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ABSTRACT

For the class of linear context-free tree grammars, we define a decidable property called
self-embedding. We prove that each non-self-embedding grammar in this class generates
a regular tree language and show how to construct the equivalent regular tree grammar.
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1. Introduction

In natural language processing (NLP), formal string grammars are used to approximate
the set of all syntactically valid sentences of a language. Two important and successful
grammar classes are the regular grammars (REGs) and the context-free grammars
(CFGs) [16]. For these two classes there is a clear trade-off between expressive power
and cost of processing, e.g., for parsing. It is undecidable whether an arbitrary
given CFG generates a regular language [13, Thm. 8.15], but one may approximate
a given context-free language by a REG, for example, in order to achieve better
parsing complexity [22]. Alternatively, one may restrict CFGs to satisfy a decidable
property that guarantees that they generate regular languages. Chomsky [3] defined
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Figure 1:: An application of the rule A(x1, . . . , xk)→ ξ.

such a property called non-self-embedding. A CFG is self-embedding if there are a
nonterminal A and non-empty strings v and w over terminals and nonterminals such
that A⇒∗ vAw. He proved that each non-self-embedding CFG generates a regular
language [3, Thm. 11]. In [22] self-embedding was expressed as a syntactic criterion,
accompanied by a direct construction of a REG from a non-self-embedding CFG.

It was found that CFGs are inadequate to describe the syntax of all natural
languages [27]. To remedy this, mildly context-sensitive formalisms were introduced
[14], which can capture more linguistic phenomena than REGs and CFGs. Examples
of such mildly context-sensitive formalisms are linear context-free rewriting systems
[29] and macro grammars [7]. Related formalisms generate tree languages, in order to
explicitly describe the internal structure of sentences. These grammars also generate
string languages; a string is obtained as the yield (or frontier) of a generated tree.
Examples of relevant tree-generating formalisms are tree adjoining grammars [15] and
context-free tree grammars (CFTG) [26, 6, 12]. There is a close relationship between
tree adjoining grammars and monadic linear CFTGs [10, 20, 11]. Monadic CFTGs
have been investigated in [8, 9]. In [21] it was proved that CFTGs lexicalize tree
adjoining grammars. Synchronous context-free tree grammars have been proposed
and investigated as syntax-based translation models for natural languages [23, 24].
The class of linear nondeleting CFTGs is considered in [18, 17].

Context-free tree grammars generalize regular tree grammars (RTG) [1] by allowing
nonterminals to have arguments (or: parameters), which contain trees over nonter-
minals and terminals. Thus, in a sentential form, nonterminals may occur nested as
indicated in Figure 1, where A and B are nonterminals. This figure also illustrates
the application of a rule A(x1, . . . , xk)→ ξ, which proceeds as follows. The variables
x1, . . . , xk are bound to the k subtrees ξ1, . . . , ξk, respectively. Let ξ′ be the result of
replacing all occurrences of these variables in ξ by the subtrees they are bound to.
Then, A together with its subtrees is replaced by ξ′.

Much as for the string case, there is a trade-off between expressive power and
processing cost when relating the classes of tree languages generated by CFTGs and
RTGs. This motivates similar investigations as in the string case. In this paper we
focus on the class of linear nondeleting CFTGs (lnCFTG). In each rule of a lnCFTG
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Figure 2:: Part of a lnCFTG G1 and one of its derivations.

each variable from the left-hand side occurs exactly once in the right-hand side. We
define the decidable property of self-embedding for lnCFTGs and as our main result we
construct for each non-self-embedding lnCFTG an equivalent RTG, thus, in particular
we show that each non-self-embedding lnCFTG induces a regular tree language. We
will extend these results to linear CFTG in which variables may be deleted by a rule
application. The extended results follow directly from the facts that (i) each linear
CFTG can be transformed into an equivalent lnCFTG and (ii) this transformation
preserves the property of being non-self-embedding.

The path language of (the tree language generated by) a lnCFTG is a context-free
string language, while the path language of a RTG is a regular string language [5,
Thm. 7.13]. It is therefore tempting to try to define the notion of self-embedding for
lnCFTGs in terms of the familiar notion of self-embedding for CFGs, applied to path
languages of lnCFTGs. However, there is an additional source of non-regularity in
lnCFTG that cannot be captured solely in terms of path languages. To illustrate this
we consider rules of the lnCFTG G1 (cf. Figure 2) and one of its derivations. Note that
the numbers of γ’s in the two argument positions of A grow in a synchronized manner,
so that the tree language generated from A(x1, x2) is not regular, even though its
path language is a regular string language. We say that a lnCFTG is self-embedding
if at least one of the two properties illustrated in Figure 3 is satisfied: Property (1)
generalizes self-embedding from the string case (applied to paths), while Property (2)
captures potential non-regularity due to different branches growing in a synchronized
manner. In Section 4 we will formally define the concept of self-embedding and show
that this property can be decided for each lnCFTG.

Our main result is the proof that a non-self-embedding lnCFTG generates a regular
tree language. Our use of the term ‘non-self-embedding’ may already suggest this
result, by analogy with the string case. However, due to the additional source of
non-regularity (as described above), novel proof techniques are needed, which involve
complications far beyond those of the string case. In the following, we describe the
steps of the proof.
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To simplify the proof, we transform G into an equivalent lnCFTG H that satisfies
the novel property of being unique in argument positions. Roughly speaking, the effect
of this transformation is that generation of symbols in distinct argument positions
of one nonterminal of G is done through several newly introduced nonterminals in
H. This transformation is possible because the negation of Property (2) guarantees
that the generation of symbols in distinct argument positions of one and the same
nonterminal is independent. In Section 5 we will formally define this property and
provide the transformation with a proof of correctness.

Next, we analyze a non-self-embedding lnCFTG H which is unique in argument
positions. We consider related nonterminals via analysis of a graph. We can see
that, due to Property (1) of self-embedding, unboundedly many symbols can never
be created synchronously above and below a nonterminal. Hence, we can divide
the generation into two classes, namely top-recursion, which deals with unbounded
generation below a nonterminal, and bottom-recursion, which deals with unbounded
generation above a nonterminal.

Relying on the properties of non-self-embedding and uniqueness in argument posi-
tions, top-recursion can be transformed to bottom-recursion. This is by a construction
described in detail in Section 6.1. Subsequently, we show that a non-self-embedding
lnCFTG which does not contain any top-recursion can be transformed into an equiva-
lent RTG. This relies on the observation that the number of distinct values that may
appear below a nonterminal is bounded. This is explained in detail in Section 6.2.

In Section 6.3 we prove our main theorem and in Section 7 we relate the definition
of self-embedding for trees to the one used in the string case [22]. In Section 8 we
show that our result can be extended to linear CFTG which may be deleting. In
Section 9, we define the notion of weakly-self-embedding CFTG, i.e., for the full class
of context-free tree grammars. This notion is inspired by self-embedding indexed
grammars [25]. Each self-embedding lCFTG is a weakly-self-embedding lCFTG. We
prove that each non-weakly-self-embedding CFTG induces a regular tree language.
Section 10 concludes with a summary of the subclasses of CFTG relevant to this paper,
and the inclusion relations between them.
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(1): F and H are non-trivial trees.
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(2): H and K are non-trivial trees.

Figure 3:: Properties for self-embedding (i, j ∈ {1, . . . , k}).
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2. Preliminaries

Mathematical Notions. The set of natural numbers {0, 1, . . .} is denoted by N
and N+ = N \ {0}. The set of finite sequences over N+ is denoted by N∗+ (including
the empty sequence). For n ∈ N, we let [n] = {1, . . . , n}; hence [0] = ∅. An alphabet
is a non-empty finite set. The set of words over the alphabet Σ is denoted by Σ∗ with
ε being the empty word. Let U be a set. Then P(U) denotes the powerset of U .

We fix an infinite list x1, x2, . . . of pairwise distinct variables. We let X =
{x1, x2, x3, . . .} and Xk = {x1, . . . , xk}. Furthermore, we abbreviate x1, . . . , xk to
x1..k. We apply this abbreviation also to sequences of other objects. Sometimes we
will also use symbols different from x1, x2, . . . to denote variables, such as z, z1, z2, . . ..

Trees. A ranked alphabet is a pair (∆, rk∆), where ∆ is an alphabet and rk∆ : ∆→ N
is a function. For every δ ∈ ∆, we call rk∆(δ) the rank of δ. Sometimes, we write δ(k)

to indicate that δ has rank k. We abbreviate the set rk−1
∆ (k) to ∆(k) and (∆, rk∆)

to ∆ assuming that rk∆ is the rank function. In this paper, ∆ denotes an arbitrary
ranked alphabet. We assume that ∆ ∩X = ∅.

Let U be a set. We denote the set of trees over ∆ and U by T∆(U) and write T∆

for T∆(∅). Each subset of T∆ is called a tree language. Positions in trees are identified
by Gorn addresses, represented as finite sequences over N+ as usual. Formally, for each
ξ ∈ T∆(U), the set of positions of ξ, denoted by pos(ξ), is defined inductively as follows:
(i) if ξ ∈ ∆(0) ∪ U , then pos(ξ) = {ε}, and (ii) if ξ = δ(ξ1, . . . , ξk) for some δ ∈ ∆(k),
k ≥ 1 and ξ1, . . . , ξk ∈ T∆(U), then pos(ξ) = {ε} ∪ {iv | 1 ≤ i ≤ k, v ∈ pos(ξi)}. For
a position w ∈ pos(ξ), the label of ξ at w and the subtree of ξ at w are denoted by
ξ(w) and ξ|w, respectively. For every V ⊆ ∆ ∪ U , we denote the set of positions of ξ
labeled by an element of V by posV (ξ); if V is a singleton {v}, then we simply write
posv(ξ). For W ⊆ pos(ξ) and w ∈W , we say that w is outermost in W if there is no
u ∈W such that w = uv for some v ∈ N∗+ \ {ε}.

Let U be a finite set with ∆∩U = ∅. A context over ∆ and U is a tree in T∆(U) in
which each element u ∈ U occurs exactly once. The set of all such contexts is denoted
by C∆(U).

Let ξ ∈ T∆(X), i ∈ N, xi ∈ X, and w ∈ pos(ξ). We say that w is xi-dominating if
ξ|w contains a position labeled xi. We call w variable dominating if it is xi-dominating
for some xi ∈ X.

Tree concatenation. Let k ∈ N, let u1..k ∈ U ∪∆(0) be pairwise distinct symbols,
and let ξ ∈ T∆(U) and ξ1..k ∈ T∆(X). We define the tree concatenation of ξ with ξ1..k
at u1..k, denoted by ξ[u1/ξ1, . . . , uk/ξk], inductively on the structure of ξ as follows:

(i) ui[u1/ξ1, . . . , uk/ξk] = ξi and

(ii) δ(ζ1, . . . , ζ`)[u1/ξ1, . . . , uk/ξk] = δ(ζ1[u1/ξ1, . . . , uk/ξk], . . . , ζ`[u1/ξ1, . . . , uk/ξk])
for each ` ≥ 0 and δ ∈ ∆(`) \ {u1, . . . , uk}.

Tree concatenation is associative [6, Cor 2.4.2].
For convenience, we will use the following abbreviations. For every ξ ∈ T∆(Xk)

and ξ1, . . . , ξk ∈ T∆(X), we abbreviate ξ[x1/ξ1, . . . , xk/ξk] by ξ[ξ1, . . . , ξk] or ξ[ξ1..k].
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This abbreviation is also used for ξ ∈ T∆(U) when U is a finite set other than Xk,
provided that elements in U are ordered explicitly, or if U is a singleton. Moreover,
we may write ξ[ui/ξi | i ∈ [k]] instead of ξ[u1/ξ1, . . . , uk/ξk].

Graphs. Let Σ be an alphabet. A Σ-labeled directed graph (for short: graph) is a
pair (V,E) where V is a finite set of vertices and E is a finite set of edges satisfying
E ⊆ V × P(Σ)× V . For an edge e = (v1, U, v2), we call U the label of e. Let K be a
graph. Sometimes we denote the set of vertices by VK and the set of edges by EK
or, if no confusion arises, by →. Then (v1, U, v2) ∈ EK will also be abbreviated by

v1
U→ v2 or just by v1 → v2.

