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ABSTRACT 

 

The mutation of transcription factor genes is a main cause for acute myeloid leukaemia. 

RUNX1/ETO, the product of the t(8;21) chromosomal translocation, subverts normal 

blood cell development by impairing myeloid differentiation. RUNX1/ETO knockdown 

alleviates this block, with a global reprogramming of transcription factor binding and 

initiation of myeloid differentiation. Co-depletion of the myeloid transcription factor 

C/EBPα with RUNX1/ETO suppressed this differentiation response. Furthermore, C/EBPα 

overexpression largely phenocopied the effect of RUNX1/ETO knockdown. Our data show 

that low levels of C/EBPα are critical to the maintenance of t(8;21) AML and that C/EBPα 

drives the response to RUNX1/ETO depletion.  

To examine how changes in transcription factor binding impact on the activity of cis-

regulatory elements we mapped genome wide promoter-distal-element interactions in a 

t(8;21) AML cell line, via Capture HiC, and found that hundreds of interactions were 

altered by RUNX1/ETO knockdown. Differentially interacting elements exhibited changes 

in C/EBPα binding and were enriched for the CTCF motif. Our results demonstrate that 

the presence or absence of RUNX1/ETO has a profound impact on the intra-nuclear 

organisation of t(8;21) AML cells, and indicate which transcription factors are driving 

these changes. This work provides a novel mechanism for the RUNX1/ETO mediated 

differentiation block in t(8;21) AML. 
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Chapter 1. INTRODUCTION 

1.1 Chromatin structure 

Chromosomes were visualised for the first time in the 19th century, but it was not until 

much later it was discovered that they contain the genetic material of the cell, the 

genome. The genome is made up of billions of DNA bases, which carry the information to 

create complex organisms, made up of hundreds of different cell types. All of this 

information is compressed into the nucleus of a single cell. This is no easy feat; roughly 

two metres of linear DNA must be packaged into the nucleus, which is a mere six 

thousandths of a millimetre in diameter.  

The way in which it is organised must also be highly dynamic, to facilitate the complex 

processes which take place during the cell cycle. For example, during mitosis, the 

chromosomes are very condensed to ensure transmission of genetic material to daughter 

cells. The requirements are more complex during interphase; the genome must be 

organised in such a way that gene transcription, DNA replication and DNA repair can be 

tightly regulated. The following section will outline how this is achieved.  

 The nucleosome  1.1.1

The first step of DNA packaging is nucleosome assembly. The DNA double helix is spooled 

around a protein complex, 147 base pairs (bp) at a time, to form the smallest component 

of chromatin - the nucleosome.  The protein core of the nucleosome consists of 8 histone 

molecules; two molecules of histone H2A, H2B, H3 and H4. H2A and H2B form dimers and 



  2 
 

H3 and H4 form dimers, which combine to form a compact complex.  Each of the histones 

has a long, protruding amino acid ‘tail’ that extends clear of the central core (figure 1-1). 

These tails can be covalently modified, which enables regulation of various aspects of 

chromatin structure (1). This is discussed in section 1.1.4.  

Multiple nucleosomes are linked with an approximately 20 bp to 80 bp linker region to 

form a chromatin thread, commonly described as having a ‘beads on a string’ appearance. 

This first level of packaging already reduces the length of the genome by approximately 

one third (1). 

 

 

Figure 1-1: Nucleosome structure 
This schematic illustrates the assembly of the core histone octamer. Two H3/H4 dimers are 
incorporated, followed by two H2A/H2B dimers  (image modified from (1)).  
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The ‘beads on a string’ structure is condensed further by packing nucleosomes on top of 

each other, in a highly ordered fashion, to form an approximately 30 nm chromatin fibre 

(2, 3) (figure 1-2). The way in which nucleosomes are packed together resembles a ‘zig-

zag’ pattern (4). An additional histone, histone H1, binds to the nucleosome, contacting 

both protein and DNA. It protects linker DNA from nuclease digestion and promotes the 

packing of nucleosomal DNA into this structure (5, 6). The way in which it assists in 

packaging is still unclear. One theory is that histone H1 can bend DNA, thus increasing 

DNA compaction rate  (7). 

 

 

 

Figure 1-2: The chromatin fibre  
A) 10 nm fibre B) Horizontal view of a 30 nm fibre C) Vertical view of the 30 nm fibre D) Zig-zag 
model of the 30 nm fibre organisation (figure adapted from (8)). 

 

 

 A                               B                              C                                D  
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 Histone variants 1.1.2

 

Each of the canonical histones found in the nucleosome has a repertoire of variants that 

differ in their amino acid sequence, primarily at the N-terminus. The canonical histones 

are mostly made during DNA replication in the S-phase of the cell cycle, so are 

incorporated into chromatin in a DNA replication-dependent fashion. In contrast, the 

histone variants can be incorporated independently to DNA replication and are expressed 

during all stages of the cell-cycle (9).  

The histone variants are brought to the nucleosome by histone chaperones where they 

can then recruit chromatin modifiers (9-13).  The replacement of a canonical histone with 

its variant introduces structural changes. This can alter the interaction strength between 

histone proteins within the nucleosome, which therefore affects nucleosome stability and 

level of chromatin compaction. For example, the deposition of histone variants H2A.Z and 

H3.3 are associated with open and active chromatin (14). Whereas incorporation of  

macroH2A leads to stabilisation of the nucleosome and is usually associated with a 

repressive chromatin state (15). The availability of histone variants is therefore 

considered to add another level of complexity to the genome and plays an important role 

in modulating chromatin function. 
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Table 1: Eukaryotic histone variants and their functions. (table adapted from (16))  
 

 Chromatin remodelers 1.1.3

 

The positioning of nucleosomes must be highly dynamic and there are times when the 

DNA needs to be temporarily less compacted. This is achieved by an active process 

termed ‘nucleosome remodeling’. This is usually implemented to enable access of 

proteins to the DNA to drive important biological processes, such as gene transcription 

and DNA replication. The rearrangement is orchestrated by ‘chromatin remodeling 

complexes’, which use ATP to temporarily alter the nucleosome structure to reduce how 

tightly bound the DNA is to the histone core (17). There are several different remodelling 

complexes, but most are very large complexes made up of many protein subunits. The 

best known are the ISWI, SWI/SNF, and SWR1 complex families. The exact way in which 

they remodel varies depending on the type of complex. Briefly, the ISWI family is thought 

to ‘slide’ nucleosomes along the DNA, SWI/SNF proteins displace nucleosomes and the 

SWR1 family replace core histones with a histone variant (H2A/H2B dimers are replaced 

with H2AZ/H2B dimers) (18-20).  

Histone variant Function Conserved? 

CENP-A/CID/cse4 Epigenetic marker of the centromere Yes 

H3.3 Transcription Yes 

H2A.Z/H2AV Transcription/double strand break repair Yes 

H2A.X 
Double strand break repair/meiotic remodelling of sex 
chromosomes Yes 

macroH2A Gene silencing/X chromosome inactivation Yes 

H2A.Bbd Epigenetic mark of active chromatin Yes 

H3.Z Regulation of cellular response to outside stimuli No 

H3.Y Regulation of cellular response to outside stimuli No 
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 Chromatin modifications 1.1.4

 

Core histone protein tails are subject to a multitude of covalent modifications, at several 

different amino acid residues (see table 1 for key examples), by specific nuclear enzymes. 

