
Timing Properties and Correctness for
Structured Parallel Programs on x86-64

Multicores

Kevin Hammond, Christopher Brown, and Susmit Sarkar

School of Computer Science, University of St Andrews, Scotland, UK.
{kevin.hammond,susmit.sarkar,cmb21}@st-andrews.ac.uk

Abstract. This paper determines correctness and timing properties for
structured parallel programs on x86-64 multicores. Multicore architec-
tures are increasingly common, but real architectures have unpredictable
timing properties, and commonly used relaxed-memory concurrency mod-
els mean that even functional correctness is not obvious. This paper takes
a rigorous approach to correctness and timing properties, examining com-
mon locking protocols from first principles, and extending this through
queues to structured parallel constructs. We prove functional correctness
and derive simple timing models, extending these for the first time from
low-level machine operations to high-level parallel patterns. Our derived
high-level timing models for structured parallel programs allow us to
accurately predict upper bounds on program execution times on x86-64
multicores.

Keywords: Multicore, relaxed-memory concurrency, functional correct-
ness, algorithmic skeletons, operational semantics, timing models.

1 Introduction

Multicore architectures are increasingly common, providing excellent trade-offs
between performance and energy consumption. However, the actual execution
behaviour of parallel programs on real multicores is still often difficult to under-
stand. Arguing about the correctness of parallel programs is non-trivial in the
presence of real-world relaxed-memory consistency models. Moreover, predicting
the execution time of parallel programs is hard. Both issues derive from the same
problem: there is no well-understood correspondence between the high-level par-
allel primitives that programmers use and the low-level implementations of those
primitives that are actually executed. We address this problem by directly con-
sidering correctness and timing properties from basic machine-level operations
all the way to high-level parallelism structures.

This paper exploits structured parallel programming, in the form of algo-
rithmic skeletons [1,2]. Such approaches bring similar abstraction advantages to
parallel program design that standard structured programming brings to sequen-
tial programming, abstracting over basic parallelism primitives, such as process
creation, communication and synchronisation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/76986505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Kevin Hammond, Christopher Brown, and Susmit Sarkar

int x = 0 , y = 0 ; extern int x , y ;
.
{ // thread 1 { // thread 2

x = 1 ; y = 2 ;
return y ; return x ;

} }

Fig. 1. Under the x86-TSO relaxed-memory consistency model, both threads could
return 0. This is not possible under SC.

The main advantages to us are:

1. The programmer can think in terms of patterns of parallelism, rather than
e.g. low-level memory operations;

2. Certain complex parallel conditions, such as race conditions and deadlocks,
are eliminated by design, so dramatically simplifying design, implementation
and testing of parallel programs; and

3. Simple, but effective, performance models are possible.

This paper exploits these advantages to produce strong and principled cost mod-
els for two fundamental parallel programming structures: task farms and parallel
pipelines. Danelutto et al. [3] have shown that many common parallelism pat-
terns can be expressed in terms of these two primitives. Our work thus extends
straightforwardly to many other high-level patterns of parallelism.

Memory Consistency. Standard correctness proofs of parallel programs usu-
ally assume memory accesses to be interleaved, so-called Sequential Consistency
(SC) [4]. However, x86-64 multicores, and many other recent architectures (e.g.
ARM and IBM Power), do not comply with this assumption, making such rea-
soning invalid. Consider, for example, the program fragment in Figure 1. Under
the Total Store Order relaxed-memory consistency model that is used by x86-64
multicores (x86-TSO), both threads could return 0, a result that is impossible
using the simpler SC model.

Novel Contributions. While there has been significant previous work on algo-
rithmic skeletons, this paper represents the first attempt, of which we are aware,
to establish cost models from first principles for widely-used multicore hardware.
In addition, this paper makes the following specific novel contributions:

1. It describes an operational semantics for structured parallel programs, that
is used to derive, from first principles, a compositional cost model for any
combination of the farm and pipeline algorithmic skeletons;

2. It gives a simple operational proof of the (partial) correctness of a widely-
used spin-lock protocol using the actual relaxed-memory concurrency seman-
tics used by x86-64 multicore machines; the proof composes in a straightfor-
ward fashion to show that the farm and pipeline algorithmic skeletons are

Timing Properties and Correctness for Structured Parallel Programs 3

t8	

…	

…	
…	

f	 t9	

t10	

t11	

t12	

f	 t4	

f	 t5	

f	 t6	

g	 (f	 t1)	

g	 (f	 t2)	

f	 t3	

f	 t7	

g	 (f	 t0)	

g	

Fig. 2. Two-Stage Parallel Pipeline: f | g

free from deadlock, both singly and in any combination, when implemented
by queues using that locking protocol; and

3. It validates the cost model against some example parallel programs, giving
accurate predictions of lower-bound speedups; our predictions are typically
within 7% and in all cases within 30% of the actual speedup.

A key aspect of our approach is that we model the actual relaxed-memory model
used by real x86-64 multicore systems, exploiting recent work on the x86-TSO
model [5,6], which gives a precise account of the observable behaviour of x86-64
multiprocessors in terms of an idealised abstract machine. We are thus able, for
the first time, to provide realistic cost models for programs that are executed
in parallel on such architectures. The spin-lock protocol that we use has been
shown to be the most efficient protocol for implementing simple locks on x86-64
architectures [5]. It is widely used to implement real parallel programs. Our cor-
rectness proof is the first direct operational proof that this protocol is correctly
implemented by the underlying hardware through its relaxed-memory access pro-
tocol. Finally, the queue protocol shown here has many uses beyond algorithmic
skeletons, and is representative of many widely-used higher-level synchronisation
protocols. The correctness proof shown here is likewise the first proof that such
a protocol is correctly implemented by the underlying multicore hardware.

2 Pipeline and Farm Skeletons

In this paper, we consider two fundamental skeletons: 2-stage pipelines (Figure 2)
and task farms (Figure 3). We use a streaming implementation that links skele-
tons using (unbounded) queues. This allows skeletons to be easily composed,
and also allows arbitrarily nested parallel structures to be built from the basic
skeletons. Parallel pipelines (f | g) represent the composition of two operations
f and g, streamed over a sequence of inputs t0, t1, . . . , with f and g possibly
executed in parallel. The result of the pipeline is the stream g (f t0), g (f t1), . . .

4 Kevin Hammond, Christopher Brown, and Susmit Sarkar

t8	

…	

…	

f	

t9	

t10	

t11	

t12	

f	 t0	

f	 t4	

f	 t1	

f	

f	

…	

f	 t2	

…

…	

f	 t3	

f	 t6	

t5	

t7	

Fig. 3. Task Farm: Φ(f)

Value qget (Queue q) void qput (Queue q , Value v)
{ {

Value v ; l o ck (&q . l ock) ;
do { addtoq (q , v) ;

l o ck (&q . l ock) ; unlock(&q . l ock) ;
i f (! qempty (q)) }

break ;
unlock(&q . l ock) ;

} while (1) ;

/* lock is held */
v = f r o n t (q) ;
unlock(&q . l ock) ;
return (v) ;

}

Fig. 4. Simple queue implementation in C.

Multi-stage pipelines can be built by composing multiple two-stage pipelines and
then merging the input/output queues. Task farms (Φ(f)) apply the same op-
eration f to each of the inputs in a stream. A fixed number of worker instances
is created, which each apply f in parallel to a subset of the inputs. The result of
applying a farm to a stream of inputs t0, t1, . . . is then the bag {f t0, f t1, . . .},
where the results may be produced in an arbitrary order. This non-deterministic
definition of a task farm allows an efficient parallel implementation, where each
of the workers is mapped to a different processing agent. As each worker pro-
duces its result, it is placed in the output queue, and the worker takes the next
input (if any) from the input queue. Farms can be nested to an arbitrary depth
by replacing the operation f by a farm and linking the corresponding input and
output queues. It is also possible to embed pipelines within farms or vice-versa,
so yielding arbitrarily complex parallel systems.

