
1 

 

A Random Forest Model for Predicting Allosteric and Functional Sites on 

Proteins 

Ava Sih-Yu Chen1, Nicholas J Westwood1, Paul Brear1, Graeme W Rogers 1, Lazaros Mavridis2 and 

John B O Mitchell1* 

1Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, Purdie Building, 

University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST, UK; and 2School of Biological 

and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK 

Email:  Ava Sih-Yu Chen – syc3@st-andrews.ac.uk  
Nicholas J Westwood – njw3@st-andrews.ac.uk  

  Paul Brear - pdb47@cam.ac.uk 
Lazaros Mavridis - l.mavridis@qmul.ac.uk 
John B. O. Mitchell - jbom@st-andrews.ac.uk  

* Corresponding author  

Current address: Paul Brear, Department of Biochemistry, University of Cambridge, 80 Tennis Court 

Road, Cambridge, CB2 1GA, UK 

 

 

 

 

 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/76986665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:syc3@st-andrews.ac.uk
mailto:njw3@st-andrews.ac.uk
mailto:pdb47@cam.ac.uk
mailto:l.mavridis@qmul.ac.uk
mailto:jbom@st-andrews.ac.uk


2 

 

Abstract 

We created a computational method to identify allosteric sites using a machine learning method 

trained and tested on protein structures containing bound ligand molecules. The Random Forest 

machine learning approach was adopted to build our three-way predictive model. Based on 

descriptors collated for each ligand and binding site, the classification model allows us to assign 

protein cavities as allosteric, regular or orthosteric, and hence to identify allosteric sites. 43 

structural descriptors per complex were derived and were used to characterize individual 

protein-ligand binding sites belonging to the three classes, allosteric, regular and orthosteric. We 

carried out a separate validation on a further unseen set of protein structures containing the ligand 

2-(N-cyclohexylamino) ethane sulfonic acid (CHES). 
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1 Introduction 

Allosteric regulation is the modulation of the activity of a protein, typically an enzyme, by the 

binding of a ligand molecule to a cleft other than the protein’s active site. A typical enzyme has one 

active site, but may have multiple allosteric sites.  

The traditional understanding of allostery focuses on those binding events that induce a 

conformational change. The classical explanation of how allosteric regulation is achieved was 

proposed in the Monod-Wyman-Changeux (MWC) and the Koshland-Nemethy-Filmer (KNF) 

models,[1,2,3,4] where the cooperativity between subunits of an oligomeric protein is coupled with a 

conformational change. According to the MWC model, cooperativity is achieved by a concerted 

transition between two alternative states, the protein being in either the T (tense) or R (relaxed) 

state. For the KNF model, a binding-induced conformational change in one subunit is propagated 

sequentially among other subunits. Both models imply that the conformational change at the 

substrate binding site results from the transmission of a signal initiated by allosteric effector 

binding.[1] 

Conformational state redistribution is a concept that has been proposed to explain allosteric 

regulation. The native protein appears to exist as a conformational ensemble near the bottom of an 

energy landscape funnel.[5,6] In contrast to the oversimplified classical models, Weber proposed that 

the binding results merely in a population shift of conformational states which were experimentally 

proved to have an effect on function.[7] Population redistribution enriches certain pre-existing 

conformations which were previously hardly seen due to low population. It is through the 

interconversion of the functional conformations that allosteric regulation is achieved.[8,9]  

Thus, Del Sol et al. think of allosteric regulation as redirecting the levels of traffic on dynamic 

communication pathways that already existed prior to effector binding, rather than establishing new 

pathways.[3] They note that allosteric regulation can occur in the absence of significant 

conformational change, though some kind of communication between sites must take place. 

Allosteric modulation can involve very fine levels of influence over the level of protein activity, 

whereas directly addressing the active site leads to a coarser granularity of control. They liken this to 

the contrast between allostery as a dimmer switch versus conventional orthostery as a simple on-off 

device.[3] 

These latter properties suggest that allosteric effectors should make effective pharmaceuticals. In 

contrast to active site inhibitors, allosteric binding can lead to either an increase or decrease in 

activity of a protein. In addition, allosteric effectors do not necessarily share similar chemical 
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properties with the natural substrate, as a site distinct from the active site is targeted. This provides 

an alternative route for the discovery of promising new leads for regulation of the same target. 

Allosteric sites on proteins are also subject to lower evolutionary pressure compared to the active 

site, which is beneficial when designing target-specific inhibitors.  