Thus far, 60 residues have been detected, but it is likely that there are many more. The 

modifications include lysine acetylation, lysine methylation and serine phosphorylation. 

Further complexity is added by the fact these residues come in different forms – mono, di 

or tri and mono or di for methylation and acetylation respectively.  Their effect on the 

stability of the chromatin and therefore accessibility of the DNA to other proteins is 

tremendously influential to gene expression and therefore the regulation of cellular 

processes. 

There is an increasing body of literature which highlights both the variety and biological 

specificity linked to particular patterns of modifications (21-24). This has sparked the 

analogy that histone modifications are a ‘language’ which is ‘read’ by other proteins to 

trigger downstream events. This language has been termed ‘the histone code’ (25). The 

different combinations of histone modifications (the histone code) allow the cell to 

carefully regulate contacts with the underlying DNA. The enzymes which transduce the 

information can be very specific to the modification, and its amino acid positions, thus 

adding an extra level of information to the genetic (DNA) code.  

Acetylation of histone H3 and histone H4, and di/tri methylation of H3K4 are associated 

with active transcription, and are commonly termed ‘euchromatin modifications’. The 

modifications associated with transcriptional repression, ‘heterochromatin 
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modifications’, include methylation of H3K9 and H3K27. It is not only the particular 

modification and the residue which is important for regulation, the localisation on the 

linear genomic sequence also plays a role – for example, whether a modification is at the 

promoter, the 3’ end or the 5’ end of an open reading frame will alter its effect on 

transcription (26, 27).  

Histone modifying enzymes are responsible for carefully controlling this dynamic 

arrangement of modifications on chromatin.  In general, acetylation is laid down by 

histone acetyltransferase complexes (HATs), of which there are many. Key examples of 

HATs include HAT1, p300 and GCN5 (28). Acetylation can then be removed by histone 

deacetylases (HDACs). There are approximately 18 mammalian HDACs which can be 

divided into two main classes. Class I are ubiquitously expressed in human cells and have 

a nuclear localisation. Class I includes HDACs 1,2,3 and 8. Class II can be found in the 

cytoplasm as well as the nucleus, suggesting that they may deacetylate non-histone 

proteins. Class II are expressed in a tissue specific fashion and include HDACs 4,6,7,9 and 

10 (29). Similarly, methyl groups are added by histone methyl transferases, and removed 

by histone demethylases. 

A long standing model is that histone modifications alter the net charge of nucleosomes, 

and thus weaken inter or intra-nucleosomal interactions. The strongest support for this 

comes from studies with acetylated histones.  Several groups have found that acetylated 

histones are easier to separate from DNA both in vivo and in vitro (30, 31) (32, 33).  
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Histone modification can also serve as binding sites for effector proteins. The earliest 

example is the recognition and selective interaction of protein bromodomains with 

acetylated histones (34). Once bound to the chromatin via the acetylated histones, 

bromodomain containing proteins can then recruit other proteins to form a complex (34). 

Bromodomains therefore allow the regulation of protein-protein interaction via lysine 

acetylation. Recent research has highlighted the importance of this mechanism to the 

regulation of gene transcription and chromatin organisation (reviewed in (35)). 

The histone code is also ‘read’ by components of the polycomb pathway, which silences 

gene expression.  Polycomb proteins recognise methylated histones which then triggers 

downstream processes. Polycomb repressive complex 2 (PRC2) is targeted to polycomb 

response elements (PRE) where it methylates local histones. This leads to the 

accumulation of H3K27Me3, which in turn attracts polycomb repressive complex 1 (PRC1) 

and leads to a block of transcription (36) 
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Table 2: Overview of histone modifications, their site and role in transcription  
(adapted from (37)) 

 

1.2 Eukaryotic transcription and its regulation 

Every eukaryotic organism has a vast diversity of cell phenotypes, despite each cell 

carrying an identical genome. These differences are largely driven by difference in gene 

expression, which leads to the controlled production of a specified set of proteins in the 

cell, via the processes of transcription and translation. This complement of proteins 

defines the cell type, and further variations to the protein levels and timing of expression 

can alter the cells behaviour during different biological processes. The following section 

will outline how gene expression is regulated. 

Modification Role in transcription Modification site 

Acetylation Activation H3 (K9,K14,K18,K56)  

H4 (K5,K8,K12,K16) 

H2B (K6,K7,K16,K17) 

Methylation Activation H3(K4me2,K4me3, 

K36me3,K79me2) 

Methylation Repression H3(K9me3,K27me3) 

H4 (K20me3) 

Phosphorylatoin Activation H3(S10) 
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 The Eukaryotic transcriptional machinery 1.2.1

 

RNA polymerase II (Pol II), along with several other proteins, is responsible for the 

transcription of protein coding genes in eukaryotes. The other proteins include general 

transcription factors, activator proteins and co-activators. General transcription factors 

assemble on the core promoter to form the pre-initiation complex (PIC). The assembly of 

the pre-initiation complex usually begins with the binding of TFIID, a complex made up of 

TATA-box-binding protein (TBP) and several other TBP-associated factors (TAFs) (figure 1-

3). The PIC then recruits Pol II to the transcription start site; recruitment of Pol II is a rate 

limiting step for transcription (38). The recruitment of Pol II to the DNA is often termed 

‘initiation’.  

Once recruited, Pol II can begin the process of elongation, which can be divided into two 

main parts. It begins with the incorporation of nucleotides to the 3’ end of Pol II, so it can 

transcribe the first 20 to 50 nucleotides of RNA (39). At almost 50% of active genes, Pol II 

then pauses after this initial early transcription. Three models have been proposed to 

explain how and why this promoter proximal pausing occurs. The first model, the ‘Kinetic 

model’ states that the pause is due to the fact that elongation is energetically 

unfavourable, due to the recruitment of pausing factors to the DNA (40). The ‘barrier 

model’ proposes that Pol II pauses due to nucleosomes acting as a physical barrier which 

hinders elongation (41). The ‘interaction model’ involves factors which bind to DNA and 

Pol II at the same time, ‘tethering’ them and pausing elongation (42). Progression beyond 
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this ‘promoter proximal’ pausing is often tightly controlled so is therefore recognized as 

an important step in gene regulation (43). 

The escape of Pol II from pausing is dependent on two processes taking place during its 

residence at the promoter; the 5’ capping of the nascent RNA (39) and the 

phosphorylation of the paused complex (44). Phosphorylation is mediated by P-TEFb , a 

heterodimer complex of Cyclin-dependent kinase 9 (Cdk9) and Cyclin T (CycT) (44). P-TEFb 

phosphorylates serine 2 of Pol II (45), as well as pausing factors DSIF and NELF, leading to 

their release (46). P-TEFb can be recruited via the coactivator Brd4 (47, 48). 

