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Abstract

In this thesis we will be exclusively considering uncountable groups and semi-
groups. Roughly speaking the underlying problem is to find “large” subgroups
(or subsemigroups) of the object in question, where we consider three different
notions of “largeness”:

• we classify all the subsemigroups of the set of all mapping from a countable
set back to itself which contains a specific uncountable subsemigroup;

• we investigate topological “largeness”, in particular subgroups which are
finitely generated and dense;

• we investigate if it is possible to find an integer r such that any countable
collection of elements belongs to some r-generated subsemigroup, and more
precisely can these elements be obtain by multiplying the generators in a
prescribed fashion.
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Chapter 1

Introduction and
preliminaries

This chapter is dedicated to introducing the notions and definitions which will
be used in the rest of the thesis. Concepts which are relevant to a particular
chapter only are introduced in the corresponding chapter for ease of referencing.

1.1 Set theory

The axiom system used in the thesis is the standard Zermelo-Fraenkel axioms
together with the Axiom of Choice. In this section, assuming the knowledge of
ordinals, we define cardinal numbers and introduce some basic notation used
throughout. The section is based on [10], the proofs of the results in this section
are not included, as they do not offer any insight to the problems we will be
dealing with in the later chapters.

Let X and Y be arbitrary sets. Then f ⊆ X × Y is a function, usually
written as f : X −→ Y , if for every x ∈ X there is a unique y ∈ Y such that
(x, y) ∈ f . It is more customary to denote (x, y) ∈ f as (x)f = y, and we are
going to adopt this notation. A function f : X −→ Y is said to be injective
if (x)f = (x′)f implies x = x′ for all x, x′ ∈ X, f is said to be surjective if
for all y ∈ Y there is x ∈ X such that (x)f = y, and f is bijective if it is
both injective and surjective.

Let X be an arbitrary set, and let n ∈ N. Then a subset of Xn is an n-ary
relation on X. In the particular case where n = 2, n-ary relations are referred
to as binary relations. A binary relation ≤ on X is a partial order
if the following are satisfied:

• (Reflexivity) x ≤ x for all x ∈ X;

• (Antisymmetry) if x ≤ y and y ≤ x for some x, y ∈ X, then x = y;

1



• (Transitivity) if x ≤ y and y ≤ z for any x, y, z ∈ X, then x ≤ z.

The pair (X,≤) is called partially ordered set. If in addition for every
pair of elements x, y ∈ X either x ≤ y or y ≤ x, then ≤ is a total order.
We use the convention that x < y if and only if x ≤ y and x 6= y.

Let (X,≤) be a partially ordered set, and let A be a subset of P . Then A is
a chain if ≤ is a total order on A. An element u ∈ P is an upper bound
of A if a ≤ u for every a ∈ A, and m ∈ P is a maximal element of
P if there are no p ∈ P such that m < p. Note that a maximal element of a
partially ordered set does not have to be unique. A well order on a set X
is a total order such that every non-empty subset Y of X has an element which
is smaller than every other element in Y . The Zermelo’s Theorem, also known as
Well-ordering Theorem, states that every set can be well-ordered, see Theorem
4.3.3 in [10]. The following classical result is equivalent to Zermelo’s Theorem,
and also equivalent to the Axiom of Choice.

Theorem 1.1.1 (Kuratowski-Zorn Lemma, see Theorem 4.3.3 in [10]). If (P,≤)

is a partially ordered set such that every chain in P has an upper bound, then P
has a maximal element.

We say that two sets X and Y have the same cardinality if there is a
bijection f : X −→ Y . Recall that for every well-ordered (X,≤) set there is a
unique ordinal α such that there is a bijection f : X −→ α so that x ≤ y if and
only if (x)f ⊆ (y)f for all x, y ∈ X. It then follows from Zermelo’s Theorem that
for every set X there exists an ordinal α such that X has the same cardinality
as α. Also recall that ordinal numbers are defined in such a way, that for every
ordinal α, ⊆ is a well-order on α. Define cardinality of X to be the
smallest ordinal which has the same cardinality as X, denoted by |X|. Note that
the definitions of cardinality and having the same cardinality are consistent, in
other words there is a bijection between X and Y if and only if |X| and |Y | are
equal. An ordinal κ is a cardinal number if κ = |X| for some set X.

For ordinals α and β, we say that α ≤ β if α ⊆ β. Since cardinality of a set
is an ordinal, the same definition of ≤ applies to cardinal numbers.

Theorem 1.1.2 (Theorem 5.1.2 in [10]). Let A and B be arbitrary sets. Then
|A| ≤ |B| if and only if there is an injective function f : A −→ B.

We denote by ω cardinality of the natural numbers. It is also worth mentioning,
that for us natural numbers start at 0. If λ is a cardinal, then 2λ denotes cardinality
of the set of all subsets of a set λ.

Theorem 1.1.3 (Cantor’s Theorem, Theorem 5.1.6 in [10]). Let λ be a cardinal
number. Then λ < 2λ.
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For a given cardinal number κ, consider the set

Sκ = {λ ∈ 22κ : λ is a cardinal and κ < λ}.

Hence 2κ ∈ Sκ by Cantor’s Theorem. Since 22κ is well-ordered by ≤, the set Sκ
has an element which is smaller than any other element in the set. Denote this
unique cardinal number by κ+, the cardinal successor of κ.

Proposition 1.1.4 (Proposition 5.1.7 in [10]). Let F be a family of cardinal
numbers. Then

⋃
{κ : κ ∈ F} is a cardinal number.

Using Proposition 1.1.4, we can now for every ordinal α define a cardinal
number ℵα by induction on β ≤ α. Let ℵ0 = ω. For every β < α, let

ℵβ+1 = ℵ+
β ,

and for every limit λ ≤ α, let

ℵλ =
⋃
β<λ

ℵβ .

Then ℵα is the α-th cardinal number.
For any two cardinal numbers κ and λ we can define the operations

κ⊕ λ = |(κ× {0}) ∪ (λ× {1})|

κ⊗ λ = |κ× λ|.

Proposition 1.1.5 (Corollary 5.2.5 in [10]). Let κ and λ be infinite cardinal
numbers. Then κ⊕ λ = κ⊗ λ = max(κ, λ).

If X and Y are sets, then we denote by Y X , the set of all functions from X

to Y .

Proposition 1.1.6 (Proposition 5.2.12 in [10]). If λ and κ are cardinal numbers
such that ω ≤ λ and 2 ≤ κ ≤ λ. Then |κλ| = 2λ.

It follows immediately from Proposition 1.1.6 that if X is an infinite set, then
|XX | = 2|X|.

A subset X of an ordinal α is unbounded in α if there is no β ∈ α such
that γ < β for all γ ∈ X. For an ordinal number α, let cf(α) be the smallest ordinal
number β such that there is a function f : β −→ α so that (β)f = {(γ)f : γ ∈ β}
is unbounded in α. The ordinal cf(α) is known as cofinality of α. It can
be shown that cf(α) = 1 if and only if cf(α) < ω, which is equivalent to α being
a successor ordinal. An ordinal number α is regular if α is a limit ordinal
and cf(α) = α. An ordinal is irregular if it is not regular.
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1.2 Groups and semigroups

Let S be an arbitrary set, and let · : S × S −→ S be a function. Then S is a
semigroup if it satisfies the associativity law, that is

(x · y) · z = x · (y · z)

for all x, y, and z ∈ S. An element e ∈ S is an identity if x · e = e · x = x

for all x ∈ S. A semigroup S with an identity is called a monoid. A monoid G
is a group if for all x ∈ G there is x−1 ∈ G such that x · x−1 = x−1 · x = e. A
semigroup S is commutative, also called abelian, if x · y = y · x for all
x, y ∈ S.

Let G and H be groups with the operations denoted by ·G and ·H respectively.
Define an operation on G×H as follows:

(g, h) · (g′, h′) = (g ·G g′, h ·H h′) ∈ G×H

for every (g, h), (g′, h′) ∈ G ×H. Then it is routine to verify that G ×H is a
group with respect to this operation. If G is a group and n ∈ N, we write Gn to
mean

G× · · · ×G︸ ︷︷ ︸
n

.

Another group theory notion, we will occasionally make use of, is the one of
conjugation. Let G be a group, and let g, h ∈ G. Then g and h are conjugate
if there is k ∈ G such that h = k−1gk. The set of all elements of G which are
conjugate to g is called the conjugacy class of G containing g.

Throughout the thesis we, without mention, assume that the operation of a
semigroup S is denoted by ·, unless specified otherwise. Also whenever possible
without causing ambiguity, we omit the mention of · and write xy instead of x · y.

1.2.1 Generation

Let S be a semigroup, and let T be a subset of a semigroup S. Then T is
subsemigroup of S, written T ≤ S, if T is a semigroup under the operation
of S. Let I be a non-empty set, and let {Si : i ∈ I} be a set of subsemigroups of
S. It follows easily from the definition that

⋂
i=I Si is a semigroup with respect

to ·, and so a subsemigroup of S. Suppose that X is a subset of S, and let

〈X〉 =
⋂
{T ≤ S : X ⊆ T}.

Note that S ≤ S and X ⊆ S, and so the set in the definition of 〈X〉 is non-empty.
It follows from the definition of 〈X〉, that if T is any subsemigroup of S such that
X is a subset of T , then 〈X〉 ≤ T . Hence 〈X〉 is the smallest subsemigroup of S
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containing X, called the subsemigroup generated by X. We say that
X is a generating set for S, or that S is a semigroup generated
by X, if 〈X〉 = S.

There is also an alternative, more constructive, way of defining the subsemi-
group of S generated by X. Let

T =
⋃
n≥1

{x1 · x2 · · ·xn : xi ∈ X for all i ∈ {1, . . . , n}} .

Then X ⊆ T and if x1 ·x2 · · ·xn, x′1 ·x′2 · · ·x′k ∈ T , then x1 ·x2 · · ·xn ·x′1 ·x′2 · · ·x′k
is in T . Hence T is a subsemigroup of S containing X. Suppose that Q is a
subsemigroup of S such thatX ⊆ Q ≤ T . SinceQ is a semigroup, x1·x2 · · ·xn ∈ Q
for every n ≥ 1 and xi ∈ X where i ∈ {1, . . . , n}. Hence Q = T , and so T is the
smallest subsemigroup of S containing X, in other words

〈X〉 = {x1 · x2 · · ·xn : n ≥ 1 and xi ∈ X for all i ∈ {1, . . . , n}}.

Same concepts can be applied to groups as well. Let G be a group. Then a
subset H of G is a subgroup of G, written H ≤ G, if H is a group on its
own right with respect to the operation of G. Let I be a non-empty set, and
let {Gi : i ∈ I} be a set of subgroups of G. It follows from the definition that⋂
i=I Gi is a subgroup of G. Suppose that X is a subset of G, and let

〈X〉 =
⋂
{H ≤ G : X ⊆ H}.

By the same argument as used for semigroups 〈X〉 is non-empty, and so a subgroup
ofG. It follows from the definition of 〈X〉 that ifH is any subgroup ofG containing
X, then 〈X〉 ≤ H. Hence 〈X〉 is the smallest subgroup containing X, called the
subgroup generated by X. In the same way as for semigroups, we say
that X is a generating set for G, or that G is a group generated
by X, if 〈X〉 = G.

Let X−1 be the set of inverses of the elements in X. Define

H =
⋃
n∈N

{
x1 · x2 · · ·xn : xi ∈ X ∪X−1 for all i ∈ {1, . . . , n}

}
, (1.1)

where the product of length 0 is assumed to be the identity of G. It follows that
if x1 · x2 · · ·xn, x′1 · x′2 · · ·x′k ∈ H, then x1 · x2 · · ·xn · x′1 · x′2 · · ·x′k ∈ H, and also
that the identity of G is in H. Consider g = xε11 · x

ε2
2 · · ·xεnn ∈ H where n ≥ 1,

xi ∈ X and εi ∈ {−1, 1} for all i ∈ {1, . . . , n}. Then x−εnn · · ·x−ε22 · x−ε11 ∈ H is
the inverse of g, and so H is a subgroup of G. Moreover, X is a subset of H.
Suppose that K is a subgroup of G such that X ⊆ K ≤ H. Since K is a group,
x1 · x2 · · ·xn ∈ K for all n ∈ N, and xi ∈ X ∪X−1 where i ∈ {1, . . . , n}. Hence
K = H, and so H is the smallest subgroup of G containing X, in other words
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〈X〉 = H.

1.2.2 Free groups and free semigroups

An alphabet is a non-empty set A, and the elements of A are referred to as
letters. Then a word over the alphabet A is a finite sequence of letters
in A, we will simply denote it by a1 . . . an where ai ∈ A for all i ∈ {1, . . . , n}.
Let A+ be the set of all words over a given alphabet A. Concatenation of words
defines a binary operation on A+, namely for a1 . . . an, b1 . . . bm ∈ A+

(a1 . . . an)(b1 . . . bm) = a1 . . . anb1 . . . bm.

Then this binary operation is associative, and so A+ is a semigroup, called the
free semigroup on A. It can be shown that A+ is the free object in the
category of semigroups, in other words for every semigroup S, and f : A −→ S,
there is a unique semigroup homomorphism F : A+ −→ S such that (a)f = (a)F

for all a ∈ A.
Choose a set disjoint from A+, with exactly one element. We denote this

element by 1. Define A∗ = A+∪{1} with the binary operation being concatenation
for any elements of A+ and w1 = 1w = w for every word w ∈ A+. We may think
of 1 as the empty word, or the word containing no letters. Then A∗ is a
monoid, called the free monoid on A. Similarly to A+, the free monoid is
the free object in the category of monoids. For more details see [30].

Let w = a1 . . . an ∈ A+ such that ai ∈ A for all i ∈ {1, . . . , n}. A word u ∈ A∗

is a subword of w if u = 1 or u = ai . . . aj for some i, j ∈ {1, . . . , n} such
that i ≤ j. A word p ∈ A∗ is a prefix of w if either p = a1 . . . ai for some
i ∈ {1, . . . , n}, or p = 1. Similarly, a word s ∈ A∗ is a suffix of w if either
s = ai . . . an for some i ∈ {1, . . . , n}, or s = 1. A subword, prefix, or suffix of w
is a proper subword, prefix, or suffix of w respectively, if it is
strictly shorter than w and not equal to 1. We say that the length of w is
the number of letters in the word, denoted by |w|, in other words |a1 . . . an| = n

and |1| = 0.
Let A−1 be a set such that A and A−1 are disjoint such that |A| = |A−1|.

Denote by a−1 image of a ∈ A under a fixed bijection between A and A−1.
Choose a set disjoint from A ∪ A−1, which contains exactly one element, and
denote that element by 1, as in the definition of free monoids we refer to 1 as the
empty word. Define w = x1 . . . xn to be a reduced word if either w = 1, or
w is a word over A ∪A−1 such that if xi = a ∈ A, then neither xi−1 or xi+1, if
defined, can be equal to a−1 for every i ∈ {1, . . . , n}. Let F (A) be the set of all
reduced words over A ∪A−1, together with the element the empty word 1.

Next we want to define a binary operation on F (A). The empty word 1 acts
as the identity, namely w1 = 1w = w for all w ∈ F (A). Let x1 . . . xn, y1 . . . , ym ∈
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F (A) and suppose that k is the largest natural number such that xn−i = y−1
i+1

or x−1
n−i = yi+1 for all i ∈ {0, . . . , k − 1}. Then k ≤ min(n,m), and so we define

(x1 . . . xn)(y1 . . . ym) =


x1 . . . xn−kyk+1 . . . ym if k < n and k < m;

yk+1 . . . ym if n = k < m;

x1 . . . xn−k if m = k < n;

1 if n = m = k.

The definition ensures that the product of reduced words is still a reduced word.

Theorem 1.2.1 (Theorem 9.1 in [33]). If A is a non-empty set, then F (A) is a
group under a binary operation defined above.

Note that free groups are the free objects in the category of groups, in the
same way as free semigroups or free monoids, namely for every group G, and
f : A −→ G, there is a unique group homomorphism F : F (A) −→ G such that
(a)f = (a)F for all a ∈ A, we refer to F as the canonical homomorphism
induced by f . More formal treatment of free groups can be found in [33,
Chapter 1, Section 9].

1.3 Functions and partial permutations

1.3.1 Definitions and notation

Let X and Y be sets, and let f : X −→ Y . The set X is then the domain
of f , denoted by dom(f), and the range of f , denoted by ran(f), is the
set (X)f = {(x)f : x ∈ X} ⊆ Y . Let A be a subset of Y . Then the preimage
of A under f is the set (A)f−1 = {x ∈ X : (x)f ∈ A}. If g : Y −→ Z, then
composition of functions f and g is defined to be the function f ◦ g
such that for all x ∈ X

(x)f ◦ g = ((x)f) g.

Example 1.3.1. Let Ω be a set, and let ΩΩ denote the set of all functions
f : Ω −→ Ω. By the definition composition ◦ is a function from ΩΩ × ΩΩ to ΩΩ.
Let f, g, h ∈ ΩΩ. Then

(x) (f ◦ g) ◦ h = ((x)f ◦ g)h = (((x)f) g)h = ((x)f) g ◦ h = (x)f ◦ (g ◦ h)

for all x ∈ Ω. Therefore ◦ is associative, and so ΩΩ is a semigroup with respect
to the composition of functions.

An alternative definition of being bijective for a function can be provided
using composition of functions.
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Proposition 1.3.2. Let f : X −→ Y . Then f is bijective if and only if there is
g : Y −→ X such that

(x)f ◦ g = x and (y)g ◦ f = y

for all x ∈ X and y ∈ Y .

If f : X −→ Y is a bijection, then g : Y −→ X, as defined in Proposition 1.3.2,
is an inverse of f , usually denoted by f−1. Let A ⊆ X. Then the image
of A under f is the set

(A)f = {(x)f : x ∈ A},

and the restriction of f to A is a function f |A : A −→ Y given by

f |A = f ∩ (A× Y ) .

A function f : X −→ Y is an extension of g, if there is some subset
A of X such that f |A = g. We say that f : X −→ X is the identity
function if (x)f = x for all x ∈ X. Define fix(f) = {x ∈ X : (x)f = x}
and supp(f) = {x ∈ X : (x)f 6= x}, called the fix and the support of f

respectively. If f : X −→ X is a bijection, and x ∈ X, then the orbit of x

under f is the set {(x)fn : n ∈ N}.
Let X be an arbitrary set. Then p is a partial permutation of X

if there is a subset X ′ of X such that p : X ′ −→ X and p is injective. Since a
partial permutation is also a function, domain and range of a partial permutation
are defined to be domain and range of the function. If f and g are two partial
permutations of X, then we define their composition

f ◦ g : dom(f) ∩ (dom(g) ∩ ran(f)) f−1 −→ ran(g) ∩ (dom(g) ∩ ran(f)) g

to be (x)f ◦ g = ((x)f)g. Denote the composite f ◦ f−1 by f0, being the identity
function on dom(f). Let A be any collection of functions of the form f : X −→ X.
Then we denote {f |A : f∈ A and A ⊆ X is finite} by A<ω.

In Chapter 3, the sets {(x)fn : n ∈ Z and x ∈ dom(fn)} for a partial
permutation f , will play an important role. Even though, the aforementioned
sets agree with the definition of an orbit for a bijective function, in this case an
“orbit” is a non-standard term, so we opt to use different terminology. If f is a
partial permutation and x ∈ dom(f) ∪ ran(f), we define the component of
x under f to be the set

{(x)fk : k ∈ Z and x ∈ dom(fk)}.

A component of f is complete if x ∈ dom(fk) for every k ∈ Z. A component
that is not complete is incomplete.
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1.3.2 Parameters associated with functions

Let f ∈ ΩΩ and let Σ ⊆ Ω. If f |Σ is injective and (Σ)f = (Ω)f , then Σ is a
transversal of f . For f ∈ ΩΩ, define the following parameters

c(f) = |Ω \ Σ|, where Σ is any transversal of f,

d(f) = |Ω \ (Ω)f |,

k(f) = |{x ∈ Ω : |{y ∈ Ω : (y)f = x}| = |Ω|}.

The parameters d(f), c(f), and k(f) were termed the defect, collapse,
and infinite contraction index, respectively, of f in [31]. Define the
kernel of f ∈ ΩΩ to be

ker(f) = {(x, y) ∈ Ω× Ω : (x)f = (y)f}.

Proposition 1.3.3 (Section 2 in [31]). The parameter c is well-defined.

Proof. Let f ∈ ΩΩ, and let Σ be a transversal of f . Then

Ω \ Σ =
⋃

y∈(Ω)f

({x ∈ Ω : (x)f = y} \ Σ) .

For each each y ∈ (Ω)f there is exactly one element x in Σ such that (x)f = y.
Hence | ({x ∈ Ω : (x)f = y} \ Σ) | = |{x ∈ Ω : (x)f = y}| − 1, and so

c(f) = |Ω \ Σ| =
∑

y∈(Ω)f

(|{x ∈ Ω : (x)f = y}| − 1) .

The right hand side of the equation is independent of the transversal, and so
c(f) is independent of the choice of transversal.

The parameters c and d quantify how far away a function f ∈ ΩΩ is from
being injective and surjective respectively. That is, f is injective if and only if
c(f) = 0, and f is surjective if and only if d(f) = 0. In the next proposition, we
will show that all combinations of values of c and d are possible.

Proposition 1.3.4. Let Ω be infinite and let λ and µ be cardinals such that
λ, µ ≤ |Ω|. Then there is f ∈ ΩΩ such that c(f) = λ and d(f) = µ.

Proof. Since Ω is infinite there are sets Σ,Γ ⊆ Ω such that |Σ| = |Γ| = |Ω|,
|Ω \Σ| = λ, and |Ω \Γ| = µ. Let y ∈ Γ, and let f ∈ ΩΩ be any function such that
f bijectively maps Σ to Γ and (x)f = y for all x ∈ Ω \Σ. Then Σ is a transversal
of f and the image of f is Γ. From the choice of sets Σ and Γ, it follows that
c(f) = λ and d(f) = µ.

In the next three lemmas we show how the parameters c and d interact with
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composition of functions. The following result is proved in [17] and part (i) was
earlier proved in [31]. We include the proofs for the sake of completeness.

Lemma 1.3.5 (Lemma 5.4 in [17]). Let f, g ∈ ΩΩ, and let µ be an infinite
cardinal such that µ ≤ |Ω|. Then the following are true

(i) d(g) ≤ d(f ◦ g) ≤ d(f) + d(g);

(ii) if c(g) = 0, namely g is an injection, then d(f ◦ g) = d(f) + d(g);

(iii) c(f) ≤ c(f ◦ g) ≤ c(f) + c(g);

(iv) if d(f) = 0, namely f is a surjection, then c(f ◦ g) = c(f) + c(g);

(v) if c(g) < µ ≤ d(f), then d(f ◦ g) ≥ µ;

(vi) if d(f) < µ ≤ c(g), then c(f ◦ g) ≥ µ.

Proof. (i). Since (Ω)f ⊆ Ω, it follows that (Ω)g ⊇ (Ω)f ◦ g, and so Ω \ (Ω)g ⊆
Ω \ (Ω)f ◦ g. Hence d(g) ≤ d(f ◦ g).

If x ∈ (Ω)g \ (Ω)f ◦ g, then there is y ∈ Ω \ (Ω)f such that (y)g = x, and so
x ∈ (Ω \ (Ω)f)g. Hence

(Ω)g \ (Ω)f ◦ g ⊆ (Ω \ (Ω)f) g. (1.2)

It then follows from

Ω \ (Ω)f ◦ g = (Ω \ (Ω)g) ∪ ((Ω)g \ (Ω)f ◦ g) (1.3)

that Ω \ (Ω)f ◦ g ⊆ (Ω \ (Ω)g) ∪ (Ω \ (Ω)f) g. By the definition of a function
|(X)g| ≤ |X| for any subset X of the domain of f , and so d(f ◦ g) ≤ d(f) + d(g).

(ii). If x ∈ (Ω \ (Ω)f)g, then there is y ∈ Ω \ (Ω)f such that x = (y)g. Since
g is injective, x 6= (z)g for every z ∈ (Ω)f , and so x ∈ (Ω)g \ (Ω)f ◦ g. It then
follows from (1.2) that

(Ω)g \ (Ω)f ◦ g = (Ω \ (Ω)f) g.

Together with (1.3) it implies that

Ω \ (Ω)f ◦ g = (Ω \ (Ω)f) g ∪ (Ω \ (Ω)g) .

Moreover, the sets in the above displayed equation are disjoint. Finally, since g
is injective | (Ω \ (Ω)f) g| = |Ω \ (Ω)f |, and so d(f ◦ g) = d(f) + d(g).

(iii). Let Tf ⊆ Ω be any transversal for f . Then by the definition of a
transversal (Tf )f ◦ g = (Ω)f ◦ g, and so there is a transversal Tf◦g of f ◦ g such
that Tf◦g ⊆ Tf . Hence c(f) ≤ c(f ◦ g), and also Ω \ Tf◦g is a disjoint union of
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Ω \ Tf and Tf \ Tf◦g. Since f is injective on Tf , |Tf \ Tf◦g| = |(Tf \ Tf◦g)f |, and
so

|Ω \ Tf◦g| = |Ω \ Tf |+ | (Tf \ Tf◦g) f |. (1.4)

Since f ◦ g is injective on Tf◦g, it follows that g is injective on (Tf◦g)f , and
so there is Tg ⊆ Ω a transversal of g such that (Tf◦g)f ⊆ Tg. If x ∈ Tf \ Tf◦g,
then there is y ∈ Tf◦g ⊆ Tf such that (x)f ◦ g = (y)f ◦ g. Since x and y are both
elements of a transversal of f , it follows that (x)f 6= (y)f . It also follows from
(Tf◦g)f ⊆ Tg that (y)f ∈ Tg, and so (x)f ∈ Ω \ Tg. Hence

(Tf \ Tf◦g) f ⊆ Ω \ Tg. (1.5)

It follows from (1.4) that

|Ω \ Tf◦g| ≤ |Ω \ Tf |+ |Ω \ Tg|,

which is the same as c(f ◦ g) ≤ c(f) + c(g).
(iv). Let Tf , Tg, and Tf◦g be transversals of f , g, and f ◦ g respectively, as

in part (iii). To be more precise, Tf◦g ⊆ Tf and (Tf◦g)g ⊆ Tg. Let x ∈ Ω \ Tg.
Since f is surjective there is y ∈ Tf so that (y)f = x. Recall that (Tf◦g)f ⊆ Tg,
and so if y ∈ Tf◦g, then x = (y)f ∈ Tg, contradicting the choice of x. Hence
y ∈ Tf \ Tf◦g, which together with (1.5) implies that

(Tf \ Tf◦g) f = Ω \ Tg.

Then c(f ◦ g) = c(f) + c(g) by (1.4).
(v). Let Tg be a transversal of g. Then by the hypothesis |Ω \ Tg| = c(g) < µ

and |Ω \ (Ω) f | = d(f) ≥ µ. Hence

|Tg ∩ (Ω \ (Ω) f) | = | (Ω \ (Ω) f) \ (Ω \ Tg) | ≥ µ. (1.6)

If x ∈ Tg ∩ (Ω \ (Ω) f) is such that (x)g ∈ (Ω) f ◦ g, then there exists yx ∈ (Ω) f

such that (x)g = (yx)g, and so yx ∈ Ω \ Tg. Let φ be a mapping such that
(x)φ = yx for every x ∈ Tg ∩ (Ω \ (Ω) f) such that (x)g ∈ (Ω) f ◦ g. Then the
image of φ is contained in Ω \ Tg. If yx = (x)φ = (x′)φ = yx′ for some x and x′,
then (x)g = (yx)g = (yx′)g = (x′)g. Since x, x′ ∈ Tg, it follows that x = x′ and
so φ is injective. Hence

|{x ∈ Tg ∩ (Ω \ (Ω) f) : (x)g ∈ (Ω) f ◦ g}| ≤ |Ω \ Tg| < µ.

Then |{x ∈ Tg ∩ (Ω \ (Ω) f) : (x)g /∈ (Ω) f ◦ g}| ≥ µ, by (1.6). Since g acts
injectively on Tg

| ({x ∈ Tg ∩ (Ω \ (Ω) f) : (x)g /∈ (Ω) f ◦ g}) g| ≥ µ,
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and thus

|Ω \ (Ω) f ◦ g| ≥ | ({x ∈ Tg ∩ (Ω \ (Ω) f) : (x)g /∈ (Ω) f ◦ g}) g| ≥ µ,

which is the same as d(f ◦ g) ≥ µ.
(vi). Let Tf , Tg, and Tf◦g be transversals of f , g, and f ◦ g respectively, as in

part (iii). That is Tf◦g ⊆ Tf and (Tf◦g)g ⊆ Tg. By the hypothesis |Ω\(Tf ) f | < µ

and |Ω \ Tg| ≥ µ. Hence

| (Ω \ Tg) ∩ (Tf )f | = | (Ω \ Tg) \ (Ω \ (Tf )f) | ≥ µ.

Since transversal Tg was chosen so that (Tf◦g)f ⊆ Tg, it follows from (Tf \
Tf◦g)f ⊇ (Tf )f \ (Tf◦g)f , that |(Tf \ Tf◦g)f | ≥ |(Tf )f \ Tg|. Then (Tf )f \ Tg =

(Ω \ Tg) ∩ (Tf )f implies that

|(Tf \ Tf◦g)f | ≥ µ.

Finally, it follows from the fact that f act injectively on Tf

|Ω \ Tf◦g| ≥ | (Tf \ Tf◦g) f | ≥ µ

as required.

The following technical lemma can be used to show that parameters c and d
of a function are finite.

Lemma 1.3.6. Let f, g, h ∈ ΩΩ be such that f ∈ 〈g, h〉 and c(f), d(f), c(g),
and d(g) are all finite. Then c(h) and d(h) are both finite or f = gn for some
n ∈ N.

Proof. Suppose that f /∈ 〈g〉. We will show by induction on the length of the
product that c(h) and d(h) are finite.

First of all, suppose that f = g ◦ h. If d(h) is infinite then so is d(f) by
Lemma 1.3.5(i), and if c(h) is infinite, then c(f) is also infinite by Lemma 1.3.5(vi).
Hence both c(h) and d(h) must be finite. Similarly, if f = h ◦ g parts (iii) and
(v) of Lemma 1.3.5 shows that c(h) and d(h) are finite, and if f = h2 parts (i)
and (iii) of Lemma 1.3.5 can be used to show the same result.

For n ≥ 2, suppose that if f ∈ 〈g, h〉 is a product of length at most n with
c(f), d(f), c(g), d(g) finite, and f 6= gm for any m ∈ N, then c(h) and d(h) are
both finite. Suppose that f ∈ 〈g, h〉 is a product of length n + 1, f 6= gm for
any m ∈ N, and as before the parameters c and d of f and g are all finite. If
f = h ◦ f ′ ◦ h for some f ′ ∈ 〈g, h〉, then both c(h) and d(h) must be finite by
parts (i) and (iii) of Lemma 1.3.5. Otherwise, there is f ′ ∈ 〈g, h〉 a product of
length n such that f = f ′ ◦ g or f = g ◦ f ′. Since the parameters c and d of f
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and g are finite, it follows that c(f ′) and d(f ′) are finite, by the discussion in
the previous paragraph. It follows from f 6= gm for all m ∈ N, that f ′ 6= gm for
any m ∈ N, and so the inductive hypothesis implies that c(h) and d(h) are both
finite. Therefore, by induction, the conclusion holds for all f ∈ 〈g, h〉.

The final of the technical lemmas gives us a more precise relation between
parameters c and d of the composition of functions and its constituent parts.

Lemma 1.3.7. Let f, g ∈ ΩΩ be such that the parameters c and d of f and g
are all finite. Then c(f ◦ g) + d(f) + d(g) = d(f ◦ g) + c(f) + c(g).

Proof. Let Tf , Tg, and Tf◦g be transversals of f , g, and f ◦ g respectively. It was
shown in the proof of Lemma 1.3.5(iii) that these transversals can be chosen so
that Tf◦g ⊆ Tf and (Tf◦g)f ⊆ Tg.

First note that (Tf◦g)f ⊆ Tg ∩ (Ω)f . Let x ∈ Tg ∩ (Ω)f . Then there is y ∈ Tf
such that x = (y)f . Choose z ∈ Tf◦g such that (z)f ◦ g = (y)f ◦ g. Since both
(z)f and x = (y)f are elements of Tg, (z)f = (y)f . It then follows from the fact
that y and z are in Tf that y = z. Therefore y ∈ Tf◦g, and so (Tf◦g)f = Tg∩(Ω)f .
Also (Tf \ Tf◦g)f = (Ω)f \ (Tf◦g)f as f is injective on Tf , and so

|Tf \ Tf◦g| = |(Ω)f \ Tg|.

It follows from the fact that Ω \ Tf◦g is a disjoint union of Ω \ Tf and Tf \ Tf◦g
that

|Ω \ Tf◦g| = |Ω \ Tf |+ |(Ω)f \ Tg|. (1.7)

Since g act injectively on Tg, it follows that (Tg \ (Ω)f)g = (Ω)g \ (Ω)f ◦ g,
and so

|Tg \ (Ω)f | = |(Ω)g \ (Ω)f ◦ g|.

Note that (Ω)f ◦ g ⊆ (Ω)g implying that Ω \ (Ω)f ◦ g is a disjoint union of
Ω \ (Ω)g and (Ω)g \ (Ω)f ◦ g. Then

|Ω \ (Ω) f ◦ g| = |Ω \ (Ω)g|+ |Tg \ (Ω) f |. (1.8)

Since Ω is a disjoint union of Tg and Ω \ Tg and (Ω \ (Ω)f) ∩ (Ω \ Tg) =

Ω\ (Tg ∪ (Ω)f), it follows that |Tg \ (Ω) f |+ |Ω\ (Tg ∪ (Ω) f) | = |Ω\ (Ω) f |. Then
(1.8) implies that

|Ω \ (Ω) f ◦ g|+ |Ω \ (Tg ∪ (Ω) f) | = |Ω \ (Ω)g|+ |Ω \ (Ω) f |. (1.9)

In the same way, since Ω is a disjoint union of (Ω)f and Ω \ (Ω)f , it follows that
| (Ω) f \ Tg|+ |Ω \ (Tg ∪ (Ω) f) | = |Ω \ Tg|, and so by (1.7).

|Ω \ Tf◦g|+ |Ω \ (Tg ∪ (Ω) f) | = |Ω \ Tf |+ |Ω \ Tg|. (1.10)
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By parts (i) and (iii) of Lemma 1.3.5, d(f ◦ g) and c(f ◦ g) are finite implying
that Ω\ (Tg ∪ (Ω)f) is also finite. Hence by combining (1.9) and (1.10) we obtain
c(f ◦ g) + d(f) + d(g) = d(f ◦ g) + c(f) + c(g), as required.

Lemma 1.3.7 can be used to define an interesting subsemigroup of ΩΩ.

Example 1.3.8. Let n ∈ N be arbitrary, and let

S = {f ∈ ΩΩ : c(f), d(f) are finite and n divides c(f)− d(f)}.

Suppose that f, g ∈ S. Then c(f ◦ g) and d(f ◦ g) are finite by parts (i) and (iii)
of Lemma 1.3.5. It follows from Lemma 1.3.7 that

c(f ◦ g)− d(f ◦ g) = c(f)− d(f) + c(g)− d(g).

Hence n divides c(f ◦g)−d(f ◦g), and so f ◦g ∈ S. Therefore, S is a subsemigroup
of ΩΩ.

Given a set Ω, of particular interest to us is the set of all bijective functions
from Ω back to Ω. Recall that f ∈ ΩΩ is bijective if and only if c(f) = 0 and
d(f) = 0. Then by parts (i) and (iii) of Lemma 1.3.5 the composition of two
bijective functions is bijective. It is then easy to show that the set of all bijective
functions forms a group, which is known as the symmetric group on Ω

and we denote it by Sym(Ω).

Proposition 1.3.9. If Ω is infinite, then the cardinality of Sym(Ω) is 2|Ω|.

Proof. Since Sym(Ω) ⊆ ΩΩ and the cardinality of ΩΩ is 2|Ω| by Proposition 1.1.6,
it follows that |Sym(Ω)| ≤ 2|Ω|. Since Ω is infinite, Ω×Ω has the same cardinality
as Ω, and so Sym(Ω) and Sym(Ω× Ω) also have the same cardinality. Then by
Theorem 1.1.2 it is sufficient to find an injection from ΩΩ to Sym(Ω× Ω).

Suppose that f ∈ ΩΩ. Then define a function gf to be such that

(x, x)gf = ((x)f, x), ((x)f, x)gf = (x, x),

and it acts as identity everywhere else. Then gf ∈ Sym(Ω× Ω). If f 6= f ′, then
there is x ∈ Ω such that (x)f 6= (x)f ′, and so (x, x)gf = ((x)f, x) 6= ((x)f ′, x) =

(x, x)gf ′ . Hence a function mapping f to gf is injective, as required.

1.4 Topology and Baire category theory

In this section we will introduce the notions related to topology and metric
spaces which will be of use in the later chapters.
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1.4.1 Topological spaces

Let X be an arbitrary set, and let τ be a set of subsets of X. Then the pair
(X, τ) is a topological space if the following conditions are satisfied:

1) ∅, X ∈ τ ;

2)
⋃
i∈I Xi ∈ τ for any non-empty set I such that Xi ∈ τ for all i ∈ I;

3)
⋂n
i=1Xi for any n ∈ N and Xi ∈ τ for all i ∈ {1, . . . , n}.

Then the set τ is called a topology on X, and its members are referred to
as open sets. A set F ⊆ X is closed if it is a complement of an open set.
Also a subset Y of X is a Gδ set if it is an intersection of countably many open
subsets of X.

If Y ⊆ X, let σ = {U ∩ Y : U ∈ τ}. Then ∅ = ∅ ∩ Y , and Y = X ∩ Y ∈ σ.
Suppose that Yi ∈ σ for some set I and all i ∈ I. Then by definition of σ there
are Xi ∈ τ such that Yi = Xi ∩ Y for all i ∈ I, and since

⋃
i∈I Xi ∈ τ⋃

i∈I
Yi =

⋃
i∈I

Xi ∩ Y = Y ∩
⋃
i∈I

Xi ∈ σ.

Finally, let n ∈ N and for i ∈ {1, . . . , n}, and let Yi ∈ σ. Then as before
Yi = Xi ∩ Y for some Xi ∈ τ and all i ∈ {1, . . . , n}, and since

⋂n
i=1Xi ∈ τ

n⋂
i=1

Yi =

n⋂
i=1

Xi ∩ Y = Y ∩
n⋃
i=1

Xi ∈ σ.

Hence (Y, σ) is a topological space, called a subspace of (X, τ), and σ is the
subspace topology on Y .

A basis B for a topological space (X, τ) is a subset of τ such that every
element of τ can be expressed as a union of elements of B.

Example 1.4.1. Let X be a set, and let τ be the set of all subsets of X. Then
∅, X ∈ τ , and if {Xi : i ∈ I} is any collection of subsets of X, then⋃

i∈I
Xi,

⋂
i∈I

Xi ∈ τ.

Hence (X, τ) is a topological space. The topology τ is known as discrete
topology. It follows from the definition that {{x} : x ∈ X} is a basis for
(X, τ).

The following result provides a necessary and sufficient condition under which
a collection of subsets is a basis for some topology.

Proposition 1.4.2 (see Section 13 in [56]). Let X be a set, and let B be a set
of subsets of X. Then B is a basis if only if for every x ∈ X there is B ∈ B
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with x ∈ B, and for any B1, B2 ∈ B and x ∈ B1 ∩B2 there is B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩B2.

Proof. (⇒) Since B is a basis there is a non-empty set I and open sets Bi ∈ B
for all i ∈ I such that X =

⋃
i∈I Bi. Hence for each x ∈ X there is some i ∈ I

such that x ∈ Bi. Let B1, B2 ∈ B be arbitrary. Since B1 and B2 are both open
sets, B1∩B2 is also open, and so B1∩B2 =

⋃
i∈I Ci for some set I where Ci ∈ B

for all i ∈ I. Hence for all x ∈ B1 ∩B2 there is i ∈ I such that x ∈ Ci ⊆ B1 ∩B2.
(⇐) Let τ be the set of all arbitrary unions of elements of B, including the

empty set. We will show that (X, τ) is a topological space. By definition of ∅ ∈ τ ,
and since for all x ∈ X there is B ∈ B such that x ∈ B, it follows that

X =
⋃
B∈B

B ∈ τ.

Let I be a non-empty set, and let Ui ∈ τ for all i ∈ I. For each i ∈ I there is Ji
and Bi,j ∈ B for each j ∈ Ji such that Ui =

⋃
j∈Ji Bi,j . Then⋃

i∈I
Ui =

⋃
i∈I

⋃
j∈Ji

Bi,j ∈ τ.

Note that if B1, B2 ∈ B, then for each x ∈ B1 ∩ B2 there is Bx ∈ B such
that x ∈ Bx ⊆ B1 ∩ B2. Hence B1 ∩ B2 =

⋃
x∈B1∩B2

Bx ∈ τ . Suppose that
U =

⋃
i∈I Bi ∈ τ . Let B ∈ B. Since B ∩ Bi ∈ τ for each i ∈ I, it follows from

the fact that τ is closed with respect to arbitrary unions that

B ∩ U = B ∩
⋃
i∈I

Bi =
⋃
i∈I

B ∩Bi ∈ τ

If U ′ ∈ τ , then U ′ ∩Bi ∈ τ by the above for all i ∈ I. Hence

U ′ ∩ U = U ′ ∩
⋃
i∈I

Bi =
⋃
i∈I

U ′ ∩Bi ∈ τ. (1.11)

Finally, let U1, . . . , Un ∈ τ . Suppose that
⋂k
i=1 Ui ∈ τ for some i ∈ {1, . . . , n− 1}.

Then
⋂k+1
i=1 Ui ∈ τ by (1.11). Hence by induction,

⋂n
i=1 Ui ∈ τ , and so τ is a

topology for X.

A subset A of a topological space (X, τ) is dense if for every open set
U ∈ τ the intersection A ∩ U is non-empty.

Let {(Xi, τi) : i ∈ I} be a collection of topological spaces. Define

X =
∏
i∈I

Xi = {f : I −→
⋃
i∈I

Xi : (i)f ∈ Xi},

and let B be the collection of all sets of the form
∏
i∈I Ui where Ui ∈ τi for all
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i ∈ I and Ui = Xi for all but finitely many i ∈ I. Then X ∈ B and for any
B1, B2 ∈ B it follows that B1 ∩B2 ∈ B. Hence B is a basis for some topology τ
on X by Proposition 1.4.2, we refer to (X, τ) as the product topological
space. Note that every element of B be expressed as a union of elements of the
form

∏
i∈I Bi where Bi is a basic open set of Xi and Bi = Xi for all but finitely

many i ∈ I. Hence in the definition of B it is sufficient to only consider products
of basic open sets.

Example 1.4.3. If Ω is an infinite set, then transformation monoid
ΩΩ is the set of all functions from Ω back to Ω. For each i ∈ Ω, let Xi = Ω and
equip it with the discrete topology τi, as in Example 1.4.1. Consider the product
topology of the collection {(Xi, τi) : i ∈ Ω}. The underlying set is∏

i∈Ω

Xi = {f : Ω −→ Ω} = ΩΩ

and since {{x} : x ∈ Ω} is a basis for (Xi, τi), the basic open sets for the product
topology are of the form

∏
i∈Ω Ui where there is a finite set A ⊆ Ω such that

Ui = {xi} for some xi ∈ Xi = Ω and all i ∈ A, and Ui = Xi for all i ∈ Ω \ A.
Note that if we define φ : A −→ Ω to be (i)φ = xi, then

[φ] = {f ∈ ΩΩ : f |A = φ} =
∏
i∈Ω

Ui.

Hence {[φ] : φ : A −→ Ω for some finite A ⊆ Ω} forms a basis of ΩΩ.

Suppose that (X, τ) and (Y, σ) are two topological spaces, and let f : X −→ Y .
Then f is a continuous function if for every open set U ∈ σ, the set
(U)f−1 = {x ∈ X : (x)f ∈ U} is an open subset of X. If B is a basis for (Y, σ),
then every U ∈ σ can be expressed as U =

⋃
i∈I Bi for some I and Bi ∈ B for

all i ∈ I. Then
(U)f−1 =

⋃
i∈I

(Bi)f
−1,

and so for f to be continuous it is sufficient that (B)f−1 is open for every open
basic set of (Y, σ). Since B ⊆ σ it is also a necessary condition.

A function f : X −→ Y is a homeomorphism if it is a continuous
bijection such that the inverse f−1 : Y −→ X is also continuous. It follows from
the definition of continuity that f−1 is continuous if and only if for every open
subset U of X, the set (U)f is open in Y .

1.4.2 Metric spaces

Let X be a set, and let d : X ×X −→ [0,∞). Then (X, d) is a metric space,
with a metric d, if the following are satisfied:
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1) d(x, y) = 0 if and only if x = y;

2) d(x, y) = d(y, x) for all x, y ∈ X;

3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We say that a topological space (X, τ) is metrizable if there is a metric d
such that the sets

B(x, r) = {y ∈ X : d(x, y) < r}

where x ∈ X and r ≥ 0, form a basis for the topology τ . The sets B(x, r) are
called open balls.

Consider the converse problem, that is start with a metric space (X, d). Then
it can be verified, using Proposition 1.4.2, that the set of all open balls on X
forms a basis for some topology on X. Hence X is also a topological space
with open sets being arbitrary unions of open balls, which we will refer to as
topology induced by the metric.

A sequence (xn)n∈N of elements of a metric space (X, d) is convergent
if there is x ∈ X so that for every ε > 0 there is N ∈ N such that n ≥ N

implies that d(xn, x) < ε. A more general definition of convergence can be given
for topological spaces. A sequence (xn)n∈N of elements of a topological space
converge to an element x, if for every open set U containing x there is N ∈ N
such that xn ∈ U for all n ≥ N . Since y ∈ B(x, ε) is equivalent to d(x, y) < ε, it
follows that if we consider a metric space as a topological space with the topology
induced by the metric, the two definitions of convergence are equivalent.

A sequence (xn)n∈N is a Cauchy sequence if for every ε > 0 there is
N ∈ N such that d(xn, xm) ≤ ε for all n,m ≥ N . We say that a metric space
is complete if every Cauchy sequence is convergent. A topological space
is a Polish space if it is metrizable with a complete metric and it has a
countable dense subset.

The following well known result shows that if a sequence is a subset of a
closed set, then it can only converge to a point within the closed set.

Proposition 1.4.4. Let (X, d) be a metric space, let F be a closed subset of X,
and let (xn)n∈N ⊆ F be a sequence converging to a point x ∈ X. Then x ∈ F .

The following proposition allows us to obtain Polish spaces from other Polish
spaces.

Proposition 1.4.5 (Proposition 3.3 in [41]).

(i) A closed subspace of a Polish space is a Polish space.

(ii) The product topological space of a countable sequence of Polish spaces is a
Polish space.
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Proof. (i) Let X be a Polish space, let Y be a closed subset of X, and let d
be a complete metric on X which induces the topology on X. Define d′ to be
the restriction of d onto Y × Y . Then d′ is a metric on Y which induced the
subspace topology on Y . Let (yn)n∈N be a Cauchy sequence of elements in Y .
Since Y ⊆ X, it follows that the sequence (yn)n∈N converges to some y ∈ X.
However, y ∈ Y by Proposition 1.4.4 and the fact that Y is closed subset of X.
Hence Y is completely metrizable.

Finally, if D is a countable dense subset of X, then every open subset U of X
can be written as a union of subsets B(d, q) where d ∈ D and q ∈ Q. Note that
the collection of such B(d, q) is countable. Let D′ be a countable set such that
for any d ∈ D and q ∈ Q if the set B(d, q) ∩ Y is non-empty, then D′ intersects
B(d, q) ∩ Y non-trivially. Let U be an open subset of Y . Then by the definition
of the subspace topology there is an open subset V of X such that U = V ∩ Y .
Since U is a union of elements of the form B(d, q) ∩ Y , the set U intersect D′

non-trivially. Hence Y has a countable dense subset, and so is Polish.
(ii) Let {Xn : n ∈ N} be a sequence of Polish spaces, and suppose that dn

is a complete metric on Xn inducing the topology on Xn for all n ∈ N. Recall
that elements of X =

∏
n∈NXn are of the form (x0, x1, . . .) where xn ∈ Xn for

all n ∈ N. Define d′ : X ×X −→ [0,∞) by

d′((x0, x1, . . .), (y0, y1, . . .)) =
∑
n∈N

2−n
dn(xn, yn)

1 + dn(xn, yn)
.

Since dn is a metric on Xn for all n ∈ N, it follows that d(x,y) = 0 if and only
if x = y and d(x,y) = d(y,x) for all x,y ∈ X. If x, y, z ≥ 0 and x+ y ≥ z, by
simply multiplying it out, we see that the following inequality holds

x

1 + x
+

y

1 + y
≥ z

1 + z
.

It follows from the inequality that d(x, z) ≤ d(x,y) + d(y, z) for all x,y, z ∈ X,
and so d′ is a metric on X.

Suppose that (xn)n∈N is a Cauchy sequence in X, and let xn = (xn,0, xn,1, . . .)

where xn,m ∈ Xm for all n,m ∈ N. It follows that for each n ∈ N the sequence
(xn,m)m∈N is Cauchy in Xn, and so it converges to some xn ∈ Xn. Let x =

(x0, x1, . . .).
Let ε > 0. Then there is some K ∈ N such that

∑
n≥K 2−n ≤ ε/2. Since

(xn,m)m∈N converges to xn for all n ∈ N, there is N ∈ N such that for all n < K

and all m ≥ N , dn(xn,m, xn) < ε/(2K). Then for m ≥ N

d′(xn,x) ≤
K−1∑
n=0

2−n
dn(xn, yn)

1 + dn(xn, yn)
+
ε

2
≤
K−1∑
n=0

dn(xn, yn) +
ε

2
< ε.

19



Hence d′ is a complete metric.
Finally, let Dn be a countable dense subset of Xn, and let A be the collection

of all sets of the form
∏
n∈N Un such that there is a finite A ⊆ N so that

Un = B(x, r) where x ∈ Dn and r ∈ Q for all n ∈ A, and Un = Xn for all
n ∈ N \ A. Then A is countable. Let D be a countable set intersecting each
element of A non-trivially. If

∏
n∈N Un is a basic open set in the product topology,

it follows from the definition that Un is an open subset of Xn for all n ∈ N and
is equal to Xn for all n ∈ N \ A for some finite A. For each n ∈ A, let rn ∈ Q
and xn ∈ Dn be such that B(xn, rn) ⊆ Un, which is possible since Dn is dense
in Xn. If Vn = B(xn, rn) for all n ∈ A and Vn = Xn for all n ∈ N \ A, then D
intersects

∏
n∈N Vn ⊆

∏
n∈N Un non-trivially. Therefore D is a countable dense

subset, and so X is a Polish space.

Example 1.4.6. Let Ω be a countable set, and let τ be the discrete topology
on Ω. Then Ω itself is a countable dense subset of Ω. Let d : Ω× Ω −→ [0,∞)

be defined by

d(x, y) =

0 if x = y

1 if x 6= y
.

It can be verified that d is indeed a metric. Then the open ball B(x, 1/2) is just
the singleton {x} for any x ∈ Ω, and so the topology induced by d is discrete.
Finally, note that a sequence {xn : n ∈ N} with the metric d is Cauchy only if
there is K ∈ N such that xn = xm for all n,m ≥ K, in which case the sequence
converges to xK . Therefore d is a complete metric, and so Ω is a Polish space
with the discrete topology.

Since Ω is countable, it follows from Example 1.4.3 and Proposition 1.4.5(ii)
that ΩΩ is Polish space with the product topology.

It is interesting to note that every closed subset of a metrizable topological
space must be Gδ.

Proposition 1.4.7 (Theorem 3.7 in [41]). Let (X, τ) be a metrizable topological
space. Then every closed subset of X can be expressed as a countable intersection
of open sets.

Proof. Let d be a metric on X inducing the topology τ . For x ∈ X, and a
non-empty subset Y of X, define

d(x, Y ) = inf{d(x, y) : y ∈ Y }.

Let x, y ∈ X, let Y be non-empty subset of X, and let ε > 0 be arbitrary. Then
d(x, z) < d(x, Y ) + ε for some z ∈ Y , and so

d(y, Y ) ≤ d(y, z) ≤ d(x, y) + d(x, z) < d(x, y) + d(x, Y ) + ε.
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Since ε > 0 is arbitrary, it then follows that d(y, Y ) − d(x, Y ) ≤ d(x, y). The
same argument but with x and y swapped shows that

|d(x, Y )− d(y, Y )| ≤ d(x, y).

If d(x, Y ) < ε and y ∈ X is such that d(x, y) < ε − d(x, Y ), it then follows
that d(y, Y ) < ε, and so x ∈ B(x, ε− d(x, Y )) ⊆ {y ∈ X : d(y, Y ) < ε}. Hence
{x ∈ X : d(x, Y ) < ε} is open. Since for every non-empty closed set F

F =
⋂
n∈N
{x ∈ X : d(x, F ) < 1/(n+ 1)},

it follows that F is a Gδ set.

The next result together with Proposition 1.4.7 generalises Proposition 1.4.5(i).
The proof can be found in [41].

Theorem 1.4.8 (Theorem 3.11 in [41]). A subspace of a Polish space is Polish
if and only if it is a Gδ subset of X.

Example 1.4.9. Let Ω be a countable set. Let Inj(Ω) be the set of all injective
functions from Ω to Ω, and let Surj(Ω) be the set of all surjective functions. It
follows from Sym(Ω) = Inj(Ω) ∩ Surj(Ω) that if both Inj(Ω) and Surj(Ω) are Gδ
subsets of ΩΩ, then so is Sym(Ω).

Let x, y ∈ Ω such that x 6= y. Suppose that f ∈ ΩΩ such that (x)f 6= (y)f .
Then f ∈ [f |{x,y}] ⊆ {g ∈ ΩΩ : (x)g 6= (y)g}. Hence the set {g ∈ ΩΩ : (x)g 6=
(y)g} is a union of basic open sets, and so an open set. Since A = Ω2 \ {(x, x) :

x ∈ Ω} is countable,

Inj(Ω) =
⋂

(x,y)∈A

{g ∈ ΩΩ : (x)g 6= (y)g}

implies that Inj(Ω) is Gδ.
Let x ∈ Ω and suppose that f ∈ ΩΩ is such that there is y ∈ Ω with (y)f = x.

Then

f ∈ [f |{y}] ⊆ {g ∈ ΩΩ : there exists t ∈ Ω such that (t)g = x},

and so the set {g ∈ ΩΩ : there exists y ∈ Ω such that (y)f = x} is a union of
basic open sets, and hence open. Hence

Surj(Ω) =
⋂
x∈Ω

{g ∈ ΩΩ : there exists t ∈ Ω such that (t)g = x}

implies that Surj(Ω) is a Gδ set.
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Therefore, Sym(Ω) is a Polish space with the subspace topology by Theo-
rem 1.4.8 and Example 1.4.6. Hence by Proposition 1.4.5(i) any closed subspace
of Sym(Ω) is a Polish space.

1.4.3 Topological groups

Let G be a group. Then G is a topological group if there is a topology
on G so that multiplication, thought of as a function · : G × G −→ G, and
inversion −1 : G −→ G are both continuous. A topological group G is a Polish
group if the topology makes G into a Polish space.

Proposition 1.4.10. Let G be a topological group, and let H ≤ G. Then H is
a topological group with the subspace topology.

Proof. Let ·G : G×G −→ G denote the operation of G, and ·H : H ×H −→ H

the operation of H. Since H is a subgroup of G, it follows that ·H is a restriction
of ·G to H ×H. Let U be an open subset of H. Then there is V an open subset
of G such that U = V ∩ H. If P is the preimage of U under ·H and R is the
preimage of V under ·G, then P = R ∩ (H ×H). Since ·G is continuous, R is
an open subset of G×G, and so P is an open subset of H ×H with subspace
topology. Therefore, ·H is continuous.

Similarly, let −1
G : G −→ G and −1

H : H −→ H be inversion functions of G
and H respectively. Then −1

H is a restriction of −1
G to H ×H. Let U be an open

subset of H and V an open subset of G such that U = V ∩H. If P is a preimage
of U under −1

H and R is a preimage of V under −1
G , then P = R∩H. Hence as in

the previous paragraph, continuity of −1
G implies continuity of −1

H . Therefore, H
is a topological group.

Theorem 1.4.8 and Proposition 1.4.10 can be used to show that subgroup of
a Polish group is a Polish group if and only if it is a Gδ subset.

Example 1.4.11. Consider Sym(Ω) with subspace topology of ΩΩ as in Ex-
ample 1.4.9. Denote by ◦ : Sym(Ω) × Sym(Ω) −→ Sym(Ω) the operation
of Sym(Ω), and by −1 : Sym(Ω) −→ Sym(Ω) the inversion of Sym(Ω). Let
φ ∈ Sym(Ω)<ω be arbitrary. Then the preimage of [φ] under ◦ is the set
A = {(f, g) ∈ Sym(Ω)2 : f ◦ g ∈ [φ]}. Let A be the set of all ψ ∈ Sym(Ω)<ω such
that dom(ψ) = dom(φ). It follows that if ψ ∈ A, then dom(ψ−1) = ran(ψ) and
ran(ψ−1) = dom(φ). Hence ψ ◦ ψ−1 ◦ φ = φ, and so

A = {(f, g) ∈ Sym(Ω)2 : f ◦ g ∈ [φ]} =
⋃
ψ∈A

[ψ]× [ψ−1 ◦ φ]

is open. Similarly if B is a preimage of [φ] under −1, then

B = {f−1 : f ∈ [φ]} = [φ−1]
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is also open. Therefore both ◦ and −1 are continuous functions, and so Sym(Ω) is
a topological group. Then Example 1.4.9 implies that Sym(Ω) is in fact a Polish
group, and so every closed subgroup is also a Polish group.

Next we will show that ifG is a topological group, and g ∈ G, then multiplying
on the right by g is a homeomorphism, that is φ : G −→ G given by (h)φ = hg

is a homeomorphism. An analogous result holds for multiplication on the left.
First, we will prove a result for general topological spaces.

Proposition 1.4.12. Let f : X × Y −→ Z be a continuous function, where
X × Y is equipped with product topology of X and Y . Then

(i) the function Lx : Y −→ Z given by (y)Lx = (x, y)f for all x ∈ X and all
y ∈ Y is continuous;

(ii) the function Ry : X −→ Z given by (x)Ry = (x, y)f for all x ∈ X and all
y ∈ Y is continuous.

Proof. (i) Let U be an open subset of Z, and let y ∈ (U)L−1
x , or in other words

(x, y)f ∈ U . Since f is continuous, (U)f−1 is open in X×Y , and by the definition
of product topology there is a non-empty set I and for each i ∈ I there is a set
Ai open in X and a set Bi open in Y , so that

(U)f−1 =
⋃
i∈I

Ai ×Bi.

