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ABSTRACT

We present a new computational approach that addresses the difficulty of obtaining the correct interaction between the solar corona
and the transition region, in response to rapid heating events. In the coupled corona, transition region, and chromosphere system,
an enhanced downward conductive flux results in an upflow (chromospheric evaporation). However, obtaining the correct upflow
generally requires high spatial resolution in order to resolve the transition region. With an unresolved transition region, artificially
low coronal densities are obtained because the downward heat flux “jumps” across the unresolved region to the chromosphere,
underestimating the upflows. Here, we treat the lower transition region as a discontinuity that responds to changing coronal conditions
through the imposition of a jump condition that is derived from an integrated form of energy conservation. To illustrate and benchmark
this approach against a fully resolved one-dimensional model, we present field-aligned simulations of coronal loops in response
to a range of impulsive (spatially uniform) heating events. We show that our approach leads to a significant improvement in the
coronal density evolution than just when using coarse spatial resolutions insufficient to resolve the lower transition region. Our
approach compensates for the jumping of the heat flux by imposing a velocity correction that ensures that the energy from the
heat flux goes into driving the transition region dynamics, rather than being lost through radiation. Hence, it is possible to obtain
improved coronal densities. The advantages of using this approach in both one-dimensional hydrodynamic and three-dimensional

magnetohydrodynamic simulations are discussed.
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1. Introduction

The interaction between the solar corona and chromosphere is
central to understanding the observed properties of magnetically
closed coronal loops. It is well known that if the corona is heated
impulsively (by for example, a flare, microflare or nanoflare),
both the temperature and density increase and then decline, with
the time of peak temperature preceding that of the peak density.
The changes in density can only be accounted for by mass ex-
change between the corona and chromosphere, mediated by the
transition region (TR).

Recognising the role of the TR is essential for developing
reliable models of impulsive heating. For a static equilibrium
loop with steady heating, the TR is defined as the region ex-
tending from the top of the chromosphere to the location where
thermal conduction changes from an energy loss to a gain (e.g.
Vesecky et al. 1979). The full TR occupies roughly 10% of the
total loop length, the radiation from it is roughly twice that from
the corona, and the temperature at its top is of order 60% the
temperature at the loop apex (Cargill et al. 2012a). The energy
balance in the TR is approximately between downward thermal
conduction and optically thin radiation (for a loop in thermal
equilibrium).

The change in coronal density in response to impulsive heat-
ing arises because the increased coronal temperature implied
by the heating gives rise to an excess downward heat flux that

the TR is unable to radiate (Klimchuk et al. 2008; Cargill et al.
2012a). The outcome is an enthalpy flux from the chromosphere,
through the TR, to the corona, often called (chromospheric)
“evaporation” (e.g. Antiochos & Sturrock 1978). The location
of the TR moves downward in the atmosphere, and the evap-
oration process actually heats chromospheric material to coro-
nal temperatures. The process is reversed after the density peaks
when the TR requires a larger heat flux than the corona can pro-
vide, and so instead an enthalpy flux from the corona is set up,
which both drains the corona and powers the TR radiative losses
(Bradshaw & Cargill 2010a,b). The TR now moves upwards as
the chromosphere is replenished.

While straightforward in principle, this heating and upflow
followed by cooling and downflow cycle poses major challenges
for computational modelling, with conductive cooling being the
most severe. For a loop in static equilibrium, in the TR one has
an approximate energy equation that equates,

kT L3 ~ (P[2kp)*A(T)/T?, (1

where Lt is the temperature length scale (see Eq. (6) for the
definition) and the radiative loss function A(7T) decreases as a
function of temperature above 10° K. Thus, one finds L% ~
T'/2/A(T), assuming the pressure is constant. Since T de-
creases in the TR, Lt must also decrease rapidly. For a static loop
with peak temperature 1.75 MK and density 0.25 x 10'> m~3,
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Lt ~ 30 km at 10°K. When impulsive heating occurs, Lt is
even smaller. This leads to the familiar difficulty with compu-
tational models of loop evolution: how to implement a grid that
resolves the TR. Good resolution is essential in order to obtain
the correct coronal density (Bradshaw & Cargill 2013, hereafter
BC13), otherwise the downward heat flux jumps over an under-
resolved TR to the chromosphere where the energy is radiated
away. BC13 showed that major errors in the coronal density were
likely with lack of resolution.

Since the conductive timescale across a grid point has real
physical meaning for the problems at hand, an explicit numer-
ical method is to be preferred (implicit solvers require matrix
inversion with no guarantee of convergence). One option is to
use brute force on a fixed grid with a large number of grid points.
This is slow, since numerical stability of an explicit algorithm re-
quires At < min(kgn(Az)?/(2koT>'?)) (where Az is the cell width
and the timestep is the minimum over the whole grid), so that a
lot of time is wasted computing in the corona where Lt is large
and high spatial resolution is not required. A non-uniform fixed
grid, with points localised at the TR is an option, but since the
TR moves (see above), there is no guarantee that the high reso-
lution will be where it is required. Instead, modern schemes use
an adaptive mesh which allocates points where they are needed
(Betta et al. 1997; Bradshaw & Mason 2003; BC13). The time
step restriction is the same as for a uniform grid, but effort is no
longer wasted computing highly resolved coronal solutions.

Thus far we have not distinguished between the com-
mon one-dimensional (1D) hydrodynamic (field-aligned) mod-
elling and multi-dimensional MHD simulations. It is straight-
forward for a 1D code with an adaptive mesh and a large
computer to model a single heating event, and, with patience,
to model a nanoflare train lasting several tens of thousands
of seconds (Cargill et al. 2015). However, ensembles of thou-
sands of loop strands heated by nanoflares pose more severe
computational challenges. This has led to the development
of zero-dimensional field-aligned hydrodynamical models (e.g.
Klimchuk et al. 2008; Cargill et al. 2012a,b, 2015) that provide
a quick and accurate answer to the coronal response of a loop to
heating.

The implementation of field-aligned loop plasma evolution
into multi-dimensional MHD models poses much more serious
challenges due to the number of grid points that can be used, so
that 3D MHD simulations run in a realistic time. This is of the
order of 500° at the present time. If one desires to resolve the
TR with a fixed grid, one needs several thousand points in one
direction, so that there will be a loss of resolution elsewhere as
well as a potentially crippling reduction of the time step.