Once Pol II is released from its paused state it can begin productive elongation, where it 

progresses along the gene body. The elongating Pol II inevitably encounters nucleosome 

barriers, which it can overcome with the help of elongation factors, for example FACT and 

Spt6 (49). FACT does not displace nucleosomes. Instead, it removes H2A-H2B dimers from 

the octamer, which allows Pol II to transcribe through the remaining components (50). 

Spt6 is thought to directly interact with histones, displacing the nucleosome in front of 

Pol II then reassembling it behind (51). Spt6 has also been shown to increase the 

elongation rate of Pol II, even when no nucleosomes are present (52, 53). 

Pol II continues elongation through the gene body until it eventually reaches the end of 

the gene. To mark the end of the transcript, the nascent RNA is then cleaved and 

polyadenylated, usually approximately 8 kb downstream from the 3’ end of the gene (54).   

After Pol II has escaped the core promoter and began the process of elongation, the PIC 

does not completely dissemble. TFIID, TFIIE, TFIIH and Mediator remain as a ‘scaffold’ for 



  12 
 

efficient subsequent reinitiation of transcription via recruitment of Pol II (55). 

Furthermore, RNA polymerase can be maintained at the same gene through several 

cycles of transcription, via a facilitated recycling pathway (56). There is also evidence that 

DNA looping could bring the same polymerase molecule from the end to the beginning of 

the gene, to reinitiate transcription (57).  

 

 

Figure 1-3: The basal eukaryotic transcriptional machinery 
The PIC, consisting of general transcription factors (including RNA polymerase II, TFIIA, TFIIB, 
TFIID, TFIIE, TFIIF and TFIIH), assembles at the core promoter in a stepwise fashion. This targets 
RNA polymerase II to the transcription start site (TSS). The transcriptional activity can be 
increased by activators (green), which bind to distal elements. Activators usually contain a distinct 
DNA-binding domain (DBD) and an activation domain (AD). Question marked arrows represent 
the fact that the direct targets of activators have not yet been defined (58). 
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  Role of transcription factors 1.2.2

 

The rate of transcription can be dramatically increased or decreased by other 

transcription factors. Transcription factors are modular proteins that increase (activators) 

or decrease (repressors) the rate of gene transcription. Transcription factors are often 

members of multiprotein families, for example, CCAAT-enhancer-binding proteins and Sp 

family proteins.  The members of the family usually have very similar DNA binding 

properties but varied effects on transcription. In general, they repress transcription by 

blocking the general transcriptional machinery, and activate by the following main 

mechanisms: 

1. Promoting the assembly of the PIC at the core promoter (12). 

2.  Stimulating the activity of the general transcriptional machinery by, for example, 

post-translation modification, subsequent conformational change and the 

recruitment of co activators (59-61).  

3.  Interacting with chromatin remodelers to open chromatin, thus allowing access of 

other general transcription factors to cis elements (62). 

4. Bringing together enhancers and promoters by physically ‘looping’ out intervening 

DNA. RUNX1 and GATA2 are examples of transcription factors that mediate DNA 

looping (63) (64) 
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Transcription factors usually consist of a DNA binding domain, transactivation domain and 

interaction domain. The three dimensional shape, and amino acid composition, of the 

DNA binding domains determines the affinity to specific bases of DNA, thereby providing 

sequence specific DNA binding. There are several main categories of DNA binding domain 

or ‘motifs’. These include; helix-turn-helix, zinc finger, basic leucine zipper and the basic-

loop-helix  (65).  

Coactivators are proteins which can modulate the activity of activator proteins. In 

contrast to activators, they generally do not have sequence-specific DNA binding activity, 

so are recruited by protein-protein interaction with DNA bound activators. They function 

via two main mechanisms. The first class of activators stimulate PIC assembly. The second 

class are chromatin remodeling or modifying enzymes. Coactivators and activators 

cooperate to act synergistically, presumably via post binding interactions (66).   

A key example of the first class of activators is TBP associating factors (TAFs). They are 

proposed to act as a link between the sequence specific DNA binding activators and the 

basal transcriptional machinery, to stimulate activator dependant transcription. This 

model is based on experiments which detected a direct interaction of TAFs with various 

activation domains (67). Furthermore, mutation of the TAF binding sites leads to the 

failure to activate transcription (68). Interestingly, select TAF mutations can lead to 

defects in specific subsets of genes, suggesting that TAFs help to regulate genes in a 

gene/activator specific manner (69-71). 
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The second class of activators are associated with histone modification. An early 

experiment in yeast, in which the Tetrahymena histone acetyltransferase A was found to 

be homologous to the coactivator Gcn5, was one of the first to link coactivator function 

with histone acetylation (72). Several mammalian coactivators have since been identified 

as having HAT activity. One of the most well studied is the CREB-binding protein (CBP) and  

the E1A-interacting protein p300 (reviewed in (73)). The TBP associating factor TAF250 

has also been shown to have intrinsic HAT activity (74) .  

 Transcriptional regulatory elements 1.2.3

Only approximately 1.5% of the eukaryotic genome is protein-coding. However, the 

remaining DNA is not redundant. The typical protein-coding gene is associated with 

several transcriptional regulatory elements that  can be located immediately before the 

transcription start site (promoter elements) or distributed over many kilobases  (long-

range elements). These regulatory elements are specific DNA sequences that are 

recognised by transcription factors. Many cells in an organism will express the same 

transcription factors. However, the unique combinations of accessible elements, and the 

particular combination of transcription factors, can lead to great complexity and diversity 

of gene expression patterns.  
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Promoters 

The core promoter element defines the transcription start site. It is the binding site for 

PIC and the basic transcription machinery. The core promoter can contain several distinct 

elements. The first to be described was the TATA box – the binding site for TBP, a subunit 

of TFIID. Other core promoter elements include the downstream core element (DCE), the 

downstream promoter element (DPE) and the motif ten element (MTE). Like the TATA 

box, all of these serve as docking sites for TFIIID. The different combinations and 

organisation of these elements is diverse, which is believed to serve a regulatory role. The 

region immediately upstream of the core promoter is called the ‘proximal promoter’(75). 

It usually contains several elements which have binding sites for activator proteins.  

Enhancers 

Gene promoter activity can be amplified by elements called ‘enhancers’ (76). Enhancer 

activity is often tissue and/or developmental stage specific so they play a very important 

role in differentiation and many biological processes. They are typically approximately 

500 bp in length and contain several clusters of transcription factor binding sites (TFBS), 

which work together to increase transcription. In contrast to promoter elements, they 

can be located upstream, downstream, and within introns, sometimes over a megabase 

away from the promoter (77). This long range regulation is mediated by the physical 

interaction between the two elements, with the intervening DNA looping out. These 

interactions are specific, highlighted by the fact genes are often not regulated by the 

nearest element (78). Multiple enhancers will often act on the same promoter to co-

ordinate expression in different cell types (79) 
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Silencers 

In contrast to enhancers, silencers repress transcription of their target genes. However, 

like enhancer elements, they can act over long distances and often work in concert. They 

contain binding sites for repressive cofactors, sometimes called corepressors (80).  