We denote the set of maximal strongly connected components (SCC) of (V,E) by
scc((V,E)).

Let (V,E) be a graph and M ⊆ V . The M -fragment of (V,E), denoted by (V,E)|M ,
is the graph (M,E ∩ (M × P(Σ)×M)).

3. Context-Free Tree Languages and Regular Tree Languages

A linear nondeleting context-free tree grammar2 (lnCFTG) is a tuple G = (N,∆, A0, R),
where N and ∆ are ranked alphabets (of nonterminals and terminals, respectively)
such that N ∩ ∆ = ∅, A0 ∈ N (0) (initial nonterminal), R is a finite set of rules
of the form A(x1..k) → ξ with k ∈ N, A ∈ N (k), and ξ ∈ CN∪∆(Xk). In a rule
r : A(x1..k) → ξ the left-hand side (LHS) of r is A(x1..k) and the right-hand side
(RHS) of r is ξ, denoted by lhs(r) and rhs(r), respectively. If lhs(r) = A(x1..k), then
we call A the LHS-nonterminal of r, also denoted by lhs(r)(ε). For each A ∈ N , we
abbreviate A(x1..rkN (A)) by A(x).

For technical convenience, we will also allow rules to use any finite combination of
distinct variables instead of a prefix of the sequence x1, x2, x3, . . ., e.g., A(x2, x5)→
σ(x2, x5). It is easy to see how to transform such a rule into the formally correct form
(by renaming variables).

In the following let G = (N,∆, A0, R) be an arbitrary lnCFTG. The derivation
relation ⇒ is defined as follows. For trees ζ, ζ ′ ∈ TN∪∆(X) and a rule r : A(x1..k)→ ξ
in R, we have ζ ⇒r ζ

′ if there is a position w ∈ pos(ζ) such that ζ(w) = A and
ζ ′ is obtained from ζ by replacing the subtree at position w by ξ[ζ|w1, . . . , ζ|wk].
Thus if ζ is a context, then so is ζ ′. Note that we do not impose any restriction
on the order in which nonterminals are derived (unrestricted derivation [7]). We
write ζ ⇒ ζ ′ if there is an r ∈ R such that ζ ⇒r ζ

′. We denote the reflexive,
transitive closure of ⇒ by ⇒∗. For n ∈ N and s ∈ R∗ with s = r1r2 . . . rn and ri ∈ R
for each i ∈ [n], we write ζ ⇒s ζ

′ if there are ζ1, . . . , ζn−1 ∈ TN∪∆(X) such that
ζ ⇒r1 ζ1 ⇒r2 ζ2 ⇒r3 . . .⇒rn−1

ζn−1 ⇒rn ζ
′. In this case, we call s a derivation in G.

For k ∈ N and ζ ∈ CN∪∆(Xk), the tree language induced by ζ on G is

L(G, ζ) = {ξ ∈ C∆(Xk) | ζ ⇒∗ ξ} .

2sometimes called simple context-free tree grammars in the literature
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Figure 4:: The lnCFTG G2 and an example derivation.

The tree language of G, denoted by L(G), is defined by L(G) = L(G,A0). Note that
L(G) ⊆ T∆. Two lnCFTGs G and G′ are equivalent3 if L(G) = L(G′). Figure 4(a)
presents an example lnCFTG G2 and Figure 4(b) an example derivation. It can be
seen that L(G2) = {δn(σ(γn(α), β)) | n ∈ N}.

It is intuitively clear that rules of a lnCFTG G can be applied in any order without
affecting the resulting tree (cf. the proof of [19, Lm. 4]). This fact goes back to the
structural theorems for macro grammars [7]. More precisely, let ζ ∈ TN∪∆(X) and
w1, w2 be distinct positions of ζ at which rules r1, r2 ∈ R, respectively, apply. If
neither w1 is a prefix of w2 nor vice versa, then clearly r1 and r2 can be applied in
any order at w1, w2, respectively. If, e.g., w1 is a prefix of w2, i.e., w2 = w1 i u for
some i and u, then the application of r1 might change the position at which r2 has
to be applied. Let v be the uniquely determined position of xi in rhs(r1). Then the
application of r1 at w1 followed by the application of r2 at w1 v u leads to the same
tree as the application of r2 at w2 followed by the application of r1 at w1.

Sometimes, we fix an order where, in each derivation step, one of the nonterminals
at an outermost position is derived. Such a derivation is called outside-in (cf. [7,
pp. 2-15]).

Later we wish to analyze derivations in which, for some given subset N ′ ⊆ N ,
only rules may be used of which the LHS-nonterminal is in N ′. This is achieved by
considering all symbols from N \N ′ as terminal symbols. Formally, the N ′-fragment of
R, denoted by R|N ′ , is defined to be the set {r ∈ R | lhs(r)(ε) ∈ N ′}. The N ′-fragment

3in the NLP-community, equality of induced tree languages is more specifically called strongly
equivalent to distinguish it from weak equivalence, which is the equality of induced string languages
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of G is the lnCFTG

G|N ′ = (N ′,∆ ∪ (N \N ′), , R|N ′) .

where the initial nonterminal of G|N ′ is irrelevant, and we only address its language
using an explicitly given initial tree ζ via L(G|N ′ , ζ).

As an example, we consider the lnCFTG G using the set of nonterminals {A0, A,B},
the set of terminals ∆ = {σ(2), γ(1), α(0), β(0)}, and the rules A0 → A(α, β),
A(x1, x2)→ A(B(x1), x2) | σ(x1, x2), and B(x1)→ γ(B(x1)). The {A}-fragment of G
has only the two rules with LHS-nonterminal A. The tree language induced by A(x1, x2)
on the fragment is L

(
G|{A}, A(x1, x2)

)
= {σ(Bn(x1), x2) | n ∈ N} ⊆ C∆∪{B}(X2)

where Bn(x1) is a tree consisting of n B’s on top of each other followed by an x1.
A regular tree grammar (RTG) is a lnCFTG in which each nonterminal has rank 0.

A tree language L ⊆ T∆ is regular if there is a RTG G = (N,∆, A0, R) such that
L(G) = L.

4. Self-Embedding lnCFTG

In [3] it was proved that each context-free string grammar which is non-self-embedding
generates a regular language, where self-embedding means the existence of a derivation
of the form A⇒∗ vAw with v 6= ε and w 6= ε for some strings v and w over terminals
and nonterminals. Here we generalize the notion of self-embedding to the tree case.

Let G = (N,∆, A0, R) be a lnCFTG. We say that G is self-embedding if there is a
k ≥ 1 and an A ∈ N (k) such that at least one of the following two properties holds
(viewing the variables in Xk as symbols with rank 0):

(1) There is an i ∈ [k] and there are F,A′, H ∈ CN∪∆∪Xk({z}) such that

• A(x1..k)⇒∗ F [A′[H[xi]]],

• A′(ε) = A, A′(i) = z, and

• F 6= z and H 6= z.

(2) There are i, j ∈ [k] with i 6= j and there are F,H,K ∈ CN∪∆∪Xk({z}) and
A′ ∈ CN∪∆∪Xk({z1, z2}) such that

• A(x1..k)⇒∗ F [A′[H[xi],K[xj ]]],

• A′(ε) = A, A′(i) = z1, and A′(j) = z2, and

• H 6= z and K 6= z.

These two properties were depicted in Figure 3 and we illustrate them by three
examples. Simultaneously we will motivate the introduction of a particular finite
graph which allows us to check these properties.

As a first example, we consider the two rules of the lnCFTG G2 shown in Figure 5(a).
The derivation in Figure 5(b) shows that G2 satisfies Requirement (1) of self-embedding:
terminals are created above and below the nonterminal A in a synchronized manner
(the numbers of δ’s and γ’s are equal). In order to detect this phenomenon it suffices
to consider a finite directed graph, called position pair graph, of which each vertex is a
triple: a nonterminal and two of its argument positions. We include argument position
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(A, 0, 1) (A, 0, 2) (A, 1, 2) (A, 2, 1)

(B, 0, 2) (B, 0, 1) (B, 2, 1) (B, 1, 2)

{1} {2} {1} {1} {2}

(c) Position pair graph.

Figure 5:: Part of the lnCFTG G2.

0, which represents the generation happening above the nonterminal; it may only
occur in the first of the two argument positions. An edge from (A, 0, j) to (B, 0,m)
indicates that there is a rule r with LHS-nonterminal A such that xj appears in the
argument position m of an occurrence of B in the RHS. An edge can be labeled by
any subset of {1, 2}, where we drop the label ∅ in the figures. If there is at least one
symbol above the occurrence of B, then the label contains a 1; if at least one symbol
occurs between the occurrences of B and xm, then the label of this edge contains a
2. The 1 pertains to the first of the two argument positions in (A, 0, j) and (B, 0,m),
which are both 0, while 2 pertains to the second argument positions, which are j and
m, respectively.

The leftmost two SCCs in Figure 5(c) show part of the position pair graph of G2

dealing with this combination of generation above and below a nonterminal. (The
rightmost two SCCs will become clear soon.) The first two steps of the derivation in
Figure 5(b) induce in particular the path

(A, 0, 1)
{1}−→ (B, 0, 2)

{2}−→ (A, 0, 1)

through the position pair graph. Since (i) this path is cyclic, (ii) the union of the
edge labels contains 1 and 2, and (iii) the position 0 is involved, Property (1) of
self-embedding is satisfied.

As a second example, we consider two rules (cf. Figure 6(a)) of the lnCFTG G1

in Figure 2. The derivation in Figure 6(b) shows that G1 generates terminals in a
synchronized manner in two argument positions below a nonterminal: the numbers of
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Figure 6:: Part of the lnCFTG G1.

γ’s are equal after each fourth step. To capture this in the position pair graph, we
employ vertices with two argument positions different from 0. An edge from (A, i, j) to
(B, `,m) (with i 6= j and ` 6= m) indicates that there is a rule r with LHS-nonterminal
A such that xi appears in the argument position ` of an occurrence of B in the RHS
and xj appears in the argument position m of the same occurrence of B. If at least
one symbol occurs between the occurrences of B and xi, then the edge label contains
a 1. Likewise, if at least one symbol occurs between the occurrences of B and xj , then
the edge label contains a 2.

Thus, the position pair graph of G1 is the one shown in Figure 6(c). The derivation
in Figure 6(b) induces in particular the path

(A, 1, 2)
{2}−→ (B, 2, 1) −→ (A, 2, 1)

{1}−→ (B, 1, 2) −→ (A, 1, 2)

through the rightmost SCC of the position pair graph. Since (i) this path is cyclic,
(ii) its union of edge labels contains 1 and 2, and (iii) the position 0 is not involved,
Property (2) of self-embedding is satisfied.

In the third and last example, we show part of a lnCFTG G3 in Figure 7(a), which
simultaneously satisfies Properties (1) and (2) of self-embedding. The lnCFTG G3

looks similar to G1, but the order of the variables in the second rule is swapped.
Figure 7(b) shows an example derivation and Figure 7(c) the position pair graph. Note
that there are two cycles and in each cycle the union of edge labels contains 1 and 2.

Next we will formally define the notion of position pair graph for an arbitrary
lnCFTG G = (N,∆, A0, R).
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A(x1, x2)→
δ

B

x2 x1

B(x1, x2)→
A

γ

x1

x2

(a) Rules.

A

x1 x2
⇒

δ

B

x2 x1

⇒

δ

A

γ

x2

x1
⇒

δ

δ

B

x1 γ

x2

⇒

δ

δ

A

γ

x1

γ

x2

(b) Derivation.

(A, 0, 1) (B, 0, 1) (A, 1, 2) (B, 1, 2)

(B, 0, 2) (A, 0, 2) (B, 2, 1) (A, 2, 1)

{2}

{1} {1}

{2}

{1}

(c) Position pair graph.

Figure 7:: Part of a lnCFTG G3.

