathematics more generally in set theory. Indeed, as in the first chapter,

the thought does not rely on arguing that formalisation is not possible for

some class of cases. Rather, the point is that if one insists on identifying the

mathematical concepts with some particular formal representations, then

the resulting manifest concepts will still come apart from those which are

operative in mathematics. As such, while one can point out that the readings

of set theory as foundational I have quoted above are pretty strong ones,

and even called ‘simple-minded’ in the quote by Moschovakis, we only need

a fairly light version of the position for the distinction between the manifest

and operative concepts to come out.

Let us move on to another kind of example. This echoes a lot that

has already been covered and doesn’t require full repeating again, but the

distinction between manifest and operative concepts may be a useful way to

think about the formal and informal proof distinction. As has been discussed

already, it seems to be fairly common for mathematicians, when pressed, to

offer formal derivations as the manifest concept in play when it comes to

the epistemological justification of mathematical propositions. This in turn

leads to the need for the Formalist-Reductionist to explain how this can be,

given how rarely these actually show up in practice. The idea raised by the

proponents of the philosophy of mathematical practice is to observe that the

operative concept, that of informal proofs, is doing all of the epistemic work

and that this is the idea we should be taking more seriously. I certainly

agree, and believe this terminology helps bring the idea out.

29This is only austere, of course, when seen in the foundationist way. Actual set
theorists will in practice draw plenty of diagrams to illustrate their ideas.
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To finish, let me return to the starting questions which lead us into dis-

cussing Haslanger’s distinction in the first place. We wanted to find a way of

seeing how formal and informal mathematics and their respective conceptual

contents could operate side by side, both contributing to the understanding

we have of the phenomena they describe and the discovery of new concepts,

ideas, techniques and theorems. Applying Haslanger’s distinction, we have

made progress because it is now clear that even in the realm of mathematical

concepts, the (operative) concepts we put into practice do not always coin-

cide with the (manifest) concepts we take ourselves to be using. Therefore,

we do have the two notions working side by side and, furthermore, I have

been displaying that in the mathematical case the difference between the

manifest and operative concepts does span the formal and informal divide.

Nonetheless, it seems like the work is not yet complete. The discussion

has showed that manifest and operative concepts coming apart in mathe-

matics should be somewhat worrying to us. In the case of formal definitions

not coinciding with the operative concepts they are meant to be identify-

ing, there is an underlying philosophical difficulty that comes out in the

fact that this seems like mathematicians are confused about what they are

doing and the philosophical status thereof, with the danger that this might

have mathematical repercussions (as in the Benacerraf and low-dimensional

topology cases). Concerning the concept of proof, again we find that most

mathematics does not fit to the standards that mathematicians frequently

proclaim are to be demanded of correct proofs, with the potential difficulties

that entails. So although we have achieved the ‘side-by-side’ aspect of our

goal, the duality here so far seems problematic rather than virtuous.

What is needed is a story about how the operative concepts and the

manifest concepts can work alongside one another in mathematics, rather

than being in tension. I will in the next section investigate how we might

make progress by looking at how Scharp manages this in the case of truth.

3.8 Scharp on Replacing Defective Concepts

Scharp holds the view that the concept of truth, as well as many other con-

cepts, is inconsistent. The project of his book Replacing Truth (Scharp 2013)

is to engage in conceptual engineering to design a replacement concept (or,

as it turns out, two replacement concepts) which can succeed at the various
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roles truth plays in our conceptual toolbox while also being consistent.

What does it mean for a concept to be inconsistent? Scharp discusses

this at some length to rule out an opposing view that concepts cannot be

inconsistent. On Scharp’s view, a concept is inconsistent if and only if its

constitutive principles are inconsistent. The toy example he uses is that of

the ‘rable’, with the following constitutive principles:

(1a) ‘rable’ applies to x if x is a table.

(1b) ‘rable’ disapplies to x if x is red.

Importantly, the concept of rable is not logically inconsistent, but rather

leads to a contradiction give the empirical fact of the existence of red tables,

to which the concept both applies and disapplies. Given the environment

we wish to deploy it in then, the concept of a rable is defective. Being a toy

example, the defectiveness is not so important. However, the important idea

is that the concept of truth is also defective because it also leads to incon-

sistency. The central constitutive principles for truth are the two directions

of the T-schema:

(T-In) If ϕ then 〈ϕ〉 is true.

(T-Out) If 〈ϕ〉 is true then ϕ.

Then by the well-know reasoning of the liar paradox or one of its ilk, we

can arrive at an inconsistency. There are good reasons not to give up either

principle, as Scharp argues that these encode two important uses of truth: as

a device for endorsement and rejection. To say that ϕ is true can function

as a way of endorsing ϕ, thus T-Out encodes the endorsement function.

Similarly, to say that ϕ is not true is a way to reject ϕ, so T-In encodes the

rejection function (by its contrapositive).

The problem is that in a classical setting, no single concept will satisfy T-

In and T-Out without leading to inconsistency. The conceptual engineering

Scharp engages in solves the difficulty by replacing truth with two concepts

which take over the two functions of endorsement and rejection separately:

[I]f we replace truth with two concepts, we can split the workload,

allowing one to serve as a device of endorsement and the other

to serve as a device of rejection. (Scharp 2013, p. 147)
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Scharp replaces the concept of truth by the two concepts he calls ascending

truth and descending truth, which each only satisfy one of the principles.

Descending truth obeys T-Out, so functions as a device for endorsement;

ascending truth obeys T-In, so functions as a device for rejection. Scharp

furthermore defines the predicates expressing the concepts to be duals, i.e.

D(〈ϕ〉)↔ ¬A(〈¬ϕ〉) and ¬D(〈¬ϕ〉)↔ A(〈ϕ〉).
Now we can begin to see how Scharp’s project might be a useful parallel

to dealing with the concepts of mathematics. For Scharp proposes a formal,

axiomatic theory to go along with the new concepts, a theory which exhibits

a large number of principles which we would want truth to obey, but splits

these between ascending truth, descending truth and several hybrid princi-

ples given in terms of both new predicates.30 The crucial result is that this

formal theory is consistent (or, to be clear, consistent if set theory is), which

Scharp establishes by building a model with what he calls Xeno semantics.

We don’t need to go into a full assessment of Scharp’s theory of ascending

and descending truth.31 Rather, what is of interest is the way in which the

conceptual engineering Scharp engages in uses formal, technical machinery

to develop the new twin concepts of ascending and descending truth, as

well as the relationship this has to the defective concept of truth they are

replacing. There is a particular objection based on practicality which Scharp

can set aside, which is that it does not seem realistically achievable to convert

the general public to the replacement concepts which are based on subtle

and complex philosophical motivations.32 The reason Scharp can set this

aside is that he does not believe that such widespread adoption is necessary:

It is essential to remember that, on the proposal defended here,

it is legitimate to continue using ‘true’ for most purposes. Only

where the difference between ascending truth and descending

truth is not negligible does one need to use ‘descending true’ or

‘ascending true’ instead of ‘true’. (Scharp 2013, p. 174)

30To be exact, the theory of ADT is meant to be a kind of minimal theory for ascending
and descending truth, in that it will be a subtheory of any adequate theory for these two
concepts. For instance, Scharp does not demand that a theory of ascending and descending
truth should be fully axiomatisable, so this might only be a part of such a non-axiomatised
account. (See Scharp 2013, p. 153).

31For a start towards this, see reviews of the book such as (Ripley 2014; Read 2014).
32This point is frequently raised against Haslanger’s project too, but is even more

pressing because of the centrality of trying to achieve political and social aims with the
new concepts.
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That is, a lot of the time the new framework is not necessary for the purposes

at hand. Comparing the concept of truth to the concept of mass, Scharp

elaborates:

Just as in casual conversation, people use ‘mass’ with the under-

standing that what they are saying might not be, strictly speak-

ing, correct, but it is good enough for the purposes at hand.

That is, those involved would have reached the same conclusions

even if they had used the more complicated replacement con-

cepts instead (with more effort). If a conversational participant

wants to insist that the questions under consideration warrant

a more precise conceptual framework, then those in the conver-

sation can switch to the more precise terminology of relativistic

mass and proper mass. Likewise, if necessary, conversational

participants can switch from talk of truth to talk of ascending

truth and descending truth. (Scharp 2013, p. 275)

So the replacement concepts, those which are consistent, are there in case the

common but inconsistent concept of truth is likely to get us into trouble.

Nonetheless, the everyday uses of truth are often harmless and actively

useful—the well-known existence of paradoxes of truth has not hindered

its functioning in endorsement and rejection, for instance. The defective

and the engineered concepts both have roles in our theorising about and

interaction with the world, and this perspective allows for them to operate

side-by-side, each prevailing in suitable settings.

What about the case of mathematics and mathematical concepts? I have

been investigating how the literature surrounding conceptual engineering

might be applied to this question. While little previous work seems to have

been done explicitly on this approach, there is an exception to be found in

(Scharp & Shapiro forthcoming). In it, Scharp & Shapiro are still primarily

concerned with truth, but run through three other examples of inconsistent

concepts to illustrate their approach, two of which are mathematical: the

näıve concept of set and näıve infinitesimals.33 These two examples are

33The final example is a practical situation in which the barber’s paradox appears,
concerning a club called the “Secretary Liberation Club” precisely for secretaries of clubs
they are not eligible to join, with trouble arising when they hire a secretary who wants
to know if they can join the Secretary Liberation Club. The example is attributed to
(Chihara 1979).
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common in philosophy of mathematics, at least partly because analysis and

then set theory were major stopping points in the development of the modern

era of mathematics. Indeed, the process of rigorisation in analysis in turn

led to the drive towards the now-dominant foundationalist picture. So it is

an important observation that major concepts in the history of mathematics

have turned out to be inconsistent, but Scharp & Shapiro equally stress that

this does not mean that the practices they found themselves in were wholly

broken:

The lesson of this episode (at least as we have characterized

it) is that inconsistent terms need not undermine an otherwise

successful and productive intellectual project. The project can

go on so long as the practitioners have a good feel for what

they can and cannot do with the potentially troublesome terms.

And this particular project went on splendidly for some 200 or

300 years, engaging some of the finest mathematical minds ever.

Until the trouble arose, internally, the project was not regarded

as broken, and was in no need of fixing. (Scharp & Shapiro

forthcoming)

As it turned out, infinitesimals were never really replaced, but rather ban-

ished. This did lead to the conceptual development of new definitions for

all of the central notions of analysis via the ε − δ definitions, which are re-

placements of previous concepts. For instance, the concept of convergence

was replaced by the two notions of uniform and pointwise convergence, and

observing that these two come apart in certain cases was an important math-

ematical step in the development of analysis. Set theory, on the other hand,

has been a huge success mathematically, replacing the näıve concept of set

with whatever is defined within the system of ZFC. Whether this is one

concept of set or many is still an ongoing question underlying the debate

between proponents of the universe view of sets (Woodin 2011) and the mul-

tiverse approach favoured by Hamkins (Hamkins 2012). I certainly think

that debate could do with some input along the lines of this chapter on the

nature of mathematical concepts.

I shall not attempt to cover the full range of mathematical concepts just

in virtue of the sheer number and diversity of them in the history of math-

ematics. Still, it does seem that the strategy being championed by Scharp
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is a useful one for beginning to untangle the many threads interweaving

in the realm of mathematical concepts. However much I am suspicious of

foundationalist projects, and their link to the Formalist-Reductionist phi-

losophy, it cannot be denied that formalisation projects are enlightening to

us in coming to understand mathematical concepts, theories and methods,

as well as deeply important to our confidence in the edifice of mathematics.

But the formal and axiomatised aspects of mathematics and their positive

contribution to mathematical discovery also does not mean that we have to

accept that these are the ultimate foundations for mathematics and that all

that came before was broken. Rather, we can deploy Scharp’s replacement

strategy in recognising that certain concepts in mathematics are defective—

and, occasionally, inconsistent—so we replace them and perform conceptual

engineering to develop new ones.

Yet we should not be so simplistic as to see the old concepts and the

practices they are embedded in as always flawed or misguided, nor that the

concepts we end up with are deep or rich enough to embody all the wealth of

mathematical thinking. Practices which make use of open-textured, informal

concepts do contribute to the development of new mathematics and allow

for a great deal of mathematical reasoning. The Scharpian move, involving

detailed conceptual engineering of formal models and axiomatic theories of

truth, should be mirrored in dealing with mathematical concepts, where the

formal models and axiomatic systems do provide us with new insights into

the informal and open-textured concepts, but where we only need to replace

them in certain settings and contexts, such as those where we are investi-

gating meta-mathematics, or how mathematical theories can be represented

within one another. Instead of being in tension, the two ends along the axis

of formality work in parallel and are useful to mathematics in different ways,

or useful to different mathematical projects.

3.9 The Concepts of Mathematics

To finish, let us return to the three general questions about mathematical

concepts change that we began with. These were:

1. Do mathematical concepts need to be replaced or merely revised?

2. Do all mathematical concepts need to be changed or merely some of
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them?

3. Does the change of concepts need to apply to all contexts or just some?

The answers to these questions are going to be tied to some set of purposes

we have for changing mathematical concepts. For instance, in Haslanger

and Scharp their answers were linked to achieving social justice and pro-

viding consistent replacements for truth, respectively. So we can ask what

the purposes for mathematical concepts and their development are? Well,

from what we have seen there are multiple answers to this question. As we

have seen, the big traditional answer is that we replace defective concepts in

mathematics to ensure rigour. Indeed, the conceptual development under-

lying modern analysis was brought about as the “rigorisation of analysis”

by Cauchy, Weierstass, Dedekind etc. Similarly, the follow-up project of the

formalisation of mathematics by Frege, Russell & Whitehead, and Hilbert

was guided in a large part by the desire to secure mathematics on a fully

rigorous foundation. Besides rigour, though, we have seen from the dialecti-

cal approach to the philosophy of mathematics that conceptual development

is also part of the broader methodology of mathematics. Hereby, the pur-

pose of conceptual change will be connected to broader mathematical aims,

such as problem-solving, structural understanding and discovering proofs.

A full discussion of what mathematical conceptual development is aimed at

when we are treating it with conceptual engineering would be part of larger

project, one which I certainly don’t have the answers to, so let me set it

aside for now.

Instead, let us consider where some of those writers discussed above land

on the three main questions.

In section 3.5 we already compared Lakatos, Waismann and Kneebone

on the identity of concepts. Identity conditions are clearly hugely important

to the first question, as the weaker the identity conditions, the easier it is

to call concepts “the same” and the more straightforward it is to claim that

concepts are just being revised rather than being replaced. Lakatos, first of

all, was above quoted as holding that proof-generated concepts erase and

replace the näıve concepts. This offers a strong answer on the first question,

but I suspect that it is slightly too strong to accurately capture Lakatos’s

views. More rightly, the context of the line seems to refer to larger jumps

in the understanding of our concepts, where these involve “characteristic”
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proof-generated concepts, i.e. those central to a particular proof idea. This

does not seem to rule out the thought that for smaller alterations to concepts

it would be acceptable to call these “revisions” rather than “replacements”,

as is somewhat suggested by the term ‘concept-stretching’, which brings to

mind a single concept being deformed. On the other two questions, Lakatos

believes that interesting mathematical concepts will all change through the

proofs they occur in, barring perhaps formal proofs and the concepts de-

ployed therein. On the other hand, Kneebone appears to place much more

emphasis on the slow development of concepts, calling it ‘evolution’, ‘enlarg-

ing’ and ‘transformation’ of concepts, which is suggestive of revision over

replacement. Like Lakatos, he seems to think that all mathematical con-

cepts are subject to development and change, but unlike Lakatos he seems

to think that context manages to fix concepts well enough in the moment

to avoid equivocation and to put formal logic to work, pointing to a slightly

more conservative answer to the third question. Meanwhile, we saw that

Waismann thinks that concepts are too loose in their definitions for there

to be a meaningful discussion about whether they are or are not the same

before and after they have been confronted with new cases.

Turning to the figures from conceptual engineering, Carnap is somewhat

ambiguous on the revise/replace question. For instance:

The task of explication consists in transforming a given more or

less inexact concept into an exact one or, rather, in replacing the

first by the second. (Carnap 1950, p. 3)

This seems to give both readings. On the other hand, Carnap is clearer that

explication is important mainly for moving from ordinary language terms

to scientifically precise ones, so on the last two questions the concepts are

restricted to the ones we want to treat this way, and the context is specifi-

cally the scientific or academic one. Scharp is quite explicit about the use

of replacing concepts rather than just revising them. This matches Scharp’s

fine-grained view of the identity of concepts via constitutive principles. On

the other hand, Haslanger often sounds like she wants to replace the un-

just operative concepts with better target concepts, but also describes the

ameliorative project as being akin to Carnapian explication in its method

of improving concepts in (Haslanger & Saul 2006, fn. 5), ultimately seeing

the question of what is going on in such conceptual analyses as inquiry-
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dependent:

It should be understood, however, that on my view, whether

or not an analysis is an improvement on existing meanings will

depend on the purposes of the inquiry. (Haslanger & Saul 2006,

fn. 5)

As such, there seems to be an openness similar to Carnap’s position.

So what should we say to these questions for the specifically mathemat-

ical cases of conceptual engineering? Let us draw some morals from the

preceding discussion. Having argued that mathematical concepts are open-

textured like empirical concepts, it results that we should be open to the

possibility of concepts being revised in the light of new cases. However, be-

yond this there are clear cases of replacements in the well-known examples

of analysis and set theory. For instance, the previous concept of conver-

gence was replaced by two concepts of uniform and pointwise convergence.

Therefore we should conclude that both revision and replacement are to be

found in mathematics and should be utilised. Taking a lesson from the di-

alectical philosophy of mathematics, the answer to the second question will

be that interesting mathematics will develop all concepts we use, although

pragmatically this might be restricted to less than that. For instance, it

might be that different concepts are more or less fixed in our practices at

different times. We might also limit replacement processes to concepts which

are defective for our purposes, whatever those happen to be, which again

might be a far more restricted class of mathematical concepts, one which

varies over time with our purposes and our opinions on what defectiveness

amounts to. The answer to the third question is that the contexts in which

revision and replacement of mathematical concepts occur are not all of them

but just some. As discussed, I believe this is important for the resolution

of puzzles about the relationship between formal and informal mathemat-

ics. In different contexts our purposes will be best served by different levels

of formality and rigour, and it is part of mathematical thinking to be able

to move between these as the broader context demands. As such, we can

look to conceptual engineering for strategies on how to connect the different

concepts, to allow them to work in parallel.
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3.10 Conclusion

In this chapter I have been looking at mathematical concepts and how they

should often be seen in a dynamic rather than static way, in the sense that

they are developed over time via mathematical practices. In the first half

of the chapter I looked at how we can make it clear that not all mathe-

matical concepts are fixed and ‘Fregean’, by examining Waismann’s notion

of open texture and how it applies to mathematical concepts; Lakatos’s di-

alectical theory of mathematical conceptual change and the connection this

has to proving; and Kneebone’s earlier work on changing mathematical con-

cepts. However, there was the central problem that if concepts are tracking

mathematical practices, then we need an account of how this extends to the

modern side-by-side usage of informal proofs and formal results. I turned

to conceptual engineering as a place to look for a strategy for dealing with

the axis of informality and formality in modern mathematics, finding two

approaches that might provide answers from Haslanger and Scharp. Finally,

I examined what morals should be drawn from the discussions of this chap-

ter towards how to give a full account of modern mathematical conceptual

development.

The place we have reached leaves a great deal open and further work

to be done. Nonetheless, I hope to have set out a path which leads from

the work of Waismann, Lakatos and Kneebone, to a consideration of the

relationship between proof, formality and concepts in modern mathematics.
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Chapter 4

Proof and Mathematical

Know-How

A proof is like the mathematician’s travelogue. Fermat gazed out

of his mathematical window and spotted this mathematical peak

in the distance, the statement that his equations do not have

whole number solutions. The challenge for subsequent genera-

tions of mathematicians was to find a pathway leading from the

familiar territory that mathematicians had already navigated to

this foreign new land. Like the story of Frodo’s adventures in

Tolkien’s Lord of the Rings, a proof is a description of the jour-

ney from the Shire to Mordor.

— Marcus du Sautoy

4.1 Introduction

In Why do we Prove Theorems? (Rav 1999) Rav argues that mathematical

epistemology should focus on proofs rather than truths or, as he puts it:

[P]roofs rather than the statement-form of theorems are the bear-

ers of mathematical knowledge. (Rav 1999, p. 20)

The argument proceeds from here to various conclusions about mathemat-

ics such as rejecting both foundationalism and the Formalist-Reductionist

approach to the justification of proofs. I will not focus on these so much

here, rather I will investigate more deeply the epistemological picture that
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we should adopt in response to Rav’s arguments. The Ravian idea is to

move away from the shallow picture of mathematical knowledge as knowing

the propositional statement-forms of mathematical theorems, and towards

one more focused on knowledge of techniques, methods and general proof-

constructing tools. Crucially, what Rav taps into in the re-conception he

provides of mathematical knowledge is a distinction familiar from episte-

mology between knowing-how and knowing-that. However, Rav does not

explicitly relate his move to an emphasis on knowing-how in mathematics

over knowing-that, nor is this drawn out in subsequent literature.1 On the

other hand, the literature in epistemology has a great deal to say on the rela-

tionship between knowing-how and knowing-that, so drawing out how these

insights apply in the case of mathematics will provide a number of links,

ideas and proposals that will in turn lead to a more subtle and worked-out

theory of the practical side of mathematical knowledge.

The main idea of this chapter is the following. While accepting the point

Rav makes that we should focus on mathematical methods, skills, tech-

niques, concepts and connections, I will argue that the actual conclusion

to be drawn from Rav’s main argument is that mathematical epistemology

should be investigating both the traditional propositional knowledge and

knowledge-how, as well as the way in which the two connect. The last part

is crucial: throughout I will argue that propositional and practical aspects

of knowledge in mathematics are thoroughly entwined, and the job of math-

ematical epistemology should in part be to look at the relationship between

them. I will argue later that this has a large impact on the epistemological

function of proofs, in that activities of proving are epistemologically pri-

mary, while proofs are to be seen as a guide to action which are used to

communicate directions on how to carry out the activities.