The second difficulty is that while an adaptive mesh can still
be used in the TR, with commensurate computational benefits,
there can be other parts of such simulations that have equally
pressing requirements for high resolution, such as current sheets,
and, once again, an adaptive mesh does not eliminate the time
step problem.

Obtaining artificially low coronal densities is the main con-
sequence of not resolving the TR (BC13) and this has significant
implications for coronal modelling. The purpose of this paper
is to present a physically motivated approach to deal with this
problem by using an integrated form of energy conservation that
treats the unresolved region of the lower TR (referred to as the
unresolved transition region) as a discontinuity, that responds to
changing coronal conditions through the imposition of a jump
condition.

We describe the key features of the 1D field-aligned model
and the definitions used to locate the unresolved transition region
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(UTR) in Sect. 2 and Appendix A. The UTR jump condition is
derived and the implementation described in Sect. 3. In Sect. 4,
we present example simulations to benchmark our approach
against a fully resolved 1D model. We conclude with a discus-
sion of our new approach and the advantages of employing it, in
both 1D and 3D simulations, in Sect. 5.

2. Equations and numerical method

In this work we model chromospheric evaporation in response
to enhanced impulsive coronal heating by considering the 1D
field-aligned MHD equations for a single magnetic strand, with
uniform cross-section,

dp Op ov
o P __ o0 2
o Ve T Par @
ov N v oP N ) 3)
Nl 20
Por TP 5 TPNTPYSS
de  Oe v OF, )
— 4+ py— = —P— - — -n?A(T —1. 4
P ot +pv@z 0z 0z * QAL +py (6Z) @
P = 2kpnT. (5)

Here, z is the spatial coordinate along the magnetic field, p is
the mass density, P is the gas pressure, T is the temperature,
kg is the Boltzmann constant, e = P/(y — 1)p is the specific
internal energy density, n is the number density (n = p/1.2my,
my, is the proton mass), v is the velocity parallel to the magnetic
field, g is the field-aligned gravitational acceleration (for which
we use a profile that corresponds to a semi-circular strand), v
is the viscosity (shock viscosity is also included as discussed in
Arber et al. 2001), F, = —koT>/>0T /97 is the heat flux, Q is the
volumetric heating rate and A(T') is the optically thin radiative
loss function for which we use the piecewise continuous form
defined in Klimchuk et al. (2008).

We solve the 1D field-aligned MHD equations using two
different methods, a Lagrangian remap (Lare) approach, as de-
scribed for 3D MHD in Arber et al. (2001), adapted for 1D field-
aligned hydrodynamics (LarelD) and the adaptive mesh code
HYDRAD (Bradshaw & Mason 2003). Time-splitting methods
are used in Lare to update thermal conduction and optically thin
radiation separately from the advection terms, as discussed in
Appendix A. Furthermore, to treat thermal conduction we use
super time stepping (STS) methods, as described in Meyer et al.
(2012, 2014) and discussed in Appendix B.

The initial condition of the model is a magnetic strand (loop)
in static equilibrium. This is obtained by starting with an ex-
tremely high resolution uniform grid with 5 x 103 grid points
along the length of the loop. We consider both a short (60 Mm)
and long (180 Mm) loop, where the total length of each loop (2L)
includes a 5 Mm model chromosphere (included as a mass reser-
voir) at the base of each TR (z = 5 Mm). We set T = 10000 K
and n = 10'7 m™3 at the base of the TR. The initial equilib-
rium temperature and density profiles are then derived using the
same approach as described in Bradshaw & Mason (2003). We
note that, to achieve thermal balance, a small background heat-
ing term is necessary (Qp,). These fully resolved equilibrium so-
lutions are then interpolated onto the much coarser grids used
for the time-dependent evolution. The initial conditions, with
500 grid points along the length of the loop, are shown for both
the short and long loop in Fig. 1. We note that neither solution
is numerically resolved below approximately 2 x 103 K until the
chromospheric temperature is reached.
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Fig. 1. Temperature and density initial conditions with 500 grid points
along the length of the loop. Upper panels: 60 Mm loop with Qy,, =
22167 x 107> Im™ s'. Lower panels: 180 Mm loop with Qp; =
6.8682 x 10 Jm™ s~!. Each asterisk represents a single grid point.

2.1. Definitions

We use coarse spatial resolutions and address the influence of
poor numerical resolution by modelling the unresolved region
of the atmosphere, which we refer to as the UTR, as a disconti-
nuity by using an appropriate jump condition, instead of trying
to implement a grid that fully resolves the TR. To facilitate the
formulation of this approach, we first introduce some definitions.
We define the temperature length scale as,

T kT

b= ar@ = Fg

(6)

With a uniform grid, the resolution in the simulation is given by,

2L
n =57 ™)
where N, is the number of grid points along the length of the
loop (2L). (A non-uniform grid will have the same problem:s,
amenable with a similar solution.) Using these definitions, we
define the top of the UTR (zg) to be the final location, when
moving downwards from the loop apex (z,), at which the criteria,

L
Res<,

T

®

is satisfied. To ensure that we have sufficient resolution at the top
of this region, that is multiple grid points across the temperature
length scale, we take 6 = 1/4 throughout this paper.

Figure 2 demonstrates the consequences of Eq. (8) for short
(long) loops in the upper (lower) panel. The product of § and Lt
is shown as a function of temperature (solid blue line) with the
red dashed lines showing different values of Lr. Any temperature
that falls below the dashed lines will be part of an UTR. This
arises below a few 10° K. Also when coarse resolution is used,
the temperature at the top of the UTR is only weakly dependent
on the spatial resolution.

Lastly, we define the base of the TR (zp) to be the location
at which the temperature first reaches or falls below the chromo-
spheric temperature (10000 K). Employing these definitions it
is straightforward to locate both the top of the UTR and the base
of the TR at all time steps during a simulation.
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Fig. 2. The product of ¢ and the temperature length scale (Ly) as a
function of temperature (solid blue line) based on fully resolved equi-
librium solutions that are computed with 5 x 10° grid points along the
length of the loop and are consistent with the short and long loop initial
conditions shown in Fig. 1. Upper panel: 60 Mm loop. Lower panel:
180 Mm loop. The dashed red lines are the simulation resolutions (Lg)
obtained by using different numbers of grid points. In both plots, start-
ing from the top the first dashed red line corresponds to 125 grid points,
the second to 250 grid points, the third to 500 grid points, the fourth to
1000 grid points and the fifth to 2000 grid points.