Definition 4.1 The position pair graph of G is the {1, 2}-labeled directed graph
ppg(G) = (V,E) where

V = {(A, i, j) | A ∈ N (k), i ∈ ([k] ∪ {0}), j ∈ [k], i 6= j}

and E is defined as follows. Let (A, 0, j), (B, 0,m) ∈ V and r ∈ R|{A} such that there is
a w ∈ posB(rhs(r)) for which wm is xj-dominating. We let ((A, 0, j), U, (B, 0,m)) ∈ E
where U ⊆ {1, 2} is defined as follows:

• w 6= ε iff 1 ∈ U ,

• rhs(r)(wm) 6= xj iff 2 ∈ U .

Furthermore, let (A, i, j), (B, `,m) ∈ V with i 6= 0, ` 6= 0, and let r ∈ R|{A} be
such that there exists a w ∈ posB(rhs(r)) for which w` is xi-dominating and wm
is xj-dominating. We let ((A, i, j), U, (B, `,m)) ∈ E where U ⊆ {1, 2} is defined as
follows:

• rhs(r)(w`) 6= xi iff 1 ∈ U ,

• rhs(r)(wm) 6= xj iff 2 ∈ U .
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Observation 4.2 Let Q ∈ scc(ppg(G)). Then exactly one of the following two state-
ments holds:

• For each vertex (A, i, j) ∈ VQ, we have i = 0.

• For each vertex (A, i, j) ∈ VQ, we have i 6= 0.

Now we can characterize the property of a lnCFTG G being self-embedding in
terms of the position pair graph of G.

Theorem 4.3 A lnCFTG G is self-embedding iff ppg(G) contains a vertex (A, i, j)
and a path from (A, i, j) to (A, i, j) such that the union of all its labels contains 1
and 2.

Proof. [⇒]: If G is self-embedding, then Property (1) or (2) holds. If Property (1)
holds, there is a derivation starting from A(x1..k) resulting in a tree with an xi-
dominating occurrence of A which is not at the root, and xi occurs in its i-th argument
position but not as its direct descendant. This derivation corresponds to a cycle in
ppg(G) of the same length. Since symbols are generated both above A and between A
and xi, the union of the edge labels contains 1 and 2.

Similarly, if Property (2) holds, there is a derivation that corresponds to a cycle in
ppg(G). The union of the edge labels of this path contains 1 and 2, because symbols
are synchronously generated under two different argument positions.

[⇐]: Suppose that there is a cycle in the position pair graph and the union of its
edge labels contains 1 and 2. Then we can construct a derivation in G which satisfies
Property (1) or (2): For each edge in the cycle, we apply a rule that gave rise to this
edge in the construction of ppg(G). 2

Corollary 4.4 For each lnCFTG G, it is decidable in polynomial time whether G is
self-embedding.

Proof. The position pair graph of G can be constructed in polynomial time in the
following parameters of G: number of nonterminals, the maximal rank of the nonter-
minals, the number of rules, and the maximal number of occurrences of nonterminals
in the RHS of any rule. One can enumerate all SCCs of ppg(G) in linear time [4,
p. 617]. For a SCC in ppg(G) it can be determined in linear time whether the union
of all its edge labels is {1, 2}. By Theorem 4.3 this is all that is required to decide
whether G is self-embedding. 2

The reader might have realized that none of our examples contains nested nonter-
minals. This choice is reasonable, because the grammars remain self-embedding even
if one replaces any occurrence of a terminal by a nonterminal (with arbitrary rules).
However, applying this replacement to a non-self-embedding lnCFTG might lead to
a non-self-embedding lnCFTG or a self-embedding lnCFTG. For instance, if in the
non-self-embedding lnCFTG with the two rules

A(x)→ A(G(x)) and G(x)→ γ(x)
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A(x1, x2)→
A

γ

x1 x2

α

∣∣∣∣∣∣∣∣
A

β δ

x1 x2

∣∣∣∣∣∣∣∣
κ

x1 x2

(a) Rules.

(A, 0) (A, 1) (A, 2)

{g} {g}

{g}

{g}

(b) Position graph.

Figure 8:: Part of a lnCFTG G4.

we replace the second rule by

G(x)→ A(x) .

then the resulting grammar is self-embedding. Our formal investigation allows for
nested nonterminals, but they will not be needed in our examples to illustrate various
constructions and proofs.

5. Uniqueness in Argument Positions

In this section, we introduce a property called unique in argument positions. We
prove that each non-self-embedding lnCFTG can be transformed into an equivalent
lnCFTG which is unique in argument positions. This syntactic restriction will turn
out to be useful to construct an equivalent RTG for each non-self-embedding lnCFTG.
The definition of the property is based on the concept of the position graph, which
we describe in the following. Subsequently, we will give a formal definition of the
property.

In this section, we let G = (N,∆, A0, R) be a non-self-embedding lnCFTG.

Position Graph. The graph contains one vertex for each pair of nonterminal and
argument position (including the special argument position 0 as in the case of the
position pair graph). Its edges represent the movement of values across argument
positions, and are labeled with {g} if new symbols are generated at the same time,
and with ∅ otherwise. For instance, Figure 8(b) depicts the position graph of the
lnCFTG G4 in Figure 8(a).

Definition 5.1 The position graph of G is the {g}-labeled directed graph pg(G) =
(V,E) where

V = {(A, i) | A ∈ N (k), i ∈ ([k] ∪ {0})} .

In order to obtain E, we first define the auxiliary mapping edg : R→ P(V ×P({g})×V )
as follows. Let A,B ∈ N and r ∈ R|{A} such that there exists a variable dominating
position w ∈ posB(rhs(r)).
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• If w 6= ε, then edg(r) contains the edge ((A, 0), {g}, (B, 0)) and

• if w = ε, then edg(r) contains the edge ((A, 0), ∅, (B, 0)).

Moreover, let i ∈ [rkN (A)] and j ∈ [rkN (B)] such that wj is xi-dominating.

• If rhs(r)(wj) 6= xi, then edg(r) contains the edge ((A, i), {g}, (B, j)) and

• if rhs(r)(wj) = xi, then edg(r) contains the edge ((A, i), ∅, (B, j)).

Furthermore, edg(r) does not contain any other elements. Then we define E =⋃
r∈R edg(r).

If an edge is labeled by {g}, then we call it generating. We call P ∈ scc(pg(G))
generating if P contains a generating edge. Sometimes we will also be interested in
the set of rules which have induced edges in a particular P ∈ scc(pg(G)). Formally,
we define the set of rules of P , denoted by rules(P ), to be the set

rules(P ) = {r ∈ R | EP ∩ edg(r) 6= ∅} .

Let n ∈ N and r1, r2, . . . , rn ∈ R. We say that the sequence r1r2 . . . rn induces a
path

p : (A0, i0)→ (A1, i1)→ . . .→ (An, in)

in pg(G) if for each k ∈ [n] the set edg(rk) contains the edge (Ak−1, ik−1)→ (Ak, ik).
For instance consider the rules in Figure 8(a), which we denote by r1, r2, and r3,
respectively. The sequence of rules s = r1r2r2 induces the paths

p1 : (A, 0)
∅→ (A, 0)

∅→ (A, 0)
∅→ (A, 0) ,

p2 : (A, 1)
{g}→ (A, 1)

{g}→ (A, 2)
{g}→ (A, 2) , and

p3 : (A, 2)
{g}→ (A, 1)

{g}→ (A, 2)
{g}→ (A, 2) .

We make three observations concerning the position graph, which will help us later.

Observation 5.2 Let P ∈ scc(pg(G)). Then exactly one of the following two state-
ments holds:

• For each vertex (A, i) ∈ VP , we have i = 0.

• For each vertex (A, i) ∈ VP , we have i 6= 0.

Observation 5.3 Let A,B ∈ N and r ∈ R. Then (A, i) → (B, j) is in edg(r) for
some i ∈ [rkN (A)] and j ∈ [rkN (B)] iff (A, 0)→ (B, 0) is in edg(r).

Observation 5.4 Let M ⊆ N and M ′ = {(A, i) | A ∈M, i ∈ ([rkN (A)] ∪ {0})}. By
definition of the respective fragments, we have that pg(G|M ) = pg(G)|M ′ .
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For P ∈ scc(pg(G)), we denote the set of all nonterminals occurring in P by MP ,
i.e., MP = {A | k ∈ N, (A, k) ∈ VP }.

Since G is non-self-embedding, the rules of a generating SCC of pg(G) which
does not contain references to 0 have a particular form. This will be crucial while
transforming the grammar.

Lemma 5.5 Let P ∈ scc(pg(G)) be generating such that (C, 0) /∈ VP for each C ∈ N .
Then each rule in rules(P ) has the form A(x1..k)→ B(ζ1..`) for some A,B ∈MP and
ζ1..` ∈ TN∪∆(Xk).

Proof. The proof is by contradiction.
Assume that there is a rule r in rules(P ) such that rhs(r)(ε) /∈ MP . Since r ∈

rules(P ) and (C, 0) /∈ VP for each C ∈ N , it follows that there are A,B ∈ MP ,
i ∈ [rkN (A)], j ∈ [rkN (B)], and U ⊆ {g} such that ((A, i), U, (B, j)) ∈ EP ∩ edg(r).
From Definition 5.1, we get that there is a position w ∈ posB(rhs(r)) such that wj is
xi-dominating. By the assumption, we have that w 6= ε.

Since (A, i) and (B, j) are vertices in the same generating SCC P , there are
C,D ∈ MP , m ∈ [rkN (C)], and n ∈ [rkN (D)] such that ((C,m), {g}, (D,n)) ∈ EP
and thus the following path exists in P :

p : (A, i)→ (B, j)→ . . .→ (C,m)
{g}→ (D,n)→ . . .→ (A, i)

where the first edge is induced by r.
We will now use p and construct a cycle in ppg(G). For each edge (A′, i′)→ (B′, j′)

in p, there are r′ ∈ rules(P ) and w′ ∈ posB′(rhs(r′)) such that w′j′ is xi′ -dominating.
Then, by Definition 4.1, there is an edge ((A′, 0, i′), U ′, (B′, 0, j′)) in ppg(G) for some
U ′ ⊆ {1, 2}. Hence, we obtain the cycle

p′ : (A, 0, i)
U→ (B, 0, j)→ . . .→ (C, 0,m)

U ′→ (D, 0, n)→ . . .→ (A, 0, i) .

We now investigate U and U ′. First consider the edge ((A, 0, i), U, (B, 0, j)). This
edge is induced using the rule r at position w in rhs(r). By Definition 4.1, we have
that 1 ∈ U , because w 6= ε. Second, consider the edge ((C, 0,m), U ′, (D, 0, n)). It
was constructed on the basis of ((C,m), {g}, (D,n)), for a rule r′ ∈ rules(P ) and a
position w′ ∈ posD(rhs(r′)) such that w′n is xm-dominating and rhs(r′)(w′n) 6= xm.
Hence, by Definition 4.1, we have 2 ∈ U ′.

Since p′ is a cycle in ppg(G) such that the union of its labels contains 1 and 2, the
lnCFTG G is self-embedding by Theorem 4.3. This contradicts the assumption on G.

2

Uniqueness in argument positions. Consider the rules of the lnCFTG G4 in
Figure 8(a). It can be seen that G4 can generate arbitrarily large trees, involving both
the first and the second argument position of A. At first sight, this seems difficult
to rhyme with the fact that G4 is non-self-embedding, which we can prove using
Theorem 4.3. Upon closer inspection however, we see that generation of γ’s and δ’s in
different argument positions is not synchronized. Using the first rule repeatedly, an
unbounded number of γ’s can be generated in the first argument position. Likewise,
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LHS
prel.
RHS

order-preserving
renumbering to

consecutive sequence
RHS

(a)
A〈2, 1〉
x1 x2
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A〈2, 0〉
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A〈2, 1〉
x1 x2
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A〈0, 2〉

β δ

x1 x2

A〈1, 2〉

β δ

x1 x2

(d)
A〈1, 2〉
x1 x2

→

A〈0, 2〉

β δ

x1 x2

A〈1, 2〉

β δ

x1 x2

Figure 9:: Rules from G4 with annotated relative ages.

using the second rule repeatedly, an unbounded number of δ’s can be generated in
the second argument position. But, by switching from the generation in argument
position i (with i ∈ {1, 2}) to the generation in the other argument position, the value
of argument position i is reset to a constant tree (β if i = 1; α if i = 2). Hence,
there is no synchronized generation of symbols in different argument positions of one
nonterminal.

