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ABSTRACT 

 
Salt minerals are an important natural resource. The ability to quickly and remotely identify and quantify salt deposits and 

salt contaminated soils and sands is therefore a priority goal for the various industries and agencies that utilise salts. The 

advent of global hyperspectral imagery from instruments such as Hyperion on NASA’s Earth-Observing 1 satellite has 

opened up a new source of data that can potentially be used for just this task. This study aims to assess the ability of Visible 

and Near Infrared (VNIR) spectroscopy to identify and quantify salt minerals through the use of spectral mixture analysis. 

The surface and near-surface soils of the Atacama Desert in Chile contain a variety of well-studied salts, which together 

with low cloud coverage, and high aridity, makes this region an ideal testbed for this technique. Two forms of spectral data 

ranging 0.35 – 2.5 μm were collected: laboratory spectra acquired using an ASD FieldSpec Pro instrument on samples 

from four locations in the Atacama desert known to have surface concentrations of sulfates, nitrates, chlorides and 

perchlorates; and images from the EO-1 satellite’s Hyperion instrument taken over the same four locations. Mineral 

identifications and abundances were confirmed using quantitative XRD of the physical samples. Spectral endmembers 

were extracted from within the laboratory and Hyperion spectral datasets and together with additional spectral library 

endmembers fed into a linear mixture model. The resulting identification and abundances from both dataset types were 

verified against the sample XRD values. Issues of spectral scale, SNR and how different mineral spectra interact are 

considered, and the utility of VNIR spectroscopy and Hyperion in particular for mapping specific salt concentrations in 

desert environments is established. Overall, SMA was successful at estimating abundances of sulfate minerals, particularly 

calcium sulfate, from both hyperspectral image and laboratory sample spectra, while abundance estimation of other salt 

phase spectral end-members was achieved with a higher degree of error.  
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1. Introduction 
 

There are numerous types of salt minerals found in sediments across the globe (and solar system), and their presence can 

have significant impacts on nearby life, both positively and negatively.  Identifying these salts and quantifying their 

abundance is therefore an important consideration. Reflectance spectroscopy can be used to characterise minerals, with 

different salt minerals having key diagnostic spectral features in the visible and near infrared portion of the spectrum1–4. 

Knowledge of these spectral properties can be exploited through the use of imaging spectrometers to map the occurrence 

of different saline-affected soils and surfaces5. The spectral properties that are most useful are spectral absorptions, and 

with the advent of hyperspectral imagers with spectral resolutions of as little as 10 nm these narrow band absorptions can 

potentially be captured in high spatial resolution data. Airborne hyperspectral imagers AVIRIS and HyMap have both been 

used to successfully identify and map saline minerals in Death Valley, California6 and the Murray-Darling Basin in 

southeast Australia7 respectively. Satellite hyperspectral imaging is a concept that has been successfully utilised in the 

exploration of other bodies in the Solar System8, and two experimental instruments have been flown on Earth Observation 

platforms, CHRIS on ESA’s Proba-19 and Hyperion on NASA’s Earth Observer 110. The easy availability of these high 

spectral- and spatial-resolution datasets has encouraged the need for new analysis techniques that can take advantage of 

this extra information. Spectral mixture analysis (SMA) or “spectral unmixing” is one such family of techniques that allows 

both qualitative and quantitative information to be extracted from hyperspectral images. SMA techniques have been 

previously applied to Hyperion imagery to evaluate a number of different mineral and environment types. Mining interests 

have been investigated with Magendran and Sanjeevi11 classifying iron ore and Hosseinjani Zadeh et al12 mapping a 

porphyry copper belt. Ghosh et al13 utilised Hyperion imagery to characterise and map salinated soil in the Indo-Gangetic 
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plains in India. Minimum Noise Fraction (MNF) transformations and Pixel Purity Index (PPI) analysis techniques were 

combined with linear spectral unmixing to quantify the severity of the salination in the regions examined. This study 

however did not look to identify specific salt mineral species or to estimate their absolute abundance. 