3. Unresolved transition region jump condition

On use of Egs. (2)-(4), one can write an equation for the total
energy in conservative form,

OF _ —aﬁ(Eu +Po+F)+ Q- n*AT),
Z

= 9
o &)
where the total energy is the sum of thermal, kinetic and gravi-
tational potential energy,
P 1
E=——+—pv’ + p®, (10)
y—-1 2
here, ® is the gravitational potential (g = d®/dz).

We integrate Eq. (9) over the UTR (of length ¢), from the
base of the TR (z;) upwards to the top of the UTR (zg), to obtain,
¢ dE E P, F

— =— Eyvo — Povo — F.
a oo — Povo 0
+ Ebl)b + Pbl)b + Fc,b + fQ- - Rum

Y

where the subscripts 0 and b indicate quantities evaluated at the
top and base of the UTR, respectively. The overbars indicate spa-
tial averages over the UTR and R, is the integrated radiative
losses (IRL) in the UTR (see Eq. (13) for the definition).
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Fig. 3. IRL in the UTR (solid blue line) and resolved upper TR and
corona (solid red line) based on fully resolved equilibrium solutions
that are computed with 5 x 103 grid points along the length of the loop
and are consistent with the short and long loop initial conditions shown
in Fig. 1. Upper panel: 60 Mm loop. Lower panel: 180 Mm loop. The
dashed black lines are the temperatures at the top of the UTR (7)) that
are obtained by using the different simulation resolutions (Lg). In both
plots, starting from the right the first dashed black line corresponds to
125 grid points, the second to 250 grid points, the third to 500 grid
points, the fourth to 1000 grid points and the fifth to 2000 grid points.

Using the fully resolved HYDRAD results, we have con-
firmed that F.j, is always small (F.p < F¢o) and that after the
intial downward motion of the TR (during the heating phase),
the terms containing vj, are also significantly smaller than the re-
maining terms on the right-hand side (RHS) of Eq. (11). It is
these remaining terms that control the coronal response. Hence,
we follow Cargill et al. (2012a) and neglect these terms from
now on.

We have also confirmed, from the fully resolved results, that
there are only short intervals (at the start of the heating period)
when ¢dE /dt can be significant. However, the problem with in-
cluding this term is that, with the resolution of current 3D MHD
models, it is very difficult to calculate £dE/dt accurately because
the calculation requires dE/dt to be integrated across the UTR.
If the TR is not fully resolved then the heat flux jumps across the
UTR, resulting in the estimates of dE/dt being in error. Indeed,
if we could calculate £dE /dt accurately, with coarse spatial res-
olutions, then it would not be necessary to implement a method
to obtain the correct upflow and evaporation. Therefore, the final
assumption in the derivation of our jump condition is to adopt
the approach of Klimchuk et al. (2008) and neglect the left-hand
side (LHS) of Eq. (11).

Under these assumptions, by combining Egs. (10) and (11),
we obtain the jump condition at the top of the UTR,

1 _
24 Povy + =povy + poPoy = —Fe + €0 — R, (12)

vy—1 2

where the terms on the LHS are the enthalpy flux (F.), kinetic
energy flux and gravitational potential energy flux, respectively.
The terms on the RHS are the heat flux, the average volumetric
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heating rate per unit cross-sectional area and the IRL in the UTR
respectively. We refer to Eq. (12) as the UTR jump condition
and propose that the UTR should be modelled as a discontinuity
using Eq. (12) to impose a corrected velocity (vg) at the top of
the UTR, at each time step.

This corrected velocity is imposed following the conduction
and radiation and heating steps, prior to the advection step, as
illustrated in Fig. A.1, while the flow at the base of the TR (vy)
is subsequently accounted for during the advection step. Conse-
quently, at the time of calculation of vy, it is possible to calculate
the heat flux (F.p) and the average volumetric heating rate per
unit cross-sectional area in the UTR (£0). Of the terms on the
LHS of the UTR jump condition (12), the pressure (Py), density
(o), and gravitational potential (®g) are also known. The main
challenge is the calculation of the IRL in the UTR (Ryy).

3.1. Integrated radiative losses in the unresolved transition
region

Motivated by equilibrium results, we estimate Ry, using the IRL
in the resolved upper TR and corona (Ry.),

20

Rus = f PAT) dz ~ Ry, (13)
b

where,
Za

R = f n*A(T) dz. (14)
20

To demonstrate the justification of (13), in Fig. 3 we plot the
IRL in the UTR (Ry) and resolved upper TR and corona (Ry.)
as functions of the temperature at the top of the UTR (7}), for
both our short and long loop initial conditions. These curves
are obtained by integrating the radiative losses from fully re-
solved solutions (using 5 x 10° uniformly spaced grid points)
while adjusting the integration limits so that the spatial location
of the top of the UTR changes with the temperature at this lo-
cation. Previously, we have seen that when coarse resolution is
used, the temperature at the top of the UTR is only weakly de-
pendent on the spatial resolution (see Fig. 2), which means that
there is only a small range of resolvable TR temperatures before
the unresolved region of the atmosphere is reached, and within
these small temperature ranges there is reasonably good agree-
ment between the values of Ry, and Ry, For example, as can be
seen in Fig. 3, when using 1000 grid points with 2L = 180 Mm,
Ty =3.25x10° Kand Ry (272 m™? s7') # Rye (312Tm2s71).
We note that the agreement is even better when using 500 grid
points.

But when coarse resolution is used, a single grid point lower
down in the atmosphere can have a considerable effect on the
IRL in the resolved upper TR and corona. Therefore, we note
that it is safer to define the top of the UTR to be a few grid cells
higher up than previously defined.

3.2. Implementation of the jump condition

Once the IRL in the UTR (Ry.) have been estimated, the cor-
rected velocity (vp) is then calculated, by firstly solving the UTR
jump condition (12), which is a cubic in vy, using a simple
Newton-Raphson solver with the starting condition,

_ Lo + fQ_ _Rutr

- 15
Y T~ Divks (15)
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Table 1. A summary of the parameter space used and results from the numerical simulations.

