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Abstract

We study a spatial duopoly and extend the literature by giving joint consideration to

non-monotonic network effects and endogenous firm location decisions. We show that

the presence of network effects (capturing, for example, in-store rather than online

sales) improves welfare whenever the total market size is not too large. This effect

is lost if network effects are specified in a monotonic fashion, in which case isolating

consumers from one another always reduces welfare. We also provide a new rationale

for a duopoly to be welfare-preferred to monopoly: in large markets, splitting demand

between two firms can reduce utility losses due to crowding.
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1 Introduction

When the utility enjoyed by consumers of a particular good depends not only on the

attributes of the good in question but also on the extent to which other consumers purchase

that good, consumer preferences are said to incorporate network effects. Broadly speaking,

these network effects may capture two distinct ideas. Firstly, network effects may reflect

the degree of crowding associated with larger or smaller groups of consumers gathering

in a particular physical retail space, such as a store or restaurant. Alternatively, network

effects may capture status considerations. If consumers’ preferences display a desire for

conformity, they enjoy a positive network effect when purchasing from firms that serve a

larger total demand. This contrasts with the case in which preferences display vanity, in

which case purchasing from larger firms tends to reduce consumer utility (see, e.g., Grilo

et al., 2001).1

Conformity and vanity-type effects may be captured simultaneously by specifying a

network effect function which is non-monotonic, in the sense that the network effect

is positive and increasing in the number of consumers at a given firm up to a certain

threshold (reflecting conformity), after which crowding starts to reduce the network ef-

fect, eventually turning it negative (reflecting vanity). In terms of physical crowding, such

a non-monotonic specification implies a preference on the part of consumers for environ-

ments that are moderately crowded rather than being either over- or under-crowded. This

captures intuitively the effect likely to be at work in a wide range of “congestible” goods

(e.g. telephone systems, restaurants, academic classes) and is also supported by evidence

from the marketing literature that consumer preferences with respect to the perceived level

of crowding follow an inverse U-shape (see, e.g., Eroglu et al., 2005; Pan and Siemens,

2011). Thus there is a sound empirical basis for moving from a setting of monotonic

1Leibenstein (1950) alternatively refers to the preference for conformity or vanity as the bandwagon or
snob effect, respectively. While we take them as given throughout this paper, the emergence of conformity-
and vanity-type effects is explained by Corneo and Jeanne (1997) in a model where conspicuous consump-
tion serves as a signal of higher income, which enables consumers to achieve higher social status. See also
Bernheim (1994) and Pesendorfer (1995).
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network effects to one of non-monotonic network effects.2

The key contribution of this paper lies in exploring the impact of such non-monotonic

network effects on social welfare when firms sell differentiated products. In so doing,

and in contrast to previous work in this area (e.g. Grilo et al., 2001; Lee and Mason,

2001; Häckner and Nyberg, 1996), we allow for firms’ product differentiation decisions

to be determined endogenously. In particular, we consider the impact of non-monotonic

network effects on market equilibrium and social welfare in a two-firm, spatial product

differentiation framework. We solve for the subgame perfect Nash equilibrium in a two-

stage game in which firms choose product locations on the real line at the first stage and

prices at the second stage, analysing Nash deviation incentives at both stages.

Our first welfare result explores the circumstances under which allowing consumers’

enjoyment of a good to depend on the volume of consumers patronizing the same firm

leads to higher welfare. As we think of preferences as immutable, the case in which

consumers ignore the volume of customers at a given firm can be thought of as capturing

a situation in which the purchase transaction is conducted at arm’s length, for example via

the internet, rather than in-store. In this case, consumers are physically isolated from the

remaining customers purchasing from a given firm. Our results therefore give an interesting

perspective on the welfare impact of e-commerce, a sector which has experienced strong

growth in recent years.3

We show that the presence of network effects (capturing in-store sales) increases total

welfare whenever the direct utility gained by consumers from the network at each individ-

ual firm is positive. Since demand is split equally between firms in equilibrium, and given

our non-monotonic specification for the network effect function, this requires the total

market size to be sufficiently small. While the network externality generally exerts two

2Existing papers that focus on the case of monotonic network effects include Serfes and Zacharias
(2012), Elhadj et al. (2012), and Orsini (2005).

3The share of e-commerce in total US retail sales grew from 8.7% at year-end 2015 to 9.5% at year-end
2016, for example. US Department of Commerce (2017). Note that this setting is more consistent with
the view that network effects capture physical crowding as opposed to status effects associated with vanity
or conformity. The latter should not depend on whether a purchase is made via the internet or in-store.
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effects, one via the purchase price and another via the direct utility gained by consumers

as a result of consuming in groups, only the latter is relevant in assessing the impact

of network effects on total welfare because the purchase price is simply a transfer from

consumers to firms. In our framework, based on non-monotonic network effects, a shift

by firms towards online only sales can therefore increase welfare if the total market size

is sufficiently large, by eliminating crowding. This effect is lost if network effects are not

modelled, or if they are specified in a positive, monotonically increasing fashion (in which

case isolating consumers from one another always reduces welfare).

