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I. INTRODUCTION

The Cauchy problem of the three-dimensional incompressible Navier-Stokes equations play an
important role in not only mathematical fluid mechanics but also the development of the theory of
general evolutionary equations. The system reads

ut + u · ∇u = −∇p+ ν4u, (x, t) ∈ R3 × (0,∞), (1)

divu = 0, (x, t) ∈ R3 × (0,∞), (2)

u(x, 0) = u0(x), x ∈ R3, (3)

where u : R3 7→ R3 is the velocity field, p : R3 7→ R is the pressure, and ν > 0 is the (dimensionless)
viscosity.

Systematic study of this problem began in 1934 with the classical paper [22] by Jean Leray, where
it is shown that for arbitrary T ∈ (0,∞] there is at least one function u(x, t) satisfying the following.

i. u ∈ L∞(0, T ;L2(Rd)) ∩ L2(0, T ;H1(Rd));

ii. u satisfies (1) and (2) in the sense of distributions;

iii. u takes the initial value in the L2 sense: limt↘0 ‖u(·, t)− u0(·)‖L2 = 0;

iv. u satisfies the energy inequality

‖u(·, t)‖2L2 + 2ν

∫ t

0

‖∇u(·, τ)‖2L2dτ 6 ‖u0‖2L2 (4)

for all 0 6 t 6 T .

Such a function u(x, t) is called a Leray-Hopf weak solution for (1)–(3) in Rd × [0, T ).
It is easy to show that if a Leray-Hopf weak solution is smooth, then it is a classical solution

and is furthermore unique (in the class of Leray-Hopf weak solutions). However the smoothness
of Leray-Hopf weak solutions is still a completely open problem. On the other hand, it has been
long known that various additional assumptions guarantee such smoothness. One important class
of such assumptions is the following so-called Prodi-Serrin-Ladyzhenskaya criteria, developed over
three decades in [11], [21], [24], [23], [25], [26]. If a Leray-Hopf solution u(x, t) further satisfies

u ∈ Lr(0, T ;Ls(R3)) with
2

r
+

3

s
6 1, 3 < s 6∞, (5)

then u(x, t) is smooth. Here the norm of the mixed Lebesgue space Lr(0, T : Ls(R3)) is defined as

‖u‖Lr(0,T ;Ls) :=

{ (∫ T
0
‖u(·, t)‖rLs

)1/r
1 6 r <∞

esssupt∈(0,T )‖u(·, t)‖Ls r =∞
. (6)

The proof of the criterion (5) is quite straightforward through standard energy estimate, though it
should be mentioned that it is the much more non-trivial “localized” version of (5) that was proved
in the references above. The borderline case u ∈ L∞(0, T ;L3(R3)) that is missing in (5) turned
out to be much more complicated due to the criticality of ‖u‖L3 under the rescaling transformation
u(x, t) 7→ λu(λx, λ2t) that keeps (1)–(3) invariant. This case could not be dealt with using the
method that established (5), and was only recently settled by Escauriaza, Seregin, and Šverák in
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[10] via a novel approach based on deep understanding of backward uniqueness of heat equations.
Many generalizations and refinements of (5) have been proved, see e.g. [3], [5], [8], [12], [31], [34].

Mathematically the pressure p serves as the Lagrange multiplier of the incompressibility constraint
divu = 0. As a consequence there is no explicit equation governing the evolution of p in (1)–(3).
The lack of such an equation is partially compensated through the following relation between u and
p obtained via taking divergence of (1),

−4p =

3∑
i,j=1

∂i∂j(uiuj). (7)

For the convenience of analyzing (1)–(3) in the framework of functional analysis, (7) is usually
written as

p =

3∑
i,j=1

RiRj(uiuj), (8)

where Ri, i = 1, 2, 3 are the Riesz transforms. As Riesz transforms are zeroth order pseudo-
differential operators, there holds

‖p‖Ls 6 C‖u‖2L2s for all s ∈ (1,∞). (9)

From (9) it is natural to conjecture that

p ∈ Lr(0, T ;Ls) with
2

r
+

3

s
6 2,

3

2
< s 6∞ (10)

may guarantee the smoothness of u. Note that thanks to (9), (10) is a weaker assumption than (5)
as it is implied by the latter. The affirmative answer to this conjecture was established in [2], [7]
and later refined in many follow-up papers, including [1], [3], [9], [13], [16], [17], [19], [27], [28], [30].