It follows from the fact that (x, y)f ∈ U that there is some i ∈ I so that
(x, y) ∈ Ai × Bi ⊆ (U)f−1, and so ({x} × Bi)f ⊆ U . Hence y ∈ Bi ⊆ (U)L−1

x ,
which implies that (U)L−1

x is a union of open sets, and thus an open set. Therefore
Lx is continuous.

(ii) The proof is almost identical.

Since the operation of a topological group G is a continuous function from
G×G to G, Proposition 1.4.12 immediately implies that multiplication on the
left or on the right by an element of G is also a continuous function. The next
result is a corollary of Proposition 1.4.12.

Corollary 1.4.13. Let G be a topological group, let g ∈ G, and let Lg, Rg :

G −→ G be defined as follows:

(h)Lg = gh and (h)Rg = hg.

Then Lg and Rg are both homeomorphisms.

Proof. It follows from Proposition 1.4.12 that both Lg and Rg are continuous
functions. Also for each h ∈ G

(h)Lg ◦ Lg−1 = g−1gh = h and (h)Lg−1 ◦ Lg = gg−1h = h.
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Hence Lg is a bijection by Proposition 1.3.2, with a continuous inverse Lg−1 ,
and so a homeomorphism. The proof for Rg is almost identical.

1.4.4 Meagre and comeagre sets

Let (X, τ) be a topological space. Then a subset A of X is comeagre if
it contains an intersection of countably many open and dense subsets of X.
The complement of a comeagre set is called meagre. We say that a set N is
nowhere dense in X if for every non-empty open set U there is a non-empty
open subset V ⊆ U such that V ∩N is empty. Let A be a meagre set. Hence
X \A is comeagre, and so X \A ⊇

⋂
i∈N Ui for some open dense subsets Ui of

X. Then
A ⊆

⋃
i∈N

X \ Ui.

Let U be an open set in X. Since Ui is dense, it follows that U ∩Ui is a non-empty
open subset. However, the intersection of U ∩Ui and X \Ui is empty, and hence
X \Ui is nowhere dense. Therefore, a subset of X is meagre only if it is contained
in a countable union of nowhere dense sets. It can similarly be shown that if a
subset is contained in a countable union of nowhere dense sets, then it is meagre,
giving an alternative definition of meagre sets.

Next we show that comeagre sets are invariant under homeomorphisms.

Proposition 1.4.14. Let X and Y be a topological spaces, and let f : X −→ Y

be a homeomorphism. Then (C)f is comeagre in Y for every comeagre subset C
of X.

Proof. Let C be a comeagre subset of X, and for all n ∈ N, let An be an open
and dense subset of X such that

⋂
n∈NAn ⊆ C. Since f is injective

⋂
n∈N

(An) f =

(⋂
n∈N

An

)
f ⊆ (C)f.

Hence it is sufficient to show that (An)f is open and dense for every n ∈ N. Since
An is an open set and f−1 is continuous, (An)f is open in Y for every n ∈ N.

Let n ∈ N, and let U be an open subset of Y . Since f is continuous, it follows
that (U)f−1 is an open subset of X. Hence there is x ∈ (U)f−1 ∩An, as An is
dense. Therefore (x)f ∈ (An)f ∩ U , proving that (An)f is dense, and so (C)f is
comeagre.

The following example demonstrates that in Proposition 1.4.14 we can not
drop the condition that the inverse of f is continuous. The example is by Emil
Jeřábek, which was published on mathoverflow website [38]. Let (X, τ)

be a topological space, and let Y be a subset of X. We will require the following
observations:
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• there is the smallest closed subset of X containing Y , called closure
of Y ;

• Y is dense in the closure of Y ;

• the set of all open intervals on R forms a basis for a topology which makes
R into a Polish space.

Since these observations are only relevant to Example 1.4.15, the proofs will be
omitted.

Example 1.4.15 ([38]). Let NN be the set of sequences over N (can also be
thought as the set of all functions from N to N) equipped with the topology
described in Example 1.4.3, and let [0, 1) be equipped with the subspace topology
of R. Since R is a Polish space and [0, 1) =

⋂
n∈N(−1/n, 1), Theorem 1.4.8 implies

that [0, 1) is also a Polish space. Define f : NN −→ [0, 1) by

(x0, x1, . . .)f = 0. 1 . . . 1︸ ︷︷ ︸
x0

0 1 . . . 1︸ ︷︷ ︸
x1

0 . . .

where the right hand side of the displayed equation is written in the binary
representation, which, for the sake of brevity, we will write as 0.1x001x1 . . . from
now on. It follows from the definition that f is injective, and since every number
in [0, 1) can be written without an infinite string of 1s, f is bijective.

Since the set of all open intervals is a basis for the topology on R, the set of
all intervals (a, b) and [0, a) such that 0 < a < b < 1 is a basis for the topology on
[0, 1). Let a, b ∈ R be such that 0 < a < b < 1, and let x ∈ NN be such that y =

(x)f ∈ (a, b). For any r ∈ R such that r = 0.x1x2 . . . is the binary representation
of r and any k ∈ N, define rk = (x1, . . . , xk) ∈ {0, 1}k. Then there is k ∈ N such
that ak, bk, and yk are all different. Since a < x < b, it follows that ak < yk < bk

with the lexicographic order. Recall that [yk] = {w ∈ NN : w starts with yk} is a
basic open set. Then x ∈ [yk] ⊆ ((a, b)) f−1, and so ((a, b)) f−1 is an open set
of NN. Similar argument shows that ([0, a)) f−1 is open for all a ∈ R such that
0 < a < 1. Therefore, f is a continuous bijection.

Consider the following set

U = {(x0, x1, . . .) ∈ NN : there exists n ∈ N so that xn is even}.

If follows easily from the definition of basic open sets for NN that U is an open
dense set, and thus a comeagre set. We will show that (U)f is not a comeagre
subset of [0, 1).

Suppose that (U)f is comeagre. Then (U)f ⊇
⋂
n∈NGn where Gn is open

and dense for all n ∈ N. Let A be the set of all real numbers of the form a2−k

such that a ∈ N with the binary representation a = 1x00 . . . 1xr0 where xi is
odd for i ∈ {0, . . . , r − 1} and xr is even, and k =

∑r
i=0(xi + 1). Let P be the
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closure of A in [0, 1). Then A is dense in P . Since [0, 1) is a Polish space, and
P is a closed subset Proposition 1.4.5(i) implies that P is a Polish space. Note
that A ⊆ P ∩ (U)f . Suppose x ∈ (U)f \A. If the binary representation of x is
0.1x001x10 . . . and r ∈ N is smallest such that xr is even, then

(0.1x00 . . . 1xr010, 0.1x00 . . . 1xr011) ⊆ (U)f \A,

and so (U)f \A is open in [0, 1). Since A ⊆ (U)f ,

[0, 1) \ ((U)f \A) = ([0, 1) \ (U)f) ∪A

is a closed subset of [0, 1) containing A. Thus P ⊆ ([0, 1) \ (U)f) ∪ A, and so
P ∩ (U)f ⊆ A, implying that A = P ∩ (U)f . Then A ⊇

⋂
n∈NGn ∩ P , and

Gn ∩P are open in P , by the definition of subspace topology. Moreover, the fact
that A is dense in P , implies that Gn ∩ P ⊇ A is also dense in P for all n ∈ N.
Therefore A is a comeagre subset of P . On the other hand, one element sets are
nowhere dense in P , and thus the countable set A is meagre. Since both A and
X \A are comeagre, it follows that ∅ = A∩ (X \A) is a comeagre set. However,
by Theorem 1.4.17 (which we will prove in the next section), comeagre subsets
of Polish spaces are dense, which is a contradiction as P is Polish. Therefore,
(U)f is not comeagre in [0, 1).

It follows from the alternative definition, that meagre sets are closed under
subsets. Moreover, under certain reasonable conditions (for example, there is no
minimal non-empty open set under inclusion) every set of size 1 is nowhere dense,
and so all countable or finite set are meagre sets. These are the properties we
expect any notion of “smallness” to satisfy. Roughly speaking we want to consider
meagre sets to be topologically “small”, and comeagre sets to be topologically
“big”. However, in a general topological space a set can be both meagre and
comeagre, see Example 1.4.16.

Example 1.4.16. Let X be countable, and let τ be a collection of subsets of X
such that U ∈ τ if and only if the set X \U is finite. Then (X, τ) is a topological
space. Let x ∈ X and let U ∈ τ . If x ∈ U , then U \ {x} ∈ τ , and so {x} is
nowhere dense. For any subset Y of X, both X \ Y and Y are a countable union
of nowhere dense sets. Therefore Y is both meagre and comeagre.

In the next section, we introduce the notion which guarantees that no set is
both meagre and comeagre.

1.4.5 Baire category theory

A topological space (X, τ) is a Baire space if every comeagre set in X is
dense. The following classical result, see Theorem 8.4 in [41], shows that every
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Polish space (topological groups considered in this thesis are all Polish) is a Baire
space. We will include the proof for the sake of completeness.

Theorem 1.4.17 (The Baire Category Theorem). Every complete metric space
is Baire with the induced topology.

Proof. Let (X, d) be a complete metric space. Recall that the topology on X is
given by the basis consisting of open balls B(x, r) = {y ∈ X : d(x, y) < r} where
x ∈ X and r > 0. Define a closed ball to be B(x, r) = {y ∈ X : d(x, y) ≤ r}.

Let {Un : i ∈ N} be a sequence of open dense subsets of X, and let U be an
arbitrary open set. Since U ∩ U0 is a non-empty open set there is r0 < 1/2 and
x0 ∈ U ∩U0 such that B(x0, r0) ⊆ U ∩U0. Since B(x0, r0) is open, B(x0, r0)∩U1

is non-empty, and so there is x1 ∈ B(x0, r0) ∩ U1 and r1 ≤ 1/3 such that
B(x1, r1) ⊆ B(x0, r0) ∩ U1. Continuing this we obtain xk ∈ B(xk−1, rk−1) ∩ Uk
and rk ≤ 1/(k+ 2) for each k ≥ 1 so that B(xk, rk) ⊆ B(xk−1, rk−1)∩Uk. Then
{xk : k ∈ N} is a Cauchy sequence, and so it converges to some x ∈ X. The
sequence {xk : x ≥ N} also converges to x for everyN ∈ N. Since xk ∈ B(xN , rN )

for all k ≥ N and all N ∈ N, it follows from Proposition 1.4.4 that x ∈ B(xN , rN )

for all N ∈ N. Therefore,

x ∈
⋂
k∈N

B(xk, rk) ⊆
⋂
k∈N

Uk.

Moreover x ∈ B(x0, r0) ⊆ U , and so the intersection of U and
⋂
n∈N Un is non-

empty. Since U is an arbitrary open set,
⋂
n∈N Un is dense. Finally, since every

comeagre set contains an intersection of countably many open dense subsets, it
also is dense.

As discussed in the previous section, we want to think of comeagre sets as
topologically “big”. If (X, τ) is a non-empty Baire space and C is a comeagre
subset of X, then C is dense and so non-empty. Hence we refer to elements of C
as typical elements of X.

Example 1.4.18. It follows from Example 1.4.9 that Sym(Ω) and every closed
subgroup of Sym(Ω) are Baire spaces.

1.5 Graphs

A graph is a pair (V,E), where V is a set, known as the set of vertices,
and E is a set of subsets of V each of size 2. A set {x, y} ∈ E is the edge
between x and y. Two vertices of a graph are adjacent if there is an
edge between them. For any cardinal n, the complete graph Kn is the
graph with n vertices and an edge between every pair of distinct vertices. The
complete graph with a countable infinite set of vertices is denoted by Kω.
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If Γ and ∆ are graphs with disjoint sets of vertices (and hence edges), then
the disjoint union of Γ and ∆ is the graph with vertices and edges being
the unions of the vertices and edges, respectively, of Γ and ∆. The dual of a
graph Γ is a graph ∆ with the vertex set being the same as the vertex set of
Γ and ∆ has an edge between a pair of two distinct vertices if and only if the
two vertices are not adjacent in Γ. If U is a set of vertices of a graph Γ, then the
subgraph induced by U is the graph with vertices U and edges between
u ∈ U and v ∈ U if and only if u and v are adjacent in Γ. For a fixed n ∈ N a
graph Γ is Kn-free graph if no induced subgraph of Γ is a complete graph
on n points. It follows immediately from the definition that every K1-free graph
is empty and every K2-free graph does not have any edges, thus we will be only
interested in Kn-free graphs if n ≥ 3.

If x ∈ Γ, the connected component of Γ containing x is
the subgraph induced by the set of vertices y ∈ Γ such that there are n ∈ N
and vertices x0 = x, x1, . . . , xn = y such that xi is adjacent to xi+1 for all
i ∈ {0, . . . , n− 1}.

Another very important tool we require is the Alice’s restaurant property.
We will have three versions of the property — for graphs; for Kn-free graphs;
and partial orders. The first two will be defined in this section.

Let Γ be a graph. Then Γ has Alice’s restaurant property for
graphs if for every pair of finite disjoint induced subgraphs U and V of Γ,
there is w ∈ Γ \ (U ∪ V ) such that w is adjacent to every vertex in U and to no
vertex in V .

Let n ≥ 3, and let Γ be a Kn-free graph. We say that Γ has the Alice’s
restaurant property for Kn-free graphs if for every pair of finite
disjoint induced subgraphs U and V of Γ where U is Kn−1-free, there exists a
vertex w ∈ Γ \ (U ∪ V ) such that w is adjacent to every vertex in U and to no
vertex in V .

1.6 Fraïssé limits

In this section we will describe some model theory ideas, most importantly those
concerning Fraïssé limits. For a more complete treatment see Hodges’ “A shorter
model theory” [28], which we use as the reference for this section.

A structure A is an object consisting of following four parts

• a set, called domain of A, and denoted by dom(A);

• a collection of constant symbols and a subset of A, called con-
stant elements, which are named by the constant symbols. If c is
the constant symbol, then we denote constant element corresponding to c
by cA;
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• for every n > 0, a collection of n-ary relation symbols and a set of
n-ary relations on dom(A), each named by one of the n-ary relation symbols.
If R is a relation symbol, then we denote the relation corresponding to the
symbol by RA;

• for every n > 0, a collection of n-ary function symbols and a set
of functions from dom(A)n to dom(A), each named by one of the n-ary
function symbols. If F is a function symbol, then we denote the function
corresponding to the symbol by FA.

A signature of a structure A consists of the set of constant
symbols, and for every n > 0 the sets of n-ary relation symbols and n-ary function
symbols. If L is a signature of A, we can refer to A as an L-structure. A
structure with a signature which contains no constant or function symbols is a
relational structure.

Let A and B be L-structures. Then a homomorphism for A to B, written
as f : A −→ B, is a function f : dom(A) −→ dom(B) so that the following
are true: (cA)f = cB for each constant symbol c of L; for n > 0, an n-ary
relation symbol R, and a x ∈ dom(A)n, x ∈ RA implies (x)f ∈ RB; for n > 0,
an n-ary function symbol F , and a x ∈ dom(A)n, ((x)FA)f = ((x)f)FB. An
embedding of A to B is a homomorphism f : A −→ B which is injective
and for n > 0, an n-ary relation symbol R, and a x ∈ dom(A)n, x ∈ RA if
and only if (x)f ∈ RB. An isomorphism is a surjective embedding, and
an automorphism of A is an isomorphism f : A −→ A. By Aut(A) we
denote the set of all automorphisms of A, which can be shown to be a group.
Similarly End(A) denotes the set of all homomorphisms from A to A, also known
as endomorphisms.

Let A and B be L-structures such that dom(A) ⊆ dom(B) and the inclusion
map i : A −→ B, given by (a)i = a for all a ∈ A, is an embedding. Then A is a
substructure of B, and B is an extension of A.

Lemma 1.6.1 (see Lemma 1.2.2. in [28]). Let B be an L-structure and X a
subset of dom(B). Then the following are equivalent

a. X = dom(A) for some substructure A of B.

b. For every constant c in L, cB ∈ X; and for all n > 0, every n-ary function
symbol F in L and every x ∈ Xn, (x)FB ∈ X.

Moreover, it the above conditions hold then A is uniquely determined.

Let B be an L-structure and let Y be a subset of the domain of B. Let
X0 = Y ∪ {cB : c is a constant symbol of L} and for k ≥ 1 define

Xk = Xk−1 ∪
⋃
n>0

{(x)FB : F is an n-ary function symbol and x ∈ Xn
k−1}.
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Let X =
⋃
k∈NXk. By the definition cB ∈ X for all constant symbols c of L.

Let n > 0 and let x ∈ Xn. Since X0 ⊆ X1 ⊆ . . ., it follows that x ∈ Xn
k for

some k ∈ N, and by the definition (x)FB ∈ X. Hence by Lemma 1.6.1 there
is a substructure A of B such that dom(A) = X. It can also be shown that
A is the smallest substructure of B containing Y . We call the unique smallest
substructure of B containing Y the substructure generated by Y ,
denoted by 〈Y 〉B. The structure B is finitely generated if there is a
finite Y ⊆ dom(B) such that B = 〈Y 〉B . The age of B is the collection of all
finitely generated structures which can be embedded into B, up to isomorphism.
That is, when considering the age of a structure we only care about its elements
up to isomorphism. It is worth mentioning that if A is a finitely generated
relational structure, then A is finite.

An L-structure A is ultrahomogeneous if for any finitely generated
substructures B and C of A and an isomorphism f : B −→ C there is an
automorphism g of A such that (x)f = (x)g for all x ∈ dom(B).

The main theorem of this section can now be stated.

Theorem 1.6.2 (Fraïssé Theorem, see Theorem 6.1.2 in [31]). Let L be a
countable signature and let K be a non-empty countable set of finitely generated
L-structures satisfying the following conditions:

• (Hereditary property) If A ∈ K and B is a finitely generated
substructure of A, then B ∈ K;

• (Joint embedding property) If A,B ∈ K, then there is C ∈ K

such that both A and B can be embedded in C;

• (Amalgamation property) If A,B,C ∈ K and f : A −→ B, g :

A −→ C are embeddings, then there is D ∈ K and embeddings h : B −→ D,
k : C −→ D such that f ◦ h = g ◦ k.

Then there exists a countable L-structure K, unique up to isomorphism, such
that K is the age of K and K is ultrahomogeneous.

We refer to the structure K in Theorem 1.6.2 as the Fraïssé limit of
the family K. The following theorem relates Fraïssé limits to the permutation
groups.

Theorem 1.6.3 (Theorem 5.8 in [9]). Let Ω be a countable set. Then G is a
closed subgroup of Sym(Ω) if and only if G = Aut(A) for some ultrahomogeneous
relational structure A with domain Ω.

Before giving the proof we need another notion. Let G be a subgroup of
Sym(Ω). Then a subset O of Ωn is an orbit of G on Ωn if there are
x1, . . . , xn ∈ Ω such that

O = {((x1)g, . . . , (xn)g) : g ∈ G}.
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Proof. (⇒) Let G be a closed subgroup of Sym(Ω). We will define a relational
structure A with domain Ω. For every n ∈ N, and every orbit Oi of G on
Ωn, let Ri be an n-ary relation symbol in the language, and let Oi be the
relation corresponding to Ri. If f ∈ G, and (x1, . . . , xn) ∈ RAi for some i,
then ((x1)f, . . . (xn)f) ∈ RAi , by the definition of Oi = RAi . Hence f is an
automorphism of A, in other words G ≤ Aut(A).

Let f be an automorphism of A, and let {x1, x2, . . .} be an enumeration of Ω.
Then for any (x1, . . . , xn) ∈ Ωn there is a symbol Ri such that (x1, . . . , xn) ∈ RAi .
Since f is an automorphism ((x1)f, . . . , (xn)f) ∈ RAi . Hence (x1, . . . , xn) and
((x1)f, . . . , (xn)f) are both elements of the same orbit Oi of G on Ωn, and so
there is gn ∈ G such that (xm)gn = (xm)f for all m ∈ {1, . . . , n}. Then the
sequence (gn)n∈N converges to f , and since G is closed Proposition 1.4.4 implies
that f ∈ G. Therefore G is the automorphism group of A.

Finally, we show that A is ultrahomogeneous. Let B and C be finite substruc-
tures ofA, and let q : B −→ C be an isomorphism. Then for each n-ary relation Ri,
by the definition of substructure, RBi = Oi ∩ dom(B)n and RCi = Oi ∩ dom(C)n.
Let B = {y1, . . . , yn} for some n ∈ N. Then there is a symbol Ri so that
(y1, . . . , yn) ∈ RBi . Since q is an isomorphism ((y1)q, . . . (yn)q) ∈ RCi , and thus
both (y1, . . . , yn) and ((y1)q, . . . , (yn)q) are elements of Oi. Hence there is g ∈ G
such that (ym)q = (ym)g for allm ∈ {1, . . . , n}. Therefore A is ultrahomogeneous.

(⇐) Let g ∈ Sym(Ω) \ Aut(A). Then g is not an automorphism of A and
so there are n ∈ N, an n-ary relation R, and (x1, . . . , xn) ∈ RA such that
((x1)g, . . . , (xn)g) /∈ RA. Then the basic open set [g|{x1,...,xn}] contains g and
is contained in Sym(Ω) \Aut(A), thus Sym(Ω) \Aut(A) is an open set. Hence
Aut(A) is a closed subset of Sym(Ω).

An analogous result holds for ΩΩ and endomorphism monoids of ultraho-
mogeneous relational structures. Even though the concept of an orbit does not
apply to monoids, we can still use the sets of the form

{((x1)g, . . . , (xn)g) : g ∈M}

where M is a submonoid of ΩΩ and x1, . . . , xn ∈ Ω. Otherwise, the same proof
can be used to prove the following result.

Theorem 1.6.4. Let Ω be a countable set. Then M is a closed submonoid of
ΩΩ if and only if M = End(A) for some ultrahomogeneous relational structure
A with domain Ω.
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Chapter 2

A finite interval in a
subsemigroup lattice

This chapter is based on the paper by the J. D. Mitchell and the author [40]. It
is included in this thesis with the permission of the coauthor.

2.1 Description of the problem

Let (X,≤) be a partially ordered set, and let Y ⊆ X. Recall that an upper
bound of Y is an element u ∈ X such that y ≤ u for all y ∈ Y , and similarly
l ∈ X is a lower bound of Y if l ≤ y for all y ∈ Y . An upper bound u of
Y is the supremum of Y if it is the least upper bound, assuming it exists,
in other words if u′ is an upper bound of Y , then u ≤ u′. In the same way
we may define the infimum to be the greatest lower bound. We denote the
supremum of Y by sup(Y ), and the infimum of Y by inf(Y ). A partially ordered
set (X,≤) is a lattice if every pair of elements of X has the supremum and
the infimum. Similarly, (X,≤) is a complete lattice if every subset of X
has a supremum and an infimum.

Let S be a semigroup. Then define a binary relation ≤ on the set of all
subsemigroups of S by T ≤ U if and only if T is a subsemigroup of U . It is easy
to show that ≤ is a partial order on the set of all subsemigroups of S. Suppose
that {Ti : i ∈ I} is a family of semigroups such that Ti ≤ S for all i ∈ I. It was
shown in Section 1.2 that

⋂
i∈I Ti is a subsemigroup of S. If V is a subsemigroup

of Ti for all i ∈ I, then V ⊆
⋂
i∈I Ti, and so V is a subsemigroup of

⋂
i∈I Ti.

Hence
⋂
i∈I Ti is the infimum of the family {Ti : i ∈ I}. On the other hand,

consider the semigroup generated by the subset
⋃
i∈I Ti of S, as usually denoted

by 〈
⋃
i∈I Ti〉. Then by the definition, it is the smallest subsemigroup of S which

contains Ti for all i ∈ I. Therefore 〈
⋃
i∈I Ti〉 is the supremum of {Ti : i ∈ I},

32



and thus the set of all subsemigroups of S forms a complete lattice, we call it
the subsemigroup lattice of S.

Let (X,≤) be a complete lattice. An element x of X is a compact ele-
ment if for every subset A of X such that x ≤ sup(A) there is a finite subset B
of A with x ≤ sup(B). A complete lattice (X,≤) is an algebraic lattice
if every element x ∈ X is equal to the supremum of the set of all compact
elements smaller than x.

Proposition 2.1.1 ([]). Let S be a semigroup, and let T be a subsemigroup of
S. Then T is a compact element in the subsemigroup lattice of S if and only if
T is finitely generated.

Proof. (⇒) Let T be a compact element in the subsemigroup lattice of S, and
for x ∈ T , let 〈x〉 be a subsemigroup of S generated by the element x. Then
supx∈T 〈x〉 ≥ 〈y〉, and so y ∈ supx∈T 〈x〉 for all y ∈ T . Hence T ≤ supx∈T 〈x〉,
and by the definition of compact elements there is a finite subset F such that
T ≤ supx∈F 〈x〉. Also note that since all 〈x〉 ⊆ T , the subsemigroup T is an
upper bound for {〈x〉 : x ∈ F}, and so T = supx∈F 〈x〉. Hence

T = sup
x∈F
〈x〉 = 〈

⋃
x∈F
〈x〉〉 = 〈F 〉,

and so T is finitely generated.
(⇐) Let T be a finitely generated subsemigroup of S, and let {Ui : i ∈ I} be

a family of subsemigroups of S such that T ≤ supi∈I Ui = 〈
⋃
i∈I Ui〉. If x ∈ T ,

then it can be written as a finite product of the elements in
⋃
i∈I Ui. Hence there

is a finite subset Jx of I such that x ∈ 〈
⋃
i∈Jx Ui〉. Let A be a finite generating

set of T , and let J =
⋃
x∈A Jx. Then J is finite and A ⊆ 〈

⋃
i∈J Ui〉. Hence

T ≤ sup
i∈J

Ui,

and so T is a compact element.

Proposition 2.1.1 can now be used to show that subsemigroup lattice is
an algebraic lattice. Let T be a subsemigroup of S, and let F = {F ≤ T :

F is a compact element}. Since T is an upper bound of F, supF ≤ T . Let A be
a generating set for T . Then

T = 〈A〉 = 〈
⋃
x∈A
〈x〉〉 = sup

x∈A
〈x〉 ≤ supF,

as 〈x〉 ∈ F for all x ∈ A by Proposition 2.1.1. It then follows that T = supF,
and so the subsemigroup lattice of S is an algebraic lattice. This result comes as
no surprise and is consistent with the terminology. Actually, the fact that the
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subsemigroup lattice is an algebraic lattice is a consequence of a much stronger
result. In order to state the result we need to define an algebraic closure operator.

Let (X,≤) be a partially ordered set. Then c : X −→ X is an algebraic
closure operator if the following are satisfied for all x, y ∈ X: x ≤ (x)c;
x ≤ y implies that (x)c ≤ (y)c; ((x)c)c = (x)c; and (A)c =

⋃
{(B)c : B ⊆

A and B is finite} for every A ⊆ X. Since in this chapter we are only interested
in the subsemigroup lattice, the result is only included for the sake of completeness
and we will omit the proof and the further discussion of the concepts within.

Theorem 2.1.2 (Lemma 7.19 in [14]). Let (X,≤) be a partial order, let c be an
algebraic closure operator on X, and let Lc = {A ⊆ X : (A)c = A}. Then Lc is
an algebraic lattice such that an element A is compact if and only if A = (B)c

for some finite subset B of X.

Let Ω be an arbitrary infinite set. Then as discussed before, the set of all
subsemigroups of ΩΩ forms a semigroup lattice. In the next proposition we show
that ΩΩ has 2|Ω| many finitely generated subsemigroups, and so 2|Ω| compact
elements in the semigroup lattice of ΩΩ, by Proposition 2.1.1.

Proposition 2.1.3. Let Ω be an infinite set. Then there are 2|Ω| many distinct
finitely generated subsemigroups of ΩΩ.

Proof. Let F be the set all finitely generated subsemigroups of ΩΩ. Recall that
|ΩΩ| = 2|Ω|, and so there are only 2|Ω| finite subsets of ΩΩ. Hence |F| ≤ 2|Ω|.

Suppose that F < 2|Ω|. Recall that every finitely generated semigroup is
either finite or countable, and so if F is finite, then 〈

⋃
F∈F F 〉 is either finite or

countable. If F is infinite, then it follows that |
⋃
F∈F F | ≤ |F× ℵ0| = |F|, and

also
⋃
F∈F F is infinite. Hence

|〈
⋃
F∈F

F 〉| = |
⋃
F∈F

F | ≤ |F| < 2|Ω|.

In both cases, 〈
⋃
F∈F F 〉 is a proper subset of ΩΩ, and so there is f ∈ ΩΩ \

〈
⋃
F∈F F 〉. However, 〈f〉 is a finitely generated subsemigroup of ΩΩ, and thus

〈f〉 ∈ F, which is a contradiction. Therefore F = 2|Ω|, as required.

It turns out that the subsemigroup lattice of ΩΩ is in some way a “universal”
algebraic lattice, as described in the following result by Pinsker and Shelah.

Theorem 2.1.4 (Theorem 1.1 in [62]). Every complete algebraic lattice with at
most 2|Ω| compact elements can be embedded into the subsemigroup lattice of ΩΩ.

Since ΩΩ has 2|Ω| many elements, it follows that it has 22|Ω| many subsets.
Moreover, the number of distinct subsemigroups of ΩΩ is also 22|Ω| .

Proposition 2.1.5. Let Ω be infinite. Then ΩΩ has 22|Ω| many distinct sub-
semigroups.
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Proof. Let a and b be two distinct elements of Ω, and let Σ = Ω \ {a, b}. Then
|Σ| = |Ω|. For a subset A of Σ, define fA ∈ ΩΩ by

(x)fA =

a if x ∈ A ∪ {a}

b otherwise
.

Let F be the set of all such fA. Since there 2|Ω| many subsets of Σ and fA and
fB are distinct for distinct A and B, it follows that |F| = 2|Ω|. Moreover, if
A and B are subsets of Σ, then fA ◦ fB = fA, as b /∈ A. Hence every subset
of F is a subsemigroup of ΩΩ, and so there are at least 2|F| = 22|Ω| many
subsemigroups of ΩΩ. However, ΩΩ has 22|Ω| many subsets, thus there are 22|Ω|

many subsemigroups of ΩΩ.

A subsemigroup M of S is maximal if for every subsemigroup T of S such
that M � T , it follows that T = S. We already know that ΩΩ has 22|Ω| distinct
subsemigroups by Proposition 2.1.5, but more surprisingly the number of maximal
subsemigroups is also 22|Ω| , see [17, Theorem C]. The maximal subsemigroups of
other semigroups were also studied in the literature. For example, the maximal
subsemigroups of a finite semigroup are, in a sense, determined by their maximal
subgroups, see [25]. The question for infinite semigroups was investigated by
Levi and Wood, in [45], and Hotzel, in [29], in the case of Baer-Levi semigroups,
and by Shneperman, in [68], in the case of the endomorphism monoid of a finite
dimension complex vector space, where maximal compact subsemigroups were
considered.

The analogous problem of finding maximal subgroups is studied to even a
higher degree. For example the maximal subgroups of the symmetric group on Ω

for an infinite Ω were studied in [3, 4, 6, 7, 8, 11, 49, 53, 55, 64], and the case
of finite Ω has been investigated by Aschbacher and Scott, in [2], O’Nan and
Scott, in [66], and also Liebeck, Praeger and Saxl in [46]. Of particular interest,
perhaps, are the results by H. D. Macpherson and Peter M. Neumann, see [52],
and Fred Richman, see [64]. It follows from their results that the number of
maximal subgroups of Sym(Ω) is 22|Ω| , if Ω is infinite. The result is obtained by
showing that the stabiliser of an ultrafilter is a maximal subgroup of Sym(Ω).

A set F of subsets of Ω is a filter if the following are satisfied:

1. if A,B ∈ F , then A ∩B ∈ F ;

2. if A ⊆ B ⊆ Ω and A ∈ F , then B ∈ F .

A filter F is a proper filter if F is not the set of all subsets of Ω, and a
proper filter is an ultrafilter if it is maximal with respect to containment
among all proper filters. Let a ∈ Ω and let K = {A ⊆ Ω : a ∈ A}. Then K is a
proper filter. If K′ is a filter properly containing K, then there is B ∈ K′ such
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that a /∈ B, and so ∅ = {a} ∩B ∈ K′, implying that K′ is the set of all subsets
of Ω. Hence K is an ultrafilter. An ultrafilter F a principal ultrafilter
if F = {A ⊆ Ω : a ∈ A} for some a ∈ Ω. For a filter F , the stabiliser of F is

Stab(F) = {f ∈ Sym(Ω) : (A)f ∈ F for all A ∈ F}.

The following theorem shows that there 22|Ω| ultrafilters on an infinite set Ω.

Theorem 2.1.6 (Theorem 7.6 in [37]). Let Ω be an infinite set. Then there are
22|Ω| ultrafilters on Ω.

Since there are precisely |Ω| many distinct principal ultrafilters, it follows
from Theorem 2.1.6 that there are 22|Ω| non-principal ultrafilters.

In [17], East, Mitchell, and Péresse use ultrafilters to show that there are
22|Ω| many maximal subsemigroups of ΩΩ. For every non-principal ultrafilter F
they show that there are at least two maximal subsemigroups of ΩΩ containing
Stab(F), all of them distinct, and so the result follows from the above. In contrast
to this result, Pinsker, in [60], showed that if |Ω| = ℵα, then there are 2|α|+ 5

many maximal subsemigroups of ΩΩ containing Sym(Ω). The result was initially
proved by Gavrilov, in [21], for a countable Ω, and then expanded by Pinsker to
arbitrary cardinalities.

Theorem 2.1.7 (Theorem 4 in [60]). Let Ω be an infinite set. If Ω has regular
cardinality κ, then the maximal subsemigroups of ΩΩ containing Sym(Ω) are as
follows:

• A = {f ∈ ΩΩ : k(f) < κ};

• Gλ = {f ∈ ΩΩ : |Ω \ (Ω \A)f | ≥ λ for all A ⊆ X of cardinality λ};

• Mλ = {f ∈ ΩΩ : c(f) ≥ λ or d(f) < λ};

where λ = 1 or ℵ0 ≤ λ ≤ κ.
If Ω has singular cardinality, then the same is true, but with subsemigroup A

replaced by

A′ = {f ∈ ΩΩ : there is λ < κ and A ⊂ Ω of cardinality κ such

that |{x ∈ Ω : (x)f = y}| ≤ λ for all y ∈ A}.

In this chapter we are exclusively interested in the case where |Ω| = ℵ0. Then
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the five maximal subsemigroups containing Sym(Ω) are:

S1 = {f ∈ ΩΩ : c(f) = 0 or d(f) > 0} = G1

S2 = {f ∈ ΩΩ : c(f) > 0 or d(f) = 0} = M1

S3 = {f ∈ ΩΩ : c(f) < ω or d(f) = ω} = Gℵ0

S4 = {f ∈ ΩΩ : c(f) = ω or d(f) < ω} = Mℵ0

S5 = {f ∈ ΩΩ : k(f) < ω} = A.

(2.1)

If S and T are subsemigroups of ΩΩ, then the interval from T to S,
denoted (T, S), is defined to be the set of proper subsemigroups of S properly
containing T , in particular

(T, S) = {U ≤ ΩΩ : T � U � S}.

Pinsker showed in [61] that the interval (Sym(Ω),ΩΩ) has cardinality 22κ ,
where |Ω| = ℵα and κ = max{α,ℵ0}. Moreover, if ℵα is a regular cardinal and S
is the intersection of the maximal subsemigroups of ΩΩ containing Sym(Ω), as
described in Theorem 2.1.7, then the interval (Sym(Ω), S) also has cardinality 22κ .
As mentioned before, of particular interest to us is the case where |Ω| = ℵ0. Then
κ = ℵ0, and so the interval (Sym(Ω), S) has the same cardinality as the number
of subsemigroups in ΩΩ. However, the question remains, whether the interval
(S,ΩΩ) is also of the cardinality 22ℵ0 . It turns out that this is not the case. More
precisely, we will prove in Theorem 2.1.8 that there are only 38 subsemigroups
in the interval from the intersection of the maximal subsemigroups described in
(2.1) to ΩΩ when Ω is countably infinite.

Throughout the rest of this chapter, we will assume that Ω is countably
infinite. For the sake of brevity, if I ⊆ {1, 2, 3, 4, 5}, then we will denote the
intersection

⋂
i∈I Si by SI , so that S1,2 denotes S1 ∩ S2 and so on. Define

U ={f ∈ ΩΩ : d(f) = ω or (0 < c(f) < ω)} ∪ Sym(Ω)

V ={f ∈ ΩΩ : c(f) = ω or (0 < d(f) < ω)} ∪ Sym(Ω).

The following theorem is the main result of this chapter.

Theorem 2.1.8. Let Ω be a countable set. Then the interval (S1,2,3,4,5,Ω
Ω)

consists of 38 semigroups, 30 of which are all possible intersections of any non-
empty proper subset of {S1, S2, S4, S3, S5} as well as the following 8 semigroups:

U, V, S1 ∩ U, S2 ∩ V, S5 ∩ U, S5 ∩ V, S1,5 ∩ U, and S2,5 ∩ V.

The subsemigroup lattice of the interval (S1,2,3,4,5,Ω
Ω) is depicted in Fig-

ure 2.1. We will describe the relevant semigroups given in the Theorem 2.1.8, in
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terms of the parameters d, c, and k (in a similar way to (2.1)) in Section 2.2. In
Section 2.3 a number of technical lemmas are proved which are extensively used
in the proof of the Theorem 2.1.8 in Section 2.4.

ΩΩ

S3S2S1 S4 S5

U V

S1,2 S1,3 S1,4 S1,5 S2,3 S2,4 S2,5 S3,4 S3,5 S4,5

U ∩ S1 V ∩ S2 U ∩ S5 V ∩ S5

S1,2,3 S1,2,4 S1,2,5 S1,3,4 S1,3,5 S1,4,5 S2,3,4 S2,3,5 S2,4,5 S3,4,5

V ∩ S2,5 U ∩ S1,5

S1,2,3,4 S1,2,3,5 S1,2,4,5 S1,3,4,5 S2,3,4,5

S1,2,3,4,5

Figure 2.1: Subsemigroup lattice of (S1,2,3,4,5,Ω
Ω)
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2.2 Definitions of the semigroups in Theorem 2.1.8

In this section we give the definitions of all the semigroups mentioned in Theo-
rem 2.1.8, for ease of reference. Since Sym(Ω) is a subgroup of every semigroup
in question, in the following table we will only describe non bijective transforma-
tions.

S If f ∈ S, then is either in Sym(Ω) or satisfies the following condition

S1 c(f) = 0 or d(f) > 0

S2 c(f) > 0 or d(f) = 0

S3 c(f) < ω or d(f) = ω

S4 c(f) = ω or d(f) < ω

S5 k(f) < ω

U 0 < c(f) < ω or d(f) = ω

V c(f) = ω or 0 < d(f) < ω

S1,2 c(f), d(f) > 0

S1,3 d(f) = ω or c(f) = 0 or 0 < c(f), d(f) < ω

S1,4 c(f) = d(f) = ω or 0 < d(f) < ω

S1,5 d(f) > 0 and k(f) < ω or c(f) = 0

S2,3 c(f) = d(f) = ω or 0 < c(f) < ω

S2,4 c(f) = ω or d(f) = 0 or 0 < c(f), d(f) < ω

S2,5 c(f) > 0 and k(f) < ω or d(f) = 0 and k(f) < ω

S3,4 c(f) = d(f) = ω or c(f), d(f) < ω

S3,5 c(f) < ω or d(f) = ω and k(f) < ω

S4,5 c(f) = ω and k(f) < ω or d(f) < ω and k(f) < ω

V ∩ S2 c(f) = ω or 0 < c(f), d(f) < ω

U ∩ S1 d(f) = ω or 0 < c(f), d(f) < ω

V ∩ S5 k(f) < c(f) = ω or 0 < d(f) < ω and k(f) < ω

U ∩ S5 k(f) < d(f) = ω or 0 < c(f) < ω

S1,2,3 c(f) > 0 and d(f) = ω or 0 < c(f), d(f) < ω

S1,2,4 c(f) = ω and d(f) > 0 or 0 < c(f), d(f) < ω

S1,2,5 c(f), d(f) > 0 and k(f) < ω

S1,3,4 c(f) = d(f) = ω or 0 < d(f) < ω and c(f) < ω
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S1,3,5 d(f) = ω and k(f) < ω or c(f) < ω and d(f) > 0

S1,4,5 c(f) = d(f) = ω and k(f) < ω or 0 < d(f) < ω and k(f) < ω

S2,3,4 c(f) = d(f) = ω or 0 < c(f) < ω and d(f) < ω

S2,3,5 c(f) = d(f) = ω and k(f) < ω or 0 < c(f) < ω

S2,4,5 c(f) = ω and k(f) < ω or 0 < c(f) < ω and d(f) < ω

S3,4,5 c(f) = d(f) = ω and k(f) < ω or c(f), d(f) < ω

V ∩ S2,5 k(f) < ω and c(f) = ω or 0 < c(f), d(f) < ω

U ∩ S1,5 k(f) < ω and d(f) = ω or 0 < c(f), d(f) < ω

S1,2,3,4 c(f) = d(f) = ω or 0 < c(f), d(f) < ω

S1,2,3,5 d(f) = ω, c(f) > 0 and k(f) < ω

S1,2,4,5 c(f) = d(f) = ω and k(f) < ω or
c(f) > 0, 0 < d(f) < ω

and k(f) < ω

S1,3,4,5 c(f) = d(f) = ω and k(f) < ω or c(f) < ω and 0 < d(f) < ω

S2,3,4,5 c(f) = d(f) = ω and k(f) < ω or d(f) < ω and 0 < c(f) < ω

S1,2,3,4,5 c(f) = d(f) = ω and k(f) < ω or 0 < c(f), d(f) < ω

In order to show that all the sets described in the table are subsemigroups, we
only need to show that S1, S2, S3, S4, S5, U , and V are subsemigroups, since all
the others are just intersections of them. We already know from Theorem 2.1.7
that Si is a semigroup for i ∈ {1, . . . , 5}, and we demonstrate that so are U and
V in the following proposition.

Proposition 2.2.1. U and V are semigroups.

Proof. Let f, g ∈ U . If f ∈ Sym(Ω), then d(f ◦ g) = d(g) and c(f ◦ g) = c(g)

and so f ◦ g ∈ U . Similarly, if g ∈ Sym(Ω), then f ◦ g ∈ U . If d(g) = ω, then
d(f ◦ g) = ω by Lemma 1.3.5(i), and so f ◦ g ∈ U . If d(f) = ω and 0 < c(g) < ω,
then by Lemma 1.3.5(v), d(f ◦ g) = ω, and thus f ◦ g ∈ U . If 0 < c(f), c(g) < ω,
then, by Lemma 1.3.5(iii), 0 < c(f ◦ g) < ω and so f ◦ g ∈ U .

Let f, g ∈ V . If f ∈ Sym(Ω) or g ∈ Sym(Ω), then d(f ◦ g) = d(g) and
c(f ◦g) = c(g) and so f ◦g ∈ V . If c(f) = ω, then c(f ◦g) = ω by Lemma 1.3.5(iii),
and so f ◦ g ∈ V . If c(g) = ω and 0 < d(f) < ω, then by Lemma 1.3.5(vi),
c(f ◦ g) = ω, and thus f ◦ g ∈ V . If 0 < d(f), d(g) < ω, then, by Lemma 1.3.5(i),
0 < d(f ◦ g) < ω and so f ◦ g ∈ V .
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It is routine, using Proposition 1.3.4, to show that U and V are not equal to
any of the intersections of the subsemigroups S1, S2, S3, S4, and S5. It then follows
from the descriptions of the semigroups that S2,3 � U � S3 and S1,4 � V � S4.

2.3 Technical lemmas

We require several technical results to prove Theorem 2.1.8, which we present in
this section.

Lemma 2.3.1. Let f, g ∈ ΩΩ be such that ker(f) = ker(g) and d(f) = d(g).
Then f ∈ 〈g,Sym(Ω)〉.

Proof. Let h′ : (Ω)f −→ (Ω)g be defined by (x)h′ = (y)g if x = (y)f . Then
(y)f = (y′)f if and only if (y, y′) ∈ ker(f) = ker(g) which is equivalent to
(y)g = (y′)g. Hence h′ is a well-defined injective function. If x ∈ (Ω)g, then
there is y ∈ Ω such that (y)g = x, and so ((y)f)h′ = (y)g = x. Therefore h′

is surjective, and thus a bijection between (Ω)f and (Ω)g. Let h ∈ ΩΩ be any
function such that h agrees with h′ on (Ω)f and bijectively maps Ω \ (Ω)f to
Ω\(Ω)g, which is possible since d(f) = d(g). Then h ∈ Sym(Ω) and f ◦h = g.

The next three lemmas form the essential part of the proof of Theorem 2.1.8.
Roughly speaking, all of the lemmas will consider the question, given f, g ∈ ΩΩ

with certain properties, whether f can be generated by g and elements of S1,2,3,4,5?

Lemma 2.3.2. Let u, v, f ∈ ΩΩ. Then the following hold:

(i) if 0 < c(u), c(f) < ω and d(u) = d(f), then f ∈ 〈S1,2,3,4,5, u〉;

(ii) if c(u) < ω, d(u) = ω, c(v) > 0, d(f) = d(v) = 0, and 0 < c(f) < ω, then
f ∈ 〈S1,2,3,4,5, u, v〉;

(iii) if u is injective, c(f) < ω, and d(u) = d(f) = ω, then f ∈ 〈S1,2,3,4,5, u〉;

(iv) if u is injective, d(u) > 0, d(v) = d(f) = ω, and c(v), c(f) < ω , then
f ∈ 〈S1,2,3,4,5, u, v〉.

Proof. (i). Let g ∈ ΩΩ be such that ker(g) = ker(f) and such that (Ω)g is a
transversal of u. Then c(g) = c(f) and d(g) = c(u) and thus g ∈ S1,2,3,4,5. Since
d(g ◦ u) = d(u) = d(f) and ker(g ◦ u) = ker(g) = ker(f), Lemma 2.3.1 implies
that f ∈ 〈g ◦ u,Sym(Ω)〉 ≤ 〈u, S1,2,3,4,5〉.

(ii). If c(v) < ω, then f ∈ 〈S1,2,3,4,5, v〉 by Lemma 2.3.2(i). Suppose c(v) = ω

and let t ∈ S1,2,3,4,5 be such that 0 < c(t), d(t) < ω. Then 0 < c(t ◦ u) < ω and
d(t◦u) = ω by parts (i) and (iii) of Lemma 1.3.5. Choose g ∈ ΩΩ such that (Ω)t◦u
is a transversal of g, (Ω)g is a transversal of v and k(g) < ω. Then c(g) = d(g) = ω,
and so g ∈ S1,2,3,4,5. Also c(t ◦ u ◦ g ◦ v) = c(t ◦ u), and so 0 < c(t ◦ u ◦ g ◦ v) < ω
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and d(t ◦ u ◦ g ◦ v) = 0 and thus f ∈ 〈S1,2,3,4,5, t ◦ u ◦ g ◦ v〉 ≤ 〈S1,2,3,4,5, u, v〉 by
Lemma 2.3.2(i).

(iii). If c(f) = 0, then ker(f) = ker(u) and so f ∈ 〈u, S1,2,3,4,5〉 by Lemma 2.3.1.
Suppose 0 < c(f) < ω. If g ∈ ΩΩ is such that ker(g) = ker(f) and 0 < d(g) < ω,
then g ∈ S1,2,3,4,5. But ker(g ◦u) = ker(g) since u is injective, and so ker(g ◦u) =

ker(f). Also d(g◦u) ≥ d(u) = ω, and so d(g◦u) = d(u) = d(f). Thus Lemma 2.3.1
implies that f ∈ 〈g ◦ u,Sym(Ω)〉 ≤ 〈u, S1,2,3,4,5〉.

(iv). If v is injective or d(u) = ω, then f ∈ 〈S1,2,3,4,5, v〉 or f ∈ 〈S1,2,3,4,5, u〉,
respectively, by part (iii). Suppose 0 < c(v) and d(u) < ω. Let w ∈ ΩΩ be
such that c(w) = 0 and (Ω)w is a transversal of v. Then c(w ◦ v) = 0 and
d(w ◦ v) > d(v) = ω, and so f ∈ 〈S1,2,3,4,5, w ◦ v〉 by part (iii). Let t ∈ ΩΩ be any
function such that (Ω)u is a transversal of t and d(t) = d(w). Then c(t) = d(u)

and 0 < c(t) < ω. Since d(w) = c(v), it follows that 0 < d(t) < ω. Hence
t ∈ S1,2,3,4,5. Since w and u ◦ t are injective, d(u ◦ t) = d(t) and d(t) = d(w).
Then Lemma 2.3.1 implies that w ∈ 〈u ◦ t,Sym(Ω)〉 ≤ 〈u, S1,2,3,4,5〉. Combining
the above, f ∈ 〈S1,2,3,4,5, w ◦ v〉 ≤ 〈S1,2,3,4,5, u, v〉, as required.

We also require a result which roughly speaking is dual to Lemma 2.3.2,
where the values of c and d are interchanged, and because of different nature
of parameters c and d, in some cases the parameter k is introduced. It is worth
noting that even though the two lemmas are not formally dual, they can be
interchanged to show different parts of the proof of Theorem 2.1.8.

Lemma 2.3.3. Let u, v, f ∈ ΩΩ. Then the following hold:

(i) if 0 < d(u), d(f) < ω, c(u) = c(f) and k(f) < ω, then f ∈ 〈S1,2,3,4,5, u〉;

(ii) if c(u) = ω, d(u) < ω, c(f) = c(v) = 0, d(v) > 0, and 0 < d(f) < ω, then
f ∈ 〈S1,2,3,4,5, u, v〉;

(iii) if u is surjective, d(f), k(f) < ω and c(u) = c(f) = ω, then f ∈ 〈S1,2,3,4,5, u〉;

(iv) if u is surjective, c(u) > 0, c(v) = c(f) = ω, k(f) < ω and d(v), d(f) < ω,
then f ∈ 〈S1,2,3,4,5, u, v〉.

Proof. (i). Let g, h ∈ ΩΩ be such that (Ω)u is a transversal of g, d(g) = d(f),
ker(h) = ker(f), and (Ω)h is a transversal of u. Then ker(f) = ker(h ◦ u ◦ g) and
d(f) = d(h ◦ u ◦ g). Hence f ∈ 〈h ◦ u ◦ g,Sym(Ω)〉 by Lemma 2.3.1 and so it
suffices to show that g, h ∈ S1,2,3,4,5.

Since c(g) = d(u) and d(g) = d(f) by the choice of g, it follows that 0 <

c(g), d(g) < ω and so g ∈ S1,2,3,4,5. Also h was chosen such that c(h) = c(f),
d(h) = c(u), and k(h) = k(f) < ω. So, if c(f) = c(u) = 0, then h ∈ Sym(Ω). If
0 < c(f) = c(u) < ω, then 0 < c(h), d(h) < ω and thus h ∈ S1,2,3,4,5. Finally, if
c(f) = c(u) = ω, then c(h) = d(h) = ω, k(h) < ω, and so h ∈ S1,2,3,4,5.
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(ii). If d(v) < ω, then f ∈ 〈S1,2,3,4,5, v〉 by Lemma 2.3.3(i). Suppose d(v) = ω.
Let g ∈ ΩΩ be such that (Ω)v is a transversal of g, (Ω)g is contained in a
transversal T of u with 0 < |T \ (Ω)g| < ω, and k(g) < ω. Then c(g) = d(g) = ω,
and so g ∈ S1,2,3,4,5. Also c(v ◦ g ◦ u) = 0 and 0 < d(v ◦ g ◦ u) < ω. Therefore
f ∈ 〈S1,2,3,4,5, v ◦ g ◦ u〉 ≤ 〈S1,2,3,4,5, u, v〉 by Lemma 2.3.3(i).

(iii). Let g ∈ ΩΩ be such that ker(g) = ker(f) and (Ω)g is contained in a
transversal T of u with |T \ (Ω)g| = d(f). Then c(g) = d(g) = ω, k(g) < ω

and thus g ∈ S1,2,3,4,5. Also ker(f) = ker(g ◦ u) and d(f) = d(g ◦ u), and so
f ∈ 〈g ◦ u,Sym(Ω)〉 ≤ 〈u, S1,2,3,4,5〉.

(iv). If d(v) = 0 or c(u) = ω, then the result follows from Lemma 2.3.3(iii).
Suppose that 0 < c(u), d(v) < ω and let g ∈ ΩΩ be such that (Ω)v is a transversal
of g and (Ω)g is a transversal of u. Then c(g) = d(v) and d(g) = c(u) which
implies 0 < c(g), d(g) < ω and g ∈ S1,2,3,4,5. Therefore f ∈ 〈S1,2,3,4,5, v ◦g ◦u〉 by
Lemma 2.3.3(iii) since c(v ◦ g ◦ u) = ω, k(v ◦ g ◦ u) < ω and d(v ◦ g ◦ u) = 0.

The final technical lemma we require relates to generating transformations
with parameter k being infinite, whereas the previous two lemmas are concerned
with generating mappings with finite k value.

Lemma 2.3.4. Let u, v, t, f ∈ ΩΩ. Then the following hold:

(i) if k(u) = k(f) = d(f) = ω, then f ∈ 〈S1,2,3,4,5, u〉;

(ii) if k(u) = k(f) = ω, d(f), d(u) > 0, c(v) = ω, and 0 < d(v) < ω then
f ∈ 〈S1,2,3,4,5, u, v〉;

(iii) if k(u) = k(f) = ω, c(v) = ω, and d(v) = 0, then f ∈ 〈S1,2,3,4,5, u, v〉;

(iv) if k(u) = k(f) = ω, c(v) = ω, d(v) < ω, c(t) > 0, and d(t) = 0, then
f ∈ 〈S1,2,3,4,5, u, v, t〉.

Proof. (i). Let {Ki : i ∈ N} be the kernel classes of f , in other words the
sets {x ∈ Ω : (x)f = y} for every y ∈ (Ω)f . Since k(f) ≥ 1, we may assume
that K0 is infinite. Let {Li : i ∈ N} be the infinite kernel classes of u, and
let g ∈ ΩΩ be such that (K0)g = {x} where x ∈ L0, g|Ki is injective and
(Ki)g ⊆ L2i for all i ∈ N. Then c(g) = d(g) = ω and k(g) = 1 which implies
that g ∈ S1,2,3,4,5. Also ker(g ◦ u) = ker(f) and d(g ◦ u) = d(f) = ω, and so
f ∈ 〈g ◦ u,Sym(Ω)〉 ≤ 〈u, S1,2,3,4,5〉 by Lemma 2.3.1.

(ii). If d(f) = ω, then the result follows from Lemma 2.3.4(i). Suppose
0 < d(f) < ω and let g ∈ ΩΩ be such that ker(f) = ker(g) and (Ω)g is a
transversal of v. Then k(g) = k(f) = ω and d(g) = c(v) = ω, and so g ∈
〈S1,2,3,4,5, u〉 by Lemma 2.3.4(i). If h ∈ ΩΩ is such that (Ω)v is a transversal
of h and d(h) = d(f), then 0 < c(h), d(h) < ω and h ∈ S1,2,3,4,5. Hence
ker(f) = ker(g ◦ v ◦ h) and d(f) = d(g ◦ v ◦ h). Then Lemma 2.3.1 implies that
f ∈ 〈g ◦ v ◦ h,Sym(Ω)〉 ≤ 〈u, v, S1,2,3,4,5〉.
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(iii). Let g ∈ ΩΩ be such that ker(f) = ker(g) and (Ω)g is contained in
a transversal T of v with |T \ (Ω)g| = d(f). Then k(g) = d(g) = ω, and so
g ∈ 〈S1,2,3,4,5, u〉 by (i). Since ker(f) = ker(g◦v) and d(f) = d(g◦v), Lemma 2.3.1
implies that f ∈ 〈g ◦ v,Sym(Ω)〉 ≤ 〈S1,2,3,4,5, u, v〉, as required.

(iv). If d(v) = 0 or c(t) = ω, then f ∈ 〈u, v, S1,2,3,4,5〉 or f ∈ 〈u, t, S1,2,3,4,5〉,
respectively, from Lemma 2.3.4(iii). Suppose 0 < c(t), d(v) < ω and let g ∈ ΩΩ

be such that (Ω)v is a transversal of g and (Ω)g is a transversal of t. Then
0 < c(g), d(g) < c(t) and so g ∈ S1,2,3,4,5. Also c(v ◦g ◦ t) = ω and d(v ◦g ◦ t) = 0,
and hence f ∈ 〈S1,2,3,4,5, u, v ◦ g ◦ t〉 ≤ 〈u, v, t, S1,2,3,4,5〉 by Lemma 2.3.4(iii).

2.4 The proof of Theorem 2.1.8

We prove the Theorem 2.1.8 by finding the maximal subsemigroups in S1, S2,
S3, S4 and S5 containing S1,2,3,4,5, then the maximal subsemigroups in each of
those semigroups which contain S1,2,3,4,5 and so on. We give the descriptions of
the maximal subsemigroups found at each stage in a separate proposition, each
of which can be proved using the following strategy.

Let S be a semigroup, let T be a subsemigroup of S, and letM = {Mi : i ∈ I}
be a collection of subsemigroups of S, none of which are equal to S, all containing
T , and such that Mi 6≤ Mj for all i, j ∈ I with i 6= j. Suppose that if U is a
subsemigroup of S containing T and U is not contained in any Mi ∈ M then
U = S.

Lemma 2.4.1. IfM is as above, thenM is the set of maximal subsemigroups
of S containing T .

Proof. Let M ∈M, and suppose that U is subsemigroup of S such that M � U .
Then U is not a subsemigroup of any M ′ ∈M, and so U = S by the condition
onM. Hence M is a maximal subsemigroup of S.

Suppose M is a maximal subsemigroup of S and M /∈M. Then M �M ′ for
every M ′ ∈M, since M ′ 6= S. It follows that M = S, which is a contradiction.
Hence if M is maximal subsemigroup of M , then M ∈M, and soM is the set
of all maximal subsemigroups of S.

There are essentially 38 cases in the proof of Theorem 2.1.8. However, there
are 14 pairs of cases where the proof of one case can be obtained from the
proof of the other by interchanging the values of c and d, interchanging any
part of Lemma 2.3.2 by the same part of Lemma 2.3.3 (or vice versa), and by
interchanging part (ii), (iii), or (iv) of Lemma 2.3.4 with part (i) of the same
lemma. Therefore we will not present duplicate proofs, but will only give a proof
of one of the cases in each of these pairs.
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Proposition 2.4.2.