Our second welfare result considers firms’ welfare-maximising locations. We argue

that, relative to the monotonic case, non-monotonic network effects increase the desir-

ability of splitting the market between two firms rather than letting one firm serve the

entire market. The intuition for this result is as follows. With our (empirically more

relevant) non-monotonic specification, network effects start to decrease when the total

consumer population size rises beyond a particular threshold level. In large markets, split-

ting demand between two firms therefore not only reduces transportation costs, but also

maximises the aggregate network effect (the network externality enjoyed by consumers

at either firm under a duopolistic market structure then exceeds that which they would

enjoy if demand were concentrated at a single firm). This realistic aspect of the problem is

missing if network effects are specified in a monotonic fashion, as in Serfes and Zacharias

(2012), Elhadj et al. (2012), and Lambertini and Orsini (2005), amongst others.

In addition to these welfare results, our paper provides a further contribution to the

literature which is of a more technical nature. In particular, our derivation of the subgame

perfect equilibrium in this two-stage game (on which our welfare analysis builds) pays

explicit attention to firms’ Nash deviation incentives at the location stage – when network

effects are sufficiently strong, firms are shown to face an incentive to move closer to their

rival in order to capture the entire demand, thus ruling out the existence of equilibrium.

Since, in this setting, profitable deviations cannot arise at the location stage in the absence
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of network effects, this result may be of independent interest. Solving for the subgame

perfect firm locations in this way also allows us to contrast our results with those obtained

in the exogenous location setting of Grilo et al. (2001) and related work.4 In particular,

unlike in Grilo et al. (2001), vertical product differentiation cannot arise endogenously

in equilibrium, and increases in the consumer population size cannot lead to a monopoly

outcome when firms choose locations optimally.

The remainder of the paper is organized as follows. Section 2 describes the model

set-up. Section 3 derives the market equilibrium and discusses its implications, before

Section 4 presents our welfare analysis. Section 5 concludes. All proofs are contained in

the Appendix.

2 The Model

Consider two firms, A and B, which produce a homogeneous good and are located at xA

and xB, where xi ∈ R, i = A,B. With no loss in generality, we will consider firm A to be

the firm which locates to the left of B, so that xA < xB. Firms sell at mill price pi, have

production costs normalized to zero and choose their locations endogenously.

There is a continuum of consumers of mass n uniformly distributed over the interval

[0, 1]. We assume that each consumer buys exactly one unit of the product and that, if a

consumer purchases from firm i = A,B, their (indirect) utility is given by

Ui(x) = K − pi − t(x− xi)2 + E(ni), (1)

where K is the gross utility from consumption, t(x− xi)2 is the total transportation cost

given consumer location x ∈ [0, 1] and transportation cost parameter t > 0, and ni is the

mass of consumers at firm i = A,B, so that
∑

i ni = n. The last term represents the

4Related models in which firms’ product differentiation decisions are not modelled endogenously include
Lee and Mason (2001) and Häckner and Nyberg (1996).
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network effect function. Motivated by the empirical literature, and following Grilo et al.

(2001), we consider a non-monotonic network effect function of the form

E(ni) = αni − βn2i , i = A,B, (2)

where α, β > 0. This implies that the network effect is increasing in ni up to ni = α/2β,

after which the function becomes downward-sloping. We denote by nOL the “overloading”

threshold above which additional crowding generates disutility. That is, for all ni > nOL,

E(ni) < 0. It is clear by inspection of (2) that, in this setting,

nOL =
α

β
. (3)

Our analysis will make use of several definitions from the literature, which we intro-

duce below. The first definition captures the strength of conformity or vanity effects in

consumers’ preferences, relative to a measure of product differentiation.

Definition 1. Consumer preferences exhibit weak conformity (respectively, strong con-

formity) if

αn− βn2 < (>) t (xB − xA). (4)

The second definition describes the relationship between firms’ locations and the form

of product differentiation. While our framework is one of horizontal, Hotelling-type differ-

entiation, it can also give rise to outcomes that coincide with common notions of vertical

product differentiation.5 In particular, a vertical differentiation outcome is understood to

result when, charging identical prices, one firm or other would capture the entire market.

This leads to the following definition.6

5This is perhaps unsurprising, given that Cremer and Thisse (1991) show in general terms that most
horizontal differentiation frameworks can be understood as special cases of vertical differentiation models.

6Our notion of vertical vs. horizontal product differentiation follows Grilo et al. (2001). This is in
contrast to some other well-known notions of vertical differentiation, such as those in Shaked and Sutton
(1982) and Tirole (1988, Sect. 2.1).
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Definition 2. The firms’ products are vertically differentiated if their locations satisfy

xA + xB ≥ 2 or xA + xB ≤ 0. If 0 < xA + xB < 2, the firms’ products are horizontally

differentiated.

Our final definition is fairly standard, and relates to the firms’ location decisions.

Definition 3. Firm A (respectively, B) has a locational advantage if xA +xB > (<)1. If

neither firm enjoys a locational advantage, the firms’ locations are symmetric.

Given uniformly distributed consumers, Definition 3 implies that, in the absence of

network effects, the firm with the locational advantage has a larger market share than its

rival.

The market is modelled as a two-stage game, in which firms choose their locations in

the first stage and prices in the second stage. The equilibrium is derived by backward

induction as a subgame perfect Nash equilibrium in pure strategies.

3 Equilibrium and Endogenous Product Differentiation

We first present our main result concerning the subgame perfect Nash equilibrium of the

two-stage game, before discussing its implications.

