
Counting chirps: acoustic monitoring of cryptic frogs

G. John Measey1*, Ben C. Stevenson2, Tanya Scott3, Res Altwegg3,4 and

David L. Borchers2

1Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Natural Sciences Building,

Private Bag X1, Matieland, Stellenbosch 7602, South Africa; 2Centre for Research into Ecological and Environmental

Modelling, University of St Andrews, The Observatory, Buchanan Gardens, St Andrews, Fife KY16 9LZ, UK;
3Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town,

Rondebosch 7701, South Africa; and 4African Climate and Development Initiative, University of Cape Town,

Rondebosch, South Africa

Summary

1. Global amphibian declines have resulted in a vital need for monitoring programmes that

follow population trends. Monitoring using advertisement calls is ideal as choruses are undis-

turbed during data collection. However, methods currently employed by managers frequently

rely on trained observers and/or do not provide density data on which to base trends.

2. This study explores the utility of monitoring using acoustic spatially explicit capture–
recapture (aSCR) with time of arrival (ToA) and signal strength (SS) as a quantitative moni-

toring technique to measure call density of a threatened but visually cryptic anuran, the Cape

peninsula moss frog Arthroleptella lightfooti.

3. The relationships between temporal and climatic variables (date, rainfall, temperature)

and A. lightfooti call density at three study sites on the Cape peninsula, South Africa, were

examined. Acoustic data, collected from an array of six microphones over 4 months during

the winter breeding season, provided a time series of call density estimates.

4. Model selection indicated that call density was primarily associated with seasonality fitted

as a quadratic function. Call density peaked mid-breeding season. At the main study site, the

lowest recorded mean call density (0�160 calls m�2 min�1) occurred in May and reached its

peak mid-July (1�259 calls m�2 min�1). The sites differed in call density, but also the effective

sampling area.

5. Synthesis and applications. The monitoring technique, acoustic spatially explicit capture–
recapture (aSCR), quantitatively estimates call density of calling animals without disturbing

them or their environment. In addition, time of arrival (ToA) and signal strength (SS) data

significantly add to the accuracy of call localization, which in turn increases precision of call

density estimates without the need for specialist field staff. This technique appears ideally

suited to aid the monitoring of visually cryptic, acoustically active species.

Key-words: acoustic array, acoustic spatially explicit capture–recapture, anurans, call den-

sity, non-invasive sampling, population monitoring, sensor networks, signal strength, time of

arrival, triangulation

Introduction

Monitoring the sizes and trends of wild populations is

important for understanding a species’ ecology and to

guide conservation actions (Hellawell 1991; Fasham &

Mustoe 2005; Tucker et al. 2005). Effective monitoring

techniques should provide reliable and quantitative

estimates of abundance so that trends can be quantified

(Legg & Nagy 2006). Assessment of population size can

be used to detect species’ responses to established or

incipient environmental change (Gibbons et al. 2000);

determine the conservation status of a particular species;

identify conservation needs of species, communities or

habitats; assess the ecological state of ecosystems; and

evaluate the effectiveness of existing conservation mea-

sures (Hellawell 1991; Downes et al. 2002). Lack of moni-

toring success has been attributed to (amongst others)*Correspondence author. E-mail: john@measey.com
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insufficient statistical power, loss of key personnel and

loss of integrity of the long-term data record (Legg &

Nagy 2006; Lindenmayer & Likens 2010). Rectification of

these failures has already been substantially aided by the

digitization of traditional data collection, including images

and sound recordings, but new analytical tools are

required to realize the full potential of this digital data

revolution.

Amphibian populations have been declining world-wide

since the 1970s with increased documentation in the 1980s

and 1990s (Stuart et al. 2004). The Global Amphibian

Assessment revealed that amphibians are more threatened

and are declining more rapidly than any other vertebrate

class. Of amphibian species, 32�5% are threatened glob-

ally and at least 48�2% have populations that are in

decline (Stuart et al. 2004). In the decade following these

findings, research efforts have focussed on determining

the proximate causes of declines, as well as initiating mon-

itoring schemes as early warning systems. Traditional

methods of monitoring amphibian populations by estimat-

ing population size can be laborious and usually involve

capturing, marking and recapturing individual animals.

Although there are different methods for targeting differ-

ent species and different life-history strategies (e.g. Fas-

ham & Mustoe 2005), most of these methods are labour

intensive and many involve direct handling, which is

stressful to the animals.

