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We show that the class of finitely generated virtually free groups is precisely the class

of finitely generated demonstrable subgroups for R. Thompson’s group V . The class of
demonstrable groups for V consists of all groups which can embed into V with a natural

dynamical behaviour in their induced actions on the Cantor space C2 := {0, 1}ω . There

are also connections with formal language theory, as the class of groups with context-
free word problem is also the class of finitely generated virtually free groups, while R.

Thompson’s group V is a candidate as a universal coCF group by Lehnert’s conjecture,

corresponding to the class of groups with context free co-word problem (as introduced
by Holt, Rees, Röver, and Thomas). Our main reults answers a question of Berns-Zieze,

Fry, Gillings, Hoganson, and Matthews, and separately of Bleak and Salazar-Dı́az, and

it fits into the larger exploration of the class of coCF groups as it shows that all four
of the known closure properties of the class of coCF groups hold for the set of finitely

generated subgroups of V.
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1. Introduction

There is a long history of determining classes of groups based on some external

criteria. In the case of formal language theory, we mention in particular two classical

results along these lines. Anisimov’s theorem [1] that the class of finitely generated

groups with word problem a regular language is precisely the class of finite groups,
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and Muller and Schupp’s result [19,20] that the class of finitely generated groups

with word problem a context free language is precisely the class of finitely generated

virtually free groups.

Holt, Rees, Röver, and Thomas introduce in [13] the class coCF of co-context free

groups. The coCF groups are a natural generalisation of the class of groups with

context free word problem, and so one can hope for another classification of these

groups as some particular natural class of groups. Presently, there is a conjecture of

Lehnert [17,6] that the class coCF is precisely the class of finitely generated groups

that can embed in R. Thompson’s group V .

The R. Thompson groups F < T < V have been known to be important essentially

since their introduction in the mid 1960’s by Richard Thompson [9,24]. However,

while they are fundamental objects, they remain quite mysterious in many ways.

Specific to V , we can highlight various investigations [3,17,2,23,4,8,11], which list is

by no means comprehensive.

One view of the group V , amongst others, is as a group of homeomorphisms of

the standard “deleted middle thirds” Cantor space C2 := {0, 1}ω. Recently, it has

become clear [7] that yet another view of V is natural and interesting. In this view,

V can be thought of as an infinite generalisation of the finite alternating groups

(our most basic examples of finite simple groups). From this view, V can be seen as

a permutation group of “even” permutations “acting” on a poset structure of some

partitions of Cantor space. This, perhaps, offers a new insight into why V arose as

one of the first examples of finitely presented infinite simple groups.

In any case, in [8] a class of subgroups of V were singled out as being particularly

important. These are subgroups of V with induced actions on Cantor space that

are naturally “Geometric”; the demonstrative subgroups of V . Groups (in general)

which admit embeddings into V as demonstrative subgroups of V are known as

demonstrable groups for V . We note in passing that Question 3 of [8] requests a

classification of these groups, which we will answer here in the finitely generated

case.

Thus, the main result of this paper from the point of view of the development of

the dynamic theory of V is the following.

Theorem 1.1. Let G be a finitely generated group. Then, G is a demonstrable

group for V if and only if G is a virtually free group.

In particular, as we noted before, this is precisely the class of context free groups.

In passing, we comment that Q\Z is a known demonstrable subgroup for V (and

even, for T , see [5]), so we need the “finitely generated” criterion.

As mentioned above, Lehnert in his dissertation [16] conjectures that a group
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QAut(T2,c) is a universal coCF group; that a group is a coCF group if and only if it

embeds as a finitely generated subgroup of QAut(T2,c). Lehnert also shows that V

embeds in QAut(T2,c). Lehnert and Schweitzer show by a separate argument in [17]

that V is a coCF group. In response to the work in [8], Lehnert and Schweitzer [18]

asked those authors whether V and QAut(T2,c) are bi-embeddable. In [6], this ques-

tion is answered affirmatively. Consequently, one can restate Lehnert’s conjecture

as the following.

Conjecture 1.2 (Lehnert). R. Thompson’s group V is a universal coCF group.

The paper [2] investigates a class of groups which could provide possible counter-

examples to Lehnert’s conjecture. We are not certain at this time whether or not

those groups can embed in V , but part of the motivation for the work here was the

request in [2] to embed the virtually free groups into V as demonstrative subgroups

of V . Indeed, the authors of [2] ask in Question 1 whether non-abelian free groups

can embed as demonstrative subgroups of V (from which it would follow that all

countable virtually free groups could embed as demonstrative subgroups). Thus we

answer that question here in the affirmative.