In the following, we transform a non-self-embedding lnCFTG in such a way that
such unsynchronized generation below one nonterminal is distributed over distinct
nonterminals and thus, each nonterminal generates unbounded material in at most
one argument position. Before we present our method of transformation, we first give
a formal characterization of the desired property.

Definition 5.6 Let P ∈ scc(pg(G)) be generating. We call P unique in argument
positions if (A, j) ∈ VP and (A, j′) ∈ VP implies j = j′. We call G unique in argument
positions if each generating P ∈ scc(pg(G)) is unique in argument positions.

The transformation involves the notion of relative age of an argument position.
For an occurrence of a nonterminal A with rank k, the relative ages of the argument
positions are expressed by a permutation of [k]. For example, if k = 2, then the
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sequence 〈2, 1〉, which is a permutation of [2], states that the first position has relative
age 2 and the second one has relative age 1. The intuition is that the value in the
second position was ‘born’ after the value in the first position.

Upon applying a rule, the variables determine how relative ages are transferred
from the LHS to positions of the root nonterminal in the RHS, say an occurrence
of B with rank `. This is subject to the following two constraints. First, if a new
value is ‘born’ in argument position j of B, which is when there are no variables in
that position, it receives a unique relative age that is smaller than any position that
does have variables; we assign 0 as a preliminary value. This is exemplified by 0 in
〈4, 0〉 in the preliminary RHS in Figure 9(a), and 0 in 〈0, 4〉 in the preliminary RHS of
Figure 9(c). Second, if an argument position of B contains several variables, we take
the maximum of the relative ages of the corresponding LHS positions as preliminary
value. This is exemplified by 2 in 〈2, 0〉 in the preliminary RHS in Figure 9(a), where
2 = max{2, 1}, and similarly 2 in 〈0, 2〉 in Figure 9(c). We then assign the final
ages represented as a permutation according to the following rules. The higher the
preliminary value of an argument position is, the higher its final age will be. The
argument positions with preliminary value 0 are assigned decreasing values from left
to right. Thus, the newly born argument positions obtain the smallest relative ages,
whereas the argument positions obtain the smallest relative ages, whereas the argument
positions that contain older subtrees obtain strictly higher relative ages. Hence, 〈0, 2〉
is turned into 〈1, 2〉. This transformation yields the RHS of the newly constructed
rule, as depicted in Figure 9.

Lemma 5.7 For each non-self-embedding lnCFTG G, there is an equivalent lnCFTG
H that is non-self-embedding and unique in argument positions.

Proof. Assume that G is not unique in argument positions. Then there is a generating
P ∈ scc(pg(G)) such that P is not unique in argument positions. We note that, for
each A ∈ N , the vertex (A, 0) is not in P (cf. Observation 5.2).

The following construction splits each nonterminal involved in P into new nontermi-
nals of the form A〈π〉 where π is a permutation of the argument positions of A. Each
number in π represents the relative age of the corresponding argument with respect to
the other arguments. The lower the number of an argument, the more recently its
corresponding value was introduced, as explained above Lemma 5.7.

Formally, let r : A(x1..k) → B(ζ1..`) be a rule in rules(P ) for some A,B ∈ MP

(cf. Lemma 5.5). Furthermore, let π be a permutation of [k]. This determines a
permutation πr of the argument positions of B. For this, we define the auxiliary
mapping ρ : [`]→ N as follows. For each j ∈ [`], let Vj denote the set of all i ∈ [k] such
that xi occurs in ζj and let ρ(j) = max({π(i) | i ∈ Vj}) where max(∅) = 0. Then, we
define the permutation πr of [`] as the unique permutation such that πr(j) < πr(j

′) if

(i) ρ(j) < ρ(j′), or

(ii) ρ(j) = ρ(j′) and j > j′.

Note that, in case (ii), we have that ρ(j) = ρ(j′) = 0 because of linearity.
We construct a lnCFTG H = (N ′,∆, A0, R

′) where
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• N ′ = (N \MP ) ∪ Ñ and Ñ = {A〈π〉(k) | A ∈M (k)
P , π is a permutation of [k]},

• R′ = enr((R \ R|MP
) ∪ R̃1 ∪ R̃2), and R̃1, R̃2, and enr are defined as follows.

For each rule r : (A(x1..k) → B(ζ1..`)) in rules(P ) and for each permutation
π of [k] and πr as constructed above, let A〈π〉(x1..k) → B〈πr〉(ζ1..`) be in R̃1.
Furthermore, for each rule r ∈ (R|MP

\ rules(P )) with lhs(r)(ε) = A(k), let
A〈π〉(x1..k)→ rhs(r) be in R̃2 for each permutation π.

The set of rules (R \R|MP
) ∪ R̃1 ∪ R̃2 is ‘enriched’ by the function enr, which

replaces each occurrence of a nonterminal A ∈M (k)
P in the RHS of each rule by

A〈π̃〉 where π̃ is the reversal of [k], i.e., for each i ∈ [k] we have π(i) = k − i+ 1.

Due to the use of the maximum in the definition of the permutations, we have that if

there is a path from (B〈π〉(k)
, i) to (B′〈π′〉(`), i′) in pg(H), then k − π(i) ≥ `− π′(i′).

Claim 1: G and H are equivalent. Moreover, H is non-self-embedding.
Proof of Claim 1: For each derivation of G, there is precisely one way to add
permutations to turn it into a derivation of H, as LHS permutations uniquely determine
RHS permutations, and all permutations are allowed. Thus, G and H are equivalent.

Furthermore, since each derivation in H can be projected onto a derivation in G,
the lnCFTG H is non-self-embedding. �
Claim 2: H|Ñ is unique in argument positions.

Proof of Claim 2: We already stated that if there is an edge from (B〈π〉(k)
, i) to

(B〈π′〉(`), i′), then k− π(i) ≥ `− π′(i′). Recall that this property holds due to the use
of the maximum in the construction of π′.

Consider any generating P ′ ∈ scc(pg(H|Ñ )), A(k) ∈ MP , a permutation π of [k],
and i, j ∈ [k] such that (A〈π〉, i) ∈ VP ′ and (A〈π〉, j) ∈ VP ′ . Since (A〈π〉, i) and
(A〈π〉, j) are in the same SCC P ′ we can deduce that (i) there is a path from (A〈π〉, i)
to (A〈π〉, j) and (ii) there is a path in the other direction. We can thus conclude that
k − π(i) ≥ k − π(j) and k − π(j) ≥ k − π(i). Since π is a permutation, we have i = j.
Therefore, H|Ñ is unique in argument positions. �

The above process can be repeated until the resulting grammar is unique in argument
positions. Termination is guaranteed, because in the transformation we only introduce
SCCs which are unique in argument positions and thus, the total number of SCCs
which are not unique in argument positions decreases in each step. 2

If we apply the construction of Lemma 5.7 to the rules of G4 in Figure 8(a), then
we obtain the lnCFTG depicted in Figure 10(a). Figure 10(b) shows the relevant part
of the corresponding position graph where each edge is generating (edge labels were
omitted). The non-trivial SCC of Figure 10(b) is marked by a dashed box. It can
be seen that each generating SCC contains, for each involved nonterminal, a unique
argument position.

6. Proving Regularity of Non-self-embedding lnCFTG

In this section, let H = (N,∆, A0, R) be a non-self-embedding lnCFTG which is
unique in argument positions.
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(a) Rules.

(A〈2, 1〉,1)

(A〈2, 1〉, 2)

(A〈1, 2〉, 1)

(A〈1, 2〉, 2)

(b) Part of the position graph.

Figure 10:: The lnCFTG obtained by applying the construction of Lemma 5.7 to G4.

Consider the position graph of H. We classify a generating SCC P ∈ scc(pg(H))
according to whether nonterminals involved in P generate unbounded material below
them, or above them. Formally, for each SCC P ∈ scc(pg(H)) we say that P is

• bottom-recursive if P is generating and contains (A, 0) for some A ∈ N ,

• top-recursive if P is generating and does not contain (A, 0) for every A ∈ N .

As a running example, we consider the non-self-embedding lnCFTG

H1 = ({A(0)
0 , A(3), B(2)}, {α(0), β(0), σ(2), κ(3)}, A0, R)

where R consists of the following four rules:

A0 → A(α, α, α) ,

A(x1, x2, x3)→

B

σ

x1 x2

x3

∣∣∣∣∣∣∣∣
κ

x1 x2 x3
, B(x1, x2)→

A

β x1 x2
.

Figure 11 depicts the position graph of H1, which shows that H1 is unique in argument
positions. Furthermore, pg(H1) contains five SCCs, from which three are non-trivial.
The non-trivial SCCs are marked by dashed boxes. The SCC P is top-recursive, since
it is generating and does not contain (A, 0), (B, 0), or (A0, 0). All other SCCs are not
generating and thus neither top-recursive nor bottom-recursive.

6.1. Transforming a Top-Recursive SCC into Bottom-Recursive SCCs

We present a construction which transforms a top-recursive SCC into at least one
bottom-recursive SCC and a number (possibly 0) of non-generating SCCs. We repeat
this process, until no more top-recursive SCCs remain in the position graph of the
grammar. To be able to reason about termination of the process, we count the number
of vertices in top-recursive SCCs.
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(A0, 0) (A, 0)

(B, 0)

(A, 1) (A, 2) (A, 3)

(B, 1) (B, 2)

{g} {g}

P

Figure 11:: The position graph of H1.

Definition 6.1 The top-recursive rank of H, denoted by topRank(H), is the number
of vertices in top-recursive SCCs in pg(H), or formally

topRank(H) =
∑

P∈scc(pg(H))
P is top-recursive

|P | .

For the running example lnCFTG H1 (cf. Figure 11 for its position graph), we have
topRank(H1) = 2, since (A, 2) and (B, 1) are in the only top-recursive SCC P .

We recall Lemma 5.5 stating that, for each top-recursive SCC P , each rule r ∈
rules(P ) has the form A(x) → B(ξ1..`), where A,B ∈ MP . The following two
observations will be needed later.

Observation 6.2 We let r ∈ R be of the form A(x1..k) → B(ξ1..`). Then, for each
i ∈ [k], there is a unique ji ∈ [`] such that xi occurs in ξji . Thus, there is an edge
(A, i)→ (B, ji) in edg(r).

Given an outside-in derivation s consisting exclusively of rules from a top-recursive
SCC P and given a vertex (A, i) ∈ Vpg(H) where A ∈ MP and A(x) ⇒s ξ for some
ξ ∈ TN∪∆(XrkN (A)), there are uniquely determined B ∈ MP , j ∈ [rkN (B)], and
p : (A, i)→∗ (B, j) such that each edge along the path p is determined according to
Observation 6.2. In this case, we say that s top-induces the path p.

Observation 6.3 Let r ∈ R be of the form A(x) → B(ξ1..`). If there are i, j ∈
[rkN (A)] with i 6= j and k ∈ [`] such that xi and xj both occur in ξk, then edg(r)
contains the edges ((A, i), {g}, (B, k)) and ((A, j), {g}, (B, k)).

The proof of the following lemma incorporates two constructions and is rather
lengthy. A full example can be found after the proof and may be consulted alongside.

Lemma 6.4 Let H be a non-self-embedding lnCFTG which is unique in argument
positions and topRank(H) ≥ 1. Then we can construct a non-self-embedding
lnCFTG H ′ which is unique in argument positions such that L(H ′) = L(H) and
topRank(H ′) < topRank(H).
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Proof. Since topRank(H) ≥ 1, there is a P ∈ scc(pg(H)) which is top-recursive
and not reachable from any other top-recursive SCC. Let P now be fixed. For each
B ∈MP , we denote the unique index j ∈ [rkN (B)] such that (B, j) ∈ VP by jB .