 

The Atacama desert is located along the western Pacific coast of South America and contains the driest non-polar regions 

on Earth, receiving less than 100 mm of rain each year14. Subregions within the Atacama are described as “the driest 

regions on Earth” with precipitation averaging below 1 mm per year15,16 and these unique locales are the focus of this 

investigation. The desert soils are formed from largely granitic lithologies17 and their hyper-aridity has allowed 

concentrations of atmospherically-derived nitrates, sulfates, chlorides and perchlorates to accumulate in the upper surface 

layers18. The region has long been host to nitrate mines19 at the surface and near-surface making it a geologically well-

characterised region18. The lack of surface water makes these soils ideal for testing the use of hyperspectral data to identify 

and quantify salt minerals as water absorption bands can obscure many of the diagnostic features of these minerals. Work 

by Sutter et al20 using laboratory based VNIR spectral analysis of Atacama surface and near-surface samples confirmed 

the presence quartz, albite, microcline, smectite, kaolinite, chlorite, gypsum, anhydrite and calcite. Their study examined 

the mineral abundance in each sample using XRD achieving a 10 – 20% absolute abundance accuracy but no attempt was 

made to calculate abundance from the VNIR data. More recent work by Flahaut et al21 has used field spectroscopy and 

Hyperion data to characterise the mineralogy of the Atacama salar deposits. These surface deposits form where 

groundwater upwells into otherwise hyperarid regions, and are dominated by halite, clays and sulfates including gypsum. 

Discrimination between salt dominated and clay dominated soils was demonstrated using the field VNIR spectra but further 

quantitative discussion was not presented.  

 

In this study we aim to build on these previous studies by investigating the spectral properties of the Atacama Desert and 

its uniquely arid and salt-rich soils. The ability to identify and quantify salt minerals through the application of SMA 

techniques to VNIR spectral data and in particular hyperspectral images from the Hyperion satellite shall be established. 
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Figure 1: The Atacama Desert with the four sample locations marked in pink circles with the footprint of the relevant Hyperion images 

overlain. 
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2. Data sources and processing 

 

2.1 Soil samples 

 

32 individual sediment samples (Table 1) were collected from the surface and up to a depth of 1 m at four locations (Figure 

1) across the hyper-arid section of the Atacama Desert14 in 2010 and 2012. Wet chemistry IC analysis was performed and 

the presence of sulfate, nitrate, chloride and perchlorate anions confirmed in all 32 samples. VNIR reflectance spectra were 

collected from all 32 and quantitative XRD performed on 15 of the samples (Table 1) providing the identities and relative 

abundances of the minerals present in each. 

 
     Table 1: Atacama samples and the analysis that was performed for each 

 

Site Sample Wet Chemistry IC VNIR spectroscopy Quantitative XRD 

Yungay Y2_AT12 X X X 

 AT12-T1-2 X X  

 AT12-T1-14 X X  

 AT12-T1-18 X X  

 AT12-T1-17 X X  

 AT12-T1-19 X X X 

 AT12-T1-21 X X X 

PONR PONR 0 cm X X X 

 PONR 40 cm X X X 

 PONR 80 cm X X  

 PONR 90 cm X X  

 PONR 100 cm X X X 

 PONR crusts X X  

MES MES 0 cm X X X 

 MES 20 cm X X X 

KM40 KM40_PT23 X X  

 KM40-PT24 X X  

 KM40-PT25 X X  

 KM40-PT27 X X X 

 KM40-PT28 X X X 

 KM40-PT29 X X  

 AT12_T3_4 X X  

 AT12_T3_5 X X X 

 AT12_T3_8 X X  

 AT12_T3_12 X X X 

 AT12_T3_13 X X  

 AT12_T3_15 X X  

 AT12_T3_17 X X X 

 AT12_T3_19 X X  

 KM40A X X  

 KM40B X X X 

 KM40C X X X 

 

2.1.1 Ion Chromatography 

 

After discarding a >1.4 mm fraction, samples were crushed, extracted at 10:1 water:soil ratio for 30 minutes on heated 