Finally, concerning the main result of this article, we note that in [13] the class

of coCF groups is shown to be closed under four operations: passing to finitely

generated subgroup, or to finite index over-group, or to a finite direct product of

coCF groups, or finally to a restricted wreath product of a coCF group with a

context free top group. It was already known that the finitely generated subgroups

of V are closed under the first three operations (see [21,8]), but the last operation

remained a mystery. However, it is shown in [8] that the subgroups of V are closed

under passage to a restricted wreath product of a subgroup of V with a demonstrable

group for V (for top group). Thus, a corollary of the main theorem of this paper is

that the finitely generated subgroups of V are closed under this operation as well.

Corollary 1.3. The finitely generated subgroups of V are closed under the following

four properties:

(1) passing to finitely generated subgroups,

(2) passing to finite index over-groups,

(3) taking finite direct products, and

(4) taking wreath products with any CF top group.

In fact, we have a stronger result.

Theorem 1.4. Let G be a subgroup of V , and let T be any countable virtually free

group. Then, G o T embeds as a subgroup of V .
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In particular, the finitely generated subgroups of V are closed under the four known

closure properties of the coCF groups.

1.1. Languages and groups

We now introduce classes of groups that are defined by properties found in Formal

Language Theory. We begin by defining a formal language.

Definition 1.5. Let Σ be a finite set of elements which we will call an alphabet.

The free monoid of Σ, denoted Σ∗, is the set of all finite strings made from the

elements of Σ, under the operation of concatenation. We call any subset of Σ∗ a

language over the alphabet Σ.

Many formal languages can be defined by mathematical machines called automata.

An automaton is simple theoretical computation device that reads a string of sym-

bols from a given alphabet and decides whether to accept that string or reject it.

We will later define more formally what it means for automata to accept or reject

a string. The set of all strings that are accepted by an automaton make a formal

language.

Definition 1.6 (Finite Automata). A finite automaton, is a 5-tuple, M =

(Σ, Q, δ, q0, F ), where Σ is a finite set called the alphabet, Q is a finite set of states,

δ is the transition function between the states, q0 is a start state in Q, and F ⊂ Q is

called the set of accept states. The transition function is defined as δ : Q×Σ→ Q.

Let M be a finite automaton as above and let w = w1w2 . . . wn ∈ Σ∗ be a word

in the alphabet Σ. We say M runs on w (or computes w) when we carry out the

following process. We assume we are “in” the initial state q0. The we “read” the

first letter w1 of w, and transition to a new state q = δ(q0, w1). We then read the

next letter (w2) and transition to the next state δ(q, w2). We continue this process

until we have read the last letter wn and moved to a state z. If z ∈ F we say that

M accepts w. Otherwise we say that M rejects w.

Then, the language of words in Σ∗ which are accepted by M is called the Language

accepted by the automaton M .

Now, a language L ⊂ Σ∗ is a regular language if and only if there is a finite au-

tomaton M so that L is precisely the language accepted by M .

Definition 1.7. Let G be a group such that G = 〈Σ|R〉 is a finite presentation

for G and Σ is closed under taking inverses. Then there exits a homomorphism

θ : Σ∗ → G from the free monoid Σ∗ to the group G, defined by θ(w) = (w)R for



A dynamical definition of f.g. virtually free groups 5

all w ∈ Σ∗ where (w)R is the element in G that w represents. We define the word

problem of G to be

W (G) = {w ∈ Σ∗|θ(w) = id}

where id is the identity element in G. We say that the co-word problem of G, or

coW (G), is the complement of W (G), i.e. the set of elements in Σ∗ that do not

evaluate to the identity under the relations R.

We are now ready to state our first historical motivating theorem, given in [1], using

slightly different language than in the original paper.

Theorem 1.8 (Anisimov). Let G = 〈Σ | R〉 be a finitely generated group. G is

finite if and only if W (G) is a regular language.

There are many different types of automata, each one producing a different sort of

formal language. We will be mostly interested in push down automata which give

rise context free languages.

Definition 1.9 (Push-down Automata). A push-down automaton, or PDA,

is a 6-tuple, M = (Σ,Γ, Q, δ, q0, F ), where Σ, Γ and Q are finite sets (which we

call the input alphabet of M , the stack alphabet of M , and the set of states of M ,

respectively), δ is a transition relation, q0 ∈ Q is the start state, and F ⊂ Q the

set of accept states. The transition relation is defined as δ : Q× Σ× Γ∗ → Q× Γ∗

where Γ∗ is the set of all finite strings over the alphabet Γ.

The stack is an external memory device which uses it’s own alphabet Γ. It is a finite

ordered set of elements from Γ, (γ0, γ1, γ2, . . . , γn−1, γn), n ≥ 0, that the PDA has

limited access to. In a PDA the transition relation uses a string of elements from

the top of the stack, γk . . . γn for some k ≥ 1 as one of it’s arguments.