(i) The maximal subsemigroups of S1 containing S1,2,3,4,5 are: S1,2, S1,3, S1,4

and S1,5;

(ii) the maximal subsemigroups of S2 containing S1,2,3,4,5 are: S1,2, S2,3, S2,4

and S2,5;

(iii) the maximal subsemigroups of S3 containing S1,2,3,4,5 are: S1,3, U , S3,4

and S3,5;

(iv) the maximal subsemigroups of S4 containing S1,2,3,4,5 are: V , S2,4, S3,4

and S4,5;

(v) the maximal subsemigroups of S5 containing S1,2,3,4,5 are: S1,5, S2,5, S3,5

and S4,5.

Proof. (i). It suffices to show that if M is any subsemigroup of S1 containing
S1,2,3,4,5 but not contained in any of the semigroups S1,2, S1,3, S1,4 and S1,5,
then M = S1. Let u1 ∈M \S1,2, u2 ∈M \S1,3, u3 ∈M \S1,4 and u4 ∈M \S1,5.
Then the following hold:

c(u1) = 0 and d(u1) > 0, c(u2) = ω and 0 < d(u2) < ω

c(u3) < ω and d(u3) = ω, k(u4) = ω and d(u4) > 0.

Let f ∈ S1 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. f is injective and 0 < d(f) < ω in which case by Lemma 2.3.3(ii), f ∈
〈S1,2,3,4,5, u1, u2〉;

2. 0 < d(f) < ω, k(f) < ω and c(f) = ω in which case by Lemma 2.3.3(i),
f ∈ 〈S1,2,3,4,5, u2〉;

3. c(f) < ω and d(f) = ω in which case by Lemma 2.3.2(iv), f ∈ 〈S1,2,3,4,5, u1, u3〉;

4. k(f) = ω and d(f) > 0 in which case by Lemma 2.3.4(ii), f ∈ 〈S1,2,3,4,5, u2, u4〉.

Therefore
S1 ≤ 〈S1,2,3,4,5, u1, u2, u3, u4〉 ≤M ≤ S1,

giving equality throughout.
(ii). Let M be any subsemigroup of S2 containing S1,2,3,4,5 which is not

contained in any of the given semigroups. Let u1 ∈ M \ S1,2, u2 ∈ M \ S2,3,
u3 ∈M \ S2,4 and u4 ∈M \ S2,5. Then

c(u1) > 0 and d(u1) = 0, c(u2) = ω and d(u2) < ω

0 < c(u3) < ω and d(u3) = ω, k(u4) = ω.

Let f ∈ S2 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:
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1. 0 < c(f) < ω and d(f) = 0 in which case by Lemma 2.3.2(ii), f ∈
〈S1,2,3,4,5, u1, u3〉;

2. 0 < c(f) < ω and d(f) = ω in which case by Lemma 2.3.2(i), f ∈
〈S1,2,3,4,5, u3〉;

3. d(f) < ω, k(f) < ω and c(f) = ω in which case by Lemma 2.3.3(iv),
f ∈ 〈S1,2,3,4,5, u1, u2〉;

4. k(f) = ω in which case by Lemma 2.3.4(iv), f ∈ 〈S1,2,3,4,5, u1, u2, u4〉.

Therefore
S2 ≤ 〈S1,2,3,4,5, u1, u2, u3, u4〉 ≤M ≤ S2,

giving equality throughout.
(iii). The proof of this case follows by an argument analogous to that used in

the proof of part (iv) as discussed before the proposition. It is also necessary in the
case (4) of (iv) to replace the assumption that k(f) = ω by the assumption that
k(f) = ω and d(f) = ω, and apply Lemma 2.3.4(i) instead of Lemma 2.3.4(iv).

(iv). Let M be any subsemigroup of S4 containing S1,2,3,4,5 which is not
contained in any of the given semigroups. Let u1 ∈ M \ V , u2 ∈ M \ S2,4,
u3 ∈M \ S3,4 and u4 ∈M \ S4,5. Then

0 < c(u1) < ω and d(u1) = 0, c(u2) = 0 and 0 < d(u2) < ω

c(u3) = ω and d(u3) < ω, k(u4) = ω.

Let f ∈ S4 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. d(f) < ω, k(f) < ω and c(f) = ω in which case by Lemma 2.3.3(iv),
f ∈ 〈S1,2,3,4,5, u1, u3〉;

2. c(f) = 0 and 0 < d(f) < ω in which case by Lemma 2.3.3(i), f ∈
〈S1,2,3,4,5, u2〉;

3. 0 < c(f) < ω and d(f) = 0 in which case by Lemma 2.3.2(i), f ∈
〈S1,2,3,4,5, u1〉;

4. k(f) = ω in which case by Lemma 2.3.4(iv), f ∈ 〈S1,2,3,4,5, u1, u3, u4〉.

Therefore
S4 ≤ 〈S1,2,3,4,5, u1, u2, u3, u4〉 ≤M ≤ S4,

giving equality throughout.
(v). Let M be any subsemigroup of S5 containing S1,2,3,4,5 which is not

contained in any of the given semigroups. Let u1 ∈ M \ S1,5, u2 ∈ M \ S2,5,
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u3 ∈M \ S3,5 and u4 ∈M \ S4,5. Then

c(u1) > 0, k(u1) < ω and d(u1) = 0, c(u2) = 0 and d(u2) > 0

c(u3) = ω, k(u3) < ω and d(u3) < ω, c(u4) < ω and d(u4) = ω.

Let f ∈ S5 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. d(f) < ω, k(f) < ω and c(f) = ω in which case by Lemma 2.3.3(iv),
f ∈ 〈S1,2,3,4,5, u1, u3〉;

2. c(f) < ω and d(f) = ω in which case by Lemma 2.3.2(iv), f ∈ 〈S1,2,3,4,5, u2, u4〉;

3. 0 < c(f) < ω and d(f) = 0 in which case by Lemma 2.3.2(ii), f ∈
〈S1,2,3,4,5, u1, u4〉;

4. c(f) = 0 and 0 < d(f) < ω in which case by Lemma 2.3.3(ii), f ∈
〈S1,2,3,4,5, u2, u3〉.

Therefore
S5 ≤ 〈S1,2,3,4,5, u1, u2, u3, u4〉 ≤M ≤ S5,

giving equality throughout.

Proposition 2.4.3.

(i) The maximal subsemigroups of V containing S1,2,3,4,5 are: S1,4, V ∩ S2

and V ∩ S5;

(ii) the maximal subsemigroups of U containing S1,2,3,4,5 are: U ∩S1, S2,3 and
U ∩ S5.

Proof. (i). Let u1 ∈ V \ S1,4, u2 ∈ V \ (V ∩ S2) and u3 ∈ V \ (V ∩ S5). Then

c(u1) = ω and d(u1) = 0, c(u2) = 0 and 0 < d(u2) < ω, k(u3) = ω.

Let f ∈ V \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. 0 < d(f) < ω and c(f) = 0 in which case by Lemma 2.3.3(i), f ∈
〈S1,2,3,4,5, u2〉;

2. d(f) < ω, k(f) < ω and c(f) = ω in which case by Lemma 2.3.3(iii),
f ∈ 〈S1,2,3,4,5, u1〉;

3. k(f) = ω in which case by Lemma 2.3.4(iii), f ∈ 〈S1,2,3,4,5, u1, u3〉.

Hence if M is any subsemigroup of V containing S1,2,3,4,5 which is not contained
in any of the semigroups in the statement of the proposition, then M = V .

(ii). The proof is analogous to (i).
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Proposition 2.4.4.

(i) The maximal subsemigroups of S1,2 containing S1,2,3,4,5 are: S1,2,3, S1,2,4

and S1,2,5;

(ii) the maximal subsemigroups of S1,3 containing S1,2,3,4,5 are: U ∩ S1, S1,3,4

and S1,3,5;

(iii) the maximal subsemigroups of S1,4 containing S1,2,3,4,5 are: S1,2,4, S1,3,4

and S1,4,5;

(iv) the maximal subsemigroups of S1,5 containing S1,2,3,4,5 are: S1,2,5, S1,3,5

and S1,4,5;

(v) the maximal subsemigroups of S2,3 containing S1,2,3,4,5 are: S1,2,3, S2,3,4

and S2,3,5;

(vi) the maximal subsemigroups of S2,4 containing S1,2,3,4,5 are: V ∩ S2, S2,3,4

and S2,4,5;

(vii) the maximal subsemigroups of S2,5 containing S1,2,3,4,5 are: S1,2,5, S2,3,5

and S2,4,5;

(viii) the maximal subsemigroups of S3,4 containing S1,2,3,4,5 are: S1,3,4, S2,3,4

and S3,4,5;

(ix) the maximal subsemigroups of S3,5 containing S1,2,3,4,5 are: S1,3,5, U ∩ S5

and S3,4,5;

(x) the maximal subsemigroups of S4,5 containing S1,2,3,4,5 are: V ∩ S5, S2,4,5

and S3,4,5.

Proof. (i). Let M be any subsemigroup of S1,2 containing S1,2,3,4,5 which is not
contained in any of the given semigroups. Then there exist u1, u2, u3 ∈M such
that:

c(u1) = ω and 0 < d(u1) < ω, 0 < c(u2) < ω and d(u2) = ω,

and
k(u3) = ω and d(u3) > 0.

Let f ∈ S1,2 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. d(f) = ω and 0 < c(f) < ω in which case Lemma 2.3.2(i) implies that
f ∈ 〈S1,2,3,4,5, u2〉;

2. c(f) = ω, k(f) < ω and 0 < d(f) < ω in which case by Lemma 2.3.3(i),
f ∈ 〈S1,2,3,4,5, u1〉;
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3. k(f) = ω and d(f) > 0 in which case Lemma 2.3.4(ii) implies that f ∈
〈S1,2,3,4,5, u1, u3〉.

Thus M = S1,2.
(ii). The proof is analogous to (vi).
(iii). Let M be any subsemigroup of S1,4 containing S1,2,3,4,5 which is not

contained in any of the given semigroups. Then there exist u1, u2, u3 ∈M such
that:

c(u1) = 0 and 0 < d(u1) < ω, c(u2) = ω and 0 < d(u2) < ω,

and
k(u3) = ω and d(u3) > 0.

Let f ∈ S1,4 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. 0 < d(f) < ω and c(f) = 0 and so f ∈ 〈S1,2,3,4,5, u1〉 by Lemma 2.3.3(i);

2. 0 < d(f) < ω, k(f) < ω and c(f) = ω and so f ∈ 〈S1,2,3,4,5, u2〉 by
Lemma 2.3.3(i);

3. k(f) = ω and d(f) > 0 and so f ∈ 〈S1,2,3,4,5, u2, u3〉 by Lemma 2.3.4(ii).

Thus M = S1,4, as required.
(iv). Let M be any subsemigroup of S1,5 containing S1,2,3,4,5 which is not

contained in any of the given semigroups. Then there exist u1, u2, u3 ∈M such
that:

c(u1) = 0 and d(u1) > 0, c(u2) = ω, k(u2) < ω, and 0 < d(u2) < ω,

and
d(u3) = ω and c(u3) < ω.

Let f ∈ S1,5 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. 0 < d(f) < ω and c(f) = 0 and so f ∈ 〈S1,2,3,4,5, u1, u2〉 by Lemma 2.3.3(ii);

2. 0 < d(f) < ω, k(f) < ω and c(f) = ω and so f ∈ 〈S1,2,3,4,5, u2〉 by
Lemma 2.3.3(i);

3. d(f) = ω and c(f) < ω and so f ∈ 〈S1,2,3,4,5, u1, u3〉 by Lemma 2.3.2(iv).

Thus M = S1,5, as required.
(v). The proof is analogous to (iii).
(vi). Let M be any subsemigroup of S2,4 containing S1,2,3,4,5 which is not

contained in any of the given semigroups. Then there exist u1, u2, u3 ∈M such
that:

d(u1) = 0 and 0 < c(u1) < ω, d(u2) < ω and c(u2) = ω, k(u3) = ω.
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Let f ∈ S2,4 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. d(f) = 0 and 0 < c(f) < ω in which case Lemma 2.3.2(i) implies that
f ∈ 〈S1,2,3,4,5, u1〉;

2. c(f) = ω, k(f) < ω and d(f) < ω in which case Lemma 2.3.3(iv) implies
that f ∈ 〈S1,2,3,4,5, u1, u2〉;

3. k(f) = ω in which case by Lemma 2.3.4(iv), f ∈ 〈S1,2,3,4,5, u1, u2, u3〉.

Thus M = S2,4.
(vii). The proof is analogous to (iv).
(viii). Let M be any subsemigroup of S3,4 containing S1,2,3,4,5 which is not

contained in any of the given semigroups. Then there exist u1, u2, u3 ∈M such
that:

0 < c(u1) < ω and d(u1) = 0, c(u2) = 0 and 0 < d(u2) < ω,

and
k(u3) = ω and d(u3) = ω.

Let f ∈ S3,4 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. 0 < c(f) < ω and d(f) = 0 and so f ∈ 〈S1,2,3,4,5, u1〉 by Lemma 2.3.2(i);

2. c(f) = 0 and 0 < d(f) < ω and so f ∈ 〈S1,2,3,4,5, u2〉 by Lemma 2.3.3(i);

3. k(f) = d(f) = ω and so f ∈ 〈S1,2,3,4,5, u3〉 by Lemma 2.3.4(i).

Therefore M = S3,4.
(ix). Let M be any subsemigroup of S3,5 containing S1,2,3,4,5 which is not

contained in any of the given semigroups. Then there exist u1, u2, u3 ∈M such
that:

0 < c(u1) < ω and d(u1) = 0, c(u2) < ω and d(u2) = ω,

and
c(u3) = 0 and 0 < d(u3) < ω.

Let f ∈ S3,5 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. 0 < c(f) < ω and d(f) = 0 and so f ∈ 〈S1,2,3,4,5, u1〉 by Lemma 2.3.2(i);

2. c(f) < ω and d(f) = ω and so f ∈ 〈S1,2,3,4,5, u2, u3〉 by Lemma 2.3.2(iv);

3. c(f) = 0 and 0 < d(f) < ω and so f ∈ 〈S1,2,3,4,5, u3〉 by Lemma 2.3.3(i).

Hence M = S3,5.
(x). The proof is analogous to (ix).
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Proposition 2.4.5.

(i) The maximal subsemigroups of V ∩ S2 containing S1,2,3,4,5 are: S1,2,4 and
V ∩ S2,5;

(ii) the maximal subsemigroups of U ∩ S1 containing S1,2,3,4,5 are: S1,2,3 and
U ∩ S1,5;

(iii) the maximal subsemigroups of V ∩ S5 containing S1,2,3,4,5 are: S1,4,5 and
V ∩ S2,5;

(iv) the maximal subsemigroups of U ∩ S5 containing S1,2,3,4,5 are: S2,3,5 and
U ∩ S1,5.

Proof. (i). Let u1 ∈ (V ∩ S2) \ S1,2,4 and let u2 ∈ (V ∩ S2) \ (V ∩ S2,5). Then:

d(u1) = 0 and c(u1) = ω, k(u2) = ω.

Let f ∈ V ∩ S2 \ S1,2,3,4,5 be arbitrary. Then one of the following holds:

1. d(f) < ω, k(f) < ω and c(f) = ω and so f ∈ 〈S1,2,3,4,5, u1〉 by Lemma 2.3.3(iii);

2. k(f) = ω and so f ∈ 〈S1,2,3,4,5, u1, u2〉 by Lemma 2.3.4(iii).

So, ifM is any subsemigroup of V ∩S2 containing S1,2,3,4,5 which is not contained
in any of the given semigroups, then M = V ∩ S2.

(ii). The proof is analogous to (i).
(iii). Let u1 ∈ (V ∩ S5) \ S1,4,5 and u2 ∈ (V ∩ S5) \ (V ∩ S2,5). Then

c(u1) = ω, k(u1) < ω and d(u1) = 0, c(u2) = 0 and 0 < d(u2) < ω.

If f ∈ (V ∩ S5) \ S1,2,3,4,5 is arbitrary, then one of the following holds:

1. c(f) = ω, k(f) < ω and d(f) < ω and so Lemma 2.3.3(iii) implies that
f ∈ 〈S1,2,3,4,5, u1〉;

2. c(f) = 0, 0 < d(f) < ω, and k(f) < ω and so Lemma 2.3.3(i) implies that
f ∈ 〈S1,2,3,4,5, u2〉.

So, ifM is any subsemigroup of V ∩S5 containing S1,2,3,4,5 which is not contained
in any of the given semigroups, then M = V ∩ S5.

(iv). The proof is analogous to (iii).

Proposition 2.4.6.

(i) The maximal subsemigroups of S1,2,3 containing S1,2,3,4,5 are: S1,2,3,4 and
S1,2,3,5;
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(ii) the maximal subsemigroups of S1,2,4 containing S1,2,3,4,5 are: S1,2,3,4 and
S1,2,4,5;

(iii) the maximal subsemigroups of S1,2,5 containing S1,2,3,4,5 are: S1,2,3,5 and
S1,2,4,5;

(iv) the maximal subsemigroups of S1,3,4 containing S1,2,3,4,5 are: S1,2,3,4 and
S1,3,4,5;

(v) the maximal subsemigroups of S1,3,5 containing S1,2,3,4,5 are: S1,3,4,5 and
U ∩ S1,5;

(vi) the maximal subsemigroups of S1,4,5 containing S1,2,3,4,5 are: S1,2,4,5 and
S1,3,4,5;

(vii) the maximal subsemigroups of S2,3,4 containing S1,2,3,4,5 are: S1,2,3,4 and
S2,3,4,5;

(viii) the maximal subsemigroups of S2,3,5 containing S1,2,3,4,5 are: S1,2,3,5 and
S2,3,4,5;

(ix) the maximal subsemigroups of S2,4,5 containing S1,2,3,4,5 are: S2,3,4,5 and
V ∩ S2,5;

(x) the maximal subsemigroups of S3,4,5 containing S1,2,3,4,5 are: S1,3,4,5 and
S2,3,4,5.

Proof. (i). Let u1 ∈ S1,2,3 \ S1,2,3,4 and let u2 ∈ S1,2,3 \ S1,2,3,5. Then

0 < c(u1) < ω and d(u1) = ω, k(u2) = d(u2) = ω.

If f ∈ S1,2,3 \ S1,2,3,4,5 is arbitrary, then one of the following holds:

1. 0 < c(f) < ω and d(f) = ω and so f ∈ 〈u1, S1,2,3,4,5〉 by Lemma 2.3.2(i);

2. k(f) = d(f) = ω and so f ∈ 〈u2, S1,2,3,4,5〉 by Lemma 2.3.4(i).

So, ifM is any subsemigroup of S1,2,3 containing S1,2,3,4,5 which is not contained
in any of the given semigroups, then M = S1,2,3.

(ii). Let u1 ∈ S1,2,4 \ S1,2,3,4 and u2 ∈ S1,2,4 \ S1,2,4,5. Then

c(u1) = ω, k(u1) < ω and 0 < d(u1) < ω, k(u2) = ω and d(u2) > 0.

If f ∈ S1,2,4 \ S1,2,3,4,5 is arbitrary, then one of the following holds:

1. c(f) = ω, k(f) < ω and 0 < d(f) < ω and so f ∈ 〈u1, S1,2,3,4,5〉 by
Lemma 2.3.3(i);

2. k(f) = ω and d(f) > 0 and so f ∈ 〈u1, u2, S1,2,3,4,5〉 by Lemma 2.3.4(ii).
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So, ifM is any subsemigroup of S1,2,4 containing S1,2,3,4,5 which is not contained
in any of the given semigroups, then M = S1,2,4.

(iii). Let u1 ∈ S1,2,5 \ S1,2,3,5 and u2 ∈ S1,2,5 \ S1,2,4,5. Then

c(u1) = ω, k(u1) < ω and 0 < d(u1) < ω, 0 < c(u2) < ω and d(u2) = ω.

If f ∈ S1,2,5 \ S1,2,3,4,5 is arbitrary, then one of the following holds:

1. 0 < c(f) < ω and d(f) = ω and so f ∈ 〈u2, S1,2,3,4,5〉 by Lemma 2.3.2(i);

2. c(f) = ω, k(f) < ω and 0 < d(f) < ω and so f ∈ 〈u1, S1,2,3,4,5〉 by
Lemma 2.3.3(i).

So, ifM is any subsemigroup of S1,2,5 containing S1,2,3,4,5 which is not contained
in any of the given semigroups, then M = S1,2,5.

(iv). Let u1 ∈ S1,3,4 \ S1,2,3,4 and u2 ∈ S1,3,4 \ S1,3,4,5. Then

c(u1) = 0 and 0 < d(u1) < ω, k(u2) = d(u2) = ω.

If f ∈ S1,3,4 \ S1,2,3,4,5 is arbitrary, then one of the following holds:

1. c(f) = 0 and 0 < d(f) < ω and so f ∈ 〈u1, S1,2,3,4,5〉 by Lemma 2.3.3(i);

2. k(f) = d(f) = ω and so f ∈ 〈u2, S1,2,3,4,5〉 by Lemma 2.3.4(i).

So, ifM is any subsemigroup of S1,3,4 containing S1,2,3,4,5 which is not contained
in any of the given semigroups, then M = S1,3,4.

(v). Let u1 ∈ S1,3,5 \ (U ∩ S1,5) and u2 ∈ S1,3,5 \ S1,3,4,5. Then

c(u1) = 0 and 0 < d(u1) < ω, c(u2) < ω and d(u2) = ω.

If f ∈ S1,3,5 \ S1,2,3,4,5 is arbitrary, then one of the following holds:

1. c(f) = 0 and 0 < d(f) < ω and so f ∈ 〈u1, S1,2,3,4,5〉 by Lemma 2.3.3(i);

2. c(f) < ω and d(f) = ω and so f ∈ 〈u1, u2, S1,2,3,4,5〉 by Lemma 2.3.2(iv).

So, ifM is any subsemigroup of S1,3,5 containing S1,2,3,4,5 which is not contained
in any of the given semigroups, then M = S1,3,5.

(vi). The proof is analogous to (viii).
(vii). The proof is analogous to (iv).
(viii). Let u1 ∈ S2,3,5 \ S1,2,3,5 and u2 ∈ S2,3,5 \ S2,3,4,5. Then

0 < c(u1) < ω and d(u1) = 0, 0 < c(u2) < ω and d(u2) = ω.

If f ∈ S2,3,5 \ S1,2,3,4,5 is arbitrary, then one of the following holds:

1. 0 < c(f) < ω and d(f) = 0 and so f ∈ 〈u1, S1,2,3,4,5〉 by Lemma 2.3.2(i);
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2. 0 < c(f) < ω and d(f) = ω and so f ∈ 〈u2, S1,2,3,4,5〉 by Lemma 2.3.2(i).

So, ifM is any subsemigroup of S2,3,5 containing S1,2,3,4,5 which is not contained
in any of the given semigroups, then M = S2,3,5.

(ix). The proof is analogous to (v).
(x). Let u1 ∈ S3,4,5 \ S1,3,4,5 and let u2 ∈ S3,4,5 \ S2,3,4,5. Then

0 < c(u1) < ω and d(u1) = 0, c(u2) = 0 and 0 < d(u2) < ω.

If f ∈ S3,4,5 \ S1,2,3,4,5 is arbitrary, then one of the following holds:

1. 0 < c(f) < ω and d(f) = 0, thus f ∈ 〈u1, S1,2,3,4,5〉 by Lemma 2.3.2(i);

2. c(f) = 0 and 0 < d(f) < ω, so f ∈ 〈u2, S1,2,3,4,5〉 by Lemma 2.3.3(i).

So, ifM is any subsemigroup of S3,4,5 containing S1,2,3,4,5 which is not contained
in any of the given semigroups, then M = S3,4,5.

Proposition 2.4.7.

(i) The only maximal subsemigroup of V ∩S2,5 containing S1,2,3,4,5 is S1,2,4,5;

(ii) the only maximal subsemigroup of U ∩ S1,5 containing S1,2,3,4,5 is S1,2,3,5.

Proof. (i) Let u ∈ (V ∩ S2,5) \ S1,2,4,5, and let f ∈ S1,2,4,5 \ S1,2,3,4,5. Then

c(u) = ω, d(u) = 0 and k(u) < ω

and
c(f) = ω, d(f) < ω and k(f) < ω.

Hence f ∈ 〈u, S1,2,3,4,5〉 by Lemma 2.3.3(iii). Therefore ifM is any subsemigroup
of V ∩ S2,5 containing S1,2,3,4,5 which is not contained in S1,2,4,5, then M =

V ∩ S2,5.
(ii) The proof is analogous to (i).

Proposition 2.4.8. S1,2,3,4,5 is maximal in S1,2,3,4, S1,2,3,5, S1,2,4,5, S1,3,4,5,
and S2,3,4,5.

Proof. If u ∈ S1,2,3,4 \ S1,2,3,4,5, then k(u) = d(u) = ω. Hence by Lemma 2.3.4(i)

〈u, S1,2,3,4,5〉 ⊇ {f ∈ ΩΩ : k(f) = d(f) = ω} ∪ S1,2,3,4,5 = S1,2,3,4,

and so S1,2,3,4,5 is maximal in S1,2,3,4.
If u ∈ S1,2,3,5 \ S1,2,3,4,5, then 0 < c(u) < ω and d(u) = ω. Therefore by

Lemma 2.3.2(i)

〈u, S1,2,3,4,5〉 ⊇ {f ∈ ΩΩ : 0 < c(f) < ω and d(f) = ω} ∪ S1,2,3,4,5 = S1,2,3,5
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and so S1,2,3,4,5 is maximal in S1,2,3,5. The proof that S1,2,3,4,5 is maximal in
S1,2,4,5 is analogous to the proof that S1,2,3,4,5 is maximal in S1,2,3,5, except that
Lemma 2.3.3(i) is used instead.

If u ∈ S1,3,4,5 \ S1,2,3,4,5, then c(u) = 0 and 0 < d(u) < ω. Thus by
Lemma 2.3.3(i)

〈u, S1,2,3,4,5〉 ⊇ {f ∈ ΩΩ : c(f) = 0 and 0 < d(f) < ω} ∪ S1,2,3,4,5 = S1,3,4,5.

In particular, S1,2,3,4,5 is maximal in S1,3,4,5. The proof that S1,2,3,4,5 is maximal
in S2,3,4,5 is analogous to the proof that S1,2,3,4,5 is maximal in S1,3,4,5, except
that Lemma 2.3.2(i) is used instead.
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Chapter 3

Topological generation

This chapter is based on the research conducted together with J. D. Mitchell,
for the preprint see [39]. It is included in the thesis with the permission of the
coauthor. In this chapter we will define and investigate the topological rank of
Fraïssé limits. We use the notations defined in Section 1.3, most importantly the
notion of incomplete components.

3.1 Introduction to topological generation

One of the most natural first questions, when encountering a new algebraic
structure, be it a group, a semigroup, or a monoid, is to find a generating set
for it. Ideally, we want to find the smallest possible such set, also known as
minimal generating set. The size of a minimal generating set is the
rank. Finding a minimal generating set is a classical problem in the literature
of groups and semigroups.

Let G be a group, and let X be a subset of G. Then by (1.1)

〈X〉 =
⋃
n∈N
{x1 · x2 · · ·xn : xi ∈ X ∪X−1 for all i ∈ {1, . . . , n}},

where id is the identity of G. Then

|X| ≤ |〈X〉| ≤
∑
n∈N
|X|n.

Hence if X is finite, then 〈X〉 is either finite or countable, and if X is infinite
then 〈X〉 has the same cardinality as X. Therefore, if G is uncountable and X
is a generating set for G, it follows that |G| = |X|. So in this case, the rank of
G is the same as the size of G, and so there is no new information captured by
the notion of the rank. As a consequence a couple of alternative notions, which
extend the idea of minimal generating sets and ranks, have arisen — topological
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rank, Sierpiński rank, and universal sequence rank. As mention previously we be
will dealing with topological rank in this chapter. Universal sequence rank and,
to some extent, Sierpiński rank are considered in Chapter 4.

Recall that a group G is a topological group if there is a topology on G so
that multiplication and inversion, thought of as functions · : G×G −→ G and
−1 : G −→ G, are both continuous. Let G be a topological group. If the set
X ⊆ G generates a dense subgroup ofG, then we say thatX is a topological
generating set for G, and n ∈ N is the topological rank of G if it
is the smallest positive integer such that n = |X| for some topological generating
set X for G.

Note that if the topology on G is discrete, in other words every subset of G is
open, then the only dense subset of G is G itself. Hence in the case of the discrete
topology the notions of generation and topological generation agree. The next
result gives a sufficient condition for a topology on a finite group to be discrete.

Proposition 3.1.1. Let X be a finite topological space such that for every
x, y ∈ X there is an open set U such that x ∈ U and y /∈ U . Then the topology
on X is discrete.

The topological space satisfying the condition in Proposition 3.1.1 is known
as Fréchet space.

The argument in Proposition 3.1.1, however, does not extend to infinite
topological spaces. Let X be any infinite set, and define τ to be the set consisting
of ∅ and every subset Y of X such that X \ Y is finite. It is routine to verify
that τ defines a topology on X. Moreover, for any two distinct elements x and y
of X, X \ {y} ∈ τ . Hence there is U ∈ τ such that x ∈ U , but y /∈ U , however τ
is not a discrete topology.

Throughout this chapter we will primarily be interested in Polish groups,
in other words metrizable topological groups with a countable dense subset.
Suppose that G is a Polish group, and let d : G×G −→ R be the metric inducing
the topology. For any two distinct x and y in G, let U be an open ball around x
of radius d(x, y)/2 > 0. Then x ∈ U and y /∈ U . By Proposition 3.1.1 every finite
Polish group has the discrete topology. Hence topological generation extends the
notion of generation for finite Polish groups.

In Example 1.4.11 we have shown that for a countable Ω, the group Sym(Ω)

and all closed subgroups of Sym(Ω) are Polish groups. Since Sym(Ω) is uncount-
able by Proposition 1.3.9, it follows that a generating set for it must also be
uncountable. In the next example we will show that if Ω is countable, then
Sym(Ω) has a topological generating set of size 2, which gives us an example of
a group with rank different from topological rank.

Example 3.1.2. Let Ω = Z, let α = (0 1), and let β = (. . .− 1 0 1 . . .). Then
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for any i, j ∈ N such that i < j

(i j) =(j − 1 j) ◦ (j − 2 j − 1) ◦ . . . ◦ (i+ 1 i+ 2) ◦ (i i+ 1)◦

(i+ 1 i+ 2) ◦ . . . ◦ (j − 2 j − 1) ◦ (j − 1 j).

Also (k k + 1) = β−k ◦ α ◦ βk for all k ∈ Z. Hence every transposition (i j) is an
element of 〈α, β〉.

A classical result in the finite permutation group theory states that all
permutations on a finite set X can be generated by all transpositions on the
set X. Therefore, 〈α, β〉 contains all permutations with finite support. Finally, if
[φ] ∈ B, then since dom(φ) is finite, there exists f ∈ Sym(Ω) with finite support
extending φ. Hence [φ] ∩ 〈α, β〉 is non-empty for every basic open set [φ], and
so 〈α, β〉 is dense in Sym(Ω). Therefore α and β are topological generators of
Sym(Ω), and the topological rank is 2.

The problem of whether a given uncountable Polish group has finite topological
rank is well studied in the literature. The earliest results date back to Prasad [63]
and Grząślewicz [26] where they independently have shown that the group of all
invertible measure preserving transformations of the unit interval has a topological
rank 2. In [51] Macpherson demonstrated that the automorphism group of the
random graph has topological rank 2, Sołecki in [70] proved that the group of
isometries of Urysohn space has topological rank 2, and also Kechris and Rosendal
in [42] proved that each of the following groups also have topological rank 2: the
homeomorphism group of the Cantor space; the group of measure preserving
homeomorphisms of the Cantor space; and the automorphism group of the
infinitely splitting rooted tree. In fact the results by both Macpherson, and Kechris
and Rosendal are stronger, namely if G is one of the groups mentioned above,
then there are f, g ∈ G such that the set {f−ngfn : n ∈ Z} is dense in G. Groups
with this property are said to have cyclically dense conjugation
class.

A further question to consider when talking about topological 2-generation
is — given a topologically 2-generated group G, how easy is it to find a dense
2-generated subgroup of G? The question can be tackled in the spirit of the
following classical result by Piccard in the theory of finite symmetric groups.

Theorem 3.1.3 (see [59]). Let n ∈ N, and let a ∈ Sym(n) be a non-identity
permutation. In addition, suppose that if n = 4, then a is not one of the following
permutations: (1 2)(3 4); (1 3)(2 4); or (1 4)(2 3). Then there exists b ∈ Sym(n)

such that 〈a, b〉 = Sym(n).

Suppose that n = 4, and let H = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. Then
H is a subgroup of G, and since conjugation does not change the cycle structure
of a permutation, it follows that H is a normal subgroup of Sym(4). Suppose
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that a ∈ H is such that a 6= id, and let b ∈ Sym(4). It follows from H being
normal that for each x ∈ H there is y ∈ H such that

b ◦ x = y ◦ b,

and so every element of 〈a, b〉 be be written as x ◦ bn for some x ∈ H and
n ∈ N. However, the order of b is at most 4 and the size of H is 4, and thus
|〈a, b〉| ≤ 16 < 24 = |Sym(4)|. Hence the condition in Theorem 3.1.3 is sharp.

In [12] Darji and Mitchell demonstrated that for a countable Ω, given f ∈
Sym(Ω) it is always possible to find g ∈ Sym(Ω) such that 〈f, g〉 is dense in
Sym(Ω), and specified what type of permutation g has to be.

Let f be a permutation on Ω. Then f is a shift if it has exactly one cycle
(fixed points are considered to be cycles of length 1). Let K be a Fraïssé limit. If
f ∈ Aut(K) is arbitrary, then we define the following subsets of Aut(K):

Df (K) = {g ∈ Aut(K) : 〈f, g〉 is dense in Aut(K)},

I(K) = {g ∈ Aut(K) : g has no finite orbits}, (3.1)

IΣ(K) = {g ∈ I(K) : Σ ⊂ K is a set of orbit representatives for g},

where the set of orbit representatives of an automorphism g consists
of exactly one element in every orbit of g. Note that if Ω is a set with no relations,
then Aut(Ω) = Sym(Ω).

Theorem 3.1.4 (Darji and Mitchell [12]). Let Ω be a countably infinite set, and
let f ∈ Sym(Ω) be a non-identity permutation. Then

(i) if f has finite support, then there exists a shift g such that 〈f, g〉 is dense
in Sym(Ω), that is g ∈ Df (Ω);

(ii) if f has infinite support, then Df (Ω) ∩ I(Ω) is comeagre in I(Ω);

(iii) if f ∈ I(Ω), then Df (Ω) is comeagre in Sym(Ω).

Similar results were also obtained for the automorphism groups of the random
graph Aut(R), and the group of order preserving automorphisms of Q, denoted
by Aut(Q,≤).

Theorem 3.1.5 (Darji and Mitchell [13]). Let f ∈ Aut(Q,≤) be a non-identity
element. Then there exists g ∈ Aut(Q,≤) such that 〈f, g〉 is dense.

Theorem 3.1.6 (Darji and Mitchell [13]). Let f ∈ Aut(R) be a non-identity
element. Then Df (R) ∩ I(R) is comeagre in I(R).

In this chapter we will investigate the topological generation of the auto-
morphism group of the universal partial order, and the automorphism groups
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of ultrahomogeneous graphs. Lachlan and Woodrow showed that there are es-
sentially four types of such countably infinite graphs, described in the following
theorem.

Theorem 3.1.7 (Lachlan and Woodrow [44]). The countable ultrahomogeneous
graphs up to isomorphism are:

(i) the random graph R;

(ii) the universal Kn-free graph Hn, for every n ∈ N, n ≥ 3;

(iii) the graph ωKn consisting of the disjoint union of countably many copies
of Kn, for every n ∈ N;

(iv) the graph nKω consisting of the disjoint union of n ∈ N copies of Kω, for
n ≥ 2;

and the duals of these graphs.

The random graph is the Fraïssé limit of the class of all finite graphs,
and universal Kn-free graph is the Fraïssé limit of the class of all
finite Kn-free graphs. Since the automorphism group of the dual of a graph is
the same as the automorphism group of the original graph, it is sufficient to
consider the automorphism groups of the four graphs listed in Theorem 3.1.7.

Suppose that Γ is a graph consisting of the disjoint union of countably
many copies of Kn or finitely many copies of Kω. We denote by L1, L2, . . . the
connected components of Γ. Every f ∈ Aut(Γ) or f ∈ Aut(Γ)<ω induces a partial
permutation f of the indices of the connected components of Γ, N or {1, 2, . . . , n},
which is defined by

(i)f = j if (Li)f = Lj .

If f ∈ Aut(nKω) is a non-identity element and Σ ⊆ nKω, then we define:

Af = {g ∈ Aut(nKω) : 〈f, g〉 = Sn}
Af,Σ = {g ∈ Af : Σ is a set of orbit representatives for g}.

(3.2)

If n 6= 4, then, by Theorem 3.1.3, Af 6= ∅ for all f such that f is non-identity.
The main results of the chapter are stated in the following two theorems.

Theorem 3.1.8.

(i) Df (Hn)∩ I(Hn) is comeagre in I(Hn) for all f ∈ Aut(Hn) such that f is
not identity.

(ii) Df (Hn) ∩ IΣ(ωKn) is comeagre in IΣ(ωKn), for all f ∈ Aut(ωKn) such
that support of f is infinite, and Σ is a finite subset of ωKn.
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(iii) Suppose that f ∈ Aut(nKω) is such that for every finite subset Γ of nKω

which is setwise stabilised by f there are components L and L′ of nKω

such that |L ∩ Γ| 6= |L′ ∩ Γ|. Then Df (nKω) ∩ Af,Σ is comeagre in Af,Σ
for every finite subset Σ of nKω.

It can be shown that the class of all finite partially ordered sets satisfies
the conditions of Theorem 1.6.2 (Fraïssé Theorem). Hence there is a countable
unique, up to isomorphisms, ultrahomogeneous partially ordered set in which
every finite partially ordered set can be embedded. We call this partial order
the universal partially ordered set and denote it by P.

Theorem 3.1.9. Aut(P) has a cyclically dense conjugacy class.

Theorem 3.1.9 is much weaker than analogous results for the structures
considered in Theorem 3.1.8. The main obstacle proving stronger results for
the universal partially ordered set is the transitivity property of the partial
order, which prevents easily combining isomorphisms on the finite substructures.
A property which is key in the proof of Theorem 3.1.8 presented here. It is
also worth mentioning that it was shown in [43] that Aut(P) has a comeagre
conjugacy class.

The chapter is organised as follows: some preliminaries and technical results
are provided in Section 3.2; Theorem 3.1.9 is proved in Section 3.3; and the three
parts of Theorem 3.1.8 will be proved in the remaining three sections.

3.2 Preliminaries

Throughout of the rest of this chapter we will assume that Ω is always countable.
First we will show in the following two propositions that R and Hn satisfy

appropriate Alice restaurant properties, as defined in Section 1.5.

Proposition 3.2.1 (Lemma 3 in [19]). The random graph R has Alice’s restau-
rant property for graphs.

Proof. Let U and V be two finite disjoint subsets of vertices of R. Define Γ to be
a graph with the vertex set U ∪ V ∪ {u} where u /∈ U ∪ V such that for x, y ∈ Γ,
x is adjacent to y if and only if one of the following is true:

• x, y ∈ U ∪ V and x is adjacent to y in R;

• one of x and y is in U and the other is u.

Then Γ is a finite graph, and so by definition of R, there is a subgraph Γ′ of R
isomorphic to Γ. Let Σ ⊆ Γ′ be the isomorphic copy of U ∪ V , and let u′ be the
image of u under the same isomorphism. Since R is ultrahomogeneous, there is
an automorphism f of R such that (Σ)f = U ∪ V . Then w = (u′)f is adjacent
to every vertex in U and not adjacent to any vertex in V .
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An analogous result holds for the universal Kn-free graph.

Proposition 3.2.2. Let n ≥ 3. Then the universal Kn-free graph Hn has Alice’s
restaurant property for Kn-free graphs.

Proof. Let U and V be two finite disjoint subsets of vertices of Hn such that
U is Kn−1-free. Define Γ to be a graph with the vertex set U ∪ V ∪ {u} where
u /∈ U ∪ V such that for x, y ∈ Γ, x is adjacent to y if and only if one of the
following is true:

• x, y ∈ U ∪ V and x is adjacent to y in Hn;

• one of x and y is in U and the other is u.

Since U is Kn−1-free, it follows that Γ is a finite Kn-free graph, and so by
definition of Hn, there is a subgraph Γ′ of Hn isomorphic to Γ. Let Σ ⊆ Γ′ be the
isomorphic copy of U∪V , and let u′ be the image of u under the same isomorphism.
The graph Hn is ultrahomogeneous, and thus there is an automorphism f of Hn

such that (Σ)f = U ∪ V . Then w = (u′)f is adjacent to every vertex in U and
not adjacent to any vertex in V .

A similar notion to the Alice’s restaurant property for graphs exists for
partially ordered sets as well. Let (A,≤) be a partially ordered set. We say
that A has the Alice’s restaurant property for partially
ordered sets if for every triple A,B,C of finite subsets of A such that
b ≤ a, a � c, and c � b for all a ∈ A, b ∈ B, and c ∈ C, there is an element
w ∈ A \ (A ∪B ∪ C) such that b ≤ w ≤ a and w is incomparable to c for all
a ∈ A, b ∈ B, and c ∈ C. We require a stronger version of the Propositions 3.2.1
and 3.2.2 in the case of partially ordered sets.

Proposition 3.2.3. Any countable partially ordered set which has Alice’s restau-
rant property is isomorphic to P.

Proof. Let A be a countable partially ordered set which has Alice’s restaurant
property. By Theorem 1.6.2, it is sufficient to show that A is ultrahomogeneous
and every finite partially ordered set can be embedded into A.

Let F = {x1, . . . , xn} be a finite partially ordered set, and let y1 ∈ A be
arbitrary. Suppose that for some k ∈ {1, . . . , n−1} we have found y1, . . . , yk ∈ A
such that the partially ordered subsets {x1, . . . , xk} ⊆ F and {y1, . . . , yk} ⊆ A
are isomorphic. Define A,B,C ⊆ {y1, . . . , yk} as follows:

A = {yi : 1 ≤ i ≤ k and xi > xk+1}, B = {yi : 1 ≤ i ≤ k and xi < xk+1},

and
C = {yi : 1 ≤ i ≤ k and xi is incomparable to xk+1}.
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Then A ∪B ∪ C = {y1, . . . , yk} and the triple (A,B,C) satisfies the hypothesis
of Alice’s restaurant property. So there is yk+1 ∈ A \ {y1, . . . , yk} such that for
all i ∈ {1, . . . , k} yi > yk+1 if and only if xi > xk+1; yi < yk+1 if and only if
xi < xk+1; and yi is incomparable to yk+1 if and only if xi is incomparable
to xk+1. Hence {x1, . . . , xk+1} is isomorphic to {y1, . . . , yk+1}. Therefore, by
induction we can construct a finite sub-structure of A which is isomorphic to F .

Suppose that A and B are finite substructures of A and q0 : A −→ B is an
isomorphism. Enumerate A = {xi : i ∈ N} and suppose that for some k ∈ N
there is an isomorphism qk between finite substructures of A such that qk extends
qk−1 if k > 0, and xk ∈ dom(qk) ∩ ran(qk).

Suppose that xk+1 ∈ dom(qk). Then let q′k = qk. If xk+1 /∈ dom(qk), define
A,B,C ⊆ dom(qk) as follows:

A′ = {x ∈ A : x > xk+1}, B′ = {x ∈ A : x < xk+1},

and
C ′ = {x ∈ A : x is incomparable to xk+1}.

Then the triple (A′, B′, C ′) satisfies the hypothesis of Alice’s restaurant property,
except for not being finite. Since qk is an isomorphism and ran(qk) is finite,
the triple (A = (A′)qk, B = (B′)qk, C = (C ′)qk) satisfies the hypothesis of
Alice’s restaurant property. Then there is w ∈ A \ ran(qk) such that w < a

for all a ∈ A, w > b for all b ∈ B, and w is incomparable to all c ∈ C. Hence
q′k = qk ∪ {(xk+1, w)} is an isomorphism between finite substructures of A and
xk+1 ∈ dom(q′k).

If xk+1 ∈ ran(q′k), then qk+1 = q′k is as required. If xk+1 /∈ ran(q′k), then
xk+1 /∈ dom(q′−1

k ), and so the argument of the last paragraph can be applied to
extend q′−1

k to q−1
k+1 such that qk+1 is an isomorphism between finite substructures

of A and xk+1 ∈ dom(q−1
k+1) = ran(qk+1).

Hence, for all k ∈ N, we define qk, as described above. Let f =
⋃
k∈N qk. Since

qk is an isomorphism and qk extends qk−1 for all k > 0, it follows that f is a
well-defined isomorphism. Also xk ∈ dom(qk)∩ ran(qk) ⊆ dom(f)∩ ran(f) for all
k ∈ N, and so dom(f)∩ ran(f) = A. Therefore, f is an automorphism extending
q, and so A is ultrahomogeneous, as required.

Note that Proposition 3.2.3 is much stronger than Propositions 3.2.1 and 3.2.2.
In truth, analogous stronger results hold for both R and Hn. However, we choose
not to include these because the proofs follow the same idea as the proof of
Proposition 3.2.3, they are somewhat lengthy, and the results are not used
anywhere in the thesis. In fact, Alice’s restaurant properties mentioned in this
section are all special cases of existential closure, which is beyond the
scope of this thesis. By [28, Example 2 in Section 7.1] every Fraïssé limit K with
signature L is existentially closed in the class of all L-structures which have their
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age contained in the age of K. This result can be used to prove the last three
propositions.

We now will show that I(K) and IΣ(K) (as defined in (3.1)) are Baire spaces
with the subspace topology of Aut(K) for any countably infinite structure K,
and that Af,Σ and Af (defined in (3.2)) are Baire subspaces of Aut(nKω).

Lemma 3.2.4. Let K be a countably infinite structure. Then I(K) is a closed
subspace of Aut(K).

Proof. Let f ∈ Aut(K)\I(K), then f has a finite orbitO and hence [f |O]∩Aut(K)

is a subset of Aut(K) \ I(K). Hence Aut(K) \ I(K) is open, and so I(K) is
closed.

Lemma 3.2.5. Let f ∈ nKω. Then Af is a closed subspace of Aut(nKω).

Proof. Let g ∈ Aut(nKω) \ Af . Then 〈f, g〉 6= Sn. Let Γ ⊆ nKω be a finite set
containing at least one vertex in every connected component of nKω. Then for
all h ∈ [g|Γ] we have that h = g and thus h /∈ Af . Therefore, the open set [g|Γ]

is a subset of Aut(nKω) \ Af and thus Af is closed.

Recall that it was shown in Example 1.4.11 that Sym(Ω) is a Polish group, and
so is every closed subgroup of Sym(Ω). If K is a Fraïssé limit, then Aut(K) is a
Polish group by Theorem 1.6.3. Then since I(K) andAf for all f ∈ Aut(nKω) are
closed in Aut(K) and Aut(nKω) respectively, it follows from Proposition 1.4.5(i)
that both I(K) and Af are Polish spaces. Hence Aut(K), I(K), and Af are
all Baire space by Theorem 1.4.17. That IΣ(K) and Af,Σ are Baire follows
immediately from the next lemma, and the preceding discussion.

Let K be a Fraïssé limit, let S be a subset of Aut(K), and let Σ ⊆ K. Define
SΣ = {g ∈ S : Σ is a set of orbit representatives of g}. The definition agrees
with the definitions of IΣ(K) and Af,Σ.

Lemma 3.2.6. Let Ω be countable, let T be a Polish subspace of Sym(Ω) and
let Σ ⊆ Ω be finite. Then TΣ is a Polish space.

Proof. Let K be the set of those g ∈ T such that distinct elements of Σ belong
to different orbits of g. We will show that K is a closed subset of T . If T = K,
then K is closed in T . Otherwise, let g ∈ T \K. Then there exist x, y ∈ Σ and
m ∈ N such that (x)gm = y. If Γ = {(x)gi : 0 ≤ i ≤ m}, then [g|Γ] ∩ T is a
subset of T \K. Hence T \K is open, and so K is closed in T , implying that K
is a Polish space by Proposition 1.4.5(i).

For an arbitrary x ∈ Ω, we denote byAx the set of all those g ∈ K such that the
orbit of x under g has non-trivial intersection with Σ. Then TΣ =

⋂
x∈ΩAx ⊆ K.

Suppose that g ∈ Ax. Then there is n ∈ Z and y ∈ Σ such that (y)gn = x. If
Γ′ = {(y)gi : −|n| ≤ i ≤ |n|}. Then [g|Γ′ ] ∩K is a subset of Ax, and so Ax is
open in K for all x ∈ Ω. Therefore TΣ is a Gδ subset of K, and by Theorem 1.4.8
it is a Polish space.
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We end this section by proving two lemmas that will be used repeatedly later
in the chapter.

Lemma 3.2.7. Let K be a Fraïssé limit. Then for every f ∈ Aut(K) and any
p ∈ Aut(K)<ω

{g ∈ Aut(K) : 〈f, g〉 ∩ [p] 6= ∅}

is an open set in Aut(K).

Proof. Let f ∈ Aut(K), and let p ∈ Aut(K)<ω. Suppose g ∈ Aut(K) is such that
〈f, g〉 ∩ [p] is non-empty. Then there are n1, . . . , n2k ∈ Z such that

fn1gn2 · · · gn2k ∈ [p].

For i ∈ {0, . . . , k}, let Γi = (dom(p)) fn1gn2 · · · gn2i and define

Γ =

k⋃
i=1

Γi.

Since dom(p) is finite, it follows that each Γi is finite, and therefore Γ is finite.
Let h ∈ [g|Γ]. By the definition of Γ, it follows that for all x ∈ dom(h) and

all i ∈ {0, . . . , k}

(x)fn1gn2 · · · gn2i+1 = (x)fn1hn2 · · ·hn2i+1 .

Therefore, 〈f, h〉 ∩ [p] is non-empty for all h ∈ [g|Γ], and so the set {g ∈ Aut(K) :

〈f, g〉 ∩ [p] 6= ∅} is open.

The last lemma of this section relates comeagreness of Df (K) ∩ SΣ in SΣ to
comeagreness of Df (K) ∩ S in S, for any Polish subspace S of Aut(K).

Lemma 3.2.8. Let K be any Fraïssé limit, let f ∈ Aut(K), and let S ⊆ Aut(K)

be a Baire space such that every q ∈ S<ω has an extension in S with only finitely
many orbits. If SΣ is Baire, and Df (K) ∩ SΣ is dense in SΣ for every finite
Σ ⊆ K, then Df (K) ∩ S is comeagre in S.

Proof. Recall that Df (K) = {g ∈ Aut(K) : 〈f, g〉 is dense in Aut(K)}. Then
since {[q] : q ∈ Aut(K)<ω} is a basis for the topology on Aut(K), it follows that

Df (K) ∩ S =
⋂

p∈Aut(K)<ω

{g ∈ S : 〈f, g〉 ∩ [p] 6= ∅}.

The set {g ∈ S : 〈f, g〉 ∩ [p] 6= ∅} is open in S by Lemma 3.2.7, and so it suffices
to show that {g ∈ S : 〈f, g〉 ∩ [p] 6= ∅} is dense in S for all p ∈ Aut(K)<ω.

Let q ∈ S<ω. By the hypothesis there is g ∈ S which extends q and has a
finite number of orbits. Let Σ be any set of orbit representatives of g. Then
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q ∈ S<ωΣ . Since Df (K) ∩ SΣ is comeagre in SΣ and SΣ is Baire, it follows that
Df (K) ∩ SΣ is dense in SΣ. Hence there is h ∈ [q] such that h ∈ Df (K) ∩ SΣ. In
other words, for each q ∈ Aut(K)<ω there exists h ∈ [q] such that 〈f, h〉 is dense
in Aut(K) and so {g ∈ S : 〈f, g〉 ∩ [p] 6= ∅} is dense in S.

3.3 Universal partial order

We will show in this section, that the topological rank of Aut(P) is 2.
The following lemma provides a sufficient condition to extend an isomorphism

of a finite substructure of P . In ordered to state the lemma, we need some more
notation. Let x ∈ P. Then we define

A(x) = {u ∈ P : u ≥ x},

B(x) = {u ∈ P : u ≤ x},

C(x) = {u ∈ P : u and x are incomparable}.

Lemma 3.3.1. Let q ∈ Aut(P)<ω, and let x, y ∈ P. Suppose that x /∈ dom(q),
y /∈ ran(q), A(y) ∩ ran(q) = (A(x)) q, and B(y) ∩ ran(q) = (B(x)) q. Then
q ∪ {(x, y)} ∈ Aut(P)<ω.

Proof. Since P is ultrahomogeneous, it is sufficient to show that q ∪ {(x, y)}
is an isomorphism between two finite partially ordered subsets of P. By the
hypothesis, q is a partial isomorphism, and so it suffices to show that x ≤ z if
and only if y ≤ (z)q, and z ≤ x if and only if (z)q ≤ y for every z ∈ dom(q).

Let z ∈ dom(q). Then x ≤ z if and only if z ∈ A(x) which is equivalent to
(z)q ∈ A(y) ∩ ran(q), in other words y ≤ (z)q.

Similarly to the previous case, z ≤ x if and only if z ∈ B(x) which is equivalent
to (z)q ∈ B(y) ∩ ran(q), or alternatively (z)q ≤ y.

Next we present a corollary of Lemma 3.3.1.

Corollary 3.3.2. Let q ∈ Aut(P)<ω, and let x /∈ dom(q). Then there is y /∈
dom(q) ∪ ran(q) such that q ∪ {(x, y)} ∈ Aut(P)<ω.

Proof. Let A = (A(x)) q, let B = (B(x)) q, and let

C = (C(x)) q ∪ {z ∈ dom(q) : z � b and a � z for all a ∈ A and b ∈ B}.

We will show that the triple A,B,C satisfy the condition of the Alice’s restaurant
property.

Let a ∈ A, and let b ∈ B. First consider the case where c ∈ (C(x)) q. Then
there are a′, b′, c′ ∈ P such that b′ ≤ x ≤ a′, x and c′ are incomparable, and
also a = (a′)q, b = (b′)q, and c = (c′)q. Note that if c′ ≤ b′, then c′ ≤ x, which
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is impossible, and so c′ � b′. A similar argument shows that a′ � c′. Since q
is an isomorphism b = (b′)q ≤ (a′)q = a, and similarly c = (c′)q � (b′)q = b,
a = (a′)q � (c′)q = c. In the case where c ∈ C \ (C(x)) q, a � c and c � b. Hence
A,B,C satisfy the condition of the Alice’s restaurant property.

By Alice’s restaurant property there is y ∈ P \ (A ∪B ∪ C) such that A(y)∩
ran(q) = A = (A(x)) q, and B(y) ∩ ran(q) = B = (B(x)) q. Note that ran(q) ⊆
A∪B ∪C, and so y /∈ ran(q). Therefore Lemma 3.3.1 implies that q ∪ {(x, y)} ∈
Aut(P)<ω. Moreover, if y ∈ dom(q), then y ∈ C, which is a contradiction, thus
y /∈ dom(q) ∪ ran(q).

In the following lemma, we will show that there is an automorphism of
the universal partially ordered set which satisfies a particular condition, which
roughly speaking allows us to separate any two finite sets. This lemma is the
essential part of proving that P has a 2-generated dense subgroup.

Lemma 3.3.3. There is f ∈ Aut(P) and x ∈ P such that for all finite subsets
Σ of P there are n,m ∈ Z with (x)fn ≤ y ≤ (x)fm for all y ∈ Σ.

A proof, alternative to the one which will be given here, can be obtained
from a paper by Rubin [65]. For a partially ordered set (A,≤), Rubin defines
f ∈ Aut(A,≤) to be embracing if for every a, b ∈ A we have that a < (a)f

and there are n,m ∈ Z such that (a)fn < b < (a)fm. Note that an embracing
automorphism of P satisfies the conclusion of Lemma 3.3.3. It is shown in [65,
Lemma 4.6(a)] that for every z ∈ P there is f ∈ Aut(P) such that (z)f = z

and if A is one of the sets {x ∈ P : x > z}, {x ∈ P : x < z}, or {x ∈ P :

x is incomparable to z} then f |A is an embracing automorphism of A. Finally,
note that using Lemma 3.2.3 it can be shown that {x ∈ P : x > z} is isomorphic
to P, and so there exists an embracing automorphism of Aut(P).

Proof. Since by Proposition 3.2.3 every countable partially ordered set satisfying
Alice’s restaurant property is isomorphic to P, it is sufficient to construct a
countable partially ordered set S and an automorphism f of S such that S has
Alice’s restaurant property, and for all finite subsets Σ of S there are n,m ∈ Z
with (u)fn ≤ y ≤ (u)fm for all y ∈ Σ.

Let Γ0 = Z with the usual order of the integers, denoted by ≤0, let f0 :

Γ0 −→ Γ0 given by (x)f0 = x+ 1, and fix u ∈ Γ0. Let n ≥ 1, and suppose that
for all m ∈ {1, . . . , n}, a countable partially ordered set (Γm,≤m), and a partial
isomorphism fm of Γm which extends fm−1 if m > 0 are defined such that:

1. Γm−1 ⊆ Γm;

2. if x, y ∈ Γm−1 then x ≤m y if and only if x ≤m−1 y;

3. we have that Γm−1 ⊆ dom(fm) ∩ ran(fm);
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4. for every x ∈ Γm \ Γ0 we have that (u)f−mm ≤m x ≤m (u)fmm ;

5. for every triple (A,B,C) of finite subsets of Γm−1 \ {(u)fkm : |k| > m}
satisfying the condition of Alice’s restaurant property, there is w ∈ Γm

such that b ≤m w ≤m a, and w is incomparable to c for all a ∈ A, b ∈ B,
and c ∈ C.

Let Tn be the set of all triples (A,B,C), such that A, B, and C are finite
subsets of Γn \ {(u)fkn : |k| > n + 1} such that (u)f

−(n+1)
n ∈ B, (u)fn+1

n ∈ A,
and the triple (A,B,C) satisfies the condition of Alice’s restaurant property
with respect to ≤n. Then Tn is countable, since Γn is countable.

For every T ∈ Tn, let vT be a distinct element not in the set Γn, and let
Γn+1 = Γn ∪ {vT : T ∈ Tn}. For x, y ∈ Γn+1, define x ≤n+1 y if at least one of
the following conditions is satisfied:

• x = y;

• x, y ∈ Γn and x ≤n y;

• x = vT for some T = (A,B,C) ∈ Tn and y ∈ Γn such that a ≤n y for some
a ∈ A;

• x ∈ Γn and y = vT for some T = (A,B,C) ∈ Tn such that x ≤n b for some
b ∈ B;

• x = vT and y = vT ′ for some T = (A,B,C), T ′ = (A′, B′, C ′) ∈ Tn, and
a ≤n b for some a ∈ A, b ∈ B′.