(30C) shake-table, centrifuged, and passed through a 0.2 um cellulose acetate filter.  Perchlorate analyses were performed 

on Metrohm 930 IC, with a 150 mm Metrosep Asupp5 separation column (4 mm bore) using 10 mM Na2CO3 eluent at a 

flow rate of 0.7ml/min.  After quantifying perchlorate, samples were further diluted so as to bring perchlorate 
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concentrations below 1 ppb, and nitrate, sulfate, chloride were analysed using the same column but with a 3.1 mM 

Na2CO3/1 mM NaHCO3 eluent at a flow rate of 0.7ml/min. This two-step process was required because in the latter method 

perchlorate is retained on the column longer than the typical integration time of the typical (EPA 300.1) “7 anion” method, 

and can thus cause spurious results if above detection limits.  Details of the methodology and anion weight percentages 

will be presented elsewhere – In this study, we simply used the chromatograms to confirm the presence of the anions. 

 

2.1.2 Laboratory VNIR reflectance spectroscopy 

 

Sub-samples of all 32 samples were selected for Visible and Near Infrared (VNIR) analysis.  These were left in their 

unconsolidated and unprocessed state to best represent the original desert surface.  Spectra were collected using an ASD 

Fieldspec Pro at the NERC Field Spectroscopy Facility at the University of Edinburgh. The Fieldspec Pro was used with 

the fibre-optic contact probe attachment and spectra collected in the range 0.35 – 2.5 µm with spectral FWHM of 3 – 12 

nm. Prior to each measurement the optimisation routine was run and both a dark current and calibrated Spectralon© white 

reference spectra were taken. For each sample, six individual spectra were taken with the sample holder being repositioned 

with respect to the instrument contact probe between each measurement.  These six spectra were then averaged to account 

for any bias introduced by the random nature of the particle size and positioning within the sample. Little distinguishing 

spectral variation was evident in the visible portion of the spectra and the final dataset was trimmed to cover 1.0 – 2.5µm. 

All subsequent SMA was performed using this NIR set. 

 

The final laboratory spectra covered a peak reflectance range of 0.32 – 0.86. All spectra contained common absorptions at 

approximately 1.4 and 1.9 µm indicating the presence of O-H and H2O bonds within minerals in every sample (Figure 2). 

An absorption at approximately 2.22 µm is also observed in every sample, indicating the presence of either metal-O-H 

bonds or combination H2O and S-O bonds22. Shallow Fe3+ electron transition absorptions in the 0.9 – 1.0 µm range are 

also present in all samples indicating the presence of small amounts of iron-oxides, iron hydroxides or iron bearing silicates. 

 

2.1.3 X-Ray Diffraction 

 

15 of the 32 samples were selected for Quantitative XRD (Q-XRD) mineralogical analysis at the University of St Andrews 

(Table 1). Samples were selected to span the range of visual and spectral variation observed across the whole sample set 

(Figure 2). Samples were crushed to <5µm using an agate ball mill in acetone followed by drying overnight and back-

packed into standard mounts to produce maximum random orientation. These were analysed with a Philips PW1050 / 

Hiltonbrooks DG2, followed by Rietveld quantification using SiroQuant v.3. Thirteen different minerals were identified 

across all samples analysed, including three different calcium sulfates (anhydrite, bassanite and gypsum), and one chloride, 

halite (Table 2). Perchlorates and nitrates were confirmed in the IC analysis but no perchlorate or nitrate bearing minerals 

were identified in the Q-XRD analysis suggesting that these salts are present only in trace quantities. Due to the significant 

percentage of plagioclase in the samples, the errors on the abundances calculated is taken to be 10% absolute abundance. 
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     Table 2: Q-XRD mineral identification and abundance values (Anh – anhydrite, Bas – bassanite, Cal – calcite, Chl – chloride, Gyp 

– gypsum, Hal – halite, Hem – hematite, Hor – hornblende, K-F – K-Feldspar, Mic – mica, Pla – plagioclase, Pyr – pyroxene, Qua 

– quartz) 