In section 4.2, I will weigh up Rav’s argument for the switch of em-

phasis from mathematical truths to mathematical proofs to find that while

it is successful at rejecting the opposing view, the outcome of his thought-

experiment is not exactly the one he envisages, with interesting philosophical

results. Next, in section 4.3, I will set out the distinction between knowledge-

how and knowledge-that as it is found in the epistemology literature. I go

1With the exception of (Löwe & Müller 2010) who argue that knowing-how in math-
ematics should be analysed in terms of mathematical skills. I will return to this later in
section 4.5.
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on, in section 4.4, to apply the epistemological picture to the case of math-

ematics, discussing benefits of the cross-over between the literatures and

several examples. In section 4.5, I describe and critique the arguments from

two papers by Löwe & Müller which argue that mathematical knowledge is

context-dependent and should be filled out in terms of mathematical skills.

From here I will be lead into a discussion of the epistemological importance

of the activities of proving in section 4.6. Finally, I will return to the rela-

tionship between knowledge-how and proofs in section 4.7.

4.2 Rav and Pythiagora the Oracular Computer

One of Rav’s main arguments for the claim that proofs are more important

to mathematics than truths comes from the thought-experiment about an

oracular machine called Pythiagora. Pythiagora is a universal decision ma-

chine, where if you enter any mathematical statement then the machine will

respond immediately with a declaration of the statement’s truth or falsity.

Rav imagines a world in which such a machine sits on every mathemati-

cian’s desktop. The result is that all open problems can be resolved simply

by entering them into Pythiagora, while refereeing papers becomes far more

straightforward since Pythiagora can immediately check any claimed the-

orems. All the hours of trying to establish the truth or falsity of some

proposed claim are done away with, replaced by submitting the statement

to the computer.

The argument is that if the role of mathematical proof is merely to

deliver unto us knowledge of mathematical truths, then such a machine

would be a welcome triumph, replacing the cumbersome and hard process

of proving with an instant resolution to all mathematical problems that take

our interest. However, Rav argues that Pythiagora would not be welcome

at all:

A universal decision method would have dealt a death blow to

mathematics, for we would cease having ideas and candidates

for conjectures. [...] But conceptual and methodological innova-

tions are inextricably bound to the search for and the discovery

of proofs, thereby establishing links between theories, systema-

tising knowledge, and spurring further developments. Proofs, I
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maintain, are the heart of mathematics, the royal road to creat-

ing analytic tools and catalysing growth. (Rav 1999, p. 6)

Expanding on this point, Rav claims that the above benefits are to do with

the epistemological role of proofs compared to that of truths. The claim is

that knowing particular mathematical facts is by itself not very mathemat-

ically interesting, a point Rav makes through a case study of Fermat’s Last

Theorem and the following related quote from Gauss:

[I]f I succeed in taking some of the principal steps in [algebraic

number] theory, then Fermat’s Theorem will appear as only one

of the least interesting corollaries. (Quoted in Bell 1937, p. 261)

On the other hand, the knowledge found in proofs is of a more interesting

type, for proofs contain the problem-solving techniques which mathematics

is most concerned with. Thus Rav can conclude with the primacy of the

knowledge contained in proofs over that of mere truths, facts and theorems:

[P]roofs rather than the statement-form of theorems are the bear-

ers of mathematical knowledge. Theorems are in a sense just

tags, labels for proofs, summaries of information, headlines of

news, editorial devices. The whole arsenal of mathematical method-

ologies, concepts, strategies and techniques for solving problems,

the establishment of interconnections between theories, the sys-

tematisation of results—the entire mathematical know-how is

embedded in proofs. (Rav 1999, p. 20)

Now, Rav makes a compelling case that the kind of knowledge embedded

in proofs is both interesting and importantly different from knowing the

theorems proved, as well as for the general point that mathematics without

proofs would be significantly depleted. Nonetheless, the response to the

Pythiagora example that Rav uses does not seem entirely plausible.

In stark contrast to Rav’s claim that mathematicians’ constant access

to Pythiagora would deal a death blow to mathematics, a better interpre-

tation of the proposed scenario proceeding is the very opposite: not a dark

age but a golden age of mathematics. Of course, on first getting access to

the oracular powers of Pythiagora the reaction of many, most or maybe all

mathematicians might be to check the truth of both famous open problems
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and the problems they personally are working on. It is only natural for peo-

ple to be curious whether the Riemann hypothesis is true or false, whether

P = NP etc. But unlike the description Rav gives, this doesn’t seem to

be the end of the mathematicians’ curiosity. Now certainly Rav is right

to reject the simple picture on which we are only interested in truths, and

this is intuitively clear from the repellence of doing mathematics with these

alone, and no proofs to reveal deeper structural connections, but the focus

on proofs with truths relegated to mere tags and labels suggested by Rav’s

rhetoric strikes me as equally implausible.

The golden age of mathematics that would come about in the thought-

experiment of Pythiagora would be due to the fact that having access to

an oracular machine would not do away with proving in mathematics, but

would on the contrary facilitate it. For one thing, knowing whether a claim

or its opposite is true lets us concentrate on the proof of that. Take, for

example, the question of P=NP. While this is an open question, the general

suspicion amongst computer scientists and mathematicians appears to be

that it is false.2 Nonetheless, if it turns out that it is true after all then

we may be directing the majority of our efforts at proving the wrong thing.

Thus, knowing the truth of P = NP is immediately useful for mathematics.

But knowing the final truth of the ultimate theorem is just the tip of the

iceberg in terms of usefulness to proving. We would be able to use Pythiagora

to not just verify theorems, but also check lemmas and intermediary steps

on the way. Such an application is key to the point I am making: proofs do

not just use skills, techniques and methods to suddenly arrive at the truth

of the theorem, but rather they interweave the application of these skills,

techniques and methods with a whole series of propositional facts. Stated

like this it may sound rather obvious, but the point is that downplaying the

importance of theorems and facts relative to proofs in the epistemology of

mathematics misses the deeper interconnection between different types of

mathematical knowledge.

Let us examine a little further the usefulness of having access to Pythi-

agora for broader mathematical endeavours. For one thing, the time wasted

on blind alleys and poorly chosen lemmas in mathematics must be sub-

2I say suspicion rather than consensus because it isn’t hugely unusual to think the
opposite. A poll, now somewhat out of date, found out of 100 well-respected respondents,
61 expect that P 6= NP , to only 9 believing P=NP. See (Gasarch 2002) for details.
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stantial, and being able to check these in an instant would be informative,

time-saving and helpful. Of course, one might be concerned that there is

some benefit to the honest toil of going in wrong directions, such as that

seeing why they are wrong directions will be helpful in formulating improve-

ments and better choices. However, having access to Pythiagora would also

be very useful in providing insights into where incorrect lemmas and theo-

rems go astray, since it would make it significantly easier to discover actual

counter-examples, from which one may well be able to glean more than a

failed proof alone. The use of an oracle can thus augment and direct our

proving efforts rather than destroy them, because epistemic access to truths

is a vital component of successful proving.

The world in which we have access to Pythiagora is a fantasy land, of

course, for it is well-known that such a universal decision engine is math-

ematically impossible. It might therefore seem indulgent to imagine this

scenario beyond the playful use Rav himself puts it to. However, we don’t

need anything so wild as a universal decision machine to see that Rav’s

conclusion is too extreme by far. All that is needed is something which

is found increasingly extensively in the real world: computational mathe-

matics. As an example, consider the system GAP (standing for ‘Groups,

Algorithms and Programming’), which is a programme used in computa-

tional group theory, which includes a programming language, an interactive

environment, huge data libraries of examples from group theory and related

areas, and implemented algorithms.3 In (Martin 2015), GAP is examined

from the point of view of mathematical practice, revealing the following:

Research users of GAP typically use it to experiment with con-

jectures and theories. Whereas pencil and paper calculation

restricts investigations to small and atypical groups, the ready

availability in GAP of a plethora of examples, and the ease of

computing with groups of large size, makes it possible to develop,

explore and refine hypotheses, examples and possible counter

examples, before proceeding to decide exactly what theorems to

prove, and developing the proofs in a conventional journal paper.

(Martin 2015, p. 42)

In essence, this is exactly what I am describing: ready access to confir-

3Its current homepage can be found at: http://www.gap-system.org/
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mation and computational results, which serve a similar function as the

oracular Pythiagora outputs in Rav’s example, doesn’t hinder mathematics

but instead function as a useful and productive part of mathematical dis-

covery. A similar example is that of SnapPy, which focuses on the geometry

and topology of hyperbolic structures.4 Again, it provides computational

results, such as being able to compute whether an inputted planar projec-

tion diagram5 has a canonical decomposition. On the other hand, a major

focus of their project is also for the program to provide mathematicians with

quick, computer-generated visualisations of the various objects it deals with,

which in turn provide deeper understanding of the objects involved. In both

cases, the computational approach to mathematics certainly provides the

sort of propositional feedback that Rav’s thought experiment portrays as a

danger to mathematics. Yet, a more careful analysis of the effects on mathe-

matics that computational work has demonstrates that this does not lead to

abandoning proofs and proving in the mathematical methodology, rather it

augments it and opens up new ways for mathematicians to do mathematics.

Indeed, this was part of lesson to be learned from the previous chapter.

A potential response that could be offered by Rav is to point to examples

of computer-assisted proving which are less easy to frame in such a positive

light. For example, the proof of the Four Colour Theorem involves reducing

the problem to some large number of cases and then using a computer to

verify the truth of the theorem for those cases. Now there is a case to be

made here for how the computational work fails to deliver the knowledge we

would usually expect from a proof, or maybe more accurately, it doesn’t give

us a proper understanding of the truth of the theorem. Certainly a great

deal of philosophical literature is concerned with the particular case of the

Four Colour Theorem and the shift in proving practices it represents, e.g.

(Tymoczko 1979), (Detlefsen 2008) and (Davis & Hersh 1981, pp. 380-387).

And it may well be true that the essential use of a computer to produce a

proof too long to be checked by a human mathematician represents a radical

shift in mathematical practices and proof in particular. However, this is

precisely the point as I see it: mathematical proof might be augmented and

changed, but this is not to the detriment of mathematical methods, ideas

4Its current homepage can be found at http://www.math.uic.edu/t3m/SnapPy/
Thanks to Adam Epstein for bringing this system to my attention.

5The programme comes with software for anyone to draw their own planar diagrams,
which are a way of representing objects in low-dimensional topology.
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and progress. As an important observation, the Four Colour Theorem itself

was not the end of mathematics on this topic, not the “death blow” that

might be expected, but has been the source of another milestone of progress

when it was formalised by Gonthier, as described in (Gonthier 2008). The

controversy had been about the computational enumeration of the huge

number of cases of reductions for the Four Colour Theorem, with no doubt

cast on the traditional but previously informal parts of the proof leading

up to that point. However, Gonthier’s report describes the significant and

interesting mathematics that came out of formalising the proof fully. Two

points result from this. Number one: formal proofs and formalisation do

not hinder mathematical discovery (including of methods and techniques)

but instead provide new ways of examining, generalising and coming to

understand the mathematics involved. This is in line with what I argued in

the previous chapter. Number two: the Formalist-Reductionist once again

doesn’t benefit from this point. For if one believes that informal proofs are

justified by their formalisations, then the fact that an accepted informal

proof might require substantial mathematical discoveries to be formalised

casts serious doubt on this position. The informal proof was held to be

justified by all of the usual standards, but the formalisation was inaccessible

without the substantial extra mathematical work.

As a further response to the Pythiagora argument by Rav, it should be

noted that the “death blow for mathematics” rather exaggerates the impact

of no longer needing proofs in another direction too, in that it unnecessarily

restricts the realm of mathematics. In fact, mathematics extends far be-

yond the pure mathematics which Rav focuses on throughout his article, to

include the vast swathes of applied mathematics, statistics, computational

mathematics, etc. The point is that the majority of these other areas of

mathematics are bound up with modelling in some form or other rather

than establishing ultimate truths, and as such are better assessed holisti-

cally rather than individually. The point is very similar to Elgin’s point

about scientific knowledge in (Elgin 2006). Indeed, Elgin’s argument that

the factivity of knowledge does not fit well with practices such as scientific

theory-building which are not aiming at truth per se transfers directly to

the broader mathematical situation. In the same way that scientific the-

ories involve purpose-dependent simplifications, abstractions and idealisa-

tions, meaning that the full theory does not purport to be literally true,
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many mathematical theories outside of pure mathematics are focused on

modelling phenomena.

For instance, in an undergraduate applied mathematics course one might

encounter all kinds of models, from mechanics to population dynamics.

Without the theory they are embedded in many of the propositions the the-

ory is built on and generates will not strictly be true, so is hard to describe as

‘knowledge’ given that this is standardly taken to be factive. Elgin’s conclu-

sion is that a more important epistemic goal in these cases is understanding,

meaning the understanding of the phenomena afforded to us by the theoris-

ing or mathematical techniques employed. Understanding, which can come

in degrees and different forms, clearly relates to both propositional facts

and practical knowledge but is not obviously reducible to either of them.

The thought-experiment of Pythiagora is all about delivering truths, but if

large swathes of mathematics are more focused on understanding phenom-

ena mathematically than on finding the ultimate truth of things, then the

thought-experiment cannot expected to see the same devastating effect on

mathematics. For these other areas of mathematics, the same honest toil

will still be required to get their results. Again, this point is in the same di-

rection as Rav’s intended broadening of the class of interesting mathematics,

but actually goes beyond it. As part of the philosophy of mathematical prac-

tice, it is worth remembering that the narrow view of mathematics which is

treated in the standard philosophical accounts is not exactly faithful to the

diversity one finds in mathematics departments.

Thus it would appear that contrary to the simple view Rav attacks,

mathematical knowledge must be more than propositional knowledge of

mathematical truths, but contrary to Rav’s proposed picture, the practi-

cal knowledge embedded in proofs is not by itself an adequate replacement.

The two responses I have given to Rav’s Pythiagora thought experiment

suggest that mathematical epistemology should be concerned with at least

three key concepts: propositional mathematical knowledge, mathematical

know-how and mathematical understanding.

4.3 Knowing-How and Knowing-That

Rav’s discussion goes into detail on why it is that we are more interested in

proofs than in the truths of mathematics. The ultimate point, though, rests
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on the kind of knowledge of mathematics we’re after: that knowledge of

isolated truths (such as those offered by Pythiagora) is not in itself of much

interest, whereas knowledge of proofs contains the structural connections,

the methods, the ideas and the relations of mathematics. Recall from above:

[...] the entire mathematical know-how is embedded in proofs.

(Rav 1999, p. 20)

We find this line in and amongst the many other advantages knowing proofs

has over knowing truths. However, there is a large literature in episte-

mology working on precisely the relationship between knowledge-how and

knowledge-that, one which has hardly been brought to bear on mathemati-

cal knowledge at all. If we take Rav’s point seriously, as I believe we should,

then it will be a worthwhile project to see what the status of knowing-how is

in mathematics and how it relates to the standard propositional knowledge

which has been the common subject of mathematical epistemology in the

past. To enable such an investigation, I will in this section set out the state

of play on this topic as it stands in epistemology. I will proceed from Ryle

to Stanley & Williamson, ultimately settling on the picture by Wiggins that

knowledge-how and knowledge-that are tightly connected and difficult to

pull apart in practice.

To begin, the first important observation is that the intended distinction

is between the standard objects of knowledge, which are propositional, and

some distinctly practical kind of knowledge, but that this distinction is not

necessarily tracked exactly by the linguistic constructions. For instance,

consider the following two sentences:

(1) Caroline knows how to play Doppelkopf.6

(2) Ryo knows how Alper cheated at Doppelkopf.

While the first sentence typically ascribes a practical sort of knowledge to

Caroline, the second might amount to no more than:

(3) Ryo knows that Alper cheated using secret hand-signals.

where this is straightforwardly seen to be essentially propositional. The

point is made by Rumfitt in (Rumfitt 2003) by emphasising the difference

6This is a German card game similar, in certain respects, to Whist.

122



between the semantics and metaphysics of knowledge-how. Similar points

are also seen in (Moore 1997, ch. 8) and (Glick 2011, p. 403) and likely

originate in (Hornsby 1980, p. 84). While the linguistic structure can be

used to pick out both forms of knowledge, as in (1) and (2), the metaphys-

ical interest lies in investigating just the practical kind of knowledge. That

is to say, although the usual way of talking about the distinction is between

knowing-how and knowing-that, the interest is not in just any knowledge

identified by “knows how” constructions. In the literature, it is fairly com-

mon to talk about knowledge-how-to instead, but the emphasis on the kind

of knowledge rather than the semantics of sentences is an important issue

we shall return to shortly.

The main source for the philosophical distinction in the literature is Ryle

in (Ryle 1946) and (Ryle 1949, ch. 2) who took himself to be refuting the

‘intellectualist’ position:

Mathematics and the established sciences are the model accom-

plishments of human intellects. [...] They thus bequeathed the

idea that the capacity to attain knowledge of truths was the

defining property of a mind. Other human powers could be

classed as mental only if they could be shown to be somehow

piloted by the intellectual grasp of true propositions. [...] the in-

tellectualist doctrine [...] seeks to define intelligence in terms of

the apprehension of truths, instead of the apprehension of truths

in terms of intelligence. (Ryle 1949, p. 27)

Hereby we come to a debate between the intellectualists on one hand and

Ryle’s anti-intellectualism on the other. Firstly, intellectualism is the view

that holds that all knowledge-how is just propositional knowledge, or that

knowledge-how is just a form of knowledge that. On the other hand, anti-

intellectualism is the position that knowledge-how and knowledge-that are

distinct, or that knowledge-how is practical in a way that knowledge-that

is not or cannot be. As it stands, Ryle’s anti-intellectualist view is gener-

ally acknowledged to have become the philosophical orthodoxy. However,

the modern debate was re-ignited by Stanley & Williamson in their pa-

per (Stanley & Williamson 2001), who took on the intellectualist position

against Ryle. Let us go through both in turn.
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Ryle’s form of anti-intellectualism sees making a distinction between the

two types of knowledge as hugely important for rejecting a narrow approach

to philosophy which is largely based on our knowledge and discovery of facts:

In [philosophers’] theories of knowledge they concentrate on the

discovery of truths or facts, and they either ignore the discovery

of ways and methods of doing things or else they try to reduce it

to the discovery of facts. They assume that intelligence equates

with the contemplation of propositions and is exhausted in this

contemplation. (Ryle 1946, p. 4)

He thus sees the exclusion of the ways and methods as failing to explain

intelligent action. A useful example for our purposes is his discussion of

logical inference, for which he turns to the Lewis Carroll’s story of “What the

Tortoise said to Achilles” (Carroll 1895). The idea is to consider a scenario

in which a student understands two premises A and B and a conclusion Z

in a valid argument, but fails to appreciate that the conclusion follows from

the premises. For the intellectualist, Ryle suggests, what is needed is to add

the proposition C: “if A and B are true, then so is Z” to their consideration.

But Carroll’s Tortoise observes that the problem is not resolved: the student

might still fail to make the inference. Again, we can add a further instructive

premise D: “if A, B and C are true, then so is Z” and again the student

might fail to infer Z from A, B, C and D, and so on ad infinitum. Ryle

argues that what has gone wrong here is the assumption that intelligent

action can be reduced to propositional theorising, for the problem is that

the student can accept all of the new premises in theory without any of them

forcing the student to accept the conclusion. The upshot is:

Knowing a rule of inference is not possessing a bit of extra infor-

mation but being able to perform an intelligent operation. (Ryle

1946, p. 7)

Similarly, Ryle’s main objection against intellectualism takes the form

of a regress:

If a deed, to be intelligent, has to be guided by the consideration

of a regulative proposition, the gap between that consideration

and the practical application of the regulation has to be bridged

by some go-between process which cannot by the pre-supposed
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definition itself be an exercise of intelligence and cannot, by def-

inition, be the resultant deed. (Ryle 1946, p. 2)

If the intellectualists are right, and knowledge-how is just a kind of knowledge-

that, then Ryle’s regress puts the following problem to them. Exercising

knowledge-how in intelligent action will involve two distinct parts: the men-

tal consideration of the relevant proposition and the resultant action. But

then the mental consideration of the proposition needs to be an intelligent

action too (so that the consideration is done in the right way, at the right

time, in the correct circumstances etc.)7 If so, then we need a further act of

mental consideration of a proposition to underlie that action, which in turn

requires another etc. Ultimately then there is the challenge of finding some-

thing which “reconciles these irreconcilables” (Ryle 1946, p. 3), a challenge

which Ryle believes the intellectualist will be hard-pushed to meet.

As for a positive view, Ryle’s position links knowledge-how closely to the

actions and activities that the intellectualist struggles to accommodate. For

instance:

When a person knows how to do things of a certain sort (e.g.,

make good jokes, conduct battles or behave at funerals), his

knowledge is actualised or exercised in what he does. (Ryle 1946,

p. 8)

And while in all of these we can find rules, maxims, canons, principles

etc. (especially in the case of logic), for Ryle these are separate from their

judicious application:

In short the propositional acknowledgement of rules, reasons or

principles is not the parent of the intelligent application of them;

it is a step-child of that application. (Ryle 1946, p. 9)

which is to say that rules are abstracted from practice, rather than knowl-

edge of them being necessary for knowledge-how. Such principles are help-

ful for many things, such as pedagogy, but the metaphysical nature of

knowledge-how for Ryle is more than will be captured by any such rules

or maxims. In particular, knowledge-how will surpass these rules precisely

7In their discussion of the regress, Stanley & Williamson leave out the ‘intelligent’
part of this, focusing simply on considering propositions as necessary for action. For a
further discussion of the form of the regress argument see (Fantl 2012).
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in that knowledge-how also involves regulating the activity as it goes along,

being prepared for eventualities that might arise and adapting as necessary

to them. Furthermore, Ryle’s position also involves the possibility of a kind

of internalisation of the activities in one’s know-how:

But very soon he comes to observe the rules without thinking of

them. He makes the permitted moves and avoids the forbidden

ones; he notices and protests when his opponent breaks the rules.

But he no longer cites to himself or to the room the formulae in

which the bans and permissions are declared. (Ryle 1949, p. 41)

As a result of the ongoing adaptability and the possibility of internalisation,

the picture of knowledge-how that Ryle proposes allows for knowledge-how

to be potentially quite complex. This must be right, given the large range

of knowledge that it picks out. For instance, consider:

(4) Joe knows how to spell ‘rhododendron’.

(5) Carley knows how to fly a helicopter.

While the former picks out a very particular piece of know-how, the latter

is complex and broad, requiring the co-ordination of many other skills and

competences across a range of situations.

There is a caricature of Ryle as holding an ability account of knowledge-

how, that is:

Ability: S knows how to V iff S is able to V .