Despite the advantage of variation among homologs that an allosteric site has, this may cause 

difficulty in studying allosteric mechanisms, since the allosteric sites are hard to predict by 

traditional homology methods based on sequence similarity.[10] For protein families where a 

reasonably large number of sequences are available, a more effective approach to sequence-based 

allosteric site prediction is to assume that allosteric sites are associated with networks of co-evolving 

residues.[11,12] In this way, Novinec et al. [13] identified a network of co-evolving residues putatively 

responsible for communication between allosteric and functional sites from a multiple sequence 

alignment of papain-like cysteine peptidases. This prediction, along with associated experimental 

work, allowed them to identify a promising inhibitor candidate. 

Other studies relevant to the prediction of allosteric interactions focus on simplified models of 

protein dynamics, using approaches like normal mode analysis (NMA),[10] energy exchange,[14] and 

Monte Carlo path generation.[15] Panjkovich and Daura applied NMA to consider changes in the 

flexibility of a protein upon ligand binding.[16] To achieve this, ligands were represented as dummy 

atoms arranged in an octahedron. For each putative binding site, the NMA-derived B -factors of the 

apo and the bound states were compared in order to identify any large changes in the B-factors, 

these indicating potential allosteric sites. 

A two-way classification model was proposed to differentiate allosteric from non-allosteric sites by 

Huang et al. [17] They developed a support vector machine (SVM) based machine learning model, 

based on 90 allosteric sites selected from allosteric database (ASD) and1360 predicted non-allosteric 

sites from the same set of proteins using the Fpocket algorithm. This is distinct from our three-way 

predictive model containing two classes other than allosteric. For their SVM model, sets of site 

descriptors were derived to characterize the topological structure and physicochemical properties of 

both types of sites, obtaining a total of 41 site descriptors. A somewhat related method has been 

adopted by van Westen[18] et al. to select allosteric modulators based on the physicochemical and 

structural descriptors calculated for those molecules from the ChEMBL database.[19] That approach 

differs from our work, which predicts allosteric sites (not molecules) using co-crystallised molecules 

and descriptors derived from the structure of the sites as well as from the ligands. Several machine 

learning approaches have also been used with other dynamic-or NMA-based approaches to predict 

the location of allosteric sites. [20,21] 
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In this work, we focused on identifying potential allosteric sites, while making better use of available 

crystal data in the PDB. Almost all protein crystal structures contain non-cognate bound ligand 

molecules, such as stabilising agents and buffers used during crystallisation. We used the 

co-crystallised ligands to calculate descriptors from the ligand and from the structures of the sites, 

thus building a machine learning model. Our aim is to identify binding sites which are purely crystal 

contacts from potential allosteric sites. These bound ligands could be a starting point to guide 

experiments aimed at probing the nature of the sites. To do this, we use a complementary approach, 

founded on a deeper analysis of the structures of potential binding sites. We assemble collections of 

three kinds of site based on its function: first, known orthosteric functional (active) sites of proteins 

in which the main cognate ligand binds; second, allosteric sites in which allosteric effectors can bind; 

third, a structurally representative set of other protein clefts, expected to be neither functional nor 

allosteric. For these three sets of sites, descriptors are proposed to identify and discriminate the 

binding state of individual ligands between the three different subsets. We use our existing 

protein-ligand scoring function RF-Score[22] and a new accessibility-like algorithm called CavSeek to 

compute structurally-based binding descriptors and descriptors pertaining to the composition and 

flexibility of the clefts. We use these as features in a ternary predictive model, employing the 

Random Forest[23] machine learning algorithm. We take advantage of the out-of-bag data,[24] and 

separately those instances omitted from the stratified balanced samples, to conduct a fair validation, 

which uses only data excluded from model building. Then the model is subsequently used to predict 

the types of sites where CHES binds, with the objective of identifying candidate allosteric sites on 

proteins. The challenge was to differentiate the binding sites based on a combination of descriptors. 

In presenting our result, we investigated whether the results previously obtained through manual 

inspection corresponded to those obtained with our computational approach.  
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2. Methods 

2.1 Random Forest  

A Random Forest (RF)[23,24] is, as the name suggests, an ensemble of stochastically built decision trees 

used for classification, or indeed for regression. Random Forest is widely considered relatively 

immune to overfitting. Each tree is grown by stochastic recursive partitioning, and the individual 

trees carry independent information because of the substantial random element in their 

construction.  

Every decision tree in the forest is firstly randomised using a bootstrap sample of Q instances from 

the training data, chosen by sampling with replacement from the Q objects in the training set. Thus, 

each object may be selected one or possibly more times for a given tree’s dataset, while about 37% 

of the instances remain unchosen in any particular bootstrap sample and constitute the so-called 

out-of-bag (OOB) data. The OOB data may serve as an internal validation set for the given tree. The 

combined performance on the separate OOB datasets of each tree can be aggregated, and 

constitutes a fair test of the overall predictive performance of the Random Forest.  