 Anh Bas Cal Chl Gyp Hal Hem Hor K-F Mic Pla Pyr Qua 

Y2-AT12 5%   4% 19%   2% 6% 3% 40%  23% 

AT12-T1-19 tr   2% tr   4% 12% 2% 60%  21% 

AT12-T1-21 8%   3% 8%   4% 7% tr 51%  20% 

PONR 0 cm 1% 9% 2% 1% 1% 1% 2%  7% 5% 61% 2% 10% 

PONR 40 cm 44%    23%    2%  27%  5% 

PONR 100 cm 14% 1% 2% 1% 1% 9% 2%  4%  51% 4% 9% 

MES 0 cm 1%   1% 5%   5% 4% 7% 55%  23% 

MES 20 cm 1%   2% 7%   5% 4% 6% 53%  23% 

KM40-PT27 1%  2% 2% 7%  2% 5% 6%  52% 7% 15% 

KM40-PT28 3%   1% 18%  1% 2% 5%  49% 5% 16% 

AT-12-T3-5  32%   1% 18% 6%  1% 2%  33%  9% 

AT12-T3-12 12%   2% 15% 3%  2% 7% tr 38% 5% 16% 

AT12-T3-17 4%   1% 28%   1% 3%  47% 2% 14% 

KM40B 15%   2% 9% 5%  1% 4%  49% 2% 13% 

KM40C 29%   2% 6% 5%  1% 3%  41%  14% 
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      Figure 2: NIR laboratory spectra of samples selected for Q-XRD analysis. All samples show evidence of H2O/O-H bonds with 

absorptions around 1.4 µm (grey shaded region) and 1.9 µm (the second dotted line). Where this second hydration absorption is 

shifted from 1.91 µm to 1.95 µm this together with a smaller absorption at 1.75 µm (the first dotted line) indicates the presence of 

gypsum. The solid line around 2.2 µm indicates a metal-O-H bond or a combination of S-O and H2O bonds within a single mineral 

(e.g. as found in gypsum). 
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2.3 Hyperion imagery 

 

The Hyperion Imaging spectrometer is an experimental Visible and Near Infrared (VNIR) hyperspectral reflectance 

spectrometer on board NASA’s Earth-Observing 1 satellite. This pushbroom instrument is made up of two spectrometers 

that together span the wavelength range 0.4 – 2.5 µm over 242 spectral bands of approximately 11 nm FWHM 23. Hyperion 

has a Signal to Noise Ratio (SNR) of approximately 160 at 0.55 µm to 40 at 2.125 µm23 and produces images with a pixel 

size footprint of roughly 29 m on the ground. Hyperion images were requested and taken in September 2015 and again in 

March 2016 (Table 3). Images were processed from L1R level using a mixture of Exelis ENVI 5.0 and Matlab routines.  

Images were destriped using the algorithm first described by Datt et al24 using a Matlab program contained within the 

hyperspectralToolbox v0.07.  Using ENVI, bad bands and pixels were manually identified and removed, across track 

illumination correction was applied to partially remove spectral smile, and MODTRAN based atmospheric correction was 

conducted using the ENVI FLAASH plugin. Due to the lack of variation within the visible portion of the spectra each 

image was trimmed to remove bands below 1.0 µm. Due to high noise levels all bands above 2.355 µm were also removed. 

Spectral smile is an issue that affects all hyperspectral imaging spectrometers and for Hyperion results in a wavelength 

shift of as much as 4 nm in the visible range and 1 nm in the shortwave infrared (SWIR)25. In this work only the SWIR 

portion of the image cubes are used and thus spectral smile is not considered a major issue. To minimise remaining noise 

a minimum noise fraction (MNF) transformation was performed on each image cube.  The resulting MNF bands 

represented noise above band 10 to 20 depending on the image. Only bands below this were inverse transformed back into 

reflectance space to produce the final image cubes that were used in the spectral mixture analysis.  

 
     Table 3: Hyperion images requested and analysed for this study 

Site Sample 

Lat. 

Sample 

Lon. 

Hyperion Image Date Central 

Lat. 