Key examples of transcriptional corepressors are SMRT (Silencing Mediator of Retinoic 

acid and Thyroid hormone receptors) and N-CoR (Nuclear hormone receptor Co-

Repressors). As their names suggest, they mediate repression via nuclear hormone 

receptors (81, 82). However, they also repress via several different transcription factors, 

for example PLZF, BCL-6 and ETO (83-85).  

There are numerous possible mechanisms for repressor function. One proposed model is 

that repressors block and/or compete with coactivator binding (86). Repressors may also 

promote a repressive chromatin structure via the recruitment of histone modifying 

enzymes, thereby blocking activator binding (87). For example, ETO recruits N-Cor and 

SMRT, which in turn recruit histone deactylases (HDACs) (see section 1.1.4 for more on 

HDACs).  

Experiments in yeast have shown that repressors can hinder PIC assembly, thus 

supressing transcription (88).  This mechanism has since been shown in human B cells. 

The transcription factor PAX5 was found to inhibit transcription of the c-fms gene by 

binding to the major transcriptional start site thus blocking the assembly of the basal 

transcriptional machinery (89) 
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Insulators 

Insulators are also known as ‘boundary elements’ as they function by hindering 

interactions between neighbouring loci by sectioning the genome into discrete domains 

of transcriptional regulation. They function in two main ways; by blocking promoter - 

enhancer physical interaction and by limiting the spread of repressive chromatin (90). 

They are commonly bound by CCCTC-binding factor (CTCF), which maintains DNA 

interaction and genome partitioning, however their precise mechanism of blockade is not 

yet known (91).  

1.3 Higher-order chromatin structure 

So far in this chapter, chromatin organisation has been described up to the level of the 

chromatin fibre. However, much further compaction is required to fit the entire genome 

into the nucleus. This section will outline higher order chromatin structure.  

 Topologically associating domains 1.3.1

The chromatin fibre is folded into a hierarchy of domains. The most robust pattern is the 

presence of well defined, sub-megabased sized regions termed ‘topologically associating 

domains’ (TADs). TADs are characterized by a high frequency of chromosomal contacts 

within the domain, but infrequent contacts between TADs (92).The boundaries sectioning 

off these regions of interaction are largely conserved between cell types of the same 

species and even during transcriptional activity. Genes within the same block are 

generally in close physical proximity, have many epigenetic features in common, and tend 
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to be up and down regulated in concert (92). It is due to these characteristics that the 

TAD is viewed as a unit of transcriptional regulation, enabling the coordination of the 

epigenetic status of several genes simultaneously. 

TAD boundaries are defined by specific DNA interactions; either DNA to DNA loops or 

DNA to the nuclear laminar (93). These contacts are mediated and stabilised by several 

different structural proteins. For example CTCF is a major player in genome architecture 

by bringing together DNA and acting as an insulator between TADs (94). These DNA-CTCF 

interactions are commonly stabilised by cohesin (95). The transcriptional co-activator 

mediator can join the complex to stabilise DNA to DNA loops at active promoter regions, 

partitioning off ‘sub-TADs’ to enable cell type specific promoter-enhancer interactions. 

This CTCF-cohesin-mediator complex has the ability to hold together several different 

loops, enabling coordinated transcriptional activity (96) (figure 1-4). 

 

 

Figure 1-4: Chromatin is folded at different length scales by combinations of structural proteins 
TADs are demarcated by CTCF and cohesin binding. Others factors can act in combination with 
these proteins to divide the Mb-sized TADs into smaller sub-TADS, facilitating shorter range DNA 
looping between promoters and enhancers (figure adapted from (96). 
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In addition to these ubiquitous structural proteins, more cell type specific proteins have 

been shown to play an important role in genome architecture. For example, the 

Yamanaka reprogramming transcription factors mediate embryonic stem cell (ESC) 

specific DNA interactions, driving reprogramming into ‘induced pluripotent stem 

cells’ (iPSCs) (97). Another example comes from work on the CD34 locus. It was shown 

that the transcription factor RUNX1 is required for the interaction between the CD34 

promoter and enhancer, and this interaction was needed for CD34 gene expression (63). 

Furthermore, studies in Drosophila melanogaster have identified a role for the polycomb 

complex proteins in mediating DNA interactions, to bring genes into so called ‘polycomb 

bodies’ (98). 

 Chromosome compartments 1.3.2

With the development of genome wide DNA interaction mapping (HiC), Lieberman-Aiden, 

E. et al. demonstrated that the genome is divided into two compartments –A and B. At 

approximately 5 Mb in size, these compartments are significantly larger than TADs. They 

alternate along chromosomes represent regions of active (A) and inactive (B) chromatin. 

A-compartments of chromosomes preferentially interact with other A compartments and 

vice-versa for B compartments (99) (figure 1-5). 

Lieberman-Aiden, E. et al. demonstrated that, in contrast to TADs, these compartments 

are cell type specific (99).  However, the genome wide differences between cell types 

were not comprehensively described. A more recent study from Dixon, JR et al. 

highlighted that over a third of the genome changes compartment during stem cell 

differentiation. These reorganisations were associated with changes in gene expression 
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(100). As a result of these findings they state “that the A and B compartments have a 

contributory but not deterministic role in determining cell-type-specific patterns of gene 

expression” (100).  

In short, TADs are regarded as the very robust features of chromosomes, which can then 

be arranged into either an A or B compartments. Hence, differences in expression 

between cell types are more likely to be mediated via re-arrangement of TADS into 

alternative compartments, rather than changing TAD boundaries (see figure 1-5).  

 

 

 

Figure 1-5: Topologically associating domains are organised into two separate compartments. 
Chromatin is packed into TADs (grey circles) which are in turn positioned into either compartment 
A or B, depending on their transcriptional activity. The arrangement of TADs can change in order 
to alter expression level of genes within a TAD. Note that TAD organisation does not change upon 
change of expression status (figure adapted from (101)). 
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 Chromosome territories 1.3.3

During cell division, all chromosomes are replicated and equally distributed between the 

two daughter cells. After division, the nuclear membrane reforms around the 

chromosomes and the chromosomes are distributed within sub-volumes of the nucleus – 

chromosome territories (CTs). The way in which the chromosomes are distributed within 

these CTs is not random (102-104). To a certain extent, chromosome size affects the 

radial position of chromosomes due to size-dependent mitotic forces acting on the 

chromosomes (102, 103, 105). Radial positions are also related to gene density (102).  For 

example, gene – poor chromosome 18 is usually located closer to the outside of the 

nucleus than gene-dense chromosome 19 (102). 

The activity states of distinct loci within a CT effects their positions in nuclear space and 

position in relation to each other (106-109). Genes which are active can migrate outside 

of their defined CT and undergo transcriptional ‘bursts’ when they join so called 

‘transcription factories’ (regions with highly concentrated, active RNA polymerase II) (106, 

110). Inactive genes, on the other hand, are usually located at the nuclear periphery, 

close to the nuclear laminar (111, 112).  They can, however, migrate away from the 

lamina and become active, for example during differentiation (112). 