Case 2L On 74 Twax(HYDRAD) Tiac(Lare]) Timac(Lare1D(500)  7max(HYDRAD)  nimax(Lare))  mmax(Lare1D(500))
Mm) (m3s7)  (s) (MK) (MK) (MK) (10 m~3) (10 m~3) (10 m3)
1 60 8x10™* 60 1.9 2.1 2.1 0.86 0.92 0.74
2 60 8x1073 60 5.7 6.1 6.1 2.2 2.6 1.5
3 60 8x102 60 12.5 12.9 13.1 9.0 11.6 4.9
4 60 8x10% 600 34 35 35 22 2.6 1.0
5 60  8x1073 600 6.9 7.1 6.9 9.1 114 2.9
6 60  8x102 600 13.7 14.1 13.8 403 49.7 10.4
7 180 5x107° 60 1.8 1.8 1.8 0.28 0.29 0.27
8 180  5x107* 60 2.9 3.1 3.1 0.37 0.40 0.33
9 180 5x1073 60 9.3 10.2 10.2 1.0 1.13 0.42
10 180  5x1075 600 25 2.7 2.7 0.36 0.40 0.33
11 180  5x10™* 600 5.7 6.0 6.0 0.98 1.18 0.39
12 180 5x103 600 12.3 12.7 12.3 42 5.4 1.2

Notes. The columns show the total length of the loop, the peak heating rate, the duration of the heating pulse and the maximum averaged
temperature and density attained by HYDRAD (in single fluid mode) with the largest grid cell of width 400 km and 12 levels of refinement
employed, and Lare1D using 500 grid points along the length of the loop (coarse resolution) employed with (LareJ) and without (Lare1D(500))

the jump condition, respectively.

which is obtained by neglecting the kinetic energy and gravi-
tational potential energy fluxes in Eq. (12). Convergence to a
solution of the complete equation is rapid.

In some cases approximation (13) underestimates the IRL
in the UTR, which may lead to spurious supersonic upflows for
the class of problems considered in this paper. Therefore, the
solution to Eq. (12), @, is adjusted by using the following sound
speed limiter,

U X Cs

[2, 2
b + cs

where c; is the local sound speed at the top of the UTR. It is this
adjusted velocity (vg) that we impose at the top of the UTR. This
is consistent with the corresponding fully resolved loop simu-
lations (that use an adaptive mesh), since no supersonic flows
are present at the location where the jump condition is imple-
mented, in all of the 12 cases considered. Hence, this approxi-
mation is satisfactory for the problems presented here and it does
not inhibit the existence of supersonic flows higher up in the at-
mosphere.

(16)

Uy =

4. Results

The effectiveness of the UTR jump condition to obtain a phys-
ically realistic evolution, through the complete coronal heating
and cooling cycle, when employed with coarse resolution is in-
vestigated for a series of impulsive coronal heating events. The
heating events considered are based on the cases (1-12) that
were previously studied in BC13. These events are described in
Table 1 and cover several orders of magnitude and duration of
heating for both a short and long loop. The energy release is also
the same as that used in BC13. The temporal profile is triangular
with a peak value of Qy and total duration of Ty while the spatial
profile is uniform along the loop.

For each case, the main assessment of the performance of
the UTR jump condition model is a comparison of LarelD
using 500 grid points employed with the jump condition (re-
ferred to as Lare]), with both LarelD without the jump con-
dition but using up to 8000 grid points and the adaptive mesh
code HYDRAD. The choice of 500 grid points is motivated by
what is routinely used in current multi-dimensional MHD mod-
els (Bourdin et al. 2013; Hansteen et al. 2015; Hood et al. 2016;

Table 2. Numerical simulation computation times.

Case 7(LareJ) T(HYDRAD) 7(LareID(8000)) T(HYDRAD)/  T(LarelD(8000))/
(min) (min) (min) T(Larel) T(Larel)
1 17 316 7426 18.6 436.8
2 19 340 7766 17.9 408.7
3 51 1943 13886 38.1 272.3
4 22 370 6341 16.8 288.2
5 82 2617 8594 31.9 106.0
6 154 5177 12732% 33.6 82.7
7 26 1559 18893 60.0 726.7
8 28 1566 18059 56.0 645.0
9 35 1605 16833 459 480.9
10 26 1805 11138 69.4 428.4
11 32 1914 11997 59.8 374.9
12 86 2269 12973* 26.4 150.8

Notes. The columns show the computation times (run on a single pro-
cessor) using the Lare1D code with 500 grid points (coarse resolution)
employed with the jump condition (LareJ), the HYDRAD code (in sin-
gle fluid mode) with the largest grid cell of width 400 km and 12 levels
of refinement employed, the Lare1D code using 8000 grid points along
the length of the loop (Lare1D(8000)), and the computational time ra-
tios between these methods. The short loop simulations (Cases 1-6) are
run to a final time of 4000 s and the long loop simulations (Cases 7—12)
are run to a final time of 12 000 s. The asterisks indicate cases where the
Lare1D code using 8000 grid points was unable to resolve the density
to within 75% of the HYDRAD solution.

Dahlburg et al. 2016). The spatial resolution of these solutions is
120 km and 360 km for the short and long loop, respectively.

For the Lare1D solutions we employ a uniform grid and re-
peat each run with N, = [500, 1000, 2000, 4000, 8000] grid
points along the length of the loop. We note that because we
are using a uniform grid each time we double the number of grid
points, even although we improve the TR resolution, we also fur-
ther reduce the thermal conduction timescale in the corona and
so the computational time increases. Therefore, we have limited
the most refined resolution used here because of the increased
computation time required.

Consistent with our model Egs. (2)—(5), we run the HY-
DRAD code in single fluid mode. The HYDRAD code has an
adaptive grid that is capable of increasing the numerical reso-
lution wherever it is needed based on selected refinement con-
ditions. This enables the code to fully resolve the small length
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versus density phase space plot. The solid lines represent the Lare1D solutions obtained by using different numbers of grid points along the length
of the loop, the dashed blue line is the LareJ solution (that is computed with the same spatial resolution as the solid blue curve) and the dot-dashed

orange line corresponds to the HYDRAD solution.

scales in the TR while retaining a coarser grid elsewhere. Fol-
lowing BC13, we select the largest grid cell to be of width
400 km and employ 12 levels of refinement, so that in the most
highly resolved regions the grid cells are of width 98 m. In this
paper, we assume that the HYDRAD solution is “correct”.