Secondly, each tree is randomised by permitting it to use, at each node, only a random subset of the 

features. At each node, a new subset of mtry features is chosen and the optimum split is created 

based on the best partitioning that is possible according to the Gini criterion,[25] using any single 

valued attribute from a randomly chosen subset of mtry descriptors. As the training instances pass 

through the tree, they are therefore partitioned into similar sets, and each terminal leaf node 

becomes associated with a group of instances with homogeneous class labels. 

Binary or multi-class classifications are determined by majority vote amongst the trees. For 

classification, mtry is set by default to the square root of the number of descriptors, as it was in this 

work.[24] For the relatively small dataset and few descriptors used here, RF calculations are 

inexpensive, and we chose to set the number of trees, ntree, to 10,000. Nonetheless, the 

improvement in prediction accuracy with additional trees above a typical ntree value of 500 is 

probably small. 

Three further considerations apply to the use of Random Forest in this work. First, each tree is built 

by bootstrap sampling from the same balanced dataset, which we constructed by stratified sampling 

to include an equal number of objects (53) from each class, a total of 159 sites. Further, the 

performance of the Random Forest model is assessed firstly on the OOB data and secondly on the 

external test set consisting of the158 sites (46 R, 106 T and 6 A) omitted from the stratified 
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(balanced) dataset. Finally, Random Forest is designed to handle the inclusion of redundant and 

irrelevant descriptors through the process of selecting possible splits at each node from a substantial 

set of randomly chosen options.[24] This obviates any need for an explicit descriptor selection step, 

and is particularly useful when a bespoke descriptor set is used, as in the present work.  

 

2.2 CavSeek  

In order to measure the burial of a ligand within the cavity of the protein binding site, we developed 

an accessibility-like program called CavSeek using a script written in Java. For a given protein and 

ligand, we calculate the percentage of possible point-to-atom contacts which are shorter than a 

given threshold value and hence are said to be “in contact”. A number of thresholds from 0.5 to 2Å 

have been selected to profile optimally and identify a ligand’s binding site. The aim of this program is 

to make it possible to discriminate computationally between surface-binding molecules and 

pocket-binding molecules. Ligands that are found within a protein cleft in a small binding pocket will 

have a higher percentage of sub-threshold contact distances. The percentage burial increases with 

the size of the thresholds as more points are counted. To generate descriptors from CavSeek, one 

can either include the result at each different threshold as a separate descriptor, or calculate an 

average burial as a single descriptor. For this study, we have included the burial at nine individual 

thresholds and also the average burial.  

In detail, CavSeek first centres the protein-ligand complex at the geometric centre of the ligand. We 

remove all protein atoms which are more than 20Å away from this origin, since there is a very little 

prospect of those atoms having a significant interaction with the modestly sized ligands that we 

study. We then represent each ligand atom as a sphere using the following van der Waals radii (r) in 

Å: Br (1.85), C (1.7), Cl (1.75), F (1.47), Fe (2.0), I (1.98), N (1.55), O (1.52), P (1.8) and S (1.8).[26] For 

an atom at (x, y, z), we define six points on the van der Waals sphere along the co-ordinate axes at 

(x±r, y, z), (x, y±r, z) and (x, y, z±r). For each of these six points, we calculate the shortest distance to 

the corresponding van der Waals sphere around any protein atom. The hydrogen atoms in both 

ligand and protein are ignored. For a ligand with M atoms, this results in 6M distances, each of which 

is compared with the threshold. All distances less than or equal to the threshold are taken to be “in 

contact” at that threshold, and the percentage of the 6M distances that are “in contact” is recorded. 

This is repeated for all nine chosen threshold values. 
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2.3 RF-Score 

RF-Score[22] is our group's machine learning approach to predicting protein-ligand binding affinity, 

especially for docked structures. Previous knowledge-based approaches used ensembles of observed 

protein-ligand crystal structures to infer binding energies from atom-atom distance distributions. 

That approach makes the dubious assertion that Boltzmann energetics apply, assuming a particular 

exponential functional form to transform distance distributions into binding energies.[27] RF-Score 

uses Random Forest to predict binding affinities from both structural data and the affinity data that 

are left unused in most knowledge-based approaches, yielding a much more accurate and flexible 

scoring function. 

In order to make the scores of differently sized ligands comparable, and to compensate for the 

intrinsic size-dependency of scoring functions, we calibrate RF-Score according to the number of 

heavy atoms (N) of its ligand.[28,29] Figure 1 illustrates the variation of the unadjusted scores, which 

we empirically fitted to a small number of physically justifiable functional forms. We empirically 

found that the best fitting function defining the expected score (E) for a ligand of given size was 

E = 2.222 N1/3 

For each ligand, we calculate the unadjusted RF-Score (R), the expected score (E), and the 

normalised score (R/E).  