Auditory monitoring techniques, such as estimating the

number of calling males, are non-invasive and can be used

to estimate population size. These techniques include

manual calling surveys (MCS) involving human observers

and automated recording systems (ARS). MCS are subject

to imperfect detection, misidentifications and substantial

observer bias. ARS allow collection of call data without

the observer present, allow data to be collected by staff

unskilled in identifying species-specific calls and provide a

permanent record of the sampling occasion that can be

reinterpreted later. Managers are increasingly instigating

MCS and ARS methods to yield site occupancy data,

inventories of anuran species and qualitative count data

indexing abundance. Sampling area however is not clearly

defined in these call survey methods, and so, it is not

known what area the estimation of the target population

covers (Stevens, Diamond & Gabor 2002; De Solla et al.

2006; Dorcas et al. 2009).

Spatially explicit capture–recapture (SCR; Efford 2004;

Borchers & Efford 2008) combines capture–recapture and

distance sampling methods (Buckland et al. 2001) and

was originally developed for studies in which the target

animals are physically captured. However, SCR can be

used when the same individual is perceived by more than

one detector on a single occasion, thus avoiding the need

for them to be physically captured (Borchers 2012). This

is why SCR can also be used with arrays of fixed micro-

phones resembling trapping grids to estimate population

density of vocalizing individuals, if individuals are identifi-

able from calls, and to estimate density of calls per unit

time if individual animals cannot be identified from their

calls, but individual calls can be distinguished from one

another (Dawson & Efford 2009; Efford, Dawson &

Borchers 2009; Stevenson et al. 2015; Kidney et al. 2016).

Each microphone represents a detector of known location,

where detections of an individual call on one or more

microphones constitute the ‘captures’; these records are

used to estimate a distance-based detection probability

surface. Acoustic data offer the advantage over physical

capture in that they contain additional information about

the detection process, namely signal strength (relative

amplitude) and, in the case of calls that were recorded at

more than one microphone, relative time of arrival. Novel

statistical techniques allow all information to be combined

to give greater accuracy on the location of the sound

source and allow the parameters of the detection function,

and therefore call density, to be estimated more precisely

(Stevenson et al. 2015). Given the estimated detection

function and the observed detections and non-detections

of individual calls at the different microphones, one can

estimate call density and the unobserved locations of the

calling individuals (Borchers 2012).

Acoustic SCR (aSCR) is an appealing technique for

monitoring vocalizing species because large volumes of

acoustic data can be collected in a short amount of time

over a known area, ensuring both the integrity of the data

record and statistical power without the need for key per-

sonnel. It should be noted that no marking or recognition

of individuals is required for aSCR; instead, each micro-

phone acts as a proximity detector (Efford, Dawson &

Borchers 2009; Borchers 2012; Stevenson et al. 2015).

Moreover, at present, it is the only method that is capable

of generating both point and interval estimates of either

call density or calling male density in a statistically rigor-

ous manner. The aim of this study was twofold, first to

assess the practical use of aSCR with time of arrival

(ToA) and signal strength (SS or call amplitude) data col-

lected by the sequential deployment of a microphone

array in the field. Secondly, we use these data to assess

changes in calling density across a complete calling season

in the Cape peninsula moss frog Athroleptella lightfooti,

obtaining quantitative estimates of call density using non-

invasive audio recordings. Our goal was to determine the

conditions under which this monitoring technique should

be carried out to capture the majority of a population of

calling males. We demonstrate both the practicality of this

approach and the period of peak calling density for

A. lightfooti males.

Materials and methods

STUDY SPECIES

Arthroleptella is a genus of frogs from the family Pyxicephalidae

endemic to south-western South Africa and currently comprises

seven described species. They are found in populations associated

with mossy seepages in mountainous fynbos areas (Channing
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2004). The different species are morphologically similar, but can

be reliably distinguished by their advertisement calls (Turner

et al. 2004; Turner & Channing 2008). Their limited distributions

in montane fynbos habitat make them susceptible to invasions

from alien plants (mostly pines and Australian acacias) that are

prominent in this area (Wilson et al. 2014) and have resulted in

high threat levels for many of the species (Measey 2011). Fynbos

is a fire-dependent ecosystem, and woody invasive species

increase fire temperatures and shorten fire return intervals (Kraaij

& van Wilgen 2014) threatening moss frogs and other endemic

species. The region in which these species occur is expected to

undergo climatic change, especially linked to rainfall patterns and

temperature (Altwegg et al. 2014).