This picture is actually a fairly popular one, found in (Rosefeldt 2004) and

(Noë 2005) for example, and does well on a large range of cases. It would be

very odd to accept (5), that Carley knows how to fly a helicopter, but then to

also hold that she is unable to fly a helicopter (at least in some salient range

of situations). However, there are a number of common objections. Mainly,

the ability account seems to fail on both necessary and sufficient conditions.8

As a counterexample, take the example of a top chef who loses his sense of

taste in a dire cheese accident. It is plausible that the chef loses the ability to

cook certain complex dishes, without having lost any knowledge. Conversely,

at times we are able to do things by luck alone, without knowledge of how to

8This is brought out particularly clearly in (Bengson & Moffett 2011).
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do them, such as if I were to try to fly a helicopter (I definitely don’t know

how) and just happen to do everything right. Hawley has a particularly

nice example in (Hawley 2011) of a climber getting caught in an avalanche,

but mistaking the snow for water and therefore making swimming motions

to get out. As it happens, this is the correct way to escape avalanches.

While she is able to escape the avalanche by making swimming motions,

she is furthermore reliably successful at doing so. Nonetheless, it would be

highly implausible to say that the climber has knowledge of how to escape

avalanches.

To be fair to Ryle, in (Hornsby 2012), Hornsby makes a convincing case

for the idea that Ryle did not hold the abilities view and was aware of the

kind of counterexamples that such a view would be subject to. She says:

In connection with knowing-how, he spoke of all of “abilities,”

“skills,” “competences,” and “capacities,” and one might assume

that he used these various terms in part because he recognized

that ‘knowing how’ could not be understood in terms simply of

ability. (Hornsby 2012, p. 82)

Hornsby’s contention is that Ryle’s main aim in discussing know-how is

not to give an account of necessary and sufficient conditions, but rather

to establish the existence of another category of knowledge which is not

directly about propositions. The reason for this is that it is required for

Ryle’s broader project of rejecting the Cartesian dualist position, and in

particular the idea that intelligence and practice come apart:

[T]here is no gap between intelligence and practice corresponding

to the familiar gap between theory and practice. (Ryle 1946, p.

2)

So Hornsby’s point seems right in reading Ryle in the following way:

The Cartesian thinks that the mental is separate from the physi-

cal. Ryle wanted it to be clear that the states of mind implicated

in intelligent bodily action are inseparable from bodily action it-

self. (Hornsby 2012, p. 87)

Hornsby is talking about the way in which the Cartesian “myth” which Ryle

stands in opposition to separates thinking from doing, or mental thought
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from bodily action, with knowledge situated firmly in the mental realm.

Ryle’s purpose in exploring knowledge-how, therefore, is not to give a re-

ductive account, but to show that there is another class of knowledge which

is not to be relegated to the mysterious mental domain. For this reason,

rejecting the gap between the ‘inner’ mental life and external behaviours

was a more central aim than an explicit account of knowledge-how.

Let us move on for now to the modern intellectualist revival brought

about in (Stanley & Williamson 2001). Stanley & Williamson take the

Rylean regress argument against intellectualism to be invalid and argue for

the thesis that knowledge-how is just a species of knowing-that. Their ar-

gument against the regress is that there is an equivocation on the kind of

action involved in knowledge-how. On the one hand, the sort of actions we

employ knowledge-how to perform are intentional actions, while the con-

templation of a proposition involved in exercising that knowledge how is

not necessarily intentional, so the move to form a regress of needing deeper

and deeper knowledge-how is rejected. They cite this move as coming from

Ginet, who says the following:

I exercise (or manifest) my knowledge that one can get the door

open by turning the knob and pushing it (as well as my knowl-

edge that there is a door there) by performing that operation

quite automatically as I leave the room; and I may do this,

of course, without formulating (in my mind or out loud) that

proposition or any other relevant proposition. (Ginet 1975, p.

7)

As such, the regress argument doesn’t succeed. Responses to this are ex-

panded in (Hornsby 2012, pp. 95–95) and (Fantl 2012).

Stanley & Williamson’s positive case for intellectualism mainly rests

on one central argument based on the language and semantics of know-

how ascriptions. They present the ‘standard’ semantics for the meanings

of sentences of the form “P knows how to V” and demonstrate at length

that this analyses knowledge-how as a relation to a proposition, through an

embedded-question construction which fits the same structure as knowledge-

what, -where, -who, -when etc. constructions which are normally taken to

be relations to propositional answers. The key question then is what ex-

actly the propositions known are when someone possesses knowledge-how.
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Distilling the argument somewhat, here are two of their examples and the

central thesis expressed about them:

(19) Hannah knows how PRO to ride a bicycle. (Stanley &

Williamson 2001, p. 424)

(20c) Hannah knows how she could ride a bicycle. (Stanley &

Williamson 2001, p. 425)

Relative to a context in which (19) is interpreted as (20c), (19)

is true if and only if, for some contextually relevant way w which

is a way for Hannah to ride a bicycle, Hannah knows that w is a

way for her to ride a bicycle. Thus, to say that someone knows

how to F is always to ascribe to them knowledge-that. (Stanley

& Williamson 2001, p. 426)

The ‘PRO’ that Stanley & Williamson use is part of the syntactic theory,

which functions as “a phonologically null pronoun that occurs [...] in the

subject position of untensed clauses.” (Stanley & Williamson 2001, p. 419)

but this is not so important for our purposes. The point is that the relevant

constructions which ascribe knowledge-how to some agent can be interpreted

in terms of propositional knowledge, in particular of knowing that some way

is the way that the activity can be done.

In this way Stanley & Williamson use the standard semantic theory to

reduced knowledge-how to propositional knowledge of ways. An important

additional feature of this account is that the propositional knowledge as-

cribed in knowledge-how must frequently be held under a practical mode of

presentation. For there is a potential difficulty in the propositional answer

to the embedded ‘how’-question, which is that knowledge that w is a way

to V is possible to have in plenty of cases where we don’t seem to know how

to V in the substantial way we were interested in. For example, if I point

to an expert juggler and observe that the way they do it is a way to juggle

nine balls, I might know that THAT (while pointing) is a way to juggle nine

balls, without myself possessing any knowledge on how to actually go about

doing it. The practical mode of presentation is then the connection to the

complex dispositions involved in knowing-how to do something in a way that

makes it plausible to link it to ability, skills etc. They can then claim:
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It is for this reason that there are intricate connections between

knowing-how and dispositional states. But acknowledging such

connections in no way undermines the thesis that knowing-how

is a species of knowing-that. [...] It is simply a feature of certain

kinds of propositional knowledge that possession of it is related

in complex ways to dispositional states. Recognizing this fact

eliminates the need to postulate a distinctive kind of nonpropo-

sitional knowledge. (Stanley & Williamson 2001, pp. 429–430)

The investigation I am interested in of knowledge-how in the mathemat-

ical context is premised on there being an interesting kind of mathemati-

cal knowledge which has not been adequately appreciated in mathematical

epistemology previously, so in turn presupposes the intellectualist position

of Stanley & Williamson to be flawed. A full discussion of the merits and

failings of the theory could lead us far astray, so let me just set out succinctly

four ways in which I believe it is incorrect, though all are closely related.

Firstly, the heavy use of semantic theory is significantly less convincing once

we see that the account is not uniform across different languages, as aptly

displayed in (Rumfitt 2003) and developed in (Ditter 2016). Rumfitt shows

us that the best semantic theories for other languages range from largely

unhelpful for Stanley & Williamson’s point (in the case of French) to fully

antithetical to it (in the case of Russian). Secondly, there is the underlying

move of making the jump from the linguistic and semantic facts to the meta-

physical realm of what knowledge really is, which is not well-justified. Alva

Noë (Noë 2005) and Jessica Brown (Brown 2013), for instance, both argue

that the language-first methodology fails to consider empirical science, espe-

cially cognitive science, as a potentially divergent source of evidence on the

nature of knowledge-how. Thirdly, linguistics and semantics aim to study

language and meanings, but in building theories there are significant ideal-

ising assumptions made. For example, Noam Chomsky starts his (Chomsky

1965) with the following:

Linguistics is concerned primarily with an ideal speaker-listener,

in a completely homogeneous speech-community, who knows its

language perfectly and is unaffected by such grammatically ir-

relevant conditions as memory limitations, distractions, shifts of

attention and interest, and errors (random or characteristic) in
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applying his knowledge of the language in actual performance.

(Chomsky 1965, p. 1)

The best understanding of these practices, then, is under the heading of

modelling, broadly construed. However, with this in place, if one wants

to make the kind of argument Stanley & Williamson do, then it must be

demonstrated that the conclusions one is drawing are not artefacts of the

modelling process. No such argument is given, but furthermore there is

a clear story to be told about why modelling knowledge-how ascriptions

in terms of propositions does have the propositions merely as a result of

the modelling: because these are the standard, well-known building blocks

of semantic theories more generally. After all, why expand the theoretical

apparatus when instead we can just simplify the complexity involved in

practical knowledge. Indeed, this strikes me as the reason that Stanley &

Williamson need to posit both ‘ways’ and ‘practical modes of presentation’

as a bridge back to the actual phenomenon we are interested in. This takes

us to the fourth point: both ‘ways’ and ‘practical modes of presentation’

act as a philosophical black box, doing essentially all of the work in getting

to knowledge-how but without any indication of what is going on inside.

Jennifer Hornsby demonstrates that ‘ways’ in particular are not up to the

task required of them on this picture (Hornsby 2012, pp. 90-92).

Having seen Stanley & Williamson’s intellectualism and the Rylean anti-

intellectualism before that, I want to finish this section with a consideration

of positions which are located between the two extremes. One way to find

such a position is to follow (Glick 2011) in separating out weak intellectual-

ism from strong intellectualism, where the former holds that knowledge-how

has propositions as a relatum, while the latter equates knowledge-how with

full theoretical knowledge, i.e. possessing standard features of knowledge-

that like “(some subset of) belief, justification and Gettierizability, linguis-

tic accessibility, availability of content for use in inference, and concept-

possession.” (Glick 2011, p. 411). Importantly, this allows one to find

positions which satisfy the weak but not the strong intellectualist position,

with scope for making the relation between the knowing subject and the

propositions be of some sort which would be acceptable to anti-intellectualist

thinking.

The middle-way I will look further at, though, comes more from the

Rylean direction in Wiggins’s (Wiggins 2012). While Wiggins explicitly
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accepts that Ryle’s general point is correct against the intellectualists, that

there are distinct kinds of knowledge, the interest lies in the way in which

he brings out the close connection between the distinct pieces of practical

and propositional knowledge.9 Wiggins expands further on Ryle’s metaphor

of the ‘step-child’ we saw already above:

In short the propositional acknowledgement of rules, reasons or

principles is not the parent of the intelligent application of them;

it is a step-child of that application. (Ryle 1946, p. 9)

The idea being that a great deal of propositional knowledge, even of rules or

principles, rests on prior practical knowledge. Wiggins gives us the following

example:

A ship’s pilot who is retained by the maritime authorities to

bring large ships safely to anchor in an awkward or difficult har-

bour can tell us, on the basis of his competence and experience,

that when the wind is from the north and the tide is running

out, the best thing to do is to steer straight for such-and-such a

church tower until one is well past a certain bend in the channel.

Almost anyone can come to possess that propositional knowl-

edge but the information they get in this way will probably rest

indispensably upon the experience and practical knowledge of

a handful of people with a different kind of knowledge, namely

practical or [...] agential knowledge. (Wiggins 2012, p. 109)

There is a clear flow in one direction, then: that propositional knowledge of-

ten comes about through practical experience. But I take it that the thought

extends in the other direction too. Once the rule of thumb is in place, the

ship’s pilot can quickly explain how to anchor in the difficult harbour to

other ships’ pilots, that they can thereby combine this propositional item of

knowledge with other know-how of sailing they already possess to be more

knowledgeable generally of how to make it into the harbour safely.

I think it is safe to go even further, in fact, in that a great deal of our

learning comes about through a combination of practical and propositional

knowledge. It would be strange to expect us to be able to trace back our

9Recalling my response to Rav’s Pythiagora thought-experiment above, the idea that
practical and propositional knowledge are interdependent will be crucial in what is to
come.

132



knowledge to find it ‘bottoming out’ at either pure knowledge-how or pure

knowledge-that. It is much more likely that we would find the two to be fully

intertwined and mutually supporting. The Wigginsian picture, then, is one

which there is an interdependence between knowledge-how and knowledge-

that. Rather than having one being the step-child of the other, we find that

the different kinds of knowledge are a close-knit family group.

4.4 Mathematical Know-How

In this section I will return to the mathematical realm and explore how

knowledge-how can arise here too. Agreeing with the anti-intellectualist

claim that there is a substantial difference between knowledge-how and

knowledge-that, and the broader picture from Wiggins on which the two

kinds of knowledge are nonetheless strongly interrelated, we now have some

ideas to bring back to apply to mathematics.10

To begin, let us connect Rav’s ideas to the epistemological literature.

Rav claimed that the interesting mathematical knowledge is knowledge of

proofs, since this is where the methods, techniques, concepts and interesting

ideas, which are the essence of mathematics, actually reside. The thought

then is that Rav’s big insight, put in the epistemological framework, is that

the interesting knowledge in mathematics is knowledge-how. On this view,

the knowledge that mathematicians are after is knowledge of how to solve

problems, how to prove theorems, how to analyse data etc.

However, while I thought that Rav’s argument was sufficient to show that

knowledge-how is of serious interest in mathematics in its own right, this is

not to the exclusion of knowledge of mathematical truths and propositions.

Instead the two are closely connected, in that mathematical knowledge-that

of truths and knowledge-how of methods, techniques and strategies, are not

easily pulled apart in practice. What do I mean by this exactly? Well,

the thought is that each would be severely diminished without the other,

10Patrick Greenough has commented on this section that it should be noted that there
is a coherent position for a kind of Ravian intellectualist, where the focus is on practical
modes of presentation for mathematical knowledge-how as a kind of propositional knowl-
edge. This doesn’t seem to be compatible with Rav’s own views due to the other material
he has against Formalist-Reductionist claims, standing against there being underlying
propositions for proofs or knowledge of them. However, there is room for this position
in the debate and it does appear to be open for proponents of intellectualism to explore,
though I shall not be doing so here.
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both in the history and practice of mathematics. I want to now spend some

time on various examples of how the distinction between knowledge-how and

knowledge-that will be reflected in mathematics, as well as where we can

see the interaction between the two taking place.

For one thing, a focus on knowledge-how in mathematics will contribute

to a better picture of mathematics education. Work in maths education has

shown a significant awareness of the need to teach students practical knowl-

edge and skills. A prime example is found in the work of Gila Hanna who

has over 30 years examined the importance of proof and proving in mathe-

matics education, such as in (Hanna 1989), (Hanna & Jahnke 1996), (Hanna

& Barbeau 2008) and (Hanna 2014).11 In fact, in (Hanna & Barbeau 2008),

they engage with the Ravian view of proof and weigh up its importance for

mathematics education:

We argue that what is true of mathematics itself may well be true

of mathematics education: in other words, that proofs could be

accorded a major role in the secondary-school classroom pre-

cisely because of their potential to convey to students important

elements of mathematical elements such as strategies and meth-

ods. (Hanna & Barbeau 2008, p. 352)

They make the argument for this around two case studies of the benefits

of teaching particular mathematical proofs, one of the quadratic formula

(which I will discuss separately shortly) and one concerning angles inscribed

in circles. The point is that learning proofs is an important way of also

learning strategies that take us beyond merely learning the truth of the

theorem, as well as allowing us to come to a more rounded understanding

of mathematics.

There is a major Rylean point here about the process of learning: that

learning a subject is often about being inducted into the practice of that

subject rather than merely learning the truths associated with it. Ryle even

includes mathematics as an example of this phenomenon:

The fact that mathematics, philosophy, tactics, scientific method

and literary style cannot be imparted but only inculcated re-

veals that these too are not bodies of information but branches

of knowledge-how. They are not sciences but (in the old sense)

11This is only a representative sample; Hanna has over forty relevant papers.
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disciplines. The experts in them cannot tell us what they know,

they can only show what they know by operating with clever-

ness, skill, elegance or taste. The advance of knowledge does not

consist only in the accumulation of discovered truths, but also

and chiefly in the cumulative mastery of methods. (Ryle 1946,

p. 15)

Actually, Ryle goes on further to suggest that knowledge-that rests on

prior knowledge-how, as both discovery and deployment of our proposi-

tional knowledge requires practical knowledge of how to discover and where

the knowledge fits into the wider framework.

Effective possession of a piece of knowledge-that involves know-

ing how to use that knowledge, when required, for the solution

of other theoretical or practical problems. (Ryle 1946, p. 16)

The case for this in mathematics is particularly strong, as even understand-

ing the language of mathematics is about knowing what can be done with

the various concepts deployed. For instance, as one of the first things chil-

dren learn, the ‘+’ symbol is directly associated with learning the process

of adding numbers together and it is hard to imagine understanding what

it means independently. Of course, the inculcation into mathematical prac-

tice is not a one-off event, but a continuing development of knowledge of

mathematics, both practical and propositional.12 There are some skills,

abilities and pieces of know-how which are more general and others which

are topic-specific, but this does not affect the point that mathematics in-

volves the cumulative mastery of methods as well as knowledge of theorems

and propositional statements.

That learning mathematics involves being inducted into practices, prac-

tices which involve both knowledge-how and shared items of propositional

knowledge, has clear impact on the claims from the previous chapter con-

cerning mathematical concepts. Something which I quietly avoided flagging

up earlier was that Rav’s idea of what proofs give us knowledge of (besides

methods, skills, interactions and systematisations) included knowledge of

12As well as much more besides: being inducted into the practices of mathematics
involves all kinds of additional learning, such as how to behave at conferences; how to
present proofs on a blackboard; which journals to send which papers to; which math-
ematicians are helpful, rigorous, friendly, quick at responding to emails; which funding
bodies to apply for grants from etc.
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mathematical concepts. There is room here for a strong stance on the na-

ture of concepts, where concept possession is about the ability to make use

of them in various ways, such as in distinguishing whether some object be-

longs in the extension or anti-extension, deploying them in inferential moves,

describing them correctly in appropriate linguistic settings, recognising the

relations between them and other concepts etc. Such a move would bring

concepts and knowledge-how close together, via the tight link between abil-

ities and knowledge-how. I refrain from leaping into this discussion fully,

but it certainly does not strike me as implausible in the mathematics case.

In particular, the prominent place of informal concepts, open-texture and

domain-specific reasoning in mathematics is suggestive of the idea that com-

ing to know how to do mathematics involves coming to a tacit understanding

of the sort of activities which are acceptable to carry out. I shall return to

this point later in section 4.6.

Thus far, we have seen that on the picture I am presenting, mathematical

knowledge-how is frequently prior to propositional mathematical knowledge.

However, I also want to demonstrate that the Wigginsian observation is in

full effect and the relationship goes the other way too, such that knowledge-

that and knowledge-how are interdependent. Following Hanna & Barbeau,

consider the example of the quadratic formula, i.e. that the solutions to an

equation of the form ax2 +bx+c = 0 are given by x = (−b±
√
b2 − 4ac)/2a.

The point Hanna & Barbeau make is that learning the proof that the

quadratic formula will always deliver the roots of a quadratic equation can

teach a student the skills involved for several related techniques, such as

the “completing the square” method and applications to examples beyond

quadratics, such as quartic equations of particular forms. But, as a parallel

point, the propositional knowledge of the truth of the theorem does deliver

the knowledge of an easy way to solve a whole class of problems, one which

a struggling student can perform almost mechanically even if they don’t un-

derstand the reason that it works. That student can now know how to solve

more quadratic problems than they did before. Indeed, if their difficulty is

localised to just quadratics, that student might even be able to solve much

more complex problems that require solving quadratics as a part. Obtaining

the propositional knowledge of the quadratic formula acts as a key to unlock

further knowledge-how.

To take a more advanced example, consider equivalence and duality of
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categories. These are relations between categories that show them to be “es-

sentially the same” in the case of equivalence, or equivalent to the “opposite”

in the case of duality. The power of such results is immense in their ability

to bring out connections between seemingly disparate areas of mathematics

and to transfer theorems easily from one to the other without a fresh proof.

This holds in a very strong sense, as Mac Lane puts it:

For more complicated theorems, the duality principle is a handy

way to have (at once) the dual theorem. No proof of the dual

theorem need be given. We usually even leave the formulation

of the dual theorem to the reader. (Mac Lane 1998, p. 32)

In general, category theory thrives on these kind of links, and there are a

large number of theorems about duality between categories. For example,

Stone’s representation theorem gives an isomorphism between Boolean al-

gebras and certain topologies on sets (in particular: a topology on the set

of ultrafilters of the Boolean algebra) and Birkhoff’s representation theo-

rem does the same for distributive lattices and partial orders. Generalis-

ing, Stone duality refers to the broader class of categorical dualities hold-

ing between topologies and partially-ordered sets, which allows us to move

between different disciplines while straightforwardly transferring theorems.

The philosophical significance here is that there is once again the lock-and-

key phenomenon going on of knowledge-that providing the means to open a

whole new range of methods and puzzle-solving techniques. While certainly

it requires some background to establish dualities, the interesting mathe-

matics lies not necessarily in the proofs or the methods used in the proof,

but rather in the fact that the establishing of the representation theorems al-

lows us to think about certain structures in two distinct but equivalent ways.

The usefulness of this is emphasised by Abramsky as a ‘creative ambiguity’:

Mathematically, this distinction can be related to the duality

between points and properties, in the sense of Stone-type du-

alities: the duality between the points of a topological space,

and its basic “observable properties”—the open sets. The par-

ticular feature of domains which allows this creative ambiguity

between points and properties to be used so freely without in-

curring any significant conceptual confusions or overheads is that
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basic points and basic properties (or observations) are essentially

the same things. (Abramsky 2008, p. 494)

The Ravian picture, on which the theorem is the ‘headline’ to go with the

interesting parts of mathematics which are embedded in the proofs, falls

short on the example of representation theorems and Stone duality, in that

the interesting mathematics does not reside in the relatively mundane proofs

of the theorems, but instead in the new connections one can draw once the

theorem is in place and the Gestalt-shifting in viewing well-known structures

in entirely different ways. Knowledge of how to prove the theorems is an

important discovery that establishes the truth of the duality and gives us

knowledge thereof, but it is the latter knowledge of the truth of the theorems

which is primary in opening up the new connections which can subsequently

be drawn. The knowledge that is discovered about the vast network of con-

nections between different mathematical structures is interesting and might

well be entirely propositional. The propositional knowledge of these con-

nections then opens up the scope for a whole range of additional methods,

techniques and results, once again supporting the idea that the mathemat-

ical knowledge is best understood in terms of interconnected propositional

and practical knowledge.