Timing Properties and Correctness for Structured Parallel Programs 5

2.1 Simple Queue Implementation using Locks

The pipeline and farm skeletons use queues to manage the input/output streams.
Figure 4 shows how queues can be implemented using lock and unlock primi-
tives, plus operations to remove the first element from the queue (front), add
a new element to the queue (addtoq), and check whether the queue is empty
(qempty). Queues are implemented using the abstract type Queue, containing
values of type Value. The qget operation returns the first element from the
queue, spinning if the queue is empty. This implements a blocking read opera-
tion. The corresponding qput operation adds a value to the end of the queue,
locking and unlocking as necessary. When used as a pair, qget/qput implement
a synchronisation operation between two parallel threads. Figure 5 gives a spin-
lock implementation of lock/unlock in C and x86-64 assembler, assuming an
atomic exchange primitive, exchange. Spin-locks are widely used in parallel sys-
tems where there are low contention rates, since they are simple to implement
and the costs of acquiring and releasing the locks are very low. In fact, until
recently, the Linux kernel used almost identical code. For fairness reasons, it
now uses a slightly modified version (ticketed spin-locks). Here, lockcell is a
variable that contains the lock. If it has the value 1, then the lock has been
acquired by some thread; if it has the value 0, then no thread has acquired the
lock. Acquiring the lock using the lock routine involves reading the value of
lockcell, and exchanging it with the locked value, 1. If the lock has already
been acquired by another thread, the process is repeated until the lock can be
acquired (i.e. the previous value of lockcell was 0). Releasing the lock using
the unlock routine simply involves setting lockcell to 0. Note that the unlock
need not be an atomic memory operation.

3 Key Hardware Characteristics

In what follows, we will consider memory accesses to be classified into Reads from
and Writes to specific memory locations, plus Fences and atomic Exchanges.
Intel’s x86-64 instruction set also provides some refined versions of these ba-
sic operations [7]. Sequential consistency (SC) memory models [4] ensure that
memory accesses from multiple threads are carried out in an order that is con-
sistent with some valid set of memory accesses by a fully sequential processor.
That is, memory accesses from different threads are interleaved so that there is
effectively a single thread of memory accesses. Recall the simple example from
Figure 1. Here, depending on the exact timing of Reads and Writes on x and y,
thread 1 could return either 1 or 0 and thread 2 could return either 2 or 0. It is
not possible for both threads to return 0, however, since one of the two Writes
to x or y must happen last. While SC is effective on uni-processor systems,
enforcing an SC memory model on a multicore system can carry significant per-
formance penalties. For example, all caches and other memory hardware must
be synchronised in order to avoid inconsistent results. Since such a strong model
is not always required, multicore hardware vendors generally support weaker

6 Kevin Hammond, Christopher Brown, and Susmit Sarkar

void l o ck (volat i le char ∗ l o c k c e l l) {
char o l d v a l u e ;
do {

o l d v a l u e = exchange (l o c k c e l l , 1) ;
} while (1 == o l d v a l u e) ;

}

void unlock (volat i le char ∗ l o c k c e l l) {
∗ l o c k c e l l = 0 ;

}

; Assume EBX contains address of lock cell
l o c k :
mov eax , 1 ; Set EAX register to 1 (locked)
xchg eax , [ebx] ; Exchange EAX and lock cell
test eax , eax ; Test if cell is locked
jnz l o c k ; Retry the lock if so
. . . ; Lock held here

unlock :
mov eax , 0 ; Set EAX register to 0 (unlocked)
mov [ebx] , eax ; Release the lock

Fig. 5. Above, simple spin-lock implementation in pseudo-C using an atomic exchange

operation on the lockcell memory location; 1 indicates the lock is acquired; 0 is
used to release the lock. Below, corresponding x86-64 instructions (ignoring function
prelude/postlude). The xchg instruction in lock acquires the lock, which is released
in in unlock using a normal memory write. Note that on x86-64, a xchg implicitly
behaves as a full memory barrier.

consistency models that offer higher performance. Modern x86-64 -class micro-
processors use Total Store Ordering (x86-TSO) [6,5]. x86-TSO guarantees that
the order in which Write instructions for a given processor appear in (shared)
memory is identical to the sequence in which the processor issued the Writes.
x86-TSO can be implemented by providing each hardware thread of execution
with a private FIFO write-buffer. This is an abstract machine implementation:
a more realistic hardware implementation is discussed further below. Writes are
stored temporarily in this buffer prior to being actioned by the main memory.
Reads from the local processor (only) can access this write buffer, if necessary,
as an intermediate step between reading from the private and shared caches.
Writes recorded in the write buffer will be used in preference to any correspond-
ing values in the shared cache. After an unpredictable, but finite, time, each
Write is flushed from the buffer, and so becomes visible to all processors. In
this way, SC is enforced for a single processor, but not for all processors in a
multi-processor system. In the x86-TSO model, explicit memory fence (mfence)
or atomic exchange (xchg) instructions are needed to enforce consistency across
multiple processors. When a Fence/Exchange instruction is encountered by a
processor, all of its outstanding Reads and Writes are executed immediately.

Timing Properties and Correctness for Structured Parallel Programs 7

This provides strong local temporal guarantees: all local accesses that appeared
in the instruction stream prior to a Fence/Exchange will be executed before
any accesses that appeared after the Fence/Exchange. It also provides strong
global memory guarantees: all memory locations (and any cached copies) will be
consistent with the memory state immediately following the Fence/Exchange.

Definition 1. Thread. A Thread is an ordered sequence of memory accesses,
where memory accesses comprise Reads, Writes, Fences and Exchanges to spe-
cific memory locations. A Read takes a memory location and returns a value. A
Write takes a memory location and a value and has no result. A Fence has no
parameters or result. An Exchange is treated as a simultaneous and indivisible
Read, Write and Fence. It takes a memory location and a value and returns a
(possibly different) value.

Definition 2. Write buffer. A Write buffer is associated with each thread, and
contains an ordered sequence of Writes, each associating a value with an ad-
dress. Each Write is recorded in the corresponding write buffer immediately it is
executed by any Thread.

Definition 3. Memory. A Memory maps addresses to values.

Definition 4. Core. A Core comprises a set of Threads.

Definition 5. Multicore. A Multicore comprises a set of Cores plus a single
shared Memory1.

Definition 6. Execution Order. The execution order is a linear trace of tran-
sitions made by the labelled transition system called the x86-TSO machine [6].