The Arthroleptella lightfooti adults are cryptically coloured and

small; females can attain a snout-vent length of up to 22 mm,

while males are smaller (Channing 2004). The advertisement call

of A. lightfooti is a short chirp consisting of three short pulses.

The call has an emphasized frequency of 3 754 Hz (Turner &

Channing 2008). This species is not sympatric with any other

Arthroleptella species (Channing 2004).

These moss frogs aestivate during the dry season (austral sum-

mer) and become active, breed and develop choruses from April

to December during the rainy season (Channing 2004). The adult

males call during the day to attract females to egg deposition

sites. The females lay clutches of 5–12 eggs in mossy areas, under

thick vegetation or at the bases of grass tufts (Channing 2004).

Even though little is known about the calling ecology of these

species, we expected that the number of calling males may vary

with changes in temperature (Navas 1996; Oseen & Wassersug

2002; Murphy 2003; Hauselberger & Alford 2005; Weir et al.

2005; Kirlin et al. 2006; Saenz et al. 2006), and/or rainfall (Oseen

& Wassersug 2002; Murphy 2003; Hauselberger & Alford 2005;

Weir et al. 2005; Kirlin et al. 2006; Saenz et al. 2006). Moss frogs

stop calling if disturbed, but generally start calling again after

about five minutes once the disturbance has ceased. This species

is a Cape peninsula endemic within Table Mountain National

Park and has a IUCN Near Threatened status as it has a

restricted distribution, but it is not known whether populations

are in decline. It has been identified for monitoring as it occurs

throughout the Cape peninsula indicating the presence of vulner-

able seepage habitats, which also host a variety of threatened

plant species (Measey 2011). In addition, other species in the

genus are more highly threatened with alien invasive trees as well

as in increased fire intensity and return rate (Measey 2011).

SITE DESCRIPTION

Three sites (referred to as ‘Site 1’, ‘Site 2’ and ‘Site 3’ below) situ-

ated on Steenberg Plateau in Silvermine Nature Reserve,

Table Mountain National Park on the Cape peninsula were sam-

pled in 2012 from May to September to coincide with the breed-

ing season of A. lightfooti. The sites were approximately 300 m

from each other and chosen based on known presence of A. light-

footi and reasonable access. Due to time constraints, at most two

of the sites could be sampled on any given day. Site 1

(34°06003�5″ S; 18°26055�2″ E) was sampled on fortnightly visits,

and Site 2 (34° 05051�0″ S; 18°26056�8″ E) and Site 3

(34°05057�7″ S; 18°27003�8″ E) were sampled on alternate visits.

The 17 visits were made between 10.00 and 14.00 h (the frogs call

steadily between sunrise and sunset), avoiding rain and high

winds due to use of unprotected electronic equipment. The vege-

tation type growing on Steenberg Plateau is Cape peninsula

sandstone fynbos. The vegetation consists of tall (1–2 m) proteoid

shrubland over dense, shorter (<0�5 m) ericoid shrubland (Rebelo

et al. 2006).

ENVIRONMENTAL DATA COLLECTION

Factors that potentially influence anuran calling explored in this

study were time of the season (date), precipitation during the

days prior and the day of the recording, and ground and air tem-

perature at the time of the recording. These small ectotherms are

more likely to be affected immediately by temperature, whereas

prolonged rain is important for reproduction. One temperature

logger (iButton in silicon holder), measuring ground (2 cm

below-ground) and air temperature (10 cm above-ground) every

hour, was placed at Site 1 throughout the sampling period. It

was considered that the temperature the frogs experience was

most likely to be closest to this position as the frogs occupy con-

cealed moist locations at the base of and under vegetation. Rain-

fall (millimetres of precipitation per day) was measured using a

rain gauge (situated approximately 3 km west–north-west of the

study sites) at 08.00 h each day and recorded by park rangers.