4.5 Löwe & Müller on Mathematical Skills

I am not the first to pick out the fact that Rav’s claims about the interesting

knowledge of mathematics fits directly into the framework of knowing-how as

found in epistemology. Löwe & Müller in two papers (Löwe & Müller 2008,

2010) propose a picture of mathematical knowledge as context-dependent

which draws on mathematical knowledge-how as defined in terms of math-

ematical skills. In this section I will set out the arguments they give and

critically assess them.

The papers begin with Löwe & Müller setting out their main claim as

follows:

We argue that mathematical knowledge is context dependent.

Our main argument is that on pain of distorting mathemati-

cal practice, one must analyse the notion of having available a

proof, which supplies justification in mathematics, in a context

dependent way. (Löwe & Müller 2008, p. 91)
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The argument to establish this claim is especially relevant to us in that it

draws heavily on mathematical practice, and in particular the distinction

between formal and informal proofs, placing these in the context of their re-

lationship to mathematical knowledge. The idea is to look at the “standard”

account of mathematical knowledge from proofs, given by:

K1 S knows that P iff S has available a proof of P .

To then arrive at a mathematical contextualism, the thought they have is to

show that both the notions of ‘availability’ and ‘proof’ in this account must

vary with context. In order to demonstrate this, Löwe & Müller run through

a series of explications of K1, to show that any invariantist sharpening of the

two notions is doomed to fail to properly match ascriptions of mathematical

knowledge as found in practice.

The first observation is that K1 cannot be read as merely requiring physi-

cal access to a proof, else standing in the Mathematics Departmental Library

would turn even the slowest dimwit into a mathematical genius. Instead,

the idea behind K1 must be spelled out with “a modalised reading in which

the epistemic subject S plays an active role” (Löwe & Müller 2008, p. 92)

such as the following:

K2 S knows that P iff S could in principle generate a proof of P .

Again, this leaves the invariantist about mathematical knowledge needing

to fix readings for ‘in principle’, ‘generate’ and, of course, ‘proof’. Following

the Formalist-Reductionist, one could fix ‘proof’ as ‘formal proof’. In that

case we can look to Formal Mathematics to see how long formalisations have

taken and use that as an benchmark for how long one should be given to

generate a formal proof for K2. Löwe & Müller cite certain Coq formalisa-

tions as having taken ten years, suggesting that therefore ‘could in principle

generate’ might be best be set within such a timeframe:

K3 S knows that P iff , given ten years, she could write a formal derivation

of P in the language Coq.

But they point out that this is far too generous: given ten years, the mathe-

matician could learn Coq from scratch as well as a large number of theorems

previously unknown to her (Löwe & Müller 2008, p. 99). Clearly K3 will be

inadequate. It should also be clear that fixing the length of time some other
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way will always be too restrictive (ruling out the hard cases, like early Coq

formalisations) or too permissive (ascribing knowledge to those who clearly

don’t possess it).13

In a different direction, Löwe & Müller suppose that ‘proof’ could be

taken along the lines of ‘informal proof on a blackboard’:

K4 S knows that P iff , given a blackboard and a piece of chalk, she is able

to produce an acceptable blackboard proof within an hour.

But once again, setting an exact timeframe—such as the one hour above—

will be problematic. The time cannot be too short, because there are normal

cases of mathematical knowledge where the mathematician needs to refresh

the details if they are to write up a proof on the board:

They need to try one or two standard approaches to tackle the

problem, remember the important details, and only after that

are they able to provide an acceptable proof. (Löwe & Müller

2008, p. 99)

Too long, however, and someone can in theory have time to figure out some-

thing new; they might even believe ¬P and by working for the one hour

arrive at the opposite belief. It would certainly be undesirable for us to

claim they knew P despite believing ¬P .

The upshot is that we should take mathematical knowledge to be linked

to the salient context. Any attempt by the invariantist to fix the key con-

cepts in a rigid way is open to refutation by pointing either to a context

in which possessing mathematical knowledge is very demanding which the

definition is too strict for, or one in which mathematical knowledge is made

too easy by it. The argument is that there is no way in which we can fill out

the details of the link between proof-possession and mathematical knowledge

that isn’t inextricably linked to the context.

Löwe & Müller next suggest that mathematical knowledge in their con-

textualist picture should be explicated in terms of mathematical skill :

K5 S knows that P iff S’s current mathematical skills are sufficient to

produce the form of proof or justification for P required by the actual

context. (Löwe & Müller 2008, p. 104)

13They also consider another version based on Steiner’s ‘midwife logician’ idea (Steiner
1975). In this case ‘could in principle generate’ is set as ‘could with aid of a midwife
logician produce’. Problematically, as indicated by Löwe & Müller, this blurs the line
between some agent’s knowledge and the knowledge of the midwife logician.

140



In their follow-up paper (Löwe & Müller 2010), Löwe & Müller expand

on what they mean by mathematical skills, with reference to the Rylean

picture and the idea that Rav’s claim is about the primacy of knowledge-

how in mathematics. However, they quickly set this aside to focus purely

on skills as professional skills, suggesting that Ryle took knowledge-how to

be synonymous with skill and following him in this usage.14 They have

a lot of useful things to say concerning the nature of professional skills

in mathematics, drawing explicit parallels with the case of nursing as a

profession:

The notion of a skilled nurse is related, ultimately, to a nurse’s

job description, which has developed historically. We are not

concerned here with a natural kind of human beings, nurses, of

which there are more and less skilled ones. Rather, we are as-

sessing human beings who have chosen a specific profession, as

more or less skilled as required by the (historically and sociolog-

ically contingent and changing) requirements of that profession.

Nursing skills are professional skills. (Löwe & Müller 2010, p.

270)

They point out that in mathematics there are a number of complex and

context-dependent issues surrounding the nature of mathematical skills.

Firstly, there are a whole range of mathematical skills needed in being a

professional mathematician, ranging from almost essential ones used in do-

ing mathematics and mathematical reasoning, to fairly relevant ones such

as giving talks and engaging in informal chats, to mostly peripheral skills

such as filling in expense forms or adjusting to jet-lag. Secondly, there is a

question of the granularity of mathematical skills and how one individuates

them, to which they answer:

Mathematics is one subject, and for most purposes, it makes

sense to view general mathematical skills as the pertinent level

of granularity. For purposes of assessing knowledge claims, local

dimensions of skill may however also play a role, depending on

context. (Löwe & Müller 2010, p. 274)

Due to the contextualist picture, context (as well as the particulars of the

theorem P ) plays an important role in picking out the relevant skills in the

14I don’t think this is a correct reading of Ryle, something I shall return to momentarily.
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picture of mathematical knowledge, as well as the extent to which the gen-

erality of the skills holds up. It might well be that there are theorems which

require very particular topic-specific skills, for example. Finally, there is

an interesting set of questions concerning the measurement and assessment

of skill. In particular, the thought is that skills must go beyond particu-

lar performances, as even the most highly skilled individual can go awry

occasionally.15

So let us assess the picture presented by Löwe & Müller. In general,

I find the direction appealing and believe that it is in the same vein on

many issues as the picture of mathematical knowledge in terms of virtue

epistemology to be given in the next chapter, especially with respect to

making the mathematician play an active role in their epistemic state. I also

share the general naturalistic methodology of beginning with mathematical

practice, and think that context and skill must play a role in mathematical

knowledge.

However, there are points of contention too. First of all, I do not think

it is correct to equate knowledge-how with skill, and have argued that this is

not the Rylean picture either. As we saw above, Hornsby makes a convincing

case that Ryle was not interested in any sort of reductive analysis such as

this, be it to abilities, capacities, skills etc. Such exegesis doesn’t hinder the

philosophical claims, of course, but does cast doubt on how well the work

follows through on the Rylean project as it applies to mathematics.

Secondly, one obvious place to look for criticism of the Löwe & Müller

position is in the usual invariantist responses to contextualism, which would

seek to explain away the cases of shifting knowledge ascriptions varying

with context. One way to do this is to argue that mathematicians might

well commonly engage in “loose talk”, where they use the term ‘knowledge’

but actually mean something weaker. They might go so far as to reserve the

term ‘knowledge’ for the idealised, Formalist-Reductionist view, and argue

that anything less than this does not meet the high standards we have for

mathematical knowledge. Mathematical knowledge from proof, after all, is

singled-out as special precisely because of its rigid, deductive form of jus-

15This point will be extremely important in the next chapter, where skills will be
connected to intellectual virtues. For some virtue epistemologists, possessing the right
virtues is necessary for knowledge, but we see from the current point that this can’t be
the whole picture, as neither skills nor virtues generally suffice to make someone immune
to performance errors.
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tification and, one might argue, if this is lacking then what results does

not deserve the title of ‘knowledge’. However, I think Löwe & Müller are

right not to accept this, as they are clear in their naturalistic methodol-

ogy which gives mathematical practice a primary role. The strict account

which the invariantist might offer would simply rule out so much of our

claimed knowledge of mathematics that it would be a Pyrrhic victory: the

concept of knowledge arrived at would be neither the one actually in use

nor particularly useful for any mathematical purposes.

A more pressing worry, in my opinion, is about the details of modalis-

ing mathematical knowledge through the notion of skill. With skills, and

knowledge-how more generally, it makes a great deal of sense to modalise in

a way that means we know how to do things that we have not previously

done or even considered doing, because the very notions of knowledge-how,

skill and ability are bound up with success or reliability across a range of

counterfactual scenarios. Furthermore, considerations of granularity mean

that an application of knowledge-how can almost always be to a new sit-

uation if we describe it finely enough. However, the worry is that Löwe

& Müller transfer this modalisation to mathematical knowledge generally,

and in particular to propositional pieces of knowledge, which is their main

target for the contextualist approach they are advocating. To emphasise,

their final account is based around the following thesis:

K5 S knows that P iff S’s current mathematical skills are sufficient to

produce the form of proof or justification for P required by the actual

context. (Löwe & Müller 2008, p. 104)

My concern is that this principle assigns mathematicians too much knowl-

edge, even with the contextual restrictions that they build in. For the con-

text here only supplies the form of the proof or justification needed to know

that P , ranging from a rough proof-sketch to a full formal derivation (Löwe

& Müller 2010, pp. 274–275). The difficulty, however, is that mathemati-

cians may possess many skills which don’t then get applied to some given

proof for a theorem P . The fact that S possesses all the relevant skills is

sufficient to satisfy K5, even if S never goes through the motions of actually

proving P .

Indeed, we saw above that performance errors are a reason for talking

of skills more generally rather than the instantiations of them, but similarly
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they are a reason that having skills won’t suffice for possessing the deliver-

ances of successful performances of those skills. On K5, it would still easily

be possible to possess all of the relevant skills to produce the level of proof of

P required by the context, and thereby to know P on K5, despite believing

¬P . For example, adopting one of Löwe & Müller’s own cases, imagine a

student S going into a maths exam who has studied all of the techniques

and methods of the course, but just before entering is told by a usually

trustworthy fellow student “psst don’t forget that ¬P”. While S does have

all of the relevant skills to produce a proof of P up to the standards of the

exam, she might well believe ¬P on the basis of the testimony. Simply put,

K5 allows for someone to know something they simultaneously believe to be

false— a most undesirable result.

The answer to this problem, as I see it, is to go beyond skills to re-

quire successful performances or manifestations of knowledge-how to obtain

propositional mathematical knowledge. We shall explore the epistemology

of this in the next chapter. However, what I would now like to emphasise in

the coming section is that this requires observing the importance of proving

as an activity, and it is going through the actions built into a proof which

is what secures knowledge of the truth of the theorem proved.

4.6 Proving in Action

In this section I will consider the difference between proofs themselves and

the activity of proving, specifically with respect to their contribution to

mathematical knowledge. The focus on actions in proofs builds on previous

work by Larvor in (Larvor 2012), so let us extract some key points he makes

first.

4.6.1 Larvor’s Inferential Actions

In (Larvor 2012), Larvor sets out the case for the existence of essentially

informal arguments (from which we have essentially informal proofs too, as

those proofs which involve essentially informal arguments). Hereby we can

identify a substantial area which is not covered by the traditional approaches

to the philosophy of mathematics, which also requires investigating math-

ematical practice. The philosophy of mathematical practice can then gain

traction and make the perspectival shift being advocated clear. Larvor’s
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main proposals are that essentially informal arguments are distinguished

from formal arguments by their content-dependence and, furthermore, that

a proper account of content-dependence will include a broadening of the

picture of inference beyond merely linguistic argument to a full class of

inferential actions. This is because the content of mathematics, and that

which we act on inferentially, is not limited to language alone.

In what way are essentially informal proofs content-dependent? Larvor

argues that the content of a proof connects to some domain the proof is

located in, and that this domain has some class of acceptable inferences

that can be employed in proofs in this domain. A proof is then valid if all

of the inferences used in the proof are acceptable in the domain, and have

been applied properly etc. Importantly, formal rules are acceptable across

all domains (such as modus ponens)16, but Larvor’s picture allows us to also

have domains with more contentful moves which are not generally applicable

across all domains. While this might mean some inferences are specific to a

very restricted domain, many are in fact acceptable across a broad range of

domains without this being so broad as to include all domains. A content-

dependent proof will then make use of these content-dependent inferences.

Further clarification is needed, though. For instance, the above has not

yet told us about what content is or what counts as a domain. We would

be in big trouble if the domains were so fine-grained to have it that each

purported proof is located in its own domain, with the acceptable inferences

being precisely those employed, as this could trivialise mathematics and

the whole notion of proof. The right answer seems to be that domains are

particular areas of mathematics, with particular frameworks for acceptable

inferences established through mathematical practice, though it would be

wise to follow Löwe & Müller in including some context-dependence in this.

The content is merely the subject-matter of the proof, which connects to the

domain in the straightforward sense that, for example, a geometrical proof

reveals that we are working in the domain of geometry and thus authorises

the use of geometrical moves in the proof.17

16There is, here, the obvious question of which logic determines the rules that are
acceptable across all domains, or whether there even is such a thing. I don’t think it
would be a bad thing for the position being advocated here if there is indeed no universal
background logic. The logical pluralist in me certainly thinks so. Nonetheless, I will set
aside these issues as outside the scope of the current discussion.

17We should be careful, of course, to avoid the subject-matter merely being comprised
of some set of acceptable inferences, as this threatens circularity.
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The account of informal proofs as depending on content as well as their

form does lose us some nice features that a Formalist-Reductionist account

would have. For example, if all of our proofs could be reduced to formal

proofs alone, then the required logic could remain topic-neutral, which now

will be explicitly given up. Likewise, Larvor points out that “we have to

abandon the hope of establishing a general test for validity” (Larvor 2012,

p. 723). We shouldn’t be unhappy to see these go, however, given that they

are so closely linked to formality which we have good reason to reject as the

right account of informal proofs (see the first half of this thesis). Rather,

it will become clear that these features can have no general place in the

new, more dynamic approach to mathematical proof conceived of in terms

of content and action.

The second main proposal by Larvor is a switch to emphasising the ac-

tivities involved in inferring, arguing and proving. Above, we saw a number

of mentions of the acceptable moves, steps and inferences in some given

domain. Regarding these, Larvor says:

If we think of an argument as a sequence of propositions con-

nected by logical relations, it is hard to see how the content

of the argument can play a role in the step from one propo-

sition to the next. This is in part because a classically trained

philosophical imagination is dominated by general logic, but also

because orthodox philosophical education urges us to forget that

the movement from one line of a proof to the next is an action.

(Larvor 2012, p. 721)

Larvor argues that we should recognise the purely propositional framework

as being too limited to properly account for actual arguments found in math-

ematical practice and mathematical proofs. The point is not merely that

we should recognise the actions involved in moving between propositions,

but rather that adopting such a focus reveals that the objects of our actions

actually form a much broader class than just propositions.

The liberating insight is to notice that in making arguments,

we act on all sorts of items in addition to propositions and

well-formed formulae. Sometimes, we act inferentially on non-

propositional representations of the subject-matter such as dia-

grams, notational expressions, physical models, mental models
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and computer models. (Larvor 2012, p. 721)

More specifically to informal proofs, the kinds of steps found in mathematics

are not limited to actions on propositional contents, something Larvor illus-

trates with a series of examples from diverse areas of mathematics. Indeed,

it may even be that these actions do not have objects at all, such as if the

subject-matter is the manifestation of the action. Larvor’s example of the

last point is the demonstration by a gymnast that some complex gymnastics

move is possible by performing the move.

The framework being proposed by Larvor, then, is to see proofs as sys-

tems of inferential actions. This is far removed from the alternative, tra-

ditional view of proofs as abstract objects made up of sequences of propo-

sitions.18 Inferential actions are just those actions which can be used in

arguments and, in the mathematical case, proofs. Of course, as described

above, the inferential actions acceptable for some particular proof depends

on the domain the proof is in.

There is a strong dose of Lakatos and Kneebone in this conception of

inferences as found in actual proofs. We can view the key point as being

that we should switch from a static conception of proofs to a dynamic one.

While the static conception is primarily concerned with the stops along the

way and the stepping-stones through the proof, in contrast, the dynamic

view is concerned with the movement through the proof and the actual

steps being made, as it is these which ultimately take us through the proof

to establish a theorem. That isn’t to say that the places we stop aren’t

important. The full picture that should emerge of informal proof will be

one which takes account of how the non-propositional actions found in the

proof relate to the propositional content of that proof as in the Wigginsian

anti-intellectualist view of Ryle. This aligns with the approach to practical

and propositional knowledge being argued for in this chapter.

Again, the move to the action-oriented perspective gives up on cer-

tain desirable features, especially when combined with validity as content-

dependent. Primarily, unlike in formal logic, there is now no general test

18Proofs and arguments as abstract objects is not restricted to the formal proofs and
arguments. For example, Leitgeb takes informal proofs to be abstract objects:

[...] we regard mathematical proofs per se as abstract entities which are
independent of any material instantiation. (Leitgeb 2009, p. 266)

Similarly, (Simard Smith & Moldovan 2011) treats arguments as abstract objects (al-
though abstract objects which can come into existence and disappear again).
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for validity because there is no full and final list of inferential actions. Even

when limited to some domain, if that domain is anything beyond the simplest

cases then it will simply not be possible to fully settle all of the actions that

might be permissible within that domain. Although this is certainly a cost of

the view, as Larvor points out, it is a rather mild one. This is so because it is

something that we have been lead to believe by the Formalist-Reductionist

tradition that we will get, yet isn’t really something we should be expecting

once we pay attention to proof in practice. Indeed the open-ended nature of

mathematics and mathematical methods is vitally important to its growth

and development, as we saw in the previous chapter.

Let us briefly mention the place of rigour as it is sketched in Larvor’s

view. Larvor says that

[F]or every kind of inferential action, there must be a correspond-

ing means of control, to ensure rigour. Sometimes these controls

are simple rules like ‘do not divide by zero’. In other cases, these

controls may be the fruit of mathematical research [...] Demon-

strating rigour involves making the controls on inferential acts

explicit, which is why some diagrams disappear from the final

published version of a mathematical argument. The problem is

not with diagrams as such, but rather that the actions performed

on these diagrams in this piece of work do not have established,

agreed controls. (Larvor 2012, p. 728)

Such controls are important— mathematicians should be careful not to di-

vide by zero or abuse diagrams and infinite series. Larvor is right that it

is often a fruitful project to make these explicit and that this is connected

to mathematical rigour. However, we might be sceptical that rigour is fully

accounted for by such corresponding controls, for I take correct and rigor-

ous proving to be connected to practical knowledge and it has been argued

that this is not fully enumerable in terms of explicit rules or principles in

any reasonable sense. Just as in Ryle’s point that there may be regulative

propositions, rules and maxims which apply to practical knowledge, but

these cannot be the whole of what knowledge-how amounts to, nor should

we expect there to be a particular list of controls which ensure rigour. As

such, we should not expect to be able to demonstrate rigour in the way

described either, unless it reduces to the Formalist-Reductionist position,
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which is not what is intended. If not, though, we need to answer the further

question of how we will ever manage to be confident that there is not some

further ‘hidden’ rule that we violate in a given proof?

We can also wonder if such controls will form a unified class at all, or

whether there is a range of different principles, between those necessary for

rigorous proving and those which are merely good proof etiquette. For ex-

ample, if I were to switch languages (from English to Japanese, to Afrikaans

etc.) between each line of a proof, is this a lack of rigour or just poor style?

Just like the open texture of mathematical concepts, for any given math-

ematical domain it might well be that there is a never-ending horizon of

ways to mathematically misbehave. The way these are avoided is not about

implicit rules, but about learning how to behave well. This is not to say

that there are no such rules; in line with the arguments from Ryle we can

extract them from practice and describe them in exactly the same way that

we can identify logics which our practices cohere with. We certainly have a

great deal of rules and heuristics taught in classrooms and lecture halls, for

example. The point is just that there is something more than this to rigour.

In the next chapter I will argue that the correct account of mathematical

rigour should connect it to intellectual, mathematical virtues.

4.6.2 Proving as an Activity

Proofs play numerous roles in our mathematical practices and serve many

different functions, but one I am here primarily interested in is their role

in mathematical epistemology. Previous considerations of mathematical

knowledge seem to have paid little attention to the idea that the knowl-

edge we get from proofs is arrived at by the activities of proving. Even the

Löwe & Müller papers discussed above, which seem to be going in the right

direction, start from an idea of merely having access to a proof and finish on

a modalised notion which grants us knowledge of everything we are skilled

enough to do with respect to a context, without requiring us to actually do

the work of obtaining the knowledge we have. Larvor is correct to empha-

sise that the movement through a proof involves inferential actions, but his

focus lies elsewhere and the paper does not make explicit the impacts this

has on mathematical epistemology.

The important idea is that it is the activity of proving which is of pri-

mary epistemological significance in mathematics, with proofs themselves of
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secondary importance. Outside of philosophy this has been picked up on

in more popular reflections on mathematics, such as by Marcus du Sautoy

in (du Sautoy 2015), as quoted at the start of this chapter. He sees proofs

as narratives, describing the journey across the mathematical terrain from

familiar and well-trodden starting points to far-off realms. He continues as

follows:

Within the boundaries of the familiar land of the Shire are the

axioms of mathematics, the self-evident truths about numbers,

together with those propositions that have already been proved.

