Supporting Information

Synthesis and crystallographic characterisation of Mg(H₂dhtp)(H₂O)₅·H₂O

Susan E. Henkelis^{a,*}, Laura J. M^cCormick^a, David B. Cordes^a, Alexandra M. Z. Slawin^a and Russell E. Morris^a

^a School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, KY16 9ST, UK.

Email Address: seh24@st-andrews.ac.uk (S.E. Henkelis); Fax: +44 (0)1334 463808; Tel: +44 (0)1334 463776

Mg(1)-O(1)	2.0231(11)	O(2W)-Mg(1)-O(5W)	91.90(4)
Mg(1)-O(2W)	2.0402(11)	O(4W)-Mg(1)-O(5W)	89.57(4)
Mg(1)-O(4W)	2.0416(11)	O(1)-Mg(1)-O(3W)	95.69(4)
Mg(1)-O(5W)	2.0490(11)	O(2W)-Mg(1)-O(3W)	92.15(4)
Mg(1)-O(3W)	2.0903(10)	O(4W)-Mg(1)-O(3W)	90.49(4)
Mg(1)-O(1W)	2.1134(10)	O(5W)-Mg(1)-O(3W)	85.78(4)
		O(1)-Mg(1)-O(1W)	90.78(4)
O(1)-Mg(1)-O(2W)	88.73(4)	O(2W)-Mg(1)-O(1W)	91.01(4)
O(1)-Mg(1)-O(4W)	89.74(4)	O(4W)-Mg(1)-O(1W)	86.50(4)
O(2W)-Mg(1)-O(4W)	177.07(5)	O(5W)-Mg(1)-O(1W)	87.72(4)
O(1)-Mg(1)-O(5W)	178.38(5)	O(3W)-Mg(1)-O(1W)	172.86(4)

Table S.1. Selected bond lengths [Å] and angles [°] for $Mg(H_2dhtp)(H_2O)_5 \cdot H_2O$

Table S.2. Hydrogen bonds for Mg(H₂dhtp)(H₂O)₅·H₂O [Å and °]

D-H…A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
 O(3)-H(3)····O(2)	0.84	1.79	2.5334(14)	147.2
O(6)-H(6)····O(5)	0.84	1.75	2.4926(14)	147.0
O(2W)-H(2A)····O(6W)	0.892(9)	1.900(10)	2.7825(14)	170.0(15)
O(6W)-H(6A)···O(1W) ^I	0.898(9)	2.168(10)	3.0020(14)	154.1(14)
O(5W)- $H(5A)$ ···O(5) ^{II}	0.897(9)	1.819(9)	2.7154(14)	177.0(16)
O(3W)- $H(3W)$ ···· $O(4)$ ^{II}	0.911(9)	1.731(10)	2.6275(13)	167.4(15)
O(2W)- $H(2W)$ ···· $O(6)$ ^{III}	0.881(9)	1.958(10)	2.8236(14)	167.3(15)
O(3W)- $H(3A)$ ···O(2) ^{IV}	0.897(9)	1.924(11)	2.7617(14)	154.7(15)
$O(4W)$ - $H(4A)$ ···O $(3W)^{V}$	0.886(9)	1.849(9)	2.7334(13)	176.4(16)
$O(4W)$ - $H(4W)$ ···· $O(2)^{V}$	0.887(9)	1.885(11)	2.7361(13)	160.2(15)
O(5W)- $H(5W)$ ···· $O(3)$ ^{VI}	0.891(9)	1.856(10)	2.7416(14)	172.7(16)
O(6W)- $H(6W)$ ···· $O(4)$ ^{VII}	0.892(9)	1.853(10)	2.7397(15)	172.1(17)

Symmetry transformations used to generate equivalent atoms:

I: x, y-1, z II: x+1/2, -y+3/2, z-1/2 III: -x+1/2, y-1/2, -z+1/2

IV: -x+3/2, y-1/2, -z+1/2 **V:** -x+3/2, y+1/2, -z+1/2

VI: x-1/2, -y+3/2, z-1/2 **VII:** -x+1, -y+1, -z+1

Fig. S.1. Powder XRD patterns for CPO-27-Mg. Teal – as-synthesised; Purple – simulated spectrum at a factor of 100

Fig. S.2. Powder XRD spectra for monomeric species, Mg(H₂dhtp)(H₂O)₅•H₂O. Teal – as-synthesised; Purple – simulated from single crystal data at a factor of 100

Fig. S.3. Thermogravimetric analysis (TGA) showing three mass changes of 27.47, 5.44 and 13.44% corresponding to the loss of 5H₂O, H₂O and CO₂ respectively

Eq. (S.	1). T	hermograv	imetric	analysis	calculation	S
---------	-------	-----------	---------	----------	-------------	---

$328.52 \text{ gmol}^{-1} \times 0.2747\% = 90.24 \text{ gmol}^{-1}$	$5H_2O$
--	---------

328.52 gmol ⁻¹	$\times 0.0544\% = 17.87 \text{ gmol}^{-1}$	H ₂ O
\mathcal{O}	U	-

 $328.52 \text{ gmol}^{-1} \times 0.1344\% = 44.15 \text{ gmol}^{-1}$ CO₂

Fig. S.4. Infra-red spectrum of Mg(H₂dhtp)(H₂O)₅•H₂O