Hardware Correspondence The abstract model above talks about “threads”
of execution. In current multiprocessor implementations, these are grouped to-
gether in various ways, each of which has varying implications for scheduling
and timing. Firstly, user-level threads are mapped by the runtime system to
hardware-level threads. In this paper, we ignore this scheduling cost. That is, we
consider only a non-preemptive model with no explicit thread yields to other
threads or the runtime system. Taking such yields into account would introduce
interference with other processes and threads running on the system. The model
above speaks of such hardware threads when mentioning a thread of execution.
Secondly, each hardware thread is mapped to specific hardware resources on
a core. The mapping may be one-to-one, or many-to-one (hyperthreading, also
known as simultaneous multi-threading). Each hyperthread generally has exclu-
sive use of registers and a load-store reordering buffer. The load-store reordering
buffer maintains metadata to ensure observable FIFO buffering for the stores,
and also to ensure that loads appear ordered to the programmer, even though

1 We will ignore shared cache here, since it does not have a significant impact on the
proofs.

8 Kevin Hammond, Christopher Brown, and Susmit Sarkar

aggressive implementations can and do perform out-of-order operations, e.g. sat-
isfaction of read requests. Third, a set of cores (typically 2 to 4) are collected
in one CPU. Typically, the first levels of cache (L1 and L2 on the Intel Core-i7)
are private to the core, while higher levels (L3 on the Intel Core-i7) are shared
between all the cores on one CPU. Finally, multiple CPUs may be connected in
one system, all sharing a common memory. The caches communicate with each
other and with memory to maintain “cache coherence”, that is, a clear notion of
order of update operations (stores) to a location. This is generally managed at
the cache-line granularity (64 on the Intel Core-i7). To be clear, the functional
model above speaks of store buffers. These are implemented by so-called Memory
Ordering Buffers (MOBs), which internally do out-of-order actions. The flushing
of buffers then corresponds to the point when non-local threads (on the same
core or otherwise) can see those stores. Further buffering occurs between various
levels of the cache. However, in all cases the cache maintains a coherent view,
so that if the store is visible to at least one hardware thread other than the one
executing the store, then it is visible to all of them.

x86-64 Cache Protocol. Both the Intel and AMD implementations of the x86
cache protocol are variations of the classic MESI protocol [8]. Conceptually,
there can be four states for each location in a cache (managed on a cache-line
granularity): Modified (this cache holds an exclusive copy and memory has a
stale copy), Exclusive (this cache holds an exclusive copy, the memory copy is
also valid), Shared (this cache holds a copy, but other caches possibly hold copies
as well), and Invalid (this cache does not hold a current copy for this location).
While the cache behaviour does not directly impact the functional correctness
proof, it does have implications for the cost models we develop.

4 Correctness and Progress Properties

This section considers the functional correctness of the spin-lock, queue and
pipeline/task farm implementations described above, working from first princi-
ples in terms of the basic x86-64 memory operations and x86-TSO consistency
model. We first consider a key ordering relation, coherence order, then sketch
soundness proofs for the spin-lock and queue implementations, and finally build
on these to sketch soundness proofs for the skeleton implementations.

4.1 Coherence Order

A derived relation called coherence order naturally emerges from the x86-TSO
memory consistency model described above. Coherence order is a total, linear
ordering of Writes to a given memory location, organised in the order that the
Writes affect the memory location (are flushed from their local buffers).

Timing Properties and Correctness for Structured Parallel Programs 9

Definition 7. Coherence Order. Given a set of write buffers, WB i containing
tuples 〈t,m, v〉, where t is the time that the Write is flushed from WB i, m is the
memory location, and v is the new value to be written to that location, then the
coherence order for some memory location m is defined to be the sequence

CO(m) linear order over {〈tj ,m, vj〉 | 〈tj ,m, vj〉 ∈
n⋃
i=1

WB i}

s.t. ∀j, k.〈tj ,mj , vj〉 <CO(m) 〈tk,mk, vk〉 =⇒ tk > tj .

Note that under this definition, it is not possible for two Writes to the same
memory location to occur at the same time. Writes to different memory locations
may, however, occur at the same time. This is consistent with the restrictions
of physical memory. It is easy to show from this definition that no Thread can
read values out of coherence order.

Lemma 1. Read Coherence Order. No Thread can read values out of coherence
order.

Proof Sketch: Suppose that two Reads r1 and r2 in the same Thread, T , from
the same memory location, m, occur in order, but that they return different
values. Let us call the corresponding Writes w1 and w2 (w1 6= w2). We do a
case analysis depending on whether w2 is read by r2 from the local write buffer
or from memory. Suppose that w2 is in the write buffer. Then w2 cannot have
been the last write in the write buffer at the time of the read r1, and thus w2

must be flushed at some later time, and definitely later than w1. Suppose that,
instead, w2 is taken from memory. Then the local write buffer must be empty
for that location. Now, either r1 read w1 from the write buffer, and therefore w1

must have been flushed (before w2), or it read it from memory, and again w2 is
in Coherence order before w1. ut

4.2 Functional Correctness of the Spin-Lock Implementation

The spin-lock implementation needs to enforce two key properties: i) that at
most one thread at a time possesses the lock; and ii) that all Writes that are
made while the lock is held are always visible to any subsequent thread that
acquires the lock. We show this by using the memory properties defined in the
previous section, together with the code for the spin-lock implementation of lock
and unlock that was given in Figure 5.

Lock acquisition and release. We assume that the only Reads/Writes to
lockcell are made by the lock and unlock functions. We also assume that
unlock is called only when safe, i.e. when the calling Thread possesses the lock,
and that lock is called only when the calling Thread does not possess the lock.
It follows that the only values that lockcell can contain are 0 (the unlocked
value) and 1 (the locked value).

10 Kevin Hammond, Christopher Brown, and Susmit Sarkar

Theorem 1. Lock acquisition and release. Under the assumptions of the previ-
ous paragraph,

– following a call to lock, the calling Thread will possess the lock, and no
other Thread will possess the lock; and

– following a call to unlock, the calling Thread will no longer possess the lock
until it has successfully called lock again.

Proof Sketch: Both of the above parts can be proved simultaneously by induc-
tion on the lock and unlock calls in an execution trace, and by case analysis
of the write buffer state at every lock. The key operation is the lock function,
which is called when acquiring the lock. We return from this function exactly
when the internal loop exits, that is when old value is not 1. This means that
old value is 0, or in other words, that lockcell held 0 in the final iteration
of the loop and is now 1. Since the only way to update lockcell with a locked
(1) value is via an Exchange, this will always appear directly in memory, and
never stay in the write buffer. In contrast, an unlocked (0) value can stay in the
buffers, since this is done by a simple Write. Since only the Thread that has
successfully acquired the lock ever calls the unlock function, and since it does
this precisely once for each lock acquisition, there will only ever be at most one
unlock value (0) for lockcell in any of the write buffers. There are now two
cases to consider.

Case 1: Consider first the case when no write buffer contains an unlock
value. If lockcell holds 1, then the lock is already held. No lock acquisition
can succeed until lockcell becomes 0. Conversely, if lockcell holds 0, the
lock is free. Any isolated lock acquisition will successfully acquire the lock, but
because of the atomic nature of the Exchange, if there are multiple simultaneous
acquisition attempts then only one of these can succeed. Furthermore, because
of coherence on lockcell, no subset of threads can disagree on which lock
acquisition succeeded.

Case 2: The second case occurs when some Thread T ’s write buffer contains
an unlock value. It follows that lockcell must still be locked, and therefore
no Thread can acquire the lock. However, thread T has released the lock. Now
either the unlock value must eventually flush by itself, and we will then be in
Case 1 above, or T can attempt to re-acquire the lock, in which case the first
action of the Exchange will be to flush the write buffer. ut

We thus obtain the first key property of the lock implementation, that the lock,
from an initially unlocked position, flips between the locked and unlocked states,
and because of coherence, no set of threads can disagree about which thread was
responsible for each lock and unlock operation in that sequence. In other words,
two distinct threads never think that they hold the lock at the same time.