This is the setting for the beginning of the quest. The journey

from this home territory is bound by the rules of mathematical

deduction, like the legitimate moves of a chess piece, prescribing

the steps you are permitted to take through this world. At times

you arrive at what looks like an impasse and need to take that

characteristic lateral step, moving sideways or even backwards

to find a way around. Sometimes you need to wait for new

mathematical characters like imaginary numbers or the calculus

to be created so you can continue your journey. (du Sautoy

2015)19

Reading this, there is a touch of formalistic thinking in the further analogy

to moves in chess20 which we wouldn’t want to take too seriously, but the

notion of a journey fits very well with the thought that we should emphasise

the activity of proving. The quote is, of course, very reminiscent of the

well-known picture from G. H. Hardy:

I have myself always thought of a mathematician as in the first

instance an observer, a man who gazes at a distant range of

mountains and notes down his observations. His object is simply

to distinguish clearly and notify to others as many different peaks

as he can. There are some peaks which he can distinguish easily,

while others are less clear. He sees A sharply, while of B he

can obtain only transitory glimpses. At last he makes out a

ridge which leads from A, and following it to its end he discovers

that it culminates in B. B is now fixed in his vision, and from

19I am grateful to Ursula Martin for pointing me to this article.
20That old chess-nut.
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this point he can proceed to further discoveries. In other cases

perhaps he can distinguish a ridge which vanishes in the distance,

and conjectures that it leads to a peak in the clouds or below

the horizon. But when he sees a peak he believes that it is there

simply because he sees it. If he wishes someone else to see it,

he points to it, either directly or through the chain of summits

which led him to recognise it himself. When his pupil also sees it,

the research, the argument, the proof is finished. (Hardy 1929,

p. 18)

The point of these rather long quotes is that the metaphor of mathematics

as a huge landscape has been drawn on before. However, du Sautoy’s way

of speaking is preferable to Hardy’s for now, as it brings out the active

nature of proving rather than the more passive language of the ‘observer’.

The claim I am making is that if we want to attain knowledge, this requires

finding and following the path to get there. We can think of proofs, via a

similar metaphor, as maps or directions providing us with a guide as to how

to get from one place to another, from A to B. While the activity of proving

is about traversing the mathematical landscape, a proof provides a record

of the series of actions required to reach a new mathematical location and

is used to communicate what the discoverer of the proof went through to

others who wish to follow the same road and gain the same mathematical

knowledge.21

Indeed, there is clear linguistic evidence for such an idea in the fact

that much of the standard terminology in informal proofs is imperatival.

21I have recently discovered, thanks to Josh Habgood-Coote, that Ryle actually uses
the same metaphor for mathematical discovery:

[...] the pioneering path-finder, Pythagoras say, has no tracks to follow; and
any particular sequence of paces that he tentatively takes through the jungle
may soon have to be marked by him as leading only into swamps or thickets.
All the same, it may be, though it need not be, that in a day’s time or a
year’s time he will have made a track along which he can now guide docile
companions safely and easily right through the jungle. How does he achieve
this? Not by following tracks, since there are none to follow. Not by sitting
down and wringing his hands. But by walking over ground where tracks
certainly do not exist, but where, with luck, assiduity and judgement, tracks
might and so perhaps will exist. All his walkings are experimental walkings
on hypothetical tracks or candidate-tracks or could-be tracks, or tracks on
appro; and it is by so walking that, in the end, while of course he finds lots
and lots of impasses, he also finds (if he does find), a viable track. (Ryle
1971, p. 224)
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Common terms are ‘let’, ‘assume’, ‘suppose’, ‘define’, ‘construct’, ‘observe’,

‘consider’, ‘reduce’, ‘rearrange’, ‘note’ and many more.22 Once again, we

find ourselves with a point familiar from Ryle:

We certainly can, in respect of many practices, like fishing, cook-

ing and reasoning, extract principles from their applications by

people who know how to fish, cook and reason. Hence Izaak

Walton, Mrs. Beeton and Aristotle. But when we try to express

these principles we find that they cannot easily be put in the

indicative mood. They fall automatically into the imperative

mood. (Ryle 1946, pp. 11–12)

A proof thus tells the reader what to do in order to prove some theorem, and

thereby makes one important role of proofs to guide us through the inferen-

tial actions needed to get to a certain place. An equally good analogy, then,

would have been recipes in cookbooks: the recipe itself is only important

in so far as it directs you how to make the cake in question. While we can

talk about better or worse recipes, this is derivative on how well it guides

us through our baking activities.23 In (Robinson 1991), Robinson describes

proofs in a way similar to du Sautoy’s narrative idea:

[A] kind of meaningful narrative [...] more like a story, or even

a drama, conveyed to us in language calling on our semantic

and intuitive understanding. [...] To follow an informal proof

as it unfolds in time is to understand the story as it develops.

(Robinson 1991, p. 269)

Now certainly this seems right in certain respects, but it appears to suggest

that we are passive observers to the unfolding drama with our understanding

just being used to follow the action from afar. On the contrary, I take

understanding a proof to involve being part of the action. The proof tells

us which actions to take; the mathematician acts them out. Proofs thus

don’t operate in a vacuum, securing their targets in the abstract, but rather

they are secondary to the mathematical activities they guide us through,

22This should be familiar to anyone who has looked at mathematical proofs, but I invite
anyone sceptical of this to open up a few recent pure mathematics articles on the ArXiv
and check for themselves. An interesting study to carry out in the future would be to do
a proper analysis of some body of real proofs.

23Though the baking analogy works slightly less well because we also judge recipes for
the tastiness of the baked goods they produce.
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activities which are themselves embedded in a practical context and carried

out by agents.

To conclude, by seeing proofs from this action-centred perspective we can

thus say something new about the relationship between proofs and math-

ematical knowledge. Gaining knowledge of mathematics from proofs is ac-

tually done through the activities of proving: blazing a new trail through

the mathematical landscape or following the paths that others have set, by

following the instructions they have given us in their proofs. The epistemic

importance thus lies primarily with the activities and actions, not the proof

itself or its mere existence. The Formalist-Reductionist project misses out

on this crucial idea, according the primary importance to proofs themselves,

or worse still to unaccessed or inaccessible formal proofs underlying them,

thereby failing to correctly explain the epistemic role of proofs. We, on the

contrary, are in a place to explain how mathematical knowledge actually

connects to proofs and proving activities. This will be the topic of the next

chapter.

4.7 Conclusion: Knowing How to Prove It

To finish this chapter, let us briefly return to the relationship between

knowledge-how, knowledge-that and proofs. Following Rav, I have argued

that besides knowledge-that of mathematical facts, theorems and proposi-

tions, there is also knowledge-how of methods, tricks, techniques, interrela-

tions and more besides, something which has not received proper attention in

mathematical epistemology. Rav’s idea, put in the epistemological terminol-

ogy, was that knowledge-that of theorems in their statement-forms is of less

interest in mathematics than knowledge-how as embedded in proofs. I have

been arguing, though, that in mathematics knowledge-how and knowledge-

that are actually very closely linked, with each delivering the other in a

range of cases, in a way that does not entirely track the theorem/proof di-

vide. Additionally, I have been arguing that while knowledge-how might

be modal, in that in relates to how one acts and behaves across a range

of possible scenarios, the propositional knowledge of a theorem we get from

having proved it is not, since proving is an activity which delivers knowledge

only when it has been successfully carried out.

An interesting upshot of the positions I have taken is that there are, for
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any given mathematician, theorems which they know how to prove without

having knowledge of the theorem or its truth. This falls out of the fact that

the knowledge of how to prove some theorem T is modalised in such a way

that one might possess all of the relevant knowledge-how to produce a proof

of it without ever carrying out that proof. Meanwhile, the propositional

knowledge of the truth of T demands the stronger condition of actually

having proved it, which I have argued involved going through the inferential

actions the proof is made up of.

I don’t take this to be problematic, though, as this certainly matches

up with what we should want from an account of mathematical knowledge.

For there are plenty of cases where we might possess the know-how, skill

and ability to carry out a proof straight-off, without that meaning that we

have any knowledge of the particulars before actually proving the relevant

theorem. For example, one might be fully competent with quadratics and

know how to solve any given example, without already knowing the roots of

1124723477234x2 − 3419824x + 1 = 0. This is exactly as it should be, and

even a desirable feature of the position, since it demonstrates that there is

a clear reason to want our epistemological theory to include both kinds of

knowledge of mathematics.

So what is it to know how to prove some theorem? Just as in knowledge-

how more generally, an ability account might seem initially appealing:

Ability 2 S knows how to prove theorem T iff P is able to prove theorem

T .

One can even argue that the problematic cases don’t apply here. Firstly,

unlike knowledge-how more generally where counterexamples arise in the

general pattern of pianists who break their fingers etc. which impinges their

ability without affecting their knowledge, in mathematical cases there seem

to be far fewer physical requisites on being able to prove some theorem.

Secondly, the cases of lucky success are somewhat harder to generate for

mathematics, as there can be a distinction made between actually proving

something and producing a proof of it. The thought is that by emphasising

the activity involved in traversing the mathematical landscape, we can ex-

clude cases where a proof is put on paper without the mathematical activity

being carried out, such as if Jackson Pollock accidentally flicked paint into a

proof of the Riemann hypothesis. Hereby, we can also rule out lucky success
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cases.

However, once again this will not fly. With a bit more imagination we

can think of fresh counterexamples, such as going blind initially hindering

someone’s ability to do diagrammatic proofs. As to lucky successes, there are

more cases than those of the monkey-and-typewriter variety. For instance,

we have probably all witnessed students guess at steps they think the teacher

wants to hear but subsequently not be confident that what they have done is

correct. This may be a case of knowing how to prove the theorem, but it is

a worryingly low bar. Furthermore, the Löwe & Müller discussion provides

us with other problems for an ability view, such as filling out how long it

should be allowed to take for them to be said to be able to. Or another

case: what if a student knows thirty techniques, only one of which will work

for the proof, but where the student has no idea which to use or even how

to go about deciding between them. In the weak sense they do know how

to prove the theorem— they might be able to just by trying out all thirty

approaches— but their ability might require far longer to enact than if they

knew how to select the right tool for the job, which is itself an important

piece of mathematical know-how.

There is also reason to be hesitant regarding a mathematical know-how

as mathematical skills position. Löwe & Müller do well by linking the ap-

propriate skills to the context relative to which a knowledge ascription is

being made. Nonetheless, there are difficulties concerning what kinds of

skills and exactly which they are: even a moderately straightforward proof

might require a whole range of skills, but more than this, they need to be

combined in the right way to form a complete path of inferential actions.

Indeed, it might well be that for plenty of open problems in mathematics,

we do already possess all of the relevant mathematical skills, techniques

and methods, but simply haven’t combined them in the right way yet. Pre-

sumably, we don’t know how to prove these theorems, despite possessing the

relevant skills. Of course, we could avoid this problem by positing that there

needs to be some kind of “putting it all together” skill which is also in play.

But this move is less than ideal for two reasons. Firstly, such a skill seems to

be of a different kind to the general-level skills which Löwe & Müller want,

being tied to the specific proof. Secondly, this means that the reduction of

knowledge-how to skills has not been particularly informative, as once again

it seems like the “putting it all together” skill basically amounts to knowing
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how to prove the theorem.

Regarding mathematical know-how, I am broadly inclined towards the

Rylean position as exposited by Hornsby, namely to avoid such reductive

analyses. Nonetheless, there is a great deal more to be said about the

interaction between proving and mathematical knowledge, which I will do

in the next chapter where I explore the application of virtue epistemology

to mathematics.
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Chapter 5

A Virtue Approach to

Mathematical Epistemology

I was unable to find flaws in my “proof” for quite a while, even

though the error is very obvious. It was a psychological prob-

lem, a blindness, an excitement, an inhibition of reasoning by

an underlying fear of being wrong. Techniques leading to the

abandonment of such inhibitions should be cultivated by every

honest mathematician.

— John Stallings (1965) “How Not To Prove The Poincaré

Conjecture”

5.1 Introduction

In the paper quoted above, Stallings describes the mathematics behind a

failed attempt he made at proving the Poincaré Conjecture. Prior to Perel-

man’s 2003 proof, this was one of the best known open problems in math-

ematics, so we can certainly sympathise with the excitement and fear ex-

pressed by Stallings at the prospect of having solved it. The fatal error in

the proof stems from proving a key auxiliary theorem, named ‘Theorem 0’,

for all cases of n > 2 but then subsequently making essential use of it for

a case where n = 2, a case for which it is demonstrably false, shown by a

counterexample Stallings provides.

My topic in this chapter will be mathematical virtues and vices and

how these play a crucial role in mathematical knowledge. To introduce this
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theme, I want to draw out two key aspects of Stallings’s words. Firstly,

Stallings blames the mistake in the proof on psychological failings, where

these are what lead to him not spotting the misapplication of Theorem 0.

He blames himself for the error, seeing it as caused by inhibitions of his

reasoning, or we might say performance error in his mathematical skills

and competences. Putting this explicitly in virtue-theoretic terminology,

there are two ways that we might blame epistemic vices here: either in his

making the error in the first place or in failing to spot and correct it later on.

Secondly, the emphasis Stallings puts on the honest mathematician wanting

to develop techniques to prevent such errors and failures of rigour in future

mathematical proofs or, to put it another way, to develop the mathematical

virtues.

A central idea in this chapter will be that the investigation of math-

ematical virtues and vices will be able to develop and draw on some of

the major lessons learned in virtue epistemology and virtue ethics in recent

decades. One key difference which emerges in virtue-theoretic approaches

in epistemology, in contrast to other epistemological theories, is that the

agents and communities play a central and irreducible role in their own

epistemic positions and states. For the current project I will thus be looking

at the place of the mathematicians in mathematics.1 If we take virtue epis-

temology seriously, mathematical knowledge may be deeply connected to

virtuous mathematical behaviours such as those of Stallings’s honest math-

ematician, and conversely we may find that failings in mathematics may at

times stem from mathematical vices. Placing such emphasis on the role of

the mathematician will have wide-ranging consequences for the philosophy

of mathematics, a number of which I will set out and explore in this chapter.

What we will see is that virtue theory will be crucial to resolving difficult

questions concerning proof and rigour in mathematics, and in particular how

they relate to mathematical knowledge.

One might immediately take a dismissive attitude towards the virtue

turn for mathematics by arguing that while we do have terms for virtues and

vices in mathematics, the explanatory value of these is limited to just a few

1We can, for simplicity, call everyone engaging in explicitly mathematical activities
a mathematician. Nothing hangs on this in the broad overview of the project here, but
it may well turn out that contrasting mathematical virtues and vices as possessed by
mathematicians and non-mathematicians reveals interesting aspects of how we learn and
behave in different mathematical contexts.
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aspects of mathematical practice which are already involved with crediting

and evaluating mathematicians. Conversely, one might see in the virtue

approach the germ of a radical shift in philosophy of mathematics generally.

To draw out the large range of views that we may adopt under the general

heading of virtue-theoretic philosophy of mathematics, I will separate three

levels of claims that one can propose, develop and defend:

Moderate Proposal Virtues and vices of mathematicians will be relevant

to mathematical knowledge.

Strong Proposal Virtues and vices of mathematicians will be explana-

tory of mathematical knowledge. In other words, virtue epistemology

should be adopted to give the correct epistemology for mathematics.

Radical Proposal Virtues and vices of mathematicians explain mathe-

matical knowledge and extend to provide alternative answers to other

kinds of questions in the philosophy of mathematics, e.g. those con-

cerning ontology, access, metaphysics etc.

As stated, these three proposals are only meant to serve as a general guide

to different levels of views one might take rather than exact statements or

theories. Work needs to be done to establish the meaning behind the three

proposals and their plausibility. In this chapter I will focus on the Strong

Proposal, beginning with a brief discussion of the Moderate Proposal and

returning only briefly to the Radical Proposal in the conclusion.

Incorporating a theory of mathematical virtues into our theoretical land-

scape of mathematics and our knowledge of it will in many ways be a grand

departure from a lot of traditional thinking in the philosophy of mathemat-

ics. In section 5.2, I will begin with the Moderate Proposal, showing that

the evaluation of skills, competences and character traits of mathematicians

is already commonly taken to be be relevant to mathematical knowledge. In

section 5.3 I will set out the key elements of the virtue epistemology liter-

ature, followed in section 5.4 by its application to the case of mathematics

as the Strong Proposal. In sections 5.5 and 5.6, I will apply to framework

to show that the Strong Proposal also provides a well-motivated account

of proof and rigour respectively. Furthermore, in section 5.7, I will show

that the virtue approach on the Strong Proposal is very amenable to being

extended to more notions in epistemology, in particular the under-explored
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area of mathematical understanding. I will in section 5.8 examine a very

current and ongoing case study concerning Shinichi Mochizuki’s proposed

proof of the abc conjecture, showing that there is indeed a close link to virtue

theory: that the approach I advocate is in the best position to account for

the surrounding controversy.

5.2 The Moderate Proposal for a Virtue Approach

to Mathematics

Let us begin with a look at the Moderate Proposal for incorporating talk of

virtues, vices and values more generally into our philosophy of mathematics.

The central idea of this proposal is given above as:

Moderate Proposal Virtues and vices of mathematicians will be relevant

to mathematical knowledge.

Of course, a great deal already rests on which aspects of mathematical prac-

tices we are seeking to explain, so this is something we must consider. Before

I introduce the more weighty proposals drawing on virtue epistemology, the

talk of virtue and vice can also be understood in different ways. One may

talk about theoretical virtues and vices on the one hand and personal or

agential virtues and vices on the other.2

The importance of the theoretical virtues to mathematics is already

present in the philosophy of mathematical practice literature. To list but a

few: elegance, simplicity, generality, unification, applicability, explanatori-

ness and beauty all affect how mathematics is developed, which areas we

find interesting and worth pursuing, and how much we favour some given

mathematical proof. Another way of putting this is that such theoretical

virtues already play a role in mathematical practice, and already there is a

blossoming literature surrounding a number of different theoretical virtues

of this kind. Questions concerning mathematical beauty and mathematical

explanation (and thereby explanatoriness) are already to be found in the

philosophy of mathematical practice in particular. Meanwhile, questions

concerning the applicability, simplicity, generality or unificatory power are

2A good reason to prefer the term ‘agential’ is that the virtues possessed by groups
will be explanatorily important in the case of mathematics, and this term stays neutral
on groups as agents, whereas ‘personal’ does not.
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commonplace in mathematics and the philosophy of mathematics more gen-

erally. If we are interested in the nature and purpose of proofs, theoretical

virtues immediately come to the fore. For example, proofs are evaluated

for things like elegance, simplicity, intricacy, rigour, explanatoriness and

beauty.3 The attribution of theoretical virtues and vices is certainly not

limited to proofs either. Mathematical ideas come in many varieties, all of

which may be evaluated according to what we value and the like. Besides

proofs, these may include concepts, notations, theories, definitions, symbol-

isms, techniques, ideas etc. For instance, a well-constructed definition can

be bountiful for mathematical theorising and streamlining for the proofs

and lemmas it is deployed in. Consider, for example, the ε − δ definitions

of convergence and continuity, discussed in chapter 3. Meanwhile cumber-

some notations can reduce our understanding or even inhibit mathematical

breakthroughs. Nonetheless, let us set aside theoretical virtues to focus

on agential virtues. This is not to diminish the importance of theoretical

virtues, just that these are not central to the case to be made which focuses

on how the mathematician is primary in obtaining mathematical knowledge.

We also can observe that agential virtues are regularly discussed in rela-

tion to their importance for mathematics; for instance, in praise of particular

mathematicians who have made major contributions to their fields. A prime

example of this would be the kind of language used to describe John Conway;

no discussion of him seems to be complete without attributing his mathe-

matical breakthroughs to his playfulness, curiosity and light-heartedness.

For example:

But the truly amazing thing about the surreal numbers is how

Conway found them: by playing and analysing games. Like

an Escher tessellation of birds morphing into fish—focus on the

white and you see the birds, focus on the red and you see fish—

Conway beheld a game, such as Go, and saw that it embedded

or contained something else entirely, the numbers. And when he

found these numbers, he walked around in a white-hot daydream

for weeks. (Roberts 2015)

The article quoted here is an edited selection from Siobhan Roberts’s bi-

ography of Conway. Not only is his famous playfulness linked explicitly to

3And many more besides. See (Inglis & Aberdein 2015) for experimental results on
how the different descriptors may be linked.
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the discovery of the surreal numbers, it is furthermore connected to his dis-

covery of the Conway groups, where the Conway groups are three of the

twenty-six sporadic cases of finite simple groups, discovered by looking at

automorphisms of the Leech lattice. Playfulness as exhibited by Conway is

seen as an epistemic virtue, in which he takes joy in the complex mathemat-

ical structuring to be found in games. By translating difficult mathematical

problems and ideas into games, Conway managed to invoke his playfulness

to be deeply fruitful for mathematical discovery. The virtue of playfulness is

clearly relevant both to Conway’s own knowledge and the collective knowl-

edge of the mathematical community, since it was certainly instrumental in

the discovery. The identification of the Conway groups also feeds in to the

triumphal proof of the classification of finite simple groups, thereby demon-

strating its connection to the rich tapestry of mathematical achievements.

That virtues are relevant, in an interesting sense, to mathematical knowl-

edge is thus shown by the connection between Conway’s playfulness and the

mathematical discoveries it resulted in. The point could equally well have

been made of numerous other mathematicians and their respective virtues

which have contributed to mathematical breakthroughs and discoveries. As

such, I take the Moderate Proposal to be vindicated by the example. The

Moderate Proposal, nonetheless, is maybe best seen as a “foot in the door”,

in that it is readily acceptable but nonetheless brings to the foreground the

importance of virtues in mathematics. By making it plain that our interests

as philosophers of mathematics are bound up with the virtues displayed by

mathematical theories, proofs, ideas, concepts, methods and practitioners,

the Moderate Proposal is suggestive of the fact that it will be a fruitful

project to further investigate the relationship between the two. This is my

intention for the remainder of the chapter, beginning in the following section

with a description of the main strands of thought in virtue epistemology.

5.3 Virtue Epistemology

The central idea that unites the diverse approaches under the banner of

‘virtue epistemology’ is that individual agents and groups of agents must

be considered in approaching the core issues of epistemology. The way in

which the knowers themselves figure in theories of knowledge (and other

epistemological concepts) is through the exercise or failure of their epistemic
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virtues and vices. Where these theories come apart is on the nature of

these epistemic virtues. The two main camps are the virtue reliabilists and

the virtue responsibilists, which I shall outline in turn, followed by a brief

discussions of further ways in which one might be a virtue epistemologist,

namely by taking on some kind of hybrid view or by focusing on epistemic

agents while rejecting the reductive and definitional projects in epistemology.

5.3.1 Virtue Reliabilism

Virtue reliabilism is the approach proposed by Ernest Sosa (Sosa 1980, 1991,

2007), John Greco (Greco 2010), Christoph Kelp (Kelp 2011) and Alvin

Goldman (Goldman 2000) which takes virtues to be stable, reliable facul-

ties, abilities, skills or competences. The epistemic variety of virtues, the

intellectual virtues, are then the faculties, skills or competences which are

aimed at epistemic ends, such as acquiring true beliefs and avoiding false

ones. Reliability is understood in terms of how well those ends are achieved.