Roughly speaking, most of the aforementioned improvements of (5) or (10) can be categorized
into two types. The first type replaces the Lebesgue norm Ls and/or Lr by weaker norms with
the same scaling property. For example in [13] ‖p‖Ls is replaced by the homogeneous Besov norm
‖p‖Ḃ0

s,σ
for some appropriate σ, and in [3] ‖u‖Ls is replaced by ‖u‖Ls,∞ where Ls,∞ are the weak

Lebesgue spaces. The second type of improvement weakens the conditions by a logarithmic factor.
For example in [31] it is shown that u is smooth as long as∫ T

0

‖u‖rLs
log(e+ ‖u‖L∞)

dt <∞, 2

r
+

3

s
6 1, 3 < s 6∞. (11)

Possibility of combining these two types of improvement has been well explored, see e.g. [12], [16].
We must also mention that criteria similar to (5) or (10) have also been proved for other physically
meaningful quantities such as ∇u, ω := curlu, and ∇p, see e.g. [4], [6], [14], [33], [35].

In this article we present and prove a new type of improvement of (5) and (10), of the form∫ T

0

‖u‖rLs
(1 + ‖u‖X)κ

dt <∞, 2

r
+

3

s
6 1, 3 < s <∞, (12)

or ∫ T

0

‖p‖rLs
(1 + ‖u‖X)κ

dt <∞, 2

r
+

3

s
6 2,

3

2
< s 6∞, (13)
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where ‖ · ‖X is a scaling-invariant norm for (1)–(3) and κ > 0. More specifically, we will prove the
following theorems.

Theorem 1. Let u0 ∈ L2(R3) ∩ Lq(R3) for some q > 3, and satisfy divu0 = 0. Let u(t, x) be a
Leray-Hopf solution of NSE in [0, T ). If for some s ∈ (3,∞) and 2

r + 3
s = 1 there holds∫ T

0

‖u‖rLs
(1 + ‖u‖Ḣ1/2)κ

dt <∞, (14)

where κ =

{
2 3 < s 6 5
4
s−3 5 < s <∞ , then u(t, x) is smooth up to T and could be extended beyond T .

Theorem 2. Let u0 ∈ L2(R3) ∩ Lq(R3) for some q > 3, and satisfy divu0 = 0. Let u(t, x) be a
Leray-Hopf solution of NSE in [0, T ). If for some s ∈ (3,∞) and 2

r + 3
s = 1 there holds∫ T

0

‖u‖rLs
(1 + ‖u‖L3)κ

dt <∞, (15)

where κ =

{
3 3 < s 6 5
6
s−3 5 < s <∞ , then u(t, x) is smooth up to T and could be extended beyond T .

Theorem 3. Let u0 ∈ L2(R3) ∩ Lq(R3) for some q > 3, and satisfy divu0 = 0. Let u(t, x) be a
Leray-Hopf solution of NSE in [0, T ). If for some s ∈

(
3
2 ,∞

)
and 2

r + 3
s = 2 there holds∫ T

0

‖p‖rLs
(1 + ‖u‖L3)κ

dt <∞, (16)

where κ =


6

2s−3 s > 3
2s

2s−3
9
4 6 s 6 3

3 3
2 < s 6 9

4

, then u(t, x) is smooth up to T and could be extended beyond T .

A few remarks are in order.

Remark 1. It is straightforward to cover the sub-critical cases. For example, if u satisfies (14) for
some r, s satisfying s ∈ (3,∞) and 2

r + 3
s < 1, then there is r′ < r such that 2

r′ + 3
s = 1 and (14)

holds for r′, s thanks to Hölder’s inequality.

Remark 2. We emphasize that unlike (5) and (10), where one is weaker than the other, Theorems
1, 2, and 3 are independent of each other. For example, although ‖u‖L3 6 C‖u‖Ḣ1/2 by Sobolev
embedding, Theorem 2 does not follow from Theorems 1, as the values of κ are different.

Remark 3. When s = 6, criterion (15) can be seen to be comparable but not equivalent to the
following criterion ∫ T

0

‖u‖6L6

‖u‖4L4 + 2‖u‖2
Ḣ1

<∞, (17)

which has been reported recently [29]. The two criteria would be equivalent if we could establish that
‖u‖4L4 + 2‖u‖2

Ḣ1 ≈ (‖u‖2L3 + 2)‖u‖2L6 , which is consistent in scaling yet does not hold for general

divergence free vector field u. For all other s > 3, (15) may be regarded as an extention of (17).
It is also of interest to explore the possibility of weakening (16) through replacing the pressure p by
the ”effective pressure” p+ P in [29].
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Remark 4. It is not clear whether the splitting into different cases in Theorems 1, 2, and 3 is
purely technical, due to the limitations of the energy method, or reflects deeper properties of the
Navier-Stokes dynamics.