4.1. Case 9

BC13 found their Case 9 (a strong nanoflare in a long loop) to
be one of the more challenging examples for obtaining correct
coronal densities. Figure 4 shows the temporal evolution of the
coronal averaged temperature (7'), density (n), pressure (P) and
the corresponding temperature versus density phase space plot.
The coronal averages are computed by spatially averaging over
the uppermost 50% of the loop. (The trends are the same if either
the averages are computed over the full portion of the loop above
zo or the values are compared at the top of the UTR.) In the
plots each solid line corresponds to a Lare1D solution that was
calculated by employing a different number of grid points along
the length of the loop. The solid blue line has 500 grid points
(Lg =360 km), the green line has 1000 grid points (Lg = 180 km),
the red line has 2000 grid points (Lg = 90 km), the purple line
has 4000 grid points (Lg =45 km) and the black line has 8000
grid points (Lg = 22.5 km). The dashed blue line is the Larel
solution that is computed with 500 grid points along the length
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of the loop and the dot-dashed orange line corresponds to the
HYDRAD solution.

Starting with the LarelD solutions it is clear that we re-
cover the result presented by BC13, namely that the main effect
of insufficient resolution is on the coronal density while the
temperature is far less resolution dependent. We also note that
in this case, as is predicted by BC13 the most refined resolution
that we employed with the LarelD code is still not capable of
reproducing the fully resolved HYDRAD solution.

However, if we focus on the LareJ solution, there is good
agreement between the Lare] and HYDRAD solutions. At the
initial density peak, the LareJ solution evaporates about 10%
too much material upwards into the corona, in comparison to
the HYDRAD solution, while the density of the corresponding
coarse LarelD solution (run with the same spatial resolution,
solid blue line) is more than a factor of two lower than the re-
solved loop value. As a consequence of this difference in densi-
ties, because the conductive cooling timescale scales as n/T°/2,
the LareJ solution cools at the correct rate while there is evi-
dence that the corresponding coarse Lare1D solution cools more
rapidly.

The density then oscillates as the plasma sloshes to and fro
within the loop. These oscillations are captured to a large extent
by the LareJ solution but are not prominent in the corresponding
coarse Lare1D solution. During these oscillations, even although
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dot-dashed orange line corresponds to the HYDRAD solution.

the LareJ density remains slightly too high, the accuracy of the
Lare] solution is still an improvement on even the most refined
LarelD solution. The LareJ solution then goes on to attain the
correct draining rate during the density decay phase before re-
covering the equilibrium.

Bringing all these factors together, in the phase space plot it
is evident that the Lare] solution captures the evolution of the
density as a function of temperature more accurately than the
entire set of LarelD solutions, including the most refined solu-
tion that has a factor of 16 more grid points along the length of
the loop.

Table 2 summarises the CPU requirements for all cases and
demonstrates the large gain in CPU time of the UTR jump con-
dition method over HYDRAD and the most refined Lare1D runs.
Therefore, in this particular case, our method obtains a coronal
density comparable to HYDRAD (fully-resolved 1D model) but
with a significantly faster computation time and also provides
a significant improvement in the accuracy of the coronal den-
sity evolution when compared to the equivalent simulations run
without the jump condition.

Using HYDRAD, BC13 demonstrated that, for reasonably
accurate solutions in the case of 180 Mm loops and peak tem-
peratures exceeding 6 MK, cell widths of no more than 5 km are
required. What we have shown in Figs. 4—6 is that it is possible
to obtain realistic densities, temperatures and velocities with cell
widths of 360 km by using the UTR jump condition employed
in Larel.

We now turn our attention to understanding why the Larel
solution performs well for this particular heating event (Case 9).
Figure 5 shows the temporal evolution of the heat and enthalpy
fluxes at the top of the UTR and the IRL in the UTR. These quan-
tities are the dominant terms in the UTR jump condition (12) al-
though the loop’s evolution can be influenced by the additional
terms in Eq. (12) that are not shown here. The dashed blue lines
represent the appropriate Lare] quantities and the dot-dashed
orange (solid blue) lines represent the appropriate quantities that
are obtained throughout the evolution of the HYDRAD solution
(Lare1D solution computed with 500 grid points along the length
of the loop). To calculate these quantities the definition of the
UTR is determined based on the time evolution of the tempera-
ture from the LareJ solution.

During the initial evaporation phase (first 400 s) the excess
heat flux drives an upward enthalpy flux. Throughout this phase
there is good agreement between the enthalpy fluxes of the Larel
and HYDRAD solutions. This agreement is achieved because
the downward heat flux dominates the IRL in the UTR and so
the UTR jump condition principally returns the heat flux as an
upward enthalpy flux.

However, close inspection reveals that, throughout the first
40 s (see lower right panel in Fig. 5), the enthalpy flux of the
LareJ solution exceeds that of the HYDRAD solution. Dur-
ing this period the LareJ radiation approximation (13) is least
accurate and leads to an underestimation of the IRL in the UTR.
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It is this underestimation of the IRL that drives the enhanced Figure 6 shows the velocity and density as functions of posi-
enthalpy flux. tion, from the Lare], coarse Lare1D and HYDRAD simulations,
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for times during the evaporation phase up until the second
density peak. The enhanced enthalpy flux, throughout the first
40 s, indicates that the correcting velocity (vp), imposed at the
top of the UTR, is overestimated during this period. This is con-
firmed in the top left panel in Fig. 6. Therefore, the underesti-
mation of the IRL in the UTR leads to an overestimation in the
initial upflow, locally at the top of the UTR, which then generates
an enhanced global velocity that facilitates the over evaporation
of the Lare]J solution.

Despite this overestimation in the initial upflow, by imposing
the correcting velocity (vp) locally at the top of UTR, the jump
condition method is still able to capture the global velocity much
more accurately, in time, than the corresponding simulation run
without the jump condition (see Fig. 6).