Central 

Lon. 

Yungay -24.0919 -69.9975 EO1H0010772015248110PF_AK3_01 05/09/15 -24.6181 -70.0890 

   EO1H0010772016068110KF_SG1_01 08/03/16 -24.5025 -70.0431 

   EO1H0010772016081110KF_SG1_01 21/03/16 -24.4444 -70.0451 

KM40 -20.7332 -70.0079 EO1H0020742015251110PF_SG1_01 08/09/15 -21.1713 -70.0685 

   EO1H0020742016065110KF_SG1_01 05/03/16 -21.1697 -70.0732 

MES -22.2608 -69.7247 EO1H0010752015240110PF_SG1_01 28/08/15 -22.7226 -69.7953 

PONR -23.0772 -69.5921 EO1H0010762015245110KF_SG1_01 02/09/15 -23.5304 -69.6662 

   EO1H0010762016073110KF_AK3_01 13/03/16 -23.4743 -69.6500 

 

3. Analysis 

 

Reflectance spectra collected via imaging spectrometers are rarely the result of only one material and are more commonly 

a mixture of spectral signatures from various different materials (referred to as endmembers) within the area covered by 

each pixel. Linear spectral unmixing is a well understood analysis technique that models a pixel (y) as a linear mixture of 

spectral signatures (x) from a number of different endmembers (p) that all lie within the spatial resolution of that pixel, 

plus some noise (c).  Each endmember contributes a percentage (a) of the final pixel value. 

 

𝑦 = ∑ 𝑎𝑖𝑥𝑖 + 𝑐
𝑝
𝑖=1                                                           (1) 

 

A vast wealth of algorithms exist within the spectral unmixing literature26–29 covering the three potential unknowns within 

the problem. These are i) the number of endmembers present, ii) the endmember spectral signatures and iii) the endmember 

abundances in each pixel.  The majority of these algorithms focus on the extraction of the endmember signatures and the 

estimation of the abundances, with the number of endmembers being known or decided upon a priori. In this study the 

SISAL algorithm of Bioucas-Dias30 is utilised to extract endmember spectra from within the datasets and the fully 

constrained linear least squared (FCLLS) algorithm described by Heinz and Chang31 used to estimate the volume 
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abundance. Both algorithms are freely available as Matlab routines* that are quick to run, requiring only a standard desktop 

computer and producing results in seconds allowing large volumes of data to be analysed quickly. 

 

4. Results 
 

4.1 Laboratory sample spectra 

 

The SISAL algorithm was run on the 32 sample spectra dataset across a range of p values from p = 5 to 11. For each p 

value under consideration the algorithm was run p times and the resulting endmembers matched across each set using the 

Spectral Angle Mapper32 (SAM) parameter. These matching spectra were averaged to produce a final endmember set with 

p endmembers. p = 8 was found to have the lowest SAM values between runs and the most realistic looking final spectra. 

The endmembers extracted using SISAL were examined and where possible identified as a specific mineral. Many of the 

minerals revealed by the XRD analysis have spectrally neutral high albedo reflectance spectra and endmember extraction 

algorithms can struggle to identify these33. Of the eight, two were identified as potential phyllosilicates, and one spectrally 

neutral endmember tentatively identified as halite. Halite is spectrally neutral in this wavelength range with the only 

features being a slightly positive slope and very shallow hydration features at 1.4 and 1.9 µm34. Two endmembers were 

also a spectral match to gypsum. Gypsum and bassanite have similar spectral signatures but the position of the first major 