 

Figure 1 – Normalisation of RF-Score 
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Each point represents an individual RF-Score of a different protein-ligand complex selected from the 

PDBbind database[28] used in this study as part of the subset of orthosteric sites within the training 

set. The fitted curve illustrates the function used to calibrate the scores with the ligand size. 

 

2.4 Temperature Factor 

To include features that describe flexibility, we have used the temperature factor (or B-factor). The 

B-factor, which reflects the degree of atomic displacement from their equilibrium positions in the 

crystals due to thermal motion, was extracted from the X-ray crystallographic structures of the 

protein-ligand complexes in the PDB. A higher B-factor implies that the atom has greater mobility. 

The average B-factor of the contact residues is divided by that of the protein to obtain values that 

reveal the differences in flexibility of the ligand binding region with respect to the entire protein. 

Firstly, to consider the bias arising from chain termini; the average B-factor of the protein with 

gradual omission of up to 10 residues at both ends was calculated. The results showed no significant 

change in the average B-factor between each omission; accordingly proteins have been kept without 

terminal elimination. Secondly, the solvent and other ligands or cofactors were removed to obtain a 

B-factor resulting solely from the protein residues. The contact residues herein were defined as 

residues having at least one atom within 4Å of the centre of any atom of the ligand. B-factors of all 

the atoms of the contact residues and the protein are averaged and were included both as ratios and 

as separate descriptors in this study.  

2.5 Contact Residues  

Contact residues, which were defined as residues with an atom (or atoms) that are closer than 4Å to 

any atom of the ligand (as defined above), were utilized as descriptors to reflect the physicochemical 

composition of the ligand binding site. This includes a simple count of the total number of residues 

and the occurrence frequency of each of the 20 amino acids. Moreover, the contact residues are 

further grouped according to their side chain chemistry into charged (R, H, K, D and E), polar (S, T, N 

and Q), hydrophobic (A, V, I, L, M, F, Y and W), aromatic (F, Y, W and H) and special (C, G and P) 

categories. Each count was taken as an individual descriptor. 
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2.6 Small Molecule Descriptors  

We used the Chemistry Development Kit (CDK)[30] to compute descriptors for small molecules. CDK is 

an open source library written in Java for structural informatics calculations. First, the chemical 

structures of the ligand were inputted as SMILES extracted from each ligand structure file (in SDF 

format). Second, we calculated 277 CDK descriptors for each compound, and removed features 

without discriminant power, those having either the same or an undefined value for all compounds 

in any of the training subsets. As a result, only the remaining 141 CDK descriptors were kept for 

further analysis.  

 

Table 1 - List of descriptors and their abbreviations 

RFSCxCSK The RF-Score (R) times average burial over nine thresholds 

estimated by CavSeek 

Binding Site 

RF.score The unadjusted RF-Score (R) Binding Site 

NormRFScore The normalised RF-score (R/E) Binding Site 

Function_F195 The expected RF-score (E), calculated by a fitting function 

E=2.222 N⅓ 

Binding Site 

B_protein Average B-factor of the protein Binding Site 

B_pocket Average B-factor of the contact residues defined as protein 

residues <4Å to the ligand 

Binding Site 

noContact_resi Number of contact residues Binding Site 

 

2.7 Dataset 

We have annotated our data according to where the ligand has bound to its protein using three 

classes: allosteric, regular and orthosteric sites. Each subset was included independently, and for 

convenience these are denoted by the capital letters A, R and T, respectively. 
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2.7.1 Allosteric Sites 

A total of 91 proteins adopted from Panjkovich and Daura’s work were initially used to represent the 

subset of allosteric sites in the training set.[10] The data were primarily collected from the online 

AlloSteric Database (ASD) and from the literature, and were further filtered to be structurally 

non-redundant by the sequence clustering program BLASTClust. The protein with the highest 

resolution structure of each of the resulting 91 groups was selected to represent that group. ASD[31] 

provides a list of the allosteric residues in the given protein. We compared those residues, thus 

annotated as comprising an allosteric site, to the list of residues involved in ligand binding extracted 

from PDBsum.[32] From this, we can identify any ligand that is bound in the allosteric site in order to 

obtain descriptors which capture the binding profile of the ligand in the allosteric pocket. If there are 

many instances in which the same ligand adopts an equivalent binding mode, the one with the 

highest RF-score value is kept in the subset to represent the particular binding pattern. Thus, the list 

has been whittled down to 59 representative allosteric (A) protein pockets. 