Radiation becomes increasingly important as the density in-
creases. Then, at the time when the radiation finally exceeds
the heat flux, the loop enters the density decay phase because
a downward enthalpy flux (condensation) is required to power
the TR radiation. During this decay phase, the LareJ solution
drains material from the corona at the correct rate due to the im-
provement in the accuracy of the Lare] radiation estimation (13),
following the first density peak.

4.2. Case 3

BC13 found their Case 3 (a small flare in a short loop) demanded
the most severe requirements on the spatial resolution. Grid cells
of width 390 m were needed, in the most refined regions, in or-
der for the coronal density to exceed 90% of the properly re-
solved value. The results for the numerical simulations included
in this case are shown in Figs. 7 and 8. To show the comparison

exclusively between the key solutions, in the coronal averaged
plots, we now drop the intermediate Lare1D solutions.

In this particular case, even although the LareJ solution suf-
fers from its most significant over evaporation at the initial
density peak (about 30%) and the density remains too high
throughout the first 1000 s, its performance remains reasonably
encouraging from the viewpoint that the Lare]J solution follows
the same fundamental evolution as the HYDRAD solution and
their agreement is good throughout the density decay phase. The
factors responsible for driving this behaviour in the LareJ solu-
tion are the same as those seen previously in Case 9.

4.3. Remaining cases

We present the numerical comparison for the remaining cases
in Table 1, where the maximum averaged coronal temperature
and density attained by the HYDRAD, LareJ and correspond-
ing coarse LarelD solutions are shown. In all 12 cases, the
table shows that the accuracy of the maximum coronal density
is considerably improved with the LareJ solution when com-
pared to the same resolution run without the jump condition
implemented.

The results for the Cases 2, 6, 8 and 12 are shown in Fig. 9.
Essentially, because we drive the temperature throughout the
impulsive heating event, we have seen that the temporal evolu-
tion of the coronal averaged temperature is only weakly depen-
dent on both the spatial resolution and computational method
used. Therefore, it is sufficient to now show only the temporal
evolution of the coronal averaged density and the corresponding
temperature versus density phase space plots.
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Fig. 8. Results for Case 3. Notation is the same as Fig. 5 but note the different time axis.

In these cases, the UTR jump condition method consistently
captures a physically realistic evolution, through the complete
coronal heating and cooling cycle, comparable to that of the
HYDRAD solutions. The estimation of the IRL in the UTR
is again identified as the main source of error that drives the
observed over evaporation. This is due to the simple radiation
estimation (13) used and despite this, it remains clear that
as a first approximation, the Lare] solutions are reasonably
good, providing a significant improvement on the corresponding
coarse simulations run without the jump condition.

However, we note from the phase space plot of Case 8 that
(1) for this particular heating event, the most refined LarelD
solution (the black line, computed with 8000 grid points) has
a much better agreement with HYDRAD than the Lare] solu-
tion and (2) the Lare]J solution does not recover the exact long
loop initial equilibrium, but returns to another nearby equilib-
rium with an increased density of around 7% (similar behaviour
was also seen in BC13). This is true for all of the long loop cases
considered but is only observable in those where the density in-
crease, in response to the heating event, is small (e.g. Cases 7
and 8).

5. Discussion and conclusions

The difficulty of obtaining adequate spatial resolution in numer-
ical simulations of the corona, transition region (TR) and chro-
mosphere system has been a long-standing problem. As pointed
out by BC13, the main consequence of not resolving the TR
is that the resulting coronal density is artificially low. This pa-
per has presented an approach to deal with this problem by us-
ing an integrated form of energy conservation that essentially
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treats the lower TR as a discontinuity. Hence, the response of
the TR to changing coronal conditions is determined through
the imposition of a jump condition. When compared to fully
resolved 1D models (e.g. BC13), our new approach generated
improved coronal densities with significantly faster computation
times than the corresponding high-resolution and fully resolved
models. Specifically, our approach required at least one to two
orders of magnitude less computational time than fully resolved
(high-resolution) models.

The 12 cases presented in this paper were selected to cor-
respond to the benchmark cases presented by BCI13. In all
12 cases, the evolution of the coronal density is considerably im-
proved, compared to the same resolution run without the jump
condition implemented. Crucial here, is to obtain a reasonable
estimate of the (integrated) radiative losses in the unresolved part
of the TR.

We have considered only spatially uniform impulsive heating
events. Simulations with the heating concentrated either at the
loop base or near the loop apex will be presented in a subsequent
publication.

The advantages of this new approach are multiple. For 1D
hydrodynamic simulations of the coronal response to heating
(see e.g. Reale 2014, for a review), the short computation time
means that (a) simulations of coronal heating events can be run
quickly, permitting an extensive survey of the (large) parameter
space and (b) simulations of multiple loop strands (thousands or
more) that either comprise a single observed loop (e.g. a core
loop), or an entire active region, can be performed with relative
ease. In 3D MHD codes, the method can be included without the
need for higher spatial resolution and a corresponding extended
computation time. Indeed, our results suggest that good accuracy
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can be obtained with the order of 500 grid points, typical of what
is routinely used in current 3D MHD simulations. The extension
to 3D will be addressed fully in a future publication.

The work presented here has adopted the simplest possible
model for the radiation in the lower, unresolved transition region
(UTR), and leads to improved coronal densities. The estimate
used was motivated by the calculation of the radiation integrals
for the equilibrium conditions (as shown in Fig. 3), at which the
error is at most around a factor of 2 when using a uniform grid
with between 125 and 2000 grid points. On the other hand, the
densities are systematically higher than those in fully resolved
1D models, which can be tracked down to the simple model un-
derestimating the true value of the integrated radiative losses in
the UTR (Ryy), at the very start of the heating phase. One can
mitigate this problem by using slightly more complicated mod-
els for Ry, at the start of the increased heating event and this
will be addressed in a subsequent publication. However, for the
present, the density draining phase is captured correctly which
is important as this is the phase that is seen in many observa-
tions of coronal loops. We note that in Case 8, during this phase
and throughout the entire evolution, the most refined uniform
grid solution (LarelD with 8000 grid points) achieved a better
agreement with the fully resolved model than the jump condition
(LareJ with 500 grid points) solution but at significantly greater
computational cost.