Timing Properties and Correctness for Structured Parallel Programs 11

Synchronisation. We now turn to the second key property, that the lock acqui-
sition and release operations collectively provide synchronisation. More precisely,
following the acquisition of a lock, a thread should have an identical view of the
shared memory to that of the unlocking thread at the immediately preceding
lock release. This is not an immediate result, since the two threads may be dif-
ferent, and the view of the shared memory is mediated by the write buffers of
the cores that are involved.

Theorem 2. Synchronisation. Assuming shared-memory accesses are only per-
formed by threads holding a lock, all Writes made by a Thread between a success-
ful call to lock and the following call to unlock are visible to the next Thread
that acquires the lock.

Proof Sketch: We observe that each write buffer is emptied in a FIFO man-
ner, and that each Thread has its own write buffer. Writes to shared memory
locations within the critical section controlled by the lock are initially buffered
in the write buffer for the Thread that acquired the lock. The lock release is itself
a Write, that is placed in the buffer after all these Writes. We proved above that
a new lock is only acquired when the unlocking Write is flushed from the buffer.
Since the write buffer is FIFO, this implies that all the preceding Writes in the
critical section must have already been flushed to the Memory. Now turning to
the lock acquisition, since a lock acquisition involves an Exchange, which com-
pletely flushes a Thread ’s write buffer, any Read to the shared locations (in case
of multiple accesses to one location, the first such) by the acquiring Thread must
read its value from memory. It follows that synchronisation is obtained. ut

4.3 Progress of the Spin-Lock Implementation

When acquiring a lock, the Thread calling the lock function will loop until it
succeeds. Conversely, the unlock function will always succeed. Progress of the
system depends on two assumptions about the memory system. Firstly, if there
are multiple contending Exchanges, exactly one will succeed. Secondly, all write
buffers will eventually flush their contents to Memory. The first assumption is
required to allow progress in the case of contending lock-acquires when the lock
is free. The second assumption is required to allow progress when one thread
has released a lock and other threads are waiting to acquire the lock. Note that
if the same thread later wants to acquire the lock, the Exchange within lock

will automatically flush the buffers. This is the progress condition for hardware
exchanges that was discussed above.

12 Kevin Hammond, Christopher Brown, and Susmit Sarkar

4.4 Functional Correctness of the Queue Implementation

Recall that the pseudo-code for the queue implementation was shown in Figure 4.
We will assume that the queue is only touched by the qget and qput functions
that are defined here, and the underlying lock location is not directly accessed
by other code. We first verify that the queue implementation validates the as-
sumptions made in the proof of the spin-lock implementation. First, since the
only code that affects lockcell are the calls to the lock and unlock functions,
it is easy to see no other code touches lockcell. Furthermore, on every control
flow path, the unlock function is only called after having acquired the lock, it is
not called more than once, and it is definitely called before either qget or qput
returns. Moreover, any access to the queue and its fields occurs in program-order
between a lock and an unlock from the same thread. Now we argue that the
queue properties are ensured by the operations. There are three key properties:

1. The qget operation returns with a value that was previously placed in the
queue.

2. A value that is placed once in the queue is never removed twice.
3. FIFO order is maintained for the queue.

For 1), the loop in the qget function can only be exited by the break statement.
This means that when the loop exits, we know that the queue is non-empty,
and furthermore, that the Thread that called qget holds the lock. Thus no
other thread can remove elements from the queue, and it follows that the front

operation will be able to find and remove at least one value. For 2), since the
front operation completes before the lock is released, a value cannot be removed
more than once. For 3), since only one thread can execute either qget or qput

at a time, the queue follows sequential semantics. Therefore values are removed
in the order that they were put into the queue.

4.5 Progress of the Queue Implementation

Since there is only one lock per queue, there is no possibility of deadlock. Progress
depends on the progress properties of the underlying spin-lock implementation,
in that if there are multiple contending qget and qput calls, at least one must
succeed. Progress also depend on the fairness of the spin-lock implementation,
which is an additional assumption. To see why, consider the case when the queue
is empty, and there are one or more qget operations contending with a qput op-
eration. An unfair implementation could allow a qget operation to succeed in
acquiring the lock, notice that the queue is empty, release the lock, and immedi-
ately acquire the lock again without allowing the qput operation to acquire the
lock. In this case, the qput would be starved, and the system as a whole would
be prevented from making progress.

Timing Properties and Correctness for Structured Parallel Programs 13

4.6 Functional Correctness of the Farm/Pipeline Skeletons

As defined here, the pipeline and farm skeletons are both streaming operations,
with workers applying functional operations to inputs to produce some out-
put. The requirement is that all inputs that are placed in the input streams
are processed to produce a corresponding output. Moreover, each input in a
stream is processed precisely once. Each worker is associated with an input
queue Qi = x1, x2, . . . , xn and an output queue Qo, containing tasks and re-
sults, respectively. Each queue is guarded by its own lock, and is shared with
one or more other workers. A worker obtains an input task from its input queue,
applies its functional operation, and then places the result of the task on the
output queue. It is easy to see that the assumptions that we need to ensure
the correctness of the queue implementation (the queue is touched only by the
qget and qput methods) are valid for both of the queues. Furthermore, any
communication between workers occurs only through these queues.

Let us consider a parallel pipeline f |g. From the queue properties, by in-
duction on the initial sequence in the input queue x1, x2, . . . , xn, and assuming
that f is finite, we can see that worker f will produce results in the sequence
f(x1), f(x2), . . . , f(xn), and that all inputs will produce a corresponding out-
put. Again, by the queue properties and by induction on this sequence, the
next stage will produce the sequence g(f(x1)), g(f(x2)), . . . , g(f(xn)). That is,
∀j, 0 < j ≤ n.Qo[j] = g(fQi[j]), and so the output queues Qo represents a map
of g.f over the elements in the input queues Qi.

Now let us consider a task farm Φ(f). Suppose that the initial sequence in the
input queue is x1, x2, . . . , xn. By the queue properties, each element is removed
exactly once, and assuming that f is finite, all workers will complete and put
results f(xi) on the output queue. However, without further limitations, the
order of the results in the output queue will now depend on the scheduling of
each of the worker threads. Unlike the strong ordering for the pipeline, here we
can only say that the output queue will contain f(x1), f(x2), . . . , f(xn) in some
permutation. It is not possible to make a strong statement about result ordering
without further knowledge of the thread scheduler.

4.7 Progress of the Farm and Pipeline Skeletons

Since both the farm and the pipeline skeletons do not contain any high-level
cycles, they satisfy progress. The only possible violations of progress are then
when the queue operations are called, with either blocking or deadlocks. We have
proved that the queue operations satisfy progress above (assuming a fair spin-
lock implementation), and thus proving progress under the same assumption
here is almost trivial. The ease of this argument emphasises the advantages of
taking a structured view.

14 Kevin Hammond, Christopher Brown, and Susmit Sarkar

5 Timing Models for x86-64 Multicores

Our overall objective is to obtain good timing predictions for parallel code run-
ning on x86-64 multicores, based on a rigorous understanding of the underlying
relaxed memory model. As mentioned in the hardware correspondence section,
we consider a non-preemptive model. This means that our timing models directly
apply when parallelism is less than or equal to the number of cores. Alternatively,
if parallelism is greater than the number of cores, stronger fairness assumptions
on the scheduler will have to be made to extend our timing models. In order to
construct our timing cost models, we will use traces to describe the operation of
each thread in the system, and then abstract over these to determine the over-
all timing behaviour of the system. A trace describes an actual execution of a
thread in terms of the observable primitive operations that it performs. Since we
are not interested in the values that our system produces, but only in the time
that it takes to execute, we abstract over the actual computations that a thread
performs between each memory access, using the abstract Compute operation to
capture the time taken by actual computations. This paper considers only the
costs associated with memory accesses. In the actual hardware, memory access
costs depend on a variety of factors such as the presence or absence of a location
in cache, the interconnect topology, the relative speeds of the various cache levels
of the cache, etc. There are, thus, varying levels of realism that can be included
in the cost model. We begin with a relatively näıve model, which just considers
buffer sizes. As we will see, even a simple model like this already captures most
of the important timing effects that we are interested in.