Proposition 1. There is a unique subgame perfect Nash equilibrium in which the firm

locations are (x∗A, x
∗
B) = (−1

4 ,
5
4), prices are

p∗A = p∗B =
3

2
t− (αn− βn2) (5)

and demand is shared equally between the firms if and only if

αn− βn2 < 11

24
t, (6)

and no subgame perfect equilibrium in pure strategies exists otherwise.
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Proof. Appendix A.

The main innovation of this result lies in the careful attention we are obliged to pay

to firms’ Nash deviation incentives (displacement incentives) to capture the entire market

at the location stage. As shown in Appendix A, these incentives vanish in the absence

of network effects. Moreover, in considering firms’ potential displacement locations, it is

crucial to consider the fact that a move by a given firm from its equilibrium location to its

optimal displacement location can, in general, shift the market environment from weak to

strong conformity or vice versa (see Definition 1).

While these technical aspects are discussed in detail in Appendix A, the main intuition

of the result can be described as follows. Rewriting (6) as a condition on the consumer

population size as

n < n ≡ 6α−
√

6
√

6α2 − 11βt

12β
or n > n ≡ 6α+

√
6
√

6α2 − 11βt

12β
,

the equilibrium can be illustrated as in Figure 1 below. The parabola represents the

network effect function evaluated at n, and the parameter range in which the subgame

perfect equilibrium described in Proposition 1 exists is identified by the shaded grey areas.

Combined

2 n n

n



n

11
24

t

2



n

Figure 1: Illustration of Equilibrium.
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Clearly, values of n that fall closest to α
2β are least likely to be consistent with equi-

librium existence. This follows because the incentives for firms to displace their rival at

the location stage in order to capture the entire market are greatest in such cases, as then

consumers’ network externality (and therefore their willingness to pay) is maximised when

all consumers purchase from the same firm, be it A or B.

It is also interesting to note that the equilibrium locations are, themselves, unaffected

by network effects.7 It is the existence of the subgame perfect equilibrium that depends on

these effects. This result therefore contradicts the premise, implicit in Grilo et al. (2001),

that adding network effects allows firms’ locations to be varied exogenously. Proposition

1 further allows us to refine three important results from the exogenous location setting

of Grilo et al. (2001), as discussed in Corollaries 1-3 below.

Corollary 1. A subgame perfect equilibrium cannot exist under strong conformity.

It is clear from (6) that strong conformity is a sufficient (but not necessary) condition

for equilibrium not to exist. Under strong conformity (see Definition 1), the only equilibria

of the pricing subgame are corner solutions in which one firm or other charges a price of

zero (Grilo et al., 2001). These are not supportable as subgame perfect equilibria, since

a firm that anticipates zero profits at the pricing stage faces strict incentives to change

location in the first stage of the game.8

Corollary 2. Vertical product differentiation cannot arise in equilibrium.

Since, at the equilibrium location pair in Proposition 1, x∗A + x∗B = 1, this equilibrium

implies horizontally differentiated products (see Definition 2). A vertical differentiation

outcome is not feasible here, because neither firm is willing to concede a locational ad-

vantage to its rival, so that no asymmetric equilibria survive under the requirement for

7Compare, for example, Tabuchi and Thisse (1995).
8This point is already made in Grilo et al. (2001), though not in the context of an explicit solution for

firms’ optimal locations. Our full solution for the subgame perfect equilibrium shows that displacement
incentives at the location stage can also rule out the existence of equilibrium when we have weak conformity,
provided that network effects are strong enough.
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subgame perfection. We can therefore omit the cases of vertical differentiation discussed

in Grilo et al. (2001).

Corollary 3. Increases in the population size cannot lead to monopoly.

In Grilo et al. (2001), increases in the population size may magnify the locational

advantage of a given firm to such a degree that it captures the entire market. Our result

shows that no locational advantage will arise endogenously in the first place. In our setting,

it is intermediate population sizes that are of primary concern, because these can rule out

the existence of equilibrium altogether (see Figure 1).

Essentially, the differences between our results and those of Grilo et al. (2001), as

emphasised in Corollaries 1-3, are due to the additional degree of freedom those authors

enjoy because they treat firm locations as exogenous. This enables them to explore settings

of asymmetric product differentiation, despite the fact that firms are (in that setting as

in ours) inherently symmetric. Our analysis with endogenous locations focuses attention

on the meaningful cases, in which firms choose locations optimally. This, in turn, yields

more precise theoretical predictions.9

4 Welfare Analysis

The preceding analysis allows us to investigate two interesting welfare questions. Firstly,

we ask whether the presence of network effects in consumers’ preferences is desirable. That

is, we consider whether isolating consumers from one another by conducting sales over the

internet rather than via physical sales outlets improves welfare. A second important

question concerns the welfare-maximising firm locations, such as would be chosen by a

benevolent social planner. We address each question in turn below, relegating proofs to

the Appendix.

9In future research, it will be very interesting to extend this framework to the case of asymmetric firms.
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4.1 Social Welfare in the Presence of Non-Monotonic Network Effects

We first explore (conditional on the equilibrium described in Proposition 1 existing) for

which values of the model parameters total welfare is improved, relative to the case in

which α, β → 0. Consumer surplus in our framework is given by

CS =n

∫ x̂

0
K − pA − t(x− xA)2 + αnA − βn2A dx

+n

∫ 1

x̂
K − pB − t(x− xB)2 + αnB − βn2B dx,

where x̂ denotes the position of the indifferent consumer (so that nA = x̂ n and nB =

(1− x̂)n). Defining total welfare as the sum of consumer surplus and industry profits (see

Appendix A for details), the following Proposition holds.