Our emphasis here has been on obtaining an improved coro-
nal density. This is important for interpreting observations of, for
example, active region loop cores, “warm” loops, as well as mi-
croflare and flare coronal emission. On the other hand, by treat-
ing the lower (unresolved) TR as a discontinuity, information
will be lost on detailed TR emission lines such as CIV. If the
jump condition is applied close to 1 MK (i.e. between 5 x 10° K
and 1 MK) the details of the (bright) TR will be lost, although
integrated TR quantities can of course still be deduced. This loss
of detail would particularly affect studies of, for example, the
bright TR “moss” — bright emission at the footpoints of very hot
loops (see e.g. Fletcher & De Pontieu 1999). Full numerical res-
olution is still required to deduce these, with the corresponding
risk of serious errors in the plasma density. Model setups with
smaller coronal domains (coronal heights) and or lower tempera-
tures (say below 1-2 MK) are likely to have adequate resolution
(e.g. Zacharias et al. 2011; Hansteen et al. 2015).

In summary, this paper has presented an approach to deal
with the difficulty of obtaining the correct interaction between
a downward conductive flux from the corona and the resulting
upflow from the TR. A wide range of impulsive (spatially uni-
form) heating events was considered for both short and long
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loops. Our new method was used in simulations with coarse res-
olutions that do not resolve the lower transition region. The main
result is that the method leads to (i) coronal densities comparable
to fully-resolved 1D models but with significantly faster compu-
tation times; and (ii) significant improvements in the accuracy
of both the coronal density and temperature temporal evolution
when compared to the equivalent simulations run without this
approach.
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Appendix A: Lare1D with thermal conduction
and radiation

The 1D field-aligned MHD Egs. (2)—(5) are solved using a
Lagrangian remap (Lare) approach, as described for 3D MHD in
Arber et al. (2001), adapted for 1D field-aligned hydrodynamics.
Time-splitting methods are used to split the field-aligned equa-
tions into an ideal hyperbolic component and non-ideal compo-
nents. This allows thermal conduction and optically thin radi-
ation to be updated separately from the advection terms since
these effects formulate the non-ideal components.

During a single time step, we first assume that we have no
flows, so that only the temperature (specific-internal energy den-
sity) can change, and update the temperature (specific-internal
energy density) based on the effects of thermal conduction, opti-
cally thin radiation and heating. We then use a one-dimensional
Lagrangian remap method (LarelD) to solve the field-aligned
ideal MHD equations, updating the pressure, density, velocity
and temperature (specific-internal energy density).

The Lagrangian remap code (Lare) splits each time step into
a Lagrangian step followed by a remap step. The Lagrangian
step solves the ideal MHD equations in a frame of reference that
moves with the fluid. By using time-splitting methods, thermal
conduction, optically thin radiation and heating have been in-
cluded in the Lagrangian step. The remap step then maps the
variables back onto the original grid.

A.1. Field-aligned ideal MHD equations

The Lare1D code solves the normalised field-aligned ideal MHD
equations,

o, 00 __ i

= —p—, A.l
o T Pz (A-D
ov o oP %
- o — A2
Por TP T o PP (A-2)
Oe Oe o ov
pg +pv6—Z = _Pa_z +pv(a—zj , (A3)
P =2pT, (A4)

on a staggered grid (velocities are defined at the cell boundaries
and all scalars are defined at the cell centres) using a predictor-
corrector scheme that is second-order accurate in both space and
time. This method stably integrates the solution, on an advec-
tive time step that is governed by the Courant-Friedrichs-Lewy
(CFL) condition,

Atygy < (A.5)

Az
max(vc2 + 2)

where c; is the local sound speed.

A.2. Thermal conduction

The thermal conduction model is based on the classical Spitzer-
Harm heat flux formulation (Spitzer 1962). In the time-splitting
update, the thermal conduction step is of the form,

o __ 0 (_KOTS/za_T).

9e _ 9 A.
Por = oz Bz (A.6)
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Fig. A.1. LarelD with Thermal Conduction and Radiation time-
splitting update strategy. The modification to include the UTR jump
condition is also outlined. This step is ignored when the Lare1D code is
employed without the jump condition.

We treat thermal conduction using the RKL2 super time stepping
(STS) method, as described in Meyer et al. (2012, 2014) and dis-
cussed in Appendix B. For the RKL2 method we approximate
the parabolic conduction operator using central differencing of
the heat flux,

10 oT lFsle_Fsp,;l
LC T)= ———|—x T5/2_ ~__ > [ ’ AT
@ pﬁz( )T T dah (A7)
where,
Tivt + Ti\ (Tio1 = T,
Fopivy = —KO( 5 ) ( - ) (A.8)

and dzb; (dzc;) is the distance between cell boundaries (centres).

The conductive flux-saturation limit describes the max-
imum heat flux that the plasma is capable of supporting
(Bradshaw & Cargill 2006). This limit is reached when all of
the particles travel in the same direction at the electron thermal
speed, vy, = (k Tme)"?, and is given by,
p(ksT)*?,

Fg = (A9)

3
2my, \fme
where m, and m,. are the proton and electron masses, respec-
tively. In our numerical simulations, heat flux limiting is impor-
tant because there is a sufficient amount of heating, in many of
the events considered, so that the Spitzer-Harm heat flux,

or
0z’

can exceed the conductive flux-saturation limit. Therefore, we
impose the following heat flux limiter that was described in
BC13,

Fyp = kT (A.10)

Fop X Fg,

A /ng + F2

to limit the Spitzer-Harm heat flux.

F.=- (A.11)

A.3. Optically thin radiation (OTR)

For the optically thin radiative loss function we use a piecewise
continuous power law,

L, =n*yT?, (A.12)
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where the temperature dependent constants y and « are defined
following Klimchuk et al. (2008). In the time-splitting update,
the radiation step is of the form,

Oe

o€ A1
P (A.13)

— _nZXTa’
which is integrated using a time-centred finite difference method
(FDM). To prevent the plasma from catastrophically cooling un-
der the effects of OTR, we impose a radiative time step restric-
tion, At,q, on the integration, that prevents the temperature (spe-
cific internal energy density) from decreasing by more than 1%
during a single time step. This radiative restriction is not as se-
vere as the advective time step (A.5) but can become important
at the peak of the radiative losses.

To maintain our isothermal chromosphere, at a temperature
of 10000 K, radiation is smoothly turned off over a 100 K in-
terval, above the chromospheric temperature (Klimchuk et al.
1987; BC13).