The faculties that reliably produce true beliefs in this way are quite broad,

including “faculties of sense perception, memory, induction, and deduction”

(Battaly 2008, p. 645).4

Given the picture of intellectual virtues as skills, abilities, faculties or

competences which reliably maximise truth over falsity, we may now see the

account of knowledge that this provides. In (Greco 2010), Greco argues that

knowledge is a kind of success through ability, meaning that it amounts to

an achievement rather than a merely lucky success (and thereby avoiding

Gettier cases):

S knows that p if and only if S believes the truth (with respect

to p) because S ’s belief that p is produced by intellectual ability.

(Greco 2010, p. 71)

Similarly, Sosa defends the following claim:

[K]nowledge is true belief out of intellectual virtue, belief that

turns out right by reason of the virtue and not just by coinci-

dence. (Sosa 1991, p. 277)

4Given the current focus on the mathematical case, the last item on the list, deduction,
will be of particular interest to us. However, I believe that such a broad notion does not suit
our needs in appealing to the virtue approach, so the account of mathematical deduction
I am proposing will be more fine-grained.
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This develops the intuitive idea that knowledge comes about through a pro-

cess which isn’t lucky, but also emphasises the cognitive role that is played

by the knowers themselves.

The most famous way that Sosa explains his view is through the example

of the archer and three evaluative measures of how well she does: accuracy,

adroitness and aptness. Accuracy is an evaluation of the success of the shot

at actually hitting the target. Adroitness is whether or not shooting the bow

manifested the relevant skill at archery on the archer’s part. However, the

big observation is that a shot can be both accurate and adroit, but fail to be

accurate-because-adroit, due to double luck situations analogous to Gettier

cases where good luck cancels out bad luck. For example, the archer may

line up the perfect shot, but a gust of wind blows the arrow astray, only

for it to deflect off a tree and finally hit the target. Aptness, then, is Sosa’s

term for those performances which are successful because they manifest the

correct skills or competences, and it is these which are creditable to a skilful

and virtuous agent. The idea, then, is that obtaining knowledge requires the

same manifestation of skills or competences, but furthermore, the success

at obtaining true beliefs needs to be because of the skilful or competence

performance. Sosa calls this the AAA-structure: knowledge requires being

accurate, adroitness in manifesting the relevant skill or competence, and

being apt.

The reliabilist virtues listed above are not the end of the picture, since

many skills which reliably attain truths are acquired and developed through

practice. Thus complex intellectual skills and abilities can play a key part in

acquiring true beliefs, as we shall see in the mathematics case. This is closely

connected to the difference between low-grade knowledge, the more imme-

diate knowledge gained through channels such as sensory experience, and

high-grade knowledge, the more reflective, systematic and inquiry-focused

knowledge.

5.3.2 Virtue Responsibilism

Virtue responsibilism, as championed by Linda Zagzebski (Zagzebski 1996),

Lorraine Code (Code 1987) and James Montmarquet (Montmarquet 1993),

sees intellectual virtues as needing to be understood in a way that is broadly

continuous with moral virtues in the virtue ethics tradition dating back to
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Aristotle.5 On this view, virtues are acquired excellences or traits of char-

acter, examples of which include open-mindedness, intellectual courage, in-

tellectual autonomy, intellectual humility, reliance on trustworthy authority,

perseverance and thoroughness.

The intellectual virtues as character traits have two major components

on Zagzebski’s account.6 Firstly, they have a motivational component, which

are dispositions to be motivated towards particular ends, something which

wasn’t present for the reliabilists. In the case of intellectual virtues, the

motivation is generally epistemic and is described by Zagzebski as all being

“forms of the motivation to have cognitive contact with reality” (Zagzeb-

ski 1996, p. 167), where this broad heading covers the desires for true

beliefs, certainty, understanding etc. Secondly, virtues also have a success

component, for Zagzebski argues that to be virtuous means to be reliably

successful in securing the ends you are motivated towards. Putting these

together, character traits which are made up of these two components are

then enacted:

An act of intellectual virtue A is an act that arises from the mo-

tivational component of A, is something a person with virtue A

would (probably) do in the circumstances, is successful in achiev-

ing the end of the A motivation, and is such that the agent ac-

quires a true belief (cognitive contact with reality) through these

features of the act. (Zagzebski 1996, p. 270)

Such acts of intellectual virtue are key in the definition of knowledge Za-

gzebski gives:

Knowledge is a state of cognitive contact with reality arising out

of acts of intellectual virtue. (Zagzebski 1996, p. 270)

The fact that cognitive contact with reality here is broader than just having

true beliefs is very relevant to the mathematical case we will get to later,

for consider:

5It is pointed out in (Greco & Turri 2011) that this is better called Neo-Aristotelian
rather than Aristotelian because Aristotle does not claim such a unified account of moral
and intellectual virtues.

6While Code and Montmarquet have similar attitudes to what the virtues amount to,
they are less committed to recovering a definition of knowledge in terms of the virtues.
I’ll return to this in the next section.
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[U]nderstanding is also a form of contact with reality, one that

has been considered a component of the knowing state in some

periods of philosophical history... [I]t is a state that includes the

comprehension of abstract structures of reality apart from the

propositional. (Zagzebski 1996, p.167)

This will be useful in approaching the wider aspects of mathematics which

are usually left aside in philosophical and epistemological accounts, such as

mathematical understanding, visualisation and diagrams.7 We will return

to understanding later in section 5.7.

5.3.3 Hybrid Virtue Approaches

Under the general heading of virtue epistemology we are not limited to the

two approaches sketched above. In this section I will briefly set down a fur-

ther distinct way of taking the virtue turn towards epistemology, by adopting

a hybrid approach which combines aspects of the other two theories. The

hybrid approach in virtue epistemology is endorsed by both Heather Battaly

in (Battaly 2008) and Nenad Miscevic in (Miscevic 2007). The guiding idea

is that both the virtue responsibilist and virtue reliabilist proposals have

correct ideas which will take us forward in our epistemic theorising. Rather

than seeing the two as rivals, the hybrid approach can partially endorse

both, or take on aspects of both theories.

The first way to do this is by broadening the category of epistemic virtues

to include both virtues as faculties and virtues as character traits, as is sug-

gested by Battaly. Her reason is that both ways of filling out the concept

of ‘virtue’ are equally legitimate, in that they both track normal uses of the

term. The idea then is that the two kinds of virtue correspond to different

kinds of knowledge. Contrasting the two categories of high-grade knowledge

and low-grade knowledge, Battaly argues that these are achieved in different

ways. Low-grade knowledge is the sort of quick and immediate knowledge

we get from sensory experience, while high-grade knowledge is knowledge

which requires greater cognitive effort or reflection, such as scientific knowl-

edge. The hybrid view being proposed, then, can make use of the fact that

for low-grade knowledge all that seems to be required is the correct and reli-

able functioning of the relevant faculties while high-grade knowledge seems

7Though excellent work in this area is done by (Giaquinto 2015).
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to need character traits such as inquisitiveness, open-mindedness etc. Con-

versely, requiring responsibilist levels of motivation seems to fit poorly with

the fact that we can come to know things by seeing them without any mo-

tivation towards knowing, while the reliabilists seem to leave an incomplete

story if their account of higher-order knowledge fails to involve the relevant

traits required by the process of inquiry. As such, the hybrid view can en-

dorse different kinds of virtues as necessary for different kinds of knowledge.

The other way of endorsing a hybrid view, as presented by Miscevic, is

to divide up the aims of the approach to allow the different types of virtue to

satisfy those different aims. Miscevic’s idea, entitled the integrated virtue-

based view, is to endorse a virtue reliabilist account of knowledge (motivated

by the idea that this does better at truth-tracking), while taking the value

of knowledge to be tied to the character trait of inquisitiveness.

Indeed, Zagzebski’s own virtue responsibilist view readily acknowledges

that skills are importantly related to intellectual efforts, including mathe-

matical ones:

Spatial reasoning skills, mathematical skills, and mechanical skills

are important for effectiveness in many of life’s roles, and the per-

son who is virtuous in such roles would be ineffective without the

associated skills. (Zagzebski 1996, p. 115)

Nowhere will this be clearer than in mathematics itself! There is certainly

a close connection between intellectual virtues and intellectual skills, some-

thing which the hybrid views want to employ to develop a full account of

both.

5.3.4 Epistemic Vices

Very little has been said so far about epistemic vices, echoing the literature

where these have mostly played a secondary role, something which is only

recently being rectified. Let us quickly survey how intellectual vices might

be understood.

There is an Aristotelian line on the nature of moral vices, as is well-

known, taking virtues to be intermediate between vices of excess and vices

of deficiency:

Now [virtue] is a mean between two vices, that which depends on

excess and that which depends on defect; and again it is a mean
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because the vices respectively fall short of or exceed what is both

right in passions or actions, while virtue both finds and chooses

that which is intermediate. (Aristotle 2009, II.6.1107a.2–5)

Aristotle illustrates with various examples such as the virtue of proper pride

being an intermediate between empty vanity and undue humility, or the

virtue of courage being the mean between cowardice and rashness. However,

there is no obvious reason to take this to be generally true, so while it

might fit in particular cases this will not do as a characterisation of vice

generally, nor of epistemic vice, nor of mathematical vice, without some

further argument to that effect.8

Starting with the reliabilist approach, we do find some mentions of vices.

For example, Goldman lists the following as intellectual vices:

The vices include intellectual processes like forming beliefs by

guesswork, wishful thinking, and ignoring contrary evidence. (Gold-

man 2000, p. 6)

These appear to be intellectual processes which are actively misleading, tak-

ing us generally towards false beliefs rather than true ones. Similarly, for

the virtue responsibilist approach, Zagzebski says:

Some examples of intellectual vices are as follows: intellectual

pride, negligence, idleness, cowardice, conformity, carelessness,

rigidity, prejudice, wishful thinking, closed-mindedness, insensi-

tivity to detail, obtuseness, and lack of thoroughness. (Zagzebski

1996, p. 152)

The difference between the two quotes corresponds to the difference in their

account of virtues, the reliabilist seeing vices as processes which are un-

reliable in delivering true beliefs and the responsibilist taking vices to be

negative traits of character.

In (Battaly 2014), Heather Battaly points out that actually we can be

more precise about the concepts of vice on offer. Firstly, reliabilist vices can

be distinguished between those which deliver negative epistemic ends and

8Not to take the Aristotelian picture of virtue and vices too seriously as a modern
framework was a point impressed on me by Brendan Larvor. Rightly so it seems, for
even Zagzebski who is explicitly trying to apply Aristotle’s picture of moral virtues to
intellectual virtues does not take this to be correct.
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those which fail to produce positive ones. Similarly, responsibilist vices can

either be filled out in terms of having negative motivations or in terms of

the failure to have positive motivations. The last of these four options may

seem initially implausible, but Battaly argues that there are ways in which

this can be more convincing. For example, we might be blameworthy of vice

simply by failing to consider epistemic value, such as through dedicating

ourselves to collecting trivia about soap operas; there is nothing wrong with

soap trivia per se, so this cannot be a case of bad epistemic motivation, but

the problem is the failure to pursue valuable epistemic ends.9

Epistemic vices, then, can be cashed out in different ways, according to

one’s other theoretical motivations. For the sake of this chapter, we can

leave it open whether any one of these is the correct account of epistemic

vice and continue now with an exploration of how virtue epistemology will

apply to mathematical knowledge.

5.4 The Strong Virtue Proposal for Mathematical

Knowledge

Above I argued for the correctness of the Moderate Proposal, where the

investigation of theoretical or agential virtues is relevant to the philosophy

of mathematics. Now I shall take on the Strong Proposal, which was the

following:

Strong Proposal Virtues and vices of mathematicians will be explana-

tory of mathematical knowledge. In other words, virtue epistemology

should be adopted to give the correct epistemology for mathematics.

Such a claim is far from obvious. Nonetheless, I shall propose that we

should adopt a virtue-epistemological approach to mathematical knowledge

and that this will be successful in settling difficult problems in the philoso-

phy of mathematics. The virtue account of mathematical knowledge will be

a genuine rival theory of mathematical knowledge which can draw on an es-

tablished tradition in the realm of epistemology to solve problems pertaining

9An interesting conclusion of the analysis of vice is that Miranda Fricker’s discussion
of epistemic injustice (Fricker 2007) is best understood in terms of the bad outcomes it
leads to, so aligns more naturally with the reliabilist conception of vice despite Fricker’s
responsibilist framework.
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to mathematics, such as those concerning the nature of proof and mathe-

matical rigour. In this section I will set out the virtue-epistemic approach

to mathematical knowledge.

One place we might look for a prior articulation of the Strong Proposal

would be in the literature on virtue epistemology. Indeed, we should expect

any proponents of virtue epistemology to be immediately inclined to agree

that their preferred epistemology extends to mathematical knowledge too.

Yet there seems to be little previous consideration of how such a theory

might go or how it might benefit mathematics. Reliabilists often list de-

duction as a virtue, in that it is a reliable faculty or competence that leads

to knowledge, but it strikes me that this is far too coarse to deal with the

subtle and complex issues going on in mathematics. Meanwhile, responsi-

bilists have not had anything explicit to say about the mathematical case,

although Zagzebski does quote Moravcsik relating mathematical proof to

understanding at (Zagzebski 1996, p. 47).

Applying virtue epistemology to a hard case like mathematics should be

an appealing undertaking for people already convinced of the correctness

of virtue epistemology, not just as a straightforward application but also as

an important test case. It might be that the mathematical applications of

virtue epistemology will favour reliabilism over responsibilism or vice versa,

or indeed a hybrid view such as Battaly’s over both. Even more important

is that mathematics has a number of peculiar epistemological difficulties,

whereby we treat mathematical knowledge as special. Mathematical knowl-

edge might be considered special in any number of ways such as it being a

priori, necessary, deductive, objective, infallible, certain, analytic etc. Many

of these are central to the Traditionalist take on mathematical knowledge

and explaining them is seen as one of the main projects that we should be

engaged in. The questions that might thus arise in applying virtue episte-

mology concern which of these properties of mathematical knowledge are

maintained and defended, or whether we join Lakatos in storming the dog-

matist fortress and reject some or all of these properties. For now I am

just blazing a path for this work to be carried out so will not be answering

all of these questions here, but it is important to note that there are such

major questions which need to be developed in giving a theory of mathe-

matical knowledge and that filling out these details for the virtue approach

is a project which needs carrying out.
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The first major question for the virtue project is: what exactly are the

virtues at play in mathematics? Setting aside the theoretical virtues dis-

cussed above, in virtue epistemology the virtues are primarily those pos-

sessed by agents (or possibly groups of agents). The answer to what they

are exactly will depend on the flavour of virtue epistemology one favours so

let me take these in turn.

On the virtue reliabilist account, virtues are taken to be faculties, com-

petences, skills or abilities, varying amongst the different proponents of the

view. For the current case, then, mathematical virtues will be mathematical

faculties, competences, skills or abilities. It strikes me that these may be

separable into two levels. Firstly, mathematical skills or abilities may be

about being able to implement particular mathematical techniques, at what

we can call the particular level. These might range from the most basic

mathematical skills such as counting, mental arithmetic or finding the roots

of a quadratic equation, all the way to advanced mathematical techniques

such as forcing in set theory, stochastic modelling or finding saddle points

in dynamical systems. With the techniques at the particular level, there is

a notable granularity issue in how precisely we define some given technique

and when we attribute such a skill to a mathematician. For example, mental

arithmetic above could have been broken down into skill at adding, subtract-

ing, multiplying, etc. where we could count these as distinct skills. I don’t

believe anything major hangs on how exactly we specify such skills, but it

does seem to indicate that certain contextual parameters will be in play

when employing mathematical virtues for epistemological purposes. This

would certainly fit with the discussion of Löwe & Müller from the previous

chapter. This is also in line with how things go in virtue reliabilism more

generally.

However, it seems that just deploying particular skills is not sufficient for

many mathematical activities, such as developing and checking proofs. As a

second level of mathematical virtues for the reliabilist, what we may call the

general level, we might identify reflective, higher-order mathematical skills.

For example, giving a proof isn’t just about deploying particular mathemat-

ical techniques but also about picking the right method for the situation and

combining it with other techniques in the correct manner. The higher-level

virtues seem to be those we intend when we talk of ‘mathematical thinking’

generally, which includes being able to construct and follow mathematical
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arguments, accurately check for errors and solve technical problems on the

fly.

Let us proceed to the virtue responsibilist take on mathematical virtues.

Mathematical virtues, here, would form a subcategory of intellectual virtues,

which are defined as acquired character traits. There are many such intel-

lectual virtues that are already present in the general case but seem to apply

directly to the realm of mathematical activities. For example, Zagzebski lists

thoroughness, perseverance, “the teaching virtues: the social virtues of be-

ing communicative, including intellectual candor and knowing your audience

and how they respond” (Zagzebski 1996, p. 114) and reliance on trustwor-

thy authority as intellectual virtues. Thoroughness and perseverance are

clearly important for discovering and developing proofs; communication is

not limited to mathematical teaching but also relevant to tailoring proofs to

their intended audience; and relying on testimony from trustworthy sources

will be vital to engaging with the mathematical community and developing

collaborative mathematics. On the other hand, there may be intellectual

virtues which are particular to mathematical endeavours. Indeed, I will

later defend the idea that, for the virtue responsibilist take on mathematics,

mathematical rigour is a specifically mathematical virtue.

Now the big idea behind the strong virtue proposal is that mathematical

knowledge should be explained in terms of the possession and enacting of cer-

tain mathematical virtues, whichever account of them one prefers. Notably,

though, an important aspect of the move towards the evaluation of mathe-

maticians’ virtues as key to the notion of mathematical knowledge, is that

this is intended to move away from a misguided, overly-idealised standard

account towards a more accurate picture of mathematics and mathematical

knowledge in the real world. As such, I am careful to point out that actual

mathematical knowledge can be obtained in a whole range of different ways.

The major traditional way is, of course, through deductive proofs, which

will be the focus of the next section.

But there are many others too. Testimonial knowledge has a huge liter-

ature in epistemology (see Adler 2012), and can and does provide a lot of

mathematical knowledge out there too. In mathematics education, there is

a great deal of reliance on the teacher’s word, at least initially. One might

think that once we get into the domain of mathematics proper, maybe uni-

versity and beyond, that we should be familiar with the proofs behind all
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of our mathematical knowledge, but here we might be relying on our mem-

ory to provide them; that having once seen/produced/understood a proof

the knowledge remains. The virtue reliabilists actually categorise memory

as an intellectual virtue, so admitting its use is already requiring greater

philosophical resources. Even still, the idea that we have even encountered

all of the proofs for theorems we can claim to know, rather than relying on

testimony, might not even be so plausible. Indeed, it seems to be common

knowledge that Fermat’s last theorem and Poincarè’s Conjecture are both

true, yet undoubtedly most mathematicians have only a rough knowledge

at best of how proofs of these proceed. Furthermore, mathematicians are

social builders, disseminating and using results produced by others to make

progress in their own work. While we might idealise that everyone will trace

back all the results they use through the tree of dependencies of results

those in turn rely on, it seems wildly unlikely. Consider further the classifi-

cation of finite simple groups, a proof of such grand scale that likely nobody

knows all of it. Such massive collaborative projects are grand successes of

mathematics and undoubtedly involve testimonial knowledge.

We have only scratched the surface of the epistemic complexities involved

in mathematical knowledge in practice. To list some more possible ways

to gain mathematical knowledge, consider mathematical knowledge through

sensory experience (Giaquinto 2015); through probabilistic justification, like

cases of primality testing (which may be problematic in their resemblance to

lottery cases); through computational verification, from mere calculators to

complex models run on super-computers; or mathematical know-how which

might be acquired through training and being inducted into particular prac-

tices (as discussed in the previous chapter). A natural response to the

diversity of sources of mathematical knowledge is to concentrate on some

particular special properties of mathematical knowledge which are accorded

only to knowledge gained deductively from proofs and thereby isolate the

interesting case. In the next section I take on the strong proposal’s account

of mathematical proofs, but I want to note that the virtue turn thrives on

the diversity of sources of knowledge because there are a great number of

intellectual virtues which are important for mathematics. The benefit, then,

is that applying virtue epistemology to mathematical knowledge does not

find itself limited to pure mathematics and deductively proven theorems,

but conversely provides a framework for giving a fuller, richer account of
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the whole spectrum of mathematical knowledge. A move away from taking

all mathematical knowledge to be a priori is advocated in (Kitcher 1984)

and the virtue approach allows us to do this while still adopting a unified

account of mathematical knowledge. This is already a huge advantage of

the virtue approach to mathematical knowledge being endorse on the Strong

Proposal. Furthermore, in opening up this diversity of types of mathemat-

ical knowledge, we see the materialisation of the fact that deploying the

virtue epistemological approach to mathematical knowledge is more than

just the flat-footed project of answering Traditionalist questions with a new

set of answers, but rather opens us up to the wider project of investigating

diverse mathematical practices and the interrelated virtues and vices at play

in them.

I will now proceed to a discussion of mathematical knowledge from proofs

on the virtue account.

5.5 Virtues and Proving

The Strong Proposal to see mathematical knowledge as best explained through

a virtue epistemological lens can provide a better alternative to the Formalist-

Reductionist account of proofs. Rather than being hindered and undermined

by the issues we have seen raised against the Formalist-Reductionist account

throughout the thesis, the virtue epistemological view on proofs I will offer

positively thrives on them, as we shall soon see.

The first move that we make on the virtue approach needs us to ob-

serve that in the virtue epistemology literature the key to knowledge is

virtuous intellectual activity. It is through virtuous acts, acts in which we

exhibit or manifest relevant virtues, that we gain knowledge. The Formalist-

Reductionist approach, meanwhile, emphasises proofs as construed as ob-

jects, where we can then study these objects to discover what makes them

good/correct/rigorous/etc. But then the account fares poorly with respect

to our proving practices, having tried to abstract away from their material

instantiation. In contrast to the proofs-as-objects view, then, the virtue ac-

count should focus instead on proving as an activity, as argued for in the

previous chapter.

Let us now proceed to locate the role of virtues in this account of proofs

and the knowledge it secures. The virtue epistemological view is that in
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order for the proving activities to secure our mathematical knowledge, they

need to be virtuous in the appropriate way. Once again, how the details

of this are filled out will depend on the particular virtue epistemology one

favours.