H2O band centre at 1.44 µm rather than 1.42 µm together with the strong 2.22 µm absorption identify these endmembers 

as gypsum rather than bassanite35. This is consistent with the Q-XRD results which found significant gypsum across the 

sample set but small amounts of bassanite in only two samples. In addition one endmember was unrealistic with negative 

values. Due to these issues, a variety of endmember combinations were fed into the FCLLS abundance estimation algorithm 

as a control. These included spectra taken from the USGS spectral library35 and the ASTER spectral library representing 

minerals known to be found in an environment such as the Atacama but not confidently identifiable as any of the 

endmembers extracted by SISAL. These USGS endmembers were scaled to the range of reflectance values represented in 

the sample dataset. The resulting abundance estimates for the calcium sulfate and chloride salts were compared to the XRD 

abundance values. The endmember set (Figure 3) comprising the SISAL endmembers extracted using p = 8 identified as 

gypsum, Al-phyllosilicate, halite and shade (i.e. a low reflectance endmember taken to represent the shading of grains by 

other grains in the samples) as well as library spectra of albite, microcline, quartz, hematite, chlorite and calcite and an 

additional ‘dark’ endmember of a flat low reflectance spectrum returned the most accurate abundance estimates for calcium 

sulfates. When the three calcium sulfates in the samples were treated as one broad calcium sulfate endmember, all but one 

sample returned abundances within the error range of the XRD results (Figure 4). Anhydrite has a spectrally neutral 

signature in the NIR wavelength range and thus was not distinguishable in the unmixing. The halite abundance estimates 

were not within error using either the SISAL endmember or a USGS halite spectrum. It was concluded that halite has too 

weak of a spectral signature in this wavelength range to extract using an algorithm such as SISAL or to accurately estimate 

its abundance. 

 

                                                           
* SISAL Matlab code sourced from http://www.lx.it.pt/~bioucas/code.htm with kind permission of Bioucas-Dias. FCLLS Matlab code 

used in this study can be found within the HyperSpectralToolbox developed by David Kuhn and made available through github 

https://github.com/davidkun/HyperSpectralToolbox/blob/master/functions/hyperFcls.m  
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      Figure 3: Laboratory final endmember spectra set comprising identifiable SISAL endmembers and scaled spectral library 

endmembers. Key absorptions identified in Figure 2 are also highlighted here. ASDSISAL8_8 is identified as gypsum, 

ASDSISAL8_1 is identified as an Al-phyllosilicate, ASDSISAL8_2 is tentatively identified as halite and ASDSISAL8_4 is included 

to represent the portions of returned spectra that come from portions of the sample shaded by other grains. 

 

 
 
      Figure 4: XRD calculated Ca-sulfate abundances vs SMA calculated Ca-sulfate abundances, a) abundances based on FCLLS using 

only SISAL extracted endmembers where the blue circles represent the abundances assuming only endmember 8 represents the Ca-

sulfates and the blue circles with red crosses showing the combined abundances from endmembers 8 and 7 both of which resembled 

gypsum but a high and low reflectance version respectively: b) abundances calculated from FCLLS using only scaled spectral library 

endmembers where blue circles represent abundances of gypsum and blue circles plus red crosses represent combined abundances 

of gypsum and anhydrite: c) Ca-sulfate abundances calculated using the endmember set comprising a mixture of SISAL and spectral 

library spectra. In all three plots the shaded regions represent 10% and 20% error respectively. As the XRD results are only correct 

to within 10% and as each sample had at least two different Ca-sulfate minerals in it the 20% error line represents an accurate match 

of the SMA abundances to the XRD abundances. 
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4.2 Hyperion NIR Images 

 

Eight Hyperion images were requested covering the four sample regions (Table 2). Each image was processed as described 

in section 2.3 and Regions of Interest (ROI) selected to cover the exact sample locations, incorporating as little topographic 

variation as possible to minimise photometric effects on the data. These ROIs were processed through SISAL using the 

same routine as outlined in Section 4.1 over p = 5 – 9. When the resulting extracted endmembers were analysed only the 

September 2015 Yungay image returned an endmember set which was at least partially realistic with some endmembers 

identifiable as specific minerals. One endmember was identified as gypsum based on absorptions at 1.18, 1.53, 1.75 and 

2.21 µm. Major diagnostic absorption features of gypsum at 1.45, 1.49 and 1.95 µm are in regions that have been removed 

due to high probability of atmospheric water interference. Abundance estimation was performed first with the eight SISAL 

endmembers, then with a second set comprising a mixture of four SISAL endmembers (YungaySISAL8_2, 3, 4, 5) and 

scaled USGS spectra of calcite, albite, microcline, quartz and hematite, and thirdly with the second set augmented with an 

additional spectrally flat low reflectance ‘dark’ endmember (Figure 5). The XRD Ca-sulfate abundances across this area 

have a mean value of 13% spanning 0 – 23%. The ASD unmixing abundances gave a mean value of 17% spanning a larger 

range of 6 – 35%.  