Proposition 2. Provided the equilibrium described in Proposition 1 exists, the presence

of network effects increases total welfare if and only if n < 2α
β .

Proof. Appendix B.

Intuitively, the welfare impact of network effects may be decomposed into two parts.

Firstly, network effects will cause prices to fall (rise) if n < (>)nOL, see (3) and (5). If

this were the only consequence of network effects, their impact would be welfare-neutral,

however, since the purchase price is just a transfer from consumers to firms. The second

effect reflects consumers’ direct (dis)utility from consuming in groups. Since, in the sub-

game perfect equilibrium derived in Proposition 1, firms share demand equally, this direct

effect is positive if and only if, for i = A,B, ni <
α
β ⇒ n < 2α

β .

Discussion

As motivated in the Introduction, the case in which network effects vanish can be inter-

preted as a setting in which sales are conducted via the internet rather than in physical
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stores. Isolating consumers from the impact of (non-monotonic) network effects is thus

welfare-preferred here whenever the total consumer population size is sufficiently large

relative to the concavity parameter β.10 Notice also that, as β → 0 but α > 0, capturing

a linear network effect function, network effects always improve total welfare according to

Proposition 2.

This Proposition is best understood when viewing network effects as capturing physi-

cal crowding as opposed to status effects associated with vanity or conformity. The latter

should not depend on the manner in which the purchase is made. Moreover, this is arguably

more in keeping with an interpretation of the spatial differentiation model as reflecting

consumers’ locations in the space of product attributes, rather than in geographical space

– in the former case, the cost of deviating from the consumer’s preferred product specifi-

cation is independent of whether the purchase is made online or in-store. Nonetheless, an

interpretation of the model in terms of physical space may also be satisfactory if we think

of transportation costs as reflecting delivery costs associated with an online purchase and

suppose (as appears reasonable) that these delivery costs are proportional to distance.

4.2 Welfare-Maximizing Locations

A second important question concerns firms’ welfare-maximising locations. The optimisa-

tion problem to be solved by the social planner to this end may be stated as follows:

max
xA,xB ,x̂

TW = max
xA,xB ,x̂


n
∫ x̂
0 K − pA − t(x− xA)2 + αnA − βn2A dx

+n
∫ 1
x̂ K − pB − t(x− xB)2 + αnB − βn2B dx

+nApA + nBpB

 .

Solving this optimisation problem leads to the following Proposition.

Proposition 3. Whenever either (i) 0 < n ≤ 2α
3β and t > 8αn − 12β n2, or (ii) n > 2α

3β

10Note that, as we normalise firms’ costs to zero in this framework, we abstract from cost advantages
that may go along with online only sales. We also leave a fuller discussion of firms’ strategic decisions with
respect to online only or in-store sales for future work.
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holds, the welfare-optimal locations are interior: (xA, xB) =
(
1
4 ,

3
4

)
, and consumers are

split evenly between the two firms.

Whenever conditions (i) and (ii) are both violated, it is welfare-optimal for a single

firm located at the mid-point of the unit interval to serve the entire market.

Proof. Appendix C.

The intuition for this result goes back to the trade-off between transportation costs

and the strength of network effects. When the consumer population size is relatively

small (n ≤ 2α
3β ), splitting the total demand between two firms reduces the magnitude of

the network effect enjoyed by a consumer at either of the two firms, relative to what

they would have enjoyed were demand concentrated at a single firm (this may be verified

graphically by inspection of Figure 1). In this case, there is a cost to splitting demand

between two firms, because the aggregate network effect is reduced. To offset this loss in

the aggregate network effect enjoyed by consumers, the saving in terms of transportation

costs associated with a duopolistic market structure must be sufficiently large. This, in

turn, leads to the condition on the transportation cost parameter t provided in part (i) of

Proposition 3.

If the population size is sufficiently large (n > 2α
3β ), however, the aggregate network

effect is maximised by splitting demand between two firms. This follows because, in that

case, consumers enjoy a larger network effect at either of the two firms under a duopolistic

market structure then they would if demand were concentrated at a single firm (again,

this may be verified graphically by inspection of Figure 1). In this case, the socially

optimal market structure is unambiguous: both the gain in the aggregate network effect

and the transportation cost savings favour a duopolistic as opposed to monopolistic market

structure.
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Discussion

Proposition 3 highlights an additional rationale for a duopoly to be welfare-preferred to

monopoly when network effects are non-monotonic rather than monotonic. Under both

specifications for the network effect function, the optimal market structure rests on the

trade-off between transportation costs and aggregate network effects. In the monotonic

case (α > 0, β → 0), it is optimal to split the market between two firms whenever the

aggregate network effect αn is sufficiently weak relative to the transportation cost param-

eter t. In such cases, the saving in transportation costs relative to monopoly offsets the

reduction in the aggregate network effect associated with a duopolistic market structure.11

In our non-monotonic setting, as well as saving on transportation costs, splitting the

market between two firms will in fact maximise the aggregate network effect when the

population size is sufficiently large (leading to condition (ii) in Proposition 3 above).