Remark 5. From the proofs we will see that a logarithmic factor could easily be added “for free”.
For example, (15) could be replaced by∫ T

0

‖u‖rLs
(1 + ‖u‖L3)κ log(e+ ‖u‖L3)

dt <∞. (18)

However it does not seem likely that the ‖u‖L3 inside the logarithm could be replaced by ‖u‖L∞ . Thus
our results are not stronger than, though still independent of, the previous logarithmic improvement
results such as (11).

Remark 6. Criteria in a sense similar to Theorems 1, 2, and 3 have been proved in [18] and [32].
There it is shown that smoothness of the solution u is guaranteed if one of the following holds.

• [32].

p

1 + |u|δ
∈ Lr(0, T ;Ls),

2

r
+

3

s
=

5− 3δ

2
,

6

5− 3δ
< s 6∞, 1 6 δ 6

5

3
; (19)

• [18].

p

1 + |u|δ
∈ Lr(0, T ;Ls), with

2

r
+

3

s
=

4− 3δ

2
,

18

8− 9δ
6 s 6

6

2− 3δ
, 0 6 δ <

2

3
. (20)

• [18].

p

1 + |u|δ
∈ Lr(0, T ;Ls), with

2

r
+

3

s
=

4− 3δ

2
,

18

8− 9δ
6 s 6

6

2− 3δ
,

2

3
6 δ 6

8

9
. (21)

We briefly discuss their relations to Theorems 1, 2, and 3.

1. (19)–(21) are sub-critical from a scaling point of view and therefore does not improve (10)
except for the case δ = 1 in (19) (and δ = 0 in (20) which reduces (20) to (10)). To see this we
recall (8) which dictates that p scales as |u|2. This makes p

1+|u|δ ∈ L
r(0, T ;Ls) roughly equiva-

lent to, from the scaling point of view, |u|2−δ ∈ Lr(0, T ;Ls) that is u ∈ L(2−δ)r(0, T ;L(2−δ)s).
Thus for example (20) corresponds to

2

(2− δ)r
+

3

(2− δ)s
=

4− 3δ

4− 2δ
< 1 (22)

for all values of δ except δ = 0. Similarly, in (19) we have

2

(2− δ)r
+

3

(2− δ)s
= 1 +

1− δ
4− 2δ

< 1 (23)

unless δ = 1.
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2. On the other hand, in (19)–(21) the factor (1+ |u|δ)−1 is inside the whole space-time integral,
while in our theorems (1+‖u‖L3)−κ or (1+‖u‖Ḣ1/2)−κ is only inside the time integral. Thus
the conditions (19)–(21) are in a sense more “localized”.

Remark 7. It is quite straightforward to generalize Theorems 1, 2, and 3 to d-dimensional Navier-
Stokes equations. For simplicity of presentation we will focus on the physical case d = 3 in this
article.

In the next section we prove Theorems 1, 2, and 3.

II. PROOF OF THEOREMS

A. Preliminaries

Without loss of generality, we take ν = 1 in (1) to simplify the presentation. We apply the
following result, summarized from [15], [20], to guarantee short-time smoothness of the solution
and thus relieving us from worrying about the legitimacy of the various integral and differential
manipulations below.

Theorem 4. Let u0 ∈ Ls(R3), s > 3. Then there exists T > 0 and a unique classical solution
u ∈ BC(0, T ;Ls(R3)). Moreover, let (0, T∗) be the maximal interval such that the solution u stays
in C(0, T∗;L

s(R3)), s > 3. Then for any t ∈ (0, T∗),

‖u(·, t)‖Ls >
C

(T∗ − t)
s−3
2s

(24)

where the constant C is independent of T∗ and s.

We will also need the following simple lemma.

Lemma 1. Let X(t) ∈ C1(0, T ) ∩ C([0, T )) be non-negative and solve Ẋ(t) 6 A(t)
X(t)κX(t) + C

X(t)κ

for some A(t) > 0, k > 0. Assume ∫ T

0

A(t)

(1 +X(t))κ
dt <∞. (25)

Then lim supt−→T−X(t) <∞.