A PDA computes as follows. We begin with a string of symbols in Σ, called the

input string, and at the state q0 in the automaton. Initially the stack is empty. We

read the first of the symbols in our input string. The transition function then uses

the current state, the symbol that we read and the symbol on top of the stack to

determine which state to move to next. After reading in the first input symbol we

move to the state determined by δ and progess the reader to the second symbol in

our input string. As δ is a relation, and not necessarily a function, It is possible that

δ gives more than one option, in this case we have a choice as to which state we move

to, this type of automaton is called non-determinitistic. Additionally the transition

relation also deletes whatever it reads on the stack and replaces it with a new string

of symbols from the stack alphabet. It is also possible for the automaton to change

states even when no input symbol has been read, these are called ε −moves and

are determined solely by the current state and the stack.
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Given an input string w ∈ Σ∗ and a PDA N , we denote by P(w) the set of all legal

paths in M that are determined by w. If our automaton is non-deterministic then

the set P(w) could be larger than one. If there exists some path p ∈ P(w) such

that p ends at a state qf ∈ F , the set of final states, then we say the automaton

accepts the string w. If none of the paths in P(w) end at a state in F then we say

the automaton rejects the string w. The set of all words in Σ∗ that are accepted by

the automata M is a context free language.

Note that we could equivalently have changed our acceptance criteria to only accept

a string w ∈ Σ∗ if there exists a legal path such that the stack finishes empty. For

every language that is created by an automaton that accepts via final state we

can always find an automaton that accepts the same language by the empty stack

criteria, and vice versa. The proof of this is given by Theorem 5.1 and Theorem 5.2

in [15].

Definition 1.10. Let G be a finitely generated group such that W (G) is a context

free language. Then we call G a context free group and say that G is CF . Equiva-

lently, if coW (G) is a context free language then we say G is coCF .

It is shown in [13] that the property of being coCF is independent of the choice of

finite generating set.

We note that every CF group is also a coCF group, but the converse is not true.

The CF groups are completely classified by Muller and Schupp in [19] and [20] to be

exactly the finitely generated virtually free groups. It is not too hard to see that the

word problem of a finitely generated virtually free group is actually a deterministic

context free language (see [12]). As the complement of a deterministic context free

language is also a deterministic context free language, we see that such a group

has its set of co-words also forming a deterministic context free language. However,

the complement of a non-deterministic context free language need not be context

free, hence the class of coCF groups is broader than the class of CF groups (as is

witnessed, for instance, by R. Thompson’s group V , which is not virtually free).

1.2. Cantor space C2

As mentioned before R. Thomspon’s Group V is a group of automorphisms of the

Cantor set, C2. We therefore begin with a brief discussion to define the notation and

language regarding the Cantor set that we will use throughout this note. We follow

closely the description given in [8] but also make mention of other conventions as

required.

Let X = {0, 1} which we will call our alphabet and define X∗ to be the set of all

finite strings over X. We introduce T2, the infinite rooted binary tree, as a non-
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directed graph that has vertex set X∗. We define edges in T2 as follows. If u, v ∈ X∗
then there exists an edge between u and v if and only if u = vx or v = uy, where

x, y ∈ X. We define the root of T2 to be empty word ε ∈ X∗. A vertex n in T2
will also be referred to as a node of T2 and we define the address of a node n to

be the path in X∗ from the root of T2 to n. An infinite descending path in T2 is

an infinite string of 0’s and 1’s. The boundary of T2 is the set of all such infinite

descending paths which we denote by {0, 1}ω. We say two paths are near to each

other if they share a long common prefix. Consider the paths pn1 and pn2 in Fig. 1

which start from the root ε and end at the vertices n1 and n2 respectively. Notice

that from the root to the vertex k the two paths share the same route through T2,

we would therefore say that pn1
and pn2

share a prefix of length k. This induces a

topology on the boundary of the tree that is equivalent to the product topology for

{0, 1}ω = C2.

ε

k

n1

n2

pn1 pn2

Fig. 1: Two paths in the infinite binary tree T2 with a

common prefix of length k. Notice how we draw the tree

with the root at the top.

Suppose x ∈ {0, 1}ω = C2, then we say that x underlies the vertex w ∈ X∗ of T2
if there exists x̂ ∈ {0, 1}ω such that x = wx̂, or in other words w is a prefix of

the infinite string defining x. The set of all such strings in {0, 1}ω that underly the

vertex w in T2 is a clopen subset of {0, 1}ω which we will denote by [w], and is in

fact a basic open set in the product topology on {0, 1}ω. Notice that C2
∼= [w]. In

[8] the set [w] was denoted by Cw.