Thus we can say that, relative to the monotonic network effects case, our non-monotonic

specification increases the attractiveness (in welfare terms) of splitting the market between

two firms – in large markets, this reduces utility losses due to crowding. This realistic

aspect of the problem is missing if network effects are specified in a monotonic fashion.

5 Conclusion

This paper considers a spatial duopoly framework with non-monotonic network effects

in which firms choose locations optimally. We derive the subgame perfect Nash equilib-

rium, which takes the potential for Nash deviations at the location stage explicitly into

account. We show, firstly, that network effects will rule out the existence of equilibrium

whenever these are sufficiently strong, due to displacement incentives at the location stage.

Moreover, “strong conformity” is shown to be a sufficient condition for equilibrium not to

11See also Serfes and Zacharias (2012) for an analysis of the monotonic case when the population size is
fixed at unity. Note, however, that the calculations in Serfes and Zacharias (2012) contain an error, which
affects their results in quantitative if not qualitative ways. See Appendix D for details.
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exist. In contrast to the exogenous location setting of Grilo et al. (2001), we also show

that vertical product differentiation cannot arise in equilibrium, and that increases in the

population size cannot result in one firm monopolising the industry.

We also examine the conditions under which the presence of network effects improves

welfare in this framework. This is particularly relevant given the ongoing trend towards

e-commerce, under which consumers are isolated from the effects of physical crowding in

stores. In-store sales are shown to improve welfare whenever the direct utility gained by

consumers from the network at either firm is positive, which requires the total market

size to be sufficiently small. This provides a welfare argument in favour of online only

sales when the total market size is sufficiently large, which is absent if network effects are

specified in a monotonic fashion. Finally, we study the welfare-maximising firm locations.

We find that, relative to monotonic network effect models, the case for a duopolistic

market structure is strengthened. For sufficiently large consumer population sizes, splitting

demand between two firms not only reduces transportation costs but also maximises the

aggregate network effect.

Appendices

A Proof of Proposition 1

We proceed by backward induction.

A.1 Stage 2 – Pricing

Let x̂ denote the position of the consumer that is indifferent between buying from firm A

and firm B. This x̂ is found by requiring the following conditions to hold simultaneously:
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UA(x̂) = UB(x̂), nA = x̂ n and nB = (1− x̂)n.12 This shows that

x̂ =
pB − pA + t(x2B − x2A)− αn+ β n2

2 [t(xB − xA)− αn+ β n2]
. (7)

We solve for the firms’ optimal prices by substituting (7) into nA = x̂ n and nB =

(1 − x̂)n and then maximising each firm’s profit function Πi = pi ni, i = A,B, with

respect to price. It is straightforward to show that, given firm locations xA and xB, the

unique (interior) equilibrium prices are given by

p∗A =
t

3
(xB − xA)(2 + xB + xA)− (αn− βn2), (8)

p∗B =
t

3
(xB − xA)(4− xB − xA)− (αn− βn2). (9)

These prices are positive if and only if13

αn− βn2 < t

3
(xB − xA) min {2 + xB + xA, 4− xB − xA} . (10)

Undercutting Incentives

It remains to check whether either firm has an incentive to undercut its rival’s price in

order to capture the whole market (in what follows, we similarly check for displacement

incentives at the location stage). In order to undercut, firm A takes (9) as given and sets

undercutting price pcA, such that

x̂(pcA) =
3pcA + 2t(xA − xB)(2 + xA + xB) + 6n(α− β n)

6 [n(α− β n) + t(xA − xB)]
= 1.

12The latter two conditions draw on properties of the uniform distribution. Recall that we are consid-
ering here, with no loss in generality, the case where xA < xB .

13As argued by Grilo et al. (2001), with unrestricted location choices, any firm that anticipates charging
a price of zero at the second stage of the game faces strict incentives to change location at the first stage so
as to earn positive profits. Therefore such corner solutions at the pricing stage cannot be subgame perfect,
and hence we focus on interior solutions.
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Firm B, meanwhile, takes (8) as given and sets undercutting price pcB, such that

x̂(pcB) =
3pcB − t(xB − xA)(2 + xA + xB) + 3t(x2B − x2A)

6 [t(xB − xA)− n(α− β n)]
= 0.

Solving in each case for pci and substituting into the expression for undercutting profits

Πc
i = pci ·n shows that the undercutting profits are symmetric, and equal for firm i = A,B

to

Πc
i =

2

3
nt(xj − xi)(xA + xB − 1), j 6= i.

It follows that firm A’s undercutting profits are positive if and only if xA + xB > 1,

while firm B’s undercutting profits are positive if and only if xA + xB < 1. If xA +

xB = 1, undercutting profits are zero for both firms – with symmetric location choices,

undercutting is never profitable.

We now determine when these undercutting profits exceed the firm’s equilibrium prof-

its. These equilibrium profits are given by

Π∗A = x̂ n p∗A =
n
[
t(xA − xB)(2 + xA + xB) + 3(αn− βn2)

]2
18 [t(xB − xA)− (αn− βn2)]

and

Π∗B = (1− x̂)n p∗B =
n
[
t(xA − xB)(xA + xB − 4)− 3(αn− βn2)

]2
18 [t(xB − xA)− (αn− βn2)]

.