We will now show that ≤n+1 is a partial order on Γn+1. It’s easy to see
that ≤n+1 is reflexive and antisymmetric. For example, if x ≤n+1 y and x = vT

and y = vT ′ for some T = (A,B,C), T ′ = (A′, B′, C ′) ∈ Tn, then a ≤n b for
some a ∈ A and b ∈ B′. Hence y ≤n+1 x if and only if there is a′ ∈ A′ and
b′ ∈ B such that a′ ≤n b′. However, for all a′ ∈ A and all b′ ∈ B we have that
b′ ≤n a ≤n b ≤n a′. The other cases follow by similar arguments. In order
to show that ≤n+1 is transitive, let x, y, z ∈ Γn+1 be such that x ≤n+1 y, and
y ≤n+1 z. If x, y, z ∈ Γn or any two elements from {x, y, z} are equal, then
x ≤n+1 z. Hence we may assume that at least one of x, y, z is equal to vT for
some T ∈ Tn, and we may also assume that all three vertices x, y, and z are
distinct. The following argument is a tedious case by case analysis.

Case 1. Suppose that x = vT for some T = (A,B,C) ∈ Tn and y, z ∈ Γn.
Then since y ∈ Γn, by definition there is a ∈ A with a ≤n y. Also y ≤n z as
both y and z are in Γn. Hence a ≤n z and x ≤n+1 z by the definition.

Case 2. Suppose that y = vT for some T = (A,B,C) ∈ Tn and x, z ∈ Γn.
Then since x, z ∈ Γn, there are a ∈ A and b ∈ B with a ≤n z and x ≤n b. Since
T satisfies the condition of Alice’s restaurant property, it follows that b ≤n a.
Hence x ≤n z by transitivity of ≤n, and so x ≤n+1 z.
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Case 3. Suppose that z = vT for some T = (A,B,C) ∈ Tn and x, y ∈ Γn.
Then there is b ∈ B with y ≤n b. Also x ≤n y as both x and y are in Γn. Hence
x ≤n b, and so x ≤n+1 z.

Case 4. Suppose that x = vT , y = vT ′ , and z ∈ Γn for some T, T ′ ∈ Tn. Let
T = (A,B,C), and let T ′ = (A′, B′, C ′). Then by definition there are a ∈ A,
b′ ∈ B′, and a′ ∈ A′ such that a ≤n b′ and a′ ≤n z. Since b′ ≤n a′ it follows that
a ≤n z, and so x ≤n+1 z.

Case 5. Suppose that x = vT , y ∈ Γn, and z = vT ′ for some T, T ′ ∈ Tn. Let
T = (A,B,C), and let T ′ = (A′, B′, C ′). Then there are a ∈ A, and b′ ∈ B′ such
that a ≤n y and y ≤n b′. Hence a ≤n b′ by transitivity of ≤n, and so x ≤n+1 z.

Case 6. Suppose that x ∈ Γn, y = vT , and z = vT ′ for some T, T ′ ∈ Tn.
Let T = (A,B,C), and let T ′ = (A′, B′, C ′). Then there are b ∈ B, a ∈ A, and
b′ ∈ B′ such that a ≤n b′ and x ≤n b. Since b ≤n a it follows that x ≤n b′, and
so x ≤n+1 z.

Case 7. Finally, suppose that x = vT , y = vT ′ , and z = vT ′′ for some
T, T ′, T ′′ ∈ Tn. Let T = (A,B,C), T ′ = (A′, B′, C ′), and T ′′ = (A′′, B′′, C ′′).
Then there are a ∈ A, b′ ∈ B′, a′ ∈ A′ and b′′ ∈ B′′ such that a ≤n b′ and
a′ ≤n b′′. Since also b′ ≤n a′, it follows that a ≤n b′′ and so x ≤n+1 z.

In each of the seven cases x ≤n+1 z, and thus ≤n+1 is transitive. Therefore
≤n+1 a partial order on Γn+1. Hence conditions 1 and 2 are satisfied. Next we
will inductively define the isomorphism fn+1 between substructures of Γn+1.

Denote Γn \ dom(fn) by {xi : i ∈ I}, where I = {0, . . . ,m} for some m ∈ N
or I = N if Γn \ dom(fn) is infinite. Let g0 = fn. Suppose that for k ≥ 1 there is
an extension gk of gk−1 such that gk is an isomorphism between substructures
of Γn+1 and that xi ∈ dom(gk) for all i ∈ {0, . . . , k − 1}.

If xk ∈ dom(gk), let gk+1 = gk. Then gk+1 is an extension of gk and xi ∈
dom(gk+1) for all i ∈ {0, . . . , k}. Suppose that xk /∈ dom(gk). Let A = {y ∈
Γn : xk ≤n+1 y}, let B = {y ∈ Γn : y ≤n+1 xk}, and let C = Γn \ (A ∪B).
Then it is routine to show that the triple (A,B,C) satisfies the conditions of
Alice’s restaurant property. Since gk is an isomorphism, it follows that the triple
(A′, B′, C ′) where A′ = (A)gk, B′ = (B)gk, and C ′ = (C)gk also satisfies the
condition of Alice’s restaurant property. Since u ∈ Γ0, and both gk and fn

are extensions of f0, it follows that (u)g−nk = (u)f−n0 = (u)f−nn , and similarly
(u)gnk = (u)fnn . Hence condition 4 of the inductive hypothesis together with the
fact that xk ∈ Γn imply that

(u)g−nk ≤n+1 xk ≤n+1 (u)gnk .

Hence (u)gnk ∈ A, and since (u)g
−(n+2)
k = (u)f

−(n+2)
n ≤n (u)g−nk , it also follows

that (u)g
−(n+2)
k ∈ B. Therefore, (u)g−n−1

k ∈ (B)gk = B′ and (u)gn+1
k ∈ (A)gk =

A′. Hence T = (A′, B′, C ′) ∈ Tn. Define gk+1 = gk ∪ {(xk, vT )}.
If y ∈ dom(gk) such that xk ≤n+1 y, then y ∈ A by definition of ≤n+1, and
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so (y)gk+1 ∈ (A)gk = A′. Hence vT ≤n+1 (y)gk+1. A similar argument show that
if y ≤n+1 xk or y is incomparable to xk, then respectively (y)gk+1 ≤n+1 vT or
(y)gk+1 and vT are incomparable. Then gk+1 is a partial isomorphism of Γn+1

such that xi ∈ dom(gk+1) for all i ∈ {0, . . . , k}.
Therefore, by induction, for every k ∈ I there is gk an isomorphism extending

gk−1 such that xi ∈ dom(gk) for all i ∈ {0, . . . , k − 1}. Let g =
⋃
k∈I gk. It is

routine to show that g is a partial isomorphism of Γn+1 such that Γn ⊆ dom(g).
Similarly, considering g−1 instead of fn, we may extend g to an isomorphism
fn+1 between substructures of Γn+1 such that Γn ⊆ dom(f−1

n+1) = ran(fn+1).
Hence Γn ⊆ dom(fn+1)∩ ran(fn+1), and so condition 3 is satisfied for m = n+ 1.

Let x ∈ Γn+1 \ Γ0. Suppose that x ∈ Γn. Then it follows from the inductive
condition 4

(u)f
−(n+1)
n+1 ≤n+1 (u)f−nn ≤n+1 x ≤n+1 (u)fnn ≤n+1 (u)fn+1

n+1 .

Suppose that x = vT for some T = (A,B,C) ∈ Tn. Since fn+1 is an extension
of fn, it follows that (u)fn+1

n+1 ∈ A and (u)f
−(n+1)
n+1 ∈ B by the definition of Tn.

Hence
(u)f

−(n+1)
n+1 ≤n+1 vT ≤n+1 (u)fn+1

n+1 ,

and so in both cases condition 4 is satisfied.
Finally, in order to show that ≤n+1 satisfies condition 5, let A,B,C ⊆

Γn \ {fkn+1 : |k| > n+ 1} be a triple satisfying the condition of Alice’s restaurant
property. Then by condition 4, (u)f

−(n+1)
n+1 <n+1 y <n+1 (u)fn+1

n+1 for all y ∈
A ∪ B ∪ C, and so the triple T = (A ∪ {(u)fn+1

n+1 }, B ∪ {(u)f
−(n+1)
n+1 }, C) also

satisfies the condition of Alice’s restaurant property. Hence T ∈ Tn. Then
vT ≤n+1 a, b ≤n+1 vT and c is incomparable to vT for all a ∈ A, b ∈ B, and
c ∈ C. Therefore, the partially ordered set (Γn+1,≤n+1), and the isomorphism
fn+1 satisfy conditions 1–5.

Let S =
⋃
n∈N Γn be a partially ordered by

⋃
n∈N ≤n+1, which we will

denote by ≤, and let f =
⋃
n∈N fn. It follows from the facts that each ≤n is a

partial order and that ≤n is a restriction of ≤n+1 onto Γn × Γn for all n ∈ N,
that ≤ is also a partial order. Similarly, since each fn is a isomorphism, and⋃
n∈N dom(fn) =

⋃
n∈N ran(fn) = S, it follows that fn is an automorphism of

(S,≤).
Let Σ be finite subset of S. Then there is n ∈ N such that Σ ⊆ Γn. Hence

(u)f−n ≤ y ≤ (u)fn for all y ∈ Σ by condition 4. Therefore, the conclusion of
the lemma holds, it remains to show that (S,≤) is isomorphic to the universal
partially ordered set.

Suppose that A, B, and C are finite subsets of S such that the triple (A,B,C)

satisfies the conditions of Alice’s restaurant property. Then there is n ∈ N such
that A,B,C ⊆ Γn \ {(u)fk : |k| > n}, and so by condition 5 there is w ∈ S
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such that w ≤ a, b ≤ w, and w is incomparable to c for all a ∈ A, b ∈ B, and
c ∈ C. Therefore S has Alice’s restaurant property, thus S is isomorphic to P
by Proposition 3.2.3, as required.

Finally, Lemma 3.3.3 can be used to prove, Theorem 3.3.4, the main result of
this section. We note that a stronger version of Theorem 3.3.4 was independently
proved in [22]. An automorphism f of P satisfying the conclusion of Lemma 3.3.3
will be one of the two generators in the following proof.

Theorem 3.3.4. Aut(P) has a 2-generated dense subgroup.

Proof. Since P is countable, let {xn : n ∈ N} be an arbitrary enumeration of P.
Let {pn : n ∈ N} be the set of all isomorphisms between finite substructures of
P. Such an enumeration is possible since Aut(P)<ω is countable. Recall that
{[pn] : n ∈ N} is a basis for Aut(P). Hence it is sufficient to find f, g ∈ Aut(P)

such that 〈f, g〉 ∩ [pn] 6= ∅ for all n ∈ N.
Let f ∈ Aut(P) and x ∈ P be as in the conclusion of Lemma 3.3.3, in other

words for every finite subset Σ of P there are n,m ∈ Z such that

(x)fn ≤ y ≤ (x)fm

for all y ∈ Σ. We will now inductively construct g.
Let n ∈ N. Suppose we have defined q0, . . . , qn ∈ Aut(P)<ω such that qk

is an extension of qk−1 for all k ∈ {1, . . . , n}, xk ∈ dom(qn) ∩ ran(qn) for all
k ∈ {0, . . . , n}, and 〈f, g〉 ∩ [pk] 6= ∅ for all k ∈ {0, . . . , n} and all g ∈ [qn].

If necessary, by extending qn to q′n ∈ Aut(P)<ω using Corollary 3.3.2, we may
assume that dom(pn+1) ∪ ran(pn+1) ⊆ dom(q′n) and xn+1 ∈ dom(q′n) ∩ ran(q′n).
Since dom(q′n)∪ran(q′n) is finite it follows from Lemma 3.3.3 that there k ∈ Z such
that for (x)f−k ≤ y ≤ (x)fk for all y ∈ dom(q′n)∪ran(q′n). Let u = f−2kpn+1f

2k.
Note that

dom(u) ∪ ran(u) = (dom(pn) ∪ ran(pn))f2k ⊆ (dom(q′n))f2k,

and so if y ∈ dom(u) ∪ ran(u), then y = (t)f2k for some t ∈ dom(q′n). Since
(x)f−k ≤ t ≤ (x)fk, it follows that (x)fk ≤ (t)f2k = y. Hence, if z ∈ dom(q′n) ∪
ran(q′n), then

z ≤ (x)fk ≤ y.

Therefore, qn+1 = q′n ∪u ∈ Aut(P)<ω. Moreover, it follows from the definition of
u, that if g ∈ [qn+1], then f2kgf−2k ∈ [f2kuf−2k] = [pn+1], and so the inductive
hypothesis is satisfied.

Therefore, by induction there are q0, q1, . . . ∈ Aut(P)<ω satisfying the in-
ductive hypothesis. Let g =

⋃
n∈N qn. Since each qn is an isomorphism and

dom(g) = ran(g) = P, it follows that g ∈ Aut(P). Also g ∈ [qn], and so for
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every n ∈ N there is k ∈ N such that f−kgfk ∈ [pn]. Hence 〈f, g〉 is dense in
Aut(P).

Looking back at the proof of Theorem 3.3.4, we may note that we only used
products of a particular kind to obtain a dense subset of Aut(P). More precisely,
there are f, g ∈ Aut(P) such that {f−ngfn : n ∈ Z} is a dense subset of Aut(P).
Recall that groups satisfying aforementioned property are said to have a cyclically
dense conjugacy class, as discussed in Section 3.1.

Theorem 3.3.5. Aut(P) has a cyclically dense conjugacy class.

3.4 Universal Kn-free graphs

In this section we will consider the ultrahomogeneous Kn-free graphs, denoted
by Hn. The case n = 2 gives a graph with no edges and its automorphism
group is just the symmetric group on countably many points, which was already
considered in [12]. Throughout this section, let n ≥ 3 be fixed.

For x ∈ Hn, let N(x) be the set of all vertices adjacent to x in Hn. If N(x)

has a subgraph Γ isomorphic to Kn−1, then Γ ∪ {x} is isomorphic to Kn, which
contradicts the fact that Hn is Kn-free. Hence N(x) is Kn−1-free for every vertex
x ∈ Hn. We will repeatedly make use of this fact without reference.

Let U and V be finite disjoint subsets of vertices of Hn such that U is Kn−1-
free. Then, by the Alice’s restaurant property for Kn-free graphs, there is a
vertex w ∈ Hn \U ∪V such that there are no edges between w and V , and there
is an edge between u and w for all u ∈ U . In other words, N(w) ∩ (U ∪ V ) = U .

The purpose of this section is to prove Theorem 3.1.8(i), which we restate
for the sake of convenience.

Theorem 3.4.1. Let f ∈ Aut(Hn) be non-identity. Then Df ∩I (Hn) is comea-
gre in I (Hn).

Before giving the proof of Theorem 3.4.1 we will prove a number of technical
results. First, we will show that the set Df ∩I(Hn) can be written as a countable
intersection of sets of a certain type. The rest of the argument will then be
dedicated to showing that these sets are open and dense in Hn.

Lemma 3.4.2. Let B ⊆ Aut(Hn)<ω be such that b ∈ B if and only if dom(b)

and ran(b) are disjoint, and there are no edges between dom(b) and ran(b). Then

Df ∩ I(Hn) =
⋂
b∈B

{g ∈ I(Hn) : 〈f, g〉 ∩ [b] 6= ∅}

for all f ∈ Aut(Hn).
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Proof. Let f ∈ Hn. Since Df = {g ∈ Aut(Hn) : 〈f, g〉 is dense inAut(Hn)}, it
follows that

Df ∩ I(Hn) =
⋂

q∈Aut(Hn)<ω

{g ∈ I(Hn) : 〈f, g〉 ∩ [q] 6= ∅}.

(⊆) This direction follows immediately since B ⊆ Aut(Hn)<ω.
(⊇) Let g ∈ I(Hn) be such that 〈f, g〉 ∩ [b] is non-empty for all b ∈ B, and

suppose that q ∈ Aut(Hn)<ω. By repeated application of the Alice’s restaurant
property we can find a subgraph Γ of Hn such that Γ is isomorphic to dom(q),
Γ ∩ (dom(q) ∪ ran(q)) = ∅, and such that there are no edges between Γ and
dom(q) ∪ ran(q). Let b be an isomorphism from dom(q) to Γ. Since Hn is
ultrahomogeneous, we have that b ∈ Aut(Hn)<ω. Then dom(b) = dom(q),
ran(b) = dom(b−1q) = Γ, and ran(b−1q) = ran(q). Hence b, b−1q ∈ B, and so
by the choice of g there are h1, h2 ∈ 〈f, g〉 such that h1 ∈ [b] and h2 ∈ [b−1q].
Therefore h1h2 ∈ [q] and h1h2 ∈ 〈f, g〉, thus 〈f, g〉∩[q] 6= ∅. Since q was arbitrary,

g ∈
⋂

q∈Aut(Hn)<ω

{g ∈ I(Hn) : 〈f, g〉 ∩ [q] 6= ∅}

as required.

In the following lemma we show that for every non-identity automorphism
f of Hn, the support of f is infinite. The result follows from Corollary 2.10(ii)
in [50]. We include the proof the keep the thesis self-contained.

Lemma 3.4.3. Let f ∈ Aut(Hn) be non-identity. Then support of f is infinite.

Proof. Since f is non-identity, there is x ∈ Hn such that (x)f 6= x. Suppose
that y ∈ Hn is such that y is adjacent to x, but not adjacent to (x)f . It then
follows that (y)f is adjacent to (x)f as f is an automorphism. Hence (y)f 6= y

by definition of y, and so y is in the support of f . Finally, it is sufficient to show
that there are infinitely many such vertices y. Define

Σ = {y ∈ Hn : y is adjacent to x but not adjacent to (x)f}.

Let U = {x} and V = Σ∪{(x)f}. Then if Σ is finite by Alice restaurant property
there is w ∈ Hn \ (U ∪ V ) such that w is adjacent to every vertex in U and not
adjacent to every vertex in V . Hence w is adjacent to x and not adjacent to
(x)f , and so w ∈ Σ ⊆ U , which is a contradiction. Therefore Σ is infinite, as
required.

The following lemma provides a condition under which it is possible to
extend a given partial isomorphism of Hn to another partial isomorphism of Hn.
Although we will only apply the following lemma to the graphs Hn, we state
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it for arbitrary ultrahomogeneous graphs, since the proof is no harder in the
general case.

Lemma 3.4.4. Let Γ be an ultrahomogeneous graph, let q ∈ Aut(Γ)<ω, and let
x, y ∈ Γ. Suppose that x /∈ dom(q), y /∈ ran(q), and N(y) ∩ ran(q) = (N(x)) q.
Then q ∪ {(x, y)} ∈ Aut(Γ)<ω.

Proof. Since Γ is ultrahomogeneous, it is sufficient to show that q ∪ {(x, y)} an
isomorphism between two subgraphs of Γ. By the hypothesis, q is an isomorphism,
and so it suffices to show that there is an edge between vertices x and z ∈ dom(q)

if and only if there is an edge between vertices y and (z)q. Let z ∈ dom(q). Then
there is an edge between z and x if and only if z ∈ N(x) which is equivalent to
(z)q ∈ N(y) ∩ ran(q), in other words there is an edge between (z)q and y.

The following easy corollary shows that any incomplete component of an
isomorphism of Hn can be extended.

Corollary 3.4.5. Let q ∈ Aut(Hn)<ω, let x /∈ dom(q), and let Σ ⊆ Hn be finite.
Then there is y ∈ Hn \ ({x} ∪ Σ) such that q ∪ {(x, y)} ∈ Aut(Hn)<ω.

Proof. Let U = (N(x)) q and let V = (ran(q) ∪ {x} ∪ Σ) \ U . Since N(x) is
Kn−1-free and q is a partial isomorphism, U is also Kn−1-free. Hence by the
Alice’s restaurant property there is y ∈ Hn \ (ran(q) ∪ {x} ∪ Σ) such that N(y)∩
(ran(q) ∪ Σ ∪ {x}) = (N(x)) q. Therefore N(y) ∩ ran(q) = (N(x)) q, and so we
are done by Lemma 3.4.4.

We can now classify when a partial isomorphism of Hn is in I(Hn)<ω.

Corollary 3.4.6. Let q ∈ Aut(Hn)<ω. Then q ∈ I(Hn)<ω if and only if q has
no complete components.

Proof. (⇒) Let g ∈ I(Hn) be the extension of q. Then every complete component
is a finite orbit of g, and since g has no finite orbits, it follows that q has no
complete components.

(⇐) Let q be an isomorphism between finite subgraphs of Hn such that
q has no complete components. Let {xi : i ∈ N} an enumeration of Hn, i.e.
Hn = {xi : i ∈ N}. If x0 ∈ dom(q), let h = q. Suppose that x0 /∈ dom(q).
Then by Corollary 3.4.5 there is y ∈ Hn \ ({x0} ∪ dom(q) ∪ ran(q)) such that
h = q ∪ {(x0, y)} ∈ Aut(Hn)<ω. Then from the choice of y, it follows that h has
no complete components and x0 ∈ dom(h). If x0 ∈ ran(h), let q0 = h. Otherwise
x0 /∈ ran(h), which implies that x0 /∈ dom(h−1) and by same argument there
exist an extension q−1

0 ∈ Aut(Hn)<ω of h−1 such that q−1
0 has no complete

components and x0 ∈ dom(q−1
0 ). Hence q0 has no complete components and

x0 ∈ dom(q0) ∩ ran(q0).
Suppose that for some k ≥ 1 there is an extension qk ∈ Aut(Hn)<ω of qk−1

such that qk has no complete components and xj ∈ dom(qk) ∩ ran(qk) for all
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j ∈ {0, . . . , k}. If xk+1 ∈ dom(q), then let h = qk. Otherwise, xk+1 /∈ dom(q).
Then by Corollary 3.4.5 there is y ∈ Hn\({xk+1} ∪ dom(qk) ∪ ran(qk)) such that
h = qk ∪ {(xk+1, y)} ∈ Aut(Hn)<ω. Then from the choice of y, it follows that h
has no complete components and xj ∈ dom(h) for all j ∈ {0, . . . , k+1}. If xk+1 ∈
ran(h), then let qk+1 = h. Otherwise, xk+1 /∈ ran(h). Thus xk+1 /∈ dom(h−1) and
by same argument there exist an extension q−1

k+1 ∈ Aut(Hn)<ω of h−1 such that
q−1
k+1, has no complete components and xj ∈ dom(q−1

k+1) for all j ∈ {0, . . . , k+ 1}.
Hence qk+1 has no complete components and xj ∈ dom(qk+1)∩ ran(qk+1) for all
j ∈ {0, . . . , k + 1}, and so qk+1 satisfies the inductive hypothesis.

Therefore, for every k ∈ N there is qk ∈ Aut(Hn)<ω satisfying the inductive
hypothesis. Define

g =
⋃
k∈N

qk.

Then dom(g) = ran(g) = Hn, and since every qk was an isomorphism, it follows
that g ∈ Aut(Hn). Similarly if g has a finite orbit, then there is k such that qk
has a complete component. Hence g has no finite orbits, and so g ∈ I(Hn), as
required.

The following two technical lemmas form the essential part of the proof of
Theorem 3.4.1. Lemma 3.4.8 is the main result used to prove Theorem 3.4.1,
and Lemma 3.4.7 is used to make the induction within the proof of Lemma 3.4.8
easier.

Lemma 3.4.7. Let q ∈ I(Hn)<ω be such that ran(q) ∪ dom(q) = ∆ ∪ Γ where
∆ ∩ Γ = ∅ and Γ is the union of incomplete components of q of fixed length m,
let x, y /∈ dom(q) ∪ ran(q) be such that

N(x) ∩∆ ⊆ dom(q2m) and (N(x) ∩∆) q2m = N(y) ∩∆

and let Σ1,Σ2 ⊆ Hn \ Γ be finite subsets such that Σ1 ∩ ran(q) = ∅ and Σ2 ∩
dom(q) = ∅. Then there are x1, . . . , x2m−1 ∈ Hn \ Σ1 ∪ Σ2 such that there are
no edges between xi and Σ1 ∪ Σ2 for all i ∈ {1, . . . , 2m− 1}, and

q ∪ {(xi, xi+1) : 0 ≤ i ≤ 2m− 1} ∈ I(Hn)<ω

where x0 = x and x2m = y.

Proof. Define q0 = q, x0 = x and Γi = dom(qi) ∪ ran(qi) ∪ Σ1 ∪ Σ2 ∪ {x, y} for
all i such that qi is defined. Suppose that for i ∈ {0, . . . ,m − 1} there is an
extension qi ∈ I(Hn)<ω of q0 such that qi = q0 ∪ {(xj , xj+1) : 0 ≤ j ≤ i − 1}
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with x0 /∈ ran(qi), xi /∈ dom(qi), y /∈ ran(qi) ∪ dom(qi), and

xj /∈ Σ1 ∪ Σ2 ∪∆ (3.3)

N(xj) ∩ (Σ1 ∪ Σ2 ∪ {x0, . . . , xj−1, y}) = ∅ (3.4)

N(xi) ∩ Γi = (N(x0) ∩ Γ0) qii (3.5)

for all j ∈ {1, . . . , i}.
If i = 0, then we have that x0, y /∈ dom(q0) ∪ ran(q0) and (3.3), (3.4), (3.5)

are trivially satisfied.
Suppose that i > 0. Let U = (N(xi)) qi ⊆ Γi and V = Γi\U . IfN(xi) contains

a subgraph isomorphic to Kn−1, then the subgraph together with xi forms Kn,
which is impossible. Hence N(xi) is Kn−1-free and since qi is an isomorphism,
U is also Kn−1-free. Therefore the sets U and V satisfy the hypothesis of the
Alice’s restaurant property and thus there is a vertex xi+1 ∈ Hn \ Γi such that
there is an edge between xi+1 and every vertex in U and there are no edges
between xi+1 and V , i.e. N(xi+1) ∩ Γi = U . Also it follows from ran(qi) ⊆ Γi

that

N(xi+1) ∩ ran(qi) = (N(xi+1) ∩ Γi) ∩ ran(qi) = U ∩ ran(qi) = (N(xi)) qi.

Then qi+1 = qi ∪ {(xi, xi+1)} = q0 ∪ {(xj , xj+1) : 0 ≤ j ≤ i} ∈ Aut(Hn)<ω by
Lemma 3.4.4, and so qi+1 ∈ I(Hn)<ω by Corollary 3.4.6. Since xi+1 /∈ Γi, we
have that xi+1 /∈ {x0, xi, y} implying that x0 /∈ ran(qi+1), xi+1 /∈ dom(qi+1),
and y /∈ ran(qi+1) ∪ dom(qi+1). It also follows from dom(qi) ⊆ Γi and (3.5) that

N(xi+1) ∩ Γi = U = (N(xi)) qi = (N(xi) ∩ Γi) qi = (N(x0) ∩ Γ0) qi+1
i . (3.6)

Since Σ1 ∪ Σ2 ∪∆ ⊆ Γi and xi+1 is chosen outside the set Γi it follows that
xi+1 /∈ Σ1 ∪ Σ2 ∪∆. Then xj /∈ Σ1 ∪ Σ2 ∪∆ for all j ∈ {1, . . . , i+ 1} by (3.3).

We will now show that (3.4) holds for j = i + 1. First of all note that
x0, y /∈ ran(qi), and since U ⊆ ran(qi) we have that x0, y /∈ U . From (3.4)
we may deduce that xj /∈ N(xi), and thus xj+1 /∈ (N(xi)) qi = U , for all
j ∈ {0, . . . , i−1}, i.e. {x0, . . . , xi, y}∩U = ∅. It follows from the hypothesis that
Σ1 ∩ ran(q0) = ∅, and so (3.3) implies that Σ1 ∩ ran(qi) = ∅. Since U ⊆ ran(qi),
we have that (Σ1 ∪ {x0, . . . , xi, y}) ∩ U = ∅.

It remains to show that Σ2 ∩ U = ∅. Suppose z ∈ Σ2 ∩ U . Then z ∈
(N(x0) ∩ Γ0) qi+1

i by (3.6). Then z ∈ ran(qi) and by above z 6= xj for all
j ∈ {0, . . . , i}, thus z ∈ ran(q0) ⊆ Γ ∪ ∆. However by the hypothesis of the
lemma, Σ2 ⊆ Hn \ Γ, implying that z ∈ ∆. Since xj /∈ ∆ for all j ∈ {1, . . . , i} by
(3.3) and x0 /∈ ∆ by the hypothesis of the lemma, it follows that the incomplete
component of q0 containing z was not extended in qi. Moreover ∆ is a union
of incomplete components of q0, hence (z)q

−(i+1)
i ∈ N(x0) ∩ ∆. Also from
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Σ2 ∩ dom(q0) = ∅ and (3.3) we may deduce that Σ2 ∩ dom(qi) = ∅ and so
z /∈ dom(qi). It also follows from the hypothesis of the lemma that (z)q

−(i+1)
i ∈

dom(q2m
i ). Then z ∈ dom(q

2m−(i+1)
i ), which is impossible since i+1 < 2m. Hence

U ∩ (Σ1 ∪ Σ2 ∪ {x0, . . . , xi, y}) = ∅. Since (Σ1 ∪ Σ2 ∪ {x0, . . . , xi, y}) ⊆ Γi+1 we
have that

N(xi+1) ∩ (Σ1 ∪ Σ2 ∪ {x0, . . . , xi, y})

= (N(xi+1) ∩ Γi+1) ∩ (Σ1 ∪ Σ2 ∪ {x0, . . . , xi, y})

= U ∩ (Σ1 ∪ Σ2 ∪ {x0, . . . , xi, y}) = ∅.

Then (3.3) and (3.4) are satisfied, and so it only remains to verify (3.5). It is
routine to verify that dom(qi+1

i+1) \ dom(qi+1
i ) = {x0}. It follows from x0 /∈ N(x0)

and (3.6) that N(xi+1) ∩ Γi = (N(x0) ∩ Γ0) qi+1
i+1 . Since Γi+1 = Γi ∪ {xi+1} and

xi+1 /∈ N(xi+1)

N(xi+1) ∩ Γi = N(xi+1) ∩ Γi+1 = (N(x0) ∩ Γ0) qi+1
i+1 .

Therefore, qi+1 satisfies the inductive hypothesis. Thus by induction on i,
there is qm ∈ I(Hn)<ω such that qm = q0 ∪ {(xj , xj+1) : 0 ≤ j ≤ m − 1},
x0 /∈ ran(qm), xm /∈ dom(qm), y /∈ ran(qm) ∪ dom(qm), qm satisfies (3.3), (3.4)
and (3.5).

Note that if z ∈ Σ1 ∪ Σ2 \ {x, y} then z /∈ Γ and by (3.3) either z /∈
dom(qm) ∪ ran(qm) or z ∈ ∆. Hence

N(xm) ∩ Γm = (N(x0) ∩ Γ0) qmm

= (N(x0) ∩ (Γ ∪ {x, y} ∪ Σ1 ∪ Σ2 \∆)) qmm

∪ (N(x0) ∩∆) qmm

= (N(x0) ∩∆) qmm ,

(3.7)

since x /∈ N(x0), y /∈ dom(qm) and all incomplete components on Γ of q are of
length m.

The next step is to inductively construct an extension h = q2m ∈ I(Hn)<ω

of qm. Suppose that for i ∈ {m, . . . , 2m− 2} there is an extension qi ∈ I(Hn)<ω

of the form qi = qm ∪ {(xj , xj+1) : m ≤ j ≤ i − 1} such that x0 /∈ ran(qi),
xi /∈ dom(qi), y /∈ dom(qi) ∪ ran(qi), and

xj /∈ Σ1 ∪ Σ2 ∪∆ (3.3)

N(xj) ∩ (Σ1 ∪ Σ2 ∪ {x0, . . . , xj−1, y}) = ∅ (3.4)

N(xi) ∩ Γi =
(
N(y) ∩ dom

(
qi−2m
i

))
qi−2m
i (3.8)

for all j ∈ {1, . . . , i}.
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We will now show that qm satisfies the inductive hypothesis. Note that (3.3)
and (3.4) are the same as before, so we only need to verify (3.8). Since no
incomplete components of q0, which intersect ∆, were extended in qm, (3.3)
implies that (∆) qk0 = (∆) qkm for any k ∈ Z. It follows from the hypothesis of the
lemma that (N(x0) ∩∆) qmm ⊆ dom(qmm) and (N(x0) ∩∆) qmm = (N(y) ∩∆) q−mm .
Hence by (3.7)

N(xm) ∩ Γm = (N(x0) ∩∆) qmm = (N(y) ∩∆) q−mm .

Suppose that z ∈ N(y) ∩ dom(q−mm ). Then z ∈ dom(qm) ∪ ran(qm) = Γ ∪
∆ ∪ {x0, . . . , xm}. Note that all incomplete components of qm, intersecting Γ

not trivially, are of length m. Hence z ∈ ∆ ∪ {xm} and by (3.4) we have that
xm /∈ N(y), thus z ∈ ∆. Therefore N(y) ∩ dom(q−mm ) ⊆ N(y) ∩∆, and so

N(xm) ∩ Γm = (N(y) ∩∆) q−mm =
(
N(y) ∩ dom(q−mm )

)
q−mm .

Hence qm satisfies (3.8) and the inductive hypothesis is satisfied for i = m.
Let U = (N(xi)) qi and V = Γi \U . The sets U and V satisfy the hypothesis

of the Alice’s restaurant property and thus we can find xi+1 ∈ Hn \ Γi with
N(xi+1) ∩ Γi = U = (N(xi)) qi. Then N(xi+1) ∩ ran(qi) = (N(xi)) qi, and
so qi+1 = qi ∪ {(xi, xi+1)} ∈ I(Hn)<ω by Lemma 3.4.4 and Corollary 3.4.6.
Since xi+1 /∈ Γi, we have that xi+1 /∈ {x0, xi, y} implying that x0 /∈ ran(qi+1),
xi+1 /∈ dom(qi+1), and y /∈ dom(qi+1) ∪ ran(qi+1).

Since dom(qi) ⊆ Γi,

N(xi+1) ∩ Γi = U = (N(xi)) qi = (N(xi) ∩ Γi) qi.

It then follows from (3.8) that

N(xi+1) ∩ Γi =
(
N(y) ∩ dom

(
qi−2m
i

))
qi+1−2m
i . (3.9)

Since Σ1 ∪ Σ2 ∪∆ ⊆ Γi and xi+1 is chosen outside the set Γi it follows that
xi+1 /∈ Σ1 ∪ Σ2 ∪∆. Then xj /∈ Σ1 ∪ Σ2 ∪∆ for all j ∈ {1, . . . , i+ 1}.

We will now show that (3.4) holds for j = i + 1. First of all note that
x0, y /∈ ran(qi), and since U ⊆ ran(qi) we have that x0, y /∈ U . From (3.4) we may
deduce that xj /∈ N(xi), and thus xj+1 /∈ (N(xi)) qi = U , for all j ∈ {0, . . . , i−1}
in other words {x0, . . . , xi, y} ∩ U = ∅. It follows from the hypothesis that
Σ1 ∩ ran(q0) = ∅, and so (3.3) implies that (Σ1 ∪ {x0, y}) ∩ ran(qi) = ∅. Since
U ⊆ ran(qi), it follows that (Σ1 ∪ {x0, . . . , xi, y}) ∩ U = ∅.

It remains to show that Σ2 ∩ U = ∅. Suppose z ∈ Σ2 ∩ U . Then z ∈(
N(y) ∩ dom(qi−2m

i )
)
qi+1−2m
i by (3.9). Note that z ∈ U ⊆ ran(qi). Also it

was shown in the previous paragraph that z 6= xj for all j ∈ {0, . . . , i}. Hence
z ∈ ran(q0) ⊆ Γ ∪ ∆. However by the hypothesis of the lemma Σ2 ⊆ Hn \ Γ,
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implying that z ∈ ∆. Since xj /∈ ∆ for all j ∈ {1, . . . , i} by (3.3) and x0 /∈ ∆ by the
hypothesis of the lemma, it follows that the incomplete component of q0 containing
z was not extended in qi. Moreover, ∆ is a union of incomplete components
of q0, and z ∈ dom(q

2m−(i+1)
i ), so (z)q

2m−(i+1)
i ∈ N(y) ∩∆. By the hypothesis

of the lemma (z)q
2m−(i+1)
i ∈ ran(q2m

i ). Then there is u ∈ dom(q2m
i ) such

that (z)q
2m−(i+1)
i = (u)q2m

i , and so z = (u)qi+1
i ∈ dom(q

2m−(i+1)
i ). Hence z ∈

dom(qi), since 2m > i+1. However, z ∈ Σ2 and so z /∈ dom(q0), implying that z ∈
{x0, . . . , xi}, which contradicts (3.3). Hence U ∩ (Σ1 ∪ Σ2 ∪ {x0, . . . , xi, y}) = ∅,
and since (Σ1 ∪ Σ2 ∪ {x0, . . . , xi, y}) ⊆ Γi+1 we have that for all j ∈ {1, . . . , i+1}

N(xj) ∩ (Σ1 ∪ Σ2 ∪ {x0, . . . , xj−1, y}) = ∅.

It is routine to verify that dom(qi+1−2m
i+1 ) \ dom(qi+1−2m

i ) = {xi+1}. Since
xi+1 /∈ N(y) it follows from (3.9) that

N(xi+1) ∩ Γi =
(
N(y) ∩ dom

(
qi−2m
i

))
qi+1−2m
i+1 .

It is also routine to check that dom
(
qi+1−2m
i+1

)
\ dom

(
qi−2m
i

)
⊆ {x1, . . . , xi+1}.

Then, by (3.4), we have that xj /∈ N(y) for all j ∈ {x0, . . . , i+ 1}. Hence

N(xi+1) ∩ Γi =
(
N(y) ∩ dom

(
qi+1−2m
i+1

))
qi+1−2m
i+1 .

From the definition of Γi+1 we obtain that Γi+1 = Γi ∪ {xi+1}. However, xi+1 /∈
N(xi+1), and so

N(xi+1) ∩ Γi+1 =
(
N(y) ∩ dom

(
qi+1−2m
i+1

))
qi+1−2m
i+1 .

Therefore qi+1 satisfies the inductive hypothesis and hence we obtain q2m−1 =

q0 ∪ {(xj , xj+1) : 0 ≤ j ≤ 2m − 2} ∈ Aut(Hn)<ω such that y /∈ dom(q2m−1) ∪
ran(q2m−1), xj /∈ Σ1 ∪ Σ2, there are no edges between xj and Σ1 ∪ Σ2 for all
j ∈ {1, . . . , 2m− 1}, and

N(x2m−1) ∩ Γ2m−1 = (N(y)) q−1
2m−1.

Therefore h = q2m = q2m−1 ∪ {(x2m−1, y)} ∈ I(Hn)<ω by Lemma 3.4.4 and
Corollary 3.4.6 is as required.

Using Lemma 3.4.7 we can now prove the following result.

Lemma 3.4.8. Let q ∈ I(Hn)<ω, and let b ∈ B be such that the sets dom(q) ∪
ran(q) and dom(b)∪ran(b) are disjoint. Then there is an extension h ∈ I(Hn)<ω

of q and m ∈ N such that h2m extends b.

Proof. If necessary by extending q, using Corollary 3.4.5, we may assume that
all of the components of q have length m for some m ∈ N.
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Let dom(b) = {x1, . . . , xd} for some d ∈ N, let q0 = q, Γ = dom(q0)∪ ran(q0).
We will now inductively define qk ∈ I(Hn)<ω, and once they are defined let ∆k =

dom(qk)∪ran(qk)\Γ for k ∈ {0, . . . , d}. Suppose that for some k ∈ {0, . . . , d−1}
we have defined qk ∈ I(Hn)<ω, such that qk extends qk−1 for k ≥ 1, both Γ and
∆k are unions of incomplete components of qk, that incomplete components of
qk contained in ∆k are of length 2m+ 1, and the following are true

xj , (xj)b /∈ dom(qk) ∪ ran(qk) (3.10)

(xi)q
2m
k = (xi)b (3.11)

N(xj) ∩∆k ⊆ dom(q2m
k ) (3.12)

(N(xj) ∩∆k) q2m
k = N ((xj)b) ∩∆k (3.13)

for all i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , d}.
Let Σ1 = dom(b) and Σ2 = ran(b). We will show that the hypothesis of

Lemma 3.4.7 is satisfied by qk, xk+1, (xk+1)b, Σ1, and Σ2. First of all, note that
xk+1, (xk+1)b /∈ dom(qk) ∪ ran(qk) by condition (3.10). Also by the hypothesis
of the lemma Σ1,Σ2 ⊆ Hn \ Γ. Note that the conditions N(xk+1)) ∩ ∆k ⊆
dom(q2m

k ) and (N(xk+1) ∩ ∆k)q2m
k = N((xk+1)b) ∩ ∆k of the hypothesis of

Lemma 3.4.7 immediately follows from conditions (3.12) and (3.13). Hence to
apply Lemma 3.4.7 we only need verify that Σ1 ∩ ran(qk) = Σ2 ∩ dom(qk) = ∅.
We will do so in the next two paragraphs.

We will first show that xi /∈ ran(qk) for all i ∈ {1, . . . , d}. Suppose that
xi ∈ dom(qk) ∪ ran(qk), by the inductive hypothesis we can deduce that i ≤ k.
Since dom(b) ∩ Γ = ∅ by the hypothesis of the lemma, it then follows that
xi ∈ ∆k. Therefore, xi is on an incomplete component of length 2m + 1 and
xi ∈ dom(q2m

k ) by the inductive hypothesis, implying that xi ∈ dom(qk)\ran(qk).
Hence Σ1 ∩ ran(qk) = ∅.

The argument that Σ2 ∩ dom(qk) = ∅ is similar to above. Let (xi)b ∈ Σ2.
Suppose that (xi)b ∈ dom(qk) ∪ ran(qk). Then we can deduce that i ≤ k. Since
ran(b) ∩ Γ = ∅ by the hypothesis of the lemma, it then follows that (xi)b ∈ ∆k.
Therefore, (xi)b is on an incomplete component of length 2m+ 1 and (xi)b ∈
ran(q2m

k ) by the inductive hypothesis, implying that (xi)b ∈ ran(qk) \ dom(qk).
Hence by Lemma 3.4.7 there is an extension qk+1 ∈ I(Hn)<ω of qk such that

qk+1 = qk ∪ {(yi, yi+1) : 0 ≤ i ≤ 2m− 1}, y0 = xk+1, y2m = (xk+1)b, there are
no edges between yi and Σ1 ∪Σ2, and yi /∈ Σ1 ∪Σ2 for i ∈ {1, . . . , 2m− 1}. Then
by the choice of Σ1, Σ2, and the definition of qk+1

xj , (xj)b /∈ dom(qk+1) ∪ ran(qk+1)

(xi)q
2m
k+1 = (xi)b

for all i ∈ {1, . . . , k+ 1} and j ∈ {k+ 2, . . . , d}. It also follows from the definition
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of qk+1 that ∆k+1 = ∆k ∪ {yi : 0 ≤ i ≤ 2m} and thus ∆k+1 is a union of
incomplete components of qk+1 each of length 2m+ 1.

Let j ∈ {k + 2, . . . , d}, and let z ∈ N(xj) ∩ ∆k+1. If z ∈ ∆k, then by the
inductive hypothesis z ∈ dom(q2m

k ) ⊆ dom(q2m
k+1) and

(z)q2m
k+1 = (z)q2m

k ∈ N ((xj)b) ∩∆k ⊆ N ((xj)b) ∩∆k+1.

Otherwise z ∈ ∆k+1 \∆k. Hence z = yt for some t ∈ {0, . . . , 2m}. However, yt is
such that there are no edges between yt and dom(b) for t ∈ {1, . . . , 2m−1}. Then
z is either y0 or y2m. Since b ∈ B there are no edges between xj ∈ dom(b) and
y2m = (xk+1)b ∈ ran(b). Hence z = y0 and thus z ∈ dom(q2m

k+1). Since z ∈ N(xj)

there is an edge between xj and z = y0 = xk+1. Then it follows from the
fact that b is an isomorphism that there is an edge between (xj)b and (xk+1)b.
Hence (z)q2m

k+1 = y2m = (xk+1)b ∈ N ((xj)b) ∩ ∆k+1. Since z was arbitrary
N(xj) ∩∆k+1 ⊆ dom(q2m

k+1) and (N(xj) ∩∆k+1) q2m
k+1 ⊆ N ((xj)b) ∩∆k+1.

Let z ∈ N ((xj)b) ∩ ∆k+1. If z ∈ ∆k then it follows from the inductive
hypothesis that

z ∈ N ((xj)b) ∩∆k = (N(xj) ∩∆k) q2m
k ⊆ (N(xj) ∩∆k+1) q2m

k+1.

Otherwise z = yj for some j ∈ {0, . . . , 2m}. Similarly to above z = y2m =

(xk+1)b and since b is an isomorphism (z)q−2m
k+1 = y0 = xk+1 ∈ N(xj). Hence

z ∈ (N(xj) ∩∆k+1) q2m
k+1, as xk+1 ∈ ∆k+1, and so

(N(xj) ∩∆k+1) q2m
k+1 = N ((xj)b) ∩∆k+1

for all j ∈ {k + 2, . . . , d}.
Therefore qk+1 satisfies the inductive hypothesis and by induction there is

h = qd ∈ I(Hn)<ω an extension of q such that h2m is an extension of b.

Finally, we can prove the main result of this section, we will restate the
Theorem 3.4.1 for the benefit of the reader.

Theorem 3.4.1. Let f ∈ Aut(Hn) be such that f is not the identity. Then
Df ∩ I(Hn) is comeagre in I(Hn).

Proof. By Lemma 3.4.2

Df ∩ I(Hn) =
⋂
b∈B

{g ∈ I(Hn) : 〈f, g〉 ∩ [b] 6= ∅},

and {g ∈ Aut(Hn) : 〈f, g〉 ∩ [b] 6= ∅} is open by Lemma 3.2.7, thus it is enough
to show that {g ∈ I(Hn) : 〈f, g〉 ∩ [b] 6= ∅} is dense in I(Hn) for all b ∈ B.

Fix b ∈ B, and let q ∈ I(Hn)<ω. If necessary by extending q using Corol-
lary 3.4.5, we may assume that all of the components of q have length m for some
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m ∈ N, and that ran(b) ∪ dom(b) ⊆ dom(q). Suppose that ran(q)\dom(q) =

{x1,0, x2,0, . . . , xd,0}. Let q1,0 = q, and once qi,j is defined let Γi,j = dom(qi,j) ∪
ran(qi,j) for all i, j. We will perform an induction on the elements of the set
{1, . . . , d} × {0, . . . ,m}, ordered lexicographically, to construct qd,m ∈ I(Hn)<ω

of the form qd,m = q1,0 ∪{(xi,j , xi,j+1) : 1 ≤ i ≤ d and 0 ≤ j ≤ m− 1} such that
xi,j ∈ supp(f) and (xi,j)f /∈ ran(qd,m) ∪ dom(qd,m) for all i and all j ≥ 1. In
order to make the rest of the proof shorter, once we have defined qi,m for some
i < d, we will set qi+1,0 = qi,m, and similarly we denote Γi,−1 = ∅ for all i.

Suppose that for k ∈ {1, 2, . . . , d} and t ∈ {0, 1, . . . ,m − 1} we defined
qk,t = q1,0 ∪ {(xi,j , xi,j+1) : 1 ≤ i ≤ k and 0 ≤ j ≤ t− 1} ∈ I(Hn)<ω such that
xk,t ∈ supp(f) and

xk,t /∈ Γk,t−1 ∪ (Γk,t−1) f ∪ (Γk,t−1) f−1.

Choose x ∈ supp(f) such that x /∈ Γk,t which is possible since supp(f) is infinite.
Then by the Alice’s restaurant property there is a vertex y 6∈ Γk,t ∪ (Γk,t) f

−1 ∪
{x, (x)f} such that there is an edge between x and y, and there are no edges
between y and Γk,t ∪ (Γk,t) f

−1 ∪ {(x)f}. Let

U = (N(xk,t)) qk,t ∪ {y} and V =
(
Γk,t ∪ (Γk,t) f ∪ (Γk,t) f

−1 ∪ {(y)f}
)
\ U.

Since the subgraph (N(xk,t)) qk,t is Kn−1-free and there are no edges between
y and (N(xk,t)) qk,t, the set U is also Kn−1-free. Hence by Alice’s restaurant
property there is a vertex

xk,t+1 ∈ Hn \
(
Γk,t ∪ (Γk,t) f ∪ (Γk,t) f

−1 ∪ {y, (y)f}
)

such that N(xk,t+1)∩ (U ∪ V ) = U . It follows from ran(qk,t) ⊆ Γk,t and y /∈ Γk,t

that

N(xk,t+1) ∩ ran(qk,t) = U ∩ ran(qk,t)

= ((N(xk,t)) qk,t ∪ {y}) ∩ ran(qk,t)

= (N(xk,t)) qk,t,

and so qk,t+1 = qk,t ∪ {(xk,t, xk,t+1)} ∈ I(Hn)<ω by Lemma 3.4.4 and Corol-
lary 3.4.6.

It follows from f being an automorphism and the existence of an edge between
x and y, that there is an edge between (x)f and (y)f . However, there is no edge
between y and (x)f , thus it follows that y ∈ supp(f). The vertex y was chosen
so that y /∈ Γk,t ∪ (Γk,t) f

−1, and so y, (y)f /∈ Γk,t. Since (N(xk,t)) qk,t ⊆ Γk,t

and y 6= (y)f , it follows that (y)f /∈ U . By the choice of xk,t+1 there is an edge
between xk,t+1 and y and there are no edges between xk,t+1 and (y)f , thus
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xk,t+1 ∈ supp(f). Hence qk,t+1 satisfies the inductive hypothesis.
This way we can obtain qd,m ∈ I(Hn)<ω such that for all i and all j ≥ 1

xi,j /∈ Γi,j−1 ∪ (Γi,j−1) f ∪ (Γi,j−1) f−1.

Hence (xi,j)f /∈ Γi,j−1. Also if (xi,j)f = xi′,j′ , where (i, j) < (i′, j′) lexi-
cographically, then xi′,j′ ∈ (Γi,j) f which is impossible. Therefore, (xi,j)f /∈
ran(qd,m) ∪ dom(qd,m) and thus(

(dom(q)) qmk,mf
)
∩ (dom(qk,m) ∪ ran(qk,m)) = ∅.

Then since b ∈ B and B is closed under conjugation, u =
(
qmk,mf

)−1

bqmk,mf ∈ B.
Recall that ran(b)∪ dom(b) ⊆ dom(q), thus the partial isomorphisms qk,m and u
satisfy the hypothesis of Lemma 3.4.8. Hence there is an extension h ∈ I(Hn)<ω

of qk,m and l ∈ Z such that h2l extends u. Therefore hmfh2l (hmf)
−1 extends b

and thus
{g ∈ I(Hn) : 〈f, g〉 ∩ [b] 6= ∅} ∩ [q] 6= ∅.

Since q ∈ I(Hn)<ω was arbitrary we get that {g ∈ I(Hn) : 〈f, g〉 ∩ [b] 6= ∅} is
dense in I(Hn).

3.5 Infinitely many finite complete graphs: ωKn

In this section, we consider the ultrahomogeneous graphs ωKn for n ∈ N, n > 0.
Throughout the section we assume that n ∈ N, n > 0, is fixed and that the
connected components of ωKn are {Li : i ∈ Z}. We will first prove a couple of
technical results.

We begin by characterising the elements of IΣ(ωKn) in a lemma analogous
to Corollary 3.4.6. Recall that if f ∈ Aut(ωKn) or f ∈ Aut(ωKn)<ω then f is a
partial permutation on Z given by

(i)f = j if (Li)f = Lj .

Lemma 3.5.1. Let q ∈ Aut(ωKn)<ω be such that dom(q) is a union of connected
components of ωKn, and there is Σ ⊆ dom(q) which intersects every component
of q in exactly one vertex. Then q ∈ IΣ(ωKn)<ω if and only if q has no complete
components.

Proof. (⇒) Let g ∈ IΣ(ωKn) be an extension of q, and let C be a component of
q. Then by the hypothesis there is x ∈ Σ ∩ C. The component of g containing x
is infinite, and so C is not a complete component. Since C was arbitrary q has
no complete components.
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(⇐) Let {x0, x1, . . .} be the vertices of ωKn, and let q0 = q. Suppose that
for m ≥ 1, qm ∈ Aut((ωKn)<ω is an extension of qm−1, dom(qm) is a union of
connected components of ωKn, dom(qm) ∩ ran(qm) ⊇ {x0, . . . , xm−1}, and qm
has no complete components.

If xm ∈ dom(qm), let q′m+1 = qm. Suppose that xm ∈ ωKn \ dom(qm). Let
C be the connected component of ωKn containing xm, let C ′ be any connected
component of ωKn such that C ′ ⊆ ωKn \ ran(qm), and let φ : C −→ C ′ be a
bijection. Since dom(qm) is a union of connected components, it follows that C
is disjoint from dom(qm). Hence q′m+1 = qm∪φ is an isomorphism between finite
subgraphs of ωKn, and since ωKn is ultrahomogeneous, q′m+1 ∈ Aut(ωKn)<ω. It
follows from the definition that dom(q′m+1) is a union of connected components
of ωKn, xm ∈ dom(q′m+1), and q′m+1 has no complete components.

If xm ∈ ran(q′m+1), let qm+1 = q′m+1. Suppose that xm ∈ ωKn \ ran(q′m+1).
Then xm ∈ ωKn \ dom(q′m+1

−1
), and by the previous paragraph there is qm+1 ∈

Aut(ωKn)<ω such that q−1
m+1 extends q′m+1

−1, dom(q−1
m+1), and thus dom(qm+1),

are unions of connected components of ωKn, xm ∈ ran(qm+1) = dom(q−1
m+1),

and qm+1 has no complete components.
Therefore, the required extension qm exists for eachm ∈ N. Let g =

⋃
m∈N qm.

Then g ∈ Aut(ωKn), as dom(g) = ran(g) = ωKn. Since defining every extension
qm, no new components were created, and every component of q intersects Σ in
exactly one point, it follows that Σ is a set of orbit representatives of g. Therefore,
q ∈ IΣ(ωKn)<ω.

In the next proposition we classify when the set IΣ(ωKn) is non-empty.

Proposition 3.5.2. Let Σ be a finite subset of ωKn. Then IΣ(ωKn) is non-
empty if and only if |Σ| is a multiple of n and if r = |Σ|/n, there is partition
{P1, . . . , Pr} of Z such that, Pi is infinite and∑

j∈Pi

|Lj ∩ Σ| = n

for all i ∈ {1, . . . , r}.

Proof. (⇒) Let f ∈ IΣ(ωKn). If x ∈ Li and (x)f ∈ Lj , then, since f is an
automorphism, (Li)f = Lj . Moreover, if (Li)f

m = Li for some m ∈ Z, then
(Li)f

rm = Li for all r ∈ Z, and since Li is finite, f would have a finite cycle.
Hence (Li)f

m 6= Li for all m ∈ Z, and so every vertex in Li is on a separate
orbit of f .

Let k1, . . . , kr ∈ Z be orbit representatives of f . Since for every orbit of f
there are n orbits in f , it follows that rn = |Σ|. It follows from Lemma 3.5.1 that
f has no complete component. So (Lki) f

m =
(
Lki′

)
fm
′
if and only if i = i′ and
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m = m′. Hence

n =

∣∣∣∣∣Σ ∩
( ⋃
m∈Z

(Lki) f
m

)∣∣∣∣∣ =

∣∣∣∣∣ ⋃
m∈Z

(Σ ∩ (Lki) f
m)

∣∣∣∣∣ =
∑
m∈Z
|Σ ∩ (Lki) f

m|

for all i ∈ {1, . . . , r}. Let Pi = {(ki) f
m

: m ∈ Z} where i ∈ {1, . . . , r}. Then
{P1, . . . , Pr} is the required partition.

(⇐) For i ∈ {1, . . . , r}, let Pi = {ki,j : j ∈ Z}. Define f ∈ IΣ(ωKn) to be
such that

(ki,j)f = ki,j+1

for all i ∈ {1, . . . , r} and j ∈ Z by inductively defining f on
⋃
j∈Z Lki,j for each

i independently.
Let i ∈ {1, . . . , r} be arbitrary. Then |Lki,0 ∩Σ|+ |Lki,1 ∩Σ| ≤ n. Since Lki,0

and Lki,1 are both of size n, there exists a bijection q1 : Lki,0 −→ Lki,1 such that
for every x ∈ Lki,0 at most one of the points x and (x)q1 is in Σ. Suppose that
for some m ∈ N we have defined a bijection

q2m+1 :

m⋃
j=−m

Lki,j →
m+1⋃

k=−m+1

Lki,j

such that every incomplete component of q2m+1 intersects Σ in at most one
point.

Let t =
∑m+1
j=−m |Lki,j ∩ Σ|. Then there are n− t incomplete components of

q2m+1 which have empty intersection with Σ. Since
∑m+1
j=−m−1 |Li(j,r)∩Σ| ≤ n, it

follows that |Lki,−m−1 ∩Σ| ≤ n− t. Hence there exists a bijection φ : Lki,−m−1 →
Lki,−m such that for every x ∈ Lki,−m−1 ∩ Σ, the value (x)φ belongs to an
incomplete component of q2m+1 which contains no points from Σ. If we set
q2m+2 = q2m+1 ∪ φ, then every incomplete component of q2m+2 intersects Σ in
at most one point. Similarly we can extend q2m+2 to q2m+3 by adding a bijection
from Lki,m+1

to Lki,m+2
.

Hence by induction
fi =

⋃
m∈Z

q2m+1

is an automorphism of
⋃
j∈Z Lki,j and every orbit of fi intersects Σ exactly once.

The required f is then just the function
⋃r
i=1 fi.

Before proving the main result of this section we need a lemma analogous to
Lemma 3.4.2.

Lemma 3.5.3. Let Σ ⊆ ωKn be finite, and let F consist of those g ∈ Aut(ωKn)<ω

where the sets dom(g) and ran(g) are disjoint, both are unions of connected com-
ponents of ωKn, and g does not have any complete components. Then for every
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f ∈ Aut(ωKn)

Df ∩ IΣ(ωKn) =
⋂
p∈F
{g ∈ IΣ(ωKn) : 〈f, g〉 ∩ [p] 6= ∅}.

Proof. Recall that Df = {g ∈ Aut(ωKn) : 〈f, g〉 is dense in Aut(ωKn)}. Then

Df ∩ IΣ(ωKn) =
⋂

q∈Aut(ωKn)<ω

{g ∈ IΣ(ωKn) : 〈f, g〉 ∩ [q] 6= ∅}.

(⊆) This follows immediately since F ⊆ Aut(ωKn)<ω.
(⊇) Let g ∈

⋂
p∈F{g ∈ IΣ(ωKn) : 〈f, g〉 ∩ [p] 6= ∅}, let q ∈ Aut(ωKn)<ω,

and let
Γ =

⋃
{Li : dom(q) ∩ Li 6= ∅}.