We will construct a set K of items of the form 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉. Each
item represents the fact that there is an ξjB such that A(x)⇒∗ B(ξ1..`). Intuitively,
an item in K captures a context in which trees ξjB can be generated. We use d as
a placeholder for the dynamic position. We will show that K is finite and use the
elements of K as nonterminals for new rules that will replace the rules from rules(P )
and thereby decrease the top-recursive rank.

Formally, we define K through a family (Ki | i ∈ N) as follows.

• K0 = {〈A,A, x1..(jA−1),d, x(jA+1)..k〉 | k ∈ N, A ∈M (k)
P }.

• We let i ∈ N. Then Ki+1 is the smallest set K ′ satisfying the following condition.
If there are 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ Ki, r ∈ rules(P )|{B}, m ∈ N, C ∈
M

(m)
P and ξ′1..m ∈ TN∪∆(XrkN (A)) such that B(ξ1..(jB−1), xjB , ξ(jB+1)..`) ⇒r

C(ξ′1..m) is an outside-in derivation, then 〈A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m〉 is in K ′.

• K =
⋃
i∈NKi.

Claim 1: Let n ∈ N. Furthermore, let A ∈M (k)
P and B ∈M (`)

P with k, ` ∈ N+, and
ξ1..(jB−1), ξ(jB+1)..` ∈ TN∪∆(Xk). The following are equivalent.

(i) There are a ξjB ∈ TN∪∆(Xk) and an outside-in derivation s such that |s| = n
and A(x)⇒s B(ξ1..`).

(ii) 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ Kn.

Proof of Claim 1: (i) ⇒ (ii): We can show this claim by well-founded induction on n.
Clearly, for each A ∈ MP , we have that A(x) derives to A(x) within zero rule

application steps and also by definition 〈A,A, x1..(jA−1),d, x(jA+1)..k〉 ∈ K0.
Now assume that the claim holds for derivations of length n for some n ∈ N. Assume

a derivation s of length n and a rule r ∈ R such that A(x)⇒s B(ξ1..`)⇒r C(ξ′1..m).
By the induction hypothesis, we have 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ Kn and thus,
by definition of Kn+1, it follows that 〈A,C, ξ′1..(jC−1),d, ξ

′
(jC+1)..m〉 ∈ Kn+1.

(ii) ⇒ (i): For each A ∈ MP we have 〈A,A, x1..(jA−1),d, x(jA+1)..k〉 ∈ K0

and it holds that A(x) derives to A(x) within zero rule application steps. Now
let n ∈ N and assume that the claim holds for each element in Kn. Further-
more, assume 〈A,C, ξ′1..(jC−1),d, ξ

′
(jC+1)..m〉 ∈ Kn+1. By definition of Kn+1, there

are 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ Kn, a rule r : B(x) → C(ζ1..m), and some
ξ′jC ∈ TN∪∆(Xk) such that B(ξ1..(jB−1), xjB , ξ(jB+1)..`) ⇒r C(ξ′1..m). By the in-
duction hypothesis, there are ξjB ∈ TN∪∆(Xk) and a derivation A(x)⇒s B(ξ1..`) of
length n. Then, we extend s with r and obtain

A(x)⇒s B(ξ1..`)⇒r C(ξ′1..(jC−1), ξ
′
jC [xjB/ξjB ], ξ′(jC+1)..m) .

�

Claim 2: The set K is finite.
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Proof of Claim 2: In this proof let n1 = max{|pos∆∪(N\MP )(rhs(r))| | r ∈ rules(P )},
n2 = |MP |, and n3 = max{rkN (C) | C ∈MP }. We prove the claim by contradiction.

Assume that K is an infinite set. Then there are 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ K,
i,m ∈ [`] \ {jB}, and rule sequences s, s1, and s2 of rules in rules(P ) such that

(1) |pos(ξi)| > n1 · n2 · n3,
(since ∆ and N are finite sets, there is such a tree ξi)

(2) s is an outside-in derivation and there is a ξjB with A(x)⇒s B(ξ1..`),
(cf. Claim 1)

(3) s1 is a subsequence of s such that s1 top-induces a generating cycle p1 : (B,m)→∗
(B,m) in a SCC of pg(H) different from P ,
(since ξi is sufficiently large, there must be a generating cycle)

(4) s2 is an outside-in derivation and it top-induces a generating cycle p2 : (B, jB)→∗
(B, jB) in P .
(since P is a top-recursive SCC, there must be such a generating cycle)

We show the following statement by induction.

Statement (†): For each n ∈ N, there is an mn ∈ [rkN (B)] such that

(i) for each i ∈ [n], the sequence s1s2 top-induces a path (B,mi−1) →∗ (B,mi),
and

(ii) mn /∈ {jB ,m0, . . . ,mn−1}.

For the induction base (n = 0), we let m0 = m and recall that m 6= jB. For the
induction step, we assume that (†) holds for n ∈ N. A consequence of Observation 6.2
is that there is a unique m′ such that s1s2 top-induces the path (B,mn)→∗ (B,m′).
We let mn+1 = m′. Then, (i) holds for mn+1. Now, we show that mn+1 satisfies (ii). If
mn+1 = jB , then (B,m)→∗ (B, jB), but because (B,m) is in a generating SCC, this
would contradict the assumption that P is not reachable from any other generating
SCC. It remains to prove mn+1 /∈ {m0, . . . ,mn}.

Assume that mn+1 = mj for some j ∈ {0, 1, . . . , n}. The sequence (s1s2)n−j+1

top-induces

p : (B,mj)→(s1s2)n−j (B,mn)→s1s2 (B,mj)

p′ : (B, jB)→(s1s2)n−j (B, jB) →s1s2 (B, jB) .

We show that p and p′ are generating. If j = 0, then the cycle p is generating,
because it contains p1. If j 6= 0, then s1s2 top-induces p′′ : (B,mn)→s1s2 (B,mj) and
p′′′ : (B,mj−1)→s1s2 (B,mj), and, by Observation 6.3, p′′ is generating and therefore
p is generating. Thus p is generating regardless of the choice of j. The path p′ is
generating, because it contains p2.

We will now combine p and p′ into one cycle in ppg(H). For this, we consider each
step simultaneously in both paths. We let k ∈ [|s1s2| · (n−j+1)] and consider the k-th
step. We let ((B1, i1), U1, (B2, i2)) be the k-th edge in p and ((B1, j1), U2, (B2, j2))
be the k-th edge in p′. Both edges are top-induced by the same rule r. Hence, we
have that xi1 and xj1 occur in the subtrees rhs(r)|i2 and rhs(r)|j2 , respectively. By
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Observation 6.2 and since mj 6= jB , we have that i1 6= j1 and i2 6= j2. By Definition 4.1,
there is an edge ((B1, i1, j1), U ′, (B2, i2, j2)) in ppg(H). Furthermore, we have that
1 ∈ U ′ if U1 = {g} and 2 ∈ U ′ if U2 = {g}.

Hence, from p and p′, we obtain the following path p̃ in ppg(H):

p̃ : (B,mj , jB)→(s1s2)n−j (B,mn, jB)→s1s2 (B,mj , jB) .

Since p and p′ are both generating, p̃ is a cycle such that the union of all its path
labels contains 1 and 2. By Theorem 4.3, this contradicts H being non-self-embedding
and thus, (ii) holds for mn+1. This proves (†).

However, (†) conflicts with the finiteness of rkN (B) and thus, K is a finite set. �
We modify H with the help of K to construct a lnCFTG H ′. We let H ′ contain

all original rules, except the ones of rules(P ). We further add copies of the rules
from rules(P ) after transforming them into bottom-recursive rules. This is done by
reversing the rules, i.e., if H applies r1 and afterwards r2 (r1, r2 ∈ rules(P )), then H ′

applies first r2 and then r1.
Reversing a rule is achieved by considering the rule in the context of a derivation.

This context is represented by using the elements from K as nonterminals for H ′.
As an example, consider the rule r : A(x1, x2, x3) → B(σ(x1, x2), x3) from H1 (cf.
the running example). We have jA = 2 and jB = 1 and we consider the context
k1 = 〈A,A, β,d, x3〉 in K. If we consider r in the context of k1 we obtain

A(β, x2, x3)→ B(σ(β, x2), x3) .

In the RHS, we obtain the context k2 = 〈A,B,d, x3〉. We reverse the rule and construct
a new rule with LHS k2(x1, x2), where x1 and x2 are those variables of XrkN (A) not
present in k2. The RHS of the new rule is obtained from the subtree of rhs(r) at
position jB as follows. We replace xjA by k1(x1, x2) where again, x1 and x2 are the
variables of XrkN (A) not present in k1. Hence, r is turned into the rule

〈A,B,d, x3〉(x1, x2)→ σ(β, 〈A,A, β,d, x3〉(x1, x2), x3) .

We add some rules which handle the connection to rules outside of rules(P ). For
each 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ K and each rule r : B(x)→ ζ in R|MP

\ rules(P ),
we create the rule

A(x)→ ζ[ξ1..(jB−1), 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉(x`1 , . . . , x`d), ξ(jB+1)..`] .

Intuitively, the nonterminal from K generates all symbols that would have been
generated by an iteration of rules in rules(P ) below the dynamic position of B. By
the substitution into ζ, we ensure that the result of the recursion is placed outside of
the nonterminal and argument position participating in P .

Formally, we construct H ′ = (N ′,∆, A0, R
′) as follows. We let N ′ = N ∪K where,

for each 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ K, we define its rank to be the number of
variables from XrkN (A) not present in ξ1..(jB−1), ξ(jB+1)..`. We define R′ using the
following rules.

(1) R \R|MP
⊆ R′;
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(2) for each 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ K and eachB(x)→ ζ inR|MP
\rules(P ),

we let

A(x)→ ζ[ξ1..(jB−1), 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉(x`1 , . . . , x`d), ξ(jB+1)..`]

be in R′ where x`1 , . . . , x`d are those variables of XrkN (A) that do not occur in
ξ1..(jB−1), ξ(jB+1)..` in ascending order;

(3) for each A ∈MP , we let

〈A,A, x1..(jA−1),d, x(jA+1)..rkN (A)〉(xjA)→ xjA

be a rule in R′;

(4) for each 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ K and r ∈ rules(P )|{B} of the form
B(x) → C(ζ1..m) such that B(ξ1..(jB−1), xjB , ξ(jB+1)..`) ⇒r C(ξ′1..m) is an
outside-in derivation, we let

〈A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m〉(xm1 , . . . , xmd′ )

→ ζjC [ξ1..(jB−1), 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉(x`1 , . . . , x`d), ξ(jB+1)..`]

be in R′ where xm1
, . . . , xmd′ and x`1 , . . . , x`d are those variables of XrkN (A)

which are not present in ξ′1..(jC−1), ξ(jC+1)..m and ξ1..(jB−1), ξ(jB+1)..`, respec-
tively, in ascending order of their indices;

(5) no other rules are in R′.

By inspecting all newly introduced rules, it can be verified that H ′ is non-self-
embedding.

Claim 3a: Let A,B ∈ MP , ` = rkN (B), and ξ1..` ∈ TN∪∆(XrkN (A)). Then the
following are equivalent.

(i) There is an outside-in derivation s consisting exclusively of rules in rules(P )
such that A(x)⇒s B(ξ1..`).

(ii) There is a derivation s′ of rules in H ′ created due to (4) such that

〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉(x`1 , . . . , x`d)

⇒s′ ξjB [xjA/〈A,A, x1..(jA−1),d, x(jA+1)..rkN (A)〉(xjA)]

where x`1 , . . . , x`d are those variables of XrkN (A) that do not occur in the sequence
of trees ξ1..(jB−1), ξ(jB+1)..`.

Proof of Claim 3a: We abbreviate x1..(jA−1),d, x(jA+1)..rkN (A) by xd.
(i)⇒(ii): We prove the claim by induction on the length of s. For |s| = 0, we

trivially get |s′| = 0. Now we assume that s = s1r for some sequence s1 of rules from
rules(P ) and r : B(x)→ C(ζ1..m) in rules(P )|{B} (cf. Lemma 5.5) such that A(x)⇒s1

B(ξ1..`)⇒r C(ξ′1..m). Note that ξ′jC = ζjC [ξ1..`]. By the induction hypothesis, there is
a derivation s′1 such that

〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉(x`1 , . . . , x`d)⇒s′1
ξjB [xjA/〈A,A, xd〉(xjA)] .
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Furthermore, by Claim 1, we have 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ K. Then, by (4),
there is a rule

r′ : 〈A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m〉(xm1

, . . . , xmd′ )

→ ζjC [ξ1..(jB−1), 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉(x`1 , . . . , x`d), ξ(jB+1)..`] .