 Transcription factories 1.3.4

The term ‘transcription factory’ was coined in 1993 (113). They are regions of the nucleus 

that have a micro-environment which favours transcription. In these hubs, RNA 

polymerase II (pol II) is active and at high levels. It is thought that pol II may be stabilised 
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at these discrete sites, and during transcription genes are passed through the 

polymerases (114, 115). Genes at a particular transcription factory are often co-regulated 

and are bound by the same transcription factors. Dynamic transcription regulation can be 

achieved by moving genes in or out of these factories (116). It is due to these properties 

that transcription factories are believed to improve the efficiency of transcription and its 

regulation.  

 The beta-globin locus and the HOX gene cluster 1.3.5

 

The beta-globin locus is an excellent example of the principles described previously in this 

chapter. Beta and alpha globin chains combine to make haemoglobin and their regulation 

is very carefully controlled, as free globin chains are toxic. The beta globin locus contains 

a number of genes encoding beta subunits which are used at different stages of 

development. A far upstream locus control region (LCR) consisting of several regulatory 

elements, helps orchestrate the tightly controlled expression of those genes (117). When 

silent during the progenitor stage of erythroid development, the locus is positioned at the 

nuclear periphery. However, as the cells differentiate into mature blood cells, one of the 

beta globin genes is expressed and the locus moves away from the periphery and 

associates with a transcription factory, where expression levels can significantly increase. 

During this process, an enhancer within the LCR is brought into physical contact with the 

beta globin promoter via DNA looping (118-120).  
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The HOX gene locus is another excellent example of a link between 3D genomic 

arrangement and the temporal and spatial expression of genes. Work over the past few 

years has identified several long-range enhancers within the two gene deserts either side 

of the HoxD gene cluster which, during limb development, control the expression of the 

HoxD genes (reviewed in (121)). These flanking regulatory regions overlap with the TAD 

boundaries established by Dixon et al. (92). They are referred to as the T-DOM (telomeric 

TAD) and the C-DOM (centromeric TAD). Interestingly, chromosome conformation 

capture and gene expression analysis revealed that the T-DOM and C-DOM control the 

early and late phases of development respectively (122, 123). Thus, a switch between 

which TAD regulates HoxD expression is required for normal limb development. A very 

recent study from the Denis Deboule group showed that HOX13 is critically involved in 

mediating this switch between TAD activities (124).  

 

1.4 Interrogating nuclear organisation and chromosome conformation 

It is now very clear that genome organisation is fundamental to many crucial biological 

processes, such as transcriptional regulation and DNA replication. Hence the 

development of techniques to interrogate chromosome conformation has been, and still 

is, a highly active area of research. The above findings regarding 3D genome structure 

were made possible with the relatively recent advent of chromosome conformation 

capture technologies.  
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 Assays based on microscopy 1.4.1

At the turn of the 20th century, it was from observations with early microscopes that 

Theodor Boveri introduced the term ‘chromosomal territory’ as a result of his work with 

the blastomere stages of the horse round worm (125). It wasn’t until the late 1970s that 

more concrete evidence came from laser-UV-micro irradiation experiments (126, 127). A 

laser micro-beam was directed at a small part of the nucleus to induce DNA damage .The 

cells were allowed to enter metaphase and then, once re-condensed, the chromosomes 

were assessed for signs of damage. Different results were predicted to transpire, 

depending on the way chromosomes were arranged. If chromosomes were randomly 

arranged and inter-mingled together, multiple inter-chromosomal arrangements are 

likely to occur. In contrast, if chromosomes resided in distinct sub-compartments with 

minimal inter-chromosomal contact, directed damage would result in predominantly 

intra-chromosomal rearrangements and damage on one particular chromosome.  The 

latter was found to be true (126, 128, 129). 

With the advent of florescence in situ hybridisation (FISH) technology, these 

chromosomal territories could be directly observed, using fluorescently labelled probes 

complimentary to entire chromosomes (130, 131) (figure 1-6). Promoter-enhancer 

interactions can also be directly visualised with the same technology, using probes 

complimentary to specific loci (132, 133) (figure 1-7).  
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Figure 1-6: Fluorescence in situ hybridization imaging of chromosome territories 
A) Chicken diploid metaphase spread of chromosomes. Nuclei were stained with DAPI. B) The 
metaphase spread was subject to multicolour fluorescence in situ hybridization. The probes were 
labelled by a combinatorial scheme with Estradiol (1, 4, 5, 6), Digoxigenin (2, 4, 6, Z) and Biotin (3, 
5, 6, Z). C) These probes were detected using secondary antibodies labelled with the indicated 
fluorophore. D) Fluorescence microscopy was used to visualise the chromosomes in an optical 
section of the nucleus. You can clearly see that homologous chromosomes are positioned in 
separate locations – chromosome territories(131) .  

 

 

 

Figure 1-7: Fluorescence in situ hybridization imaging of specific promoter-enhancer 
interactions.  
Sonic hedgehog (Shh) in mouse limb buds is regulated by a long-range enhancer 1 Mb upstream 
of the Shh promoter. B) A nucleus in which the Shh the promoter and enhancer are colocalised, 
presumably via DNA looping. C) A nucleus in which the two loci are separate. TOPRO-3 (blue) was 
used to stain nuclei and the white bar represent 1 μm (132). 
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 Chromosome conformation capture 1.4.2

 

Experiments using imaging techniques have resulted in landmark discoveries. However, 

these techniques are limited. They have low resolution, they require cell fixation so only 

display ‘snapshot’ data and they are very low throughput. To circumvent some of these 

issues, molecular techniques have been developed. Rather than directly measuring 

interactions in a single cell via microscopy, these molecular methods deduce interactions 

in a population of cells, in vivo. The original assay is called ‘Chromosome Conformation 

Capture’ or 3C (see figure 1-8). This assay assesses the frequency that two particular loci 

are in close physical proximity, at a single time point, in a population of nuclei. This is 

achieved by formaldehyde crosslinking to fix the conformation of the genome. The DNA is 

then digested with a restriction enzyme and then any restriction fragment ends of the 

crosslinked fragments are ligated together. The result is a collection of chimeric DNA 

molecules consisting of two restriction fragments that were in close physical proximity. 

This is effectively a one dimensional demonstration of the 3D nuclear structure.  In the 

traditional 3C experiments, to determine interaction frequency, the collection of 

fragments is subject to PCR amplification with primers specific to the DNA fragments of 

interest.  
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Figure 1-8: Simplistic overview of 3C based chromosome conformation capture techniques 
A) All of the 3C based techniques follow the same fundament steps to convert chromatin 
interaction into ligation products. B) The different methods vary in the way ligation products 
(which represent interactions) are detected and quantified (see methods section for a detailed 
description and depiction of the 4C and Hi-C methods)(134). 

 

The development of this method by Dekker et al. in 2002 was ground breaking (107). 

However, this original 3C method is low throughput and requires prior prediction of 

which two loci are interacting; it does not allow unbiased screening. It is perhaps due to 

these limitations that significant efforts have been made to modify this protocol, and as a 

result, it is now possible to analyse several interactions in a single experiment.  