If h ∈ Aut(ωKn) is an extension of q, x ∈ Li, and (x)h ∈ Lj , then (Li)h = Lj .
Hence (Γ)h is a union of connected components of ωKn. Let r = h|Γ. Then
[r] ⊆ [q].

Let ∆ be a subgraph of ωKn such that ∆ is isomorphic to dom(r), ∆ ∩
(dom(r) ∪ ran(r)) = ∅. Let p be any isomorphism between dom(r) and ∆. Note
that since dom(r) is a union of connected components of ωKn so is ∆. Since ωKn

is ultrahomogeneous, we have that p ∈ Aut(ωKn)<ω. Then dom(p) = dom(r),
ran(p) = dom(p−1r) = ∆ and ran(p−1r) = ran(r). Hence p, p−1r ∈ F . By the
choice of g there are h1, h2 ∈ 〈f, g〉 such that h1 ∈ [p] and h2 ∈ [p−1r]. Therefore
h1h2 ∈ [r] ⊆ [q] and h1h2 ∈ 〈f, g〉, thus 〈f, g〉 ∩ [q] 6= ∅. Since q was arbitrary,
g ∈

⋂
q∈Aut(ωKn)<ω{g ∈ IΣ(ωKn) : 〈f, g〉 ∩ [q] 6= ∅}.

We will now prove Theorem 3.1.8(ii), which we restate for the sake of conve-
nience.

Theorem 3.5.4. Let f ∈ Aut(ωKn) be such that supp(f) is infinite, and let Σ

be a finite subset of ωKn. Then Df ∩ IΣ(ωKn) is comeagre in IΣ(ωKn).

Proof. If IΣ(ωKn) is empty, then the result holds trivially. So, for the remainder
of the proof, we will suppose that IΣ(ωKn) is non-empty.

By Lemma 3.5.3

Df ∩ IΣ(ωKn) =
⋂
p∈F
{g ∈ IΣ(ωKn) : 〈f, g〉 ∩ [p] 6= ∅},

and by Lemma 3.2.7 the set {g ∈ IΣ(ωKn) : 〈f, g〉 ∩ [p] 6= ∅} is open, so it
suffices to show that the aforementioned set is dense in IΣ(ωKn).

Let p ∈ F and let q ∈ IΣ(ωKn)<ω. We will show that there exists an
extension r ∈ IΣ(ωKn)<ω of q such that every extension g ∈ IΣ(ωKn) of r
satisfies 〈f, g〉 ∩ [p] 6= ∅. Since there exists h ∈ IΣ(ωKn) an extension of q,
there is a finite subset Γ of ωKn such that dom(q) ∪ dom(p) ∪ ran(p) ⊆ Γ,
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Γ is a union of connected components of ωKn, and that h|Γ has exactly |Σ|
components each intersecting Σ exactly once and each component is of the same
length. If necessary, by considering h|Γ instead of q we may assume without
loss of generality that dom(q) is a union of connected components of ωKn, and
that q has |Σ| incomplete components each of some fixed length m, and that
Σ ∪ dom(p) ∪ ran(p) ⊆ dom(q). Then ran(q) \ dom(q) is a union of connected
components L1,0, . . . , LN,0 for some N ∈ N.

Let q1,0 = q and once qi,j is defined let Γi,j = dom(qi,j) ∪ ran(qi,j). Suppose
there is i ∈ {0, . . . ,m − 1} such that q1,i ∈ IΣ(ωKn)<ω is defined such that
dom(q1,i) is a union of connected components, and (x)qj1,i ∈ L1,j for all x ∈
L1,0 and j ∈ {1, . . . , i}. Since f has infinite support, there exists a connected
component L1,i+1 of ωKn such that (L1,i+1)f 6= L1,i+1 and

L1,i+1 ∩
(
Γ1,i ∪ (Γ1,i)f ∪ (Γ1,i)f

−1
)

= ∅.

Let φ : L1,i :−→ L1,i+1 be a bijection, and let q1,i+1 = q1,i ∪ φ. Then q1,i+1 ∈
IΣ(ωKn)<ω by Lemma 3.5.1. Also by the definition of q1,i+1 the set dom(q1,i+1) =

dom(q1,i) ∪ L1,i is a union of connected components, and (x)qi+1
1,i+1 ∈ L1,i+1 for

all x ∈ L1,0. Hence by induction there is q1,m ∈ IΣ(ωKn)<ω such that dom(q1,m)

is a union of connected components of ωKn, and (x)qj1,m ∈ L1,j for all x ∈ L1,0

and j ∈ {1, . . . ,m}.
Let q2,0 = q1,m and suppose for some i ∈ {2, . . . N} there is qi,0 ∈ IΣ(ωKn)<ω

an extension of q such that dom(qi,0) is a union of connected components of ωKn,
and (x)qki,0 ∈ Lj,k for all x ∈ Lj,0, all j ∈ {1, . . . i − 1}, and all k ∈ {1, . . . ,m}.
The same argument as before can be used to define qi,m ∈ IΣ(ωKn)<ω an
extension of q such that dom(qi,m) is a union of connected components of ωKn,
and (x)qki,m ∈ Lj,k for all x ∈ Lj,0, all j ∈ {1, . . . , i}, and all k ∈ {1, . . . ,m}.
Hence by induction dom(qN,m) is a union of connected components of ωKn, and
(x)qkN,m ∈ Lj,k for all x ∈ Lj,0, all j ∈ {1, . . . , N}, and all k ∈ {1, . . . ,m}.

We will show that qN,m is the desired extension of q. Let r = qN,m. If x ∈ Li,0
for some i ∈ {1, . . . , N} and j ∈ {1, . . . ,m}, then

(x)rj ∈ Li,j ⊆ Γi,j (3.14)

and so by the choice of Li,j we have (x)rj /∈ Γi,j−1 ∪ (Γi,j−1)f ∪ (Γi,j−1)f−1 for
all j ∈ {1, . . . ,m}. In particular,

(x)rjf 6∈ Γi,j−1 and (x)rjf−1 6∈ Γi,j−1 (3.15)

for all i ∈ {1, . . . , N} and j ∈ {1, . . . ,m}.
Let x ∈ Li,0 and y ∈ Lj,0 for any i, j ∈ {1, . . . , N}. We will show that(

(x)rk
)
f 6= (y)rl for all k ∈ {1, . . . ,m} and l ∈ {−m+ 1, . . . ,m}. If i = j and
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k = l, then, since (x)rk, (y)rl ∈ Li,k by (3.14), and (Li,k)f 6= Li,k by the choice
of Li,j , it follows that

(
(x)rk

)
f 6= (y)rl. Hence we may assume that (i, k) 6= (j, l).

There are three cases to consider.
If l ≤ 0, then (y)rl ∈ dom(q1,0) ∪ ran(q1,0) = Γ1,0 ⊆ Γi,k and (x)rkf /∈ Γi,k

by (3.15), and so (x)rkf 6= (y)rl.
Suppose that i > j and l > 0, or i = j and k > l > 0. Then (y)rl ∈ Γj,l by

(3.14). By the assumption of this case, Γj,l ⊆ Γi,k−1 and ((x)rk)f 6∈ Γi,k−1 by
(3.15). Thus ((x)rk)f 6= (y)rl, in this case.

Suppose that i < j and l > 0, or i = j and k < l. Then Γi,k ⊆ Γj,l−1.
Since ((y)rl)f−1 /∈ Γj,l−1 by (3.15), it follows that ((y)rl)f−1 6∈ Γi,k, and so
((x)rk)f 6= (y)rl. Therefore, in all three cases ((x)rk)f /∈ ran(r) ∪ dom(r).

Recall that dom(p) ∪ ran(p) ⊆ dom(q) and that every point in dom(q) can
be expressed as (x)rj for some x ∈

⋃N
i=1 Li,0 and j ∈ {−m+ 1, . . . ,−1}. Define

u = (rmf)−1p(rmf). Since p has no complete components, the same is true for
u. Also

dom(u) ∪ ran(u) ⊆ {
(
(x)rj

)
f : 1 ≤ j ≤ m, and x ∈ Li,0 for some i}

and hence (dom(u) ∪ ran(u)) ∩ (dom(r) ∪ ran(r)) = ∅.
Suppose dom(u)\ ran(u) =

⋃M
k=1 Lik , and let nk be the largest integer such

that (Lik)unk is defined for some k ∈ {1, . . . ,M}. Define v to be an extension
of u by bijections (Lik)unk −→ Lik+1

for all k ∈ {1, . . . ,M − 1}. Then the
domain of v is a union of connected components of the graph, and v has no
complete components, since neither p nor u do. Finally choose any bijection
ψ : LN,m −→ Li1 and define h = r ∪ ψ ∪ v. Then the number of components
in h is |Σ| and so h ∈ IΣ(ωKn)<ω by Lemma 3.5.1. Let g ∈ IΣ(ωKn) be an
extension of h. By definition of u we have that (hmf)h(hmf)−1 extends p, thus
〈f, g〉∩[p] 6= ∅ and g ∈ [q]. Therefore the set {g ∈ IΣ(ωKn) : 〈f, g〉 ∩ [p] 6= ∅} is
dense in IΣ(ωKn).

The following is an immediate corollary of Lemma 3.2.8 and Theorem 3.5.4.

Corollary 3.5.5. Let f ∈ Aut(ωKn) be such that supp(f) is infinite. Then
Df ∩ I(ωKn) is comeagre in I(ωKn).

3.6 Finitely many infinite complete graphs: nKω

In this section we will consider the ultrahomogeneous graph nKω for a fixed n ∈ N
such that n ≥ 2. Throughout this section let L1, L2, . . . , Ln be the connected
components of nKω. Recall that, if f ∈ Aut(nKω) and Σ ⊆ nKω is finite, then

Af = {g ∈ Aut(nKω) : 〈f, g〉 = Sn}
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and
Af,Σ = {g ∈ Af : Σ is a set of orbit representatives of g}.

It follows from Theorem 3.1.3, that if f ∈ Aut(nKω) such that f 6= id and n ≥ 3

thenAf 6= ∅ if and only if n 6= 4, or n = 4 and f /∈ {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
We have shown in Section 3.2 that Af and Af,Σ are Baire spaces and thus

we can consider their comeagre subsets.
The following lemma combined with Lemma 3.2.5 (i.e. the fact that Af is

closed) demonstrates that Df is not dense, and thus not comeagre, in any set
which is not contained in Af .

Lemma 3.6.1. Let f ∈ Aut(nKω). If g ∈ Aut(nKω) is such that 〈f, g〉 is dense
in Aut(nKω), then 〈f, g〉 = Sn. In other words, Df ⊆ Af .

Proof. Let g ∈ Aut(nKω) be such that 〈f, g〉 is dense in Aut(nKω). Let σ ∈ Sn
be arbitrary. Then it is straightforward to verify that there is q ∈ Aut(nKω)<ω

such that q = σ. Since 〈f, g〉 is dense, it follows that there is an element h ∈ 〈f, g〉
which extends q. Therefore σ = h ∈ 〈f, g〉 which implies that g ∈ Af .

Let f ∈ Aut(nKω). Then f is called non-stabilis ing if for all Γ ( nKω,
all x ∈ Γ and all q ∈ A<ωf there is g ∈ [q] ∩ Af such that (x)h /∈ Γ for
some h ∈ 〈f, g〉. We say that f ∈ Aut(nKω) is stabilis ing if it is not
non-stabilising.

Proposition 3.6.2. Let f ∈ Aut(nKω) be such that Af 6= ∅. Then f is
stabilising if and only if there is a finite subset Λ of nKω such that f stabilises
Λ setwise and

|Li ∩ Λ| = |Lj ∩ Λ|

for all i, j ∈ {1, 2, . . . , n}.

Proof. (⇒) Let f be a stabilising automorphism of nKω. By the definition,
there is ∆ ( nKω, x ∈ ∆ and q ∈ A<ωf such that for all g ∈ [q] ∩ Af and all
h ∈ 〈f, g〉 we have that (x)h ∈ ∆. If necessary by taking an extension of q, we
may assume without loss of generality that q ∈ Sn. Fix any g ∈ [q] ∩ Af , and
let Γ = {(x)h : h ∈ 〈f, g〉} ⊆ ∆. Then the subgroup 〈f, g〉 stabilises Γ. Hence f
also setwise stabilises Γ. Let i, j ∈ {1, . . . , n} be arbitrary. Since g ∈ Af we may
choose h ∈ 〈f, g〉 such that (i)h = j. By definition Γ is setwise stabilised by h
and thus

(Li ∩ Γ)h ⊆ Lj ∩ Γ and (Lj ∩ Γ)h−1 ⊆ Li ∩ Γ,

as both h and h−1 are bijections. It follows that |Li ∩ Γ| = |Lj ∩ Γ|. Since 〈f, g〉
also setwise stabilises nKω \Γ, the same argument shows that |Li ∩ (nKω \Γ)| =
|Lj ∩ (nKω \ Γ)|.

Finally, suppose that both Γ and nKω \ Γ are infinite. Then for every i ∈
{1, . . . , n} the sets (Γ∩Li) \ (dom(q)∪ ran(q)) and ((nKω \Γ)∩Li) \ (dom(q)∪
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ran(q)) are non-empty. Hence for every i ∈ {1, . . . , n} there are x ∈ Li∩Γ and an
extension g ∈ Aut(nKω) of q such that (x)g ∈ nKω \ Γ, contradicting the choice
of Γ. Therefore either Γ or nKω \ Γ is finite, and since both sets are stabilised
setwise by f , one of them is the required set Λ.

(⇐) Letm = |Li∩Λ| for any, and all, i ∈ {1, 2, . . . , n} and let Li∩Λ = {γ(i, j) :

1 ≤ j ≤ m}. Since Af is non-empty there is σ ∈ Sn such that 〈f, σ〉 = Sn.
Define a finite isomorphism q : Λ −→ Λ such that (γ(i, j)) q = γ((i)σ, j) for all
j ∈ {1, . . . ,m}. Then q = σ and so q ∈ A<ωf . Moreover, Λ is a union of cycles of
q and hence 〈f, g〉 stabilises Λ for any g ∈ [q]. Therefore, f is stabilising.

The following theorem is a restatement of Theorem 3.1.8(iii), and it is the
main result in this section.

Theorem 3.6.3. Let f ∈ Aut(nKω). Then f is non-stabilising if and only if
Df is comeagre in Af . Furthermore, if f is non-stabilising and Σ is any finite
subset of nKω, then Df ∩ Af,Σ is comeagre in Af,Σ.

If f is stabilising, and Df ∩ Af,Σ is comeagre in Af,Σ for all finite Σ, then
by Lemma 3.2.8, Df ∩ Af is comeagre in Af and so, by Theorem 3.6.3, f is
non-stabilising, which is a contradiction. Hence if f is stabilising, then there
exists Σ such that Df,Σ ∩ Af,Σ is not comeagre in Af,Σ. It is therefore natural
to consider the following question.

Open question. For which stabilising f and finite sets Σ, is Df∩Af,Σ comeagre
in Af,Σ?

We will prove Theorem 3.6.3 in a series of lemmas. We begin by showing
several ways to extend partial isomorphisms in A<ωf,Σ, which we will have to do
ad infinitum in the proof of Theorem 3.6.3.

Lemma 3.6.4. Let q ∈ Aut(nKω)<ω be such that q ∈ Sn, and let h = q∪{(x, y)}.
Then h ∈ Aut(nKω)<ω if and only if there is a ∈ {1, . . . , n} such that x ∈
La \ dom(q) and y ∈ L(a)q \ ran(q).

Proof. (⇒) Suppose that h ∈ Aut(nKω)<ω and let a ∈ {1, . . . , n} be such that
x ∈ La. Since q ∪ {(x, y)} is a partial isomorphism, it follows that x /∈ dom(q)

and y /∈ ran(q). Then (x)h ∈ L(a)h by the definition of h. Finally, since h = q, it
follows that x ∈ La \ dom(q) and y = (x)g ∈ L(a)q \ ran(q).

(⇐) Let g ∈ Aut(nKω) be an extension of q. Since g is an isomorphism,
it follows that (x)g, y ∈ L(a)q. Hence the transposition ((x)g, y) ∈ Aut(nKω)

and thus g ◦ ((x)g, y) ∈ Aut(nKω). Since (x)g, y /∈ ran(q), it then follows that
g ◦ ((x)g, y) is an extension of h. Therefore h ∈ Aut(nKω)<ω.

Roughly speaking, in the next lemma, we show how to extend a partial
isomorphism with a set of orbit representatives to an automorphism with the
same set of orbit representatives.
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Lemma 3.6.5. Let q ∈ Aut(nKω)<ω be such that q ∈ Sn, and let Σ be a
finite subset of dom(q) such that |Σ ∩ C| ≤ 1 for every component C of q, with
equality holding if C is complete. Suppose that for each i ∈ {1, . . . , n} there is
j ∈ {1, . . . , n} such that (j)qm = i, for some m ∈ Z, and Lj ∩Σ contains a point
in an incomplete component of q. Then there is an extension g ∈ Aut(nKω) of q
such that Σ is a set of orbit representatives of g, every incomplete component of q is
contained in an infinite orbit of g, and (x)g /∈ dom(q) for all x ∈ ran(q)\dom(q).

Proof. For each x ∈ ran(q) \ dom(q) there is a ∈ {1, . . . , n} such that x ∈ La,
and there is y ∈ L(a)q \ (dom(q) ∪ ran(q)). Then by Lemma 3.6.4 the mapping
q′ = q ∪ {(x, y)} is in Aut(nKω)<ω and (x)q′ = y /∈ dom(q). Repeating this for
each vertex in ran(q)\dom(q) we obtain an extension q′′ ∈ Aut(nKω)<ω of q such
that (x)q′′ /∈ dom(q) for all x ∈ ran(q)\dom(q) and (ran(q)\dom(q)) ⊆ dom(q′′).
Hence (x)g = (x)q′′ /∈ dom(q) for every extension g ∈ Aut(nKω) of q′′ and every
x ∈ ran(q) \ dom(q).

Suppose that O is an incomplete component of q′′ such that O ∩ Σ = ∅. Let
y ∈ O∩dom(q′′)\ran(q′′). Then there is a ∈ {1, . . . , n} such that y ∈ La. It follows
from the hypothesis that there is b ∈ {1, . . . , n}, y0 ∈ Lb∩ran(q′′)\dom(q′′) such
that the component of q′′ containing y0 intersects Σ non-trivially, and m ∈ N
such that (b)qm = a. Successively for each i ∈ {1, . . . ,m− 1} choose

yi ∈ L(b)qi \ (dom(q′′) ∪ ran(q′′) ∪ {y1, . . . , yi−1}) ,

and let ym = y. Then by repeated application of Lemma 3.6.4 we have that
q′′ ∪ {(yi−1, yi) : 1 ≤ i ≤ m} ∈ Aut(nKω)<ω. If we repeat this for every
incomplete component of q′′ which has empty intersection with Σ, we obtain
q0 ∈ Aut(nKω)<ω an extension of q′′ such that every component of q0 intersects
Σ in exactly one point.

Let nKω = {xi : i ∈ N}, and suppose that for some j ∈ N we have defined qj ∈
Aut(nKω)<ω such that incomplete components of q are contained in incomplete
components of qj , Σ consists of exactly one point from every component of qj ,
and

{x1, . . . , xj} ⊆ dom(qj) ∩ ran(qj).

Suppose xj+1 /∈ dom(qj) ∩ ran(qj). There are three cases to consider.
Suppose that xj+1 ∈ ran(qj) \ dom(qj). Then by Lemma 3.6.4 there is an

extension qj+1 = qj ∪{(xj+1, y)} ∈ Aut(nKω)<ω for some y /∈ dom(qj)∪ ran(qj).
Suppose that xj+1 ∈ dom(qj)\ran(qj). Then by Lemma 3.6.4 there is an extension
q−1
j+1 = q−1

j ∪ {(xj+1, y)} ∈ Aut(nKω)<ω for some y /∈ dom(qj) ∪ ran(qj).
Finally, suppose that xj+1 ∈ La \ (dom(qj) ∪ ran(qj)) for some a. It follows

from the hypothesis that there are b ∈ {1, . . . , n} and y0 ∈ Lb∩ ran(qj)\dom(qj)

such that the component of qj containing y0 intersects Σ non-trivially, such that
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(b)qm = a for some m ∈ N. Successively for each i ∈ {1, . . . ,m− 1} choose

yi ∈ L(b)qi \ (dom(qj) ∪ ran(qj) ∪ {y1, . . . , yi−1}) .

Also let ym = xj+1. Then by repeated application of Lemma 3.6.4 we have that
qj ∪ {(yi−1, yi) : 1 ≤ i ≤ m} ∈ Aut(nKω)<ω. Now, we fall into the first case and
we can define qj+1 as before.

In all three cases, we have defined an extension qj+1 satisfying the inductive
hypothesis. Let

g =
⋃
j∈N

qj .

Then g ∈ Aut(nKω), the infinite orbits of g are in one to one correspondence
with incomplete components of q0, and finite orbits of g are in one to one
correspondence with complete components. Recall that every component of q0

intersects Σ in exactly one point. Hence Σ is a set of orbit representatives.

We can now prove an easy corollary.

Corollary 3.6.6. Let f ∈ Aut(nKω) and let Σ ⊆ nKω be finite. Let q ∈ A<ωf,Σ
be such that Σ ⊆ dom(q) and q ∈ Sn. Then there is an extension g ∈ Af,Σ of q
such that every incomplete component of q is contained in an infinite orbit of g,
and (x)g /∈ dom(q) for all x ∈ ran(q) \ dom(q).

Proof. Since q ∈ A<ωf,Σ, the set Σ intersects every incomplete component of q in
at most one point, and every complete component in exactly one point.

If i ∈ {1, . . . , n} is arbitrary, then, since every extension h ∈ Af,Σ of q has
|Σ| orbits, it follows that there is at least one infinite orbit C of h intersecting
Li non-trivially. Since Σ is a set of orbit representatives, there exists x ∈ C such
that x ∈ Σ ∩ Lj for some j ∈ {1, . . . , n} such that (j)qm = i for some m ∈ Z. In
particular, since C is an infinite orbit of h, x is on an incomplete component
of q, and so q satisfies the hypothesis of Lemma 3.6.5 from which the corollary
follows.

In the next lemma, as a further consequence of Lemma 3.6.5, we show that
the left-to-right implication of the first part of Theorem 3.6.3, is a consequence
of the second part.

Lemma 3.6.7. Let f ∈ Aut(nKω) be such that Df ∩ Af,Σ is comeagre in Af,Σ
for all finite sets Σ ⊆ nKω. Then Df is comeagre in Af .

Proof. Let q ∈ A<ωf . We will show that there is an extension g of q with finitely
many orbits, and so the result will follow from Lemma 3.6.5. First, note that there
is k ∈ Aut(nKω) extending q, since nKω is ultrahomogeneous. Hence there exists
an extension q′ ∈ Aut(nKω) of q such that q′ ∈ Sn. If necessary by considering
q′ instead of q, we can assume that q ∈ Sn. Then all extensions h ∈ Aut(nKω)<ω
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of q are also in A<ωf . For all i ∈ {1, . . . , n}, let xi ∈ Li \ (dom(q) ∪ ran(q)). Then
by applying Lemma 3.6.4 repeatedly we can construct h ∈ A<ωf an extension of
q such that each vertex xi is on an incomplete component of h. Fix any finite
Σ ⊆ nKω such that Σ intersects every component of h exactly once. Since h ∈ Sn,
for each i ∈ {1, . . . , n} there is an incomplete component containing xi, and
by the choice of Σ there is j ∈ {1, . . . , n} such that Σ ∩ Lj is non-empty and
(j)h

m
= i for some m ∈ Z. Then by Lemma 3.6.5 there is g an extension of q

with finitely many orbits. Therefore we are done by Lemma 3.2.8.

The next result enables us to extend partial isomorphisms in A<ωf,Σ.

Lemma 3.6.8. Let f ∈ Aut(nKω) and let Σ ⊆ nKω be finite. Let q ∈ A<ωf,Σ be
such that Σ ⊆ dom(q) and q ∈ Sn. Suppose h = q ∪ {(x, y)} ∈ Aut(nKω)<ω for
some x /∈ dom(q) and y /∈ dom(q) ∪ ran(q) such that x 6= y. Then h ∈ A<ωf,Σ.

Proof. Since q ∈ Aut(nKω)<ω there is r ∈ Aut(nKω)<ω extending q, such
that x ∈ ran(r) \ dom(r). By Corollary 3.6.6 there is g ∈ Af,Σ such that every
incomplete component of r is contained in an infinite orbit of g and (x)g /∈ dom(r),
and so (x)g /∈ dom(q). Note that if (x)g = x, then {x} is an orbit of g and
therefore x ∈ Σ. However, Σ ⊆ dom(q), which contradicts the assumption that
x /∈ dom(q). Hence (x)g 6= x.

Since x /∈ dom(q) and g is an extension of q, it follows that (x)g /∈ ran(q).
Then (x)g, y /∈ dom(q)∪ran(q) and since h ∈ Aut(nKω)<ω and (x)g ∈ Aut(nKω)

it follows that (x)g and y are in the same connected component of nKω. Then
the transposition ((x)g y) swapping (x)g and y is in Aut(nKω) and so

g′ = ((x)g y) g ((x)g y) ∈ Aut(nKω).

It follows from (x)g 6= x, (x)g 6= y, and (x)g, y /∈ dom(q) ∪ ran(q) that g′ is an
extension of h. Therefore h ∈ A<ωf,Σ.

The following result gives a sufficient condition when two non-complete
components of an element of A<ωf,Σ can be combined.

Lemma 3.6.9. Let f ∈ Aut(nKω) and let Σ ⊆ nKω be finite, let q ∈ A<ωf,Σ be
such that Σ ⊆ dom(q) and suppose there exist A,B distinct incomplete compo-
nents of q such that at most one of A and B intersects Σ non-trivially. Suppose
that

q|dom(q)\A = q|dom(q)\B ∈ Sn

and let h = q ∪ {(x, y)} ∈ Aut(nKω)<ω, for some x ∈ A\dom(q) and y ∈
B\ ran(q). Then h ∈ A<ωf,Σ.

Proof. Assume without loss of generality that B ∩Σ = ∅ and B = {y1, . . . , ym}
for some m ∈ N such that y1 = y and (yi)q = yi+1 for all i ∈ {1, . . . ,m − 1}.
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The proof of the case when B ∩ Σ 6= ∅ can be obtained by apply the argument
below to q−1 and h−1.

For k ∈ {1, . . . ,m} we will define hk ∈ A<ωf,Σ such that hk extends hk−1 for
k ≥ 1, Σ ⊆ dom(hk), hk ∈ Sn,

(x)hik = yi for 1 ≤ i ≤ k, yk /∈ dom(hk),

and
yi /∈ dom(hk) ∪ ran(hk) for k < i.

If k = 1, then we define h1 = h|dom(h)\B. By Lemma 3.6.8, it follows that
h1 = q|dom(q)\B ∪ {(x, y)} ∈ A<ωf,Σ, and so h1 satisfies the required conditions.

Suppose k > 1. Then by Lemma 3.6.8 we have that hk+1 = hk∪{(yk, yk+1)} ∈
A<ωf,Σ. Since dom(hk+1) = dom(hk) ∪ {yk} and ran(hk+1) = ran(hk) ∪ {yk+1}, it
follows that hk+1 satisfies the required conditions.

Therefore after repeating this process m times, we obtain hm ∈ A<ωf,Σ which
extends h1. It follows from the definition of hm that hm = h.

Now we can characterise when the set Af,Σ is non-empty.

Lemma 3.6.10. Let f ∈ Aut(nKω) and let Σ be a finite subset of nKω. Then
Af,Σ is non-empty if and only if n 6= 4, or n = 4 and f is not an element of
{(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, and there exists σ ∈ Sn such that 〈f, σ〉 = Sn

and for all i ∈ {1, . . . , n} ⋃
j∈Z

L(i)σj

 ∩ Σ 6= ∅.

Proof. (⇒) Suppose that g ∈ Af,Σ. Since g ∈ Af,Σ ⊆ Af , it follows from the
definition of Af that 〈f, g〉 = Sn. Hence by Theorem 3.1.3 we have n 6= 4, or
n = 4 and f /∈ {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Finally, let i ∈ {1, . . . , n}. Then there is x ∈ Σ and m ∈ N such that
(x)gm ∈ Li, since Σ is a set of orbit representatives. Then

x ∈ L(i)g−m ⊆
⋃
j∈Z

L(i)gj .

(⇐) By Theorem 3.1.3 there is σ ∈ Sn such that 〈f, σ〉 = Sn. It is routine
to show that there is q ∈ Aut(nKω)<ω such that Σ ⊆ dom(q), q = σ and q has
precisely |Σ| many components, all of which are incomplete, and Σ intersects
them in precisely one point.

Since all components of q are incomplete, it satisfies the hypothesis of
Lemma 3.6.5 and hence there is g ∈ Af,Σ an extension of q.
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In the next lemma, we give a decomposition of Df ∩ Af,Σ as an intersection
of sets that we will later prove to be open and dense, under the hypothesis of
Theorem 3.6.3.

Lemma 3.6.11. Let B ⊆ Aut(nKω)<ω be such that p ∈ B if and only if dom(p)

and ran(p) are disjoint, and p = id. Then

Df ∩ Af,Σ =
⋂
p∈B
{g ∈ Af,Σ : 〈f, g〉 ∩ [p] 6= ∅}.

Proof. Similarly to Lemmas 3.4.2 and 3.5.3,

Df ∩ Af,Σ =
⋂

q∈Aut(nKω)<ω

{g ∈ Af,Σ : 〈f, g〉 ∩ [q] 6= ∅}.

(⊆) This follows immediately since B ⊆ Aut(nKω)<ω.
(⊇) Let g ∈

⋂
p∈B{g ∈ Af,Σ : 〈f, g〉 ∩ [p] 6= ∅}, and let q ∈ Aut(nKω)<ω be

arbitrary. Since g ∈ Af,Σ there is h ∈ 〈f, g〉 such that h = q−1.
Let p ∈ Aut(nKω)<ω be such that p = id, dom(p) = dom(hq) and ran(p) ∩

(dom(hq)∪ran(hq)) = ∅. Then dom(p−1hq) = ran(p) and ran(p−1hq) = ran(hq),
so p, p−1hq ∈ B. Hence there are h1, h2 ∈ 〈f, g〉 such that h1 ∈ [p] and h2 ∈
[p−1hq]. Therefore h−1h1h2 ∈ [q], so

g ∈
⋂

q∈Aut(nKω)<ω

{g ∈ Af,Σ : 〈f, g〉 ∩ [q] 6= ∅},

as required.

Let w be a freely reduced word over the alphabet {α, β}, in other words
w = αn1βn2 · · ·βn2N for some N ∈ N and n1, . . . , n2N ∈ Z with ni 6= 0 for
all i ∈ {2, . . . , 2N − 1}. Also let f ∈ Aut(nKω) be fixed and suppose that
p ∈ Aut(nKω)<ω. Then define

w(p) = pn1fn2pn3 · · · pn2N−1fn2N

where the product on the right hand side is the usual product of partial permuta-
tions. Note that Aut(nKω)∪Aut(nKω)<ω forms a subsemigroup of the semigroup
of all isomorphisms between induced subgraphs of nKω. Hence, if we denote by
F (α, β) the free group on the alphabet {α, β}, then w(p) is simply the image of w
under the semigroup homomorphism φ : F (α, β) −→ Aut(nKω) ∪Aut(nKω)<ω

such that (α)φ = p and (β)φ = f .

Lemma 3.6.12. Let n ∈ N be such that n ≥ 2 and let f ∈ Aut(nKω) be non-
stabilising. If n = 2 and f = id, then further suppose that fix(f) is finite. Let
Γ,∆ ⊆ nKω be finite and disjoint, and let q ∈ A<ωf,Σ be such that q ∈ Sn and
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ran(q)∩∆ = ∅. Then there is an extension h ∈ A<ωf,Σ of q and w ∈ F (α, β) such
that

w(h) = id, ran(h) ∩∆ = ∅, Γ ⊆ dom (w(h)) ,

and
(Γ)w(h) ∩ dom(h) = ∅.

Moreover, (Γ)w(h)hm ∩ dom(q) = ∅ for all m ∈ Z, i.e. no vertex in (Γ)w(h) is
on an incomplete component of h, which extends an incomplete component of q.

The proof of Lemma 3.6.12 is rather involved, so before giving its proof we
will demonstrate how the lemma can be used to prove Theorem 3.6.3.

We will first prove an easy special case of Theorem 3.6.3.

Lemma 3.6.13. Let f ∈ Aut(2Kω) be non-stabilising such that f = id and
fix(f) is infinite, and let Σ ⊆ 2Kω be finite. Then Df ∩ Af,Σ is comeagre in
Af,Σ.

Proof. By Lemmas 3.2.7 and 3.6.11 we only need to show that {g ∈ Af,Σ :

〈f, g〉 ∩ [p] 6= ∅} is dense in Af,Σ for all p ∈ B. Let q ∈ A<ωf,Σ and suppose,
without loss of generality, that dom(p) ∪ ran(p) ∪ Σ ⊆ dom(q) and q ∈ S2. Since
f = id, it follows that q = (1 2).

Let L1 and L2 be the connected components of 2Kω. If necessary by relabelling
the connected components we may assume that L2 ∩ fix(f) is infinite. Note that
Af = Aut(2Kω), since Sym(2) is a cyclic group. It follows from Proposition 3.6.2
that if f has a finite cycle contained in L1, then f is stabilising. Hence all of the
cycles of f contained in L1 are infinite.

Let m1 ∈ Z be such that (L1 ∩ dom(p)) fm1 is disjoint from dom(q)∪ ran(q).
By Lemmas 3.6.4 and 3.6.8 there is q1 ∈ A<ωf,Σ an extension of q such that
(dom(p)) fm1 ⊆ dom(q1) and (L1 ∩ dom(p)) fm1q1 ⊆ fix(f) \ dom(q1), which is
possible since L2∩fix(f) is infinite and (L1)fm1q1 ⊆ L2. The extension q1 can be
chosen so that components of q1 containing any vertices from (L1 ∩ dom(p)) fm1

do not extend any of the components of q. Since (L2 ∩ dom(p)) fm1q1 ⊆ L1, there
is m2 ∈ Z such that (L2 ∩ dom(p)) fm1q1f

m2 is disjoint from dom(q1) ∪ ran(q1).
Hence (dom(p)) fm1q1f

m2 ∩ dom(q1) = ∅.
Let m3 ∈ Z be such that (L1 ∩ ran(p)) fm3 is disjoint from dom(q1) ∪

ran(q1). By Lemmas 3.6.4 and 3.6.8 there is q2 ∈ A<ωf,Σ an extension of q1

such that (ran(p)) fm3 ⊆ ran(q2), (L1 ∩ ran(p)) fm3q−1
2 ⊆ fix(f) \ ran(q2) and

(dom(p)) fm1q2f
m2 is disjoint from dom(q2). The extension q2 can be chosen so

that components of q2 containing any vertices from (L1 ∩ ran(p)) fm3 do not
extend any of the components of q1, and also that every vertex of (L1∩ran(p))fm3

is on a different incomplete components of q2. Then there is m4 ∈ Z such that
(L2 ∩ ran(p)) fm3q−1

2 fm4 is disjoint from dom(q2)∪ ran(q2)∪(dom(p))fm1q2f
m2 .
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Hence

(dom(p)) fm1q2f
m2 ∩ dom(q2) = ∅ and (ran(p)) fm3q−1

2 fm4 ∩ ran(q2) = ∅.

Let dom(p) = {x1, . . . , xk}. Then for all i ∈ {1, . . . , k} there are

yi ∈ 2Kω \
(
dom(q2) ∪ ran(q2) ∪ (dom(p))fm1q2f

m2 ∪ (ran(p))fm3q−1
2 fm4

)
such that h′ = q2 ∪ {((xi)fm1q2f

m2 , yi) : 1 ≤ i ≤ k} ∈ A<ωf,Σ by Lemmas 3.6.4
and 3.6.8. Let A be the incomplete component of h′ containing (x1)fm1q2fm2

and let B be the incomplete component of h′ containing (x1)pfm3q−1
2 fm4 . Then

y1 ∈ A, and so |A| ≥ 2. If |B| = 1, then h′ ∪ {(y1, (x1)pfm3q−1
2 fm4)} ∈ A<ωf,Σ

by Lemmas 3.6.4 and 3.6.8, as (x1)fm1q2f
m2 and (x1)pfm3q−1

2 fm4 are in the
same connected component of 2Kω. If (x1)p ∈ L2, then by the choice of m4,
(x1)pfm3q−1

2 fm4 /∈ dom(h′) ∪ ran(h′), and so |B| = 1, and we have already
considered this case. Suppose that |B| ≥ 2. Then (x1)p ∈ L1 and by the
choice of q2 the incomplete component of h′ containing (x1)pfm3q−1

2 fm4 , in
other words B, does not extend an incomplete component of q1. Since A is
an incomplete component of q1 with y1 adjoined, it follows that B intersects
Σ trivially, and A and B are distinct. Hence h′|dom(h′)\A = h′|dom(h′)\B =

(1 2), and thus h′ ∪ {(y1, (x1)pfm3q−1
2 fm4)} ∈ A<ωf,Σ by Lemma 3.6.9. Re-

peating this argument for i ∈ {2, . . . , k}, it can be shown that h = q2 ∪
{((xi)fm1q2f

m2 , yi), (yi, (xi)pf
m3q−1

2 fm4) : 1 ≤ i ≤ k} ∈ A<ωf,Σ. Hence

fm1gfm2g2f−m4gf−m3 ∈ [p]

for every g ∈ [h] ∩ Af,Σ. Therefore {g ∈ Af,Σ : 〈f, g〉 ∩ [p] 6= ∅} intersects [q]

non-trivially, and since q was arbitrary, is dense in Af,Σ.

Next, we give the proof of Theorem 3.6.3 modulo the proof of Lemma 3.6.12,
which is given in the next section.

Proof of Theorem 3.6.3. If Af = ∅, then f is non-stabilising andDf is comeagre
in Af . Hence we may assume that Af 6= ∅.

Suppose that f is stabilising. By the definition, there is Γ ( nKω, x ∈ Γ and
q ∈ A<ωf such that for all g ∈ [q] ∩ Af and all h ∈ 〈f, g〉 we have that (x)h ∈ Γ.
Let y /∈ Γ. Then p = {(x, y)} ∈ Aut(nKω)<ω. Then 〈f, g〉 ∩ [p] = ∅ and thus
g /∈ Df implying that Df is not dense in Af . Hence Df ∩Af is not comeagre in
Af .

If f is non-stabilising and Σ is a finite subset of nKω, then it suffices, by
Lemma 3.6.7, to show that Df ∩ Af,Σ is comeagre in Af,Σ. If Af,Σ = ∅, the
result is trivial. Hence we may assume that Af,Σ 6= ∅. If n = 2, f = id, and fix(f)

is infinite we are done by Lemma 3.6.13. Hence we may, additionally assume
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that n ≥ 2, and that if n = 2 and f = id, then fix(f) is finite.
By Lemmas 3.2.7 and 3.6.11 we only need to show that {g ∈ Af,Σ : 〈f, g〉 ∩

[p] 6= ∅} is dense in Af,Σ for all p ∈ P. Let q ∈ A<ωf,Σ and suppose, without loss
of generality, that dom(p) ∪ ran(p) ∪ Σ ⊆ dom(q) and q ∈ Sn.

Apply Lemma 3.6.12 with ∆ = ∅ and Γ = dom(p). Then there is an extension
q′1 ∈ A<ωf,Σ of q and ω1 ∈ F (α, β) such that

ω1(q′1) = id, dom(p) ⊆ dom (ω1(q′1)) ,

and
(dom(p))ω1(q′1) ∩ dom(q′1) = ∅.

Suppose (dom(p))ω1(q′1) \ ran(q′1) is non-empty. Let y ∈ (dom(p))ω1(q′1) \
ran(q′1) and let a ∈ {1, . . . , n} be such that y ∈ La. Then there is

x ∈ L
(a)q′1

−1 \ (dom(q′1) ∪ ran(q′1) ∪ (dom(p))ω1(q′1)) .

It follows from Lemma 3.6.4 that q′′1 = q′1 ∪ {(x, y)} ∈ Aut(nKω)<ω and thus in
A<ωf,Σ by Lemma 3.6.8. Then

ω1(q′′1 ) = id, dom(p) ⊆ dom (ω1(q′′1 )) ,

and
(dom(p))ω1(q′′1 ) ∩ dom(q′′1 ) = ∅.

Moreover, |(dom(p))ω1(q′1) \ ran(q′1)| > |(dom(p))ω1(q′′1 ) \ ran(q′′1 )|, and if we
do this extension for every vertex in (dom(p))ω1(q′1) \ ran(q′1), we can define an
extension q1 ∈ A<ωf,Σ of q′1 such that

ω1(q1) = id, dom(p) ⊆ dom (ω1(q1)) , and

(dom(p))ω1(q1) ⊆ ran(q1) \ dom(q1).
(3.16)

Hence every vertex in (dom(p))ω1(q1) is on a incomplete component of q1.
If ∆ = (dom(p))ω1(q1) and Γ = ran(p), then ran(q−1

1 ) = dom(q1) and ∆ are
disjoint. Hence by Lemma 3.6.12, there is an extension q−1

2 ∈ A<ωf,Σ of q−1
1 and

ω′2 ∈ F (α, β) such that ω′2(q−1
2 ) = id,

ran(q−1
2 ) ∩ (dom(p))ω1(q1) = ∅,

ran(p) ⊆ dom
(
ω′2(q−1

2 )
)
,

(ran(p))ω′2(q−1
2 ) ∩ dom(q−1

2 ) = ∅,

and no vertex in (ran(p))ω′2(q−1
2 ) is on an incomplete component of q−1

2 extending
an incomplete component of q−1

1 .
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Since dom(p) ⊆ dom (ω1(q1)) by (3.16), and q2 is an extension of q1, it
follows that (dom(p))ω1(q1) = (dom(p))ω1(q2). Let ω2 ∈ F (α, β) be such that
ω2(q2) = ω′2(q−1

2 ), more precisely replace every occurrence of α in ω′2 by α−1 and
vica versa. Then ω2(q2) = id,

dom(q2) ∩ (dom(p))ω1(q2) = ∅,

ran(p) ⊆ dom (ω2(q2)) ,

(ran(p))ω2(q2) ∩ ran(q2) = ∅,

and no vertex in (ran(p))ω2(q2) is on an incomplete components of q2 extending
an incomplete component of q1.

Let {{ij,k : k ∈ {1, . . . ,mj}} : j ∈ {1, . . . , l}} be the set of orbits of q2 such
that (ij,k)q2 = ij,k+1 for all j ∈ {1, . . . , l} and all k ∈ {1, . . . ,mj − 1}. For each
i ∈ {1, . . . , n} choose

ti ∈ Li \
(

dom(q2) ∩ ran(q2) (dom(p))ω1(q2) ∪ (ran(p))ω2(q2)
)
,

and also for all j ∈ {1, . . . , l} choose

tij,mj+1 ∈ Lij,1\
(
{tij,1} ∪ dom(q2) ∩ ran(q2) ∪ (dom(p))ω1(q2) ∪ (ran(p))ω2(q2)

)
,

Then h0 = q2∪{(tij,k , tij,k+1
) : j ∈ {1, . . . , l} and k ∈ {1, . . . ,mj}} ∈ Aut(nKω)<ω

by Lemma 3.6.4 and also h0 ∈ A<ωf,Σ by Lemma 3.6.8. Let P be an arbitrary incom-
plete component of h0. Since tij,k /∈ dom(q2)∪ran(q2) for all j and all k, it follows
that P is either a subset of K = {tij,k : j ∈ {1, . . . , l} and k ∈ {1, . . . ,mj+1}} or
disjoint fromK. If P ⊆ K, then q2 ⊆ h0|dom(h0)\P , and so h0|dom(h0)\P = q2 ∈ Sn.
Otherwise P ∩ K = ∅, and so {ti : i ∈ {1, . . . , n}} ⊆ dom(h0) \ P . Hence,
{(tij,k , tij,k+1

)) : j ∈ {1, . . . , l} and k ∈ {1, . . . ,mj}} ⊆ h0|dom(h0)\P , which im-
plies that h0|dom(h0)\P = q2 ∈ Sn. It follows from the choice of vertices ti and
tij,mj+1

, that ω2(h0) = id,

dom(h0) ∩ (dom(p))ω1(h0) = ∅,

ran(p) ⊆ dom (ω2(h0)) ,

(ran(p))ω2(h0) ∩ ran(h0) = ∅.

Let k be the order of q ∈ Sn. We will now inductively construct an extension
h ∈ A<ωf,Σ of h0 (and hence of q) such that (x)ω1(h)hkω2(h)−1 = (x)p for all x ∈
dom(p). Let dom(p) = {x1, . . . , xd}, and suppose that for some j ∈ {0, . . . , k−2}
we have defined an extension hj ∈ A<ωf,Σ of h0 such that

dom(hj) ∩ (dom(p))ω1(hj)h
j
j = ∅, (ran(p))ω2(hj) ∩ ran(hj) = ∅,
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and dom(p) and ran(p) are contained in dom(ω1(hj)h
j
j) and dom(ω2(hj)) respec-

tively.
Note that if j = 0, the inductive hypothesis is satisfied since h0

0 is an identity
on dom(h0), the dom(h0) is disjoint from (dom(p))ω1(h0), the set ran(h0) is
disjoint from (ran(p))ω2(hj) ∩ ran(hj), and dom(p) and ran(p) are contained in
dom(ω1(h0)) and dom(ω2(h0)) respectively.

Suppose j > 0. For all i ∈ {1, . . . , d}, let yi = (xi)ω1(hj)h
j
j and suppose that

ai ∈ {1, . . . , n} such that yi ∈ Lai . Then for each successive i ∈ {1, . . . , d} choose

zi ∈ L(ai)hj
\
(

dom(hj) ∪ ran(hj) ∪ {y1, . . . , yd}∪

{z1, . . . , zi−1} ∪ (ran(p))ω2(hj)
)
.

We define hj+1 = hj ∪{(yi, zi) : 1 ≤ i ≤ d}. Since zi ∈ L(ai)hj
, it follows that

hj+1 ∈ Aut(nKω)<ω by Lemma 3.6.4 and hence hj+1 ∈ A<ωf,Σ by Lemma 3.6.8.
Note that the choice of zi implies that none of the incomplete components of hj
are amalgamated in hj+1.

It is easy to see that dom(hj+1) = dom(hj) ∪ {y1, . . . , yd} and ran(hj+1) =

ran(hj)∪{z1, . . . , zd}. Since (xi)ω1(hj+1)hjj+1 = (xi)ω1(hj)h
j
j for all i ∈ {1, . . . , d}

(xi)ω1(hj+1)hj+1
j+1 = (xi)ω1(hj+1)hjj+1hj+1

= (xi)ω1(hj)h
j
jhj+1

= (yi)hj+1

= zi /∈ dom(hj+1).

Hence dom(hj+1) ∩ (dom(p))ω1(hj+1)hj+1
j+1 = ∅ and dom(p) ⊆ ω1(hj+1)hj+1

j+1.
It follows from ran(p) ⊆ ω2(h0), that (ran(p))ω2(hj+1) = (ran(p))ω2(hj),

and so (ran(p))ω2(hj+1) ∩ ran(hj) = ∅. Since zi /∈ (ran(p))ω2(hj) for all i ∈
{1, . . . , d}, it also follows that (ran(p))ω2(hj+1)∩ran(hj+1) = ∅. Finally, dom(p)

and ran(p) are contained in dom(ω1(hj+1)hj+1
j+1) and dom(ω2(hj+1)) respectively,

and so hj+1 satisfies the inductive hypothesis.
By induction on j, we obtain an extension hk−1 ∈ A<ωf,Σ of h0 (and thus q)

such that
dom(hk−1) ∩ (dom(p))ω1(hk−1)hk−1

k−1 = ∅,

(ran(p))ω2(hk−1) ∩ ran(hk−1) = ∅,
(3.17)

and dom(p) and ran(p) are contained in dom(ω1(hk−1)hk−1
k−1) and dom(ω2(hk−1))

respectively.
Define h to be

hk−1 ∪
{(

(xi)ω1(hk−1)hk−1
k−1, ((xi)p)ω2(hk−1)

)
: 1 ≤ i ≤ d

}
.

Recall that k is the order of q. Since hk−1 is an extension of q and q ∈ Sn,
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it follows that hk−1 = q, thus hkk−1 = id. Also ω1(hk−1) and ω2(hk−1) are
extensions of ω1(q1) and ω2(q2) respectively, hence

ω1(hk−1) = ω1(q1) = id = ω2(q2) = ω2(hk−1).

Then xi, (xi)ω1(hk−1)hkk−1, and ((xi)p)ω2(hk−1) are in the same connected
component of nKω for all i. Thus it follows from Lemma 3.6.4 and (3.17), that
h ∈ Aut(nKω)<ω.

We will now show that h can be obtained from hk−1 by repeated applications
of Lemma 3.6.9, and so h ∈ A<ωf,Σ. First of all, note that Σ ⊆ dom(q) ⊆ dom(hk−1),
and that no incomplete components of h0, and thus of q2, were amalgamated
in hk−1. According to Lemma 3.6.12, q2 was chosen so that ((xi)p)ω2(q2) is
not on an incomplete component of q2 extending an incomplete component
of q1 for all i ∈ {1, . . . , d}. Hence the vertex ((xi)p)ω2(hk−1) is not on an
incomplete component of hk−1 extending an incomplete component of q1 for all
i ∈ {1, . . . , d}. Also since Σ ⊆ dom(q) ⊆ dom(q1), it follows that the intersection
of any incomplete component of hk−1 containing a vertex in (ran(p))ω2(hk−1)

and Σ is empty.
By (3.16) every vertex in (dom(p))ω1(q1) is on an incomplete component

of q1 and since ω1(hk−1)hk−1
k−1 is defined on dom(p) it follows that every vertex

in (dom(p))ω1(hk−1)hk−1
k−1 is on an incomplete component of hk−1 extending an

incomplete component of q1. Hence incomplete components of hk−1 contain-
ing vertices (ran(p))ω2(hk−1) are distinct from the incomplete components of
hk−1 containing the vertices (dom(p))ω1(hk−1)hk−1

k−1. Also recall that for every
incomplete component P of h0 we have that

h0|dom(h0)\P ∈ Sn.

Since hk−1 is an extension of h0 and no incomplete components of h0 were
amalgamated, for any incomplete component Q of hk−1

hk−1|dom(hk−1)\Q ∈ Sn.

Thus we can apply Lemma 3.6.9 to show that h ∈ A<ωf,Σ.
Finally h was defined so that

ω1(h)hkω2(h)−1 ∈ [p],

and thus any extension g ∈ [h]∩Af,Σ also satisfies g ∈ {r ∈ Af,Σ : 〈f, r〉∩[p] 6= ∅}.
Therefore, {g ∈ Af,Σ : 〈f, g〉 ∩ [p] 6= ∅} is dense in Af,Σ as required.
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Proof of Lemma 3.6.12

The purpose of this section is to prove Lemma 3.6.12. We will first prove a
technical result relating to the behaviour of a non-stabilising automorphism f

of nKω. Recall that f ∈ Aut(nKω) is non-stabilis ing if for all Γ ( nKω,
all x ∈ Γ and all q ∈ A<ωf there is g ∈ [q] ∩ Af such that (x)h /∈ Γ for some
h ∈ 〈f, g〉.

Let f ∈ Aut(nKω) be non-stabilising and let x ∈ nKω. Then for every
q ∈ Aut(nKω)<ω there is g ∈ [q] ∩ Af such that (x)h 6∈ dom(q) for some
h ∈ 〈f, g〉. It follows that there is N ∈ N and m1,m2, . . . ,m2N ∈ Z such that
(x)
∏N
i=1 g

m2i−1fm2i /∈ dom(q). If we assume that the length of the product∑2N
i=1 |mi| is minimal, then the image of x under any proper prefix of the product∏N
i=1 g

m2i−1fm2i belongs to dom(q). Therefore

(x)
N∏
i=1

qm2i−1fm2i = (x)
N∏
i=1

gm2i−1fm2i ∈ nKω \ dom(q).

In the next lemma we show that the powers m2i−1 of q in the above equation,
can be chosen to be positive.

Lemma 3.6.14. Let f be non-stabilising and let x ∈ nKω. Then for ev-
ery q ∈ Aut(nKω)<ω there is N ∈ N and m1,m2, . . . ,m2N ∈ Z such that
m1,m3, . . .m2N−1 > 0 and

(x)

N∏
i=1

qm2i−1fm2i ∈ nKω \ dom(q).

Proof. By the discussion above there are K ∈ N and k1, k2, . . . , k2K ∈ Z such
that

(x)

K∏
i=1

qk2i−1fk2i ∈ nKω \ dom(q).

Suppose that M ∈ {0, 1, . . . ,K} is the least value such that (x)
∏M
i=1 q

k2i−1fk2i

is on an incomplete component of q, and M = 0 in the case that x is on
an incomplete component. Then yt = (x)

∏t
i=1 q

k2i−1fk2i is on a complete
component of q for all t ∈ {0, . . . ,M − 1}. It follows that there exist m2t+1 > 0

such that (yt)q
m2t+1 = (yt)q

k2t+1 for all t ∈ {0, . . . ,M − 1}. Additionally, define
m2i = k2i for all i ∈ {1, . . . ,M}.

By the choice of M , y = (x)
∏M
i=1 q

m2i−1fm2i = (x)
∏M
i=1 q

k2i−1fk2i is in an
incomplete component of q. Hence there is z in the incomplete component of
y under q such that z ∈ ran(q) \ dom(q) and there is m2M+1 ≥ 0 such that
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(y)qm2M+1 = z /∈ dom(q). Therefore

(x)

(
M∏
i=1

qm2i−1fm2i

)
qm2M+1 ∈ nKω \ dom(q),

as required.

For the proofs of the next three lemmas we require the following notation.
First of all, recall that for a fixed f ∈ Aut(nKω), if p ∈ Aut(nKω)<ω and
w = αn1βn2 · · ·βn2N ∈ F (α, β) for some N ∈ N and n1, . . . , n2N ∈ Z, then

w(p) = pn1fn2pn3 · · · pn2N−1fn2N

where the product on the right hand side is the usual product of partial
permutations. Let Γ,Θ,Φ,∆ ⊆ nKω be finite subsets, let p ∈ A<ωf,Σ and let
w ∈ F (α, β). Suppose x ∈ Γ and define wp,x to be the largest prefix of w such
that x ∈ dom(wp,x(p)) and let wp,x be the empty word if there is no such prefix.
To make the notation less cluttered, whenever possible, we will identify the
word wp,x with its realisation in Aut(nKω)<ω, in other words with the partial
isomorphism wp,x(p). To avoid confusion, if w,w′ ∈ F (α, β), we denote that
w and w′ are equal by w ≡ w′. Note that if wp,x is a proper prefix of w (i.e.
|wp,x| < |w|), since f is an isomorphism we have that (x)wp,x /∈ dom(p) and
wp,xα is a prefix of w.

Suppose that Θ ⊆ Γ. Then we say that p satisfies S(Γ,Θ,Φ,∆, w) if the
following conditions are satisfied:

1. w(p) = id;

2. ran(p) ∩∆ = ∅;

3. dom (w(p)) ∩ Γ = Θ;

4. the image of Θ under w(p) is disjoint from dom(p);

5. (x)wp,x 6= (y)wp,y for all x, y ∈ Γ such that x 6= y;

6. (x)wp,xp
m ∈ nKω \Φ for all x ∈ Γ and m ∈ Z such that x ∈ dom(wp,xp

m).

Finally, define b(w) to be the total number of occurrences of β and β−1 in the
freely reduced word w.

Using the definition of S(Γ,Θ,Φ,∆, w) we can now restate Lemma 3.6.12.In
the case that Γ = Θ, it follows that wp,x = w for all x ∈ Γ. Hence 5, in this case,
is a consequence of w(p) being a finite isomorphism.

Lemma 3.6.15. Let n ∈ N be such that n ≥ 2 and let f ∈ Aut(nKω) be non-
stabilising. If n = 2 and f = id, then further suppose that fix(f) is finite. Let
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Γ,∆ ⊆ nKω be finite and disjoint, and let q ∈ A<ωf,Σ be such that q ∈ Sn and
ran(q) ∩ ∆ = ∅. Then there is an extension h ∈ A<ωf,Σ of q and w ∈ F (α, β)

satisfying S(Γ,Γ,dom(q),∆, w).

The proof of Lemma 3.6.15 will be split into 3 parts. We start with a weaker
version.

Lemma 3.6.16. Let n ∈ N be such that n ≥ 2 and let f ∈ Aut(nKω) be non-
stabilising. If n = 2 and f = id, then further suppose that fix(f) is finite. Let
Γ,∆ ⊆ nKω be finite, and let q ∈ A<ωf,Σ be such that ran(q) ∩∆ = ∅. Then there
is an extension h ∈ A<ωf,Σ of q and w ∈ F (α, β) not containing α−1 and starting
with α such that h satisfies S(Γ,∅,dom(q),∆, w).

Proof. If necessary by extending q using Lemma 3.6.4 and Lemma 3.6.8, we may
assume that q ∈ Sn and Σ,Γ ⊆ dom(q). In the case that n = 2 and f = id, we
also assume that fix(f) ⊆ dom(q).

Let d = |Γ|. We will now inductively define a sequence q0, . . . , qd ∈ A<ωf,Σ of
extensions of q, and a sequence λ(0), . . . , λ(d) of words in F (α, β) so that h = qd

and w = λ(d) are as required. Let q0 = q, let Γ0 = ∅, and let λ(0)= α. Suppose
that for some j ∈ {0, . . . , d− 1} we have Γj ⊆ Γ, a word λ(j) in F (α, β) starting
with α and not containing α−1, and qj ∈ A<ωf,Σ such that |Γj | = j and

(I) ran(qj) ∩∆ = ∅;

(II) (u)λ(j)
qj ,u 6= (v)λ(j)

qj ,v for all u, v ∈ Γj with u 6= v;

(III) (u)λ(j)
qj ,uq

m
j /∈ dom(q) for all m ∈ Z such that u ∈ dom(λ(j)

qj ,uq
m
j ) and

all u ∈ Γj ;

(IV) λ(j)
qj ,u 6≡ λ(j) for all u ∈ Γj .