It therefore follows that undercutting is profitable for firm A if and only if

Π∗A −Πc
A =

n[t(xA − xB)(xA + xB − 4)− 3(αn− β n2)]2

18[t(xB − xA)− (αn− β n2)]
< 0,

and profitable for firm B if and only if

Π∗B −Πc
B =

n[t(xA − xB)(2 + xA + xB) + 3(αn− β n2)]2

18[t(xB − xA)− (αn− β n2)]
< 0.
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In each case, the sign of the expression is determined by the denominator. Incentives for

one firm or other to undercut exist whenever αn − βn2 > t(xB − xA). Notice, however,

that this condition is contradicted by (10), ensuring undercutting is never a profitable

strategy at the pricing equilibrium.

A.2 Stage 1 – Locations

Combining the equilibrium prices in (8) and (9) with firms’ demands nA = x̂ n and nB =

(1 − x̂)n and replacing these in the firms’ profit functions Πi = ni pi, i = A,B, yields

an expression that depends purely on the firms’ locations. It can be easily checked that

maximising these and solving for xA and xB yields five critical points. Among these

candidate equilibria, only (xA, xB) = (−1
4 ,

5
4) satisfies (10) – the condition for positive

prices. At these locations, the firms charge identical prices

p∗A = p∗B =
3

2
t− (αn− βn2)

and (10) becomes equivalent to weak conformity, namely

αn− βn2 < 3

2
t. (11)

Substituting the equilibrium locations and prices into (7), we see that x̂ = 1/2, so that

firms share demand equally in this equilibrium, ni = n/2, i = A,B. Equilibrium profits

are therefore equal to

Π∗A = Π∗B =
n

2

[
3

2
t− (αn− βn2)

]
. (12)

It is straightforward to see that, by (11), these profits are positive.

Given α, β, t, n > 0, we proceed by checking for this candidate solution that (i) the

second-order condition is satisfied, and (ii) there are no incentives to displace the rival by
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shifting location in the first stage.

(i) Second-order Condition

The second-order condition (SOC) for firm A can be written as

∂2 ΠA

∂ x2A
=

nt

9[n(α− βn) + t(xA − xB)]3
×

{
− 6(α3n3 − β3n6)

− t2(xA − xB)2
[
4βn2(xA + 2xB − 6) + t(xA − xB)(xA + 3xB − 8)

]
+ 2n2t(α2 + β2n2 − β)

[
xA(xA − 10)− 3xB(xB − 4)− 1

2

]

+ 18α2βn4 + 2αn
[
2t2(xA − xB)2(xA + 2xB − 6)− 9β2n4

]}
.

The second-order condition for B follows in similar form. Both SOCs, evaluated at the

candidate equilibrium (xA, xB) = (−1
4 ,

5
4), are equal to

∂2 Πi

∂ x2i
=
nt

6

[
3t

3t− 2 (αn− βn2)
− 4

]
, i = A,B.

This is negative when either

αn− βn2 < 9

8
t or αn− βn2 > 3

2
t. (13)

The second condition can be ignored, as it is contradicted by (11).

(ii) Displacement Incentives

We consider Nash deviations in the firms’ locations at stage 1 that would allow one firm

or other to capture the entire market. Due to symmetry, we can focus, without loss in

generality, on the incentives of firm A to relocate at stage 1 in order to capture the entire

market.
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Firm A will monopolize the market whenever xA + xB > 1 and

αn− βn2 ≥ t

3
(xB − xA)(4− xA − xB), (14)

implying that (10) fails and we are in a corner solution in prices.14 Note that, since

xA < xB = 5
4 , a necessary condition for there to be any possibility of undercutting is

αn− βn2 > 0.15

This leads to the following limit price strategy (see also Grilo et al., 2001):

pLA = αn− βn2 − t(xB − xA)(2− xA − xB),

pLB = 0. (15)

To check for profitable displacement opportunities, we proceed as follows. First, we

identify the displacement locations for firm A, such that firm B is just driven out of the

market. Then, we explore whether there are even more profitable displacement locations

for firm A.

The point at which firm B is just driven out of the market corresponds to (14) holding

with equality. Given xB = 5/4, αn − βn2 > 0 guarantees that the quadratic implied by

(14) has two real roots, given by

x′A = 2− 1

4t

[
9t2 + 48t(αn− βn2)

] 1
2 and x′′A = 2 +

1

4t

[
9t2 + 48t(αn− βn2)

] 1
2 , (16)

14We assume, for the moment, that weak conformity also holds at the displacement locations – we
return to this point below. The general condition for firm A to monopolize the market may be stated as
follows: UA(x) ≥ UB(x) for all x ∈ [0, 1] given that nA = n and nB = 0 (similarly for firm B). As shown in
Grilo et al. (2001), the resulting conditions are mutually exclusive with (10) – i.e. in order to capture the
entire market, a firm will change location to ensure that (10) fails. Note that, even though corner solutions
at the pricing stage are ruled out as candidate subgame perfect equilibria (see footnote 13 above), they
still have to be considered as potentially profitable Nash deviations when firms’ locations are endogenous.