One such modified protocol is called ‘4C’, a ‘one-vs-all’ strategy (see figure 1-8). This 

refers to the fact that the technique allows the analysis of all interactions which are 

taking place with one selected region of the genome, the ‘view-point’. This protocol 
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follows the sample fundamental principles of the original 3C experiment; however 

following 3C library generation the DNA is subject to a second restriction digestion to 

enable the formation of small circles upon ligation. Primers specific to the view-point are 

then used to amplify, via inverse PCR, all fragments which are ligated to the viewpoint i.e. 

all fragments which were in contact with the viewpoint. This 4C library can then be 

analysed via either micro array or next generation sequencing (135, 136). The use of next 

generation sequencing allows genome wide analysis of interactions made by the loci of 

interest.  

One limitation of 4C is that it is only possible to determine all the interactions made by 

one select region of the genome at a time. Therefore, with this protocol, one cannot 

obtain conformation information for an entire domain of a chromosome. It is for this that 

5C was developed, which is referred to as a ‘many vs many’ approach. Although it is not a 

genome-wide analysis, it allows the experimenter to detect many interactions made by 

several restriction fragments, simultaneously. In this method, a set of oligos are designed 

adjacent to the restriction site of all restriction fragments in the genomic region to be 

interrogated. The primers are then used to amplify a 3C library. If, due to a ligation 

junction, two primers are next to each other, they are ligated together by taq ligase. This 

generates new DNA molecules; a combination of the two primers. This 5C library is then 

amplified using primers specific to a shared sequence on all 5C oligos. The resultant 

library is then subject to high throughput sequencing. The end result is a quantitation of 

interactions made by all regions covered by the original 5C oligos. The scale of 5C data 

can vary, depending on the number of regions covered by 5C primers.  
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5C has been used to interrogate large, even chromosome sized, regions of the genome 

(137-139). However, it wasn’t until the development of HiC that scientists could obtain a 

true genome wide analysis of chromosome conformation. The HiC technique involves 

direct quantitation of all ligation junctions. Again, the protocol follows the same initial 

steps – a population of nuclei are fixed and digested with a restriction enzyme. In this 

case, the resultant sticky over hang is filled in with a deoxynucleoside triphosphates 

(dNTPs) mix that includes a biotinylated nucleotide. The now blunt-ended restriction 

fragments, within the same DNA-protein complex, are then ligated to each other. The 

biotinylated nucleotide enables the subsequent enrichment of the library for ligation 

junctions via streptavidin pull down. Illumina’s paired end next generation sequencing is 

then used to identify the ligation junctions (140). 

Since a HiC library is extremely complex, in order to obtain an informative level of signal 

at any given point in the genome, a huge depth of sequencing is required. Furthermore, 

data from bioinformatic ‘windows’ of the genome must be pooled together in order to 

obtain sufficient signal. Therefore the assay is of relatively low resolution. It is for this 

reason that this technique is more suitable for mapping larger, domain structures of the 

genome, rather than specific promoter-enhancer interactions.  

To circumvent these issues; Capture HiC was developed. In this method the complexity of 

the library is reduced, thus improving resolution, whilst maintaining the valuable 

promoter-enhancer interaction data. This is achieved by enriching the HiC library so that 

it only contains DNA fragments with at least one gene promoter. Biotinylated oligos 

complimentary to gene promoters are hybridized to the library, and the complexes are 
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captured with streptavidin beads. The technique was initially used to capture a few 

hundred promoters and more recently almost all promoters in the genome (22,000 

promoters) (see methods sections 2.10 and 2.11 for a detailed description and depiction 

of the 4C and Hi-C experimental procedures) (141) (77).  

 

1.5 Haematopoiesis 

Haematopoiesis is the process during which blood cells are generated within the bone 

marrow. The process begins with a type of cell that has the potential to give rise to each 

of the mature blood cell types. These cells were first purified from mouse bone marrow in 

1986 (142). Subsequent experimentation demonstrated that the cell population was 

unique in its ability to completely reconstitute the hematopoietic system in lethally 

irradiated mice (143). These pluripotent cells, now termed hematopoietic stem cells 

(HSCs), also have the ability to self-renew, thus ensuring that the relatively short-lived 

mature blood cells are replenished. During haematopoiesis, the HSCs first differentiate 

into more restricted progenitor cells, which gradually become progressively more 

restricted to a specific cell fate. This is accompanied by a loss of self-renewal capacity. The 

whole process requires tight regulation of gene expression by various transcription 

factors. If not appropriately regulated, haematological disorders, such as leukaemia, can 

occur (144, 145).  
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 Origin of haematopoietic stem cells 1.5.1

 

In vertebrates, the HSCs emerge in the embryo at various sites. The initial site is the extra-

embryonic yolk sack, where ‘primitive haematopoiesis’ takes place. This process 

generates nucleated primitive erythrocytes (EryP) which ensure the embryo is sufficiently 

oxygenated, enabling its rapid growth (145, 146). Primitive haematopoiesis is followed by 

definitive haematopoiesis, which takes place in the in the aorta-gonad mesonephros 

region (AGM), foetal liver, thymus, spleen and finally the bone marrow. In contrast to 

primitive haematopoiesis, definitive haematopoiesis gives rise to pluripotent cells which 

have the potential to differentiate into cells of all haematopoietic lineages; 

haematopoietic stem cells (HSCs). These cells arise from the ‘haemogenic endothelium’, a 

precursor tissue for both endothelial cells and hematopoietic cells. In a recent study, 

dynamic real time imaging captured the emergence of cells from the endothelium of 

mouse and fish embryos (147, 148). This study, along with others, resolved debates 

regarding the existence of the haemogenic endothelium. Although the site of 

haematopoiesis changes during embryonic development, bone marrow remains the 

major site of haematopoiesis throughout adult life, where the HSCs are maintained in a 

stem cell niche (149-152). 
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 The maintenance of haematopoietic stem cells - the stem cell niche 1.5.2

 

The adult bone marrow niche is a highly specialised microenvironment which plays a 

crucial role in regulating the balance between self-renewal, differentiation and 

proliferation of HSCs. HSCs are a subject of intense research; however they are yet to be 

maintained in vitro. This is primarily due to their requirement for this highly specialised, 

dynamic microenvironment which includes various cellular components and signalling 

pathways. It is the lack of complete understanding of all the factors involved which may 

be hindering their successful culture in vitro (153). 

The HSCs within the bone marrow can exist in either of the two identified anatomical 

niches; the vascular or the osteoclastic niche. These spatially distinct niches are also 

functionally distinct, although the understanding of their precise roles is incomplete. It 

has been proposed that the two niches work together, performing complementary roles, 

to ensure the correct regulation of the cells within. The hypoxic osteoclastic niche is 

believed to promote a quiescent cellular state, whereas the vascular niche is oxygen rich 

and promotes the proliferation and further differentiation of the HSCs (154). 