MICROPHONE DEPLOYMENT AND SOUND RECORDINGS

We used a DR-680 6-Track Portable Field Audio Recorder (Tas-

cam; TEAC, Wiesbaden, Germany) with six Audio-Technica

AT8004 Handheld Omni-directional Dynamic Microphones

(Audio-Technica, Leeds, UK). At each site, six labelled micro-

phones on 1-m wooden dowels with a microphone holder

attached to one end with duct tape were placed in an array

approximately 4 m from the recorder and 2 to 5 m from each

other in a rough circle, but without regular spacing: close enough

so that some calls are heard on more than one microphone, but

not so close that all calls are heard on all microphones. The posi-

tions of the dowels were kept constant by inserting them into

plastic tubes that were left in the ground between visits. The

straight-line distance from each microphone to every other micro-

phone in the array was measured to the nearest centimetre using

a measuring tape. Vocalizing moss frogs were recorded for

40 min on each visit. The area around the site (200 m) was

vacated for the duration of the recording. The six microphones

recorded on independent tracks with a resolution of 24-bit and a

recording frequency of 48 kHz. Inclement weather was deliber-

ately avoided for recordings as this equipment is not weather-

proof.

SOUND PROCESSING INTO A NUMERICAL DATA BASE

The stereo recordings were pre-processed, before they were statis-

tically analysed, to identify individual calls of A. lightfooti. Call

recognition routines were constructed for A. lightfooti, and then,

the recordings were processed using these call recognition rou-

tines. Call recognition and pre-processing was done using PAM-

GUARD (version 1.11.00 BETA; Miller et al. 2014;

www.pamguard.org), which also allowed us to check recogni-

tions. Arthroleptella lightfooti calls consist of three pulses that

make up a single note and are identified as a single frog call using

a click detector in PAMGUARD (see Stevenson et al. 2015 for more

details). The data captured from PAMGUARD comprise the start

time of each call (in seconds), the signal strength and the micro-

phone on which the call was heard. The data were captured to an
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accuracy of 2�083 9 10�5 s. The first 10 min of each recording

was omitted from the pre-processed data, prior to statistical anal-

ysis, to remove any disturbance of the site while setting up the

microphone array, leaving 30 min of acoustic data per visit for

the analysis. Ten minutes appeared sufficient time to allow nor-

mal frog calling activity to resume. All files of call data were

deposited with the South African Environmental Observatory

Network (www.saeon.ac.za) and are available on request.

SPATIALLY EXPLIC IT CAPTURE–RECAPTURE (SCR)

The methodology of Stevenson et al. (2015) was used to estimate

call density (in frog calls per hectare per minute) and is briefly

described below. These methods are an extension of those set out

by Efford, Dawson & Borchers (2009), and allow for the incorpo-

ration of both ToA and signal strength information into SCR

analyses.

ACOUSTIC SCR

Frog calls detected across the microphone array can be seen as

capture–recapture data: calls can potentially be detected at each

microphone, analogous to how individuals can potentially be

detected on each occasion during a traditional live-trapping cap-

ture–recapture survey. The data required to estimate density

using aSCR are the capture histories, a record of which micro-

phones detected each identified frog call. The patterns of detec-

tions and non-detections at the different microphones allow the

unobserved locations of the frog calls to be estimated with an

associated measurement error.

A frog call’s probability of detection at a particular micro-

phone is a decreasing function of the horizontal distance between

the locations of the source of the call and the microphone; that

is, the further a microphone is located from the source of a call,

the less likely it is to detect the call. SCR methods use the loca-

tions of the microphones relative to the estimated sources of the

detected calls to estimate the parameters of a detection function,

describing how detectability declines with increasing distance (see

Borchers 2012 for further details).

Conditional on their locations, frog calls are assumed to be

detected independently across the microphones, and there is uni-

formity in the sensitivity across the microphones. For any given

point in the survey area, the estimated detection function allows

calculation of the probability that a call emitted from this loca-

tion is detected by the array (i.e. that it is heard by one or more

microphones). The proportion of calls detected and the effective

survey area (ESA), a, can then be calculated. The latter is the

area in which it is estimated that n calls (detected or otherwise)

were made over the course of the survey, where n is the total

number of detected calls. For example, if the survey area is 1 ha,

and it is estimated that a quarter of all calls are detected, then

â = 0�25 ha. Dividing the total number of detected calls by both

the estimated ESA and the survey length, t, gives rise to the call

density estimate, D; that is, D̂ ¼ n=ðâ � tÞ.
Frogs are assumed to be located uniformly throughout the sur-

vey area, and so, the density of frog calls is also uniform. The ini-

tial acoustic SCR methodology of Efford, Dawson & Borchers

(2009) assumed that call source locations were independent of

one another; however, this rarely holds in practice: individuals

may emit many calls over the course of the survey, and the loca-

tions of calls made by the same animal are likely to have the

same (or similar) source locations. Stevenson et al. (2015) showed

that bias in point density estimates is negligible despite the viola-

tion of this assumption, though variance is typically underesti-

mated. Correcting variance estimates is possible via a simulation

approach if call rate data are available (see Stevenson et al.