1.3. R. Thompson’s group V , barriers, and prefix replacements

We now introduce some terminology used in [14] that will help us to define Thomp-

son’s group V . We first define what Holt and Röver call a barrier. Let B be a finite

set of finite strings in X∗ such that every element in {0, 1}ω ∼= C has a unique string

in B as a prefix. We call B a barrier. For example B could be the set {0, 100, 101, 11}
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but not the sets {0, 100, 11} or {0, 100, 101, 11, 110}.

A barrier is equivalent to a complete finite antichain on the poset X∗ under the

relation x ≤ y ⇔ x is a prefix of y, as introducted by Birget [3].

A prefix replacement is a triple g = (D,R, σ) where D and R are barriers and σ is a

bijection between them. This induces an action on C2 which we call a prefix replace-

ment map, or prm for short (note that in [14] this was called a prefix replacement

permutation). If g is a prefix replacement then the prm induced from g acts on

w ∈ C2 by replacing the prefix d ∈ D by the prefix dσ ∈ R. Note that there are

many different prefix replacements which will give the same prm. We then define

Thomspon’s Group V as the set of all prm’s on {0, 1}ω, under composition.

We can draw barriers as finite, rooted subtrees of the infinite rooted binary tree T2.

If T is a subtree of T2 then we draw T with the root at the top and the tree drawn

“downwards” away from the root. Given a vertex u of T , we draw the child u0 of u

to the left of u and the child u1 to the right. The vertices of T that do not have any

children we call leaves. We can then describe unique paths through T from the root

to the leaves by elements of X∗, where a 0 means travel down the next left hand

edge, and 1 means travel down the next right hand edge. A barrier will then define

a finite binary tree where each element of the barrier will describe a path from the

root to a unique leaf. We can now use this construction to represent elements of V

as pairs of binary trees. If the prefix replacement g = (D,R, σ) induces an element

v ∈ V , then the two barriers D and R define two binary trees and the bijection

σ is represented by a numerical labeling on the leaves of the trees. The tree pair

representation of an example element g ∈ V , that will appear again later on the

in paper, is given in Fig. 2. We typically call the tree on the left the domain tree

and the tree on the right the range tree. In our example the barriers that define the

domain and range trees are {0, 100, 101, 11} and {0, 10, 110, 111} respectively. The

numbering of the leaves represents the bijection between the two barriers, where

the leaf labelled “1” in the domain tree is taken to the leaf labelled “1” in the range

tree and so on.

1

2 3

4

3

2

1 4

g

Fig. 2: The tree pair representation of an element g of

Thompson’s group V
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1.4. On “Geometrical” embeddings

With the growth of Geometric Group Theory as an independent field, there have

been many types of group actions and embeddings defined which can be called

“geometrical.” For example, one common definition is that a group acts faithfully

and co-compactly on a metric space.

There is a theorem of Rubin we wish to briefly mention in relation to this context

(see [22] for details). One version of the theorem roughly states that when a group

G acts [effectively enough] on a [nice enough] space X (for discussion, let us assume

G ≤ Homeo(X) and the action and space have other qualities as well), then any

isomorphism θ of G induces a homeomorphism φ of X, and indeed, θ is realised as

the topological conjugation g 7→ gφ in the larger group Homeo(X). We explore one

way to interpret the ideas regarding “geometrical actions” specifically in the context

of subgroups of a “Rubin group” acting on it’s corresponding “Rubin space.”

As is well known in the community of researchers with interests in the R. Thompson

groups, F < T < V are each “Rubin groups” with natural associated actions on the

spaces (0, 1), S1, and the Cantor space C2, respectively. For those familiar with the

theory of F and T , we observe the spaces [0, 1] and S1 are the quotients of C2 which

transform the actions of the subgroups F and T on C2 to Rubin type actions on

the quotient spaces (we are playing a bit “fast and loose” with the definitions here

by adding the points 0 and 1 to (0, 1); the induced action of F on [0, 1] of course

fixes these “extra” points). See [9] for a general survey of F , T and V .

Taking a cue from the “co-compact” aspects from the example of a “geometrical

action” mentioned above, given a group-space pair (H,X), the authors of [8] define

the class Ḋ(H,X) of a demonstrative subgroups of H (for X).

Definition 1.11. Suppose H is a group that acts on a space X. We say that a

subgroup G ≤ H is a demonstrative subgroup of H over X if there exists a non-

empty open subset U ⊂ X such that for any two elements g1, g2 ∈ G we have

Ug1 ∩ Ug2 = ∅ if and only if g1 6= g2.

If a subgroup G has this property then we say G is in the set Ḋ(H,X) and all groups

isomorphic to G are in the class D(H,X) of demonstrable groups for the group-space

pair (H,X). We call the open set U a demonstration set.