 Hierarchical differentiation of haematopoietic stem cells 1.5.3

 

The blood stem cell differentiation process is the best-defined adult stem cell system, and 

has long served as a model for stem cell research. In recent years considerable progress 

has been made in characterising the transition from a HSC into a mature blood cell. 

Primarily via multicolour flow cytometry and transgenic mouse studies, a hierarchical 

model of differentiation has been established. Much of the pioneering research was 
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conducted by the Weismann laboratory, who successfully identified the phenotypically 

distinct precursor cell populations that a HSC will progress through on its differentiation 

path (155, 156). 

Several models of haematopoietic differentiation have since been proposed. In the 

original Weissman model (figure 1-9), the first group of cells, at the ‘top’ of the hierarchy, 

are the long-term HSCs (LT-HSC). These are the only population able to differentiate into 

any lineage and self-renew throughout adult life. The cells maintain multilineage 

potential, but lose some self-renewal capacity, as they transition to short-term HSCs (ST-

HSC) (157). Self-renewal is then lost completely in the next cell population, the 

multipotential progenitors (MPPs). As the name suggests, these cells still have the 

potential to differentiate into any lineage. However, the developmental potential of these 

cells is already restricted as they cannot de-differentiate into a ST-HSC or LT-HSC (158) 

.The next stage in this model is the transition into either a common lymphoid progenitor 

(CLP) or common myeloid progenitor (CMP); the earliest branch point in the 

differentiation process. CLPs give rise to blood cells of the lymphoid lineage (B-cells, T-

cells and dendritic cells) and have lost the potential to generate cells from the myeloid 

lineage. Conversely, GMPs can give rise to blood cells of the myeloid lineage, but cannot 

differentiate into lymphoid cells (155, 156). 
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Prior to the generation of mature blood cells, CMPs progress into more specified 

progenitors; granulocyte/macrophage progenitors (GMPs), megakaryocyte/erythroid 

progenitors (MEPs) and basophil progenitors (159, 160). The origin of mast cells has been 

under scrutiny. There is evidence that mast cells can arise directly from MPPs, however 

an additional progenitor population has recently been identified in the spleens of mice; 

the basophil-mast cell progenitor (BMCP)(161). 

 

 

 

Figure 1-9: Classical Weissman model of haematopoietic differentiation 
The HSC undergoes a step wise transition into a mature blood cell. The first step of lineage 
commitment is the divergence into either a CMP or CLP. HSC, hematopoietic stem cell; CLP, 
common lymphoid progenitors; CMP, common myeloid progenitor; MEP, 
megakaryocyte/erythrocyte progenitors; GMP, granulocyte/monocyte progenitors; MKary, 
megakaryocytes; Eryth, erythrocytes; Mono, monocytes; Gran, granulocytes (162). 
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The initial model outlined above suggests that the first step of lineage commitment is the 

binary decision between myeloid or lymphoid potential. Since this model was proposed, a 

subset of progenitor cells, marked by the expression of lymphoid genes and Fms-like 

tyrosine kinase 3 (FLT-3), has been identified. It was observed that these cells had lost 

erythroid and megakaryocytic potential but had maintained the ability to generate 

lymphocytes, monocytes and granulocytes. This subset of progenitor cells was termed 

lymphoid-primed multi-potent progenitors (LMPPs). The new model therefore suggests 

that the first branch point is the decision of a MPP to differentiate into a CMP, MEP or 

LMPP (figure 1-10). The megakaryocytic and erythroid cells are generated from the MEPs, 

whilst the LMPPs have the potential to generate all other hematopoietic cells (163).   
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Figure 1-10: The updated model of haematopoietic differentiation 
Here the first step of lineage commitment is the formation of GMPs, LMPPs or MEPs. LMPPS can 
give rise to any blood cell, excluding megakaryocytic or erythroid cells. HSC, hematopoietic stem 
cell; LMPP, lymphoid primed progenitors; CMP, common myeloid progenitor; MEP, 
megakaryocyte/erythrocyte progenitors; GMP, granulocyte/monocyte progenitors; MKary, 
megakaryocytes; Eryth, erythrocytes; Mono, monocytes; Gran, granulocyte (163). 

 
 
 

However, there is still controversy regarding the correct scheme of differentiation. A 

subsequent study showed that a significant proportion of the LMPP cell population can 

differentiate into megakaryocytic and erythroid cells, which is contrary to the model 

outlined above (164). Furthermore, Arinobu Y, et al. propose that LMPPs are too 

heterogeneous to be deemed a separate stage in the differentiation tree and, as the 

classical model suggest, the CMP and CLP remain the first ‘branching point’ in 

hematopoiesis (165).  
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In the above studies haematopoietic progenitor populations were primarily defined using 

surface marker expression, detected via flow cytometry. Single cell RNA-seq analysis and 

single-cell fate determination methods have since been developed. With these exciting 

new technologies researchers have highlighted the heterogeneity that resides in each 

progenitor compartment. Therefore, new models have been proposed in which there are 

no progenitor cells with mixed potential, but instead multiple sub-groups transcriptionally 

primed towards alternative differentiation fates (166) (167, 168). 

Notta et al., for example, dispute the  dogma that haematopoiesis always begins with 

multipotent stem cells and progresses through a series of progenitor ‘tiers’ of increasingly 

restricted lineage potential. They propose a new ‘two tier’ model (figure 1-11). Using 

single cell assays they mapped the origins of myeloid, erythroid and megakaryocytic cells 

in the foetus and in adults. They found that the previously defined MPP, CMP and MEP 

populations were all heterogeneous. Furthermore, they identified a change between 

foetal and adult haematopoiesis.  In the adult, multipotent cells were only found in the 

stem cell compartment and oligopotent progenitors were almost non-existent. In 

contrast, in the foetus the ratio of multilineage to unilineage cells was constant between 

the stem and progenitor cell compartments (167).  
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Figure 1-11: A new model of haematopoiesis - multipotent cells differentiate directly into 
unipotent cells by adulthood  
Classical models of haematopoiesis include oligopotent progenitors (left). The model has been 
redefined (right). The new model proposes that there is a shift between foetal and adult 
development, which changes the progenitor cell architecture. In the foetus there are multipotent 
progenitors whereas in the adult only the stem cell compartment is multipotent. Progenitors are 
unipotent (figure taken from (167)). 

 

 

Drissen R, et al. focused on redefining the model of myelopoiesis. Using single cell 

analysis, they found that the previously defined GMP progenitor population actually 

contains two main myeloid progenitor populations; one gives rise to eosinophils and mast 

cells, and the other gives rise to neutrophils and monocytes-macrophages. The separation 

of these two populations is driven by expression levels of GATA-1 and FLT3 in multipotent 

progenitors (168).  
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 Myelopoiesis is controlled by transcription factors 1.5.4

 

The process of stem cell specification is characterised by a loss of self-renewal and 

gradual acquisition of lineage specificity. The process is brought about by alterations in 

gene expression; differentiation is mediated by the down-regulation of self-renewal 

genes and up-regulation of lineage specific genes. These gene sets both counteract and 

co-operate with each other in a finely controlled network. This strict control is 

orchestrated by the carefully timed expression of specific transcription factors. This 

concept has been most clearly demonstrated in the processes of myelopoiesis; the 

regulated production of myeloid blood cells.  