It can be seen that

〈A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m〉(xm1

, . . . , xmd′ )

⇒r′s′1
ζjC [ξ1..(jB−1), ξjB [xjA/〈A,A, xd〉(xjA)], ξ(jB+1)..`]

= ζjC [ξ1..`][xjA/〈A,A, xd〉(xjA)] .

Hence, s′ = r′s′1 is the desired derivation of rules created due to (4).
(ii)⇒(i): We prove this by induction on the length of s′. For the base case |s′| = 0,

we trivially get |s| = 0. For |s′| ≥ 1, we let s′ = r′s′1 and

〈A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m〉(xm1

, . . . , xmd′ )⇒r′s′1
ξ′jC [xjA/〈A,A, xd〉(xjA)]

where r′ is a rule due to (4) of the form

r′ : 〈A,C, ξ′1..(jC−1),d, ξ
′
(jC+1)..m〉(xm1

, . . . , xmd′ )

→ ζ[z/〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉(x`1 , . . . , x`d)]

for some ζ ∈ CN∪∆∪X({z}), 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ K, and r : B(x) →
C(ζ1..m) in R such that B(ξ1..(jB−1), xjB , ξ(jB+1)..`) ⇒r C(ξ′1..(jC−1), ξ

′, ξ′(jC+1)..m)

is an outside-in derivation. We note that ξ′ = ζ[z/xjB ] and ξ′ =
ζjC [ξ1..(jB−1), xjB , ξ(jB+1)..`].

Furthermore, there is some ξjB ∈ TN∪∆(XrkN (A)) such that

〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉(x`1 , . . . , x`d)⇒s′1
ξjB [xjA/〈A,A, xd〉(xjA)] .

By the induction hypothesis, there is an outside-in derivation s1 such that A(x)⇒s1

B(ξ1..`). Consider the outside-in derivation A(x) ⇒s1 B(ξ1..`) ⇒r C(ξ′′1..m). It can
be seen that, for each i ∈ [m] \ {jC}, we have ξ′′i = ξ′i. We furthermore have
ξ′′jC = ζjC [ξ1..`] = ζ[z/ξjB ] = ξ′jC . Hence, s1r is the desired outside-in derivation. �
Claim 3b: Let A,B ∈ MP , ` = rkN (B), and ξ1..` ∈ TN∪∆(XrkN (A)). Then the
following are equivalent.

(i) There is an outside-in derivation s consisting exclusively of rules in rules(P )
such that A(x)⇒s B(ξ1..`).

(ii) There is a derivation s′ of rules in H ′ created due to (3) and (4) such that
〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉(x`1 , . . . , x`d)⇒s′ ξjB where x`1 , . . . , x`d are those
variables of XrkN (A) that do not occur in the sequence of trees ξ1..(jB−1), ξ(jB+1)..`.

Proof of Claim 3b: This claim follows directly from Claim 3a by using exactly one
rule due to (3) at the end of s′. �
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Claim 4: L(H) = L(H ′).

Proof of Claim 4: L(H) ⊆ L(H ′): We let ξ̃ ∈ T∆ and s be a derivation such that

A0 ⇒s ξ̃ holds in H. If s contains no rules from R|MP
, then A0 ⇒s ξ̃ holds in H ′

as well, since all rules are in R′ due to (1). Now we assume that a rule from R|MP

occurs in s. Then we may reorder s such that rules of R|MP
are executed in sequence

as follows. There are A,B ∈MP and some ζ ∈ C∆({z}) such that

A0 ⇒s0 ζ[A(ξ1..k)]⇒s1 ζ[B(ξ′1..`)]⇒r ζ[ζ ′[ξ′1..`]]⇒s2 ξ̃

where s0 is a sequence of rules such that A0 ⇒s0 ζ[A(ξ1..k)] holds in both H and H ′,
s1 is an outside-in derivation consisting of rules from rules(P ), r : B(x)→ ζ ′ is a rule
in R|{B} \ rules(P ), and s2 is the remaining sequence of rules in R. Note that rules in
s0 can be due to (1) or they can be chosen recursively by the following argument.

We consider the outside-in derivation A(x)⇒s1 B(ζ1..`). We note that ξ′i = ζi[ξ1..k]
for each i ∈ [`], i.e., the derivation is independent from its context. By Claim 1, we
have 〈A,B, ζ1..(jB−1),d, ζ(jB+1)..`〉 ∈ K. Note that r has LHS-nonterminal B and thus
there is a rule due to (2) using 〈A,B, ζ1..(jB−1),d, ζ(jB+1)..`〉 and r.

By Claim 3, there is a derivation 〈A,B, ζ1..(jB−1),d, ζ(jB+1)..`〉(x)⇒s′1
ζB. Hence,

we replace s0s1r by

A0 ⇒s0 ζ[A(ξ1..k)] = ζ[A(x1..k)][ξ1..k]

⇒ ζ[ζ ′[ζ1..(jB−1), 〈A,B, ζ1..(jB−1),d, ζ(jB+1)..`〉(x`1 , . . . , x`d), ζ(jB+1)..`]][ξ1..k] (2)

⇒s′1
ζ[ζ ′[ζ1..`]][ξ1..k] (Claim 3b)

= ζ[ζ ′[ξ′1..`]] .

Note that the above derivation does not use any rules from rules(P ). By applying the
above method repeatedly, we can replace the remaining rules from rules(P ) in s2 and
obtain a derivation in H ′.
L(H) ⊇ L(H ′): A derivation in H ′ consists either of rules also present in H or can

be reordered to contain rule sequences described by the following regular expression

(1)∗
(
(2) (4)∗ (3)︸ ︷︷ ︸
use Claim 3b

(1)∗
)∗

where (i) stands for a rule due to the item (i) in the construction of R′. Using Claim 3b,
it can be seen that we can replace each underbraced sequence by a sequence of rules
in H with the same effect. �

Next we prove that the top-recursive rank of H ′ is smaller than the top-recursive
rank of H and show that H ′ is unique in argument positions. For this, we observe
two properties of pg(H ′), based on the construction of the rules of H ′.

(P1) For each top-recursive P ′ ∈ scc(pg(H ′)), we have MP ′ ∩K = ∅.
(Intuition: A generating cycle (A, i) →∗ (A, i) in pg(H ′) where A ∈ N can be
translated into a generating cycle in pg(H). In addition, an edge on such a
path from a nonterminal 〈A,B, ξ1..(jB−1),d, ξ(jB+1)..`〉 ∈ K to a nonterminal
C ∈ N implies that symbols are generated above a corresponding nonterminal



Non-Self-Embedding lCFTG Generate Regular Tree Languages 27

occurrence of A (cf. rules due to (4)). In a top-recursive SCC P ′ ∈ scc(pg(H ′)),
this contradicts H being non-self-embedding and hence MP ′ ∩K = ∅.)

(P2) We let (A, i), (B, j) ∈ Vpg(H). If (A, i) 6→∗ (B, j) in pg(H), then (A, i) 6→∗ (B, j)
in pg(H ′).

Claim 5a: For each top-recursive SCC P ′ ∈ scc(pg(H ′)) and each (A, i) ∈ VP ′ ,

there is a top-recursive SCC P̃ ∈ scc(H) such that (A, i) ∈ VP̃ .
Proof of Claim 5a: Let P ′ ∈ scc(pg(H ′)) be top-recursive and (A, i) ∈ VP ′ . By (P1),

A ∈ N and thus, there is a uniquely determined P̃ ∈ scc(pg(H)) such that (A, i) ∈ P̃ .

We show that P̃ is top-recursive.
There is a rule sequence s′ of rules from R′ such that s′ induces a generating path

p′ : (A, i) →s′ (A, i) in P ′. We transform p′ into a path p : (A, i) →∗ (A, i) in pg(H)
with the following case distinction on rules in s′. Let r′ be a rule in s′.

If r′ ∈ R, then the induced edge is not changed. Trivially, if r′ induces a generating
edge in p′, then it induces a generating edge in p. Now assume that r′ ∈ R′ \R and
r′ induces the edge (B1, i1)→r′ (B2, i2) in p where B1, B2 ∈ N , i1 ∈ [rkN (B1)], and
i2 ∈ [rkN (B2)]. In this case, r′ is due to (2). By Claims 1 and 3b, there is a sequence
s of rules in R such that p1 : (B1, i1)→s (B2, i2). Furthermore, it can be seen that s
is generating if r′ is. We replace (B1, i1)→r′ (B2, i2) by p1.

We transform s′ rule by rule as described above and obtain the path p : (A, i)→p

(A, i) in pg(H). We have that p is generating, because p′ is. Thus, P̃ is top-recursive.
�
Claim 5b: For each (A, i) ∈ VP and P ′ ∈ scc(pg(H ′)) such that (A, i) ∈ VP ′ , we
have that P ′ is not top-recursive.
Proof of Claim 5b: Let (A, i) ∈ VP and P ′ ∈ scc(pg(H ′)) such that (A, i) ∈ VP ′ . We
assume that P ′ is top-recursive. Then there is a generating path p′ : (A, i)→∗ (A, i)
in P ′. Furthermore, there are (B, j) ∈ Vpg(H′) and r′ ∈ R′ such that (A, i)→r′ (B, j)
is the first edge of p′. By (P1), we have B ∈ N . Since A ∈ MP , we have that
r′ is due to (2) and, by the construction of H ′, we have (B, j) /∈ VP . Thus, we
have (B, j) 6→∗ (A, i) in pg(H) and thus, by (P2), (B, j) 6→∗ (A, i) in pg(H ′). This
contradicts the existence of p′. Since there is no generating path (A, i) → (A, i) in
pg(H), we obtain a contradiction to P ′ being top-recursive. �

Claim 6: topRank(H ′) < topRank(H).
Proof of Claim 6: This is a consequence of Claims 5a and b. �

Claim 7: The lnCFTG H ′ is unique in argument positions.
Proof of Claim 7: We analyze newly introduced generating SCCs. Let P ′ ∈
scc(pg(H ′)) be generating. If P ′ is bottom-recursive, then by Observation 5.2, P ′ is
trivially unique in argument positions.

If P ′ is top-recursive, then we analyze the rules from rules(P ′). We note that,
by (P1), there are no rules due to (3) or (4). Hence, we consider rules due to (1) and
(2). We let (A, i), (A, j) ∈ VP ′ and p′ : (A, i)→∗ (A, j)→∗ (A, i) be a generating path
in pg(H ′). Then, we construct the path p in pg(H) by modifying p′ as follows. Edges
induced by rules due to (1) are taken over without modification. Each edge induced
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by a rule due to (2) is replaced by the path induced by the corresponding sequence of
rules in rules(P ) (cf. Claim 1) followed by the single rule outside of rules(P ). Hence,
p : (A, i) →∗ (A, j) →∗ (A, i) is a path in pg(H). Since H is unique in argument
positions, we have i = j and thus, H ′ is unique in argument positions. �

2

We illustrate the constructions from the proof of Lemma 6.4 using the example
lnCFTG H1 from the beginning of Section 6. It is clear that P (cf. Figure 11) is the
selected SCC since it is the only top-recursive SCC. We note that P is reachable from
one other SCC, which is not top-recursive.

The set K contains the contexts of trees that can be generated in the generating
argument positions using rules from rules(P ). We note that jA = 2 and jB = 1. The
set K contains the following items:

K = { 〈A,A, x1,d, x3〉 , 〈A,B,d, x3〉 , 〈A,A, β,d, x3〉 ,
〈B,B,d, x2〉 , 〈B,A, β,d, x2〉 }

We now present the rules constructed by (3) and (4).