5.1 Simple Average Timing Model

Our first timing model estimates execution costs by assigning an average time
to each kind of access. Our parameters are:

TRead the (average) time to read a location
TWrite the (average) time to write a location
TExchange the (average) time to exchange a location

We build up our model in stages, starting with the spin-lock implementation
from Figure 5, then considering the queue implementation from Figure 4, and
finally extending our model to the high-level farm and pipeline skeletons.

Spin-lock Timings. The cost of an unlock operation is just TWrite, while that of
a lock operation is N · TExchange, where N is the number of times that a thread
spins before acquiring the lock. Since each lock can only be held by one thread at
a time, if a thread attempts to acquire a lock while it is held by another thread, it
will spin uselessly. Once the lock is released, if t threads are all trying to acquire
the lock, only one will succeed. Assuming that the hardware allows precisely
one thread to exchange successfully, it follows that it will take t · TExchange time
before the lock is acquired by some thread.

Timing Properties and Correctness for Structured Parallel Programs 15

Queue Timings. Suppose that there are n threads accessing the queue. In the
worst case, they will all contend with each other. By the argument above, a qput

operation therefore succeeds in time: Tqput = n · TExchange + TWrite + TWrite, i.e.,
n·TExchange for the lock; one TWrite when adding to the queue; and another TWrite

for the unlock. Similarly, provided that the queue is not empty, a qget operation
succeeds in time Tqget = n · TExchange + TRead + 2TWrite i.e., n · TExchange for the
lock; one TRead when reading the head of the queue; and two TWrite, one for
writing the queue head and one for the unlock.

Farm and Pipeline Skeleton Timings. For the farm skeleton, suppose there are
n worker threads. The work done by each thread is a qget followed by the
actual computation and finally a qput operation. Each of the queue operations
has contention n + 1. Thus, each thread takes time Tqget + Tf + Tqput which
simplifies to 2 · (n + 1) · TExchange + 4 · TWrite + TRead + Tf . For the two-stage
pipeline skeleton, there are two cases depending on which of the two stages
dominates the time taken (the other being idle). If the first stage dominates
(qualitatively, the second stage has insufficient work), then the first queue has
contention |f |+1, the middle queue has contention |f |+1, and the second queue
has contention 1. The first stage thus takes time Tqget+Tf+Tqput which simplifies
to 2 · (|f |+ 1) · TExchange + 5 · TWrite + Tf . while the second stage takes time Tg.
The total time is the sum of the times for the two stages 2 · (|f |+ 1) ·TExchange +
5 ·TWrite +Tf +Tg. Conversely, if the second stage dominates (qualitatively, the
second stage is saturated), then the first queue has contention |f |+1, the middle
queue has contention |f |+ |g|+ 1, and the second queue has contention 1. The
first stage takes time Tf , and the second takes Tqget +Tg +Tqput which simplifies
to (2 · |g|+ |f |+ 1) · TExchange + 5 · TWrite + Tg Again, the total time is the sum
of the times for the two stages Tf + (2 · |g|+ |f |+ 1) · TExchange + 5 · TWrite + Tg.

5.2 Including Store Buffer Flushing

A more realistic model would take into account that an exchange operation has
two components: i) flushing the local store buffer, TFl; and ii) the actual ex-
change operation TJustX. Naturally, the first component depends on the number
of entries in the local buffer that are waiting to be flushed, b. It follows that
TExchange = b · TFl + TJustX.

Spin-lock Timings. Notice that the exchange operation is only used in the con-
text of a tight loop in the lock operation. The first time, the store buffer must
be flushed, but each successive time, the store buffer is already empty. The price
of a flush is thus paid only once. Assuming that t threads contend for a lock as
before, and with the same assumption as before that a single exchange succeeds,
then the cost of a lock operation is b · TFl + t · TJustX. Here, b is the (average)
number of writes waiting in the buffers, which is between 0 and the size of the
store buffer, B. The unlock operation has the same cost as in our first model.

Queue Timings. The qput operation now takes time: b·n·TFl+n·TJustX+TWrite+
TWrite, while the qget operation takes time: b·n·TFl+n·TJustX+TRead+2·TWrite.

16 Kevin Hammond, Christopher Brown, and Susmit Sarkar

Farm and Pipeline Skeleton Timings. A one-stage farm takes: 2 · (n+1) ·b ·TFl +
(n+1) ·TJustX +4TWrite +TRead +Tf . For a two-stage pipeline, the same analysis
as before applies. If the first-stage dominates, the time is: 2 · (|f |+ 1) · b · TFl +
(2 · |f |+ |g|+ 1) · TJustX + 5 · TWrite + Tf and if the second-stage dominates, the
time is: (2 · |g|+ |f |+ 1) · b · TFl + (2 · |f |+ |g|+ 1) · TJustX + 5 · TWrite + Tg.

5.3 Predicted Speedups

Speedup for Farms. We now use the cost model above to predict execution
speedups for some example skeletons. First consider a simple one-stage farm with
n threads uniformly doing Tf work. The computation takes time n · Tf , which
we can consider to be constant when calculating speedup. The total cost is as
calculated for farms in §5.2. Assuming that Tf is sufficiently large to dominate
the time of a single Read, Write, or pure Exchange, the predicted speedup is
approximately: SpeedupΦ ' n·W

1+c·n2 , where W is a constant that depends on
the total cost of computation, and c is a constant that depends on the number
of times that the lock is taken. Both these constants can be determined by
instrumenting the code when it is run sequentially on just one core.

Speedup for Two-Stage Pipelines. Now consider a two-stage pipeline with f first-
stage workers and g second-stage workers, each uniformly doing work Tf and Tg,
respectively. Since the total work is constant, if the first stage is fully occupied
then the predicted speedup will be: Speedupf |g '

f ·W1

1+c1·f (eqn. 1), where W1 is a

constant that depends on the total cost of computation done in stage one (and
can be approximated by the cost of a single thread in the first and a single thread
in the second stages), and c1 is a constant that depends on the number of times
that the lock on the first queue is taken. If the second stage is saturated, then the
predicted speedup will be: Speedupf |g '

f ·W2

1+c2·(f+g) (eqn. 2), where again W2 is

a constant depending on the total cost of computation, and c2 is a constant de-
pending on the number of times the lock on the second queue is taken. Constant
W2 will be Tg/Tf times the constant W1 above (and thus constant for a partic-
ular application). The stage that dominates depends precisely on which of the
values from eqn. (1) or (2) is lower, i.e. precisely when the second stage becomes

saturated. The final speedup is thus: Speedupf |g ' min
(
f ·W1

1+c1·f ,
f ·W2

1+c2·(f+g)

)
.