2015). Although the effect of violation of the assumption of spa-

tial uniformity with SCR estimators has not been thoroughly

investigated, there are a number of studies that suggest that while

violation of assumptions can result in bias in some parameters of

the SCR model, and to biased inferences about distribution in

space, SCR estimates of density itself appear to be remarkably

robust to violation of the assumption (Efford, Borchers & Byrom

2009; Distiller & Borchers 2015).

INCORPORATION OF SIGNAL STRENGTH AND TIME OF

ARRIVAL DATA

Increased precision in location estimates results in a more pre-

cise detection function estimate and this in turn propagates

through to an estimation of call density. Efford, Dawson &

Borchers (2009) recognized that signal strength data (or the

relative amplitude of the call) can be informative about the

location of a call’s source: a call closer to microphones is likely

to have higher received signal strength than a call further away.

Borchers et al. (2015) made a full generalization, providing a

framework under which supplementary spatial data informative

about animal locations can be incorporated into SCR

approaches. One such example is the use of ToA in aSCR. A

call recorded on multiple microphones reaches the closest micro-

phone slightly earlier than the others. The difference in ToA

between microphones gives additional information about the

location of a call above and beyond what is provided by signal

strengths and the locations of the microphones that detected it.

Incorporation of both SS and ToA information into aSCR can

substantially increase the precision of the call density estimate

(Borchers et al. 2015; Stevenson et al. 2015).

MODEL FITTING

Call density and the detection function estimates were obtained

from the PAMGUARD output data using the ascr package (Steven-

son 2016) in R (version 3.1.3; R Core Team, 2015) using a maxi-

mum-likelihood approach. The likelihood function is a version of

what is now a standard likelihood function in capture–recapture

studies, first developed by Borchers & Efford (2008). The distin-

guishing feature of such likelihoods is that they accommodate

capture histories that consist of the locations (microphones) at

which detections occurred rather than occasions on which cap-

tures occurred. In this context, each vocalization made by a frog

generates a capture history (some of which are unobserved) and

there is only one capture occasion. Because the locations of the

animals themselves are not observed, they are treated as latent

variables in SCR analyses. Acoustic SCR methods are further

distinguished by the fact that acoustic capture histories include

additional information on locations in the form of ToA data and

received signal strength. The aSCR likelihood therefore includes

statistical models for received signal strength and for ToA as

functions of animal location, and as a result, distance and angle

to animals is implicitly estimated (together with associated uncer-

tainty) simultaneously with density. See Stevenson et al. (2015)

for further details about this likelihood, along with example code.
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Model fitting was computationally intensive, so to obtain a

good representation of the call density during the 30min sampling

period, 10 subsamples of 1 min were taken at three-minute inter-

vals. A single estimate of call density from each recording was

then obtained by averaging over those obtained from the subsam-

ples. The unit of replication in the following analysis is therefore

the recording, that is a single visit to a particular site.

CORRELATES OF CALLING DENSITY

We then examined variation in call density estimates using linear

models. Model diagnostics indicated that the most parsimonious

models involved a log transformation of the estimated call densi-

ties. Although this did help in stabilizing error variance, residuals

nevertheless showed heteroscedasticity. These linear models were

therefore fitted using generalized least squares, implemented in

the R function gls from the nlme package. The response variable

was estimated frog call density, and the covariates were site, date,

rainfall and temperature (see Environmental Data Collection sec-

tion, above). ‘Site’ entered as a factor in each model because frog

call density was likely to vary between the three sites. In addition,

we investigated models that included a site/time interaction effect,

but these were found to increase the AIC score indicating more

support for models with the same quadratic effect across sites.

We therefore did not include interaction models in the following

model-selection process.