 

2.7.2 Regular Sites 

The regular site subset was derived from a representative set of protein domain structures, each of 

which is given by CATH[33] as an example representing the homologous superfamily to which it 

belongs. From each such structure, one ligand binding site is selected according to PDBsum.[32] For 

enzymes, we choose sites having a ligand which is neither a cofactor nor similar to the enzyme’s 

product or substrate. Ligands were selected to have no contact with any residues of any allosteric 

site given in ASD. Therefore, the sites occupied by the selected ligands are unlikely to be active sites 

or allosteric pockets. The regular subset is expected to have the weakest binding affinity and the 

lowest burial value of the three subsets. These weak interactions correspond to the regular binding 

events by which non-cognate ligands bind, possibly as accidents of crystallisation.  

A total of 99 instances were selected for the subset of regular (R) sites. The number representing 

each class was designed to be proportional to the prevalence of that structural class amongst all 

CATH[33] superfamilies (2620 superfamilies in total). There are four top C-level classes defined in the 

CATH database. Table 2 shows the number of entities included from each CATH class.  
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Table 2 - Distribution of regular sites amongst CATH C-level classes 

Class No. 

Mainly alpha 32 

Mainly beta 20 

Alpha beta 42 

Few Secondary Structures 5 

 

2.7.3 Orthosteric Sites  

A total of 195 protein-ligand complexes representing the subset of orthosteric (T) sites were 

retrieved from the PDBbind database (version 2007).[34] These data were originally used for the 

purpose of validating scoring functions in Cheng et al.'s study.[28] The data contain experimentally 

determined binding affinity values obtained from the literature. Cheng et al. further filtered their 

initial collection of data to account for the quality of structures, the quality of binding data, the 

components of complexes and redundancy of protein sequences, to avoid over-representing certain 

families. They clustered the remaining complexes according to sequence similarity and selected the 

complexes with the highest, the median and the lowest binding affinity to represent each of the 65 

clusters, giving 195 complexes in total. In this study, we have further whittled down the number to 

159 complexes which have only small molecules in the pocket. 

 

2.7.4 Datasets for Tree Building and Validation 

The Random Forest class predictions are probabilistic and subject to potential sources of error. The 

Gini splitting rule, based on reduction of node impurity, tends to isolate the largest class to produce 

a pure node. Accordingly, there will be a bias produced due to unbalanced class sizes. A class with 

fewer data is less likely to be correctly assigned. One way to reduce this size-related effect is to 

weight the training set inversely proportionally to the size of the class, however, this in turn causes a 

higher rate of misclassification. The other way is to even up the number of samples in each class.[35,36] 

We took the latter strategy, using stratified sampling to choose randomly a set of complexes that is 

equally balanced between classes. A random selection of protein-ligand complexes from each subset 

was used to construct a balanced set, containing 53 A sites, 53 R sites and 53 T sites, from which 

bootstrap sampling was to be performed. Within this stratified balanced set, the bootstrap sampling 

means that approximately 63% ( 1 – 1/e) of the data are used once or more in the building of each 



13 

 

constructed tree, and the remaining 37% ( 1/e) or so are reserved for OOB validation of that tree. 

The bootstrap sampling from the balanced set is repeated afresh for each of the 10,000 trees. In this 

work, those data excluded from the stratified balanced set in advance of the bootstrap sampling 

form an external test set which was separately used for further validation. This entire process of 

generating 10,000 trees was itself repeated a hundred times with different random seeds to avoid 

losing information from the majority class in training the models, see Figure 2.  

 

2.8 CHES as a Ligand 

The PDB crystal structures containing the buffer molecule CHES (2-(N-cyclohexylamino) ethane 

sulfonic acid) were investigated. CHES is one of the many buffer molecules that commonly complex 

with proteins during the crystallization process, despite their role in maintaining protein solubility 

and stability for NMR experiments.[37] Yet growing evidence of its effect on protein dynamics implies 

that protein function will be affected by ligand binding.[38] These molecules can be used as a starting 

point for designing novel probes for new allosteric sites and as a tool to study changes in protein 

dynamics induced upon the binding of a buffer molecule.[39] In this study, buffer molecules are 

introduced as potential binders to identify locations of possible allosteric sites. 