Proof. Denote B(t) := A(t)
max{1,X(t)}κ . It is clear that (25) is equivalent to

∫ T
0
B(t)dt < ∞. Let

Y (t) := max{1, X(t)}. Then Y (t) = X(t) on the union of at most countably many open intervals
(tiL, tiR) with Y (tiL) = 1. Now on (tiL, tiR) we have Y (t) > 1 and therefore

Ẏ (t) 6
A(t)

X(t)k
X(t) +

C

X(t)k

=
A(t)

Y (t)k
Y (t) +

C

Y (t)k

6 B(t)Y (t) + C. (26)

The conclusion immediately follows.
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Finally we need the following result which is a special case of Theorem 1.3 in [10].

Theorem 5. Suppose that u is a weak Leray-Hopf solution of the Cauchy problem (1)–(3). If
furthermore u ∈ L∞(0, T ;L3(R3)), then u is smooth up to T and can be extended beyond T .

Notation. In the following we will use A . B to denote A 6 cB when the constant c is inconse-
quential to the validity of the proof.

B. Proof of Theorem 1

Assume the contrary. By Theorem 4 there is T ∗ ∈ (0, T ) such that u(x, t) is smooth for t ∈ (0, T ∗)

but cease to be so at t = T ∗. Thanks to Theorem 5 and the Sobolev embedding Ḣ1/2(R3) ↪→
L3(R3), this implies lim supt↗T∗ ‖u‖Ḣ1/2 = ∞. Therefore to obtain contradiction it suffices to
prove that ‖u‖Ḣ1/2 6 C, ∀t ∈ (0, T ∗), for some constant C > 0.

Let Λ := (−4)1/2. Multiplying the equation by Λu and then integrate over R3, we reach

1

2

d

dt
‖u‖2

Ḣ1/2 = −
∫
R3

u · ∇u · Λudx−
∫
R3

Λu · Λ2udx

6
∫
R3

|u||∇u||Λu|dx− ‖u‖2
Ḣ3/2 . (27)

In what follows we discuss the two regimes of s stated in the theorem separately.

• 3 < s 6 5.

Let s′ be the conjugate to s, that is 1
s + 1

s′ = 1. We start by estimating using Hölder’s
inequality

I :=

∫
R3

|u||∇u||Λu|dx 6 ‖u‖Ls‖∇u‖L2s′‖Λu‖L2s′ . (28)

Next we notice that as 3 < s 6 5 =⇒ 2s′ ∈
[
5
2 , 3
)
⊂ (1,∞), the boundedness of Riesz

transforms on Lp(R3) for 1 < p < ∞ now yields ‖Λu‖L2s′ . ‖∇u‖L2s′ since Λu = −Λ−1∇ ·
(∇u) = −

∑3
i=1Ri(∂iu). Consequently

I . ‖u‖Ls‖∇u‖2L2s′ . (29)

Now thanks to the the interpolation inequality

‖∇u‖L2s′ . ‖u‖
s−3
6

Ls ‖u‖
9−s
6

Ḣ3/2
, (30)

we further obtain

I . ‖u‖Ls‖u‖(s−3)/3Ls ‖u‖(9−s)/3
Ḣ3/2

. (31)

Finally by Young’s inequality we conclude that

I 6 C‖u‖rLs +
1

2
‖u‖2

Ḣ3/2 (32)
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with r = 2s
s−3 .

Substituting (32) into (27), we have

‖u‖Ḣ1/2

d

dt
‖u‖Ḣ1/2 . ‖u‖rLs (33)

which gives

d

dt
‖u‖Ḣ1/2 .

‖u‖rLs
‖u‖2

Ḣ1/2

‖u‖Ḣ1/2 (34)

and the conclusion follows from Lemma 1.

• 5 < s <∞.

We first notice that∫
R3

|u||∇u||Λu|dx 6
∫
R3

|u||∇u|2dx+

∫
R3

|u||Λu|2dx =: I + II. (35)

We estimate I first. By Hölder inequality we have

I =

∫
R3

|u||∇u|
2(s−5)
s−2 |∇u|

6
s−2 dx

6 ‖u‖Ls‖|∇u|
2(s−5)
s−2 ‖

L
s−2
s−5
‖|∇u|

6
s−2 ‖

L
s(s−2)
2(s+1)

= ‖u‖Ls‖‖∇u‖
2(s−5)
s−2

L2 ‖∇u‖
6
s−2

L
3s
s+1

. (36)

Note that as s > 5, there holds 1 < s−2
s−5 < ∞ and 1 < s

4 < s(s−2)
2(s+1) < ∞. Therefore the

application of Hölder inequality is justified.