Suppose that G ≤ V is a demonstrative subgroup of V . By Lemma 3.1 of [8] there

exists a vertex n ∈ {0, 1}∗ ⊂ T2 such that [n] ∩ [n]g = ∅ for all g 6= 1. We call n a

demonstration node for G. Note that n will not be the unique demonstration node

for G, any node that has an address with n as a prefix will also suffice.

Implications:
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In [8] the authors show in Theorem 1.4 that if D1, D2 are demonstrable groups

for V , then one can find demonstrative embeddings D̂1, D̂2 of D1 and D2 so that

〈D̂1, D̂2〉 ∼= D1∗D2 (while the free product so generated may not be demonstrative).

They also show that if D is demonstrable for V , and A is any subgroup of V , then

the restricted wreath product AoD embeds in V (Theorem 1.2 of [8]). It is this latter

embedding result that combines with the main result of this paper to produce our

Corollary 1.3 and Theorem 1.4 from the introduction. As Theorem 1.4 states that if

G is a subgroup of V and T is any countable virtually free group then G oT embeds

as a subgroup of V , we then have that all four of the known closure properties of

the coCF groups hold for the finitely generated subgroups of V (see Corollary 1.3).

2. The Main Results

2.1. The countable virtually free groups are in the class D(V,C2)

The goal of this section is to prove that the countable virtually free groups are in

the class D(V,C2). We begin by introducing a new way of proving that a subgroup

of V is demonstrative which is based on the work done in [8]. The following lemma

follows easily from the definitions.

Lemma 2.1. Let G ≤ V . If [0] ∩ [0]g = ∅ for all non-trivial g ∈ G, then G is a

demonstrative subgroup of V .

By Lemma 3.4 in [8] we actually have a stronger result.

Corollary 2.2. A group G is demonstrable for V if and only if there exists a

subgroup G̃ ≤ V such that G̃ ∼= G and [0] ∩ [0]g for all non-trivial g ∈ G̃.

The rest of the section will be used to show that countable virtually free groups are

demonstrable for V . This will be done by constructing a demonstrative embedding

of the modular group Γ = C2 ∗ C3
∼= 〈x, y|x2 = y3 = 1〉 into V . As the class of

demonstrative groups is closed under passing to subgroups we will have then proven

that any countable free group admits a demonstrative embedding into V . In [2] it is

shown that the class of demonstrable groups for V is closed under passage to finite

index overgroups, which will give us our final result.

We begin by proposing an embedding ψ : G � V , where G = 〈α, β|α2, β3〉 ∼= Γ

factors as the free product of its subgroups C2 = 〈α〉 and C3 = 〈β〉.

We will define the mapping ψ from G to V by determining where the generators α

and β map to, and quoting von Dyck’s theorem.
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We now define ψ(α) 7→ a and ψ(β) 7→ b, where a and b are given by the tree-pairs

below.

a

1

2

3

4

5 6

6

5

4

3

2 1

Fig. 3: The image of α under ψ in Thompson’s group V

1

2

3 4

5 6

5

6

1 2

3 4

b

Fig. 4: The image of β under ψ in Thompson’s group V

An important property to notice is that ψ(α) = a maps the open set [10] to the

open set [11110]. This dynamical property will be important later when we prove

that the homomorphism ψ : G→ V is an embedding.

Similarly, we observe that both ψ(β) = b and (ψ(β))−1 = b−1 take the open set

[111] and map it into the open set [10]. Remembering how the action of a maps [10]

into [11110] and we begin to see how a “back and forth” action could be produced

by alternating non-trivial elements of ψ(C2) and ψ(C3).

It is immediate that a has order two and b has order three, so by von Dyck’s theorem

[25], the map ψ extends uniquely to a well defined group homomorphism from G

to V , which we will still call ψ, below.
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Proposition 2.3. The group homomorphism ψ : C2 ∗ C3 → V induced by α 7→ a

and β 7→ b is an embedding.

To prove Proposition 2.3 we use Fricke and Klein’s well known criterion, the Ping-

Pong Lemma. The version we give here is based on the one found in [10].

Lemma 2.4 (Ping-Pong Lemma). Let G be a group acting on a set X and let

H1 and H2 be two subgroups of G such that |H1| ≥ 3 and |H2| ≥ 2. Suppose there

exists two non-empty subsets X1 and X2 such that the following three conditions

hold

(1) X2 6⊂ X1

(2) for all non-trivial h1 ∈ H1, h1(X2) ⊂ X1

(3) for all non-trivial h2 ∈ H2, h2(X1) ⊂ X2

Then 〈H1, H2〉 ∼= H1 ∗H2.

Lemma 2.5. The group Gψ = 〈a, b〉 ≤ V factors as 〈a〉 ∗ 〈b〉 ∼= Γ.