Let x ∈ Γ \ Γj be arbitrary and let Γj+1 = Γj ∪ {x}. The first step in the
proof is to find ν ∈ F (α, β) so that x /∈ dom

(
λ(j)να(qj)

)
, and find m ∈ N such

that m > |λ(j)ν| and it so that we can define

λ(j+1) ≡ λ(j)ναmβα. (3.18)

In order to define ν consider two cases. If x ∈ dom
(
λ(j)(qj)

)
, then by

Lemma 3.6.14 there is ν ∈ F (α, β) such that α−1 is not contained in ν and the
image of x under λ(j)ν(qj) is in nKω \ dom(qj). Otherwise, x /∈ dom

(
λ(j)(qj)

)
,

in which case let ν be the empty word. Hence in both cases

x /∈ dom
(
λ(j)να(qj)

)
. (3.19)

To define m we will again consider two separate cases. If n = 2 and f = id,
let m>|λ(j)ν| be arbitrary. Otherwise, either n = 2 and f = (1 2) or n ≥ 3. Let
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L1, . . . , Ln be the connected components of nKω, and let a ∈ {1, . . . , n} so that
x ∈ La. Consider any extension g ∈ Aut(nKω) of qj , and let b be the image of a
under the permutation

(
λ(j)ν

)
(g). Since qj ∈ Sn, it follows that b is independent

of the extension g. We will show that in this case we can choose m > |λ(j)ν| to
be such that

(b)qj
m ∈ supp(f). (3.20)

If n = 2 and f = (1 2), then any m > |λ(j)ν| satisfies (3.20). Let n ≥ 3

be arbitrary, and let O be the orbit of qj containing b. Suppose that f fixes
O pointwise. If |O| ≤ 2, then since n ≥ 3, there is c ∈ {1, . . . , n} \ O, and so
(b c) /∈ 〈f, qj〉. If |O| ≥ 3, then the symmetric group on |O| is not cyclic, and
so there is a σ ∈ Sn such that supp(σ) ⊆ O and σ /∈ 〈qj |O〉. Then σ /∈ 〈f, qj〉.
However, both cases are impossible since 〈f, qj〉 = Sn. Hence f does not fix O
pointwise. Hence we may choose m > |λ(j)ν| to satisfy (3.20). Let λ(j+1) be as
in (3.18). For brevity, denote the prefix λ(j)ναmβ of λ(j+1) by ρ.

Next we show how to construct qj+1 ∈ A<ωf,Σ from qj . In order to do so, we
need to consider a possible complication, namely the existence of y ∈ Γj such
that (y)λ(j+1)

qj ,y = (x)λ(j+1)
qj ,x. The case where such y does not exist is slightly

easier and can be proved in a very similar fashion, simply ignoring any mention
of y in the following argument (to be more precise (i), (ii), (iv), and (v) are
exactly the same, (vii) and (viii) are unnecessary, and in (iii) and (vi) the vertex
u can be any vertex in the set Γj). Hence we will omit this case. Suppose there
is y ∈ Γj such that (y)λ(j+1)

qj ,y = (x)λ(j+1)
qj ,x. It follows from (II) that such

y is unique. Since λ(j+1)
qj ,x is a partial isomorphism and x 6= y, it follows that

λ(j+1)
qj ,x 6= λ(j+1)

qj ,y, and so λ(j+1)
qj ,x 6≡ λ(j+1)

qj ,y. Condition (IV) implies
that λ(j)

qj ,y is a proper prefix of λ(j), and so y /∈ dom (ρ(qj)). Also from (3.19),
we have that

|λ(j+1)
qj ,x| ≤ |λ(j)ν| < |ρ|. (3.21)

Hence |λ(j+1)
qj ,x|, |λ(j+1)

qj ,y| < |ρ|. There are two cases to consider: either
|λ(j+1)

qj ,x| > |λ(j+1)
qj ,y| or |λ(j+1)

qj ,x| < |λ(j+1)
qj ,y|.

Consider |λ(j+1)
qj ,x| > |λ(j+1)

qj ,y|. We proceed by inductively constructing
a sequence r0, . . . , r|ρ| of extensions of qj , so that r0 = qj and r|ρ| is the required
qj+1. Let r0 = qj . For k ∈ {0, . . . , |ρ|} let the inductive hypothesis be as follows:
there is an extension rk ∈ A<ωf,Σ of rk−1 (or qj if k = 0) such that

(i) k ≤ |λ(j+1)
rk,x| ≤ |ρ|;

(ii) ran(rk) ∩∆ = ∅;

(iii) λ(j+1)
rk,u ≡ λ(j)

qj ,u for u ∈ Γj \ {y};

(iv) (u)λ(j+1)
rk,u 6= (v)λ(j+1)

rk,v for u, v ∈ Γj with u 6= v;
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(v) (u)λ(j+1)
rk,ur

m
k ∈ nKω \ dom(q) for all u ∈ Γj and for all m ∈ Z such that

u ∈ dom(λ(j+1)
rk,ur

m
k );

(vi) (x)λ(j+1)
rk,x /∈ dom(rk) ∪

{
(u)λ(j)

qj ,u : u ∈ Γj \ {y}
}
. Moreover if k > 0

and we can write λ(j+1)
rk,x ≡ τβi for some i ∈ Z \ {0}, and τ ∈ F (α, β)

such that τ ends with a letter α and the image of x under τ(rk) is in
supp(f i), then (x)λ(j+1)

rk,x /∈ dom(rk) ∪ ran(rk);

(vii) if k > 0 and the vertices(x)λ(j+1)
rk−1,x and (y)λ(j+1)

rk−1,y are not equal,
then (x)λ(j+1)

rk,x 6= (y)λ(j+1)
rk,y.

(viii) |λ(j+1)
rk,x| > |λ(j+1)

rk,y|. Moreover, if (x)λ(j+1)
rk,x = (y)λ(j+1)

rk,y, then
|λ(j+1)

rk,y| ≥ |λ(j+1)
qj ,y|+ k;

We will first demonstrate that the base case, k = 0, holds. The condition
(i) is satisfied by r0 by (3.21), and condition (ii) is satisfied because r0 = qj

satisfies (I). Since qj satisfies (IV) we have that λ(j)
qj ,u 6≡ λ(j) and thus u /∈

dom
(
λ(j)(qj)

)
which then implies that λ(j+1)

qj ,u ≡ λ(j)
qj ,u for all u ∈ Γj .

Hence (iii) is satisfied by r0. Since λ(j+1)
qj ,u ≡ λ(j)

qj ,u for all u ∈ Γj , the
conditions (iv) and (v) are the same as conditions (II) and (III) respectively.
Recall that (x)λ(j+1)

qj ,x ∈ nKω \ dom(qj) by the definition of λ(j+1)
qj ,x, and

that if (x)λ(j+1)
qj ,x = (u)λ(j+1)

qj ,u where u ∈ Γj then u = y by (II). Hence r0

satisfies the first part of (vi), while r0 satisfies second part of (vi), (vii), and
second part of (viii) trivially, since k = 0. Finally, the first part of (viii) is just
the assumption of this case. Therefore r0 satisfies the inductive hypothesis.

Next we show how to obtain rk+1 from rk. Suppose that for some k ∈
{0, . . . , |ρ| − 1} we have rk ∈ A<ωf,Σ which satisfies (i) – (viii). We consider the
case λ(j+1)

rk,x ≡ ρ and λ(j+1)
rk,x being a proper prefix of ρ separately.

Case 1: We begin by considering the case where λ(j+1)
rk,x is a proper prefix

of ρ. Let z = (x)λ(j+1)
rk,x. Since λ(j+1)

rk,x is a proper prefix of λ(j+1), it follows
that z /∈ dom(rk) and λ(j+1)

rk,xα is a prefix of λ(j+1). Recall that b(λ(j+1)) is
the total number of occurrences of letters β and β−1 in the word λ(j+1) ∈ F (α, β).
Let c ∈ {1, . . . , n} be so that z ∈ Lc, and choose

z′ ∈ L(c)rk \
b(λ(j+1))⋃

i=−b(λ(j+1))

({
(u)λ(j+1)

rk,u : u ∈ Γj

}
∪∆∪

dom(rk) ∪ ran(rk) ∪ {z}
)
f−i.

Since z /∈ dom(rk) and z′ /∈ dom(rk) ∪ ran(rk) it follows from Lemmas 3.6.4
and 3.6.8 that rk+1 = rk ∪ {(z, z′)} ∈ A<ωf,Σ. Then there is some i ∈ Z such that

λ(j+1)
rk+1,x ≡ λ(j+1)

rk,xαβ
i. (3.22)
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Hence |λ(j+1)
rk+1,x| > |λ(j+1)

rk,x| ≥ k. We will now show that λ(j+1)
rk+1,x is

a prefix of ρ. Suppose that λ(j+1)
rk+1,x is not a prefix of ρ. Since λ(j+1)

rk+1,x

is a prefix of λ(j+1), it follows that λ(j+1)
rk+1,x = λ(j+1). Hence the fact that

λ(j+1) ≡ ρα and (3.22) imply that λ(j+1)
rk,xαβ

i ≡ λ(j+1)
rk+1,x = λ(j+1) = ρα,

thus i = 0 and λ(j+1)
rk,x = ρ, which contradicts the assumption of this case.

Therefore, λ(j+1)
rk+1,x is prefix of ρ, and so (i) is satisfied by rk+1.

It follows from the definition of rk+1 that

dom(rk+1) = dom(rk) ∪ {z} and ran(rk+1) = ran(rk) ∪ {z′}. (3.23)

Since the vertex z′ was chosen outside ∆ we have that (ii) is satisfied by rk+1.
Let u ∈ Γj\{y}. It follows from (vi) for rk that z = (x)λ(j+1)

rk,x 6= (u)λ(j)
qj ,u,

and since rk satisfies (iii), it follows that z 6= (u)λ(j+1)
rk,u. Also λ(j+1)

rk,u = λ
(j)
qj ,u

is a proper prefix of λ(j), and so a proper prefix of λ(j+1), by (iii) and (IV).
Then (u)λ(j+1)

rk,u /∈ dom(rk) and λ(j+1)
rk,uα is a prefix of λ(j+1), and thus

(u)λ(j+1)
rk,u /∈ dom(rk+1) by (3.23). Hence λ(j+1)

rk+1,u ≡ λ(j+1)
rk,u, and since

rk satisfies (iii)
λ(j+1)

rk+1,u ≡ λ(j+1)
rk,u ≡ λ(j)

qj ,u. (3.24)

Therefore rk+1 satisfies (iii).
In order to prove that rk+1 satisfies (iv), we consider two cases. Suppose that

z = (x)λ(j+1)
rk,x 6= (y)λ(j+1)

rk,y. It follows by (i) and (viii) that |λ(j+1)
rk,y| < |ρ|.

Hence, λ(j+1)
rk,y is a proper prefix of λ(j+1), and so (y)λ(j+1)

rk,y /∈ dom(rk)

and λ(j+1)
rk,yα is a prefix of λ(j+1), and so (y)λ(j+1)

rk,y /∈ dom(rk+1) by (3.23).
Hence λ(j+1)

rk+1,y ≡ λ(j+1)
rk,y, in other words

z 6= (y)λ(j+1)
rk,y =⇒ λ(j+1)

rk+1,y ≡ λ(j+1)
rk,y. (3.25)

Combining with the previous paragraph λ(j+1)
rk+1,u ≡ λ(j+1)

rk,u for all u ∈ Γj .
Therefore, rk+1 satisfies (iv), since rk does.

Otherwise, suppose that z = (x)λ(j+1)
rk,x = (y)λ(j+1)

rk,y. Since (z′)f i /∈
dom(rk+1) for all i ∈ {−b(ρ), . . . ,b(ρ)} by the choice of z′ and (3.23), there exists
i ∈ {−b(ρ), . . . ,b(ρ)} such that (y)λ(j+1)

rk+1,y = (z′)f i, and so λ(j+1)
rk+1,y ≡

λ(j+1)
rk,yαβ

i, in other words

(x)λ(j+1)
rk,x = (y)λ(j+1)

rk,y =⇒

λ(j+1)
rk+1,y ≡ λ(j+1)

rk,yαβ
i for some i ∈ {−b(ρ), . . . ,b(ρ)}.

(3.26)

The vertex z′ was chosen so that (z′)f i 6= (u)λ(j+1)
rk,u for all u ∈ Γj \{y}. Since

λ(j+1)
rk+1,u ≡ λ(j+1)

rk,u for all u ∈ Γj \ {y} and rk satisfies (iv), it then follows
that rk+1 satisfies (iv).

Let u ∈ Γj \ {y} be arbitrary. Then (u)λ(j+1)
rk+1,u = (u)λ(j+1)

rk,u by (3.24).
Since z′ 6∈ dom(rk), no two components of rk become subsets of the same
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component of rk+1. It follows that, for any m ∈ Z, (u)λ(j+1)
rk+1,ur

m
k+1 equals

either (u)λ(j+1)
rk,ur

m
k or z′, neither of which belongs to dom(q). Hence (v) holds

for all u ∈ Γj \ {y}.
By (3.25), if z 6= (y)λ(j+1)

rk,y then λ(j+1)
rk+1,y ≡ λ(j+1)

rk,y, and so using
the argument of the previous paragraph, (y)λ(j+1)

rk+1,yr
m
k+1 6∈ dom(q) for all

m ∈ Z. Hence to show that rk+1 satisfies (v) it remains to consider the case where
z = (x)λ(j+1)

rk,x = (y)λ(j+1)
rk,y. It follows from (3.26) that (y)λ(j+1)

rk+1,y =

(z′)f i for some i ∈ {−b(ρ), . . . ,b(ρ)}. If (z′)f i /∈ dom(rk+1)∪ran(rk+1), then no
component of rk+1, and thus q, contains the vertex (z′)f i = (y)λ(j+1)

rk+1,y, and
so rk+1 satisfies (v). Suppose that (z′)f i ∈ dom(rk+1) ∪ ran(rk+1). But z′ was
chosen so that (z′)f i /∈ dom(rk) ∪ ran(rk) ∪ {z}, which implies (z′)f i = z′ and
so (y)λ(j+1)

rk+1,y = z′. From its definition, the component of rk+1 containing
z′ = (y)λ(j+1)

rk+1,y is the component of rk containing z = (y)λ(j+1)
rk,y together

with the vertex z′. In other words (y)λ(j+1)
rk+1,yr

m
k+1, equals (y)λ(j+1)

rk,yr
m
k or

z′, if defined. Since (y)λ(j+1)
rk,yr

m
k ∈ nKω \dom(q) for all m ∈ Z, it follows that

(y)λ(j+1)
rk+1,yr

m
k+1 6∈ dom(q) for all m ∈ Z. Thus rk+1 satisfies condition (v).

By (3.22), λ(j+1)
rk+1,x ≡ λ(j+1)

rk,xαβ
i for some i ∈ {−b(ρ), . . . ,b(ρ)}.

Hence (x)λ(j+1)
rk+1,x = (z′)f i 6∈ dom(rk) ∪ {z} ∪

{
(u)λ(j+1)

rk,u : u ∈ Γj
}
by

the choice of z′. By (iii), (u)λ(j+1)
rk,u = (u)λ(j+1)

qj ,u for all u ∈ Γj \ {y} and
dom(rk+1) = dom(rk) ∪ {z}, and so the first part of (vi) is satisfied by rk+1. To
check the second part of (vi), suppose that λ(j+1)

rk+1,x ≡ τβi for some i ∈ Z\{0}
and τ ∈ F (α, β) such that τ ends with a letter α and the image of x under
τ(rk+1) is in supp(f i). Then, by (3.22), τ = λ(j+1)

rk,xα and the last part of the as-
sumption from the previous sentence becomes z′ = (x)λ(j+1)

rk,xrk+1 ∈ supp(f i).
Then (x)λ(j+1)

rk+1,x = (z′)f i 6= z′. Since (z′)f i /∈ dom(rk)∪ran(rk)∪{z} by the
choice of z′, it follows from (3.23) that (x)λ(j+1)

rk+1,x /∈ dom(rk+1) ∪ ran(rk+1).
Therefore, rk+1 satisfies (vi).

By (3.25) if z = (x)λ(j+1)
rk,x 6= (y)λ(j+1)

rk,y, then λ(j+1)
rk+1,y ≡ λ(j+1)

rk,y,
so (y)λ(j+1)

rk,y = (y)λ(j+1)
rk+1,y. It follows from (3.22) that there is i ∈

{−b(ρ), . . . ,b(ρ)} so that (x)λ(j+1)
rk+1,x = (z′)f i. Hence by the choice of z′

(x)λ(j+1)
rk+1,x = (z′)f i 6= (y)λ(j+1)

rk,y = (y)λ(j+1)
rk+1,y,

and so (vii) holds for rk+1.
Finally, we will show that rk+1 satisfies (viii). Suppose that (y)λ(j+1)

rk,y 6=
(x)λ(j+1)

rk,x. Then λ(j+1)
rk+1,y ≡ λ(j+1)

rk,y by (3.25). Since |λ(j+1)
rk,x| <

|λ(j+1)
rk+1,x| and rk satisfies (viii), it follows that rk+1 satisfies (viii) as well.

The other case is when (y)λ(j+1)
rk,y = (x)λ(j+1)

rk,x. Then λ(j+1)
rk+1,y ≡

λ(j+1)
rk,yαβ

i for some i ∈ {−b(ρ), . . . ,b(ρ)} by (3.26). Since λ(j+1)
rk,y is a

proper prefix of λ(j+1)
rk,x by (viii) applied to rk, it follows that λ(j+1)

rk,yα is a
prefix of λ(j+1)

rk,x, and so λ(j+1)
rk,yαβ

i′ is a prefix of λ(j+1)
rk,x for some i′ ∈ Z.

Assume that i′ was picked so that |i′| is maximal. Suppose that λ(j+1)
rk+1,y is

108



not a prefix of λ(j+1)
rk,x, in other words either i > 0 and i′ ∈ {0, . . . , i − 1};

or i < 0 and i′ ∈ {i+ 1, . . . , 0}. Then either λ(j+1)
rk,xβ or λ(j+1)

rk,xβ
−1 must

be a prefix of λ(j+1), which contradicts (3.22). Hence λ(j+1)
rk+1,y is a prefix of

λ(j+1)
rk,x, and thus

|λ(j+1)
rk+1,y| ≤ |λ(j+1)

rk,x| < |λ(j+1)
rk+1,x|.

Therefore, rk+1 satisfies first part of (viii).
In order to show the second part of (viii), suppose that (x)λ(j+1)

rk+1,x =

(y)λ(j+1)
rk+1,y. Since (vii) holds for rk+1 we have that (x)λ(j+1)

rk,x = (y)λ(j+1)
rk,y

and thus |λ(j+1)
rk,y| ≥ |λ(j+1)

qj ,y|+ k by (viii) for rk. Also (3.26) implies that
|λ(j+1)

rk,y| < |λ(j+1)
rk+1,y|. Therefore |λ(j+1)

rk+1,y| ≥ |λ(j+1)
qj ,y| + k + 1 and

thus rk+1 satisfies (viii) and hence this case is complete.
Case 2: Suppose λ(j+1)

rk,x ≡ ρ. It follows from (3.19) that |λ(j+1)
r0,x| < |ρ|,

and so k > 0. Let rk+1 = rk. Then rk+1 trivially satisfies conditions (i) – (vii)
and the first part of condition (viii). To show second part of (viii) we will consider
two cases. Suppose that n = 2 and f = id. Since λ(j+1) ≡ ρα and λ(j+1)

rk,x ≡ ρ
it follows that the image of x under ρ(rk) is (x)λ(j+1)

rk,x ∈ nKω \ dom(rk). Let
t ∈ nKω be the image of x under λ(j)ναm(rk). Then ρ ≡ λ(j)ναmβ implies that
(t)f is the image of x under ρ, and so if y ∈ fix(f)

t = (t)f = (x)wrk,x ∈ nKω \ dom(rk)

by the assumption that wrk,x = ρ. However, we have assumed at the beginning of
the proof that fix(f) ⊆ dom(q), which is a contradiction since dom(q) ⊆ dom(rk).
Hence t ∈ supp(f). Otherwise, either n = 2 and f = (1 2), or n ≥ 3. Recall that
a, b ∈ {1, . . . , n} are such that x ∈ La and b is the image of a under λ(j)ν(rk).
Then the image of a under λ(j)ναm(rk) is in supp(f) by (3.20), and so the
imaged of x under λ(j)ναm(rk) is in supp(f) in both cases.Hence it follows from
the second part of (vi) that

(x)λ(j+1)
rk,x /∈ dom(rk) ∪ ran(rk). (3.27)

Next, using (3.27), will show that (x)λ(j+1)
rk,x 6= (y)λ(j+1)

rk,y, which then
implies that rk+1 satisfies the second half of (viii), and this case will be complete.
Suppose that (x)λ(j+1)

rk,x = (y)λ(j+1)
rk,y. Since λ(j+1)

rk,x ≡ ρ ≡ λ(j)ναmβ

and |λ(j+1)
r0,x| ≤ |λ(j)ν| by (3.19), the fact that at any inductive step incomplete

components of qj were extended by at most one point, implies that k ≥ m. Since
m was chosen so that m > |λ(j)ν|, and rk satisfies (viii)

|ρ| = |λ(j+1)
rk,x| ≥ |λ(j+1)

rk,y| ≥ |λ(j+1)
qj ,y|+ k > m > |λ(j)ν|.

Hence λ(j+1)
rk,y is a prefix of ρ, and λ(j)ν is a prefix of λ(j+1)

rk,y. The former
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and the fact that λ(j+1) = ρα implies that λ(j+1)
rk,y is a proper prefix of

λ(j+1), and so λ(j+1)
rk,yα is a prefix of λ(j+1) and y /∈ dom(λ(j+1)). Since

λ(j+1) ≡ λ(j)ναmβα, there is i ∈ {1, . . . ,m− 1} such that λ(j+1)
rk,y ≡ λ(j)ναi.

Hence (y)λ(j+1)
rk,y ∈ ran(rk). But this contradicts (3.27), and so we conclude

that (x)λ(j+1)
rk,x 6= (y)λ(j+1)

rk,y. Therefore rk+1 satisfies the second part of
(viii), since rk+1 = rk, as required.

Hence by induction there is qj+1 = r|ρ| ∈ A<ωf,Σ satisfying conditions (i) –
(viii). We will now show that qj+1 satisfies (I) – (IV).

It follows from (ii) that qj+1 satisfies (I). Suppose that (x)λ(j+1)
qj+1,x =

(y)λ(j+1)
qj+1,y. Then by (i) and (viii) we have

|ρ| = |λ(j+1)
qj+1,x| > |λ(j+1)

qj+1,y| ≥ |λ(j+1)
qj ,y|+ |ρ|.

which is a contradiction. Hence it follows from (iii), (iv), and (vi) that qj+1

satisfies (II). It follows from (v) that we only need to verify (III) for x. From
(i) we have that λ(j+1)

qj+1,x ≡ ρ, and so (x)λ(j+1)
qj+1,x /∈ dom(qj+1)∪ ran(qj+1)

by (vi) and the choice of ρ, and so (III) holds for qj+1. Finally, condition (IV)
follows from (i), (iii), (viii) and the fact that qj satisfies (IV). Therefore, qj+1

satisfies the inductive hypothesis.
Consider the case where |λ(j+1)

qj ,x| < |λ(j+1)
qj ,y|. The above argument

applies if we switch the roles of x and y, i.e. let Γ′j = Γj ∪ {y} \ {x}, and
λ(j)′ ≡ λ(j+1). Then qj , λ(j)′ and Γ′j satisfy conditions (I) – (IV) and we can
proceed as before.

Hence by induction there is h = qd satisfying (I) – (IV). Since 〈f, h〉 = Sn

there is w ∈ F (α, β) which does not contain α−1, λ(d) is a prefix of w and
w(h) = id. Then from (I) – (IV) it follows that conditions (2), (3), (5) and
(6) of S(Γ,∅,dom(q),∆, w) are satisfied by h. Since Θ = ∅, condition (4) of
S(Γ,∅,dom(q),∆, w) follows trivially from (3) of S(Γ,∅,dom(q),∆, w). Hence
h satisfies S(Γ,∅,dom(q),∆, w).

The next lemma is the second step in the proof of Lemma 3.6.15.

Lemma 3.6.17. Let n ∈ N be such that n ≥ 2, let f ∈ Aut(nKω) be non-
stabilising, let q ∈ A<ωf,Σ be such that q ∈ Sn, and let w ∈ F (α, β) be a word which
does not contain α−1 and which starts with α. Suppose Γ,Φ,⊆ dom(q), Θ ⊆ Γ,
and x ∈ Γ \Θ. If q satisfies S(Γ,Θ,Φ,∆, w), then there is an extension h ∈ A<ωf,Σ
of q such that h satisfies S(Γ,Θ ∪ {x},Φ,∆, w).

Proof. For all k ∈ {0, . . . , |w|}, define ρk to be a prefix of w of length k. Recall
that for all u ∈ Γ we identify the word wq,u with its realisation wq,u(u). In the
same way, if qk is a partial isomorphism, then we identify the word ρk with the
partial isomorphism ρk(qk).

It follows from condition (3) of S(Γ,Θ,Φ,dom(q), w) and the fact that x ∈
Γ \Θ, that x /∈ dom (w(q)), and so wq,x is a proper prefix of w. Let M be such
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that M − 1 = |wq,x|, or in other words M is the smallest non-negative integer
such that x /∈ dom (ρM (q)). Then M ≤ |w|. Since x ∈ Γ ⊆ dom(q) and w starts
with α, it follows that M > 1, and so M ∈ {2, . . . , |w|}. Since wq,x is a proper
prefix of w, it follows that wq,xα is a prefix of w and (x)wq,x ∈ nKω \ dom(q).
Hence ρM = ρM−1α and the image of x under ρM−1(q) is in nKω \ dom(q).

We will inductively construct a sequence qM−1 = q, qM , . . . , q|w| ∈ A<ωf,Σ
such that if j ∈ {M, . . . , |w|} then qj is an extension of qj−1 and the following
conditions are satisfied

(i) ran(qj) ∩∆ = ∅;

(ii) wqj ,u ≡ wq,u and (u)wqj ,u ∈ nKω \ dom(qj) for all u ∈ Γ \ {x};

(iii) (x)ρjf
i ∈ nKω \ dom(qj) for all i ∈ {−b(w) + b(ρj), . . . ,b(w)− b(ρj)};

(iv) (x)wqj ,x 6= (u)wqj ,u for all u ∈ Γ \ {x};

(v) (u)wqj ,uq
m
j ∈ nKω \ Φ for all u ∈ Γ and for all m ∈ Z such that u ∈

dom(wqj ,uq
m
j ) .

Then h = q|w| will be the required extension of q.
Let y be the image of x under ρM−1 = wq,x and suppose y ∈ La for some

a ∈ {1, . . . , n}. Recall that b(w) is the number of occurrences of letters β and
β−1 in the word w. We may choose:

z ∈ L(a)q \
b(w)⋃

i=−b(w)

(dom(q) ∪ ran(q) ∪ {y} ∪∆ ∪ {(u)wq,u : u ∈ Γ}) f−i.

and define qM = q ∪ {(y, z)}. Then qM ∈ A<ωf,Σ by Lemmas 3.6.4 and 3.6.8, since
y /∈ dom(q) and z /∈ dom(q) ∪ ran(q).

First, we will show that qM satisfies conditions (i) to (v). Since ran(qM ) =

ran(q) ∪ {z} and z was chosen outside ∆, it follows that qM satisfies (i). Let
u ∈ Γ \ {x}. If u /∈ Θ, then, from (3) of S(Γ,Θ,Φ,∆, w), u 6∈ dom(w(q)) and
so wq,u is a proper prefix of w. It follows that (u)wq,u ∈ nKω \ dom(q). On
the other hand, if u ∈ Θ, then wq,u = w and (u)wq,u ∈ nKω \ dom(q) by
(3) and (4) of S(Γ,Θ,Φ,∆, w). Hence in both cases (u)wq,u ∈ nKω \ dom(q).
Since dom(qM ) \ dom(q) = {y} and (u)wq,u 6= (x)wq,x = y by part (5) of
S(Γ,Θ,Φ,∆, w), it follows that (u)wq,u ∈ nKω \ dom(qM ), and so wqM ,u ≡ wq,u,
proving (ii). Let i ∈ {−b(w) + b(ρM ), . . .b(w) − b(ρM )}. Since dom(qM ) =

dom(q) ∪ {y}, it follows from the choice of z that

(x)ρMf
i = (y)qMf

i = (z)f i ∈ nKω \ dom(qM ).

Hence qM satisfies condition (iii). Let u ∈ Γ\{x}. Note that since qM satisfies (iii)
there is k ∈ {−b(w), . . . ,b(w)} such that wqM ,x = wq,xαβ

k, and so (x)wqM ,x =
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(z)fk. It follows from the choice of z, and the fact that qM satisfies (ii) that

(x)wqM ,x = (z)fk 6= (u)wq,u = (u)wqM ,u.

Hence qM satisfies (iv).
Finally, to show that qM satisfies (v) consider two cases: u = x and u ∈

Γ \ {x}. Suppose that u = x and m ∈ Z is such that x ∈ dom(wqM ,xq
m
M ). As

shown before (x)wqM ,x = (z)fk for some k ∈ {−b(w), . . . ,b(w)}. From the
choice of z it follows that (x)wqM ,x = (z)fk /∈ dom(q) ∪ ran(q) ∪ {y}. Suppose
(z)fk 6= z. Then (x)wqM ,x = (z)fk /∈ dom(qM ) ∪ ran(qM ), and so m = 0. Since
Φ ⊆ dom(q) ⊆ dom(qM ), this implies that

(x)wqM ,xq
m
M = (z)fk ∈ nKω \ Φ.

Suppose that (z)fk = z, in other words (x)wqM ,x = z. Since z /∈ dom(qM ), it
follows that x /∈ dom(wqM ,xq

m
M ) for all m > 0. If m = 0 then (x)wqM ,xq

m
M =

(z)fk ∈ nKω \ Φ by the choice z and since Φ ⊆ dom(q). Suppose that m < 0.
Then m + 1 ≤ 0 and it follows from the definition of qM that dom(qm+1

M ) is
either dom(qm+1) or dom(qm+1)∪{(z)qm+1

M }. Note that y ∈ dom(qm+1
M ) implies

y ∈ dom(qm+1). It follows that from (6) of S(Γ,Θ,Φ,∆, w) that

(x)wqM ,xq
m
M = (z)qmM = (y)qm+1

M = (y)qm+1 = (x)wq,xq
m+1 ∈ nKω \ Φ.

Hence qM satisfies (v) for u = x.
Suppose that u ∈ Γ \ {x} and m ∈ Z is such that u ∈ dom(wqM ,uq

m
M ).

Since qM satisfies (ii), it follows that (u)wqM ,u = (u)wq,u. If m ≤ 0, or m > 0

and there is no m′ ∈ {0, . . . ,m− 1} with (u)wq,uq
m′ = y, then (u)wqM ,uq

m
M =

(u)wq,uq
m ∈ nKω \ Φ by (6) of S(Γ,Θ,Φ,∆, w). Otherwise, m > 0 and there is

m′ ∈ {0, . . . ,m− 1} such that (u)wq,uq
m′ = y, in which case (u)wqM ,uq

m′+1
M =

z /∈ dom(qM ). Hence m = m′ + 1, and since Φ ⊆ dom(q) ⊆ dom(qM ), it follows
that (u)wqM ,uq

m
M ∈ nKω \ Φ. Therefore, qM satisfies (v) and thus the inductive

hypothesis holds.
In the case where M = |w|, q|w| already satisfies conditions (i) to (v). Hence

suppose that M < |w| and suppose that for some j ∈ {M, . . . , |w| − 1} there
is an extension qj ∈ A<ωf,Σ of qj−1 satisfying conditions (i) to (v). We have two
cases to consider: either ρj+1 = ρjβ

ε or ρj+1 = ρjα
ε for some ε ∈ {−1, 1}.

First consider the case ρj+1 = ρjβ
ε, where ε ∈ {−1, 1}. Let qj+1 = qj . Then

conditions (i), (ii), (iv), and (v) are trivially satisfied by qj+1. In order to show
that qj+1 satisfies (iii), let i ∈ Z be such that i ∈ {−b(w) + b(ρj+1), . . . ,b(w)−
b(ρj+1)}. Then |i+ ε| ≤ b(w)− b(ρj+1) + 1 = b(w)− b(ρj), and so

(x)ρj+1f
i = (x)ρjf

i+ε ∈ nKω \ dom(qj) = nKω \ dom(qj+1).
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Hence qj+1 satisfies condition (iii), and so the induction hypothesis.
Otherwise ρj+1 = ρjα

ε for some ε ∈ {−1, 1}, and so ρj+1 = ρjα since w
does not contain α−1. Let y = (x)ρj , and let a ∈ {1, . . . , n} be such that y ∈ La.
Choose

z ∈ L(a)qj \
b(w)⋃

i=−b(w)

(
dom(qj) ∪ ran(qj) ∪ {y} ∪∆ ∪

{
(u)wqj ,u : u ∈ Γ

})
f−i.

Since y /∈ dom(qj) by (iii) and z /∈ dom(qj)∪ran(qj), it follows from Lemmas 3.6.4
and 3.6.8 that qj+1 = qj ∪ {(y, z)} ∈ A<ωf,Σ. Observe that

dom(qj+1) = dom(qj) ∪ {y} and ran(qj+1) = ran(qj) ∪ {z}. (3.28)

The vertex z was chosen so that z /∈ ∆, and so qj+1 satisfies (i).
It follows from (iii) that x ∈ dom (ρj) and x /∈ dom (ρj+1(qj)), thus wqj ,x ≡ ρj .

Let u ∈ Γ \ {x}. Since qj satisfies (iv)

(u)wqj ,u 6= (x)wqj ,x = (x)ρj = y.

It then follows from (u)wqj ,u ∈ nKω \ dom(qj) and (3.28) that (u)wqj ,u ∈
nKω \ dom(qj+1), and so wqj+1,u ≡ wqj ,u. Then (u)wqj+1,u ∈ nKω \ dom(qj+1),
and since qj satisfies (ii) it follows that qj+1 also satisfies (ii).

Let i ∈ {−b(w), . . . ,b(w)}. Then by (3.28) and the fact that z was chosen
so that (z)f i /∈ dom(qj) ∪ {y}

(x)ρj+1f
i = (z)f i ∈ nKω \ dom(qj+1).

Hence qj+1 satisfies (iii).
It follows from the fact that qj+1 satisfies (iii), that wqj+1,x ≡ wqj ,xαβk for

some k ∈ {−b(w), . . . ,b(w)}, and so

(x)wqj+1,x = (z)fk. (3.29)

By the choice of z and the fact that qj+1 satisfies (ii)

(x)wqj+1,x = (z)fk 6= (u)wqj ,u = (u)wqj+1,u

for every u ∈ Γ \ {x}. Hence qj+1 satisfies (iv).
Finally, to show that qj+1 satisfies (v) consider two cases — u = x and u ∈ Γ\

{x}. Suppose that u = x andm ∈ Z is such that x ∈ dom(wqj+1,xq
m
j+1). From the

choice of z and (3.29) it follows that (x)wqj+1,x = (z)fk /∈ dom(q)∪ ran(q)∪{y}.
Suppose (z)fk 6= z. Then (x)wqj+1,x = (z)fk /∈ dom(qj+1) ∪ ran(qj+1), and so
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m = 0, in which case Φ ⊆ dom(q) ⊆ dom(qj+1) implies that

(x)wqj+1,xq
m
j+1 = (z)fk ∈ nKω \ Φ.

Suppose that (z)fk = z, in other words (x)wqj+1,x = z. Since z /∈ dom(qj+1), it
follows that x /∈ dom(wqj+1,xq

m
j+1) for all m > 0. If m = 0, then (x)wqj+1,xq

m
j+1 =

(z)fk ∈ nKω \ Φ by the choice z and since Φ ⊆ dom(q). Suppose that m < 0.
Then m + 1 ≤ 0 and it follows from the definition of qj+1 that dom(qm+1

j+1 ) is
either dom(qm+1

j ) or dom(qm+1
j )∪{(z)qm+1

j+1 }. Note that y ∈ dom(qm+1
j+1 ) implies

y ∈ dom(qm+1
j ). It follows that from (6) of S(Γ,Θ,Φ,∆, w) that

(x)wqj+1,xq
m
j+1 = (z)qmj+1 = (y)qm+1

j+1 = (y)qm+1
j = (x)wqj ,xq

m+1 ∈ nKω \ Φ.

Hence qj+1 satisfies (v) for u = x.
Suppose that u ∈ Γ \ {x} and m ∈ Z such that u ∈ dom(wqj+1,uq

m
j+1). Since

qj and qj+1 satisfies (ii), it follows that (u)wqj+1,u = (u)wq,u = (u)wqj ,u. If
m ≤ 0, or m > 0 and there is no m′ ∈ {0, . . . ,m − 1} with (u)wqj ,uq

m′ = y,
then (u)wqj+1,uq

m
j+1 = (u)wqj ,uq

m
j ∈ nKω \ Φ since qj satisfies (v). Otherwise,

m > 0 and there is m′ ∈ {0, . . . ,m− 1} such that (u)wqj ,uq
m′

j = y, in which case
(u)wqj+1,uq

m′+1
j+1 = z /∈ dom(qj+1). Hence m = m′ + 1, and since Φ ⊆ dom(q) ⊆

dom(qj+1), it follows that (u)wqj+1,uq
m
j+1 ∈ nKω \ Φ. Therefore, qj+1 satisfies

(v) and thus the inductive hypothesis.
By induction there is h = q|w| ∈ A<ωf,Σ satisfying (i) – (v). We will show that h

satisfies S(Γ,Θ∪{x},Φ,∆, w) and will refer to parts (1) to (6) of this condition by
writing (1) to (6), where appropriate, without reference to S(Γ,Θ∪ {x},Φ,∆, w)

in the rest of the proof.
Since h is an extension of q and q ∈ Sn, it follows that h = q. Hence

w(h) = id,

and so h satisfies (1). Since h satisfies (i) and (v), it also satisfies (2) and (6). Since
w = ρ|w| condition (iii) implies that x ∈ dom(w(h)), and so x ∈ dom(w(h)) ∩ Γ.
If u ∈ Γ \ {x}, then wh,u ≡ wq,u by (ii), and so u ∈ dom(w(h)) ∩ Γ if and
only if u ∈ dom(w(q)) ∩ Γ. Therefore, dom(w(h)) ∩ Γ = Θ ∪ {x} as q satisfies
S(Γ,Θ,Φ,∆, w), in other words h satisfies (3). By (iii) the image of x under w(h)

is in nKω \ dom(h), and by (ii) the image of u ∈ Θ under w(h) = wq,u is also in
nKω \ dom(h). Hence h satisfies condition (4). It then follows from (ii), (iv) and
the fact that q satisfies (5) of S(Γ,Θ,Φ,∆, w) that (u)wh,u = (v)wh,v only if u = v

for all u, v ∈ Γ, and thus h satisfies (5). Hence h satisfies S(Γ,Θ ∪ {x},Φ,∆, w),
as required.

Proof of Lemma 3.6.15. If necessary by extending q using Lemmas 3.6.4 and 3.6.8,
we can assume that Γ ⊆ dom(q).
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Let d = |Γ|. By Lemma 3.6.16, there is a freely reduced word w ∈ F (α, β) not
containing α−1 and starting with α, and an extension q0 ∈ A<ωf,Σ of q satisfying
S(Γ,∅,dom(q),∆, w). Suppose that for some j ∈ {0, 1, . . . , d−1} we have already
extended q = q0 to qj ∈ A<ωf,Σ such that there is Γj ⊆ Γ, with |Γj | = j, and qj
satisfies S(Γ,Γj ,dom(q),∆, w). Let x ∈ Γ\Γj and let Γj+1 = Γj ∪{x}. Then, by
condition (3) of S(Γ,Γj ,dom(q),∆, w), x /∈ dom (w(qj)). Hence if we let Θ = Γj

and Φ = dom(q) then by Lemma 3.6.17 there is qj+1 ∈ A<ωf,Σ and extension of qj
satisfying S(Γ,Γj+1,dom(q),∆, w).

Therefore, by induction on j we obtain h = qd ∈ A<ωf,Σ which satisfies
S(Γ,Γ,dom(q),∆, w), as required.
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Chapter 4

Make it universal: words, lists
and sequences

This chapter is based on the research conducted in collaboration with J. Hyde.
It is included in this thesis with the permission of my coauthor.

4.1 Introduction to universal words and sequences

In order to define the notions of universal words and universal sequences we first
need to introduce some classical notations of free objects in semigroups, monoids
and groups.

Let A be an alphabet, let S be a semigroup, and let w ∈ A+. Then w is
a semigroup universal word for S if for every s ∈ S there is a
semigroup homomorphism Φ : A+ −→ S such that (w)Φ = s. If w = x1 . . . xn

where xi ∈ A, then s = (w)Φ = (x1)Φ . . . (xn)Φ. So we may think of Φ as
substituting elements of S for the letters from A in the word w.

Example 4.1.1. Let A = {a}, let S be a semigroup, and let s ∈ S. Define
Φ : A+ −→ S by (ai)Φ = si. Then Φ is clearly a homomorphism and (a)Φ = s.
Hence the word a is a semigroup universal word for S.

Example 4.1.2. A semigroup B is a band if x2 = x for all x ∈ B. Let A
be a non-empty set, let B be a band, and let x ∈ B. Define (w)Φ = x for all
w ∈ A+. Then (uv)Φ = x = x2 = (u)Φ(v)Φ for all u, v ∈ A+, and so Φ is a
homomorphism. Hence any word is a semigroup universal word for B.

We have seen in Example 4.1.1 that every word of length 1 is universal. It
turns out that there are semigroups where the only universal words are words of
length 1. A semigroup S is a zero semigroup if there is a distinguished
element 0 ∈ S such that xy = 0 for all x, y ∈ S. Suppose that |S| > 1 and

116



that w ∈ A+ is of length at least 2. Then (w)Φ = 0 for any homomorphism
Φ : A+ −→ S, and so w is not a semigroup universal word for S.

It is worth noting that zero semigroups are not the only examples of semi-
groups with no word of length greater than 1 being universal. For example, free
semigroups satisfy the same condition.

In the spirit of Example 4.1.2, we can ask, whether there are semigroups,
other than bands, such that every word is a semigroup universal word. In the
case of finite semigroups the answer is no.

Proposition 4.1.3. Let A be an alphabet, let a ∈ A, and let S be a finite
semigroup such that an is a semigroup universal word for S for every n ∈ N.
Then S is a band.

Proof. Let O = {{sm : m ≥ 1} : s ∈ S}. Then ⊆ defines a partially order on
O. Since O is finite, it follows that there exists s ∈ S such that {sm : m ≥ 1}
is a maximal element of O. As a2 is a semigroup universal word, there is a
homomorphism Φ : A+ −→ S such that (a2)Φ = s. Denote t = (a)Φ. Then
t2 = s, and so

{sm : m ≥ 1} ⊆ {tm : m ≥ 1}.

Hence the two sets are equal, by the maximality of {sm : m ≥ 1}, and thus
t = sm for some m ≥ 1. Then s = s2m. Since a2m−1 is also a semigroup
universal word for S, there is u ∈ S such that u2m−1 = s. Similarly as before,
{um : m ≥ 1} = {sm : m ≥ 1} by the maximality of {sm : m ≥ 1}. Hence u = sk

for some k ≥ 1, and so s = sk(2m−1). If k > 1, then

s = sk(2m−1) = s(k−1)(2m−1)−1 · s2m = s(k−1)(2m−1).

We can repeat this to show that s = s2m−1, which together with s = s2m, shows
that s = s2.

Finally, if t ∈ S is arbitrary, then {tm : m ≥ 1} is contained in a maximal
{sm : m ≥ 1} ∈ O for some s ∈ S. By above s2 = s, and so {sm : m ≥ 1} = {s},
implying that t = s. Therefore, t2 = t for every t ∈ S.

Next we provide a concrete example of a non universal word.

Example 4.1.4. Let A = {a}. We will show that a2 is not a universal word
for Sym(Ω) for any set Ω such that |Ω| ≥ 2. Suppose that a2 is a semigroup
universal word. Then there is Φ : A+ −→ Sym(Ω) such that (a2)Φ = (1 2).
Hence (1 2) = (a)Φ(a)Φ. Note that if τ is a cycle of odd length, then τ2 is a
cycle of the same length, and similarly if τ is a cycle of length 2m for some
m ≥ 1, then τ2 is a product of two disjoint cycles both of length m. Thus
|Ω| ≥ 4 and we can write (a)Φ in disjoint cycle notation as (1 x 2 y)τ for some
x, y ∈ {1, . . . , n} such that x 6= y and a permutation τ in Sym(Ω \ {1, 2, x, y}).
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However, (a2)Φ = (1 2)(x y)τ2 6= (1 2). Therefore, a2 is not a semigroup universal
word for Sym(Ω). A similar proof works if a2 is replaced by an for any n ≥ 2,
provided that |Ω| ≥ n.

An analogous notion to that of the semigroup universal word can be defined
for groups. Let A be an alphabet, let G be a group, and let w be an element of the
free group F (A), as defined in Section 1.2.2. Then w is a group universal
word for G if for every g ∈ G there is a group homomorphism Φ : F (A) −→ G

such that (w)Φ = g.
The first result dealing with universal words dates back to Ore, see [58], where

he proved the following theorem.

Theorem 4.1.5 (Ore’s Theorem [58]). Let A = {a, b} and let Ω be countable.
Then the word a−1b−1ab is a group universal word for Sym(Ω). In other words,
every element of Sym(Ω) is a commutator.

Moreover, Ore also proves in the same paper that every element of the
alternating group on n ≥ 5 points is a commutator and raises the question
whether this is also true for every finite non abelian simple group. The question
subsequently became known as Ore’s Conjecture. The conjecture was extensively
studied in the literature, see [1, 18, 23, 24, 67, 71, 72, 73] and was finally proved
in [47]. Universal words of other groups were also investigated, for example
see [1, 54, 75].

It turns out that the non universal word for Sym(n) or Sym(N) in Exam-
ple 4.1.4 is, in a sense, a canonical example of a non universal word for these
groups.

Theorem 4.1.6 (see [15], [48], [57]). Let G = Sym(n) for some n ∈ N or
G = Sym(N), and let A be an alphabet. Then w ∈ F (A) is a group universal
word if and only if there is no u ∈ F (A) and m > 1 such that w = um.

In the same spirit as Theorem 4.1.6, it is conjectured that a free group word
is a group universal word for the automorphism group of the random graph if
and only if it is not a proper power of some other word. In [16], Droste and Truss
prove some partial results to establish the conjecture. More precisely, they show
that if w is an element of F (A) for some alphabet A such that w is not a proper
power of any element of F (A), and f ∈ Aut(R) is a certain type of element,
called special in the paper, then there is a homomorphism Φ : F (A) −→ Aut(R)

such that (w)Φ = f . The property of being a special elements of Aut(R) is
strictly stronger than being a generic element (in other words, belonging
to the comeagre conjugacy class). The aforementioned result is then used to
show that free words of certain types are universal for Aut(R), for example the
word a−nb−1amb for any n,m ∈ N.

Let A be an alphabet, let S be a semigroup, and let {wi : i ∈ I} ⊆ A+ for
some set I. Then {wi : i ∈ I} is a semigroup universal sequence if I

118



is countable and for every {si : i ∈ I} ⊆ S there is a semigroup homomorphism
Φ : A+ −→ S such that (wi)Φ = si for all i ∈ I. In the same way as with
semigroup universal words, if wi = x1 . . . xn where xi ∈ A, then si = (wi)Φ =

(x1)Φ . . . (xn)Φ. So we may think of Φ as a substitution of letters from A by
elements of S.

The following example shows that if Ω is a countable set, then the set of
functions from Ω to Ω has a universal sequence over an alphabet of size 2.
Originally the result was proven by Sierpiński [69] with Banach [5] and Hall [27]
finding alternative universal sequences for ΩΩ. Here we will include a short proof
originally by James Hyde.

Example 4.1.7. Let A = {a, b, c}, and let Ω be the set of eventually constant
sequences of integers, written from right to left, in other words

Ω = {(. . . , x1, x0) : xi ∈ Z and there is K ∈ N so that xi = xK for all i ≥ K}.

Let {fn : n ∈ N} ⊆ ΩΩ be a sequence. For every (. . . , x1, x0) define α, β, γ ∈ ΩΩ

as follows

(. . . , x1, x0)α = (. . . , x1, x0, 0),

(. . . , x1, x0)β = (. . . , x1, x0 + 1),

(. . . , x1, x0)γ = (. . . , x2, x1)fx0
.

Then for any n ∈ N and arbitrary (. . . , x1, x0) ∈ Ω

(. . . , x1, x0)αβnγ = (. . . , x1, x0, 0)βnγ

= (. . . , x1, x0, n)γ

= (. . . , x1, x0)fn.

Since (. . . , x1, x0) was arbitrary, it follows that αβnγ = fn for all n ∈ N. Let
Φ : A+ −→ ΩΩ by the canonical homomorphism induced by (a)Φ = α, (b)Φ = β,
and (c)Φ = γ. Then (abnc)Φ = fn for all n ∈ N, and so {abnc : n ∈ N} is a
universal sequence for ΩΩ over an alphabet of size 3. However, this argument
can be extended further. Fix an arbitrary sequence {gn : n ∈ N}, let f0 = β, and
let fn = gn−1 for n ≥ 1. If α, γ are defined as before, then αγ = β, and so for all
n ∈ N

gn = fn+1 = α (αγ)
n+1

γ.

If we let A = {a, b}, and let Φ : A+ −→ ΩΩ by the canonical homomorphism
induced by (a)Φ = α and (b)Φ = γ, then (a (ab)

n+1
b)Φ = gn for all n ∈ N.

Hence {a (ab)
n+1

b : n ∈ N} is a semigroup universal sequence for ΩΩ.

The definition of a semigroup universal sequence can be adapted to group in
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the same way as the definition of a semigroup universal word was adapted to
groups. It is worth noting that if {wn : n ∈ N} ⊆ A+ is a group universal sequence
for a group G, then every countable subset of G is contained in |A|-generated
subgroup of G. In was shown by Galvin in [20], that for any infinite Ω, every
countable subset of Sym(Ω) is contained in a 2-generated subgroup of Sym(Ω).
In [34], it was shown that the group of order automorphism of the rationals has
a universal sequence over a 2 letter alphabet, and so every countable subset is
contained in a 2-generated subgroup.

Similarly to the definition of semigroup universal sequence, we say that
{wi : i ∈ I} is a semigroup universal list of length n ∈ N if
|I| = n and for every {si : i ∈ I} ⊆ S there is a semigroup homomorphism
Φ : A+ −→ S such that (wi)Φ = si for all i ∈ I. Again the definition of a
semigroup universal lists can be adapted to groups.

Example 4.1.8. For any m ∈ N, it immediately follows from Example 4.1.7
that {a (ab)

n
b : n ∈ {1, . . . ,m}} is a semigroup universal list of length m for ΩΩ.

The following is a very easy example of a universal list.

Example 4.1.9. Let A = {a1, . . . , an}, let I = {1, . . . ,m} such that m ≤ n,
and let S be a semigroup. For an arbitrary {si ∈ S : i ∈ I}, let Φ : A+ −→ S be
the canonical homomorphism induced by (ai)Φ = si for all i ∈ I and (ai)Φ = s1

for all i ∈ {m+ 1, . . . , n}. Then {ai : i ∈ I} a semigroup universal list of length
m for S.

For any semigroup S (or alternatively group) if the size of the alphabet A is
n, then there always exists a universal list of length m for S for every m ≤ n.
In the next lemma we will show that if there is a universal list of length n+ 1

for S over an alphabet of size n, then there is a universal list of length m for S
over the same alphabet for every m ≥ n+ 1. Hence if we are only interested in
the existence of a universal list for a given semigroup, we only need to find a
universal list of length n+ 1.

Lemma 4.1.10. Let S be a semigroup, and let A be an alphabet of size n. If S
has a semigroup universal list of length at least n+ 1 over A for S, then S has a
semigroup universal list of length m over A and every m ∈ N.

Proof. The existence of a semigroup universal list of length m over A for S
follows immediately from Example 4.1.9 if m ≤ n.

We will proceed to show the existence of universal lists of length m ≥
n + 1 by induction. By the hypothesis of the lemma there is {u1, . . . , uk} a
semigroup universal list of length k ≥ n+ 1 over A for S. Then {u1, . . . , un+1}
is a semigroup universal list of length n+ 1 over A for S. Suppose that for some
m ∈ {n + 1, n + 2, . . .} and all k ∈ {n + 1, . . . ,m} there exists a semigroup
universal list of length k over A for S.
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Suppose that {w1, . . . , wm} is a universal list for S. If A = {a1, . . . , an},
for every k ∈ {1, . . . ,m}, we may find ik,1, . . . , ik,tk ∈ {1, . . . , n} such that
wk = aik,1 . . . aik,tk . Define for all k ∈ {1, . . . ,m}

vk = wik,1 . . . wik,tk ,

and vm+1 = wn+1. Then by definition vk ∈ A+ for all k ∈ {1, . . . ,m+ 1}.
Let s1, . . . , sm+1 ∈ S be arbitrary. Then since {w1, . . . , wm} is a semigroup

universal list over A for S, there is Φ : A+ −→ S such that (wk)Φ = sk for
k ∈ {1, . . . ,m}. Also there is Ψ : A+ −→ S such that (wk)Ψ = (ak)Φ for all
k ∈ {1, . . . , n} and (wn+1)Ψ = sm+1. Since Φ and Ψ are homomorphisms, it
follows that for k ∈ {1, . . . ,m}

(vk)Ψ = (wik,1)Ψ . . . (wik,tk )Ψ

= (aik,1)Φ . . . (aik,tk )Φ

= (wk)Φ = sk,

and (vm+1)Ψ = (wn+1)Ψ = sm+1. Hence {v1, . . . , vm+1} is a semigroup universal
list of length m+ 1 over A for S, and therefore by induction there is a semigroup
universal list of any length over A for S.

In the proof of Lemma 4.1.10 the fact that the lemma was formulated for
semigroups was not important. The same result (with almost identical proof)
holds for groups.

The final piece of notation we will require for this chapter is defined as follows.
If A is an alphabet, and a, b ∈ A, we will denote by aA∗ all words in A∗ starting
with a, by A∗a all words in A∗ ending with a, and by aA∗b all words in A∗

starting with a and ending with b.
This chapter is organised in the following way: in Section 4.2 we investigate

classes of semigroup universal words for ΩΩ for a countable Ω; in Section 4.3 we
prove results analogous to the ones in Section 4.2, but for semigroup universal
sequences for ΩΩ; and in Section 4.4 we prove that the automorphism group of
the random graph has a universal list of any finite length over a 4 letter alphabet.

4.2 Universal words for ΩΩ

In this section we will describe families of semigroup universal words for the
transformation monoid on a countable set over a two letter alphabet. Throughout
this section we assume that Ω is a countable set. However, most of the proofs
can be easily adapted to higher cardinalities. We choose to only consider the
countable case to keep the notation easier.

The question we are trying to answer in this section is as follows.
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Question 4.2.1. Let A be an alphabet. Is a word w ∈ A+ a semigroup universal
word for ΩΩ?

In Section 4.2.1 we give a sufficient condition for a word to be universal, and
in Section 4.2.2 we analyse some of the words which do not satisfy the condition.

4.2.1 Classes of semigroup universal words for ΩΩ

In Proposition 4.2.14 we will show that the only universal word for ΩΩ over the
alphabet {a} is a. Hence in this section we will be mostly interested in universal
words over a 2 letter alphabet. First of all, we prove a proposition allowing us to
define a class of semigroup universal words for ΩΩ. We note that the result was
originally proved by Isbell, see [35]. We independently rediscovered the result in
2014.

Proposition 4.2.2. Let A be an alphabet, and let w ∈ A+ be such that every
proper prefix of w is not a suffix of w. Then w is a universal word for ΩΩ.

Proof. Let Ω be the set of eventually constant sequences over A, written from
right to left, that is

Ω = {(. . . , x1, x0) : xi ∈ A and there is K ∈ N with xk = xK for all k > K}.

If w is a single letter, the result is trivial, so we may assume that |w| ≥ 2.
Since no proper prefix of w is a suffix of w, it follows that the first and the last
letters of w are different, and so |A| ≥ 2. Suppose that the first letter of w is a
and the last letter is b, namely w ∈ aA∗b.

Fix f ∈ ΩΩ. Let αx, γ ∈ ΩΩ, for x ∈ A, be defined as follows

(. . . , x1, x0)αx = (. . . , x0, x)

(. . . , x1, x0)γ =

(. . . , xn+1, xn)f if xn−1 . . . x0 = w

(. . . , x1, x0) otherwise
.

Then define Φ : A+ −→ ΩΩ to be the canonical homomorphism induced by
(x)Φ = αx for all x ∈ A \ {b} and (b)Φ = αb ◦ γ. Let w = y1 . . . yn where yi ∈ A
for all i ∈ {1, . . . n}.

First note that (. . . , x1, x0)(y1)Φ = (. . . , x0, y1), since y1 = a. Suppose that for
some i ∈ {1, . . . , n−2} we have that (. . . , x1, x0)(y1 . . . yi)Φ = (. . . , x0, y1, . . . , yi).
Since Φ is a homomorphism

(. . . , x1, x0)(y1 . . . yi+1)Φ = (. . . , x1, x0)(y1 . . . yi)Φ(yi+1)Φ

= (. . . , x1, x0, y1, . . . , yi)(yi+1)Φ.
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Suppose that yi+1 ∈ A \ {b}. Then (yi+1)Φ = αyi+1
, and so

(. . . , x1, x0)(y1 . . . yi+1)Φ = (. . . , x1, x0, y1, . . . , yi+1),

as required. Suppose that yi+1 = b. Then (yi+1)Φ = αyi+1 ◦ γ, and so

(. . . , x1, x0)(y1 . . . yi+1)Φ = (. . . , x1, x0, y1, . . . , yi+1)γ.

Since no proper prefix of w is equal to a suffix of w and y1 . . . yi+1 is a prefix
of w, it follows that xn−i−2 . . . x0y1 . . . yi+1 6= w. Hence γ acts as an identity on
(. . . , x1, x0, y1, . . . , yi+1), and the inductive hypothesis is satisfied.

Therefore, (. . . , x1, x0)(y1 . . . yn−1)Φ = (. . . , x1, x0, y1, . . . , yn−1), and since
yn = b, it follows that

(. . . , x1, x0)(w)Φ = (. . . , x1, x0, y1, . . . , yn)γ = (. . . , x1, x0)f.

Hence (w)Φ = f , and we are done.

In the next example we show that there exist words w, such that no proper
prefix of w is equal to a suffix of w.

Example 4.2.3. For any n ∈ N, consider the word w = a(ab)nb. Then a
proper prefix of w is either a(ab)k for some k ∈ {0, . . . , n} or a(ab)ka for some
k ∈ {0, . . . , n− 1}. On the other hand, then proper suffixes are (ab)kb for some
k ∈ {0, . . . , n}, or b(ab)kb for some k ∈ {0, . . . , n−1}. Therefore, no proper prefix
is equal to a proper suffix, and so w = a(ab)nb is a semigroup universal word for
ΩΩ for all n ∈ N.

However, the converse of Proposition 4.2.2 does not hold.

Example 4.2.4. Let w = aba. Then a is both a proper prefix and a proper suffix
of w. Fix f ∈ ΩΩ. If we define Φ : A+ −→ ΩΩ to be the canonical homomorphism
induced by (a)Φ being the identity on Ω and (b)Φ = f , then (w)Φ = f .