Starting with the reliabilist, for someone producing a proof to have se-

cured mathematical knowledge therewith, the proving must be completed

with the relevant skills and competences. The mathematician needs to cor-

rectly deploy the particular mathematical skills involved in whatever the

proof is, rightly observing any limitations or restrictions on the domains

of application. Furthermore, these skills need to be tied together to form a

coherent whole, which delivers the final theorem as the result of the manoeu-

vres combined correctly, that is, avoiding errors and mistakes, which will be

the result of general level competences. Similarly, in the case of checking or

learning from a previous proof, the proof on the page (or wherever it may

be) acts as a guide or recipe as to how one should carry out the actions of

the proof, as described in chapter 4. Still, the person doing the checking

must accurately follow the techniques being presented and see how one step

follows the last in order to come to know the ultimate solution. Importantly,

following steps in this sense does not need to be filled out as following the un-

derlying formal moves, but instead is about the fitting together of the steps

in the overall reasoning pattern and recognising what follows from what in

the moves that are being made, moves which can certainly be informal in

the operative sense.

Virtue responsibilists, on the other hand, require that the mathemati-

cian comes to know the proved theorem through acts of mathematical virtue,

which is to say that their proving activities must be virtuous and free from

vices. In particular, they gain knowledge through proving if the activity of

this instantiates the necessary virtue of mathematical rigour. The nature

of rigour is a major question of philosophy of mathematics, one which has

not been done justice by the Formalist-Reductionist answer, so I will dis-

cuss this in greater depth in the following section as something additional

that the Strong Virtue Proposal can offer besides the expected account of

mathematical knowledge. Importantly, following the Zagzebski framework,

the virtue of rigour will have an epistemic motivational component, usually

aimed at establishing the truth of the theorem, or making cognitive contact

with mathematical reality (whatever form that takes), and also a success
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component of actually doing so. Once again, this builds in the fact that our

right reasoning must track the contours and landscape of mathematics.

Let us illustrate these both using the Stallings example we began the

chapter with, where these virtues go astray to lead to a failed proof. Re-

call that Stallings’s proof of the Poincaré Conjecture failed because it relies

on deploying a theorem in a case for which it doesn’t hold. The mathe-

matical reliabilist account of what has gone on here is that what Stallings

describes as his “psychological problem, a blindness, an excitement, an in-

hibition of reasoning by an underlying fear of being wrong” (Stallings 1966,

p. 88) represents a failure of his usual skills and competence at putting

together a proof to form a complete argument, check for errors and, in par-

ticular, observe the domain of application of theorems being used. The

talk of developing “[t]echniques leading to the abandonment of such inhi-

bitions” (Stallings 1966, p. 88) can be taken seriously; the development

of such skills is paramount in securing correct proofs and further mathe-

matical knowledge. For the mathematical responsibilist, the focus will be

on the misapplication of theorem 0 as a failure on his part to be rigorous

in his proving, rigour being a mathematical character trait to be discussed

shortly. Additionally, the responsibilist would also be more interested in the

idea that developing the techniques for avoiding this is something desirable

to “every honest mathematician” (Stallings 1966, p. 88) as the intellectual

honesty will work alongside rigour to ensure that our motivations in our

mathematical proving are of the correct sort, rather than simply being di-

rected at fame and fortune.10 For both approaches, the failure to enact the

relevant virtues in the creation of the proof are how the proof came to be

mistaken and its reasoning flawed, with the upshot that the activities did

not deliver mathematical knowledge to Stallings of the truth of the Poincaré

Conjecture.

What has been given here is a description of how proving as an activity

can deliver or fail to deliver mathematical knowledge. However, the chal-

lenge on which I began was to account for proofs, rather than the activities

surrounding creating and verifying them. In the previous chapter, I put

forward a re-orientation of priority, where we focus on proving activities

first and see proofs as objects or arguments as of secondary concern. Proofs

10Of course, this does not mean that this cannot be a part of your motivation, just
that it cannot come to the detriment of correctly tracking mathematical truth.
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don’t operate in a vacuum was a slogan form of the idea that a proof con-

sidered in some idealised sense will miss out on the crucial connection to

the provers who create, know, understand and employ them, a connection

I have claimed is fundamental to the mathematical knowledge that proofs

are aimed at. Nevertheless, there is an emerging worry here which must be

addressed: that prioritising the individual activities appears to take us too

far in an individualistic direction. The fact is that we do have a seemingly

robust notion of what is sufficient for a proof, a set of standards taught

in classrooms and lecture halls which is enforced by teachers and even the

referees for journals. One might think that it cannot be simply down to

the individual whether a proof is enough to secure knowledge, as this seems

hopelessly subjective with respect to mathematics, which should be held up

as objective.

In response, though, we can observe that this does not really cut to

the core of the issue and that this instead merely reintroduces certain Tra-

ditionalist attitudes to mathematical proof. For one thing, it seems that

this response seeks to re-idealise proofs as something which are ‘out there’

to discover, thereby conflating the contours, structures and relationships of

mathematics, on one hand, with the proofs themselves on the other. Cru-

cially, proponents of the Strong Virtue Proposal can and should accept that

there are many operative canons in mathematical practice and that proof

is standardised in numerous ways. None of this poses a difficulty, however.

The point is that the standards are set for how to best structure and commu-

nicate proofs, thereby also helping to inculcate mathematical reasoning and

problem-solving into students by demonstrating how to set out reasoning

in clear and cogent ways. That each individual needs to go about actually

carrying out the reasoning in order to gain the specific type of knowledge

associated with proving (as opposed, say, to testimonial knowledge of its

correctness) does not necessarily impede the objectivity of the mathemat-

ics at stake. To return to the map metaphor: we can agree that there are

important map-making conventions, while asserting that properly knowing

the route it describes involves traversing it.

Under the current attitude, we can also do better than the Traditionalist

in discussing the conventions and standards surrounding proving. For exam-

ple, the claim that there are well-guarded standards of mathematical proofs

must come with some major qualifications. The fact is that the demands

177



such conventions place on us vary from context to context, with more details

demanded for proofs for students and less for discussions between colleagues

etc. These differences seem to concern the granularity of the proof, or how

much can be assumed on the part of the reader. For instance, in Pettigrew’s

review (Pettigrew 2016) of (Burgess 2015) he points out that informal proofs

must communicate the key ideas which deliver the truth of the theorem, and

that it is this rather than the mere convincing which is important for a proof

to be successful. For the Traditionalist, such a statement would fit poorly

with the constant standards of rigour which are assumed, but for the Virtue

approach this is only natural since virtues can be assessed across contexts

and situations. Besides the virtue of rigour which can be displayed in prov-

ing, many other virtues are relevant to mathematical work, including virtues

(in whatever sense they are taken) which pertain to communicating and col-

laborating. It may well be that very coarse proofs which only include the

main ideas might not fully display whether the thinking underlying them is

rigorous or not, in that they leave substantial gaps in between these main

ideas, but could still be sufficient to communicate how to go about rigorously

proving something if we address them to the right people. The point is that

a virtue approach embraces also the diversity of purposes for which we em-

ploy proofs, as set out at the start of the introduction to this thesis. While

one such purpose is to fully set out how to deduce some conclusion, another

may be merely to communicate how this is done to a fellow researcher who

does not need the full explanation to arrive at mathematical knowledge, by

virtue of their existing knowledge and abilities. The virtue picture does give

us a way to account for how these different facets come together and what

to say when they come apart, in particular that divergent purposes might

need to be assessed with respect to different virtues.

Ultimately, I take the point here to be that communal standards re-

flect something about the way in which we systematise our communication

of mathematical ideas, approaches and proofs. This does diverge from the

question of how proofs and proving relate to mathematical knowledge, but

has been constantly conflated in Traditionalist and Formalist-Reductionist

approaches. Let us now proceed to see what can be said concerning mathe-

matical rigour from the virtue perspective.
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5.6 Rigour

Mathematical rigour has already played a role in the discussion above, where

it has been proposed that we should see it as a specifically mathematical

virtue. Let us investigate this in greater detail.

Again, there is a strong claim put forth on the nature of rigour given by

the Formalist-Reductionist, taking rigour to amount to little more than for-

mality or straightforward formalisability. The ‘straightforward’ component

here is often cashed out as algorithmic formalisability, a process of filling in

the gaps until we hit a bedrock of formal inferences. That the formalisation

process is nowhere near so straightforward has been frequently pointed out,

such as in (Antonutti Marfori 2010, p. 266) and back in chapter 1, and

this cannot be seriously maintained by anyone with experience of actually

formalising proofs. In Marfori’s view:

[A]s a matter of fact it cannot be denied that in ordinary math-

ematical practice, standards of rigour are constantly appealed

to. However, these very much differ from standards of formal

rigour. Formalisation is seldom called for, and the mathemat-

ical community seems to widely converge on what to count as

an adequate proof for the truth of a theorem and adjudicates

controversies often without the need to formalise informal argu-

ments. (Antonutti Marfori 2010, pp. 270–271)

She argues that we should thus separate our investigations of formal rigour

from a separate endeavour of investigating informal rigour, amounting to the

community standards converged on as securing the right degree of mathe-

matical certainty. However, even these communal standards seem insuf-

ficient to me for the reasons outlined at the end of the previous section,

namely their variability and shifting with respect to the purposes, creator

and audience of the proof. I claim, though, that investigating these will

not solve the issue concerning the relationship between informal proofs and

mathematical knowledge, due to still not appreciating the role of the knower

in the proving which has been emphasised throughout this chapter as a way

of casting off the problems facing the Traditionalist.

The proposal is that, in addition to the notions of formal correctness and

the ‘informal rigour’ of communal standards, we also investigate the notion
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of rigour as a virtue, analogous to intellectual thoroughness or meticulous-

ness but concerned specifically with mathematics. In this way, mathemati-

cal rigour will have a clear connection to mathematical knowledge through

proofs, as outlined above, as well as explaining how we can do rigorous

mathematics outside of proofs, namely by manifesting the virtue in other

mathematical activities. Let us examine the details of how this works for

the virtue approaches to mathematical knowledge.

Let us begin this time with the responsibilist, as the story here is more

straightforward. We can take rigour to be a mathematical virtue, that is,

rigour is an acquired character trait and excellence specific to mathematical

practices.11 As with other intellectual virtues, rigour will have a motiva-

tional component and a success component. The motivation is, in the ter-

minology of Zagzebski, to make cognitive contact with mathematical reality,

where this involves one’s proving and other mathematical work tracking the

relationships, contours and dependencies of mathematics, while avoiding er-

rors, substantial gaps and wrong turns. Success, of course, is success at

doing so, that your proving is in actual fact error-free, fallacy-free and gap-

free. Rigour is acquired in the sense that we need to train and habituate

ourselves to be rigorous mathematicians, through schooling, university and

ongoing practice, as discussed in the previous chapter in relation to Rylean

know-how. This is done both through learning the actual mathematical

facts and techniques themselves, as well as through constant feedback cycles

of what needs to be reasoned out versus what counts as a gap in reasoning,

with respect to a practical context we find ourselves in. We try to weed out

related vices of sloppiness, guesswork and unrigorous thinking in order to

avoid gaps, errors and leaps of reasoning.

Now there are two major worries that can be raised against the division

of rigour into the three components: formal rigour of derivations in formal

systems; informal rigour of communal conventions, standards and norms;

and rigour as a virtue (as I have introduced it). The two related problems

for the inclusion of rigour as a virtue are the following. Firstly, usual talk

of rigour does not seem to match up with it being a character virtue of the

sort described here, but rather is applied to proofs themselves. Secondly,

11We might want to take the virtue here to be ‘rigorousness’ instead of simply ‘rigour’,
to distinguish the character trait from the communal standards of rigour, but the point
is that these are not sufficiently robust to ground proofs, while I argue that the character
trait is and so should be taken as primary.
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the virtue as described above for the responsibilist directly relies on notions

of correctness, gaps and errors, for which one can argue we need to appeal

to the existing notions of rigour, making this third aspect redundant.

In response, it would certainly be wrong to deny that we do talk of

proofs themselves being rigorous or unrigorous. However, this does not rule

out that the character virtue is at play in such assessments. For example,

we also speak of proofs as being ‘creative’, ‘inventive’ or ‘ingenious’, all of

which are best understood as assessing the mathematician who authored the

proof in so doing. After all, to take a proof in the abstract to be creative

would be a category mistake, with the real meaning being that it displays

mathematical creativity. Even closer to the virtue of rigour, we can also call

proofs ‘meticulous’ without raising a fuss and, again, this seems to be better

read as saying that the proof shows the meticulousness of its author. We

should take the virtue of rigour to be of the same type as this, except with

a vitally important role to play in the connection between proofs, proving

and mathematical knowledge.

On the second objection, the point isn’t that the proponent of the virtue

of rigour needs to deny that there are a number of conventions and social

norms as to how we do mathematics and assess its correctness, or decide

whether something is an error or a substantial gap; certainly these do exist.

The point is just that these require an extra step to secure mathematical

knowledge, and that rigour as a virtue of mathematicians (or groups of

mathematicians) can make this step, thus is far from redundant. The way I

have laid out the proof as a record and guide to activity versus proving as

the activity itself, makes clear that the conventions of informal rigour apply

foremost to the proofs themselves while virtues will be more concerned with

the dynamics of the activity of proving. As such there are clear and definite

theoretical roles to be played for both notions.

Let us turn now to the virtue reliabilist account of rigour. To achieve

mathematical knowledge through a proof, one must deploy particular math-

ematical skills. Yet, for the reliabilist most skills require being reliable, but

in the case of reasoning we want the skills of mathematics to not lead us

astray and not permit fallacies, gaps and errors. Sosa discusses fallacious

reasoning in (Sosa 2007), with the example of affirming the consequent:

[...] what denies justification to the fallacious reasoner might

just be his carelessness or inattention or blundering haste. With
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rare exceptions, normal, rational humans do not affirm the con-

sequent when they are careful, attentive and deliberate enough.

[...] Fallacies can thus be viewed as performance errors charge-

able against the subject, by contrast with deliverances of a com-

petence. (Sosa 2007, p. 59)

The idea seems to be that rigour, as in being careful, attentive and deliberate

enough, is not some special competence which needs to be added at the

general level, but rather is already built into the reliability of the specific

skills being deployed in our reasoning. Rigour is present when the reasoning

is carried out correctly and not present when it goes awry. As such, by

Sosa’s way of speaking, rigour would not be a virtue itself, but rather a

necessary feature of certain mathematical virtues. The communal standards

of mathematics will set out criteria for correctness of moves in a proof, and

then a mathematician will have been rigorous just in case the deployment

of the particular moves are free from errors and gaps.

In summary, the responsibilist and reliabilist accounts might very well

come apart on the issue of whether rigour is a mathematical virtue, or

instead a condition on mathematical virtues. Either way, though, rigour

has an analysis in the virtue approach which does not rely on unattractive

appeals to formality and formal proofs, contra the Formalist-Reductionist

view.

5.7 Mathematical Understanding

Let us turn now to a third issue for which adopting a virtue-theoretic phi-

losophy of mathematics, in particular the Strong Proposal, can provide new

answers and interesting insights: the nature of mathematical understand-

ing.12 While still being a major concept of epistemology, understanding

seems to come apart from knowledge in numerous ways:

1. Understanding can come in degrees whereas knowledge does not.

2. Understanding is compatible with epistemic luck while knowledge is

not.
12One thing to be careful about is the fact that we can be said to understand many

different things, which might not be uniform in the properties that understanding amounts
to. For example, understanding German might be conceptually different from understand-
ing group theory, or indeed understanding a particular proof.
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3. Understanding may be non-factive, while knowledge entails truth.

The first and second claims are defended in (Kvanvig 2003, Ch. 8). The

third is the point made in (Elgin 2006) by focusing on the case of scientific

theories:13

[S]cience is riddled with symbols that neither do nor purport to

directly mirror the phenomena they concern. Purified, contrived

lab specimens, extreme experimental situations, simplified mod-

els, and highly counterfactual thought experiments contribute to

a scientific understanding of the way the world is. (Elgin 2006,

p. 213)

Considering the case of mathematics and mathematical understanding, one

can go either way on this. On one hand, one might think that there cannot

be the same disconnect between mathematical theorising and mathematical

reality, such that only true mathematical theories are the sort of things

one can understand.14 Indeed, this might fit well with a narrower view of

mathematics which focuses on pure mathematics and understanding proofs.

On the other hand, there are plenty of mathematical areas which permit

similar arguments to Elgin’s. I already touched on this while discussing

Rav’s Pythiagora thought-experiment, but mechanics, applied mathematics

generally and statistics all seem to make frequent use of modelling which

do not even purport to be literally true of the target phenomenon, but

nonetheless contribute to understanding. Given the broader conception of

mathematics used in the latter view, I see no reason to be unnecessarily

restrictive in taking understanding to be factive in mathematics generally.

So what is understanding? This is the big question in giving an account

of understanding and therefore fairly important if we want to give an account

of the more specific phenomenon of mathematical understanding. Speaking

loosely to get started, understanding seems to involve recognising patterns,

structures, relations etc. As Riggs puts it:

[U]nderstanding [...] is the appreciation or grasp of order, pat-

tern, and how things ‘hang together’. Understanding has a

13Worthy of note is that Kvanvig disagrees on this last item, seeing understanding to
be factive. I take Elgin’s point to establish that this is not correct.

14There are, of course, questions concerning what it is for a mathematical theory to be
true. I shall not engage with these deep and complex issues here.
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multitude of appropriate objects, among them complicated ma-

chines, people, subject disciplines, mathematical proofs, and so

on. Understanding something like this requires a deep apprecia-

tion, grasp, or awareness of how its parts fit together, what role

each one plays in the context of the whole, and of the role it

plays in the larger scheme of things. (Riggs 2003, p. 217)

While not being very exact, this certainly points to the kind of phenomenon

we are interested in. However, seeing understanding in this light adds two

further differences from basic accounts knowledge, traditionally conceived.

First, unlike knowledge, understanding does not obviously consist merely in

holding certain beliefs, whereas knowledge is normally taken to be justified

true beliefs plus whatever extra criterion one’s theory prefers to avoid Get-

tier cases. Second, when dealing with the standard cases of knowledge it

is assumed to be propositional, whereas understanding might well not be.

For instance, understanding might well involve diagrammatic representa-

tions which are not reducible to propositional content, something which is

particularly relevant for the case of mathematics where diagrammatic and

visual thinking are not uncommon (see Giaquinto 2015).

Mathematical understanding itself has not received a great deal of atten-

tion in the philosophical literature in comparison to mathematical knowl-

edge. Nonetheless, it does seem to be central in mathematics in practice.

For example, in (Martin 2015), Martin draws her title from the following

description by Andrew Wiles (famed for his proof of “Fermat’s Last Theo-

rem”, better called ‘Fermat’s Conjecture’ and now ‘Wiles’s Theorem’) of the

mathematical process of coming to understand new areas of mathematics:

Perhaps I can best describe my experience of doing mathematics

in terms of a journey through a dark unexplored mansion. You

enter the first room of the mansion and it’s completely dark. You

stumble around bumping into the furniture, but gradually you

learn where each piece of furniture is. Finally, after six months

or so, you find the light switch, you turn it on, and suddenly it’s

all illuminated. You can see exactly where you were. Then you

move into the next room and spend another six months in the

dark. (Martin 2015, p. 30)15

15Note the close similarity between this metaphor and the description of proving as
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Let us thus investigate how the two main strands of virtue epistemology

will be able to incorporate a theory of mathematical understanding in their

accounts of mathematics. To do so I will take as a starting point the main

account of specifically mathematical understanding in the literature, that of

Jeremy Avigad, as found in (Avigad 2008). Interestingly, the two strands

of virtue epistemology will come apart in whether or not they can take on

the position Avigad endorses, as I will show after a description of Avigad’s

account.

Avigad draws heavily on the later Wittgenstein to present an account

of mathematical understanding which is functionalist, in that he rejects any

spooky theorising about understanding as pertaining to our inner mental

lives, in favour of identifying understanding with the possession of particular

mathematical abilities. Mathematical understanding is also, according to

Avigad, closely connected to the ascriptions people make of mathematical

understanding, which coheres with the main thesis because he argues that

people ascribe understanding to each other just in virtue of their abilities to

perform a selection of relevant mathematical activities. As such:

[W]hen we talk informally about understanding, we are invari-

ably talking about the ability, or a capacity, to do something.

It may be the ability to solve a problem, or to choose an ap-

propriate strategy; the ability to discover a proof; the ability to

discern a fruitful definition from alternatives; the ability to apply

a concept efficaciously; and so on. When we say that someone

understands we simply mean that they possess the relevant abil-

ities. (Avigad 2008, p. 321)

As can be seen in the quote, Avigad readily moves between talking about

understanding and talking about ascriptions of understanding. The picture

is complicated somewhat by the fact that understanding is ascribed on the

basis of a whole selection of interrelated abilities: for understanding a proof,

Avigad lists eleven different abilities, any combination of which someone

might have in mind when ascribing understanding— and the list isn’t even

meant to be exhaustive. The point, of course, is that understanding comes

in degrees and so won’t have some exact formula. Rather, the Avigadian

account will be that understanding amounts to a cluster of abilities:

journeying through the mathematical landscape given in the previous chapter.
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The claim I am making here is simply that the terrain we are

describing is best viewed as a network of abilities, or mechanisms

and capacities for thought. (Avigad 2008, p. 326)

Beginning with the virtue reliabilist version of the Strong Proposal, there

is a great deal that fits well with Avigad’s account of understanding. In

particular, the virtue reliabilists take the virtues to be stable, reliable skills,

faculties, competences or abilities. Putting the theory in terms of abilities,

as noted above, is exemplified by Greco in (Greco 2010), taking knowledge

to be true belief caused by intellectual abilities. As such there is a clear

parallel between Greco’s account of knowledge and Avigad’s account of un-

derstanding.16 Thus, it is an available and attractive option for the virtue

reliabilists to adopt an Avigadian line on understanding, since this would

draw on the same source in abilities to explain both mathematical knowledge

and understanding while simultaneously explaining their distinct features.

Mathematical knowledge consists in the true beliefs which result from intel-

lectual abilities; mathematical understanding consists in the possession of

a broader but related network of abilities. Focusing on proofs once again,

knowledge is obtained by using one’s mathematical abilities to present rea-

soning from premises to a conclusion, while understanding comes in degrees

relative to how many additional surrounding abilities the mathematician

possess: abilities to explain, generalise, re-formulate, formalise etc.