A.4. Heating

The Lare code deals with the effects of viscous heating during
the advection step. However, we also include a separate heating
step of the form,

de

— =0, A.14
P 0 ( )
where our heating function, which is the dominant source of
heating in our numerical simulations, is defined as the sum of
contributions from both the background heating (Qy.) and addi-
tional heating (Qg),

0= ng+ Ou.

The heating step is integrated using a simple FDM which we
incorporate into the radiation step (A.13). This allows the tem-
perature (specific internal energy density) to be updated due to
the effects of optically thin radiation and heating simultaneously.

(A.15)

A.5. Time-splitting update

Let U = [Pp,v,6T], be a vector of the model variables.
The one-dimensional field-aligned MHD equations can then be
written in terms of an ideal MHD component and non-ideal
components,

8_U = L°U) + L} U) + L™ (D),

o (A.16)

where L€, LR and LMPP are the thermal conduction, radiation and
heating and ideal MHD operators respectively. During a single
time step, we use the Lie-splitting (sequential splitting) method
(Farago et al. 2011) to integrate these operators separately.

The temperature (specific internal energy density) is updated
first, based on the effects of thermal conduction, OTR and heat-
ing, before the ideal field-aligned MHD equations are solved.
Following this strategy, the Lie-splitting update for one complete
time step is given by,

U* = C(U", A1),
U** — R(U*,At),
U™ = MHD(U™, At), (A.17)

A81, page 14 of 15

Table B.1. Numerical simulation computation times (run on a single
processor) for three different methods to treat thermal conduction.

Case N. z Tsts Teye Texp Tcyc/ Texp/
(min)  (min) (min) Tos Tt
1 500 245 1.98 2.25 0.81 0.92
1000 6.73 6.47 15.72 0.96 234
2000 12.23 29.07 128 238 10.5
4000 42.6 199 592 4.67 139
8000 205 1537 4699 7.50 229
2 500 6.32 8.12 25.7 1.28 4.07
1000  18.5 45.02 122 243 6.59
2000  48.8 308 970 6.31 199
4000 135 2385 7772 177 57.6
8000 607 18778 47123* 309 77.6
3 500 12.15 33.13 168 273 138
1000 49.67 257 790 517 159
2000 138 2023 6238 147 452
4000 579 15958 48405* 27.6 83.6
8000 2440 108898* 238620* 44.6 97.8

Notes. The columns show the number of grid points (uniform grid
used), the computation times by treating thermal conduction using su-
per time stepping methods (sts), explicit time step sub-cycling (cyc) and
explicit time step evolution (exp), and the computation time ratios be-
tween these methods. The simulations (Cases 1—-3 of Table 1) are run to
a final time of 60 s, which coincides with the end of the heating period.
The asterisks indicate runs where the computation time to the final time
has been estimated based on results over a shorter period.

where U™! = CWU", A, U"' = RU",Af) and U™ =
MHD(U", At) represent the updates of thermal conduction, ra-
diation and heating and ideal MHD, for the time step At. This
update strategy is shown in Fig. A.1

Since we treat thermal conduction using STS methods
we super-step the conductive timescale restriction (accelerate
the explicit sub-cycling). Therefore, the time-splitting strategy
(A.17) stably integrates the field-aligned MHD equations, on a
time step that is given by,

At = min (Atagy, Atpag). (A.18)

Appendix B: Super time stepping methods to treat
thermal conduction

In the interests of computational efficiency, to relax the conduc-
tive timescale stability restriction of an explicit method (Afcong <
p(AZ)Z/(ZK()TS/ 2)), we treat thermal conduction by using super
time stepping (STS) methods, as described in Meyer et al. (2012,
2014). These methods are essentially an acceleration of explicit
time step sub-cycling and have been used effectively to speed
up the integration of parabolic operators. In particularly, we use
the Runge-Kutta Legendre method with second-order temporal
accuracy (RKL?2).

Extending on the test problems considered in Meyer et al.
(2012, 2014), we have tested the RKL2 method for appropri-
ateness of use in coronal plasma conditions, in order to ensure
that the increased conductive time step does not influence the
correct temporal evolution. The Zel’dovich problem of a prop-
agating conduction front (Zel’dovich & Raizer 1967) has been
solved.

In addition, we investigate whether or not STS methods can
correctly obtain the growth (decay) rate when leaving (approach-
ing) a thermally unstable (stable) isothermal (non-isothermal)
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Fig. B.1. Temporal evolution of 7'(0,¢). The solution leaves a ther-
mally unstable isothermal equilibrium and approaches a new stable,
non-isothermal equilibrium. The solid red curve is the numerical so-
lution obtained by using the RKL2 STS method (7) and the blue aster-
isks represent the corresponding linear solutions (7°(0, ). The units on
both axes are arbitrary.

equilibrium. Using a model equation, under the assumption of
constant density, we solve the boundary value problem,

oar 9 (_T5/26_T

o __9 —yT*+H, -1/2<z<1/2,
= e 6z)X + /2<z<1/

T(-1/2,6)=T1/2,t) =Ty, (B.1)

with the initial condition,

T(z,0) = To + T cos(nz), —1/2<z<1/2.

T, is the isothermal unstable equilibrium and T cos(nz) is a
small perturbation. Linearising Eq. (B.1), the temperature grows
as,

T(0,t) = Ty + T1(0)e”, (B.2)
with o = -2 Tg/ 2 —ayT§™". Figure B.1 shows the temporal evo-
lution of T'(0, ) using the STS method, as a solid red curve la-
belled 77 . The linear solution (B.2) is shown as asterisks and the
exact growth rate matches the rate calculated from the computa-
tional solution. A similar analysis confirms that the exact decay
rate, as the temperature evolves towards the non-isothermal sta-
ble equilibrium, is also correctly predicted by the STS method.
Therefore, we believe that STS methods are appropriate for use
in solving more complex coronal plasma based problems, where
the effect of thermal conduction plays an important role.

Although STS methods have already been implemented in
some 3D MHD codes (e.g., Reale et al. 2016) it remains instruc-
tive here to present a quantification of the computational gains
involved. Based on the computation time ratios in Table B.1, the
benefit of using STS methods is immediately clear, especially as
the coronal temperature, which scales strongly with the heating
event, increases and the conductive timescale decreases.
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