We will now generalise Proposition 4.2.2 to a bigger class of universal words.
In order to do so, we need to introduce some new concepts. For a given w ∈ A+,
consider a submonoid S of A∗ such that the following two conditions are satisfied

if there are s, s′ ∈ S and u, v ∈ A∗ such that w = svuvs′ then v ∈ S; (4.1)

if there are s, t, v ∈ A∗ such that w = svt and sv, vt ∈ S then w ∈ S. (4.2)

For any given word w, there is at least one such submonoid, since A∗ satisfies
the conditions trivially.

Let I be a non-empty set, and for every i ∈ I let Si be a submonoid of A∗

satisfying conditions (4.1) and (4.2). Suppose that there are s, s′ ∈
⋂
i∈I Si and
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u, v ∈ A∗ such that w = svuvs′. Then v ∈ Si by condition (4.1) for all i ∈ I.
Hence v ∈

⋂
i∈I Si, and so

⋂
i∈I Si satisfies condition (4.1). Suppose that there

are s, t, v ∈ A∗ such that w = svt and sv, vt ∈
⋂
i∈I Si. Then w ∈ Si by (4.2)

for all i ∈ I. Therefore, there exists the smallest submonoid, with respect to
containment, of A∗ satisfying condition (4.1) and (4.2), we denote it by Sw.

There is also a more constructive way of defining Sw. Let S0 = 〈1〉, and
suppose that we have defined Sn, a submonoid of A∗, for some n ∈ N. Let

Xn = {v : w = svuvs′ for some s, s′ ∈ Sn and u, v ∈ A∗};

Yn = {w} if w = svt for some s, v, t ∈ A∗ so that sv, vt ∈ Sn,

and Yn = ∅ otherwise;

Sn+1 = 〈Sn, Xn, Yn〉.

(4.3)

Then S0 ≤ S1 ≤ S2 ≤ . . . by definition of Sn+1. Let S =
⋃
n∈N Sn. If s, t ∈ S,

then there are n,m ∈ N such that s ∈ Sn and t ∈ Sm. Then s, t ∈ Smax(s,t), and
so st ∈ Smax(s,t) ⊆ S. Hence S is a submonoid of A∗.

Suppose that w = svuvs′ for some s, s′ ∈ S and u, v ∈ A∗. Then by definition
of S and the fact that S0 ≤ S1 ≤ . . . there is some n ∈ N such that s, s′ ∈ Sn.
Hence v ∈ Xn ⊆ Sn+1 ⊆ S, and so S satisfies condition (4.1). Suppose that
w = svt for some s, v, t ∈ A∗ and sv, vt ∈ S. Then by definition of S and the
fact that S0 ≤ S1 ≤ . . . there is some n ∈ N such that sv, vt ∈ Sn. Hence
w ∈ Yn ⊆ Sn+1 ⊆ S, and so S satisfies condition (4.2).

Let T be a submonoid of A∗ satisfying conditions (4.1) and (4.2). Since
S0 = 〈1〉, it follows that S0 ≤ T . Suppose that Sn ≤ T for some n ∈ N. If
w = svuvs′ such that s, s′ ∈ Sn and u, v ∈ A∗, then v ∈ T , since T satisfies
condition (4.1) and s, s′ ∈ T . Hence Xn ⊆ T . If w = svt such that s, v, t ∈ A∗

and sv, vt ∈ Sn, then it follows from the fact that T satisfies condition (4.2),
that w ∈ T , and so Yn ⊆ T , and so Sn+1 ⊆ T . Then by induction Sn ≤ T for all
n ∈ N, and thus S ≤ T . Therefore S is the minimal submonoid of A∗ satisfying
conditions (4.1) and (4.2), in other words S = Sw.

It follows from the definition of Sn that if Sk = Sk+1 for some k ∈ N, then
Sk = Sn for all k ≤ n. Let K ∈ N be the number of distinct non-empty subwords
of w. It follows from the definition of Sn+1 that if Sn+1  Sn, then there is a
non-empty subword v of w such that v ∈ Sn+1 \ Sn. Therefore, SK = Sn for all
n ≥ K, and so

Sw =

K⋃
n=1

Sn = SK .

Note that K is bounded from above by
∑|w|
i=1 |w|−(i−1) = |w|(|w|+1)/2. Hence

Sw = S|w|(|w|+1)/2. Thus there is an algorithm which given word w computes
Sw, more precisely a set generating Sw, in finite time.
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Proposition 4.2.5. The monoid Sw is finitely generated.

Proof. By (4.3) the monoid Sw is generated by⋃
n∈N

Xn ∪ Yn.

For all n ∈ N, both Xn and Yn are sets of non-empty subwords of w. However,
there are only finitely many subwords of w, and so the generating set is finite.

Next we present a couple of examples where we compute Sw for a given w.

Example 4.2.6. Let w ∈ A+ be word such that no proper prefix of w is a
proper suffix. Suppose that w = svuvs′ such that s, s′ ∈ S0 and u, v ∈ A∗. By
definition S0 = 〈1〉, and so s = s′ = 1. Since any proper prefix of w is not a suffix
of v, it also follows that v = 1. Hence X0 = {1}.

Suppose that w = svt such that s, v, t ∈ A∗ and sv, vt ∈ S0. Then sv = vt = 1,
and so s = v = t = 1, which is only possible if w = 1. Hence Yn = ∅, and so
S1 = S0. Therefore Sw = 〈1〉.

Example 4.2.7. Let w = aba2b. Suppose that w = svuvs′ such that s, s′ ∈ S0

and u, v ∈ A∗. Since S0 = 〈1〉, we have that s = s′ = 1, and so aba2b = vuv.
Hence v ∈ {1, ab}, implying that X0 = {1, ab}. Suppose that w = svt such that
s, v, t ∈ A∗ and sv, vt ∈ S0. Then sv = vt = 1, and so s = v = t = 1, which is
only possible if w = 1. Hence Y0 = ∅, and so S1 = {(ab)n : n ∈ N}.

Let s = 1, s′ = ab, v = a, and u = b. Then svuvs′ = w, and so v = a ∈ S2,
by (4.1) since s, s′ ∈ S1.

Finally, let s = a, s′ = 1, v = b, and u = a2. Then svuvs′ = w, and so b ∈ S3

by (4.1) since s, s′ ∈ S2. Therefore Sw = A∗.

Example 4.2.8. Let w = aba2b2ab. Suppose that w = svuvs′ such that s, s′ ∈
S0 and u, v ∈ A∗. Since S0 = 〈1〉, we have that s = s′ = 1, and so aba2b2ab = vuv.
Hence v ∈ {1, ab}, implying that X0 = {1, ab}. If w = svt such that s, v, t ∈ A∗

and sv, vt ∈ S0, then s = v = t = 1, which is impossible. Hence Y0 = ∅, and so
S1 = 〈ab〉 = {(ab)n : n ∈ N}.

Suppose that w = svuvs′ such that s, s′ ∈ S1 and u, v ∈ A∗. Then s, s′ ∈
{1, ab}. If we consider the four different possibilities, it is easy to see that v 6= 1

only if s = s′ = 1, in which case v = ab. Hence X2 = X1. Suppose that w = svt

such that s, v, t ∈ A∗ and sv, vt ∈ S1. It then follows that sv, vt ∈ {1, ab}. If
sv = 1, then v = 1 and t = w, and so vt = w 6= ab, which is impossible. If
sv = ab, then t = a2b2ab, and so vt /∈ {1, ab}, again contradicting the fact that
vt ∈ {1, ab}. Hence Y1 = ∅, thus S2 = S1, and so Sw = {(ab)n : n ∈ N}.

In Theorem 4.2.12, we will use the notion of Sw to provide a sufficient
condition for a word w to be universal for ΩΩ. Before stating the main result of
this section, we will prove a couple of technical results concerning Sw.
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Lemma 4.2.9. Let A be an alphabet, and let w ∈ A+ be such that Sw 6= 〈1〉.
Then there is b ∈ Sw such that b is a proper prefix and a proper suffix of w.

Proof. Recall that Sw =
⋃
n∈N Sn where S0 = {1}, and Sn is as in (4.3). Let

s, s′ ∈ S0 and u, v ∈ A∗ such that w = svuvs′. Then s = s′ = 1, and so w = vuv.
If v 6= 1, then v ∈ Sw and it is both a proper prefix and a proper suffix of w.

Otherwise, v = 1, and so X0 = {1}. Let w = svt such that s, v, t ∈ A∗ and
sv, vt ∈ S0. Then sv = vt = 1, and so s = v = t = 1, which is only possible if
w = 1. Hence Y0 = ∅, implying that S1 = {1}.

Lemma 4.2.10. Let A = {a, b}, and let w ∈ aA∗b be such that a, b /∈ Sw. Then
Sw ⊆ aA∗b ∪ {1}.

Proof. Recall that Sw =
⋃
n∈N Sn, where Sn is as in (4.3). Then S0 = {1} ⊆

aA∗b ∪ {1}. Suppose that for some n ∈ N we have that Sn ⊆ aA∗b ∪ {1}.
Suppose that w = svuvs′ such that s, s′ ∈ Sn and u, v ∈ A∗. If v ∈ A∗a, then

we may write v = v′a for some v′ ∈ A∗, and since w starts with a, w = atv′as′

for some t ∈ A∗. Hence a ∈ Xn by (4.1) which contradicts the fact that a /∈ Sw.
If v ∈ bA∗, then similarly w = sbv′tb for some v′, t ∈ A∗. Since s ∈ Sw, it
follows that b ∈ Xn ⊆ Sw which is a contradiction. Hence v ∈ aA∗b, and so
Xn ⊆ aA∗b ∪ {1}.

By the definition Yn is either {w} or ∅. In both cases Yn ⊆ aA∗b∪{1}. Hence
Sn+1 ⊆ aA∗b∪{1}. Therefore, by induction on n, Sn ⊆ aA∗b∪{1} for all n ∈ N,
implying that Sw ⊆ aA∗b ∪ {1}.

The last technical result we need, shows that if the word w has a shared
prefix and suffix, then there is a shared prefix and suffix which is at most half
the length of the original word.

Lemma 4.2.11. Let A be an alphabet, and let w ∈ A+ and suppose there exists
v ∈ A+ such that v is both a proper prefix and a proper suffix of w. Then there
are q ∈ A+ and u ∈ A∗ such that w = quq.

Proof. Let q be the shortest subword of w which is both a prefix and a suffix of
w. Such word must exist by the hypothesis. Suppose that there is no u ∈ A∗ such
that w = quq. Then there are r, s, t ∈ A+ such that w = rst and q = rs = st.
Hence s is both a prefix and a suffix of w. However, s is a word shorter than q,
contradicting the assumption. Hence w = quq, for some u ∈ A∗.

Suppose that A is an alphabet and w ∈ A+ is such that w /∈ Sw. Let p ∈ A∗

be the longest prefix of w such that p ∈ Sw, and let s ∈ A∗ be the longest suffix
of w such that s ∈ Sw. Then either there is u ∈ A+ \ Sw such that w = pus, or
there are u, v, t ∈ A∗ such that w = uvt, p = uv and s = vt. In the latter case,
w ∈ Sw by (4.2). Therefore,

w = pus,
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for some u ∈ A+ \ Sw.
The following is the main result of the section.

Theorem 4.2.12. Let w ∈ {a, b}+ be such that w /∈ Sw. Let p, u, s ∈ {a, b}∗ be
such that w = pus, and p and s are respectively the longest prefix and the longest
suffix of w such that p, s ∈ Sw. Suppose that u is not a subword of p. Then w is
a semigroup universal word for ΩΩ.

Proof. Denote the alphabet {a, b} by A. Suppose that a ∈ Sw. Then w 6= ai for
any i ∈ N, since w /∈ Sw. So either w = aibaj for some i, j ∈ N, or w = aibubaj

for some i, j ∈ N and u ∈ A∗. In the latter case (4.1) implies that b ∈ Sw.
Hence Sw = A∗, which contradicts the assumption that w /∈ Sw. Suppose that
w = aibaj . Then a ∈ Sw by (4.1), and so Sw ⊇ {an : n ∈ N}. Moreover
{an : n ∈ N} satisfies both (4.1) and (4.2), and so is the minimal such monoid.
Hence Sw = {an : n ∈ N}. Fix f ∈ ΩΩ and define Φ : A∗ −→ ΩΩ to be the
canonical homomorphism induced by (a)Φ being the identity on Ω and (b)Φ = f .
Then (w)Φ = f , and so w is a universal word for ΩΩ. The proof for b ∈ Sw is
identical.

Thus it is sufficient to consider only the case where a, b /∈ Sw. It follows from
(4.1) that the first and the last letters of w must be different, in other words
w ∈ aA∗b or w ∈ bA∗a. Without the loss of generality, assume that w ∈ aA∗b.
Then Sw ⊆ aA∗b ∪ {1} by Lemma 4.2.10.

Let Ω be the set of eventually constant sequences over F (A), written from
right to left, namely

Ω = {(. . . , x1, x0) : xi ∈ F (A) and there is K ∈ N such that

xK = xk for all k ≥ K}.

Note that by Lemma 4.2.9 either both p 6= 1 and s 6= 1, or Sw = 〈1〉, and so
p = s = 1. We proceed by proving a series of claims.

Claim 1. u ∈ aA∗b.

Proof. If p = s = 1, then u = w ∈ aA∗b. Suppose that p 6= 1 and s 6= 1. Since
w ∈ aA∗b, there are p′, s′ ∈ A∗ such that p = ap′ and s = s′b. If u = bv for
some v ∈ A∗, then w = pbvs′b, and so b ∈ Sw by (4.1) and the fact that p ∈ Sw.
Similarly, if u = va for some v ∈ A∗, then w = ap′vas, and so a ∈ Sw by (4.1)
and the fact that s ∈ Sw. However, both cases are impossible since a, b /∈ Sw.
Therefore u ∈ aA∗b.

By Proposition 4.2.5 there is a finite generating set X ′ of Sw. Let X ⊆ X ′

be an irredundant generating set of Sw, that is if v ∈ X, then 〈X \ {v}〉 6= 〈X〉.
Claim 2. For each v ∈ X, there are t, t′ ∈ Sw such that tv is a prefix of p,

and vt′ is a suffix of s.
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Proof. Let Xn and Yn be as in (4.3). Note that Yn = ∅ for all n ∈ N, as w /∈ Sw.
Then it follows from the proof of Proposition 4.2.5 that X ⊆

⋃
n∈NXn.

Let n ∈ N. If v ∈ X ∩ Xn, then w = tvqvt′ where t, t′ ∈ Sn and q ∈ A∗.
Hence tv, vt′ ∈ Sw, and so it then follows from the maximality of p and s that
tv is a prefix of p, and vt′ is a suffix of s.

Claim 3. For all v ∈ X, a prefix of v is not a suffix of u, and a suffix of v is
not a prefix of u.

Proof. Let v ∈ X be arbitrary. Then by Claim 2 there are t, t′ ∈ Sw such that
tv is a prefix of p and vt′ is a suffix of s. Hence there are r, r′ ∈ A∗ such that
w = tvrur′vt′. If q is a prefix of v and a suffix of u, or a suffix of v and prefix of
u, then q ∈ Sw, which contradicts the maximality of p and s.

Claim 4. For every v, v′ ∈ X, if a non-trivial prefix q of v is a suffix of v′,
then q = v = v′.

Proof. Let v, v′ ∈ X be arbitrary. Suppose that v = qr and v′ = r′q for some
r, r′, q ∈ A∗ and q 6= 1. By Claim 2 there are t, t′ ∈ Sw such that tv is a prefix of
p, and v′t′ is a suffix of s. Then there is h ∈ A∗ such that w = tvhv′t′ = tqrhr′qt′,
implying that q ∈ Sw. Since v ∈ X, by Claim 2 there are l, l′ ∈ Sw and d ∈ A∗

such that w = lvdvl′ = lqrdqrl′. It follows from the fact that lq, l′ ∈ Sw that
r ∈ Sw. Since X is irredundant and q 6= 1, it follows that q = v and r = 1. The
same argument for v′ implies that r′ = 1, and so q = v = v′.

Let f ∈ ΩΩ. We will construct a homomorphism Φ : A+ → ΩΩ such that
(w)Φ = f . In order to do that we will need some auxiliary functions α, β, γ ∈ ΩΩ

defined as follows

(. . . , x1, x0)α = (. . . , x0, a),

(. . . , x1, x0)β = (. . . , x0, b),

and

(. . . , x1, x0)γ =


(. . . , xi+1, xiv) if xi−1 . . . x0 = v ∈ X for some i ≥ 1

and xj ∈ A+ for all j ∈ {0, . . . i− 1}
(. . . , x1, x0) otherwise

.

Suppose there are i, i′ ∈ N such that xi−1 . . . x0 = v and xi′−1 . . . x0 = v′ for
some v, v′ ∈ X, where xj ∈ A+ for all j ∈ {0, . . . ,max(i, i′)− 1}. Then either v′

is a suffix of v or v is a suffix of v′. By Claim 4 it is only possible if v = v′, and
so γ is well-defined. In order to define the homomorphism Φ, we will first define
another homomorphism. Let Ψ : A+ −→ ΩΩ be the canonical homomorphism
induced by (a)Ψ = α and (b)Ψ = β ◦ γ.
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Claim 5. For any v ∈ aA∗ such that no prefix of v is a suffix of a word in X
there are z1, . . . , zk ∈ A+ such that z1 . . . zk = v and for every (. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((v)Ψ) = (. . . , x1, x0, z1, . . . , zk).

Proof. Let v ∈ aA∗such that no prefix of v is a suffix of a word in X, and write
v = y1 . . . ym for some m ∈ N and y1, . . . , ym ∈ A. Since v ∈ aA∗, (y1)Ψ = α,
and so for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0)α = (. . . , x1, x0, a) = (. . . , x1, x0, y1).

Suppose that for some i ∈ {1, . . . ,m − 2} there are j ∈ N and z1, . . . zj ∈ A+

such that y1 . . . yi = z1 . . . zj , and for every (. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((y1 . . . yi)Ψ) = (. . . , x1, x0, z1, . . . , zj).

If yi+1 = a, then since Ψ is a homomorphism

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj) ((yi+1)Ψ)

= (. . . , x1, x0, z1, . . . , zj)α

= (. . . , x1, x0, z1, . . . , zj , a),

and z1 . . . zja = y1 . . . yi+1. Hence the inductive hypothesis is satisfied in this
case. If yi+1 = b, then since Ψ is a homomorphism

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj) ((yi+1)Ψ)

= (. . . , x1, x0, z1, . . . , zj)β ◦ γ

= (. . . , x1, x0, z1, . . . , zj , b)γ,

and z1 . . . zjb = y1 . . . yi+1, and so z1 . . . zjb is a prefix of v. By the assumption
z1 . . . zjb is not a suffix of any word in X, thus z1 . . . zjb /∈ X, and if x0, . . . , xt ∈
A+ then xt . . . x0z1 . . . zjb /∈ X for all t ∈ N. Hence either γ acts as identity on
(. . . , x1, x0, z1, . . . , zj , b), or there is k > 1 such that zk . . . zjb ∈ X. In the latter
case

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj , b)γ

= (. . . , x1, x0, z1, . . . , zk−1zk . . . zjb),

and so in both cases the inductive hypothesis is satisfied. The claim holds by
induction.

129



Claim 6. If v ∈ Sw, then (v)Ψ is a bijection on Ω, in particular

(. . . , x1, x0)(v)Ψ = (. . . , x1, x0v)

for all (. . . , x1, x0) ∈ Ω.

Proof. Let v ∈ X. Since Sw ⊆ aA∗b ∪ {1} there is v′ ∈ aA∗ such that v = v′b.
By Claim 4 any prefix of v′ is not a suffix of any word in X. Hence by Claim 5
there exists j ∈ N and z1, . . . , zj ∈ A+ such that z1 . . . zj = v′ and for all
(. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((v′)Ψ) = (. . . , x1, x0, z1, . . . , zj).

It follows from v = v′b and the fact that Ψ is a homomorphism, that

(. . . , x1, x0) ((v)Ψ) = (. . . , x1, x0, z1, . . . , zj , b)γ

= (. . . , x1, x0v).
(4.4)

In order to show that (v)Ψ is injective, suppose that (. . . , x1, x0v) = (. . . , x′1, x
′
0v)

where xi, x′i ∈ F (A) for all i ∈ N. Then xi = x′i for all i ≥ 1, and x0v = x′0v.
Since x0v, x

′
0v ∈ F (A), it follows that x0 = x′0. Hence (v)Ψ is injective by (4.4).

Let (. . . , x1, x0) ∈ Ω. Then by (4.4)

(. . . , x1, x0v
−1) ((v)Ψ) = (. . . , x1, x0)

so (v)Ψ is surjective, and thus bijective on Ω. Since v ∈ X was arbitrary and X
generates Sw, it follows that

(. . . , x1, x0) ((v)Ψ) = (. . . , x1, x0v),

and (v)Ψ is a bijection for all v ∈ Sw.

In order to define the required homomorphism Φ, we need one more function
on Ω. Define δ ∈ ΩΩ as follows:

(. . . , x1, x0)δ =


(. . . , xi+1, xip

−1)f ◦ (s)Ψ−1 if xi−1 . . . x0 = u for some
i ≥ 1 and xj ∈ A+ for all
j ∈ {0, . . . i− 1}

(. . . , x1, x0) otherwise

.

Note that (s)Ψ−1 is defined by Claim 6. Suppose there are i, i′ ∈ N such that
xi−1 . . . x0 = u = xi′−1 . . . x0, where xj ∈ A+ for all j ∈ {0, . . . ,max(i, i′)− 1}.
Then i = i′, and so δ is well-defined. Let Φ be the canonical homomorphism
induced by (a)Φ = α and (b)Φ = β ◦ γ ◦ δ.
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Claim 7. (v)Φ = (v)Ψ for all v ∈ Sw.

Proof. Let v ∈ X be arbitrary, and suppose that v = y1 . . . ym where yi ∈ A
for all i ∈ {1, . . . ,m}. It follows from Sw ⊆ aA∗b ∪ {1} and v 6= 1, that y1 = a,
implying that (y1)Φ = α = (y1)Ψ. Suppose (y1 . . . yi)Φ = (y1 . . . yi)Ψ for some
i ∈ {1, . . . ,m− 1}. Then since Φ is a homomorphism

(y1 . . . yi+1)Φ = (y1 . . . yi)Ψ ◦ (yi+1)Φ.

If yi+1 = a then (yi+1)Φ = (yi+1)Ψ, and so the inductive hypothesis is
satisfied. Suppose that yi+1 = b. Then (yi+1)Φ = (yi+1)Ψ ◦ δ. Hence by the
inductive hypothesis

(y1 . . . yi+1)Φ = (y1 . . . yi)Φ ◦ (yi+1)Φ = (y1 . . . yi)Ψ ◦ (yi+1)Φ = (y1 . . . yi+1)Ψ ◦ δ.

If i + 1 < m, then y1 . . . yi+1 is a proper prefix of v. By Claim 4 for any
j ∈ {1, . . . , i+ 1} the proper prefix y1 . . . yj of v is a not a suffix of any word in
X. Since y1 . . . yi+1 ∈ aA∗, by Claim 5 there exists j ∈ N and z1, . . . , zj ∈ A+

such that z1 . . . zj = y1 . . . yi+1 and for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj).

If i+ 1 = m, then y1 . . . yi+1 = v, and so

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0y1 . . . yi+1)

for all (. . . , x1, x0) ∈ Ω by Claim 6. Hence in both cases there are z0, . . . , zj ∈ A+

such that z0 . . . zj = y1 . . . yi+1 and for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0z0, z1, . . . , zj). (4.5)

We will now show that δ acts as the identity on (. . . , x1, x0) ((y1 . . . yi+1)Ψ)

for all (. . . , x1, x0) ∈ Ω. Fix (. . . , x1, x0) ∈ Ω, and let z0, . . . , zj ∈ A+ be as
in (4.5). Suppose that there is i ≥ 0 such that xi, . . . , x1, x0z0 ∈ A+ and
xi . . . x0z0 . . . zj = u. Then z0 . . . zj = y1 . . . yi+1 is both a prefix of v and a suffix
of u, contradicting Claim 3. By Claim 2 there is t ∈ Sw such that tv is a prefix
of p, and by the hypothesis of the theorem, it follows that u is not a subword of
v. If k > 0 then zk . . . zj is a subword of v, and so not equal to u. Hence δ acts
as identity on (. . . , x1, x0z0, z1, . . . , zj). Therefore, the inductive hypothesis is
satisfied, and so by induction (v)Φ = (v)Ψ for all v ∈ X, and so (v)Φ = (v)Ψ for
all v ∈ Sw.

Claim 8. (u)Φ = (u)Ψ ◦ δ.
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Proof. Let u = y1 . . . ym for some m ∈ N and yi ∈ A for all i ∈ {1, . . . ,m}. First,
we will show inductively that (y1 . . . ym−1)Φ = (y1 . . . ym−1)Ψ. Since y1 = a by
Claim 1, it follows that (y1)Φ = α = (y1)Ψ. Suppose (y1 . . . yi)Φ = (y1 . . . yi)Ψ

for some i ∈ {1, . . . ,m− 2}. Then since Φ is a homomorphism

(y1 . . . yi+1)Φ = (y1 . . . yi)Ψ ◦ (yi+1)Φ.

If yi+1 = a then (yi+1)Φ = (yi+1)Ψ, and so the inductive hypothesis is satisfied.
Suppose that yi+1 = b, then (yi+1)Φ = (yi+1)Ψ ◦ δ. Hence (y1 . . . yi+1)Φ =

(y1 . . . yi+1)Ψ ◦ δ. It follows from Claim 3 that no prefix of y1 . . . yi+1 is a suffix
of any word v ∈ X, and since y1 = a, Claim 5 implies that there is j ∈ N and
z1, . . . , zj ∈ A+ such that z1 . . . zj = y1 . . . yi+1 and

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj).

Since |y1 . . . yi+1| < |u|, it follows that u is not equal to zk . . . zj for any k ≥ 1.
Suppose that u = xk . . . x0z1 . . . zj for some k ≥ 0 such that x0, . . . , xk ∈ A+.
Then y1 . . . yi+1 is both a proper prefix and a suffix of u, and so by Lemma 4.2.11
there is a q ∈ A+ and t ∈ A∗ such that u = qtq. Hence q ∈ Sw by (4.1)
contradicting maximality of p and s. Then the inductive hypothesis is satisfied.

Hence (y1 . . . ym−1)Φ = (y1 . . . ym−1)Ψ, and since ym = b

(u)Φ = (u)Ψ ◦ δ.

Finally, we show that (w)Φ = f . It follows from Claim 6, Claim 7, Claim 8,
and the fact that Φ is a homomorphism, that for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0)(w)Φ = (. . . , x1, x0) ((p)Ψ ◦ (u)Ψ ◦ δ ◦ (s)Ψ)

= (. . . , x1, x0p) ((u)Ψ ◦ δ ◦ (s)Ψ)

It follows from Claim 3 and Claim 5 that there are z1, . . . , zk ∈ A+ such that
z1 . . . zk = u and

(. . . , x1, x0)(w)Φ = (. . . , x1, x0p) ((u)Ψ ◦ δ ◦ (s)Ψ)

= (. . . , x1, x0p, z1, z2, . . . , zk)δ ◦ (s)Ψ

Then by the definition of δ

(. . . , x1, x0)(w)Φ = (. . . , x1, x0p, z1, z2, . . . , zk)δ ◦ (s)Ψ

= (. . . , x1, x0)f ◦ (s)Ψ−1 ◦ (s)Ψ

= (. . . , x1, x0)f.
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Therefore (w)Φ = f as required.

Note that if w ∈ {a, b}+ is such that no proper prefix of w is a suffix of
w, then Sw = 〈1〉 by Example 4.2.6. Hence w /∈ Sw and Proposition 4.2.2 is
now an easy corollary of Theorem 4.2.12. The following example shows that
Theorem 4.2.12 is actually stronger than Proposition 4.2.2.

Example 4.2.13. Let w = aba2b2ab. It was shown in Example 4.2.8 that
Sw = {(ab)n : n ∈ N}. Hence w is a universal word for ΩΩ by Theorem 4.2.12,
but the word ab is both a prefix and a suffix of w.

In the next section, in Proposition 4.2.15, we will demonstrate that the word
(ab)na is universal for ΩΩ. However, note that Sw = {a, b}∗, and so the converse
of Theorem 4.2.12 does not hold.

4.2.2 Analysis of some the words not covered by Theo-
rem 4.2.12

In this section we will analyse some of the words w over the alphabet A = {a, b}
such that w ∈ Sw. In order to do that, we will use the notions of collapse and
defect defined in Section 1.3.2. Recall that if f ∈ ΩΩ and if Σ is any transversal
of f , then

c(f) = |Ω \ Σ|

d(f) = |Ω \ (Ω) f |

First consider the case where w = an for some n ∈ N.

Proposition 4.2.14. The word an is universal for ΩΩ if and only if n = 1.

Proof. Let f ∈ ΩΩ, and let Φ : {a}+ −→ ΩΩ be given by (am)Φ = fm for all
m ≥ 1. Then Φ is a homomorphism and (a)Φ = f . Hence a is a semigroup
universal word for ΩΩ.

On the other hand, suppose that an is universal for n ≥ 1. Let f ∈ ΩΩ be such
that c(f) = 1 and d(f) = 0, which exists by Proposition 1.3.4. Let Φ : {a}+ −→
ΩΩ by the homomorphism such that (an)Φ = f , and let (a)Φ = α. Then αn = f .
It follows from parts (i) and (iii) of Lemma 1.3.5 that c(α) ≤ c(f) = 1 and
d(α) ≤ d(f) = 0. Hence by Lemma 1.3.7

1 = c(f)− d(f) = n (c(α)− d(α)) .

Therefore, n | 1, and so n = 1.

The next step is to consider all the words w which start and finish with the
same letter. That is, words w ∈ {a, b}+ such that a ∈ S1 using the notation of
(4.3).
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Proposition 4.2.15. Let A = {a, b} and let w ∈ aA+a be such that w 6= an

for any n ∈ N. Then w is a universal word for ΩΩ if and only if w = (ab)na or
w = anbam for some n,m ∈ N.

Proof. (⇒) Suppose that w is a universal word for ΩΩ such that w 6= anbam for
any n,m ∈ N. Then there are at least two occurrences of the letter b in the word
w.

Fix any f ∈ ΩΩ such that c(f), d(f) are finite and |c(f)− d(f)| = 1. Then
there is Φ : A+ −→ ΩΩ a homomorphism such that (w)Φ = f . Let α = (a)Φ

and β = (b)Φ. Since w starts and ends with the letter a, there is γ ∈ ΩΩ such
that f = α ◦ γ ◦ α. It follows from parts (i) and (iii) of Lemma 1.3.5 that
c(α) ≤ c(f) and d(α) ≤ d(f). Hence both c(α) and d(α) are finite. Since the
letter b occurs at least twice in the word w, there are n,m ∈ N and u ∈ A∗ such
that w = anbubam. Then there is γ′ ∈ ΩΩ such that f = αn ◦ β ◦ γ′ ◦ β ◦ αm. It
follows from Lemma 1.3.5(vi) that c(β ◦γ′ ◦β ◦αm) is finite, and d(αn ◦β ◦γ′ ◦β)

is finite by Lemma 1.3.5(v). Hence by parts (i) and (iii) of Lemma 1.3.5 c(β)

and d(β) are also finite.
Let Nw(a) be the number occurrences of the letter a in the word w, and

Nw(b) be the number of occurrences of the letter b in w. By Lemma 1.3.7

c((w)Φ)− d((w)Φ) = Nw(a) (c((a)Φ)− d((a)Φ)) +Nw(b) (c((b)Φ)− d((b)Φ)) ,

and so

c(f)− d(f) = Nw(a) (c(α)− d(α)) +Nw(b) (c(β)− d(β)) . (4.6)

Suppose that c(α) = d(α). Since |c(f)− d(f)| = 1 it follows that Nw(b) | 1,
which is impossible since Nw(b) ≥ 2. In the same way, if c(β) = d(β), then
Nw(a) | 1, which again is a contradiction. Hence c(α) 6= d(α) and c(β) 6= d(β).
We have shown that if c(f) = 1 and d(f) = 0; or c(f) = 0 and d(f) = 1, then
all the parameters c(α), d(α), c(β), and d(β) are finite, and c(α) 6= d(α) and
c(β) 6= d(β).

Consider the case where c(f) = 1 and d(f) = 0. Since f = α ◦ γ ◦ α for some
γ ∈ ΩΩ, it follows that c(α) ≤ c(f) and d(α) ≤ d(f) from parts (i) and (iii) of
Lemma 1.3.5. Hence d(α) = 0 and c(α) ≤ 1. It follows from c(α) 6= d(α) = 0,
that c(α) = 1. Since d(αk) = 0 for all k ∈ N by Lemma 1.3.5(i), Lemma 1.3.7
implies that

c(αn) = c(αn)− d(αn) = n (c(α)− d(α)) = n.

If f = αn ◦ γ for some γ ∈ ΩΩ, then n = c(αn) ≤ c(f) = 1. Hence n = 1, and so
the word w starts with ab.

Now we consider different f in order to obtain more information about w.
Suppose that c(f) = 0 and d(f) = 1. As in the previous paragraph c(α) ≤ c(f)
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and d(α) ≤ d(f) by parts (i) and (iii) of Lemma 1.3.5. Hence c(α) = 0 and
d(α) ≤ 1. It follows from the fact c(α) 6= d(α) that d(α) = 1. Suppose that k is
the biggest integer such that w = (ab)kua for some u ∈ A∗.Then k ≥ 1 by the
previous paragraph. It follows from parts (i), (ii), and (iii) of Lemma 1.3.5 that
c(α) ≤ c(α ◦ β) ≤ c(f) and

d(α) ≤ d(β ◦ α) + d(αm−1) = d(β ◦ αm) ≤ d(f),

since bam is a suffix of w and αm−1 is injective. Hence c(α◦β) = 0 and d(β◦α) = 1.
Since α is injective, Lemma 1.3.5(ii) implies that d(β ◦ α) = d(β) + d(α), and so
d(β) = 0. It follows from Lemma 1.3.7 that

−d(α ◦β) = c(α ◦β)−d(α ◦β) = c(α)−d(α) + c(β)−d(β) = −1 + c(β). (4.7)

Hence c(β) − 1 ≤ 0, and since c(β) 6= d(β), we have that c(β) = 1. It follows
from (4.7) that d(α ◦ β) = 0.

Since w = (ab)kua, there is γ ∈ ΩΩ such that f = (α ◦ β)k ◦ γ. Then
Lemma 1.3.7 implies that

−1 = c(f)− d(f) = k (c(α ◦ β)− d(α ◦ β)) + c(γ)− d(γ) = c(γ)− d(γ).

Also d(γ) ≤ d(f) = 1 by Lemma 1.3.5(i), thus c(γ) = 0 and d(γ) = 1. If ua
contains at least two occurrences of both letters a and b, the above argument
shows that ua must start with ab which contradicts maximality of k. Hence
either ua = bta, or ua = bat for some t ∈ N.

Suppose that ua = bta, then by Lemma 1.3.7 and the fact that γ = (ua)Φ

−1 = c(γ)− d(γ) = c(α)− d(α) + t (c(β)− d(β)) = −1 + t.

Hence t = 0, and w = (ab)ka. If ua = bat, then by Lemma 1.3.7

−1 = c(γ)− d(γ) = t (c(α)− d(α)) + c(β)− d(β) = −t+ 1.

Hence t = 2, and so w = (ab)kba2. It follows from Lemma 1.3.5(ii) that 2 = d(α2)

and from part (i) of the same lemma that 2 = d(α2) ≤ d(f) = 1, which is
impossible. Hence w = (ab)ka.

(⇐) Fix f ∈ ΩΩ. Suppose that w = anbam. Let α be the identity on Ω, let
β = f , and let Φ : A+ −→ ΩΩ be the homomorphism induced by (a)Φ = α and
(b)Φ = β. Then (w)Φ = f . Hence w is a universal word for ΩΩ.

Suppose that w = (ab)na. Choose any g ∈ ΩΩ such that (x)g ∈ (x)f−1 for
every x ∈ (Ω)f . Then f ◦ g ◦ f = f . Let Φ : A+ −→ ΩΩ be the homomorphism
induced by (a)Φ = α and (b)Φ = β. Then (w)Φ = (fg)nf = f . Hence w is a
universal word for ΩΩ.
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Note that the word (ab)na is universal for ΩΩ because for each f ∈ ΩΩ there
exists g ∈ ΩΩ such that f = f ◦ g ◦ f . Semigroups which satisfy this property are
called regular. Hence the word (ab)na is a universal word for every regular
semigroup.

Theorem 4.2.16. Let A = {a, b}, let u ∈ aA∗b, and let w = unvum for some
n,m ≥ 1 and v ∈ aA∗a ∪ {a}. Then w is a semigroup universal word for ΩΩ if
and only if w = akba(akb)m for some k,m ∈ N.

Proof. (⇒) Suppose that w = unvum for some n,m ∈ N such that v ∈ aA∗a∪{a},
and suppose that w is a semigroup universal word for ΩΩ. For any x ∈ A and
any q ∈ A∗, let Nq(x) be the number of the occurrences of the letter x in the
word q.

Let f ∈ ΩΩ be such that c(f) = 1 and d(f) = 0 which exists by Proposi-
tion 1.3.4. Since w is a universal word, there is a homomorphism Φ : A+ −→ ΩΩ

such that (w)Φ = f . Let α = (a)Φ, β = (b)Φ, µ = (u)Φ, and γ = (v)Φ.
Then f = µn ◦ γ ◦ µm. It follows from parts (i) and (iii) of Lemma 1.3.5 that
c(µ) ≤ c(f) = 1 and d(µ) ≤ d(f) = 0.

If c(µ) = 0, then µ is a bijection and so c(γ) = 1 and d(γ) = 0. Recall that
γ = (v)Φ and v ∈ aA∗a ∪ {a}, and so there is γ′ ∈ ΩΩ such that γ = γ′ ◦ α.
Hence d(α) = 0 by Lemma 1.3.5(i). Since u ∈ aA∗b, there is some µ′ ∈ ΩΩ

such that µ = α ◦ µ′. Then c(α) ≤ c(µ) = 0 by Lemma 1.3.5(iii). Hence α is
a bijection. Since u = akbu′ for some k ≥ 1 and u′ ∈ A∗, there is µ′′ ∈ ΩΩ

such that µ = αk ◦ β ◦ µ′′. It follows from the fact that α is bijective that
c(β ◦ µ′′) = c(µ) = 0. Hence c(β) ≤ c(β ◦ µ′′) = 0 by Lemma 1.3.5(iii), and so
both α and β are injections. This is a contradiction since f = (w)Φ is not an
injection, and so c(µ) = 1.

It follows from parts (i) and (iv) of Lemma 1.3.5 that d(µk) = 0 and c(µk) = k

for every k ∈ N. However, c(µn) ≤ c(f) = 1 by Lemma 1.3.5(iii), and so n = 1.
Recall that there is γ ∈ ΩΩ such that f = µ ◦ γ ◦ µm. By above c(µm) = m

and by Lemma 1.3.5(v) if ℵ0 ≤ d(µ ◦ γ) then d(f) = d(µ ◦ γ ◦ µm) ≥ ℵ0,
which is impossible, and so d(µ ◦ γ) is finite. Similarly if ℵ0 ≤ c(γ ◦ µm), then
c(f) = c(µ ◦ γ ◦ µm) ≥ ℵ0, by Lemma 1.3.5(vi), which is impossible. Hence
c(γ ◦ µm) is also finite. Then c(γ) ≤ c(γ ◦ µm) and d(γ) ≤ d(µ ◦ γ) by parts (i)
and (iii) of Lemma 1.3.5, implying that c(γ) and d(γ) are both finite.

It follows from Lemma 1.3.5 that c(µ ◦ γ) ≤ c(f) = 1 and c(µ ◦ γ) =

c(µ) + c(γ) = c(γ) + 1. Hence c(γ) = 0. Lemma 1.3.7 implies that

1 = c(f)− d(f) = (m+ 1) (c(µ)− d(µ)) + c(γ)− d(γ) = m+ 1− d(γ),

and so d(γ) = m. Also c(α) ≤ c(γ) = 0, d(α) ≤ d(γ) = m and d(β) ≤ d(µ) = 0.
Since c(f), d(f), c(α), d(α) are all finite, f ∈ 〈α, β〉, and f 6= αn for all n ∈ Z, it
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follows form Lemma 1.3.6 that c(β) and d(β) are finite, and so by Lemma 1.3.7

c(µ)− d(µ) = Nu(a) (c(α)− d(α)) +Nu(b) (c(β)− d(β))

c(γ)− d(γ) = Nv(a) (c(α)− d(α)) +Nv(b) (c(β)− d(β))

Let x = c(β), and let y = d(α). Hence

1 = xNu(b)− yNu(a) (4.8)

and
−m = xNv(b)− yNv(a). (4.9)

Suppose now that c(f) = 0 and d(f) = 1. As before let Φ : A+ −→ ΩΩ

be a homomorphism such that (w)Φ = f , and also let α = (a)Φ, β = (b)Φ,
µ = (u)Φ, and γ = (v)Φ. Since f = µ ◦ γ ◦ µm, Lemma 1.3.5(i) and (iii) imply
that c(µ) ≤ c(f) = 0 and d(µm) ≤ d(f) = 1. Hence c(µ) = 0 and by part (ii) of
the same lemma md(µ) = d(µm) ≤ 1. Hence either d(µ) = 0, or d(µ) = 1 and
m = 1.

Case 1: Suppose that d(µ) = 1. Then f = µ ◦ γ ◦ µ. It follows from
Lemma 1.3.5(v) if ℵ0 ≤ d(µ◦γ) then d(f) = d(µ◦γ◦µ) ≥ ℵ0, which is impossible,
and so d(µ◦γ) is finite. Similarly if ℵ0 ≤ c(γ ◦µ), then c(f) = c(µ◦γ ◦µ) ≥ ℵ0, by
Lemma 1.3.5(vi), which is impossible. Hence c(γ◦µ) is finite. Then c(γ) ≤ c(γ◦µ)

and d(γ) ≤ d(µ ◦ γ) by parts (i) and (iii) of Lemma 1.3.5. Therefore, c(γ) and
d(γ) are both finite. Then Lemma 1.3.7 implies that

−1 = c(f)− d(f) = c(γ)− d(γ) + 2(c(µ)− d(µ)) = c(γ)− d(γ)− 2,

and so c(γ) = 1 + d(γ). Also 1 = d(f) ≥ d(γ ◦ µ) = d(γ) + d(µ) = d(γ) + 1,
by parts (i) and (ii) of Lemma 1.3.5. So d(γ) = 0 and c(γ) = 1. Recall that
γ = κ ◦ α for some κ ∈ ΩΩ, thus d(α) ≤ d(γ) = 0, and c(α) ≤ c(f) = 0. Hence α
is bijection. Since w contains at least two occurrences of the letter b, we may
write w = akq where q ∈ bA∗b. Let δ = (q)Φ. Since αk is a bijection, c(δ) = 0

and d(δ) = 1, so c(β) ≤ c(δ) = 0 and d(β) ≤ d(δ) = 1 by parts (i) and (iii) of
Lemma 1.3.5. If β was a bijection then f , a product of α and β, would also be a
bijection, which is a contradiction. Then d(β) = 1. It follows from Lemma 1.3.7
that 1 = Nw(b), however the letter b occurs at least twice in the word w, which
again is a contradiction.

Case 2: Suppose that d(µ) = 0. Since µ is a bijection c(γ) = 0 and d(γ) = 1.
Then c(α) ≤ c(γ) = 0 and d(α) ≤ 1. If α is a bijection, we may conclude, as in
the previous case, that there is only one occurrence of the letter b in the word w,
which is a contradiction. Hence d(α) = 1. It follows from Lemma 1.3.6 that c(β)
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and d(β) are finite, and so Lemma 1.3.7 implies

c(µ)− d(µ) = Nu(a) (c(α)− d(α)) +Nu(b) (c(β)− d(β))

c(γ)− d(γ) = Nv(a) (c(α)− d(α)) +Nv(b) (c(β)− d(β))

Let z = c(β)− d(β). Then

0 = zNu(b)−Nu(a) (4.10)

and
− 1 = zNv(b)−Nv(a). (4.11)

Finally, combining equations (4.8) with (4.10) and (4.9) with (4.11) we get
that there exists x, y, z ∈ N such that y ≤ m,

1 = Nu(b)(x− yz) and y −m = Nv(b)(x− yz).

Then Nu(b) = x− yz = 1 and 0 ≥ y −m = Nv(b)(x− yz) = Nv(b) ≥ 0. Hence
y = m and Nv(b) = 0, implying that Nv(a) = 1. Hence u = akb for some k ≥ 1,
and v = a, and so w = akba(akb)m.

(⇐) Let w = akba(akb)m for some k,m ∈ N, and let f ∈ ΩΩ. We will show
that there is a homomorphism Φ : {a, b}+ −→ ΩΩ such that (w)Φ = f . The
proof consists of two steps. First, we will show that there is g ∈ ΩΩ such that g
is surjective; that every kernel class of g is contained in a kernel class of f ; and g
satisfies the additional condition that if K is a kernel class of f and K =

⋃
i∈I Li

where Li is a kernel class of g for all i ∈ I, then | ((K)f) g−m| ≥ |I|. We will use
g to define the homomorphism Φ.

Suppose that | (Ω) f | = |Ω|. Let g ∈ ΩΩ be such that kernels of f and g are
the same. Since the number of kernel classes of g is | (Ω) f | we may also choose
g to be surjective. The additional condition is easily satisfied since the kernels of
f and g are the same.

In the case where (Ω) f is finite, there is at least one infinite kernel class K.
Hence we can partition K into countably many countable sets {Ln : n ∈ N},
which together with the remaining kernel classes of f gives a partition of Ω.
Then define g ∈ ΩΩ to be a surjection with the kernel being the aforementioned
partition and such that (Li)g ∈ Li−1 for all i ∈ {1, . . .m− 1} and (L0)g = (K)f .
Then ((K)f) g−m = Lm−1, and since K is the only kernel class of f which is not
a kernel class of g, it follows that the additional condition is satisfied.

Since g is surjective, gm is also surjective for any m ∈ N. Hence for each
x ∈ Ω the set (x)g−1 ◦ f ◦ g−m is non-empty. If x 6= y and (x)g−1 ◦ f ◦ g−m =

(y)g−1 ◦ f ◦ g−m = X then (x)g−1 and (y)g−1 are disjoint subsets of the same
kernel class of f . By the additional condition the set X is bigger than the number
of x ∈ Ω such that (x)g−1 ◦ f ◦ g−m = X. Hence we can define α ∈ ΩΩ to be an
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injection such that
(x)α ∈ (x)g−1 ◦ f ◦ g−m

for all x ∈ Ω. Then g ◦ α ◦ gm = f .
Since α is injective, so is αk. Fix z ∈ Ω and define β ∈ ΩΩ by

(x)β =

(x)α−kg if x ∈ (Ω)αk,

z otherwise.

Then αk ◦ β = g, and therefore f = g ◦ α ◦ gm = αk ◦ β ◦ α ◦ (αk ◦ β)m. Hence
if Φ : A+ −→ ΩΩ is the canonical homomorphism induced by (a)Φ = α and
(b)Φ = β, then (akba(akb)m)Φ = f .

4.3 Universal sequences of ΩΩ

In this section we will show that similar results to the ones in Section 4.2.1 also
hold for sequences. Throughout this section we will assume that Ω is countable,
again for the sake of simplicity.

The following result is analogous to Proposition 4.2.2 for semigroup universal
sequences.

Proposition 4.3.1. Let {wn : n ∈ N} be a sequence of words in {a, b}+ such
that wn is a subword of wm only if n = m. Suppose that for any n,m ∈ N
if a prefix p of wn is a suffix of wm, then n = m and p = wn = wm. Then
{wn : n ∈ N} is a semigroup universal sequence for ΩΩ.

Proof. Let A = {a, b}, and let Ω be the set of eventually constant sequences over
A, written from right to left, that is

Ω = {(. . . , x1, x0) : xi ∈ A and there is K ∈ N with xk = xK for all k > K}.

Note that if wn = a for some n ∈ N, then the first and the last letter of wm
has to be b for all m ∈ N \ {n}, which contradicts the hypothesis. Hence we
may assume that |wn| ≥ 2 for all n ∈ N. If there exists i ∈ N such that a is the
first letter of the word wi, then for every j ∈ N the letter a cannot be the last
letter of wj . Hence wj finishes with b for all j ∈ N, and so b can not be the first
letter of wi for any i ∈ N. Then wi ∈ aA∗b for all i ∈ N. In the case, where there
is i ∈ N such that the word wi starts with b, the same argument shows that
wi ∈ bA∗a for all i ∈ N. Therefore, without loss of generality we may assume
that, wi ∈ aA∗b for all i ∈ N.
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Fix {fn : n ∈ N} ⊆ ΩΩ. Let α, β, γ ∈ ΩΩ be defined as follows

(. . . , x1, x0)α = (. . . , x0, a)

(. . . , x1, x0)β = (. . . , x0, b)

(. . . , x1, x0)γ =

(. . . , xi+1, xi)fn if xi−1 . . . x0 = wn

(. . . , x1, x0) otherwise
.

Suppose there are i, j, n,m ∈ N such that xi−1 . . . x0 = wn and and xj−1 . . . x0 =

wm. Then either the word wn is a prefix of wm or wm is a prefix of wn, in both
cases the hypothesis implies that wn = wm. Hence γ is well-defined.

Define Φ : A+ −→ ΩΩ to be the canonical homomorphism induced by
(a)Φ = α and (b)Φ = β ◦ γ. Let n ∈ N, and let wn = y1 . . . yk where yi ∈ A
for all i ∈ {1, . . . k}. We will inductively show that (. . . , x1, x0)(y1 . . . yk−1)Φ =

(. . . , x0, y1, . . . , yk−1) for every (. . . , x1, x0) ∈ Ω. First note that

(. . . , x1, x0)(y1)Φ = (. . . , x1, x0)α = (. . . , x1, x0, y1)

for every (. . . , x1, x0) ∈ Ω. Suppose that for some i ∈ {1, . . . , k− 2} we have that

(. . . , x1, x0)(y1 . . . yi)Φ = (. . . , x0, y1, . . . , yi).

Since Φ is a homomorphism, it follows that

(. . . , x1, x0)(y1 . . . yi+1)Φ = (. . . , x1, x0)(y1 . . . yi)Φ ◦ (yi+1)Φ

= (. . . , x1, x0, y1, . . . , yi)(yi+1)Φ.

If yi+1 = a, then (yi+1)Φ = α, and so

(. . . , x1, x0)(y1 . . . yi+1)Φ = (. . . , x1, x0, y1, . . . , yi+1)

for all (. . . , x1, x0) ∈ Ω proving the inductive hypothesis. Suppose that yi+1 = b.
Then (yi+1)Φ = β ◦ γ, and so for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0)(y1 . . . yi+1)Φ = (. . . , x1, x0, y1, . . . , yi+1)γ.

Since y1 . . . yi+1 is a proper prefix of wn, it follows that y1 . . . yi+1 cannot be
a suffix of wm for any m ∈ N. Then xj . . . x0y1 . . . yi+1 6= wm for all j ∈ N.
Similarly, if there is j ∈ N such that yj . . . yi+1 = wm for some m ∈ N, then wm
is a subword of wn, contradicting the hypothesis of the lemma. Hence γ acts as
an identity on (. . . , x1, x0, y1, . . . , yi+1), and the inductive hypothesis is satisfied.
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It then follows by the above inductive argument that

(. . . , x1, x0)(y1 . . . yk−1)Φ = (. . . , x1, x0, y1, . . . , yk−1),

and since yn = b,

(. . . , x1, x0)(wn)Φ = (. . . , x1, x0, y1, . . . , yk)γ = (. . . , x1, x0)fn.

Hence (wn)Φ = fn, and since n was arbitrary, {wn : n ∈ N} is a universal
sequence.

Next we will show that the sequence we have seen in Example 4.1.7 can be
proved to be universal using Proposition 4.3.1.

Example 4.3.2. Let wn = a(ab)nb for all n ∈ N as in Example 4.1.7. The
possible prefixes of wn are wn, a(ab)i for some i ∈ {0, . . . , n}, and a(ab)ia for
some i ∈ {0, . . . , n− 1}. Similarly the possible suffixes of wm are wm, (ab)ib for
some i ∈ {0, . . . , n}, and b(ab)ib for some i ∈ {0, . . . , n− 1}. It is then easy to
see that a prefix of wn is equal to a suffix of wm if and only if wn = wm. Hence
by Proposition 4.3.1 the sequence {a(ab)nb : n ∈ N} is a semigroup universal
sequence for ΩΩ, which agrees with the conclusion of Example 4.1.7.

We will proceed by generalising Proposition 4.3.1 in the same way Proposi-
tion 4.2.2 was generalised to Theorem 4.2.12. In order to do that, we need to intro-
duce notions similar to that of Sw. LetA = {a, b}, and letw = {wn : n ∈ N} ⊆ A+

be given, and consider a submonoid S of A∗ such that

if there are n ∈ N, s, s′ ∈ S, and u, v ∈ A∗ such that wn = svuvs′

then v ∈ S; (4.12)

if there are distinct n,m ∈ N such that wn = svt and wm = t′vs′

with s, s′ ∈ S and t, t′, v ∈ A∗ then v ∈ S; (4.13)

if there are n ∈ N and s, t, v ∈ A∗ such that wn = svt and sv, vt ∈ S

then wn ∈ S. (4.14)

For every w there is at least one such submonoid, since A∗ satisfies the condition
trivially.

Let I be a non-empty set, and let Si be a submonoid ofA∗ satisfying conditions
(4.12), (4.13), and (4.14) for every i ∈ I. Suppose that there are s, s′ ∈

⋂
i∈I Si

and u, v ∈ A∗ such that wn = svuvs′ for some n ∈ N. Then v ∈ Si for all i ∈ I by
(4.12). Hence v ∈

⋂
i∈I Si, and so

⋂
i∈I Si satisfies condition (4.12). Suppose that

there are distinct n,m ∈ N, s, s′ ∈
⋂
i∈I Si and t, t

′, v ∈ A∗ such that wn = svt

and wm = t′vs′. Then v ∈ Si by condition (4.13) for all i ∈ I. Hence v ∈
⋂
i∈I Si,

and so
⋂
i∈I Si satisfies condition (4.13). Suppose that there are s, t, v ∈ A∗
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and n ∈ N such that wn = svt and sv, vt ∈
⋂
i∈I Si. Then wn ∈ Si by (4.14)

for all i ∈ I. Therefore, there exists the smallest submonoid, with respect to
containment, of A∗ satisfying conditions (4.12), (4.13), and (4.14), we denote it
by Sw.

There is also a more constructive way of defining Sw. Let S0 = 〈1〉, and
suppose that we have defined Sn, a submonoid of A∗, for some n ∈ N. Let

Xn = {v : wi = svuvs′ for some i ∈ N, s, s′ ∈ Sn and u, v ∈ A∗};

Yn = {v :wi = svt, wj = t′vs′ for some distinct i, j ∈ N,

s, s′ ∈ Sn and t, t′, v ∈ A∗};

Zn = {wi :wi = svt for some i ∈ N and s, v, t ∈ A∗

so that sv, vt ∈ Sn};

Sn+1 = 〈Sn, Xn, Yn, Zn〉.

(4.15)

Then S0 ≤ S1 ≤ S2 ≤ . . . by definition of Sn+1. Let S =
⋃
n∈N Sn. If s, t ∈ S,

then there are n,m ∈ N such that s ∈ Sn and t ∈ Sm. Then s, t ∈ Smax(s,t), and
so st ∈ Smax(s,t) ⊆ S. Hence S is a submonoid of A∗.

Suppose that wi = svuvs′ for some i ∈ N, s, s′ ∈ S, and u, v ∈ A∗. By
definition of S and the fact that S0 ≤ S1 ≤ . . . there is some n ∈ N such that
s, s′ ∈ Sn, and so v ∈ Xn ⊆ Sn+1 ⊆ S. Hence S satisfies condition (4.12).
Suppose that wi = svt and wj = s′vt′ for some distinct i, j ∈ N, s, s′ ∈ S and
u, v ∈ A∗. Then there is some n ∈ N such that s, s′ ∈ Sn. Hence v ∈ Yn ⊆ S,
and so S satisfies condition (4.13). Suppose that wi = svt for some i ∈ N,
s, v, t ∈ A∗ and sv, vt ∈ S. Again there is some n ∈ N such that sv, vt ∈ Sn.
Then wi ∈ Zn ⊆ S, and so S satisfies condition (4.14).

Let T be any submonoid of A∗ satisfying conditions (4.12), (4.13), and (4.14).
Since S0 = 〈1〉, it follows that S0 ≤ T . Suppose that Sn ≤ T for some n ∈ N.
Suppose that wi = svuvs′ for some i ∈ N, s, s′ ∈ Sn, and u, v ∈ A∗. Then v ∈ T
by (4.12), and so Xn ⊆ T . If wi = svt and wj = t′vs′ for some distinct i, j ∈ N
such that s, s′ ∈ Sn and t, t′, v ∈ A∗, then v ∈ T , since T satisfies condition (4.13)
and s, s′ ∈ T . Hence Yn ⊆ T . If wi = svt for some i ∈ N such that s, v, t ∈ A∗

and sv, vt ∈ Sn, then it follows from the fact that T satisfies condition (4.14),
that wi ∈ T . Then Zn ⊆ T , and so Sn+1 ⊆ T . Then by induction Sn ≤ T for all
n ∈ N, and thus S ≤ T . Therefore S is the minimal submonoid of A∗ satisfying
conditions (4.12), (4.13), and (4.14), in other words S = Sw.

Note that unlike in the case of Sw where w is a word over A, the monoid Sw

does not have to be finitely generated.
Before presenting the main result of this section we prove a technical result.

Lemma 4.3.3. Let w = {wn : n ∈ N} ⊆ aA∗b. Suppose that a, b /∈ Sw. Then
Sw ⊆ aA∗b ∪ {1}.
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Proof. Recall that Sw =
⋃
n∈N Sn, where Sn is as in (4.15). Then S0 = {1} ⊆

aA∗b ∪ {1}. Suppose that for some n ∈ N we have that Sn ⊆ aA∗b ∪ {1}.
Let m ∈ N, and suppose that wm = svuvs′ such that s, s′ ∈ Sn and u, v ∈ A∗.

If v ∈ A∗a then we may write v = v′a and wm = aqv′as′ for some q ∈ A∗

since the first letter of wm is a. Hence a ∈ Sw by (4.12), which contradicts
the hypothesis. Suppose that v ∈ bA∗. Then v = bv′ for some v′ ∈ A∗ and
there is q ∈ A∗ so that wm = sbv′qb since b is the last letter of wm. Hence
b ∈ Sw by (4.12), which again is a contradiction. Therefore v ∈ aA∗b, and so
Xn ⊆ aA∗b ∪ {1}.