In total, 82 CHES containing entries had been released in the PDB up to Dec 2013. From these, our 

external validation CHES set of 158 CHES-protein binding sites (some proteins have multiple CHES 

ligands) has been identified and each site is characterized by a set of descriptors individually 

calculated for it. We noted 14 cases in which CHES was bound in a protein's defined pockets,[39] from 

which only one of these 14 CHES molecules was found in an allosteric site, that of a bacterial 

sialidase (NanB).[40] There results were manually identified by Brear and Westwood,[39] who were 

hoping to see if the CHES was bound at the site where other small molecules can also bind. We have 

further specified which one or more of multiple CHES molecules in a given structure were being 

referred to in their review results by using literature searching to identify the cavities as allosteric 

sites or otherwise. 
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Figure 2 – Flowchart of the model development scheme 
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3. Results and Discussion 

3.1 Predictive performance 

Prediction is based on a majority vote over the set of 10,000 trees. One vote is made by each tree for 

each instance that is OOB (not used in building the tree, because it was not chosen during the 

bootstrap sampling) by passing the OOB data down each tree to obtain a class prediction. From the 

aggregated OOB predictions, classes are assigned to each OOB instance by a majority vote of the 

trees. The OOB error, which shows the percentage of misclassification in the dataset, was calculated 

based on the known and predicted class labels. Separately, we also test the Random Forest’s 

predictivity by passing down each tree the external test set comprising those data that were omitted 

from the balanced set (46 R, 106 T and 6 A sites). 

Random forest is insensitive to values of mtry except close to its high and low extreme values.[41] For 

all 100 repeats (each of 10,000 trees per model), the default mtry was used. Five models were built 

using various sets of descriptors, which are classified as either small molecule or binding site 

descriptors according to the physicochemical features captured. Some of the most significant 

descriptors are listed in Table 1. For each model, we computed the average OOB error to estimate 

the prediction error; see Table 3. 

The OOB error is sensitive to the random determination of which protein-ligand complexes are kept 

in the training set, in general, with 3-4% deviation from the average. The first Random Forest model 

was trained using a total of 151 small molecule descriptors including 141 CDK descriptors and the 

heavy atom counts of each ligand. The average OOB error of the Random Forest models obtained is 

36.48% on the stratified balanced set, in which the pocket has been assigned a class label solely 

based on the small molecule descriptors of the ligand that binds to it. By the addition of 43 binding 

site descriptors, the second Random Forest model which includes properties of all calculated 

descriptors of both the bound ligand and the site has a slightly improved error of 33.64%. Both 

models contained descriptors based on the structures of the small ligand molecules. These are 

invariant within the CHES set as the same compound CHES was used to characterise the pocket in 

each case. Thus, those models are not used in predicting our CHES set since these are descriptors 

without discriminating power for that set.  

Our third model used 43 binding site descriptors that describe ligand binding in terms of predicted 

affinity (RF-score), a percentage scoring scale for ligand burial (CavSeek), binding site flexibility 

(B-factor) and binding site hydrophilicity or hydrophobicity derived from analysis of the pocket 

composition. The model produced an average OOB error of 38.6% on the stratified balanced set. 
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Subsequently, it was used on the CHES set to generate predictions for the CHES-protein binding 

pockets.  

 
Table 3 - Average OOB error rates for the different models.  

 

The OOB errors are presented as the percentage of misclassified data points in the stratified 

balanced set and separately in the external test set (comprising data excluded from the stratified 

set). Standard deviations are calculated over a hundred runs using different random seeds (10,000 

trees per run), using N-1 = 99 in the denominator. 

 

3.2 Descriptor Importance 

The importance of the individual descriptors can be evaluated either with the permutation method 

by observing the effect on the predictivity of Random Forest models of ‘noising up’ each descriptor 

in OOB data, or alternatively with the Gini index, an impurity measure. The mean decrease Gini 

(MDG) (calculated over all trees) is a measure of improvement to the purity when that descriptor is 

made available to split the trees, thus producing greater purity in the resulting nodes. The decreases 

in Gini impurity for each descriptor used to form splits are summed over all trees and then 

normalised. A higher value implies greater importance of the variable concerned. Here, we report 

the results of variable importance as measured by impurity reduction, see Figure 3.  

The top ranked binding site descriptors obtained by averaging the Gini importance values from 100 

repeats are obtained. The leading descriptors are: first the product of the RF-Score and the average 

score of CavSeek (RFSCCSK), second the RF-Score values (RF.score), followed in third place (but 

with a significant decrease in importance) by protein flexibility (abbreviated to B_protein), fourth the 

residue count of the ligand binding site (noContact_resi), and fifth the normalised RF-Score 

(NormRFScore).  

The subsequent important descriptors are: sixth the flexibility based on the contact residues 

(B_pocket), and seventh the expected RF-Score (Function_F195, computed by size calibration with 
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the number of heavy atoms N to the original score as 2.222N⅓). Those two have very similar Gini 

importance values. 