 

 
 
      Figure 5: Final endmember set for Yungay September 2015 image comprising some SISAL extracted and some scaled spectral 

library endmembers. YungaySISAL8_2 is identified as gypsum. 

 

The ROI was reconstructed using each endmember set and its corresponding estimated abundances and the RMSE 

calculated with respect to the original input image. This provided a check on the accuracy of the resulting abundances. The 

p = 8 SISAL abundance set and the SISAL + USGS + ‘dark’ abundance set both returned an average Ca-sulfate abundance 

across the ROI of 10% with a peak value of 48%. The SISAL + USGS set returned higher values with an average Ca-
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sulfate abundance of 24% with a peak value of 60%. This latter set of abundances is erroneously high whilst the former 

largely agrees with the sample values. Additionally the average and peak RMSE values for the SISAL + USGS set were 

an order of magnitude larger than for the SISAL only set (average RMSE = 0.013 compared to 0.0011), with the SISAL + 

USGS + ‘dark’ falling in the middle of these two (average RMSE = 0.005). Using exact coordinates of the three samples 

from within this region that were analysed using Q-XRD, the corresponding pixel in each abundance image was examined. 

The pixel that corresponds to the location of sample Y2-AT12 (Figure 7) has a value of 28% (SISAL + USGS), 14% 

(SISAL + USGS + ‘dark’) and 10% (SISAL) compared to the XRD abundance of 23%. Samples AT12-T1-19 and AT12-

T1-21 were taken within 1 m of each other and the pixel corresponding to their location (Figure 7) has values of 20% 

(SISAL + USGS), 11% (SISAL + USGS + ‘dark’) and 5% (SISAL) compared to an average XRD abundance of 8%. These 

two pixels both represent areas of the ground 29 m by 29 m in size and thus comparing them to samples of only 10s of 

grams taken from one or two points within the region is not conclusive. Samples AT12-T1-19 and AT12-T1-21 were 

collected from either end of a 2 m transect and the compositional variation between these samples demonstrates how 

unrepresentative of a larger region a single sample can be. The endmember set SISAL + USGS + ‘dark’ did not return to 

lowest RMSE values across the ROI but it was still low with and average value of 0.005 and the average abundances agree 

with the sample average abundances. In addition the abundances calculated for both of the sample pixels are the 

consistently closest of the different endmember sets. Thus this endmember set is taken to be the most successful at 

estimating the abundance of calcium sulfate across this Hyperion image ROI. 
 

 
 
      Figure 6: Yungay ROI Ca-sulfate abundance estimates from the SMA using and endmember set comprising a) SISAL extracted 

endmembers only, b) SISAL + spectral library endmembers where the Ca-sulfate endmember is YungaySISAL8_2 (Figure 5), c) 

SISAL + spectral library + ‘dark’ shade endmember. Yungay RMSE values from reconstruction of scene using SMA abundance 

results and endmember set comprising d) SISAL extracted endmembers only, e) SISAL + spectral library endmembers, f) SISAL + 

spectral library + ‘dark’ shade endmember. RMSE values range from 0 (black) to 0.01 (white). 
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      Figure 7: Location of samples Y2-AT12 (red pixel) and samples AT12-T1-19 and AT12-T1-21 (green) in the Yungay ROI shown 

in Figure 6. 

 

5. Discussion 
 

The results from the laboratory spectra showed that for salts with strong spectral features and sharp absorptions in the 

VNIR range, namely sulfates such as gypsum, SMA can identify them within a soil mixture. SMA can also provide an 

estimate of the volume abundance of sulfate minerals to within a 10-20% margin of error, similar to that possible with Q-

XRD analysis of these samples. The most accurate results however did rely on some prior knowledge of the minerals 

present to ensure a representative set of endmember spectra were used in the abundance estimation.   