Next we apply the following Gagliardo-Nirenberg inequalities,

‖∇u‖L2 . ‖u‖1/2
Ḣ1/2
‖u‖1/2

Ḣ3/2
, ‖∇u‖L3s/(s+1) . ‖u‖1/3Ls ‖u‖

2/3

Ḣ3/2
, (37)

to obtain

I . ‖u‖s/(s−2)Ls ‖u‖(s−5)/(s−2)
Ḣ1/2

‖u‖(s−1)/(s−2)
Ḣ3/2

. (38)

Young’s inequality now yields

I 6 C‖u‖2s/(s−3)Ls ‖u‖2(s−5)/(s−3)
Ḣ1/2

+
1

2
‖u‖2

Ḣ3/2 . (39)

Through almost identical arguments, the same estimate could be obtained for II.

II 6 C‖u‖2s/(s−3)Ls ‖u‖2(s−5)/(s−3)
Ḣ1/2

+
1

2
‖u‖2

Ḣ3/2 . (40)

Substituting these into (27) and dividing both sides by ‖u‖Ḣ1/2 , we obtain

d

dt
‖u‖Ḣ1/2 .

‖u‖rLs
‖u‖4/(s−3)

Ḣ1/2

‖u‖Ḣ1/2 (41)

and the conclusion now follows from Lemma 1.
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C. Proof of Theorem 2

Similar to the proof of Theorem 1, we assume that u blows up at T ∗ ∈ (0, T ), and it suffices to
show that ‖u‖L3 6 C on (0, T ∗) for some C > 0 independent of t.

We multiply (1) by |u|u· and integrate in R3 to obtain

‖u‖2L3

d

dt
‖u‖L3 = −

∫
R3

|u|u · ∇pdx+

∫
R3

|u|u · 4udx

=

∫
R3

pu · ∇(|u|)dx+

∫
R3

|u|u · 4udx

=

∫
R3

p|u|(û · ∇|u|)dx+

∫
R3

|u|u · 4udx. (42)

where û := u
|u| (if u = 0, just defined û = 0 too).

Recalling the identity

u · 4u = ∇ · (|u|∇|u|)− |∇u|2, (43)

we easily derive ∫
R3

|u|u · 4udx = −4

9
‖∇|u|3/2‖2L2 − ‖|∇u||u|1/2‖2L2 , (44)

and reach the following estimate

d

dt
‖u‖3L3 + ‖|∇u||u|1/2‖2L2 + ‖∇|u|3/2‖2L2 .

∣∣∣∣∫
R3

p|u|(û · ∇|u|)dx
∣∣∣∣ . (45)

which gives

‖u‖2L3

d

dt
‖u‖L3 . C

∫
R3

|p||u| 12 |∇|u|3/2|dx− ‖|u|3/2‖2
Ḣ1 . (46)

Application of Young’s inequality and then Hölder and Sobolev inequalities to (46) gives

‖u‖2L3

d

dt
‖u‖L3 . C

∫
R3

|p|2|u|dx− ‖|u|3/2‖2
Ḣ1

. C‖p2‖L5/4‖u‖L5 − ‖u‖3L9

= C‖p‖2L5/2‖u‖L5 − ‖u‖3L9

. C‖u‖5L5 − ‖u‖3L9 . (47)

Note that in the last inequality we have used (9).
In what follows we discuss the two regimes of s stated in the theorem separately.

• 3 < s 6 5. In this case we apply the interpolation inequality

‖u‖L5 6 ‖u‖θLs‖u‖1−θL9 (48)

where θ = 4
5

s
9−s . This gives

‖u‖2L3

d

dt
‖u‖L3 . C‖u‖4s/(9−s)Ls ‖u‖9(5−s)/(9−s)L9 − ‖u‖3L9

. C‖u‖2s/(s−3)Ls (49)
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after application of Young’s inequality. Dividing both sides by ‖u‖2L3 we have

d

dt
‖u‖L3 .

‖u‖2s/(s−3)Ls

‖u‖3L3

‖u‖L3 . (50)

The conclusion now follows from Lemma 1.

• 5 < s <∞. In this case we apply the interpolation inequality

‖u‖L5 6 ‖u‖θL3‖u‖1−θLs (51)

where θ = 3
5
s−5
s−3 . This gives

‖u‖2L3

d

dt
‖u‖L3 . ‖u‖3(s−5)/(s−3)L3 ‖u‖2s/(s−3)Ls . (52)

Dividing both sides by ‖u‖2L3 we have

d

dt
‖u‖L3 .