Similar importance rankings were found in all hundred repeats, but they sometimes slightly differed 

in order. The calculation of relative importance allows a further assessment firstly of the classifiers 

based on the full set and secondly on classifiers based only on a few of the most important 

descriptors as a potential way to improve the performance. To achieve this, we select the top 7 

descriptors (from which to build the fourth model) and top 5 descriptors (for the fifth model) due to 

the breaks in the curve of the Gini importance plot, Figure 3, indicating a considerable drop of 

importance from the fifth to the sixth variables and similarly from the seventh to the eighth. The 

predictive ability of the models with reduced numbers of descriptors, as measured by the OOB error, 

is shown in Table 3. An increased overall OOB error is observed as the number of variables is 

decreased by 3.04% and 4.83% for the stratified set, relative to the model based on all binding site 

descriptors. Apart from the OOB error calculated, we also look for consensus of the results of 

computational predictions and literature findings, as discussed below.  

The results also show that our largest threshold of 2Å is desirable for CavSeek to achieve optimal 

discrimination between binding sites, based on the relative descriptor importance of the CavSeek 

scores at different thresholds. The version with the 2 Å threshold is listed eighth in the variable 

importance ranking. CavSeek is combined with RF-Score by multiplication to increase their 

discriminative power, hence avoiding the difficulties inherent in adding or subtracting quantities 

with different dimensions. The combined descriptor of RF-Score and CavSeek improved the RF-Score 

by itself and is listed as the most important variable averaged from ten runs. RF-Score itself is listed 

as the second.  
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Figure 3 - The mean Gini importance values of each descriptor from the third model, averaged 

over a hundred repeats.  

 

The plot shows variable importance on the y-axis ordered from the most to the least important. The 

descriptors with the highest decrease in Gini impurity make the major contributions to partitioning 

the data into homogeneous classes.  

 

3.3 Predictions for the CHES set 

Here we collate the number of times each class is predicted for each CHES binding instance and 

report the class with majority votes from a hundred repeats. The numbers assigned to each class are 

given so as to express the approximate level of confidence with which a class has been assigned 

from 100 repeats.  
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The model trained using all binding site descriptors returns six orthosteric (T) sites, of which four 

(pdb codes: 2VW2, two sites in 3OQI, and 3NOQ) showed matches with the manual annotation. The 

remaining two were known bind to the domain interface (both in 2ICH) interacting with conserved 

residues which were inferred to have functional role among homologs.[42] 

Among 15 CHES binding instance predict as allosteric (A), there is lack of literature for 4DQ0 and 

3G8W. Both contain multiple CHES binding instances. Our results uncover three potential allosteric 

sites, which are not known orthosteric sites, supported by the literature. Four were found 

experimentally in sites considered[39] likely to be orthosteric (two in 3RIG, 1Q1Q and 1V30), see Table 

S1 (Supporting Information). 

Since CHES is not a natural cognate ligand for any protein it binds to, it is perhaps not surprising that 

orthosteric sites where the CHES binds (active sites evolved to bind other ligands) have been 

predicted as allosteric. The ligands in the orthosteric (T) subset of the training set from which the 

model was built were chosen to be more specific to the corresponding protein; thus, the more 

buried and stronger binding ligands were expected to be the cognate ones. In the potential future 

use of this methodology to predict allosteric sites using serendipitous binders, the workflow would 

therefore be designed to filter out known orthosteric sites from the set of allosteric predictions.  

In contrast, our fifth model using the top 5 descriptors resulted in more promising results. Five 

orthosteric sites have been predicted of which four are consistent with the previously discussed full 

binding site descriptor model (2VW2, two sites in 2ICH, and 3OQI). An equal number of predictions 

amongst the 100 repeats assigned 3OQI to the orthosteric and allosteric classes. Three out of five 

orthosteric predictions were indeed experimentally determined to be orthosteric (2VW2, 3OQI and 

1V30), while the remaining two are found at the domain interface (2ICH).  

The top 5 descriptor model identified 30 allosteric sites, of which 15 lack definitive description in the 

literature, six pockets correspond to manually annotated orthosteric sites (two in 3RIG, and one in 

each of 1Q1Q, 3OB9, 3NIB, and 4H75), and nine pockets were potential allosteric sites. The allosteric 

sites we have referred to are non-orthosteric clefts, based on the literature. Yet, it is not known 

whether those pockets are functional allosteric sites, see Table S2 (Supporting Information). 