Models were fitted that encompassed all possible subsets of the

covariates. For each model, the value of the maximized log-likeli-

hood, the number of parameters, Akaike second-order Informa-

tion Criterion (AICc) and their differences, and Akaike weights

were calculated (Table 1). Akaike weights are a measure of the

weight of the evidence that the particular model is the best model

in the set (Anderson, Burnham & Thompson 2000). The aSCR

models, fitted to each one-minute subsample, estimate a parame-

ter that measures the range of detectability of frog calls. It was of

interest to determine whether frog call detectability varied across

surveys and/or sites. A mixed-effects model was fitted with these

parameter estimates as the response variable, survey as a random

effect and site as a fixed effect. Restricted maximum-likelihood

and Wald chi-square tests, respectively, were used to assess signif-

icance of these effects.

Results

The equipment was swift to deploy at the field site with a

set-up time of approximately 10 min prior to recording at

each site. Inserting dowels into tubes left at the site

between recordings made the microphone locations con-

stant and simple to replicate on each visit. The number of

calls detected by PAMGUARD during the entire 30 min of

recording varied between 5 842 and 30 036 (mean

17 854 � 1014�3). Most calls were detected on a single

microphone. Calls that were heard on more than a single

microphone show a steep reduction in frequency with

only a small proportion heard on all six microphones

(Fig. 1).

There was strong evidence to suggest that detectability

varied across both surveys (restricted maximum-likelihood

test statistic = 227�93, P < 0�0001) and sites (chi-square

test statistic = 35�97, P < 0�0001). Frog calls were most

difficult to detect at Site 1, while those at Site 2, on aver-

age, were detectable over the greatest distances. Site 2 also

had the greatest variation in the estimated detection func-

tion (Fig. 2). While the three sites did differ in vegetation

(Site 3 had markedly higher vegetation), it was not pre-

dicted that this would affect the detection function to

such an extent. Similarly, as windy and rainy days were

Table 1. Model-selection Table: The 10 most preferred models

(by AICc). All include effects due to the site, and both linear and

quadratic time effects. The model with the most support does not

include any other variables. The ‘delta’ column provides the AICc

difference from this model

Additional

variables

Model

degrees of

freedom logLik AICc

delta

AICc Weight

None 7 �6�721 32�3 0�00 0�295
Air temp 8 �5�451 33�4 1�14 0�167
Ground temp 8 �6�117 34�8 2�47 0�086
Total rain 8 �6�428 35�4 3�09 0�063
Rain 0 days

prior

8 �6�603 35�8 3�44 0�053

Rain 1 day

prior

8 �6�662 35�9 3�56 0�050

Air temp, rain

0 days prior

9 �5�023 36�6 4�31 0�034

Air temp, rain

1 day prior

9 �5�177 36�9 4�61 0�029

Air temp,

ground temp

9 �5�262 37�1 4�78 0�027

Air temp, total

rain

9 �5�270 37�1 4�80 0�027

Arthroleptella lightfootiArthroleptella lightfooti

20 mm

1 2 3 4 5 6
Number of microphones

Fr
eq

ue
nc

y

0
10

00
20

00
30

00
40

00

Fig. 1. The number of calls (frequency) detected on microphones

(Silvermine on 11 July 2012: Site 1 black; Site 2 blue; and Site 3

red) impacts on the type of analysis that can be made. Two or

more calls are required to get data from ToA and SS data types.

Conversely, aSCR generates data from calls irrespective of how

many microphones they are heard on. Inset, a male Arthroleptella

lightfooti is (on average) 20 mm in snout-vent length.
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not suitable for recording using our electronic equipment,

we had assumed that call detection would be very similar

over time. However, our finding that both these assump-

tions were incorrect did not affect our ability to estimate

calling density, unlike previous methods.

Call density was significantly different at each of the

sites and was found to change significantly throughout

the season (Fig. 3; Table 1). Site 3 consistently had the

least calls per minute per hectare, while Site 2 had the

highest densities. A quadratic model was the best fit for

call density at all three sites (Fig. 3) resulting in a clear

peak in calling in mid-July. The model with date and site

fitted our data better than those that included any other

covariates (temperature, rainfall). Our data do show clear

seasonal variation in the call density of A. lightfooti with

the same peak in activity at all three sites. This indicates

that for monitoring purposes, recordings made during

July should be indicative of maximum call densities.