15Firm A cannot capture the market by locating further outside the market than B. In this case, the
labels of the firms are effectively switched and it is still the firm with the locational advantage that will
monopolize the market, if any.
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and where x′A <
5
4 and x′′A >

5
4 . Therefore, we can rule out x′′A as a feasible displacement

location.16 We know that firm A cannot locate further left than x′A, as this would violate

(14). But, since x′A < 5/4, it is possible that firm A could locate further right than x′A

(that is, closer to firm B), continue charging the limit price given in (15) and make higher

profits. It will do so whenever the limit price pLA is increasing in xA, starting from xA = x′A.

From (15),

∂pLA
∂xA

= 2t(1− xA).

It follows that (for any value of xB) pLA is increasing in xA if and only if xA < 1, and

pLA reaches a maximum at xA = 1. Hence, if x′A < 1, firm A will indeed choose to locate

further rightwards, at xA = 1. It will never move beyond xA = 1 when x′A < 1, as the

limit price is decreasing in xA beyond that point.

We therefore have two cases to consider. When 1 < x′A <
5
4 , we need to calculate the

displacement profits on the basis of (15), nA = n and xA = x′A. When x′A ≤ 1, we need to

calculate the displacement profits on the basis of (15), nA = n and xA = 1. In each case,

we compare the displacement profits with the equilibrium profits of firm A, to determine

when displacement is profitable. From (16), x′A ≤ 1 if and only if

αn− βn2 ≥ 7

48
t.

Case 1: 7
48 t ≤ αn− βn

2 ⇔ x′A ≤ 1

In this case, firm A’s optimal displacement location is xA = 1. Here the limit price

will be (see (15))

pLA = αn− βn2 +
t

16
,

16See previous footnote.
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implying displacement profits of

Πdis
A = n

(
αn− βn2 +

t

16

)
.

Given the equilibrium profits in (12), the necessary and sufficient condition for there to

be no incentives for displacement, that is Π∗A > Πdis
A , can be stated as

αn− βn2 < 11

24
t. (17)

Case 2: 0 < αn− βn2 < 7
48 t⇔ 1 < x′A <

5
4

In this case, firm A’s optimal displacement location is x′A. At this location, firm A charges

limit price

pLA =
1

2

{[
9t2 + 48t (αn− βn2)

]1/2 − 4(αn− βn2)− 3t
}

and earns displacement profits

Πdis
A =

n

2

{[
9t2 + 48t (αn− βn2)

]1/2 − 4(αn− βn2)− 3t
}
.

Comparing these displacement profits with the equilibrium profits in (12), we see that

incentives for firm A to displace its rival exist whenever Πdis
A > Π∗A, that is when

αn− βn2 > 5

6
t.

This is clearly contradicted by the premise of this case, implying that there can be no

displacement in this case.

It follows from cases 1 and 2 that there will be no displacement if and only if (17)

holds. Stated differently, incentives for displacement at the location stage will rule out
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the existence of our subgame perfect equilibrium whenever network effects are sufficiently

large and positive. This also implies that displacement incentives at the location stage can

never rule out the existence of equilibrium in the absence of network effects (α = β = 0).

Combining (11), (13) and (17), it is clear that a subgame perfect equilibrium in pure

strategies exists if and only if (17) is satisfied.

Note that the above analysis implicitly assumed that weak conformity also holds at

the displacement locations. It is straightforward to show that weak conformity holds when

firm A deviates to location x′A. In Case 1 above, moving from x′A towards xA = 1 may

cause weak conformity to fail (this can happen when αn−βn2 is sufficiently high). In this

case, we appeal to the maximal limit price that firm A can charge under strong conformity,

which is identical to that given in (15) (Grilo et al., 2001, Prop. 4). This is still maximised

at xA = 1, so that displacement incentives in this scenario are still accurately reflected in

Case 1.

Graphically, the different scenarios that can arise are illustrated in Figures 2a-2c below.

These illustrate the quadratic on the right-hand side of (14) (which determines when firm

A monopolizes the market) and the t(xB − xA) line (which determines whether we have

weak or strong conformity). In each case, firm B’s location at xB = 5
4 is taken as given.

The scenarios differ in terms of the value of the network effect function evaluated at n:

we consider three values, E1, E2 and E3, where E1 < E2 < E3. In each case, the circle

identifies the displacement location x′A, given by the intersection between the level of

network effects and the parabola, the triangle identifies the final displacement location,

should this differ from x′A, and the square identifies the level of the t(54−xA) line associated

with the final displacement location.

In Figure 2a, x′A > 1. Therefore, we are in Case 2 and firm A’s optimal displacement

location is x′A (moving leftwards from this location, towards xA = 1 where the limit price

is maximised, violates (14) – the parabola lies above E1 for all values of xA to the left of

x′A). This displacement location necessarily implies weak conformity, since the square lies
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above E1.
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Figure 2a: Optimal Displacement Locations with αn− βn2 = E1.

In Figures 2b and 2c, x′A lies to the left of xA = 1. Therefore, firm A can increase the

limit price it charges while still monopolising the market by moving to xA = 1, indicated, in

each case, by the triangle. In other words, we are in Case 1. (This triangle lies below both

E2 and E3, so that (14) is satisfied.) The associated level of the t(54 − xA) line, identified

by the square, lies above E2 but below E3. This implies that, when αn− βn2 = E2, weak

conformity holds, even at xA = 1. When αn − βn2 = E3, however, the move to xA = 1

causes weak conformity to fail. In this sub-case, we appeal to the maximal limit price that

firm A can charge under strong conformity, which is identical to that given in (15) and is,

therefore, still maximised at xA = 1.
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Figure 2b: Optimal Displacement Location with αn− βn2 = E2.
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Figure 2c: Optimal Displacement Locations with αn− βn2 = E3.