Proof. To be able to use the Ping-Pong Lemma we have to find two sets X1, X2

in C2 that satisfy the three properties given above. Let X1 = [10] and X2 = [111]

be two open sets in C2. Immediately we see that X2 6⊂ X1 and so the first condition

is met.

We now identify 〈b〉 and 〈a〉 with the subgroups H1 and H2 given in lemma 2.4. Let

a be the non-trivial element in 〈a〉 as given in Fig. 3. Observe (X1)a = ([10])a =

[11110] ⊂ [111] = X2. This confirms the third requirement.

For 〈b〉 we have two non-trivial elements, b and b−1. Observe (X2)b = ([111])b =

[100] ⊂ [10] = X1, and similarly for b−1, (X2)b−1 = ([111])b−1 = [1011] ⊂ [10] =

X1. Thus we have shown that all three of the requirements in lemma 2.4 are met

and thus by the Ping-Pong Lemma Gψ = 〈a, b〉 factors as 〈a〉 ∗ 〈b〉 ∼= Γ.

Before we proceed we define notation that will be used in the future. Suppose

g ∈ Gψ where a and b are as before. Then g can be written in a unique normal

form as g = g1g2g3 . . . gn where gi ∈ {a, b, b−1} and if gj ∈ {a} then gj+1 ∈ {b, b−1}
and vice versa. This normal form is in fact geodesic, the shortest path from the

identity to the element g in the cayley graph of Gψ. If we have two elements g, h ∈
Gψ written in normal form such that g = g1g2g3 . . . gn and h = h1h2 . . . hm then

gh = g1g2g3 . . . gnh1h2 . . . hm ∈ Gψ is the concatenation of g and h. The element

gh is also in normal form if and only if gn and h1 are not contained within the same

subgroup, 〈a〉 or 〈b〉, of Gψ. For the rest of the paper, unless stated otherwise, we
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will assume that all our group elements are written in normal form. We define a

function len : 〈a, b〉 → N0 by len(g) = n for any g = g1g2g3 . . . gn written in the

normal form. This is the well defined geodesic length for g. We define the length of

the identity to be zero.

Lemma 2.6. Suppose g ∈ Gψ and len(g) ≥ 2. Then

[0]g ⊆

{
[111], if g ends with generator a

[10], if g ends with either of the generators b or b−1
(2.1)

Proof. Let P(g) be the statement

[0]g ⊆

{
[111], if g ends with generator a

[10], if g ends with either of the generators b or b−1

for some g ∈ Gψ such that len(g) ≥ 2.

We will proceed by induction on the length of g. Suppose g ∈ Gψ such that len(g) =

2. There are four options, namely, ab, ab−1, ba and b−1a. Suppose g = ab, then

[0]g = [10011] and P(g) holds. Suppose g = ab−1, then [0]g = [101111] and P(g)

holds. Suppose g = ba, then [0]g = [1111010] and P(g) holds. Finally suppose

g = b−1a, then [0]g = [1110] and P(g) holds.

Suppose P(g) is true for all g ∈ Gψ such that 2 ≤ len(g) ≤ n, n ∈ N. Now suppose

h ∈ Gψ such that len(h) = n + 1. Let h′ be the prefix of length n of h when h is

written in normal form.

Suppose h′ ends with a, there are two options for h, either h = h′b or h = h′b−1.

As len(h′) = n, by our inductive assumption [0]h′ ⊆ [111]. Thus if h = h′b, then

[0]h = [0]h′b ⊆ [111]b = [100] and P(h) is true. Suppose h = h′b−1, then [0]h =

[0]h′b−1 ⊆ [111]b−1 = [1011] and again P(h) is true.

Suppose instead that h′ end with either b or b−1. Then there is only one option for

h, namely h = h′a. As len(h′) = n, by our inductive assumption [0]h′ ⊆ [10]. Thus

[0]h = [0]h′a ⊆ [10]a = [11110] and P(h) is true.

Therefore for all h ∈ Gψ such that len(h) = n+ 1, the statement P(h) is true, and

therefore by induction P(g) must be true for all g ∈ Gψ such that len(g) ≥ 2.

Lemma 2.7. For every non-trivial g ∈ Gψ,

[0] ∩ [0]g = ∅
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Proof. Let Q(g) be the statement [0]∩ [0]g = ∅, for some g ∈ Gψ. Suppose g ∈ Gψ
such that len(g) = 1. There are three options, namely a, b and b−1. Suppose g = a,

then [0]g = [11111] and Q(g) holds. Suppose g = b, then [0]g = [1010] and again

Q(g) holds. Finally suppose g = b−1, then [0]g = [110] and Q(g) holds.

For all g ∈ Gψ such that len(g) ≥ 2, Q(g) is true by lemma 2.6. Thus [0]∩ [0]g = ∅
for all non-trivial g ∈ Gψ.

Therefore, by lemma 2.1, we have the following corollary.