‖u‖2s/(s−3)Ls

‖u‖6/(s−3)L3

‖u‖L3 , (53)

and the conclusion immediately follows from Lemma 1.

D. Proof of Theorem 3

Again we assume that u blows up at T ∗ ∈ (0, T ), and try to to show that ‖u‖L3 6 C on (0, T ∗)
for some C > 0 independent of t.

Following (42)–(45) we have

‖u‖2L3

d

dt
‖u‖L3 6

∫
R3

|p||u||∇|u||dx− ‖∇|u|3/2‖2L2

=

∫
R3

|p|α|p|1−α|u|1/2|∇|u|3/2|dx− ‖∇|u|3/2‖2L2

6 ‖|p|α‖La‖|p|1−α‖Lb‖|u|1/2‖Lc‖∇|u|3/2‖L2 − ‖∇|u|3/2‖2L2

= ‖p‖αLaα‖p‖1−αLb(1−α)‖u‖
1/2

Lc/2
‖∇|u|3/2‖L2 − ‖∇|u|3/2‖2L2

6 C‖p‖αLs‖u‖
2(1−α)
L2b(1−α)‖u‖

1/2

Lc/2
‖∇|u|3/2‖L2 − ‖∇|u|3/2‖2L2

=: A− ‖∇|u|3/2‖2L2 . (54)

for appropriate α, a, b, c with aα = s, 1a + 1
b + 1

c = 1
2 . We deal with the three cases stated in the

theorem one by one.

• 3 < s <∞. We take α = s
2s−3 , a = 2s− 3, b = 3(2s−3)

2s−6 , c = 6. This gives

A = C‖p‖
s

2s−3

Ls ‖u‖
6s−15
4s−6

L3 ‖∇|u|3/2‖L2 6 C‖p‖
2s

2s−3

Ls ‖u‖
6s−15
2s−3

L3 + ‖∇|u|3/2‖2L2 . (55)
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Here we have applied Young’s inequality. Substituting (55) into (54) and dividing both sides
by ‖u‖2L3 , we reach

d

dt
‖u‖L3 6

‖p‖
2s

2s−3

Ls

‖u‖
6

2s−3

L3

‖u‖L3 . (56)

The conclusion now follows from Lemma 1.

• 9
4 < s < 3. We take α = 1, a = s, c = 2s

s−2 . Note that in this case the term involving b is not
present. Application of the following interpolation inequality and Sobolev inequality

‖u‖
L

s
s−2

6 ‖u‖
4s−9
s

L3 ‖u‖
9−3s
s

L9 , ‖u‖3L9 . ‖∇|u|3/2‖2L2 (57)

gives

A = C‖p‖Ls‖u‖1/2Ls/(s−2)‖∇|u|3/2‖L2 . ‖p‖Ls‖u‖
4s−9
2s

L3 ‖∇|u|3/2‖
3
s

L2 . (58)

Application of Young’s inequality now gives

A 6 C‖p‖
2s

2s−3

Ls ‖u‖
4s−9
2s−3

L3 + ‖∇|u|3/2‖2L2 . (59)

Substituting this into (54) and dividing both sides by ‖u‖2L3 , we reach

d

dt
‖u‖L3 6

‖p‖
2s

2s−3

Ls

‖u‖
2s

2s−3

L3

‖u‖L3 . (60)

The conclusion now follows from Lemma 1.

• 3
2 < s 6 9

4 . We take α = 2s
9−2s , a = 9−2s

2 , b = 9
2
9−2s
9−4s , c = 18. Now application of Sobolev

inequality ‖u‖3L9 . ‖∇|u|3/2‖2L2 gives

A = C‖p‖
2s

9−2s

Ls ‖u‖
45−18s
18−4s

L9 ‖∇|u|3/2‖L2 . ‖p‖
2s

9−2s

Ls ‖∇|u|
3/2‖

24−8s
9−2s

L2 . (61)

Note that since 3
2 < s 6 9

4 , there holds 24−8s
9−2s < 2. Thus we can apply Young’s inequality and

obtain

A 6 C‖p‖
2s

2s−3

Ls + ‖∇|u|3/2‖2L2 . (62)

Substituting this into (54) and dividing both sides by ‖u‖2L3 , we reach

d

dt
‖u‖L3 6

‖p‖
2s

2s−3

Ls

‖u‖3L3

‖u‖L3 . (63)

The conclusion now follows from Lemma 1.
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