Unfortunately, the allosteric site obtained manually (2VW2, A1001) by Brear and Westwood[39] was 

not predicted correctly by either model; the cleft was identified as regular (R). We observed that 

CHES shares this pocket with a glycerol molecule which is lying deeper in the cavity.  
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We notice that three interface cavities were assigned to classes A or T (two in 2ICH, and 4ATG), 

implying that there may be shared features of interface interaction common to the allosteric and 

orthosteric subsets. Indeed, the interface can potentially act as a binding site for an allosteric 

modulator. Binding of allosteric modulators at the interface between subunits of GABA receptor has 

been shown to have varying effects on the receptor's function.[43] Stanget et al.[44] revealed an 

allosteric binding site at the homodimeric interface of caspase-6 zymogen that impairs function. 

Descriptors to identify specifically the interaction interface can be exploited; perhaps interface 

cavities might be included in future work as an independent subset. 

One positive note is that, in spite of high error rates (38.6% for the full binding site descriptor model 

and 43.43% for the top 5 descriptor model) estimated using OOB data, both models have given 

promising results for potential allosteric sites. Nearly half of our prediction instances are not 

confirmed by the literature, yet instances that can be found in the literature are annotated as either 

orthosteric or in a binding cavity different from the orthosteric site. In fact, our top 5 descriptor 

model predicts most of the defined pockets (10 out of 14) that have been identified by Brear and 

Westwood to be either allosteric or orthosteric.  

Our method provides a fast and low computational cost way to identify potential allosteric sites on 

large number of crystal structures. The co-crystallised non-cognate ligands and buffers that are 

commonly seen on most crystal structures are used, from which we extract binding site features. 

The predictions were made based only on structures with no cognate ligand bound. Thus, an 

adequate description of a binding cleft might not be possible. Also, potential allosteric sites 

containing no co-crystallised compound are invisible to our trained algorithm. The models were not 

trained to predict based on specific families. Thus, the number of regular sites included for each of 

the four structural classes at the C-level of the CATH classification[26] is roughly proportional to its 

prevalence in the CATH database. However, we noted that a known allosteric site is dominant in 

some families[18] or perhaps may only exist in particular families, thus introducing a systematic bias. 

Even though these issues may have contributed to the difficulties in predicting allosteric sites, 

resulting in a higher-than-ideal error rate, many of our allosteric sites predictions are in agreement 

with literature findings. Moreover, those non-cognate ligands that cocrystallised with potential 

allosteric sites can be used as starting structures for the design of probes specifically created for 

these sites.  
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4. Conclusions 

Allostery is a regulatory mechanism that affects protein function by the binding of small molecules 

to a site distinct from the active site. In contrast to traditional drug design by mimicking natural 

substrates, allosteric effectors offer therapeutic benefit for target-specific drug design. The discovery 

of new allosteric sites in protein cavities has emerged as a new drug design approach to identify 

novel pharmaceutical agents.  

In this study, we have used Random Forest to build a three-way classification model for predicting 

allosteric pockets. We then report the results for a test set in which we consider instances of a buffer 

molecule, CHES, as a potential binder to allosteric sites; Brear and Westwood[39] observe 14 matches 

supported by the literature and structural analysis, wherein 10 of these 14 pockets were identified 

as either the allosteric or orthosteric sites of the protein by our top 5 descriptor model. Although it is 

questionable whether other predicted pockets are truly functional, the implementation of a machine 

learning scheme allows discrimination between binding sites according to features that are captured 

from the protein-bound ligand conformations. This can help reduce the number of PDB files needing 

to be looked at when hunting for potential novel allosteric sites, prioritising those which are 

predicted to belong to the allosteric category. Thus, this study shows promising results from using 

adventitiously binding buffer molecules as agents for allosteric site discovery. However, we also note 

that predictions of orthosteric pockets were hardly ever made for binding sites of CHES, a 

non-natural ligand for any protein. CHES appeared to be associated with lower binding affinity and 

lower burial in protein cavities compared to the ligands of the orthosteric subset used in the model’s 

training. However, mispredictions of orthosteric sites as allosteric will be easy to remove from a set 

of allosteric predictions, since the orthosteric sites are generally known for the PDB structures we 

are using. We found several CHES molecules that were predicted to be either allosteric or 

orthosteric sites are bound at an interface, which can potentially be allosteric modulator binding 

sites. 

We have evaluated the descriptor importance by the Gini importance measure. RF-Score and its 

combination with CavSeek appeared to have significant discriminative power in identifying the 

binding pockets. These descriptors reflected the binding states of ligands with respect to their 

strength of interaction and to their degree of burial in the cleft of the protein. 
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Supporting Information 

Tables S1 and S2 compare the predicted based on the binding site and the top five descriptor model 

versus literature for each CHES binding instance. Only instances assigned to the allosteric (A) or 

orthosteric (T) classes are shown. The assigned pockets that were identified by Brear[39] have been 

highlighted in italics. The results were ordered based on the number of predictions obtained for the 

assigned class from a hundred runs. 
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