Corollary 2.8. The group Gψ ∼= Γ is a demonstrative subgroup of V

The inclusion of the countable free groups in the class of demonstrative subgroups

of V follows from part of Lemma 3.2 in [8] which is given below.

Lemma 2.9 (3.2, Bleak, Salazar-Dı́az). Suppose that G is a demonstrative

group with m serving as a demonstration node. Then given any subgroup H ≤ G,

H is also demonstrative with demonstration node m.

The free group on two generators F2 is isomorphic to the subgroup 〈[a, b], [a, b−1]〉 ≤
Gψ (where the bracket [x, y] represents the commutator x−1y−1xy), and therefore

by Lemma 2.9 we have the following corollary.

Corollary 2.10. The free group on two generators, F2, is in the class D(V,C2)

Virtually free groups are groups that contain a free group as a finite index subgroup.

While it is known (see [21,8]) that if a group G embeds in V , the any finite index

over-group of G also embeds into V , the paper [2] extends this powerfully with

Theorem 3.3, which we paraphrase below.

Theorem 3.3 (Berns-Zieve et al) Suppose G is a group which embeds in R. Thomp-

son’s group V . If G ≤ H where [H : G] = m, for some m ∈ N and G embeds as a

demonstrative subgroup in V , then H also embeds as demonstrative subgroup of V .

The theorem tells us that D(V,C2) is closed under taking finite index overgroups.

As all countable free groups embed into F2 and since virtually free groups are,

by definition, finite index overgroups of free groups, by Corollary 2.10 countable

virtually free groups are contained within D(V,C2).

2.2. Finitely generated demonstrable groups of V are virtually free

In this section we prove a partial converse of our previous result.
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Lemma 2.11. If G is isomorphic to a demonstrative subgroup of Thompson’s

Group V then G is virtually free.

By the remarkable and well-known result of Muller and Schupp [19] [20] we know

that the finitely generated virtually free groups are exactly those finitely generated

groups that have a context free word problem, the CF-groups. To prove our lemma

we must for any given finitely generated demonstrative group be able to construct

a push-down automaton that accepts the word problem of that group. (See the

Definition 1.9 for the definition of a push-down automaton)

We begin with a motivating example and then generalise our method to encompass

all the groups isomorphic to demonstrative subgroups of V . The example below is

taken from [8] where they give a demonstrative embedding of Z generated by the

element g given below in Fig. 5.

1

2 3

4

3

2

1 4

g

Fig. 5: The generator of a demonstrative copy of Z inside

V . The demonstrative node is n = 0.

Let G = 〈g〉 ∼= Z be this demonstrative subgroup of V . A demonstrative node

for G is at the address n = 0 ∈ {0, 1}∗. It is already known that Z is a CF-

group so our example gives us no new result, but the method we use to create the

push-down automaton that accepts it’s word problem can be generalised for every

demonstrative subgroup of V .

LetA be our PDA that accepts the word problem ofG.A has three states {q0, qr, qa}
where q0 is the start state and qa is the only accept state. Our stack alphabet is

the set Γ = {#, 0, 1}, where # is a special bottom-of-the-stack symbol. We read in

strings constructed from the generator g and it’s inverse g−1. The PDA A is defined

by the transition table given by Table 1 below.
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Table 1: The transition table of the automaton accepting

the word problem of G ∼= Z

Current State Input Stack Top Stack Replacement New State

q0 ε ∅ 0# qa
qa g 0 110 qr
qa g−1 0 101 qr
qr g 0 110 qr
qr g 100 10 qr
qr g 11 111 qr
qr g 1010 00 qr
qr g 1011 01 qr
qr g−1 0 101 qr
qr g−1 10 100 qr
qr g−1 111 11 qr
qr g−1 1100 00 qr
qr g−1 1101 01 qr
qr g 101# 0# qa
qr g−1 110# 0# qa

We also provide a visual representation of A in Fig. 6.

(ε,#, 0#)

(g, 0, 110)
(g, 100, 10)
(g, 11, 111)

(g, 1010, 00)
(g, 1011, 01)

(g−1, 0, 101)
(g−1, 10, 100)
(g−1, 111, 11)
(g−1, 1100, 00)
(g−1, 1101, 01)

(g, 101#, 0#)

(g−1, 110#, 0#)

(g, 0, 110)
(g−1, 0, 101)

q0 qa qr

Fig. 6: A graphical representation of the automata A that

accepts the word problem of G.

The automata models the action of the generators on the demonstrative node 0.
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The stack will represent the location of the demonstrative node under the action

of the word read so far. Whenever the automaton A processes a letter, it amends

the stack according to the prefix replacement rules defined for the elements of V

representing the letters g and g−1. At all times, the top of the stack represents the

beginning of the address in T2 of the node to which the previously processed word

has moved the demonstration node n = 0.