Discussion

In this study, we show a practical application of aSCR to

determine seasonality in the calling ecology of the Cape

peninsula moss frog, A. lightfooti. Moreover, we demon-

strate the importance of including a call detection func-

tion when monitoring frogs. Our acoustic data from (for

example) Site 1 monitored an effective sampling area

(ESA) estimated by aSCR of between 431�46 and

783�51 m2. Without using aSCR to generate this estimate,

conventional ARS would likely have resulted in a dra-

matic change in calls. We do not know why our call

detection functions varied so much, although the

0·0

0·2

0·4

0·6

0·8

1·0

0·0

0·2

0·4

0·6

0·8

1·0

0 10 20 30 40

0·0

0·2

0·4

0·6

0·8

1·0

Distance (m)

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

S
ite 1 

S
ite 2

S
ite 3

Coordinate (m)

−3
0

−1
0

10
30

−30 −10 10 30

−3
0

−1
0

10
30

−3
0

−1
0

10
30

Fig. 2. Call detection function (first column) and a measure of the effective sampling area (ESA: second column), constituting the range

of detectability of frog calls of three sites (third column) recorded for calls of Arthroleptella lightfooti in Silvermine, Table Mountain
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vegetation height appeared to make a consistent contribu-

tion and further variance may have been due to subtle dif-

ferences in ambient conditions during recording. While

the application of acoustic arrays to monitor acoustically

active animals is not new (e.g. Blumstein et al. 2011; Men-

nill et al. 2012), we demonstrate here that without the sta-

tistical application of aSCR, these methods cannot

reasonably estimate their audible footprint, in effect ren-

dering them (and single or dual microphone systems)

unrepeatable for monitoring purposes. Our methodology

is particularly appealing for assessing call density of cryp-

tic species, like the Cape peninsula moss frog, but it may

be found that it is of use for monitoring a much greater

range of vocalizing species.

The calling behaviour of male moss frogs (A. lightfooti)

at the three Silvermine study sites showed strong seasonal-

ity in calling ecology. Calling increased early in the breed-

ing season, peaked mid-season and then declined towards

the end of the breeding season. This result is consistent

with other studies on anuran calling ecology (e.g. Hausel-

berger & Alford 2005; Weir et al. 2005). In our study, the

quadratic season effect was found to explain a substantial

portion of the variation in call density in A. lightfooti.

Qualitative estimates of call density for frog populations

have been found to correlate well with capture–recapture
estimates (Grafe & Meuche 2005), and as a result, call

density is often used as a proxy for frog density (e.g.

Corn, Muths & Iko 2000). A monitoring study should

attempt to capture peak activity of the vocalizing species,

to ensure that the maximum number of calling males in

the population is enumerated. This may require a prior

assessment of the entire breeding season to determine the

most appropriate monitoring period (as with our exam-

ple), or this could be negated if the monitoring period is

constrained by brief calling activity. Once the peak in call

density is known, call rates during this period can be used

to determine the population size of calling males. For our

example, we used a sample of call rates from eight frogs

(mean of 16�25 calls per individual per minute, standard

deviation of 0�886) to estimate the density of calling males

(see Stevenson et al. 2015) to be 712�32 per hectare at Site

1 on 11 July 2012 (95% CI: (487�26, 937�38), correspond-
ing to one frog every 14�04 m2), 348�44 per hectare at Site

2 on 23 July 2012 (95% CI: (220�67, 476�20), correspond-
ing to one frog every 28�70 m2) and 2 485�22 per hectare

at Site 3 on 11 July 2012 (95% CI: (1 890�17, 3 080�27),
corresponding to one frog every 4�02 m2).