This completes the proof.
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B Proof of Proposition 2

Consumer surplus is equal to

CS =n

∫ x̂

0
K − pA − t(x− xA)2 + αnA − βn2A dx

+n

∫ 1

x̂
K − pB − t(x− xB)2 + αnB − βn2B dx.

This, evaluated at the equilibrium values given in Proposition 1, yields

CS = n

[
K − 85

48
t+

1

4
(6αn− 5βn2)

]
.

Based on the equilibrium described in Proposition 1, the firms’ equilibrium profits are

equal to

Π∗A = Π∗B =
n

2

[
3

2
t− (αn− βn2)

]
.

Total welfare is then simply equal to TW = CS + 2Πi, which is to say

TW = n

[
K − 13

48
t+

1

4
(2αn− βn2)

]
.

Since the firms’ equilibrium locations are unaffected by network effects, the result then

follows immediately.
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C Proof of Proposition 3

Following the approach in Serfes and Zacharias (2012), the social planner solves the fol-

lowing optimisation problem:

max
xA,xB ,x̂

TW = max
xA,xB ,x̂


n
∫ x̂
0 K − pA − t(x− xA)2 + αnA − βn2A dx

+n
∫ 1
x̂ K − pB − t(x− xB)2 + αnB − βn2B dx

+nApA + nBpB

 .

Since nA = x̂ n and nB = (1− x̂)n, this can be simplified to yield

max
xA,xB ,x̂

 n
∫ x̂
0 K − t(x− xA)2 + α x̂ n− β(x̂ n)2 dx

+n
∫ 1
x̂ K − t(x− xB)2 + α(1− x̂)n− β[(1− x̂)n)]2 dx

 .

The unique interior solution to this problem is given by

(xA, xB, x̂) =

(
1

4
,
3

4
,
1

2

)
.

This solution implies total welfare equal to

TW = n

[
K − t

48
+

1

4
(2αn− βn2)

]
. (18)

Among the corner solutions in which only one firm serves the market, it is clear that,

in order to maximise welfare (minimise transportation costs), this single firm should be

located at the mid-point of the market. Without loss in generality, we can represent this

corner solution by xA = 1
2 and x̂ = 1. Total welfare in this corner solution is equal to

TW = n

[
K − t

12
+ (αn− βn2)

]
. (19)

Comparing (18) and (19), it is straightforward to show that the interior solution dom-
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inates the corner solution whenever either

i. 0 < n ≤ 2α
3β and t > 8αn− 12β n2, or

ii. n > 2α
3β ,

which completes the proof.

D Supplementary material – Corrected Proposition 2 in

Serfes and Zacharias (2012)

Equation (11) in Serfes and Zacharias (2012, p.997) reads as follows:17

W =

∫ x

0
αz − t(a− z)2dz +

∫ 1

x
α(1− z)− t(b− z)2dz

= αx2 + tax2 − ta2x+
α

2
− αx− t

3
+ tb− tbx2 − tb2 + tb2, (20)

where x is the position of the indifferent consumer (equivalently, the fraction of the total

population that purchases from firm A), t > 0 is the per-unit cost of travel, a and b are

the respective locations of firms A and B, and α is the intensity of the network effect,

given a network effect function of the form E(n) = αn.

This equation contains an important conceptual error. Each consumer patronising

firm A, say, enjoys a network effect corresponding to that firm’s total demand, not the

fraction of consumers located between themselves and the endpoint of the line. Equation

(20) should therefore be specified (with emphasis added to highlight the difference to the

17In Serfes and Zacharias (2012), the total population size is fixed at unity. In order to relate this
analysis more closely to the original paper, we use the notation of Serfes and Zacharias (2012) here. Note
also the typographical error in the second line of this equation – the last term should be tb2x rather than
tb2.
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preceding equation) as

W ′ =

∫ x

0
αx− t(a− z)2dz +

∫ 1

x
α(1− x)− t(b− z)2dz

= α− 2αx+ 2αx2 + atx2 − a2tx+ bt− b2t+ b2tx− btx2 − t

3
.

Maximizing W ′ with respect to a, b and x leads to only one interior solution, which

coincides with Serfes and Zacharias, namely (a, b, x) = (14 ,
3
4 ,

1
2). This interior solution is,

however, associated with total welfare equal to

W ′ =
α

2
− t

48
, (21)

which differs from the welfare level provided in Serfes and Zacharias.

At the corner solution a = 1
2 , x = 1, total welfare is equal to

W ′ = α− t

12
, (22)

which again departs from the result provided in Serfes and Zacharias.

By inspection of (21) and (22), we can conclude that welfare in the interior solution

exceeds that under the single-firm outcome if and only if α ≤ t
8 . Thus the condition for the

social planner to prefer the interior solution over the single-firm solution in Proposition 2

of Serfes and Zacharias (2012) should be amended from α ≤ t
4 to α ≤ t

8 . For α between

t
8 and t

4 (as well as for all α > t
4), monopoly welfare-dominates a duopolistic market

structure in the Serfes and Zacharias (2012) framework.

This result is also confirmed by our Proposition 3 in the case where β → 0 and n = 1.
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