Timing Properties and Correctness for Structured Parallel Programs 17

1 2 4 6 8 10 12 14 16 18 20 22 24

1
2

4

6

8

10

12

14

16

18

20

No. Φ2 Workers

S
p

ee
d
u
p

1024× 1024 (titanic)

Φ1 = 1

Φ1 = 2

Φ1 = 4

Φ1 = 8

1 2 4 6 8 10 12 14 16 18 20 22 24

1
2

4

6

8

10

12

14

16

18

20

No. Φ2 Workers

2048× 2048 (titanic)

Φ1 = 1

Φ1 = 2

Φ1 = 4

Φ1 = 8

1 4 8 1216202428323640444852566064

1

4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

No. Φ2 Workers

2048× 2048 (lovelace)

Φ1 = 1

Φ1 = 2

Φ1 = 4

Φ1 = 8

Φ1 = 16

Fig. 6. Image Convolution (Φ1(r) | Φ2(p)) on titanic and lovelace. Dashed/lighter lines
are predictions. Note that the number of Φ1 + Φ2 workers ≤ total hardware threads
(24 for titanic/64 for lovelace).

6 Experimental Validation

We evaluate our cost models against real execution costs using a number of
different benchmarks, running on three different x86-64 multicores. The main
system that we use (titanic) is a 2.4GHz 24-core, AMD Opteron 6176 architec-
ture, running Centos Linux 2.6.18-274.e15, and gcc 4.4.6. We also use ladybank,
a 2.93GHz 8-core (plus hyperthreading) Intel Xeon X5570 architecture, running
GNU/Linux 2.6.32-358.6.2.el6, and lovelace, a 2.3GHz 64-core, AMD Opteron
6376 architecture, running GNU/Linux 2.6.32-279.22.1.el6, which we used to test
scalability for a limited set of experiments. All the results reported here are av-
erages of 10 runs on an idle machine (but not in single-user mode). All speedups
are absolute results against the original sequential versions.

18 Kevin Hammond, Christopher Brown, and Susmit Sarkar

6.1 Image Convolution

Image convolution is widely used in image processing applications such as blur-
ring, smoothing or edge detection. The convolution algorithm is a composition
of two functions r ◦ p, where r reads in an image from a file and p processes the
image by applying a filter. This process is typically applied to a stream of input
images, and produces a stream of output images. For each pixel in the input
image, the filtering stage consists of computing the scalar product of the filter
and the window surrounding the pixel:

output pixel(i, j) =
∑
m

∑
n

input pixel(i− n, j −m)× filter weight(n,m)

For our benchmark tests, we parallelise the convolution using a two-stage pipeline,
where each stage is a farm: Φ1(r) | Φ2(p). Speedup results for two different image
sizes on the 24-core titanic machine are shown on the left and centre of Figure 6,
with each worker in either farm allocated to its own core. Speedups are recorded
against the sequential version of the algorithm. The solid lines show the actual
execution speedups and the dashed lines show the speedup predictions. The x
axis is the number of Φ2 workers and each line corresponds to a fixed number
of Φ1 workers. In all cases, the predicted speedups closely match the actual re-
sults, giving a correct lower bound prediction of the actual speedup. For the
1024× 1024 images, the best speedup is 18.90 for Φ1 = 8 and Φ2 = 16 workers.
Our cost model predicts a speedup of 17.65 (within 7% of the actual value). We
observe three knees in the graph, where the speedups flatten out: for Φ1 = 1 and
Φ2 = 4; or Φ1 = 2 and Φ2 = 6; and at Φ1 = 8 and Φ2 = 14. In all cases, our cost
models correctly predict both the knee and the speedup. For the 2048 × 2048
images, the best speedup is 19.53 for Φ2 = 22 and Φ1 = 2, where our cost model
predicts a speedup of 16.98 (within 14% of the actual value). We observe one
knee, at Φ1 = 1 and Φ2 = 12, which our cost model also correctly predicts. The
right-hand graph in Figure 6 investigates the scalability of our approach, show-
ing speedup results for 2048×2048 images on the 64-core lovelace machine. The
best speedup that we obtain, at Φ1 = 4 and Φ2 = 60, is 31.6, versus a predicted
speedup of 27.48 (that is, within 14% of the actual value). Speedup predictions
for the remaining number of Φ1 workers (4,8 and 10) are consistent with the ac-
tual speedups, showing that the cost model correctly predicts identical speedup
in all three cases.

6.2 Cholesky Decomposition

Cholesky Decomposition is used in linear algebra, comprising the decomposition
of a Hermitian, positive-definite matrix into the product of a lower triangular
matrix and its conjugate transpose. Our implementation uses a task farm, Φ1,
to model the decomposition stage. Speedup results for a 1024 × 1024 matrix
are shown in Figure 7. The top set of results shows speedups for the 24-core
titanic machine (an AMD architecture) and the bottom set of results shows
the corresponding speedups on the 8-core (hyperthreaded) ladybank machine (an

Timing Properties and Correctness for Structured Parallel Programs 19

1 2 4 6 8 10 12 14 16 18 20 22 24

1
2

4

6

8

10

12

14

16

18

No. Workers

S
p

ee
d
u
p

titanic

1024× 1024 MM

2048× 2048 MM

QuickSort

Cholesky

1 2 4 6 8 10 12 14 16

1
2

4

6

8

10

12

14

16

No. Φ Workers

ladybank

1024 ∗ 1024 MM

2028 ∗ 2048 MM

QuickSort

Cholesky

1 4 8 1216202428323640444852566064

1

2

4

6

8

10

12

No. Φ Workers

lovelace

2048 ∗ 2048 MM

3000 ∗ 3000 MM

QuickSort

Cholesky

Fig. 7. Speedups for Cholesky Decomposition, Matrix Multiplication and QuickSort,
using single task farms, on titanic, ladybank and lovelace. Dashed lines are predictions.

Intel Xeon architecture). For titanic, the best actual speedup is 5.86 for 10
workers, versus a best predicted speedup of 5.0 (also for 10 workers). The cost
model also gives an almost perfect prediction, giving a lower bound between 6-12
workers. For ladybank, the best actual speedup is 8.03 for 10 workers, versus a
predicted speedup of 5.26 for 10 workers. This is less accurate than for the AMD
architecture, perhaps showing some additional complexities in the memory model
that would repay further investigation. The cost model does, however, correctly
predict a lower bound on the speedup in all cases.

20 Kevin Hammond, Christopher Brown, and Susmit Sarkar

6.3 Matrix Multiplication

The product of two matrices, A and B is defined as:

(AB)i,j =

m∑
k=1

Aik.Bkj

As for Cholesky decomposition, this can also be implemented using a task farm.
with Figure 7 giving speedup results for 1024× 1024 and 2048× 2048 matrices
on both titanic and ladybank. For ladybank, the 1024 × 1024 example gives a
speedup of 7.55 on 10 cores, versus a prediction of 6.33. Once again, the cost
model correctly predicts lower bounds on speedup, predicting, for example, a
speedup of 5.98 on 16 cores versus an actual speedup of 6.12. For the 2048×2048
execution, the best speedup is 3.54 on 14 cores, versus a predicted speedup of
3.04. For titanic, the 1024 × 1024 example gives a best speedup of 16.7 on 24
cores versus a predicted speedup of 15.65. Likewise, for the 2048×2048 example,
we obtain a best speedup of 14.19 versus a predicted speedup of 11.46. In both
cases, overall speedups are better for smaller matrices. This is due to lower
communication costs. As with the Cholesky example, in all cases our cost models
correctly predict a lower bound on speedup. In the best case, the prediction is
within 3% of the actual speedup.