 

The Hyperion image analysis provided mixed results. Gypsum has strong features and was identifiable in the images and 

extractable by the SISAL algorithm. The resulting Ca-sulfate abundance estimates produced using an endmember set 

drawn from a mixture of SISAL extracted spectra and scaled USGS spectra were in agreement with the sample Q-XRD 

values from this area. Despite the extensive pre-processing outlined in this study only one of the eight final images had 

clean enough data to produce interpretable results with SMA. Hyperion returns the highest SNR data in the visible portion 

of its images but the diagnostic absorptions for those salts that have any in the VNIR are primarily above 1.5 µm where 

the instrument SNR is poor. Together with the weak absorptions expected for many common chlorides and perchlorates, 

the high inherent noise and presence of strongly absorbing minerals meant that the only salt identifiable and quantifiable 

in the images was sulfate, in particular gypsum. Even in an area such as the Atacama Desert where there is a stable and 

predominantly cloud free atmosphere and the ground is well exposed, Hyperion struggles to provide data of sufficient 

quality for quantitative analysis. However, for exploration of planetary surfaces beyond Earth, such as Mars, it is likely 

that the techniques explored in this work would be potentially successful using hyperspectral data from the Compact 

Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on board the Mars Reconnaissance Orbiter. In 

particular, the successful identification and estimated quantification of sulfate minerals is highly applicable to Mars 

exploration, where sulfate minerals are abundant and record a significant part of Mars’ surface history.  

 

For both the laboratory and satellite spectral data the only identifiable salt is gypsum. The Q-XRD mineral analysis 

however revealed the presence of other calcium sulfates, primarily anhydrite. Anhydrite has a mostly neutral spectral 

signature which was not discernible in the spectral analysis. The abundance estimates from the SMA procedure are only a 

match to the XRD results when the endmember that resembles gypsum is taken to be representative of all the calcium 

sulfate minerals present. This is an important caveat to the results presented. Whilst the endmember used in the unmixing 

is identified as gypsum it is actually representative of calcium sulfate in the mixture, both the hydrous and anhydrous 

versions. Gypsum is the most commonly occurring form of calcium sulfate on the Earth, with anhydrite readily 

transforming into gypsum when exposed to water. Therefore for the purposes of quantifying this salt in surface soils the 

inability of the technique demonstrated in this study to distinguish between the two major forms of calcium sulfate is not 

considered a significant issue. 
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6. Conclusion 
 

In this study we have tested the ability of SMA to identify and quantify salt minerals in desert surfaces from VNIR spectral 

data using two well established algorithms SISAL and FCLLS. The Atacama Desert was chosen as a test site due to the 

high volume of multiple salt species in the surface soils and the regions high aridity. Laboratory spectra from surface and 

near-surface soil samples and Hyperion hyperspectral images covering the sample regions were both acquired providing 

two different spatial resolutions of data to test. The identification and abundance of the constituent minerals, including 

calcium sulfate and chloride salts, was confirmed using Q-XRD analysis providing a groundtruth to validate the SMA 

results. Analysis of the Hyperion images was hampered by the low SNR of the instrument in the key 2.0 – 2.5 µm range 

resulting in a single image returning identifiable endmembers. The lack of strong spectral features in chlorides restricted 

the identification and quantification of these minerals in VNIR data, but SISAL was capable of extracting identifiable 

gypsum spectra from both the laboratory and Hyperion datasets. Using a combination of SISAL extracted spectra, 

including the gypsum endmember, together with some USGS spectral library spectra representing commonly found 

minerals in this type of environment, the abundance of calcium sulfate was accurately estimated using the gypsum 

endmember. Given a spectrally clean Hyperion image with high SNR, the techniques demonstrated here offer a 

computationally quick and simple method for remotely mapping the surface abundance of salt minerals with strong spectral 

features such as calcium sulfate with SMA.  
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