(3) 〈A,A, x1,d, x3〉(x2)→ x2 (3) 〈B,B,d, x2〉(x1)→ x1

(4) 〈B,A, β,d, x2〉(x1)→
〈B,B,d, x2〉

x1

(4) 〈A,B,d, x3〉(x1, x2)→

σ

x1 〈A,A, x1,d, x3〉
x2

(4) 〈A,A, β,d, x3〉(x1, x2)→
〈A,B,d, x3〉

x1 x2

(4) 〈A,B,d, x3〉(x1, x2)→

σ

β 〈A,A, β,d, x3〉
x1 x2

(4) 〈B,B,d, x2〉(x1)→

σ

β 〈B,A, β,d, x2〉
x1

With the help of these rules we can illustrate Claim 3a and b. Consider the following
two derivations from H1 and H ′1. For easier comparison we denote the derivation of
H1 from left to right and the derivation of H ′1 from right to left. The two occurrences
of the terminal symbol σ are created at different stages of the derivations. We link
the corresponding creations by dashed curves.
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H1 :
A

x1 x2 x3
⇒

B

σ

x1 x2

x3 ⇒

A

β σ

x1 x2

x3 ⇒

B

σ

β σ

x1 x2

x3

H ′1 :

σ

β σ

x1 x2

⇐

σ

β σ

x1 E

x2

⇐

σ

β C

x1 x2

⇐

σ

β D

x1 x2

⇐
C

x1 x2

We use the abbreviations C = 〈A,B,d, x3〉, D = 〈A,A, β,d, x3〉, and E =
〈A,A, x1,d, x3〉.

We will now present the rules of H ′1 created due to (1) and (2).

(1) There is only one rule not in R \R|MP
: A0 → A(α, α, α).

(2) There is only one rule in R|MP
\ rules(P ), viz. r : A(x1, x2, x3)→ κ(x1, x2, x3).

Hence, we create rules for items in K where the second component is A, viz.,
〈A,A, x1,d, x3〉, 〈A,A, β,d, x3〉, and 〈B,A, β,d, x2〉. The context information
from these elements is incorporated into r.

A(x1, x2, x3)→

κ

x1 〈A,A, x1,d, x3〉

x2

x3

∣∣∣∣∣∣∣∣∣
κ

β 〈A,A, β,d, x3〉

x1 x2

x3

B(x1, x2)→

κ

β 〈B,A, β,d, x2〉

x1

x2

Figure 12 shows part of pg(H ′1) using the abbreviations C, D, and E as before.
The SCC formed by nonterminals from K is bottom-recursive. We observe that the
resulting lnCFTG H ′1 does not have any top-recursive SCC and thus topRank(H ′1) = 0.
Claims 5a and b are trivial for this example and Claim 6 is illustrated. It can be seen
that pg(H ′1) is unique in argument positions and this is an example for Claim 7.

Theorem 6.5 Let H be a non-self-embedding lnCFTG which is unique in argument
positions. Then there is a non-self-embedding lnCFTG H ′ which is unique in argument
positions, L(H ′) = L(H), and pg(H ′) does not contain top-recursive SCCs, i.e.,
topRank(H ′) = 0.

Proof. This theorem follows immediately from the repeated application of Lemma 6.4
to H. Since topRank(H) is finite and in every application the top-recursive rank
strictly decreases, the construction terminates. 2
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(A0, 0) (A, 0) (A, 1) (A, 2) (A, 3)

(E, 0) (E, 1)

(D, 0) (D, 1) (D, 2)

(C, 0) (C, 1) (C, 2)

{g}

{g}

{g}

Figure 12:: Part of the position graph of H ′1.

6.2. Transforming Top-Recursion-Free lnCFTG into RTG

In this section, we consider a non-self-embedding lnCFTG H such that pg(H) does not
contain a top-recursive SCC. Hence, for each rule r in H, exactly one of the following
three cases holds:

• r ∈ rules(P ) for some bottom-recursive SCC P ,

• r ∈ rules(P ) for some SCC P which is not generating, and r is of the form
A(x1..k)→ B(xj1 , . . . , xjk) where j1 . . . jk is a permutation of [k],

• r ∈ R \ (
⋃
P∈scc(pg(H)) rules(P )), i.e., r is not in the rules of any SCC and thus,

r is not involved in any recursion.

We note that each non-self-embedding lnCFTG H such that pg(H) does not contain
a top-recursive SCC, is unique in argument positions.

Lemma 6.6 Let H be a non-self-embedding lnCFTG and topRank(H) = 0. We can
construct a RTG G′ such that L(H) = L(G′).

Proof. Let H = (N,∆, A0, R). We will show that, since H contains no top-recursion,
in any outside-in derivation, no unboundedly large trees will occur in any argument
position of any nonterminal. In other words, the set

K = {〈ξ|w〉 | A0 ⇒d ξ, w ∈ posN (ξ), d is outside-in}

is finite.

We will construct K and use its elements as nonterminals of the RTG G′. The
subtrees from the nonterminals in K can then be used to construct rules that derive
the same language as H.

As an auxiliary tool we define, for every ξ ∈ TN∪∆(X),

cutN (ξ) = {〈ξ|v〉 | v ∈ posN (ξ), v outermost in posN (ξ)} .
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We let P0 = {〈A0〉} and define inductively, for each i ∈ N,

Pi+1 = Pi ∪
⋃
〈ξ〉∈Pi
r∈R|ξ(ε)

cutN (rhs(r)[ξ|1, . . . , ξ|`])

where in each case ` = rkN (ξ(ε)). Note that Pi is finite for every i ∈ N.

Claim 1: There is an n ∈ N such that K = Pn = Pn+1.
Proof of Claim 1: Since H is not top-recursive, each SCC P involving (B, j) with j 6= 0
is non-generating, i.e., considering all outside-in derivations using rules from rules(P ),
the set of trees generated below a nonterminal is finite. Hence, an item in K is a
nonterminal plus a choice of argument values drawn from a finite set. We use a
saturation process to find all relevant argument values.

Furthermore, since P0 = {〈A0〉}, it can be seen that Pn = K. �
Now we let n ∈ N be such that Pn = Pn+1. We construct the desired RTG

G′ = (Pn,∆, 〈A0〉, R′) where R′ is defined as follows. For each 〈ξ〉 ∈ Pn with
` = rkN (ξ(ε)) and r ∈ R|ξ(ε), let 〈ξ〉 → ζ be in R′ where ζ is obtained from
rhs(r)[ξ|1, . . . , ξ|`] by replacing the subtree at each outermost position v ∈ posN (rhs(r))
by 〈rhs(r)[ξ|1, . . . , ξ|`]|v〉. We denote the rule constructed in this way by [r, 〈ξ〉].

Claim 2: For each m ∈ N and ξ ∈ TN∪∆, the following are equivalent.

(i) There is an outside-in derivation d such that |d| = m and A0 ⇒d ξ.

(ii) There is a ξ′ ∈ T∆(K) and a derivation d′ such that |d′| = m, 〈A0〉 ⇒d′ ξ
′,

and ξ = removeBrackets(ξ′) where removeBrackets(ξ′) is obtained from ξ′ by
replacing each position labeled 〈B(ξ1..`)〉 by the tree B(ξ1..`).

Proof of Claim 2: We assume that d and d′ are of the form

d : A0 =ζ0 ⇒r1 ζ1 ⇒r2 . . .⇒rm−1
ζm−1 ⇒rm ξ and

d′ : 〈A0〉 =ζ ′0 ⇒[r̃1,〈ξ1〉]ζ
′
1 ⇒[r̃2,〈ξ2〉] . . .⇒[r̃m−1,〈ξm−1〉]ζ

′
m−1 ⇒[r̃m,〈ξm〉]ξ

′ .

(i)⇒(ii): Assume that, for each i ∈ [m], the rule ri is applied at position wi in ζi−1.
We obtain d′ by defining, for each i ∈ [m], that [r̃i, 〈ξi〉] = [ri, ζ

′
i−1(wi)]. Then, we

can show by induction that, for each i ∈ [m], we have ζi−1 = removeBrackets(ζ ′i−1).
Furthermore, since A0 ⇒r1..(i−1)

ζi−1 holds we have by Claim 1 that 〈ζi−1|wi〉 ∈ Pn
and it can be seen that 〈ζi−1|wi〉 = ζ ′i−1(wi).

(ii)⇒(i): For each i ∈ [m], we can define ri = r̃i. It can be shown by induction
on m that, for each i ∈ [m], we have ζi−1 = removeBrackets(ζ ′i−1). �

As discussed in Section 3, the rule applications in a lnCFTG can be reordered
without changing the language. Hence, any derivation d can be turned into an
outside-in derivation. Thus, by Claim 2, we have L(H) = L(G′). 2

We illustrate the construction of this section by considering the following lnCFTG

H2 = ({A(0)
0 , A(2)}, {α(0), β(0), γ(0), δ(2), κ(2)}, A0, R)
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where R contains the rules

A0 → A(α, β) and A(x1, x2)→

δ

x1 A

x2 γ

∣∣∣∣∣∣∣∣
κ

x1 x2
.

Applying the construction from the proof of Lemma 6.6 to H2 yields the RTG G′2
with the rules

〈A0〉 →
〈

A

α β

〉
,

〈
A

α β

〉
→

δ

α

〈
A

β γ

〉 ∣∣∣∣∣∣∣
κ

α β
,

〈
A

β γ

〉
→

δ

β

〈
A

γ γ

〉 ∣∣∣∣∣∣∣
κ

β γ
, and

〈
A

γ γ

〉
→

δ

γ

〈
A

γ γ

〉 ∣∣∣∣∣∣∣
κ

γ γ
.

It can be seen that H2 and G′2 are equivalent.

6.3. Main Theorem

Theorem 6.7 For each non-self-embedding lnCFTG G, we can construct a RTG G′

such that L(G) = L(G′), i.e., the language L(G) is regular.

Proof. By Lemma 5.7 we may assume that G is non-self-embedding and unique in
argument positions. Furthermore, according to Theorem 6.5 we can assume that
topRank(G) = 0. The application of Lemma 6.6 yields an equivalent RTG G′. Hence,
L(G) is regular. 2

7. Relationship to Non-Self-Embedding CFG

On an informal level we relate our result to the corresponding result for the string case.
In [2, 3] it was proved that each non-self-embedding context-free (string) grammar
(CFG) generates a regular language. In [22] self-embedding was expressed as a syntactic
criterion, accompanied by a direct construction of a regular (string) grammar starting
from a non-self-embedding CFG.

For the sake of comparing CFG and lnCFTG, we relax the condition that the initial
nonterminal of a lnCFTG must be of rank 0. Then, informally, we can view a CFG
as a lnCFTG (N,∆, A0, R) in which each nonterminal and each terminal has rank 1.
Let us call such a lnCFTG monadic. Clearly, there is a bijection, say, ϕ, between
∆∗ (where ∆ is viewed as a usual alphabet) and T∆({x1}). Moreover, for each CFG
G there is a monadic lnCFTG G′ such that L(G′) = ϕ(L(G)), and vice versa, for
each monadic lnCFTG G′ there is a CFG G such that L(G) = ϕ−1(L(G′)) (cf. [5,
Thm. 7.13] for n = 1).

For monadic lnCFTGs, Property (2) of the definition of self-embedding is false.
Moreover, Property (1) of that definition corresponds to the definition of self-embedding
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of CFG given in [3, 22]. Thus, there is a one-to-one correspondence between non-self-
embedding CFGs and non-self-embedding monadic lnCFTGs.

A regular (string) grammar (REG) can be viewed as a monadic lnCFTG
(N,∆, A0, R) in which the RHS of each rule satisfies the property that the sub-
tree below a nonterminal only consists of x1. Let us call such grammars monadic
RTGs. There is an obvious one-to-one correspondence between REGs and monadic
RTGs: it is the restriction of the above mentioned one-to-one correspondence between
CFGs and monadic lnCFTGs (to REGs and monadic RTGs, respectively).

We will now analyze the proof of our Theorem 6.7 when G is a non-self-embedding
monadic lnCFTG. Note that in a monadic lnCFTG, every position in the RHS is
variable dominating. Hence, each occurrence of a nonterminal in the RHS of a rule
induces an edge in the position graph. We compare our construction to the function
make fa (cf. [22, Figure 1.3]) of the string case.