Let m, k ∈ N be distinct and suppose that wm = svt and wk = t′vs′ such
that s, s′ ∈ Sn and v, t, t′ ∈ A∗. If v ∈ A∗a, then we may write v = v′a for some
v′ ∈ A∗, and since wm starts with a, it follows that wm = aq for some q ∈ A∗ and
wk = t′v′as′. Hence a ∈ Sw by (4.13), which contradicts the hypothesis. Suppose
v ∈ bA∗. Then there is v′ ∈ A∗ such that v = bv′, and since wk finishes with b, it
follows that wm = sbv′t and wk = bq for some q ∈ A∗. Hence b ∈ Sw by (4.13),
which again is a contradiction. Therefore v ∈ aA∗b, and so Yn ⊆ aA∗b ∪ {1}.

By the definition Zn is a subset of {wn : n ∈ N}, and so by the hypothesis
Zn ⊆ aA∗b ∪ {1}. Hence Sn+1 ⊆ aA∗b ∪ {1}. Therefore by induction Sn ⊆
aA∗b ∪ {1} for all n ∈ N, implying that Sw ⊆ aA∗b ∪ {1}.

Suppose that w = {wn : n ∈ N} is such that wn /∈ Sw for all n ∈ N. Let
pn ∈ A∗ be the longest prefix of wn such that pn ∈ Sw, and let sn ∈ A∗ be
the longest suffix of wn such that sn ∈ Sw. Then either there is un ∈ A+ such
that wn = pnunsn, or there are s, t, v ∈ A∗ such that wn = stv, pn = st, and
sn = tv. In the latter case wn ∈ Sw by (4.14), which contradicts the assumption.
Therefore for each n there is un ∈ A+ such that

wn = pnunsn.

The following theorem is analogous to Theorem 4.2.12.

Theorem 4.3.4. Let w = {wn : n ∈ N} ⊆ {a, b}+ such that wn /∈ Sw for all
n ∈ N. Let pn, sn, un ∈ {a, b}∗ be such that wn = pnunsn, and pn and sn are
respectively the longest prefix and the longest suffix of wn so that pn, sn ∈ Sw.
Suppose that un is a subword of wm if and only if n = m and that un is not a
subword of pn for all n. Then {wn : n ∈ N} is a semigroup universal sequence
for ΩΩ.

Proof. Denote by A the set {a, b}. Let n ∈ N and suppose that a ∈ Sw. Then
wn 6= ai for any i ∈ N since wn /∈ Sw. So either wn = aibaj for some i, j ∈ N, or
wn = aibubaj for some i, j ∈ N and u ∈ A∗. In the latter cases b ∈ Sw by (4.12),
and so Sw = A∗, which contradict the assumption that wn /∈ Sw. Suppose that
wn = ainbajn for some in, jn ∈ N and all n ∈ N. Then b ∈ Sw by (4.13), which
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again is a contradiction. Therefore a /∈ Sw and the symmetric argument shows
that b /∈ Sw.

For the rest of the proof we assume that a, b /∈ Sw. Then for any n and m
in N, the first letter of wn and the last letters of wm have to be different, thus
{wn : n ∈ N} ⊆ aA∗b or {wn : n ∈ N} ⊆ bA∗a. Without the loss of generality,
we may assume that wn ∈ aA∗b for all n ∈ N. Then Sw ⊆ aA∗b ∪ {1} by
Lemma 4.3.3.

Let Ω be the set of eventually constant sequences over F (A), written from
right to left, namely

Ω = {(. . . , x1, x0) : xi ∈ F (A) and there is K ∈ N such that

xK = xk for all k ≥ K}.

We proceed by proving a series of claims.
Claim 1. un ∈ aA∗b for all n ∈ N.

Proof. Let n ∈ N, and let m ∈ N be such that n 6= m. Since wm ∈ aA∗b there
is some v ∈ A∗ such that wm = avb. Suppose that un ∈ bA∗. Then un = bu for
some u ∈ A∗, and so wn = pnbusn. Since wm = avb, condition (4.13) implies
that b ∈ Sw, which is a contradiction. Suppose that un ∈ A∗a. Then un = ua

for some u ∈ A∗. Hence wn = pnuasn, and so (4.13) implies that a ∈ Sw, which
again is a contradiction. Hence un ∈ aA∗b.

Claim 2. Let n,m ∈ N be such that n 6= m. Then un is not a suffix of um.

Proof. Suppose that un is a suffix of um, in other words there is v ∈ A∗ such
that um = vun. Then wn = pnunsn and wm = pmvunsm. Since pn, sm ∈ Sw

condition (4.13) implies that un ∈ Sw. Hence wn = pnunsn ∈ Sw, contradicting
the hypothesis.

By (4.15), there is a generating set G for Sw consisting of subwords of words
in w. Let Gn be the set of all words in G of length at most n. Recall that we
say that a generating set T is irredundant if 〈T \ {v}〉 6= 〈T 〉 for every v ∈ T .
Let T1 = G1. Then T1 is irredundant. For some n ∈ N, suppose that there is Tn
an irredundant set such that 〈Tn〉 = 〈Gn〉 and Tn−1 ≤ Tn if n ≥ 2. Define Tn+1

to be the maximal irredundant subset of Gn+1 containing Tn, which is possible
since Gn+1 is finite. Hence Tn ≤ Tn+1 and 〈Gn+1〉 = 〈Tn+1〉, thus the induction
hypothesis is satisfied. Therefore such Tn exists for all n ∈ N. Let X =

⋃
n∈N Tn.

Then it is routine to verify that X is an irredundant generating set for Sw.
Claim 3. For each v ∈ X, there are t, t′ ∈ Sw and n,m ∈ N such that tv is

a prefix of pn, and vt′ is a suffix of sm.
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Proof. Let Xk, Yk, and Zk be as in (4.15). Note that if Zk 6= ∅, then there is
m ∈ N such that wm ∈ Zk, and so wm ∈ Sw, contradicting the hypothesis. Hence
Zn = ∅ for all n ∈ N, and X ⊆

⋃
n∈NXn ∪ Yn by the choice of X.

Let v ∈ X. Suppose there is k ∈ N such that v ∈ X ∩Xk. Then wn = tvuvt′

for some n ∈ N, t, t′ ∈ Sk, and u, v ∈ A∗. Hence tv, vt′ ∈ Sw, and so it then
follows from the maximality of pn and sn that tv is a prefix of pn, and vt′ is a
suffix of sn. On the other hand, suppose there is k ∈ N such that v ∈ X ∩ Yk.
Then wn = qvt and wm = t′vq′ for some n,m ∈ N, t, t′ ∈ A∗, and q, q′ ∈ Sk.
Hence tv, vt′ ∈ Sw, and so tv is a prefix of pn, and vt′ is a suffix of sm.

Claim 4. For all v ∈ X and all n ∈ N, a prefix of v is not a suffix of un, and
a suffix of v is not a prefix of un.

Proof. Let v ∈ X and n ∈ N be arbitrary. Then by Claim 3 there are t, t′ ∈ Sw

such that tv is a prefix of pm and vt′ is a suffix of sk for some m, k ∈ N. Then
there are r, r′ ∈ A∗ so that wm = tvrumsm and wk = pkukr

′vt′. Suppose that q
is a non-trivial prefix of v which is also a suffix of un. First, consider the case
where m = n. Then q ∈ Sw by (4.12) and the fact that wm = tqhqsm for some
h ∈ A∗.

Suppose that m 6= n. Then wm = tvrumsm and wn = pnunsn, and so q ∈ Sw

by (4.13) as t, sn ∈ Sw. Hence in both cases q ∈ Sw, which contradicts the
maximality of sn.

The case where q is non-trivial suffix of v which is a prefix of un follows in
almost identical way, using wk = pkukr

′vt′ instead of wm = tvrumsm.

Claim 5. For every v, v′ ∈ X, if a non-trivial prefix q of v is a suffix of v′,
then q = v = v′.

Proof. Let v, v′ ∈ X be arbitrary. Suppose that v = qr and v′ = r′q for some
r, r′ ∈ A∗ and q ∈ A+. By Claim 3 there are t, t′ ∈ Sw and n,m ∈ N such that
tv is a prefix of pn, and v′t′ is a suffix of sm. If n = m then there is x ∈ A∗ such
that

wn = tvxv′t′ = tqrxr′qt′,

and so q ∈ Sw by (4.12) since t, t′ ∈ Sw. If n 6= m we may write wn = tvx = tqrx

and wm = x′v′t′ = x′r′qt′ for some x, x′ ∈ A∗. Since t, t′ ∈ Sw, (4.13) implies
that q ∈ Sw. Hence q ∈ Sw in both cases.

Since v ∈ X, by Claim 3 there are n′,m′ ∈ N, l, l′ ∈ Sw so that lv is a prefix
of pn′ and vl′ is a suffix of sm′ . As in the previous paragraph, if n = m then
there is x ∈ A∗ such that

wn = lvxvl′ = lqrxqrl′,
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and so r ∈ Sw by (4.12) since lq, l′ ∈ Sw. If n 6= m we may write wn = lvx = lqrx

and wm = x′v′l′ = x′qrl′ for some x, x′ ∈ A∗. Since lq, l′ ∈ Sw, (4.13) implies
that r ∈ Sw. Hence r ∈ Sw in both cases. Since X is irredundant, q, r ∈ Sw, and
qr ∈ X, it follows that r = 1. The same argument for v′ implies that r′ = 1, and
so q = v = v′.

Let {fn : n ∈ N} ⊆ ΩΩ. We will construct a homomorphism Φ : A+ → ΩΩ

such that (wn)Φ = fn for all n ∈ N. In order to do that we will need some
auxiliary functions α, β, γ ∈ ΩΩ defined as follows

(. . . , x1, x0)α = (. . . , x0, a),

(. . . , x1, x0)β = (. . . , x0, b),

and

(. . . , x1, x0)γ =


(. . . , xi+1, xiv) if xi−1 . . . x0 = v ∈ X for some i ≥ 1

and xj ∈ A+ for all j ∈ {0, . . . i− 1}
(. . . , x1, x0) otherwise

.

If there are i, i′ ∈ N, such that i > i′, xi−1 . . . x0 = v, and xi′−1 . . . x0 = v′

for some v, v′ ∈ X, and so that xj ∈ A+ for all j ∈ {0, . . . , i}. Then v′ is a
suffix of v. By Claim 5 it is only possible if v = v′. Hence γ is well-defined.
Let Ψ : A+ −→ ΩΩ be the canonical homomorphism induced by (a)Ψ = α and
(b)Ψ = β ◦ γ. We will later use Ψ to define the required Φ.

Claim 6. For v ∈ aA∗ such that no prefix of v is a suffix of a word in X,
there are z1, . . . , zk ∈ A+ such that z1 . . . zk = v and

(. . . , x1, x0) ((v)Ψ) = (. . . , x1, x0, z1, . . . , zk)

for every (. . . , x1, x0) ∈ Ω.

Proof. Let v ∈ aA∗ be such that no prefix of v is a suffix of a word in X, and write
v = y1 . . . ym for some m ∈ N and y1, . . . , ym ∈ A. Since v ∈ aA∗, (y1)Ψ = α,
and so for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0)α = (. . . , x1, x0, a) = (. . . , x1, x0, y0).

Suppose that for some i ∈ {1, . . . ,m − 2} there are j ∈ N and z1, . . . zj ∈ A+

such that y1 . . . yi = z1 . . . zj and

(. . . , x1, x0) ((y1 . . . yi)Ψ) = (. . . , x1, x0, z1, . . . , zj)

for every (. . . , x1, x0) ∈ Ω.
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There are two cases to consider, either yi+1 = a, or yi+1 = b. Suppose that
yi+1 = a. Since Ψ is a homomorphism, for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj) ((yi+1)Ψ)

= (. . . , x1, x0, z1, . . . , zj)α

= (. . . , x1, x0, z1, . . . , zj , a),

and z1 . . . zja = y1 . . . yi+1. Hence the condition is satisfied in this case. Suppose
that yi+1 = b. Again since Ψ is a homomorphism, for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj) ((yi+1)Ψ)

= (. . . , x1, x0, z1, . . . , zj)β ◦ γ

= (. . . , x1, x0, z1, . . . , zj , b)γ,

and z1 . . . zjb = y1 . . . yi+1. Since y1 . . . yi+1 is a prefix of v, by the assumption it
cannot be a suffix of any word in X. Thus z1 . . . zjb /∈ X and if x0, . . . , xt ∈ A+

then xt . . . x0z1 . . . zjb /∈ X for all t ∈ N. Hence either γ acts as identity on
(. . . , x1, x0, z1, . . . , zj , b), or there is k > 1 such that zk . . . zjb ∈ X, in which case

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj , b)γ

= (. . . , x1, x0, z1, . . . , zk−1zk . . . zjb).

Since z1 . . . zjb = y1 . . . yi+1, the inductive hypothesis is satisfied in both cases.
Hence the claim holds by induction.

Claim 7. Let v ∈ Sw. Then (v)Ψ ∈ ΩΩ is a bijection, in particular
(. . . , x1, x0) ((v)Ψ) = (. . . , x1, x0v) for all (. . . , x1, x0) ∈ Ω.

Proof. Let v ∈ X. Since v ∈ Sw ⊆ aA∗b ∪ {1} and v 6= 1, we may write v = v′b

for some v′ ∈ aA∗. By Claim 5 any proper prefix of v′ is not a suffix of any
word in X. Hence by Claim 6 there exists j ∈ N and z1, . . . , zj ∈ A+ such that
z1 . . . zj = v′ and for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((v′)Ψ) = (. . . , x1, x0, z1, . . . , zj).

It follows from v = z1 . . . zjb and the fact that Ψ is a homomorphism that

(. . . , x1, x0) ((v)Ψ) = (. . . , x1, x0, z1, . . . , zj , b)γ

= (. . . , x1, x0v).
(4.16)

Suppose that (. . . , x1, x0v) = (. . . , x′1, x
′
0v) where xi, x′i ∈ F (A) for all i, i′ ∈ N.

Then xi = x′i for all i ≥ 1 and x0v = x′0v. Since x0v and x′0v are both elements
of the free group F (A) it follows that x0 = x′0. Hence (v)Ψ is injective by (4.16).
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Let (. . . , x1, x0) ∈ Ω. Then by (4.16)

(. . . , x1, x0v
−1) ((v)Ψ) = (. . . , x1, x0),

so (v)Ψ is surjective, and hence bijective on Ω. Since X is a generating set for
Sw, it follows that (. . . , x1, x0) ((v)Ψ) = (. . . , x1, x0v), and (v)Ψ ∈ Sym(Ω) for
all v ∈ Sw.

In order to define the required homomorphism Φ, we need one more function
on Ω. Define δ ∈ ΩΩ a follows:

(. . . , x1, x0)δ =


(. . . , xi+1, xip

−1
n )f ◦ (sn)Ψ−1 if xi−1 . . . x0 = un for some

n ∈ N, i ≥ 1 where xj ∈ A+

for all j ∈ {0, . . . i− 1}
(. . . , x1, x0) otherwise

.

Note that (sn)Ψ−1 is defined by Claim 7. Suppose there are i, i′, n, n′ ∈ N
such that xi−1 . . . x0 = un and xi′−1 . . . x0 = un′ where xj ∈ A+ for all j ∈
{0, . . . ,max(i, i′)− 1}. Then either un is a suffix of um or um is a suffix of un.
Then n = n′ by Claim 2, and so i = i′. Therefore, δ is well-defined.

Let Φ be the canonical homomorphism induced by (a)Φ = α and (b)Φ =

β ◦ γ ◦ δ.
Claim 8. If v ∈ Sw, then (v)Φ = (v)Ψ.

Proof. Suppose that v = y1 . . . ym such that yi ∈ A for all i ∈ {1, . . . ,m}. Since
Sw ⊆ aA∗b ∪ {1} and v 6= 1, it follows that y1 = a, and so (y1)Φ = α = (y1)Ψ.
Suppose (y1 . . . yi)Φ = (y1 . . . yi)Ψ for some i ∈ {1, . . . ,m − 1}. Since Φ is a
homomorphism

(y1 . . . yi+1)Φ = (y1 . . . yi)Ψ ◦ (yi+1)Φ.

In the case when yi+1 = a, it follows that (yi+1)Φ = (yi+1)Ψ, and so the
inductive hypothesis is satisfied. Suppose that yi+1 = b, then (yi+1)Φ = (yi+1)Ψ◦
δ, and so (y1 . . . yi+1)Φ = (y1 . . . yi+1)Ψ ◦ δ. If i + 1 < m, then y1 . . . yi+1 is a
proper prefix of v. By Claim 5 for any j ∈ {1, . . . , i+1} the proper prefix y1 . . . yj

of v is a not a suffix of any word in X. Since y1 . . . yi+1 ∈ aA∗, by Claim 6
there exists j ∈ N and z1, . . . , zj ∈ A+ such that z1 . . . zj = y1 . . . yi+1 and for
all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj).

If i+ 1 = m, then y1 . . . yi+1 = v, and so

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0y1 . . . yi+1)
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for all (. . . , x1, x0) ∈ Ω by Claim 7. Hence in both cases there are z0, . . . , zj ∈ A+

such that z0 . . . zj = y1 . . . yi+1 and for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0z0, z1, . . . , zj). (4.17)

We will show that δ acts as the identity on (. . . , x1, x0) ((y1 . . . yi+1)Ψ) for all
(. . . , x1, x0) ∈ Ω. Fix (. . . , x1, x0) ∈ Ω, let n ∈ N, and let z0, . . . , zj ∈ A+ be as in
(4.17). Suppose that there are i ≥ 0 and n ∈ N such that xi, . . . , x1, x0z0 ∈ A+

and xi . . . x0z0 . . . zj = un. Then z0 . . . zj = y1 . . . yi+1 is both a prefix of v and
a suffix of un, contradicting Claim 4. By Claim 3 there are t ∈ Sw and m ∈ N
such that tv is a prefix of pm, and by the hypothesis of the theorem, it follows
that un is not a subword of pm and so not a subword of v for all n ∈ N. If k > 0

then zk . . . zj is a subword of v, and so not equal to un. Hence δ acts as identity
on (. . . , x1, x0z0, z1, . . . , zj). Hence the inductive hypothesis is satisfied and by
induction (v)Φ = (v)Ψ for all v ∈ X. Since X is a generating set for Sw, it
follows that (v)Φ = (v)Ψ for all v ∈ Sw.

Claim 9. (un)Φ = (un)Ψ ◦ δ for all n ∈ N.

Proof. Let n ∈ N, and let un = y1 . . . ym. We will now show that (y1 . . . ym−1)Φ =

(y1 . . . ym−1)Ψ. Since y1 = a, it follows that (y1)Φ = α = (y1)Ψ. Suppose
(y1 . . . yi)Φ = (y1 . . . yi)Ψ for some i ∈ {1, . . . ,m− 2}. Then

(y1 . . . yi+1)Φ = (y1 . . . yi)Ψ ◦ (yi+1)Φ.

If yi+1 = a then (yi+1)Φ = (yi+1)Ψ, and so the inductive hypothesis is satisfied in
this case. Suppose yi+1 = b. Then (yi+1)Φ = (yi+1)Ψ ◦ δ. Hence (y1 . . . yi+1)Φ =

(y1 . . . yi+1)Ψ◦δ. By Claim 4, for every j ∈ {1, . . . , i+1} the proper prefix y1 . . . yj

of un is not a suffix of any word in X. Hence by Claim 6 there exists j ∈ N and
z1, . . . , zj ∈ A+ such that z1 . . . zj = y1 . . . yi+1 and for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0) ((y1 . . . yi+1)Ψ) = (. . . , x1, x0, z1, . . . , zj).

Suppose that zk . . . zj = ut for some k ∈ {1, . . . , j} and t ∈ N. Then ut is a
subword of un, and so of wn. Hence t = n by the hypothesis of the theorem,
and thus un is a proper suffix of un, which is a contradiction. Suppose that
ut = xk . . . x0z1 . . . zj for some k ≥ 0 and t ∈ N such that x0, . . . , xk ∈ A+.
Then z1 . . . zj is a prefix of un and a suffix of ut, and so z1 . . . zj ∈ Sw by
the definition of Sw, which contradicts the choice of un. So δ acts as identity
on (. . . , x1, x0, z1, . . . , zj). Hence the inductive hypothesis is satisfied, and by
induction (y1 . . . ym−1)Φ = (y1 . . . ym−1)Ψ. Since ym = b

(un)Φ = (un)Ψ ◦ δ.
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Let n ∈ N. It follows from Claim 7, Claim 8, Claims 9, and the fact that Φ is
a homomorphism, that for all (. . . , x1, x0) ∈ Ω

(. . . , x1, x0)(wn)Φ = (. . . , x1, x0) ((pn)Ψ ◦ (un)Ψ ◦ δ ◦ (sn)Ψ)

= (. . . , x1, x0pn) ((un)Ψ ◦ δ ◦ (sn)Ψ)

It follows from Claims 4 and 6 there are z1, . . . , zk ∈ A+ such that z1 . . . zk = un

and

(. . . , x1, x0)(wn)Φ = (. . . , x1, x0pn) ((un)Ψ ◦ δ ◦ (sn)Ψ)

= (. . . , x1, x0pn, z1, z2, . . . , zk)δ ◦ (sn)Ψ

Finally, by the definition of δ

(. . . , x1, x0)(wn)Φ = (. . . , x1, x0pn, z1, z2, . . . , zk)δ ◦ (sn)Ψ

= (. . . , x1, x0)fn ◦ (s)Ψ−1 ◦ (s)Ψ

= (. . . , x1, x0)fn.

Therefore (wn)Φ = fn, and since n was arbitrary, {wn : n ∈ N} is a universal
sequence.

It is worth noting that Proposition 4.3.1 is a consequence of Theorem 4.3.4.
Suppose that w = {wn : n ∈} ⊆ A+ is such that p is a prefix of wn and a suffix
of wm if and only if p = wn = wm, also suppose that wn is a subword of wm only
if n = m. Then using the notion of (4.15), it follows that X1 = Y1 = Z1 = ∅.
Hence Sw = 〈1〉, and so by Theorem 4.3.4 the sequence {wn : n ∈ N} is universal
for ΩΩ.

Next we present an example of a universal sequence which can be proved
to be universal with Theorem 4.3.4, but does not satisfy the hypothesis of
Proposition 4.3.1.

Example 4.3.5. Let wn = aba(ab)n+1bab ∈ {a, b}+ for all n ∈ N, and let
w = {wn : n ∈ N}. Then for any n and m ∈ N, the possible prefixes of wn are a,
ab, aba(ab)k for k ∈ {0, . . . , n+ 1}, aba(ab)ka for k ∈ {0, . . . , n}, aba(ab)in+ 1b,
aba(aba)n+1ba, and wn. On the other hand, the possible suffixes of wm are b, ab,
bab, and some other words which finish with b2ab. Note that the only proper
prefix of wn which is a suffix of wm is ab. Hence X0 = Y0 = {ab}, and since
Z0 = ∅, it follows that S1 = {(ab)n : n ∈ N}.

Suppose now that for any n ∈ N, wn = svuvs′ for some s, s′ ∈ S1 and
v, u ∈ {a, b}∗. Then s, s′ ∈ {1, ab}, and so vuv is one of the words a(ab)n+1b,
aba(ab)n+1b, a(ab)n+1bab, or wn. Observe that neither of the first three words
have a proper prefix which is also a suffix, and so X1 = X0.
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If for some distinct n,m ∈ N, wn = svt and wm = t′v′s where s, s′ ∈ S1,
t, t′, v ∈ N. Then vt is either wn or a(ab)n+1bab and similarly tv′ is either wm or
aba(ab)m+1b. Then v is either 1 or ab, and so Y1 = Y0. It is also easy to see that
Z1 = ∅. Hence S2 = S1, implying that Sw = {(ab)n : n ∈ N}.

Finally, let n ∈ N. Then wn /∈ Sw for all n ∈ N. Then the longest prefix pn of
wn such that pn ∈ Sw is pn = ab, and similarly the longest suffix sn of wn such
that sn ∈ Sw is sn = ab. Hence if wn = pnunsn then un = a(ab)n+1b, and so if
un is a subword of wm, it follows that m = n, also un is not a subword of pn = ab.
Therefore {wn : n ∈ N} is a universal sequence for ΩΩ by Theorem 4.3.4.

4.4 Universal lists of automorphism group of the
random graph

Let R be the random graph, namely the Fraïssé limit of the class of all finite
graphs. In this section we will show that Aut(R) has a group universal list over
an alphabet of size four.

In this section we will use a rather different approach to find a universal list.
The approach is inspired by an alternative proof of Ore’s Theorem, namely that
a−1b−1ab is a universal word for Sym(Ω) for a countable Ω.

Proposition 4.4.1 (see [42]). Let A = {a, b} be an alphabet and let G be a
topological group such that G is a Baire space and has a comeagre conjugacy
class. Then a−1b−1ab is a group universal word for G.

Proof. Let f ∈ G be arbitrary, and let C be the comeagre conjugacy class of
G. Since G is a topological group, multiplication on the right by an element of
G is a homeomorphism by Corollary 1.4.13. Hence Cf = {gf : g ∈ C} is also
comeagre by Proposition 1.4.14. Then the set C ∩ Cf is also comeagre, and since
G is a Baire space, non-empty. So there are g, h ∈ C such that g = hf . Since g
and h belong to the same conjugacy class, there is k ∈ G such that g = k−1hk.
Then

f = h−1g = h−1k−1hk.

Let Φ : F (a, b) −→ G be the canonical homomorphism induced by (a)Φ = h

and (b)Φ = k. Then (a−1b−1ab)Φ = f .

As discussed in Examples 1.4.11 and 1.4.18, for countable Ω, Sym(Ω) and any
closed subgroup of Sym(Ω) are topological groups which are also Baire spaces.
Hence Proposition 4.4.1 implies that, in order to show that a−1b−1ab is a group
universal word for Sym(Ω) it is sufficient to show, well known result by Truss [74],
that Sym(Ω) has a comeagre conjugacy class.

Proposition 4.4.2 (Theorem 3.1 [74]). Let Ω be countable. Then Sym(Ω) has
a comeagre conjugacy class.

151



Proof. For n,m ∈ N and x ∈ Ω, define the following sets

An,m = {f ∈ Sym(Ω) : f has at least n cycles of length m}

and
Bx = {f ∈ Sym(Ω) : x is on a finite orbit of f}.

We will show that An,m and Bx are open and dense for all n,m ∈ N and x ∈ Ω.
Let f ∈ An,m for some n,m ∈ N. Then there is a finite subset Γ of Ω such

that f |Γ is a product of n disjoint cycles of length m, and so [f |Γ] ⊆ An,m. Hence
An,m is a union of basic open sets, and thus an open set. Similarly, if f ∈ Bx for
some x ∈ Ω, then there is a finite orbit Γ of Ω containing x. Then [f |Γ] ⊆ Bx,
and so Bx is an open set for every x ∈ Ω.

Suppose that q a bijection between finite subsets of Ω, in other words q ∈
Sym(Ω)<ω. Let n,m ∈ N, and let x ∈ Ω. Then there is an extension f ∈ Sym(Ω)

of q such that f at least n cycles of length m, and so [q] ∩An,m 6= ∅. Similarly,
there is f ∈ Sym(Ω) such that x is on a finite orbit of f . Hence [q] ∩ Bx 6= ∅,
thus both Am,n and Bx are dense in Sym(Ω). Therefore, the set

C =
⋂

n,m∈N
An,m ∩

⋂
x∈Ω

Bx

is comeagre.
Note that if f ∈ C, then f has no infinite cycles and countably many cycles

of any length n ≥ 1. By a classical result, two permutations are conjugate if and
only if they have the same number of cycles of length n for every n ∈ N ∪ {ℵ0}.
Therefore, C is the comeagre conjugacy class.

Ore’s Theorem then follows immediately from Propositions 4.4.1 and 4.4.2.
For the remainder of this section, if G is a group and g, h ∈ G by gh we denote

the product h−1gh. The main result of this section is stated in the following
theorem.

Theorem 4.4.3. Let n ∈ N, n > 4, and let wi = ab
i−1

cd
i−1 ∈ F (a, b, c, d) for

i ∈ {1, . . . , n}. Then w1, . . . , wn is a group universal list for Aut(R).

In order to make the notation easier throughout this section we will assume
that the underlying vertex set of R is N. In order to prove Theorem 4.4.3 we
will need the notion of a Banach-Mazur game for a subset of a topological space.

Let X be a non-empty topological space, and let C ⊆ X. The Banach-
Mazur game of C is a two player game, in which Player I and Player II
alternate to choose non-empty open sets U0, V0, U1, V1, . . ., such that U0 ⊇ V0 ⊇
U1 ⊇ V1 ⊇ . . .. Player II wins the game if

⋂
n Vn =

⋂
n Un ⊆ C, and Player I

wins the game if Player II does not win. Note that the
⋂
n Vn =

⋂
n Un follows

immediately from the fact that U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . ..
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If X is a Baire space, a Banach-Mazur game can be used to show that
a subset of X is comeagre. In order to establish this connection, we need to
formally define what it means for a player to have a winning strategy. If X is a
non-empty topological space, let T be the set consisting of all finite sequences
(W0, . . . ,Wn) such thatWi is a non-empty open subset of X for all i ∈ {0, . . . , n}
and W0 ⊇ . . . ⊇Wn. A strategy S for Player II for a Banach-Mazur game
is then a subset of T such that

(i) S is non-empty;

(ii) if (U0, V0, . . . , Vn) ∈ S, then (U0, V0, . . . , Vn, Un+1) ∈ S for every non-empty
open set Un+1 such that Un+1 ⊆ Vn;

(iii) if (U0, V0, . . . , Un) ∈ S, there is a unique Vn such that (U0, V0, . . . , Vn) ∈ S.

Roughly speaking, a strategy is a rule which tells Player II which non-empty
open set Vn to choose at any stage of the game. A strategy S is a winning
strategy for Player I I for a Banach-Mazur game of C, if for any infinite
sequence (U0, V0, U1, . . .) so that (U0, V0, . . . , Vn) ∈ S for all n ∈ N, it follows
that

⋂
n∈N Un ⊆ C.

Theorem 4.4.4 (see Theorem 8.33 in [41]). Let X be a non-empty Baire space,
and let C ⊆ X. Then C is comeagre if and only if Player II has a winning
strategy for the Banach-Mazur game of C.

Proof. (⇒) Suppose that C is comeagre, and for n ∈ N let An be open and
dense subsets of X so that

⋂
n∈NAn ⊆ C. If for n ∈ N, the non-empty open sets

U0 ⊇ V0 ⊇ . . . ⊇ Un were chosen, let Player II choose Vn = Un ∩An. Since An is
dense, Vn is a non-empty open set. Then⋂

n∈N
Vn =

⋂
n∈N

Un ∩An =
⋂
n∈N

Un ∩
⋂
n∈N

An ⊆ C,

and so this is a winning strategy for Player II.
(⇐) Suppose that Player II has a winning strategy S. We will construct a

non-empty subset Q ⊆ S such that ∅ ∈ Q, and for any p = (U0, V0, . . . , Vn) ∈ Q,
the set Vp = {Vn+1 : (U0, V0, . . . , Vn, Un+1, Vn+1) ∈ Q} consists of pairwise
disjoint open subsets so that

⋃
Vp is dense in Vn. Before showing that such Q

exists we will demonstrate how to use it to prove that C is comeagre. For n ∈ N,
let Wn =

⋃
{Vn : (U0, V0, . . . , Vn) ∈ Q}. Then Wn is open for all n ∈ N. We will

inductively show that Wn is dense in X for all n ∈ N.
First, note that W0 =

⋃
V∅, and so W0 is dense in X. Suppose that Wn

is dense in X, for some n ∈ N. Let U be a non-empty open subset of X.
Since Wn is dense, there is Vn such that Vn intersects U non-trivially and
p = (U0, V0, . . . , Vn) ∈ Q. Then

⋃
Vp ⊆ Wn+1, and since

⋃
Vp is dense in Vn,
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it follows that Wn+1 is dense in Vn. It follows form the fact that U ∩ Vn is a
non-empty open subset of Vn that Wn+1 intersects U non-trivially. Since U is
arbitrary, Wn+1 is dense in X. Therefore, by induction Wn is open and dense
for all n ∈ N. If x ∈

⋂
n∈NWn, then there is a unique sequence of non-empty

open sets (U0, V0, U1, . . .) such that any finite prefix of the sequence is in Q, an
x ∈ Vn for all n ∈ N. Since S is a winning strategy for Player II, it follows that

x ∈
⋂
n∈N

Vn ⊆ C,

and so
⋂
n∈NWn ⊆ C, proving that C is comeagre. Therefore, it only remains to

show that such collection Q exists.
Let Q0 = {∅}. Let n ∈ N, and suppose that for every k ∈ {0, . . . , n} we

have defined Qk ⊆ S such that every sequence in Qk is of length 2k. Fix
p = (U0, V0, . . . , Vn−1) ∈ Qn. Then for every non-empty open subset Un ⊆ Vn−1,
define U∗n to be the unique choice of Player II in the strategy S. Let A to be the
collection of all sets A consisting of non-empty open sets Un ⊆ Vn−1 such that
{U∗n : Un ∈ A} is a set of pairwise disjoint sets. The set A is partially ordered set
under inclusion, and for any chain of elements in A the union of these elements is
an upper bound of the chain. Hence by Theorem 1.1.1 (Kuratowski-Zorn Lemma),
there is Up, a maximal collection of non-empty open subsets Un ⊆ Vn−1 such that
{U∗n : Un−1 ∈ Up} is a set of pairwise disjoint sets. Let Qn+1 the set of sequences
of the form (U0, V0, . . . , Vn−1, Un, U

∗
n) for each p = (U0, V0, . . . , Vn−1) ∈ Qn and

Un ∈ Up. Let Q =
⋃
n∈NQn.

For p = (U0, V0, . . . , Vn−1) ∈ Q, it follows that p ∈ Qn, and so

Vp = {Vn : (U0, V0, . . . , Vn−1, Un, Vn) ∈ Qn+1} = {U∗n : Un ∈ Up}

is a set of pairwise disjoint subsets. Let U be an open subset of Vn−1, and let U∗

be the unique subset of U such that (U0, V0, . . . , Vn−1, U, U
∗) ∈ S. By maximality

of Up there is Un ∈ Up so that U∗ intersects U∗n non-trivially. Hence U intersects⋃
Vp non-trivially, and so

⋃
Vp is dense in Vn−1.

The following result by Hrushovski will be used in the proof of the main
result of this section.

Theorem 4.4.5 (Hrushovski’s Property, see [32]). Let G be a finite graph. Then
there exists a finite graph H containing G as an induced subgraph, such that
every isomorphism between induced subgraphs of G extends to an automorphism
of H.

We first observe that if G is a topological group which is Baire, then every
element can be obtained as a product of an element from a comeagre set with
the inverse of another element from the same comeagre set.
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Lemma 4.4.6 (see Theorem 7.4 in [74]). Let G be a topological group and
suppose that G is Baire. If C is a comeagre subset of G, then C−1C = G.

Proof. Let g ∈ G. Since multiplication on the right by a group element is
a homeomorphism by Corollary 1.4.13, Proposition 1.4.14 implies that Cg is
comeagre. Then C ∩ Cg is also comeagre and thus non-empty. Hence there are
x, y ∈ C such that x = yg, or equivalently g = y−1x ∈ C−1C.

We will prove Theorem 4.4.3 in a series of lemmas. The key part of the proof
of Theorem 4.4.3 is proving that the set

{(f, fg, . . . , fg
n−1

) : f, g ∈ Aut(R)}

is comeagre in Aut(R)n, which we will prove in Lemma 4.4.9 using the Banach-
Mazur game. Then Lemma 4.4.9 can be used to show that the list given in
Theorem 4.4.3 is indeed universal.

Before proving Lemma 4.4.9, we prove a technical result which enables us
to extend isomorphisms of finite subgraphs of R in a certain way. Recall that if
x ∈ R, we denote by N(x) the set of all the vertices in R adjacent to x. It was
brought to our attention by H. D. Macpherson that Lemma 4.4.7 has been shown
in the proof of Theorem 3.1 in [36] for any Fraïssé limit of a free amalgamation
class, which covers the case of the random graph.

Lemma 4.4.7 (see Theorem 3.1 in [36]). Let f ∈ Aut(R)<ω, and let Γ be a
finite subset of R such that dom(f) ∪ ran(f) ⊆ Γ. Then there is an extension
g ∈ Aut(R)<ω of f such that the following hold:

(i) dom(g) = Γ;

(ii) (Γ \ dom(f))g ∩ Γ = ∅;

(iii) for x ∈ (Γ \ dom(f))g and y ∈ Γ we have that x and y are adjacent if and
only if y ∈ ran(f) and (x)g−1 is adjacent to (y)f−1.

Proof. Let Γ = {xi : 1 ≤ i ≤ m}, for some m ∈ N, and let g0 = f . We will
construct the required g inductively. Suppose that for some k ∈ {0, . . . ,m− 1}
we have defined gk ∈ Aut(R)<ω such that gk extends gk−1 if k ≥ 1, xi ∈ dom(gk)

for all i ∈ {1, . . . , k}, the sets (dom(gk) \ dom(f))gk and Γ are disjoint, and if
x ∈ (dom(gk) \ dom(f))gk and y ∈ Γ then x and y are adjacent if and only if
y ∈ ran(f) and (x)g−1

k is adjacent to (y)f−1.
If xk+1 ∈ dom(gk), let gk+1 = gk. Then induction hypothesis is satisfied by

gk+1. Suppose xk+1 /∈ dom(gk). Let U = (N(xk+1)) gk and V = Γ ∪ ran(gk) \ U .
Then by Alice’s restaurant property there is y ∈ R \ (Γ ∪ ran(gk)) such that y
is adjacent to every vertex in U and not adjacent to every vertex in V . Hence
gk+1 = gk ∪ {(xk+1, y)} is an isomorphism between subgraphs of R, and since R
is ultrahomogeneous gk+1 ∈ Aut(R)<ω.
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It follows from the definition of gk+1 that

(dom(gk+1) \ dom(f)) gk+1 = (dom(gk) \ dom(f)) gk ∪ {y}. (4.18)

Hence the sets (dom(gk+1) \ dom(f)) gk+1 and Γ are disjoint by the inductive
hypothesis and the fact that y /∈ Γ.

Let z ∈ Γ, and let y′ ∈ (dom(gk+1) \ dom(f)) gk+1. By (4.18) either y′ ∈
(dom(gk) \ dom(f)) gk, or y′ = y. Suppose that y′ = y. Then since z ∈ Γ ⊆
U ∪ V , y′ is adjacent to z if and only if z ∈ U which is equivalent z ∈ ran(gk)

and (z)g−1
k ∈ N(xk+1). Note that (dom(gk) \ dom(f))gk = ran(gk) \ ran(f) is

disjoint from Γ, as gk is an extension of f , and since ran(f) ⊆ Γ, it follows that
ran(gk) ∩ Γ = ran(f). Hence y′ is adjacent to z if and only if z ∈ ran(f) and
xk+1 = (y′)g−1

k+1 is adjacent to (z)f−1. The case where y′ ∈ (dom(gk)\dom(f))gk

follows immediately from the hypothesis. Hence gk+1 satisfies the inductive
hypothesis.

Therefore there is g = gm ∈ Aut(R)<ω such that dom(g) = Γ; the sets
(dom(g) \ dom(f))gk and Γ are disjoint; and if x ∈ (dom(g) \ dom(f))gk and
y ∈ Γ then x and y are adjacent if and only if y ∈ ran(f) and (x)g−1 is adjacent
to (y)f−1, as required.

In order to describe a winning strategy of the Banach-Mazur game we will
use some extra notation. Recall that we assume that the underlying vertex set of
R is N. Let a, b, g1, . . . , gn be isomorphisms between finite subgraphs of R, and
let k ≥ 0. We say that a, b, g1, . . . , gn satisfy the property G(k) if the following
are true:

(i) there is a finite subset Γ ⊆ R such that g1, . . . , gn ∈ Aut(Γ);

(ii) dom(b) ⊆ Γ is stabilised by g1, . . . , gn−1 setwise;

(iii) ran(b) ⊆ Γ is stabilised by g2, . . . , gn setwise;

(iv) for i ∈ {1, . . . , n− 1} if x ∈ dom(b) then (x)gib = (x)bgi+1;

(v) a = g1 and ab
i−1 ⊆ gi for all i ∈ {2, . . . , n};

(vi) k ∈ Γ, and k − 1 ∈ dom(b) ∩ ran(b) if k > 0.

Observe that if a, b, f1, . . . , fn ∈ Aut(R)<ω are such that a, b, f1, . . . , fn satisfy
G(k) for some k ∈ N, and g1, . . . , gn ∈ Aut(R)<ω are extensions of f1, . . . , fn

respectively, then a, b, g1, . . . , gn satisfy conditions (ii) – (iv) and condition (vi)
of G(k).

In the following lemma, we show how to obtain a, b, h1, . . . , hn ∈ Aut(R)<ω

which satisfy G(k + 1). This will serve as a step in the Banach-Mazur game.
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Lemma 4.4.8. Suppose that a, b, f1, . . . , fn ∈ Aut(R)<ω satisfy G(k), and let
g1, . . . , gn ∈ Aut(R)<ω be extensions of f1, . . . , fn respectively. Then there are
extensions c, d, h1, . . . , hn ∈ Aut(R)<ω of a, b, g1, . . . , gn satisfying G(k + 1).

Proof. By Theorem 4.4.5 there is Γ′ a finite subgraph of R and extensions
h1, . . . , hn ∈ Aut(Γ′) of g1, . . . , gn respectively. Hence without loss of generality
we may assume that there is a finite subgraph Γ′ of R such that g1, . . . , gn ∈
Aut(Γ′). Then a, b, g1, . . . , gn satisfy conditions (i) – (iv) and condition (vi) of
G(k) by the observation above.

The proof consists of two major steps. First, we will show that are p, q, r1, . . . , rn ∈
Aut(R)<ω extending a, b, g1, . . . , gn respectively, such that p, q, r1, . . . , rn satisfy
conditions (i) – (v) of G(k + 1) and k ∈ ran(q). The next step is to extend
p, q, r1, . . . , rn to c, d, h1, . . . , hn ∈ Aut(R)<ω respectively, so that c, d, h1, . . . , hn

satisfy G(k + 1).
Since dom(b−1) ∪ ran(b−1) = dom(b) ∪ ran(b) ⊆ Γ ⊆ Γ′, we may apply

Lemma 4.4.7 to b−1 and Γ′. Then there is q−1 ∈ Aut(R)<ω extending b−1 such
that ran(q) = dom(q−1) = Γ′, ∆ ∩ Γ′ = ∅ where ∆ = (Γ′ \ ran(b)) q−1, and

x ∈ ∆ is adjacent to y ∈ Γ′ if and only if y ∈ dom(b) and (x)q

is adjacent to (y)b.
(4.19)

Since q is injective, it follows that ∆ = (Γ′)q−1 \ (ran(b))q−1 = (Γ′)q−1 \ dom(b).
Hence ∆ is disjoint from dom(b). Also note that dom(b) = (ran(b))q−1 ⊆ (Γ′)q−1,
and so

dom(q) = (ran(q))q−1 = (Γ′)q−1 = ∆ ∪ dom(b). (4.20)

Let i ∈ {1, . . . , n−1}, and let φi : ∆ −→ R be defined by (x)φi = (x)qgi+1q
−1.

Then φi is an isomorphism between finite subgraphs of R. Since g2, . . . , gn all
stabilise both Γ′ and ran(b) setwise by condition (iii) of G(k), it follows that
g2, . . . , gn stabilise Γ′ \ ran(b) setwise. Hence φi stabilises ∆ = (Γ′ \ ran(b))q−1

setwise, in other words φi ∈ Aut(∆). We will now show that gi ∪ φi is an isomor-
phism between finite subgraphs of R. Since both gi and φi are isomorphisms, it
is enough to consider x ∈ dom(φi) = ∆ and y ∈ dom(gi) and show that x and
y are adjacent if and only if (x)φi and (y)gi are adjacent. First, suppose that
y ∈ dom(gi) \ dom(b). Then (y)gi /∈ dom(b), since gi stabilises dom(b). Hence x
is not adjacent to y and (x)φi is not adjacent to (y)gi by (4.19).

Suppose that y ∈ dom(b), then (y)gi ∈ dom(b), and so

x ∼ y ⇐⇒ (x)q ∼ (y)b by (4.19)

⇐⇒ (x)qgi+1 ∼ (y)bgi+1 since (x)q, (y)b ∈ Γ′

⇐⇒ (x)φiq ∼ (y)gib by (iv) and the definition of φi

⇐⇒ (x)φi ∼ (y)gi by (4.19).
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Hence g′i = gi ∪φi is an isomorphism between finite subgraphs of R. Let g′n = gn.
Then g′i ∈ Aut(R)<ω for all i ∈ {1, . . . , n}. By Theorem 4.4.5 there is a finite
subset Γ′′ of R and r1, . . . , rn ∈ Aut(Γ′′) such that Γ′ ⊆ Γ′′ and r1, . . . , rn extend
g′1, . . . , g

′
n respectively.

Let p = r1. Next we will show that p, q, r1, . . . , rn satisfy conditions (i) – (v)
of G(k + 1). First, note that p, q, r1, . . . , rn satisfy condition (i) of G(k + 1) by
the choice of r1, . . . , rn. It follows from (4.20) that dom(q) = dom(b) ∪∆ and
from the choice of q that ran(q) = Γ′. Since g1, . . . , gn−1 stabilise dom(b) setwise
by condition (ii) of G(k), and g′1, . . . , g′n−1 stabilise ∆ setwise by the definition,
it follows that r1, . . . , rn−1 stabilise dom(q) setwise. Also g1, . . . , gn ∈ Aut(Γ′),
thus r1, . . . , rn stabilise ran(q) setwise. Hence conditions (ii) and (iii) of G(k+ 1)

hold for p, q, r1, . . . , rn.
Let x ∈ dom(q), and let i ∈ {1, . . . , n− 1}. If x ∈ dom(b), then x ∈ dom(gi)

and (x)gi ∈ dom(b), since a, b, g1, . . . , gn satisfy condition (ii) of G(k). Hence

(x)riq = (x)gib = (x)bgi+1 = (x)qri+1

by condition (iv) of G(k). Suppose that x ∈ dom(q) \ dom(b) = ∆. Then from
the definition of φi, it follows that

(x)riq = (x)φiq = (x)qgi+1q
−1q = (x)qri+1

and thus (iv) of G(k + 1) is satisfied.
Let i ∈ {2, . . . , n}. Note that p = r1, and suppose that pq

j−1 ⊆ rj for
j ∈ {1, . . . , i−1}. If x ∈ ran(q), then by condition (iv) of G(k+1) for p, q, r1, . . . , rn

(x)ri = (x)q−1ri−1q = (x)q−1pq
i−2

q = (x)pq
i−1

.

If x /∈ ran(q), then x /∈ dom(pq
i−1

), and so pq
i−1 ⊆ ri. Therefore, induction on i

shows that condition (v) of G(k + 1) holds for p, q, r1, . . . , rn, as required. Since
k ∈ Γ by condition (vi) of G(k), the fact that Γ ⊂ ran(q) implies that k ∈ ran(q).

Now we will extend q to d ∈ Aut(R)<ω so that k ∈ dom(d). By Lemma 4.4.7
applied to q and Γ′′ there is an extension d ∈ Aut(R)<ω of q such that if
Σ = (Γ′′ \ dom(q)) d then dom(d) = Γ′′, Σ ∩ Γ′′ = ∅, and

x ∈ Σ is adjacent to y ∈ Γ′′ if and only if y ∈ ran(q) and (x)d−1

is adjacent to (y)q−1.
(4.21)

Since d is injective Σ = (Γ′′)d \ (dom(q))d = (Γ′′)d \ ran(q). Hence Σ is disjoint
from ran(q). Note that ran(q) = (dom(q))d ⊆ (Γ′′)d, and so

ran(d) = (dom(d))d = (Γ′′)d = Σ ∪ ran(q). (4.22)
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Let i ∈ {2, . . . , n}, and let ψi : Σ −→ R be defined by (x)ψi = (x)d−1ri−1d.
Then ψi is an isomorphism between finite subgraphs of R. Since ri stabilises
both Γ′′ and dom(q) setwise, it follows that ri stabilises Γ′′ \ dom(q) setwise.
Hence ψi stabilises Σ setwise, in other words ψi ∈ Aut(Σ). We will now show
that ri ∪ ψi is an isomorphism. Since both ri and ψi are isomorphisms, it is
enough to show that x ∈ Σ is adjacent to y ∈ Γ′′ = dom(ri) if and only if (x)ψi

is adjacent to (y)ri. Let x ∈ Σ. First, suppose that y ∈ dom(ri) \ ran(q). Then
(y)ri /∈ ran(q), since ri stabilises ran(q) by condition (iii) of G(k + 1). Hence x is
not adjacent to y and (x)ψi is not adjacent to (y)ri by (4.21).

Suppose that y ∈ ran(q). Then there is z ∈ dom(q) such that y = (z)q. It
follows from condition (iv) of G(k + 1) that (z)ri−1q = (z)qri. Hence

(y)q−1ri−1 = (y)riq
−1, (4.23)

and since (y)ri ∈ ran(q)

x ∼ y ⇐⇒ (x)d−1 ∼ (y)q−1 by (4.21)

⇐⇒ (x)d−1ri−1 ∼ (y)q−1ri−1 since (x)q, (y)d ∈ Γ′′ = dom(ri−1)

⇐⇒ (x)ψid
−1 ∼ (y)riq

−1 by (4.23) and the definition of ψi

⇐⇒ (x)ψi ∼ (y)ri by (4.21).

Hence r′i = ri∪ψi is an isomorphisms between finite subgraphs of R. Let r′1 = r1.
Then r′i ∈ Aut(R)<ω for all i ∈ {1, . . . , n}. By Theorem 4.4.5 there are Γ′′′ ⊆ R
and h1, . . . , hn ∈ Aut(Γ′′′) such that Γ′′′ is finite, Γ′′ ⊆ Γ′′′, and h1, . . . , hn

extends r′1, . . . , r′n respectively. Moreover, if necessary, by first extending r′1 to
some finite isomorphism r′′1 such that k + 1 ∈ dom(r′′1 ), we may assume that
k + 1 ∈ Γ′′′.

Let c = h1. We will now show that c, d, h1, . . . , hn satisfy G(k + 1). By the
choice of d we have that dom(d) = Γ′′ and ran(d) = ran(q) ∪ Σ by (4.22).
Since r2, . . . , rn all stabilise ran(q) setwise by condition (iii) of G(k + 1), and all
r′1, . . . , r

′
n stabilise Σ by the definition, it follows that h2, . . . , hn stabilise ran(d)

setwise. Also ri ∈ Aut(Γ′′) for all i ∈ {1, . . . , n}, and so ri stabilise Γ′′ = dom(d)

setwise. Hence conditions (i), (ii), and (iii) of G(k + 1) hold for c, d, h1, . . . , hn.
Let x ∈ dom(d), and let i ∈ {1, . . . , n − 1}. If x ∈ dom(q) ⊆ Γ′′, then

x ∈ dom(ri) and (x)ri ∈ dom(q), since ri stabilise dom(q) by condition (ii) of
G(k + 1) for p, q, r1, . . . , rn. Hence by the condition (iv) of G(k + 1)

(x)hid = (x)riq = (x)qri+1 = (x)dhi+1.

Otherwise x ∈ dom(d) \dom(q) = (Σ)d−1, thus (x)d ∈ Σ. Then by the definition
of ψi we have

(x)dhi+1 = (x)dd−1rid = (x)hid
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and thus (iv) of G(k + 1) is satisfied.
Let i ∈ {2, . . . , n}, and recall that c = h1. Suppose that cd

j−1 ⊆ hj for all
j ∈ {1, . . . , i− 1}. If x ∈ ran(d), then by condition (iv) of G(k + 1)

(x)hi = (x)d−1hi−1d = (x)d−1cd
i−2

d = (x)cd
i−1

.

If x /∈ ran(d), then x /∈ dom(cdi−1), and so cd
i−1 ⊆ hi. Therefore, by induction

condition (v) of G(k + 1) holds for c, d, h1, . . . , hn.
Finally, k ∈ Γ′ ⊆ dom(d) ∩ ran(d), and we have chosen Γ′′′ in such a way

that k + 1 ∈ Γ′′′. Therefore c, d, h1, . . . , hn satisfy condition (vi) of G(k + 1) and
therefore G(k + 1).

Next we will use G(k) to show that {(f, fg, . . . , fgn−1

) : f, g ∈ Aut(R)} is
comeagre.

Lemma 4.4.9. The set C = {(f, fg, . . . , fgn−1

) : f, g ∈ Aut(R)} is comeagre in
Aut(R)n.

Proof. We will show that Player II has a winning strategy for a Banach-Mazur
game of C.

Let U0 be an open set, and let B be any basic open set such that B ⊆ U0.
Then there are h1, . . . , hn ∈ Aut(R)<ω such that B = [h1] × . . . × [hn]. By
Theorem 4.4.5 there is a finite Γ0 ⊆ R and g0,1, . . . , g0,n ∈ Aut(Γ0) extending
h1, . . . , hn respectively such that 0 ∈ Γ0. Let V0 = [g0,1]×. . .×[g0,n], let a0 = g0,1,
and let b0 = ∅. Since dom(b0) = ran(b0) = ∅, it follows that a0, b0, g0,1, . . . , g0,n

satisfy G(0).
Suppose that U0, V0, . . . , Vk−1 ⊆ Aut(R)n are chosen such that U0 ⊇ V0 ⊇

. . . ⊇ Vk−1; and for all i ∈ {1, . . . , k−1} there are ai, bi, gi,1, . . . , gi,n ∈ Aut(R)<ω

such that Vi = [gi,1]×. . .×[gi,n], ai and bi extensions of ai−1 and bi−1 respectively,
and ai, bi, gi,1, . . . , gi,n satisfy G(i). Let Uk ⊆ Vk−1 be an arbitrary open set, and
let B ⊆ Uk be a basic open set. Then there are h1, . . . , hn ∈ Aut(R)<ω such
that B = [h1] × . . . × [hn]. Since [gk−1,1] × . . . × [gk−1,n] = Vk−1 ⊇ Uk, it
follows that h1, . . . , hn extend gk−1,1, . . . , gk−1,n respectively. By Lemma 4.4.8
there are ak, bk, gk,1, . . . , gk,n ∈ Aut(R)<ω, extensions of ak−1, bk−1, h1, . . . , hn

respectively, satisfying G(k). Let Vk = [gk,1]× . . .× [gk,n].
Suppose now that we have a sequence of open sets U0 ⊇ V0 ⊇ U1 ⊇ . . ., where

Vi are chosen using the strategy described above. Let

a =
⋃
i∈N

ai, b =
⋃
i∈N

bi, and gj =
⋃
i∈N

gi,j for all j ∈ {1, . . . , n}.

It follows from condition (i) of G(k) that dom(gj) = ran(gj) =
⋃
i∈N Γi. By (vi)

of G(k) we have that k ∈ Γk, and so
⋃
i∈N Γi = R. Since gi,j ∈ Aut(R)<ω for all
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i and j, it follows that gj ∈ Aut(R) for all j ∈ {1, . . . , n}. Then

⋂
i∈N

Vi =
⋂
i∈N

[gi,1]× . . .× [gi,n] =

(⋂
i∈N

[gi,1]

)
× . . .×

(⋂
i∈N

[gi,n]

)
= {(g1, . . . , gn)}.

Hence to show that the set C is comeagre, it is sufficient to demonstrate that
(g1, . . . , gn) ∈ C.

By condition (vi) of G(k) we have that k − 1 ∈ dom(bk) ∩ ran(bk). Since
bi ∈ Aut(R)<ω for all i ∈ N, it follows that b ∈ Aut(R). Also (x)a = (x)g1 for
all x ∈

⋃
i∈N Γi by (v) of G(k), thus a = g1 ∈ Aut(R).

Finally, let x ∈ R, and let i ∈ {1, . . . , n}. We will show that (x)ab
i−1

= (x)gi.
Let

∆ =
{
x, (x)b−1, . . . , (x)b−i+1, (x)b−i+1a, (x)b−i+1ab, . . . , (x)b−i+1abi−1

}
.

Since ∆ ⊆ R is finite, we may find k ∈ N such that max (∆) < k. Hence ∆ ⊆ Γk

and ∆ ⊆ dom(bk) ∩ ran(bk). Then by the choice of ∆, x ∈ dom(a
bi−1
k

k ), and thus
by (v) of G(k)

(x)ab
i−1

= (x)a
bi−1
k

k = (x)gk,i = (x)gi.

Hence gi = ab
i−1

for all i ∈ {1, . . . , n}, and so⋂
i∈N

Vi = {(g1, . . . , gn)} ⊆ C.

Therefore, C is comeagre by Theorem 4.4.4.

Finally, we can prove the main result of this section.

Proof of Theorem 4.4.3. First of all, recall that Aut(R) is a closed subgroup of
Sym(Ω) by Theorem 1.6.3. Hence Aut(R) is a Polish group by Example 1.4.11,
and so by Proposition 1.4.5, the product Aut(R)n is a Polish group for all n ∈ N.
Therefore Aut(R)n is a Baire space by Theorem 1.4.17.

Let C = {(f, fg, . . . , fgn−1

) : f, g ∈ Aut(R)}. Then C is comeagre in Aut(R)n

by Lemma 4.4.9. It is easy to see that C−1 = C. Since Aut(R)n is a topological
group and also a Baire space, Lemma 4.4.6 implies that

Aut(R)n = CC = {(fh, . . . , fg
n−1

hr
n−1

) : f, g, h, r ∈ Aut(R)}. (4.24)

Let wi = ab
i−1

cd
i−1

for all i ∈ {1, . . . , n}. Let p1, . . . , pn ∈ Aut(R). By (4.24)
there are f, g, h, r ∈ Aut(R) such that pi = fg

i−1

hr
i−1

for all i ∈ {1, . . . , n}. Let
Φ : F (a, b, c, d) −→ Aut(R) to be the canonical homomorphism induced by

(a)Φ = f, (b)Φ = g, (c)Φ = h, and (d)Φ = r.
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Then (wi)Φ = pi for all i ∈ {1, . . . , n}, and so w1, . . . , wn is a group universal
list for Aut(R).

The proof of Lemma 4.4.8 made extensive use of Hrushovski property to
find a finite set which was stabilised setwise by a collection of n isomorphisms
between finite subgraphs of R. If we tried to adapt the same argument to find a
universal sequence for Aut(R), we would need to find a set X stabilised setwise
by countably many isomorphism between finite subgraphs of R. However, in
this case it is impossible to ensure that X is finite. Hence the following question
remains open.

Question 4.4.10. Is there a finite alphabet A such that there exists a universal
sequence {wn : n ∈ N} ⊆ F (A) for Aut(R)?
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