The automaton A begins with active state q0 by loading the stack with the address

of the demonstrative node n = 0, and moving the active state to the accept state

qa. Note that none of the input string is read at this time. Whenever the active

state is qa, if A has finished reading the input then it accepts the word. However, if

the active state is qa and there are still more letters to be read then A will process

the next letter (which action will move the active state to qr and modify the stack

according to the prefix replacement rules). From the state qr there are circumstances

which allow the active state to return to qa. Namely, whenever the active state is

qr and A processes a letter and the resultant stack is “0#”, then the active state

transitions to qa.

By the definition of demonstration nodes, a demonstration node under the action

of an element w of the demonstrative group is taken to itself if and only if w is

the identity element. By construction, our automata has stack “0#” only when the

previously processed word represents the trivial element. However, this is precisely

at the times that the automaton’s active state is qa.

We now generalise this method into a proof of Lemma 2.11.

Proof. Suppose Ĝ is a finitely generated, demonstrable group, isomorphic to a

demonstrative subgroup G of Thompson’s Group V where G will be generated by

elements {g1, g2, . . . , gm}. Suppose n ∈ {0, 1}∗ is a demonstrative node for G in T2.

Note that by Corollary 2.2 we can always find G such that n = 0. We describe and

construct our automaton A below.

Let X = {g1, g2, . . . , gm} ∪ {g−11 , g−12 , . . . , g−1m }, the union of the set of generators

of G and their inverses, be the input alphabet. Set Γ = {#, 0, 1}∗ to be the stack

alphabet. The new automaton A will also have three states q0, qa and qr, where qa
is the automaton’s only accept state. We will describe the transitions from each of

these states.

Transitions from q0 The automaton A begins in the state q0. That state admits

one transition, which loads the stack with the string n# ∈ Γ∗, and transfers active

state to the state qa, without reading any of the input. After this transition, the

stack will contain the address of the demonstration node n and the bottom-of-

the-stack symbol, with n written from top to bottom on the stack. For example if

n = 100 then 1 would be at the top of the stack followed by two 0’s and finally #.
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We call this the loading phase.

Transitions from qa After the loading phase, A enters the reading phase, where it

begins to read the input string from X∗. Observe that the current stack is precisely

“n#,” and this will be true whenever qa is the active state, by construction. From qa,

there are transitions to the state qr, defined as follows. The transitions will be given

by tuplets of the form (input letter, current top-of-stack, top-of-stack re-write):

(1) Input letter: g ∈ X.

(2) Current top of stack: the string “n”.

(3) Stack re-write: The result of applying the prefix replacement determined by the

element of V that the symbol g represents, to the string n.

(Note: we will only list transitions ofA which can actually arise. E.g., in our previous

example we do not list transitions from qa with the top-of-stack beginning with a

“1”.)

Transitions from qr All transitions from qr take the active state to either qr or

to qa. There is a finite list of pairs (stack, g) for stack representing the full stack,

including the # symbol, and g a letter of our input alphabet, so that the result

of applying the prefix replacement determined by the element αg ∈ V representing

the input letter g to the whole stack is “n#.” For such pairs, we add transitions as

given by the tuple (g, stack, n#), which transitions move the active state to qa.

We now discuss the transitions from qr to qr. For each g in our input alphabet,

there is a set {s1, s2, . . . , sj} of minimal prefixes which determine the element αg
of V corresponding to the letter g as a prefix replacement map, where we define

the corresponding set of strings {t1, t2, . . . , tj} which are the replacement strings,

so that si · αg = ti, for 1 ≤ i ≤ j indices. We add transitions given by the tuples

(g, si, ti) from qr to qr.

Note that the non-determinism above allows poor choices that can result in the

active state being qr at the end of reading the input, even though the stack will

actually read “n#,” however, there will still be a path through the automaton which

would have ended at qa for this input (literally, we could simply change the last

choice taken). In our example, we removed the non-determinism by using the tuples

(g, 1010, 00), (g, 1011, 01), (g−1, 1100, 00), (g−1, 1101, 01) instead of using the two

tuples (g, 101, 0), (g−1, 110, 0) that our process above produces. Note that we could

force determinism in this general construction by using various carefully selected

transitions, as in our example, but we felt our approach here was clearer.

Termination. When we reach the end of the input string, if we are in qa, then the

stack must be n# by construction, and the input string is equivalent to the identity

in our group (by the definition of a demonstrative embedding). If the active state
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at end of input is qr then the word is rejected. If this happens, it means that either

the stack is not “n#,” and so the element did not act as the identity, or if the stack

is “n#,” then the automaton made poor choices in the face of non-determinism.

Thus A accepts the word problem of G and rejects all other strings.
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