The first part of the proof is concerned with the property of being unique in argument
positions. In case of a monadic lnCFTG, there are only two argument positions, viz., 0
and 1. By Observation 5.2, we have that those two argument positions are never in
the same SCC. Hence, every monadic lnCFTG is unique in argument positions.

The second part of the proof removes top-recursive SCCs. We discuss it for an
example rule of a top-recursive SCC P . Let r be a rule A(x1) → B(γ(C(x1))) in
rules(P ), where A and B are both nonterminals in MP . Removing top-recursion in a
monadic lnCFTG is similar to handling left-recursion in the string case. According
to (4) from the proof of Lemma 6.4, we reverse r to the rule r′ : 〈A,B,d〉(x1) →
γ(C(〈A,A,d〉(x1))). We compare r′ to the output of make fa applied to the rule
A→ BγC. This yields a rule qB → γCqA, which corresponds to r′.

Lastly, we consider the transformation of a monadic non-self-embedding lnCFTG
which does not contain top-recursive SCCs into a RTG. This construction corresponds
to the application of make fa to A0 and uses the case for right-recursion.

8. Deleting rules

The theory developed in this paper concerns linear nondeleting CFTGs. We now
consider linear CFTGs. A linear CFTG (lCFTG) is defined exactly as a lnCFTG
except that each rule has the form A(x1..k) → ξ where ξ ∈ TN∪∆(Xk) and each
variable of Xk occurs at most once in ξ. The derivation relation and the generated
tree language are defined exactly as for lnCFTG.

It is known that for each lCFTG we can find an equivalent lnCFTG. The construction
can be traced back to [7, Thm. 3.1.10]; see also e.g. [28, Lm. 3.1]. The idea is as follows.
Let G be a given lCFTG, to be transformed into a lnCFTG G′. The nonterminals
of G′ are of the form Aα, where A is a nonterminal of G of rank k, and α is a subset
of [k]. The argument positions in subscript α are those that will be removed in the
transformation from G to G′. For a rule A(x1..k) → ξ from G, we construct a rule
Aα(xk1 , . . . , xkd) → ξ′ from G′ as follows. Each occurrence of a subtree B(ξ1..m) in
the RHS ξ is replaced by a subtree Bβ(ξ′1..m′), where β is some subset of [m] and
ξ′1..m′ are obtained from ξ1..m by omitting the argument positions in β. This gives
us the RHS ξ′ of the transformed rule. For the LHS, we let α consist of all i such
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that xi does not occur in ξ′, and we let xk1 , . . . , xkd be the sequence of variables in Xk

consisting of all those variables that do occur in ξ′. The new rule is clearly nondeleting.
This construction is done exhaustively, considering all possible choices of β for each
occurrence of a nonterminal B in the RHS.

An obvious question is now whether the results in our paper carry over to all
lCFTGs. For this, we first need to extend our definition of self-embedding to lCFTGs
that may include deleting rules. We define self-embedding lCFTG in the same way as
we have defined self-embedding lnCFTG (at the beginning of Section 4). Furthermore,
we also define the position pair graph for lCFTG exactly as in Definitions 4.1. It can
be seen that Theorem 4.3 also holds for lCFTG without any change.

As an example consider the following rules of a self-embedding lCFTG that delete
the second argument position of A. The grammar is self-embedding since σ’s and γ’s
are synchronously generated above and below (resp.) the nonterminal A.

A0 →
A

α α
A(x1, x2)→

σ

A

γ

x1

α

∣∣∣∣∣∣∣∣∣∣
σ

x1

All that remains is to show that the above transformation that removes deleting
rules preserves the property of being non-self-embedding.

Lemma 8.1 For each non-self-embedding lCFTG G, we can construct a non-self-
embedding lnCFTG G′ such that L(G) = L(G′).

Proof. We prove this lemma by contraposition and thus assume that the transfor-
mation applied on a lCFTG G results in a lnCFTG G′ that is self-embedding. Then
we have a cycle in ppg(G′) from a vertex (Aα, i, j) to (Aα, i, j) such that the union
of all labels in the cycle contains 1 and 2. Due to the nature of the transformation,
which does no more than systematically remove argument positions, we must then
have a cycle in ppg(G) from some vertex (A, i′, j′) to (A, i′, j′) such that the union
of all labels in the cycle once more contains 1 and 2. The argument positions i′ ≥ i
and j′ ≥ j are straightforwardly obtained from i and j by accounting for the removed
positions as recorded in α. Thereby G must be self-embedding as well. 2

We note that the removal of deleting rules (including the removal of useless rules) may
turn a self-embedding lCFTG into a non-self-embedding lnCFTG. For instance, if
we remove the deleting rule from the lCFTG with the rules A(x)→ δ(A(G(x))) | x,
and G(x) → α, then we obtain the non-self-embedding lnCFTG with the rules
A{1} → δ(A{1}) | δ(A∅(G{1})), G{1} → α, and A∅(x)→ x.

As a consequence of Lemma 8.1 and Theorem 6.7 we obtain the following corollary.

Corollary 8.2 For each non-self-embedding lCFTG G, we can construct a RTG G′

such that L(G) = L(G′), in particular, the language L(G) is regular.
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9. Non-Weakly-Self-Embedding CFTG

In the literature, there is another instance of non-self-embedding string grammars.
Parchmann and Duske [25] define self-embedding indexed grammars and they show
that indexed grammars which are not self-embedding induce context-free languages.

Indexed grammars are related to (arbitrary) CFTG in the following way. The
languages induced by indexed grammars are exactly those generated by macro gram-
mars with outside-in derivation mode [7, Thm. 4.2.8] and the latter generate exactly
the yields of the languages generated by CFTG with outside-in derivation mode
(cf. [26, p. 113] and [5, Thm. 7.17]). Thus, it seems worthwhile to lift the definition
of self-embedding from indexed grammars to CFTG. In order not to mix up the
resulting property with our property of self-embedding lnCFTG, we call the former
weakly-self-embedding. We compare self-embedding lCFTG and weakly-self-embedding
lCFTG and we prove that each non-weakly-self-embedding CFTG (with outside-in
derivation mode) generates a regular tree language. We will not investigate the formal
relationship between self-embedding indexed grammars and weakly-self-embedding
CFTG.

Formally, a context-free tree grammar (CFTG) is defined in exactly the same way
as lnCFTG except that each rule has the form A(x1..k) → ξ where ξ ∈ TN∪∆(Xk).
In particular, a variable of Xk may occur in ξ more than once (copying) or not at
all (deleting). As derivation mode we only consider outside-in. The tree language
generated by the CFTG G = (N,∆, A0, R) is defined as L(G) = {ξ ∈ T∆ | A0 ⇒d

ξ, d is outside-in}.
As an example, consider the following rules of a CFTG. The variable x1 appears

twice in the last rule and thus, the tree in the argument position of B is copied.

A0 →
B

α
B(x1)→

σ

B

γ

x1

∣∣∣∣∣∣∣∣∣∣
κ

x1 x1

A CFTG G = (N,∆, A0, R) is weakly-self-embedding if there are k ∈ N, A ∈ N (k),
i ∈ [k], ξ ∈ CN∪∆∪Xk({z}), and ξ1..k ∈ TN∪∆(Xk) such that

• A(x)⇒∗ ξ[A(ξ1..k)],

• ξi contains xi, and

• ξi 6= xi.

Intuitively, the ith argument position of A corresponds to the string of indices attached
to nonterminal A of an indexed grammar.

We give an example of a CFTG that is non-weakly-self-embedding and has two
rules that copy the first argument of B.

A0 →
B

α
B(x1)→

δ

B

x1

B

x1

∣∣∣∣∣∣∣∣
κ

x1 x1
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It can be seen that in every derivation starting from A0, the variable x1 always denotes
the subtree α. Hence, in such derivations there is a unique tree that may appear below
any occurrence of B. This will help us later to determine regularity of the induced
tree language.

Similar to Theorem 4.3 it is decidable whether a CFTG G is weakly-self-embedding.
Since weakly-self-embedding is a property of individual argument positions, indepen-
dent of other positions of the same nonterminal, it suffices to consider the position
graph of G. For an arbitrary CFTG this is defined in exactly the same way as in
Definition 5.1.

Lemma 9.1 A CFTG G is weakly-self-embedding iff pg(G) contains a top-recursive
SCC.

Proof. The proof is very similar to the proof of Theorem 4.3, but only considers one
argument position per nonterminal. 2

Next we compare weakly-self-embedding lCFTG and self-embedding lCFTG. By
analyzing the definitions we obtain the following inclusion.

Observation 9.2 Each self-embedding lCFTG is also weakly-self-embedding.

Conversely, there are non-self-embedding lCFTG which are weakly-self-embedding.
As an example consider the following rules of a non-self-embedding lnCFTG.

A0 →
B

α
B(x1)→

B

γ

x1

∣∣∣∣∣∣∣∣
σ

x1

This grammar is weakly-self-embedding, since B(x1)⇒ B(γ(x1)).
Now we prove that each non-weakly-self-embedding CFTG generates a regular tree

language.

Theorem 9.3 For each non-weakly-self-embedding CFTG G, we can construct a
RTG G′ such that L(G) = L(G′), i.e., the language L(G) is regular.

Proof. We let G = (N,∆, A0, R) be a non-weakly-self-embedding CFTG. It is easy
to see that topRank(G) = 0. Thus there cannot be unbounded generation of symbols
in argument positions of nonterminals. It can now be seen that the set

K = {〈ξ|w〉 | A0 ⇒d ξ, w ∈ posN (ξ), d is outside-in}

is finite.
Using this fact, we can apply the construction in the proof of Lemma 6.6 to obtain

a RTG G′ that is equivalent to G. Note that, for Claim 2 of the proof of Lemma 6.6,
a reordering of derivations of G is not required because we only consider outside-in
derivations. 2
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10. Summary and Overview

We have defined a subclass of lCFTG called self-embedding lCFTG and proved that
it is decidable whether a given lCFTG is self-embedding. Each non-self-embedding
lCFTG induces a regular tree language. This is a generalization of the original result
for CFG from [2] to the realm of trees.

Moreover, we have defined a subclass of (the full class) CFTG called weakly-self-
embedding CFTG; again this is a decidable property. The subclass is inspired by
self-embedding indexed grammars [25]. We have proved that each non-weakly-self-
embedding CFTG induces a regular tree language.

All mentioned syntactic subclasses of CFTG can be found in Figure 13(a); addition-
ally we have indicated those subclasses for which we could prove that the grammars
induce regular tree languages (shaded areas). Moreover, for each class we show an
example grammar in Figure 13(b).
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CFTG

lCFTG

lnCFTG

non-self-embedding

non-weakly-self-embedding

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Applicable Results:

Theorem 6.7

Theorem 9.3

Corollary 8.2

(a) Overview of self-embedding relations for CFTG.

(1) A0 →
B

α
B(x1)→

σ

B

γ

x1

∣∣∣∣∣∣∣∣∣∣
κ

x1 x1

(2) A0 →
B

α
B(x1)→

δ

B

x1

B

x1

∣∣∣∣∣∣∣∣
κ

x1 x1

(3) A0 →
A

α α

A(x1, x2)→

σ

A

γ

x1

α

∣∣∣∣∣∣∣∣∣∣
σ

x1

(4) A0 →
A

α α

A(x1, x2)→
A

γ

x1

α

∣∣∣∣∣∣∣∣
σ

x1

(5) A0 →
A

α α

A(x1, x2)→

σ

A

x1 α

∣∣∣∣∣∣∣∣
σ

x1

(6) A0 →
A

α α

A(x1, x2)→

σ

A

γ

x1

γ

x2

∣∣∣∣∣∣∣∣∣∣
κ

x1 x2

(7) A0 →
B

α
B(x1)→

B

γ

x1

∣∣∣∣∣∣∣∣
σ

x1

(8) A0 →
A

α α

A(x1, x2)→

σ

A

x1 x2

∣∣∣∣∣∣∣∣
κ

x1 x2

(b) Examples for each subclass of Figure 13(a).

Figure 13:: An overview over the classes of CFTG.
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