A large amount of variability was found in the esti-

mated ESA between sites and between recording occa-

sions. The fact that our technique allows calculation of

the ESA enables us to continue to estimate call density,

even when conditions are not constant. Because SCR

accounts for variation in the detection function and thus

the ESA (Borchers 2012), the call density estimates are

not affected by the variation in the detection process. The

variation in ESA however does affect the number of calls

or individuals actually recorded and therefore would pose

a problem for methods that do not account for the detec-

tion process (conventional ARS). Most conventional mon-

itoring methods that rely on calling depend to some

extent on the number of individuals recorded but do not

control for variation in the detection range. Due to the

large variability in ESA recorded in this study, it is evi-

dent that methods that do not account for this variation

may lead to biased estimates of trend. The area sampled

could possibly have been affected by wind and/or vegeta-

tion structure. Wind reduces the detection probability of

frog calls (Weir et al. 2005; De Solla et al. 2006), and sub-

sequently, fewer frog calls, probably covering a smaller

area, are detected. The implication being that conven-

tional ARS methods do not produce robust indices of

abundance, and should therefore be avoided (see Hay-

ward et al. 2015) when ecologists need to compare esti-

mates of call abundance from one recording session to the

next. In contrast, aSCR explicitly accounts for detection

probability and shows that it is important to do so to

produce a robust estimate of call density. More work is

needed to investigate the variability in ESA reported and

the factors that contribute to its variability.

The call densities obtained of A. lightfooti using aSCR

were quantitative and free from observer bias. Subse-

quently, the results should be robust, and application of

the method by different investigators should yield the

same results. Moreover, our method could reliably esti-

mate call densities up to 1�259 calls m�2 min�1. Conven-

tional MCS cannot cope with such high call densities, and

it is unlikely that ARS can accurately interpret such high

call densities. This suggests that our methodology holds

potential to be used in intense chorus situations, although
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Fig. 3. Density of Arthroleptella lightfooti calls recorded at Silver-

mine, Table Mountain National Park in 2012. The symbols are

means of 10 1-min recordings. The lines show the best linear

model (see Table 1) for each site (Site 1: black squares; Site 2:

blue crosses; and Site 3 red triangles), explaining log (call density)

as a quadratic function of date with site as a factor variable.
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this has yet to be tested. Several issues remain that may

limit the use of our method. First, monitoring the number

of individuals relies on having a set call rate that can be

reasonably used for the population. The method is appli-

cable to anurans that practise call alternation (over call

masking), and avoidance of calling in close proximity

(Schwartz & Gerhardt 1989; Grafe 1996). Lastly, the

method would be compromised by males that call from

different localities throughout the survey period (but see

Stevenson et al. 2015). Despite these and other caveats

(see Stevenson et al. 2015), we feel that our method holds

great potential for monitoring of many calling taxa and

that some of the caveats could be overcome through addi-

tional research on the species to be monitored and the

development of further statistical methodology.

It seems reasonable to assume that our method can be

transferred to other visually cryptic, vocalizing species to

monitor their populations and investigate their calling ecol-

ogy. Acoustic SCR is a reasonably easy monitoring tech-

nique for conservation authorities to implement as

personnel with relatively little training in the method are

able to go out into the field and record the sound data

needed for later quantitative analyses by researchers. The

method is non-invasive and is therefore well suited to moni-

toring threatened species, or species in sensitive habitats. It

can also be implemented in a range of habitat types that

broadens its usage in terms of species numbers monitored

using the technique. Despite the additional cost associated

with microphones and recording equipment, the technique

requires no additional travel or field access (the most signif-

icant cost in most monitoring protocols) and provides sub-

stantial benefits in terms of repeatability. However, our

method also poses greater problems in terms of data stor-

age, which will need to be addressed prior to starting to use

the technique, preferably archived with an institutional

repository (as here). For example, the acoustic data gener-

ated in this study amounted to 0�5 Tb.

CONCLUSION

Many managers are now required to monitor species of

special concern, but choosing monitoring methods is par-

ticularly problematic as many provide qualitative esti-

mates that rely on trained staff. Our repeated acoustic

surveys within a calling season demonstrate the practical

application of aSCR for monitoring purposes. Each call

density estimate can be meaningfully compared to prior

and subsequent recordings, without the need for specialist

field staff. Our method therefore meets several demands

that are required of good monitoring: minimal physical

impact to the site, adequate field markings, adequate spa-

tial replication and the potential to integrate with other

monitoring programmes (Legg & Nagy 2006). Our record-

ing apparatus and subsequent processing treatment is cap-

able of generating estimates of call density and can be

transferred to other visually cryptic, vocalizing species,

providing that species can be identified from their calls.

Realizing the full potential of aSCR methods requires fur-

ther work on automated species identification, and we

anticipate that this will be an area of substantial research

activity in future. Indeed, with adequate archiving of suffi-

cient recordings, our existing data could be re-analysed

for any taxonomic group captured and a density estimate

made. In addition, our approach lends itself particularly

to automated recording projects in remote areas as no

more is required in the field than existing ARS protocols.
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