6.4 QuickSort

Figure 7 shows speedup results for a divide-and-conquer implementation of the
classical QuickSort algorithm mapped to a task farm. All instances sort the
same 109 element list of randomly generated integers, with a threshold size of
105. The best actual speedup on ladybank was 12.72 versus a predicted speedup
of 9.29. For 8 and 10 workers, we observe a super-linear speedup of 10.87 for
8 workers and 11.2 speedup for 10 workers. While we do not have a precise
explanation for this, our experiments showed that the effect is repeatable, and is
presumably therefore some hardware effect. What is important is that our cost
model correctly predicts a lower bound on speedup, showing a similar curve to
the actual executions, with a knee at 8 workers. For titanic, speedup increases
well from 1 to 10 workers, with an actual speedup of 6.6 on 10 workers versus
a predicted speedup of 6.8 – one of the few cases where the cost model yields a
(slight) over-estimate of the speedup. Beyond this point, speedup still improves,
but only slightly, up to a maximum of 7.4 speedup on 24 cores (versus a prediction
of 6.4). As with the other examples, the cost model closely predicts the actual
speedup.

Timing Properties and Correctness for Structured Parallel Programs 21

1 2 4 6 8 10 12 14 16 18 20 22 24

1

2

4

6

8

10

No. Φ Workers

S
p

ee
d
u
p

titanic

NQ 19

NQ 17

1 2 4 6 8 10 12 14 16

1

2

4

6

8

10

11

12

No. Φ Workers

ladybank

NQ 19

NQ 17

1 4 8 1216202428323640444852566064

1

2

4

6

8

10

No. Φ Workers

lovelace

NQ 17

NQ 19

Fig. 8. Speedups for NQueens (g | Φ(s)) on ladybank and titanic. Dashed lines are
predictions.

6.5 NQueens

NQueens involves placing n queens on an n ∗ n chessboard, so that no two
queens may attack each other, according to the usual rules of chess. The solution
requires that no two queens occupy the same row, column or diagonal. In our
implementation, we have modelled the NQueens problem as a two-stage pipeline,
g | Φ(s), where g is the stage that generates all positions of the queens, and s
is the stage that solves the position. Speedup results for this implementation of
NQueens are shown in Figure 8 for a 15× 15 board, which produces 15 possible
positions in the first stage, and for a 19× 19 board, which produces 17 possible
queens in the first stage. As with the other examples, the predicted speedups
closely model the actual speedups. There is one over-prediction: for 6 workers
on the 19 × 19 board, where we observe a discontinuity in the actual speedup.
Otherwise, the predictions closely mimic the actual results that we obtain. The
best speedups are 8.8 for 10 workers on a 19× 19 board and 7.87 for 10 workers
on a 17× 17 board.

22 Kevin Hammond, Christopher Brown, and Susmit Sarkar

11 4 6 8 10 12 14 16 18 20 22 24

1
2

4

6

8

10

12

14

16

18

20

No. Φ2 Workers

S
p

ee
d
u
p

FastFlow

Φ1 = 1

Φ1 = 2

Φ1 = 4

Φ1 = 8

11 4 6 8 10 12 14 16 18 20 22 24

1
2

4

6

8

10

12

14

16

18

20

No. Φ2 Workers

OpenMP

Φ1 = 1

Φ1 = 2

Φ1 = 4

Φ1 = 8

Fig. 9. Speedups for our implementation (solid lines) versus FastFlow (above, dashed
lines), and OpenMP (below, dashed lines); Convolution of 500 images, size 2048×2048
(titanic). The baseline sequential performance is identical in each case.

6.6 Comparison with other Techniques

In order to demonstrate the efficiency of our queue and locking implementations,
we have compared speedups for the Image Convolution example against those
for two other state-of-the-art parallel implementations: OpenMP [9] and Fast-
Flow [10]. Figure 9 compares all three implementations using 2048×2048 images
on titanic. The top graph compares our implementation against FastFlow, and
the bottom against OpenMP. In both cases, the speedup from our implemen-
tation is shown using solid lines, and the dashed lines show the speedups for
FastFlow/OpenMP. All speedups were measured against the same sequential
implementation (which took 768.75 seconds). In order to correctly compare the
parallelism structures, we implemented the same two-stage pipeline in all three
systems, using equivalent farm and pipeline structures in FastFlow, and two
dynamic for-loops separated by a barrier synchronisation in OpenMP. The bar-
rier is necessary to avoid the second stage processing images that have not yet
been generated by the first stage, and is a natural translation of the parallelism
structure that is used in the other implementations. As Figure 9 shows, the
FastFlow implementation is comparable to ours up to 8 workers for Φ2 and for
all versions of Φ1, but speedup reduces drastically after this point, whereas our
implementation scales well up to 23 cores. The FastFlow implementation also
carries further overhead in the form of two additional dedicated cores per task
farm, which is not needed in our implementation. The OpenMP implementation
scales better than FastFlow, but begins to flatten out at about 6 Φ2 workers,
where our implementation continues to scale well to 23 cores.

Timing Properties and Correctness for Structured Parallel Programs 23

7 Related Work

Timing issues are critically important for parallel and concurrent execution, and
they have therefore been widely studied in the literature. However, despite their
prevalence in real hardware, very little work considers relaxed memory models.
This paper represents the first attempt of which we are aware to consider the
precise impact of relaxed memory models on functional correctness, deadlock and
timing. Correctness of the spin-lock protocol on x86-TSO has been previously
proved using a semantic criterion (triangular-race freedom [11]) derived from
the x86 -TSO model used here [6,5]. In contrast, our new proof proves functional
correctness and deadlock freedom directly over the operational model of the
actual x86-64 instructions [6,5]. Our proof has been composed with a proof for
queues and thence skeletons, and furthermore clearly isolates necessary hardware
assumptions for progress. We also consider, for the first time, the crucial issue
of execution time. Burckhardt et al [12] verify spin-locks on TSO by adapting
a modified version of linearisability, and thus implicitly obtain compositionality.
However, they ignore the progress and fairness constraints that we uncover, and
also do not treat execution time.

Specific algorithmic skeletons are frequently associated with timing cost mod-
els [13]. However, these are obtained through measurement rather than being
systematically derived from machine-level models, as here. Much of the work on
developing cost models for parallel execution has focused on data parallelism.
The Parallel Random-Access Machine (PRAM) execution model [14] acts as a
theory of complexity for parallel algorithms on idealised shared-memory SIMD
machines. In the basic PRAM execution model, basic computations and shared-
memory accesses are both assumed to take unit time. Unfortunately, PRAM
costs underestimate actual machine execution costs, but in an unpredictable
way [15]. The Bulk Synchronous Parallel (BSP) model [16] extends the PRAM
model in a more realistic way, introducing a synchronising communication step
after each set of computation steps. Lisper [17] has investigated the use of a
Bulk Synchronous Parallel skeleton for determining worst-case execution times,
but only informally, and not in the context of real processor models. Skillicorn
and Cai have likewise developed a high-level cost calculus for data parallel com-
putations [15], based on the shape of data structures, and known properties of
primitive parallel operations, but have not based this on a strong machine-level
semantics. Blelloch and Greiner have demonstrated provable time and space
bounds for nested data parallel computations in NESL [18]. To date, none of
these models have therefore been derived from first principles for real multi-
core architectures with relaxed-memory models. The model we give here thus
represents a significant step in determining accurate cost models for algorithmic
skeletons and other structured parallel forms on modern processor architectures.

24 Kevin Hammond, Christopher Brown, and Susmit Sarkar

The C/C++11/C++14 standards provide atomic operations that support
various kinds of weak memory models [19,20]. They could be used to implement
the Fence and Exchange operations, but do not support higher-level parallel
structures, such as the structured algorithmic skeletons that we have used here.
Boehm and Adve [21] consider the foundations of this concurrency model. Adve
and Boehm [22] give a useful survey of weak memory models as of 2010.