Turning to virtue responsibilism, Zagzebski has a great deal to say about

understanding that will be relevant to mathematical understanding. Indeed,

she quotes Moravcsik on what it is to understand a proof:

What is it to understand a proof? It cannot be merely being

able to reproduce it, or to know what it is, or to know lots of

truths about it. [...] What elevates the above to understanding

is the possessing of the right concepts, and the intuitive insight

of the connection that makes the parts of the proof to be the

proper parts of a sequence. (Moravcsik 1979, p. 55). Taken

from (Zagzebski 1996, p. 47).

Zagzebski uses this to point towards an agreement with Kvanvig (and the

line we saw in Riggs) that understanding amounts to grasping structures

16Greco does mention understanding, following the Kvanvig line that understanding
amounts to a knowledge of causes, broadly construed.
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and patterns of “a whole chunk of reality” (Zagzebski 1996, p. 46). A

main point she develops also in (Zagzebski 2001) is that understanding in-

volves the grasp of structures that are not necessarily propositional. As

mentioned previously in section 5.3.2, understanding for Zagzebski sits be-

side knowledge as making cognitive contact with reality, thereby expanding

the domain of epistemology on the virtue account to include such contact

with non-propositional structures too. This certainly seems desirable in the

case of mathematics, to account not only for diagrams but also the fact that

understanding does seem to involve the more holistic features of seeing how

mathematical theories, concepts, proofs, definitions and methods fit inside

large structures.

As to the Avigadian picture, the Zagzebskian view will not fit anywhere

near so well as the reliabilist could. While certainly the responsibilist view

Zagzebski defends will hold that understanding entails certain abilities, it

will not endorse the functionalist leanings which have Avigad rejecting talk

of the inner mental life. Instead, the account is one on which we see under-

standing as coming through intellectual character virtues making cognitive

contact with mathematical reality. For example, the mathematician might

understand a proof by possessing insight into the whole structure and how

it fits together as described by Moravcsik above. Hereby the responsibilist

can also reject the conflation between understanding and ascriptions of un-

derstanding, such that the ascriptions do not take on the same importance

they did in the Avigadian picture.

5.8 Case Study: Mochizuki and the abc Conjec-

ture

In this section I will give a case study one of the most fascinating current

episodes in mathematics, that of Shinichi Mochizuki and his controversial

proof of the abc conjecture. In it we will see the explicit presence of virtue-

theoretic terminology in mathematical practice, thus enriching and exem-

plifying the account given above. I shall begin by setting out some of the

background and details of the case, after which I will draw on Mochizuki’s re-

flections on the status of his proof in order to show that the virtue-theoretical

approach is also the most effective explanation of the controversy surround-

ing it. Indeed, this case has not finished playing out: there is at the time
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of writing no settled consensus of whether the proof will be accepted by the

community or not. However, I don’t think this matters to the point I am

making with it: whether or not the proof is accepted as correct or some

irreparable error or gap is found, the clearest and best explanation of what

is going on in the controversy is the virtue-theoretic one.

Some background: the abc conjecture, otherwise known as the Oesterlé-

Masser conjecture, can be stated as follows:

abc conjecture For every ε > 0, there are only finitely many triples (a, b, c)

of coprime positive integers where a+b = c, such that c > d1+ε, where

d denotes the product of the distinct prime factors of a ∗ b ∗ c.

So, to give an example, try the triple (5, 8, 13) which are coprime positive

integers and form the sum 5+8 = 13. The distinct prime factors are then 2,

5 and 13, so then d = 2× 5× 13 = 130. So for this choice of c and d, c < d

and thus for all ε > 0 we have that c < d1+ε, meaning this is not going to be

one of the finitely many exceptions.17 The general mathematical interest of

the conjecture lies in the huge number of consequences it has in establishing

other theorems.

At the end of August 2012, Shinichi Mochizuki uploaded four papers

containing a decade’s worth of his solitary work developing ideas on ellip-

tic curves in what he calls Inter-Universal Teichmüller Theory, known as

IUTeich for short. In particular, one result this leads to is a proof of the

abc conjecture. The problem is, however, that a huge amount of material is

covered in the run-up to the proof—fifteen hundred to two thousand pages

of dense technical work, or down to five hundred if one is already an ex-

pert in anabelian geometry— and in it Mochizuki has developed a whole

new area of mathematics with its own terminology, structuring, deep ideas,

novel tools and original ways of thinking. As such, the proof has still not

been widely accepted because nobody has been able to independently pen-

etrate and understand the proof.

After an initial wave of excitement, both within mathematics and from

the media such as in (Ball 2012), the daunting task of reviewing and verify-

ing the proof became clear. While Mochizuki is described as forthcoming in

responding to emails from other mathematicians, he has as of yet not lec-

tured on his work outside of Japan, which has created quite a large barrier

17If we were trying to find an example of one of these exceptions, choosing our c as
prime would’ve been a pretty poor starting point.
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to acceptance by the wider mathematical community. As a result, there has

been some frustration towards the proof and aimed at Mochizuki himself,

such as in (O’Neil 2012) and with further examples given in (Castelvecchi

2015). At the end of 2015, a workshop was held in Oxford to try to get a

larger group familiar with the central themes of Mochizuki’s work and the

general structuring of the proof of the abc conjecture, with some success and

other fresh expressions of frustration, such as are given in (Knudson 2015)

and described in detail in (Conrad 2015). The nature of the surrounding

controversy, then, concerns the correctness of the proof and the respective

duties in the verification process of both the originator of the proof and the

community at large who have to carry out this verification.

One could say a great deal about this situation following the template

set out for the Moderate Virtue Proposal above, focusing on the virtues and

vices both of individuals and the mathematical community at large that have

lead to the difficulties in communicating and verifying the proof. For exam-

ple, we could look at the balance required between intellectual autonomy in

developing new mathematics and the collaborativity in bringing others along

with you. However, the virtue proposal can be of even greater benefit in

examining Mochizuki’s own reflections on the status of the proof and its ver-

ification. In response to the widespread discussion about the difficulties in

verifying the abc proof, Mochizuki has produced two reports on his personal

endeavours in trying to disseminate and communicate the proof (Mochizuki

2013, 2014). What is of particular interest to us is that Mochizuki’s opin-

ions on what it will take for others to verify his proof appeal directly to the

characters and motivations of those doing the verifying. It is not so common

or straightforward to find mathematicians’ opinions and reflections on their

practices without a pre-established philosophical agenda.18 As such, the fact

that on this occasion—where a significant mathematical break-through is at

stake— the language and ideas are unmistakeably virtue-theoretical seems

to be worthy of note, and furthermore offers the opportunity to demonstrate

the effectiveness of a virtue-theoretic philosophy of mathematics.

Let us examine what Mochizuki has to say in some detail. The central

contrast Mochizuki is trying to draw is between his collaborators, who he

has worked through the proof with and now seem to have agreed on the

18We might be less concerned here about Mochizuki’s obvious mathematical and per-
sonal agenda, since this does not seem to automatically introduce a philosophical bias.
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correctness of his work (namely the three mathematicians Go Yamashita,

Mohamed Säıdi and Yuichiro Hoshi), and the detractors in the mathematical

community. Ultimately, the point that he seems to want to make is that the

level of verification performed by the former group should be sufficient to

satisfy the community at large:

[T]he verification activities on the part of the three researchers

discussed above already exceed, by a quite substantial margin —

i.e., in their content, thoroughness, and meticulousness — the

usual level of refereeing for a mathematical journal. (Mochizuki

2014, p. 7)

[I]t seems to me that the degree of meticulousness and attention

to detail exhibited in the verification activities [...]— which, as

noted above, exceed, by a substantial margin, the scope of a

typical referee’s report for a mathematical journal — together

with the wealth of refereeing experience of Yamashita and Säıdi

[...] should be regarded as lending quite substantial weight to the

extremely positive evaluation that I received from both of them

in the course of these activities. (Mochizuki 2013, p. 4)

In both cases, observe how the concern is with the thoroughness and metic-

ulousness involved in the checking of the proof. I take these to be a main

component of the virtue of rigour, as the responsibilist would put it, as

described above. Mochizuki thus directly links whether or not we know a

proof is correct to these aspects of virtuous behaviour and character. Fur-

thermore, he insists the following plausible point about offering up opinions

on mathematical work:

[T]he essential significance of such an opinion concerning IUTe-

ich lies [...] in the issue of whether or not the opinion reflects

a rigorous and appropriate mathematical understanding of the

topic under consideration. (Mochizuki 2014, p. 13)

Note again the discussions of the rigorousness of the understanding involved

in the evaluation of the proof. Importantly, the not-so-veiled criticism of

the detractors of his work is that they lack the motivation and dedication

required to properly engage with the mathematics, because of the following

claimed feature it has:
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Yamashita warned that if you attempt to study IUTeich by skim-

ming corners and “occasionally nibbling” on various portions of

the theory, then you will not be able to understand the theory

even in 10 years; on the other hand, if you study the theory

systematically from the beginning, then you should be able to

understand it in roughly half a year. (Mochizuki 2014, p. 2)

The upshot is that the normal approach of searching for overlap with prior

knowledge they possess and thereby assimilating the new results won’t work,

according to Mochizuki. In order to be able to pass a substantial judgement

on the proof, one must have a proper and full mathematical understanding

of the way it works. The way he puts this point is:

[E]very researcher in arithmetic geometry [...] throughout the

world is a complete novice with respect to the mathematics sur-

rounding IUTeich, and hence, in particular, is simply not quali-

fied to issue a definitive (i.e., mathematically meaningful) judg-

ment concerning the validity of IUTeich on the basis of a “deep

understanding” arising from his/her previous research achieve-

ments. (Mochizuki 2014, p. 9)

This quote fits very well with the virtue reliabilist approach: the suggestion

being that the researchers who are failing to penetrate the proof are lacking

the necessary skills and expertise for grasping the proof or judging its valid-

ity. Indeed, Mochizuki’s opinion is that established skills may actually be a

hindrance:

[T]he most essential stumbling block lies not so much in the need

for the acquisition of new knowledge, but rather in the need for

researchers (i.e., who encounter substantial difficulties in their

study of IUTeich and related topics) to deactivate the thought

patterns that they have installed in their brains and taken for

granted for so many years [...] (Mochizuki 2014, p. 11)

We might translate this to the moral that skills in one mathematical domain

do not automatically transfer to another, nor are they guaranteed to gener-

ate knowledge there. Equally, the talk of “deactivating thought patterns”

is also clearly linked to the virtue of open-mindedness, in that one should
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be flexible in one’s thinking and not reject new mathematics because it is

hard, unfamiliar or requires learning new ways of thinking.

Mochizuki also adds more general allusions to the virtues of his colleagues

and the link between these and correct mathematics. For example, he refers

to the “serenity” of Säıdi’s demeanour (p. 3) , as well as the “exception zeal

and teamwork” of all three (p. 15).19 The best quote has been saved for

last though:

[...] I have always been a strong advocate of the need, in the

case of both domestic and international interaction activities, to

maintain a humble stance dedicated to uncovering the ultimate

truth of things (Mochizuki 2014, p. 14)

Not only does this echo the Stallings quote, in that arriving at mathemat-

ical truths requires one to set aside ego, personal excitement and fear, but

furthermore it explicitly acknowledges the role of humility as a virtue which

directly benefits mathematical inquiry.

So here is the main point that is illustrated in looking at this case.

Adopting a virtue-theoretic perspective towards mathematics, as I have been

advocating in this chapter, allows us to give the best account of what is

going on in the controversy in general and Mochizuki’s perspective on it in

particular. The issue is one of the division of labour between the creator of

a proof and those who have to check it. Critics, believe that a major part

of mathematics and mathematical proving is the communication of your

results to others. For example, O’Neil says:

It only constitutes a proof if I can readily convince my audience,

i.e. other mathematicians, that something is true. Moreover,

if I claim to have proved something, it is my responsibility to

convince others I’ve done so; it’s not their responsibility to try

to understand it (although it would be very nice of them to try).

(O’Neil 2012)

19I should state again that I don’t have a horse in this race. However, if one is concerned
about the correctness or success of IUTeich, it seems like zealotry on the part of its
proponents might well be counter-productive in comparison to open-mindedness or the
humility I will come to momentarily. Similarly, the fact that they are working as a team
with Mochizuki might well be seen to detract from the earlier suggestions that they are
suitable evaluators of the correctness of the theorems.
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For Mochizuki, the view is that the unusually large body of work required

for the abc proof, and its novelty, difficulty etc., requires a corresponding

increase in effort to understand and corroborate the results. The virtue

interpretation offers the following analysis of the problems on both sides.

For Mochizuki, as we have seen, the verification of the proof will require

immersion in the theory of IUTeich rather than the application of previous

knowledge to get to an understanding. To be properly immersed, according

to Mochizuki, requires a mathematician to be strongly motivated and vir-

tuous in a number of other ways, say through serenity, humility and rigour,

which will be necessary for the verification of IUTeich and the abc conjec-

ture. Conversely, in demanding so much from his referees, opponents can

make the case that Mochizuki has breached a social convention of doing

all one can to make the understanding of a new theorem smooth and pain-

less. They could argue that this shows a deficit of virtues of communication

and collaboration, or worse that there are vices in play in making the the-

ory impenetrable. Either way, there are huge barriers to understanding for

even the practitioners who are actively engaging with the theory, placing

epistemic limits on what they can get out of the proof.

In summary, while the controversy is one concerning the verification of

a potentially ground-breaking contribution to mathematics, the best way to

explain the details of the case is to appeal to the epistemic and mathematical

virtues needed in coming to understand a proof.

5.9 Conclusion

In this chapter I have defended a virtue-theory for the philosophy of math-

ematics, in terms of the Moderate and Strong Proposals:

Moderate Proposal Virtues and vices of mathematicians will be relevant

to mathematical knowledge.

Strong Proposal Virtues and vices of mathematicians will be explana-

tory of mathematical knowledge. In other words, virtue epistemology

should be adopted to give the correct epistemology for mathematics.

Not only do these provide a robust and plausible account of mathematical

knowledge, but I have shown that these offer rich and fruitful answers to

other major related issues in the philosophy of mathematics. In particular,
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I have shown that both virtue reliabilists and virtue responsibilists can do

better than the Formalist-Reductionist approach in dealing with the nature

of proofs and rigour. Indeed, the virtue approach is a natural companion

for the switch of emphasis from proofs-as-objects to proving-as-an-activity

which I have also been advocating. Furthermore, deploying virtue episte-

mology has the potential to be bountiful as a major school of thinking in

mathematical epistemology. Not only are there well-motivated extensions of

the central ideas presented here to the many other ways of gaining mathe-

matical knowledge, those the Traditionalist trend of thinking widely ignores,

but additionally the virtue approach expands the relevant epistemological

concepts which can be accommodated in our theorising, as I have shown in

the previously under-explored area of mathematical understanding.

One thing I have not covered is the Radical Proposal:

Radical Proposal Virtues and vices of mathematicians explain mathe-

matical knowledge and extend to provide alternative answers to other

kinds of questions in the philosophy of mathematics, e.g. those con-

cerning ontology, access, metaphysics etc.

The difference was that the Strong Proposal aims to remain neutral on a

great deal of traditional philosophy of mathematics and would fit comfort-

ably alongside it. For example, different stances in previous debate might

still help to settle how it is that contact with mathematical reality is possi-

ble, something which has been left open above. In the Radical Proposal the

role of virtues is meant to extend beyond the realm of epistemic concepts

such knowledge, understanding and proof, to also provide a new set of an-

swers to traditional questions, potentially in direct conflict with a greater

range of the literature. Expanding on how such a project could go, however,

would require a great deal of further work, while embroiling us in many more

controversies.20

20One view which could be fairly amenable to being adopted to a Radical Proposal-
style virtue mathematics would be a mathematical version of Peregrin’s inferentialism
(Peregrin 2014) (which builds on work by (Sellars 1954) and (Brandom 1994)). Peregrin
offers us a broad picture of inferentialism, intending to give an account of meaning in
terms of inferential role. He covers both inferentialism in logical systems, defining logical
constants through their inference rules, and inferentialism in natural language, seeing
meaning as deeply related to rules of usage which over time come to have normative force
through corrective behaviour. Peregrin does not engage with the difficulties of informal
mathematics, but one could propose the application of his inferentialist theory of natural
language (rather than that of formal logic) to the mathematical case. This would allow
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To conclude, then, let me emphasise that in many respects the virtue-

theoretic approach to mathematical knowledge is a grand departure from

orthodox thinking in mathematical epistemology. Nonetheless, what I have

shown is that there are interesting and novel answers which it can give to

both traditional questions and the difficulties coming out of the philosophy

of mathematical practice, difficulties which threaten to undermine a great

deal of the orthodox conception anyway. While virtue epistemology is now

receiving major attention as a theory of epistemology, it has hitherto not

been adopted in the realm of mathematics, leaving an unexplored gap. What

I have done here is to begin mapping out some of the terrain of this bountiful

new land.

us to incorporate a virtue-theoretic perspective in that we could tie the correctness of
practices to the behaviours and virtues of the agents participating in making the rules
normative. This would also be radical, in our sense, in that the meanings of mathematical
terms would come down to the rules for their manipulation. One might term a view like
this game informalism, where the acceptable moves are tied to the virtues of agents and
their communities. Again, a great deal of additional work would need to be done to make
it tenable, but it does not seem that we should rule out the possibility of having answers
to questions of ontology in mathematics be secondary to a theory of virtue.
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Conclusion

In the last three chapters, I have put essentially the same strategy to use

three times to make progress on three different topics. The strategy has

been one of showing that there is some significant open area of philosophical

questions pertaining to proofs, then connecting it up to an existing literature

to demonstrate that there are resources to draw on to answer them. Firstly,

I argued that the difficulties encountered in relation to mathematical con-

cepts can draw on recent work in conceptual engineering. Secondly, I argued

that the important shift in what we consider to be the important knowledge

in mathematics should build on the literature on knowledge-how, particu-

larly anti-intellectualism. Finally, I presented an account of mathematical

knowledge, proofs and rigour which was based on virtue epistemology. The

moral to draw here is that the philosophy of mathematical practice is not

alone. While the ‘maverick’ approach of studying mathematical practice is

doing something new in the arena of the philosophy of mathematics, I have

shown that there is no shortage of allies in philosophy more broadly.

In the first chapter, I presented a new argument for the failure of the

Formalist-Reductionist view of informal proofs, based on a dilemma between

agent-independence and agent-dependence, as well as an overgeneration ar-

gument to the effect that the Formalist-Reductionist’s picture of how the

correspondence between informal and formal proofs justifies rigour and cor-

rectness is incompatible with there being many substantially different and

equally good formal correspondents for a given informal proof. What the

argument brings out is the fact that if the account of informal proofs that

the Formalist-Reductionist offers is so dependent on the correspondence be-

tween informal proofs and their formal counterparts then the details of how

they are matched up matter, and as it turns out these details do not support

the claims being made.
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In the second chapter, I showed that Beall and Priest’s arguments that

paradoxes about the notion of informal provability lead to the conclusion

that mathematics is inherently inconsistent were unsuccessful. The central

criticism I had of these arguments rejected the premise that all of math-

ematics could be straightforwardly formalised. I suggested that this was

too simplistic to be true, and that ways of filling it out that are accurate

pictures of the formalisation process no longer support the dialetheist argu-

ments. In particular, I suggested that formalisation is a complex procedure

which might lead to many different results, rather than the single super-

system that the argument depends on. Priest uses Gödel’s results to claim

that the trade-off between the axes of completeness and consistency will

favour completeness, but I instead argued that we need to see a third axis

of formality to properly evaluate the arguments.

In chapter 3, I investigated the relationship between proofs and math-

ematical concepts. I first compared the ideas underlying Waismann and

Shapiro’s notions of open texture, showing the difference in the phenomena

they are intended to pick out. Next, I worked through Lakatos’s Proofs

and Refutations in detail, looking at how proofs develop the concepts that

feature in them according to Lakatos’s dialectical philosophy of mathemat-

ics. I took a strong stance on the correctness of different interpretations

of Lakatos’s view of the role of formal proofs, favouring the interpretations

of Davis & Hersh and Larvor over those of Worrall & Zahar and Corfield.

However, from this discussion it emerged that there was a significant open

question for dialectical approaches to philosophy of mathematics concerning

the role of formal results, proofs, theories and methods as they are used in

modern mathematics. After a brief sojourn showing that several Lakatosian

ideas were also found earlier in the overlooked works of Kneebone, I ar-

gued that one of the big morals we should draw is that mathematical con-

cepts do display open texture. In the latter half of the chapter I turned to

the literature on conceptual engineering as it applies to the development of

mathematical concepts. I mainly concentrated on two different proposals,

those of Haslanger and Scharp. I deployed Haslanger’s distinction between

manifest and operative concepts for the mathematical cases of set-theoretic

foundations and the difference between formal and informal proofs. I then

discussed Scharp’s replacement strategy as it works for solving the tension

between formal methods and informal mathematics.
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The purpose of chapter 4 was to link the literature in epistemology on

knowing-how to the arguments by Rav that the important mathematical

knowledge is embedded in proofs. I argued that the thought-experiment

of Pythiagora was fine for Rav’s motives of emphasising the importance of

proofs, but that his idea of what would happen in such a scenario was incor-

rectly pessimistic. I argued that a better alternative picture would emphasise

the interrelation between the methods, techniques and know-how in proofs

and the propositional truths of mathematics. I reviewed the literature on

knowledge-how and knowledge-that, covering Ryle, Stanley & Williamson,

Hornsby and Wiggins, arguing against the Intellectualist position, and ar-

gued that Wiggins’s picture of the interdependence of knowledge-how and

knowledge-that fits best with case of knowledge of proofs. I backed this

up with discussion and examples of mathematical knowledge-how and its

importance in mathematical practice. I examined Löwe & Müller’s con-

textualist account of mathematical knowledge, which employs the idea of

mathematical know-how as skills, but showed that ultimately it does not

succeed because it allows one to know some mathematical fact while believ-

ing the opposite. Finally, I examined Larvor’s view of informal proofs as

depending on inferential actions and expanded on the importance for a view

of mathematical knowledge to prioritise proving as an activity over proofs

as objects.

In the final chapter, I proposed a virtue-epistemic account of mathemat-

ical knowledge. I suggested three different levels of engagement with the lit-

erature on intellectual virtues, and argued in favour of the Strong Proposal,

that virtue epistemology is the best account of mathematical knowledge. I

demonstrated that this view does better than the Formalist-Reductionist

family of approaches in accounting for mathematical knowledge through

proving, the nature of rigour and mathematical understanding, while also

naturally generalising to other types of mathematical knowledge. I also gave

a case study of Mochizuki’s proof of the abc conjecture, showing the fruitful-

ness of deploying virtue theory in the philosophical study of mathematical

practice.
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