8 Conclusions

This paper has developed new proofs of functional correctness for x86-64 mul-
ticores and used these to derive cost models for structured parallel programs.
For the first time, we have direct operational proofs of functional correctness and
deadlock freedom for standard locking and queuing algorithms under the relaxed
memory model used by common x86-64 multicores. We have used these to build
accurate cost models for parallel programs that are structured using common
algorithmic skeletons. Our predictions match very closely to actual results: in
most cases predicting a lower-bound to within 7% accuracy.

8.1 Limitations/Further Work

There are a number of obvious limitations to the work described here that would
repay further work. Firstly, the queues that we have used here are unbounded.
Extending our work to consider bounded queues should not be technically dif-
ficult, but would add some complexity to the queue definitions and would also
require us to consider how “back-pressure” [23] from the demand on one queue
impacts the production of values that feed that queue. Secondly, although it
is very commonly used in practice, the locking mechanism that we have used
here carries some, possibly significant, cost: by definition, when a processor is
executing a spin-lock, it is wasting energy and not doing any useful work. More
efficient notification or “lock-free”2 techniques would obviate this at the cost of a
significantly more complex proof and rather more complex cost model. We have
therefore chosen not to do this here. Thirdly, and more seriously, as with most
work on algorithmic skeletons, we have not considered any form of feedback, as
in FastFlow’s “farm/pipeline-with-feedback” skeletons [10]. Incorporating skele-
tons with feedback would allow the construction of more complex parallel pro-
grams, but would require us to determine fixed-points in the skeletons and to
solve the resulting timing recurrence relations. Fourthly, we have ignored some
hardware effects. In particular, while we have accounted for the behaviour of
the cache and associated hardware when determining functional correctness and
deadlock properties, we have not attempted to precisely model memory access
behaviour in determining execution times, but have assumed that the sequential
cost model properly accounts for such costs. We have also not modelled the pro-
cessor instruction pipeline. Neither issue will affect functional correctness, but
could, obviously, impact low-level timing accuracy.

2 In the sense that locks are not visible to the programmer, rather than they are not
used by the hardware.

Timing Properties and Correctness for Structured Parallel Programs 25

Acknowledgements

This work has been partially supported by the EU Horizon 2020 grant “RePhrase:
Refactoring Parallel Heterogeneous Resource-Aware Applications – a Software
Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), sup-
ported by COST (European Cooperation in Science and Technology), and by
EPSRC grant EP/M027317/1 “C3: Scalable & Verified Shared Memory via
Consistency-directed Cache Coherence”.

References

1. Cole, M.I.: Algorithmic skeletons: structured management of parallel computation.
MIT Press, Cambridge, MA, USA (1991)

2. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-
level structured parallel programming enablers. Software: Practice & Experience
40(12) (2010) 1135–1160

3. Danelutto, M., Torquati, M.: A RISC Building Block Set for Structured Paral-
lel Programming. In: Proc. 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP ’13). (2013) 46–50

4. Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers C-28(9) (September
1979) 690–691

5. Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-TSO: A
Rigorous and Usable Programmer’s Model for x86 Multiprocessors. CACM 53(7)
(July 2010) 89–97

6. Owens, S., Sarkar, S., Sewell, P.: A Better x86 Memory Model: x86-TSO. In: Proc.
TPHOLs ’09: Intl. Conf. on Theorem Proving in Higher-Order Logics, Springer
LNCS 5674 (August 2009) 391–407

7. Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3A:
System Programming Guide, Part 1, §8.2.2. Intel (2013)

8. Papamarcos, M.S., Patel, J.H.: A Low-overhead Coherence Solution for Multipro-
cessors with Private Cache Memories. In: Proc. ISCA ’84: 11th Annual Interna-
tional Symposium on Computer Architecture, ACM (1984) 348–354

9. Chapman, B., Jost, G., Pas, R.v.d.: Using OpenMP: Portable Shared Memory
Parallel Programming (Scientific and Engineering Computation). The MIT Press
(2007)

10. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: High-level
and Efficient Streaming on Multi-core. In: Programming Multi-core and Many-
core Computing Systems, ser. Parallel and Distributed Computing. (2012)

11. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions
on x86-TSO. In: Proc. ECOOP ’10: European Conference on Object-Oriented
Programming, Springer (June 2010) 478–503

12. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Cor-
rectness on the TSO Memory Model. In: Proc. ESOP ’12: 21st European Confer-
ence on Programming Languages and Systems. (2012) 87–107

13. Hamdan, M.M.: A Survey of Cost Models for Algorithmic Skeletons. Technical
report, Heriot-Watt University (1999)

14. Fortune, S., Wyllie, J.: Parallelism in Random Access Machines. In: Proc. STOC
’78: 10th Annual ACM Symposium on Theory of computing, ACM (1978) 114–118

26 Kevin Hammond, Christopher Brown, and Susmit Sarkar

15. Skillicorn, D.B.: A Cost Calculus for Parallel Functional Programming. Journal
of Parallel and Distributed Computing 28 (1995)

16. Valiant, L.G.: A Bridging Model for Parallel Computation. Communications of
the ACM (CACM) 33(8) (August 1990) 103–111

17. Lisper, B.: Towards Parallel Programming Models for Predictability. In: Proc.
WCET ’12: 12th International Workshop on Worst-Case Execution Time Analysis.
Volume 23 of OpenAccess Series in Informatics (OASIcs). (2012) 48–58

18. Blelloch, G.E., Greiner, J.: A Provable Time and Space Efficient Implementation of
NESL. In: Proc. ICFP ’96: ACM SIGPLAN International Conference on Functional
Programming. (1996) 213–225

19. Becker, P., ed.: Programming Languages — C++. ISO/IEC (2011)
20. Williams, A.: C++ Concurrency in Action: Practical Multithreading. Manning

Publications (2012)
21. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.

In: Proc. PLDI ’08: 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation. (2008) 68–78

22. Adve, S.V., Boehm, H.J.: Memory Models: A Case for Rethinking Parallel Lan-
guages and Hardware. Communications of the ACM (CACM) 53(8) (2010) 90–101

23. Collins, R.L., Carloni, L.P.: Flexible filters: load balancing through backpressure for
stream programs. In: Proc. EMSOFT ’09: ACM SIGBED International Conference
on Embedded Software. (2009) 205–214

Dataset

Data associated with this paper may be retrieved from http://dx.doi.org/

10.5281/zenodo.58198.

http://dx.doi.org/10.5281/zenodo.58198
http://dx.doi.org/10.5281/zenodo.58198

	Timing Properties and Correctness for Structured Parallel Programs on x86-64 Multicores
	Introduction
	Pipeline and Farm Skeletons
	Simple Queue Implementation using Locks

	Key Hardware Characteristics
	Correctness and Progress Properties
	Coherence Order
	Functional Correctness of the Spin-Lock Implementation
	Progress of the Spin-Lock Implementation
	Functional Correctness of the Queue Implementation
	Progress of the Queue Implementation
	Functional Correctness of the Farm/Pipeline Skeletons
	Progress of the Farm and Pipeline Skeletons

	Timing Models for x86-64 Multicores
	Simple Average Timing Model
	Including Store Buffer Flushing
	Predicted Speedups

	Experimental Validation
	Image Convolution
	Cholesky Decomposition
	Matrix Multiplication
	QuickSort
	NQueens
	Comparison with other Techniques

	Related Work
	Conclusions
	Limitations/Further Work