The first step in myeloid differentiation is the decision made by the MPP to differentiation 

into either an LMPP (has both myeloid and lymphoid potential) or GMPs (has only 

myeloid potential). A long standing theory was that the decision is primarily determined 

by the relative expression levels of two important transcription factors; PU.1 and GATA1. 

Early transgenic mouse studies revealed that PU.1 is needed for the production of LMPPs, 

whereas GATA1 is crucial for generation of GMPs (169, 170).  

This theory was based on In vitro experimentation in which the forced expression of PU.1 

led to a block in the erythroid pathway, and likewise the forced expression of GATA1 

blocks myelopoiesis (171-173). Co-immunoprecipitation and Chromatin 

Immunoprecipitation (ChIP) experiments suggested that the observed antagonistic 

relation was due to a direct protein-protein physical interaction (173).  

 



  41 
 

The paradigm that PU.1 and GATA-1 levels determine cell fate has been disputed. A very 

recent publication using advance single cell analysis, states that the early myeloid lineage 

fate decisions is not triggered by random relative levels of GATA1 and PU.1 proteins 

(174). Instead of driving the lineage decision, the role of PU.1 and GATA.1 expression is to 

reinforce the choice once it has been made.  

More complicated regulatory networks are required for the further specification of MEPs 

and LMPPs. The MEPs can either differentiate into a megakaryocytic or an erythrocytic 

precursor cell. The expression levels of the transcription factors EKLF and Fli-1 are the key 

determinants of this decision. EKLF is implicated in the inhibition of the transcription 

factor activity of Fli-1, thus inhibiting the production of megakaryocytic genes. Similarly, 

Fli-1 can inhibit the EKLF mediated transcription and therefore megakaryocytic cell fate 

(175).  

The resolution of an LMPP into either the lymphoid (CLPs) or the myeloid lineage (GMPs) 

is determined by the level of PU.1 expression. Via the gradual, targeted depletion of PU.1 

from hematopoietic progenitor cells it was established that low levels of PU.1 favour B 

cell development, whilst a higher concentration encouraged myeloid cell development 

and inhibits B cell development (176). It has since been discovered that the different 

expression levels in different cells types is achieved by the ability of PU.1 to regulate its 

own expression in a cell type specific manner, by associating with cell type specific 

transcription factors (163, 177). C/EBPα levels are also very important; without C/EBPα 

mice show a complete absence of GMPs and therefore lack granulocytic differentiation 

(178).  
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At the GMP stage, cells have only the potential to generate cells of the myeloid lineage. 

They then branch, specifying into either a neutrophil of macrophage precursor. This 

decision is thought the be determined by PU.1 and C/EBPα levels (179). At the GMP stage, 

PU.1 levels are at low ‘sub-threshold’ levels and the transcription factor regulates genes 

characteristic of both neutrophils and macrophages. Once PU.1 levels are elevated, the 

gene expression profile is tailored towards macrophage development, via a complicated 

network involving the transcription factors GFI1 and ERG. PU.1 acts in a ‘feed-forward’ 

loop with ERG, activating macrophage specific genes and repressing neutrophilic genes. 

The neutrophilic gene expression profile is activated via a similar feed-forward loop 

involving C/EBPα and GFI1 (180).  

An additional transcription factor, IRF8, is also believed to be fundamental to the 

generation of macrophages. IRF8 null mice have fewer macrophages relative to wild type. 

Furthermore, the subsequent expression of IRF8 in null mice restores macrophage 

differentiation. IRF8 was also found to repress the expression of granulocytic specific 

genes and inhibit granulocytic differentiation. This suggests IRF8 has a key role in the 

specification of myeloid cells (181).  
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1.6 Acute myeloid leukaemia 

Acute myeloid leukaemia (AML) is a haematopoietic malignancy defined by more than 

20% of the bone marrow consisting of immature precursor cells. The incidence is most 

common in adults, with AML accounting for 25% of all adult leukaemias. It is caused by 

genetic abnormalities in HSCs, which render them unable to undergo the normal 

differentiation process. The result is an accumulation of immature cells and an 

interference with the generation of normal blood cells. This aggressive disease will spread 

rapidly and, if left untreated, bone marrow failure and infection can cause fatality within 

weeks (182). 

A system devised by the World Health Organization (WHO) is used for the classification of 

AML. It takes into account the differentiation state of the cell and more detailed 

classification such as cytogenetic abnormalities. In 2008 the WHO classification was 

revised in order to incorporate more recently characterized genetic features (183). 

 AML can be caused by mutations in haematopoietic transcription factors 1.6.1

As outlined in section 1.4.3, the transcription factors involved in myelopoiesis display a 

clear stage and lineage restricted expression pattern, which highlights the importance of 

their careful regulation. If any of these factors are mutated or de-regulated, the result can 

be an arrest in differentiation. In normal conditions, progenitor cells proliferate rapidly 

then undergo differentiation. The failure or inhibition of differentiation prolongs this 

proliferative stage, thus predisposing cells to further mutation and the development of 

myeloid leukaemia. 
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The most commonly perturbed transcription factor is RUNX1. It is frequently involved in 

chromosomal translocation, for example RUNX1/ETO (t;(8;21)),RUNX1/EVI1 (t(3;21)), 

RUNX1/ETV6 (t(12;21)). In fact, the chromosomal translocation of RUNX1 is the most 

common cytogenic abnormality in leukaemia.  Furthermore, several different point 

mutations of RUNX1 have been found in myeloid malignancies (184). The cofactor of 

RUNX1, CBFβ, is also mutated in AML. For example, inv(16) leads to the fusion of CBFβ 

with smooth muscle myosin heavy chain (SMMHC) (185) (details regarding RUNX1 

function will be given later in section 1.7.1). 

 

Another commonly mutated transcription factor is C/EBPα; C/EBPA mutations are found 

in approximately 9% of acute myeloid leukaemia (AML) patients (186).  In addition to 

point mutation there are several ways in which C/EBPα function can be altered in 

haematological malignancies. These include aberrant gene expression and post- 

transcriptional or post-translational suppression (186). The role of C/EBPα in leukaemia 

development will be explained in more detail in section 1.6.2 and section 1.7.8.  

GATA-1 exists in long and short isoforms and its function can be impaired via disruption to 

the ratio of their expression. A mutation in the N –terminus of GATA-1 results in the loss 

of expression of the long isoform. The short isoform is expressed and binds target genes; 

however it lacks the transactivation domain thus significantly hindering its ability to 

regulate gene expression (187). The dominant activity of the GATA-1 mutation, and its 

involvement in disease generation, has been demonstrated in a transgenic mouse study 

(188). 
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Thus far, no mutations in the IRF8 transcription factor gene have been reported in 

myeloid leukaemia patients, despite its important role in myelopoiesis (181). However, 

there is substantial evidence supporting its involvement in pathogenesis. For example, 

IRF8 is significantly down regulated in AML and chronic myeloid leukaemia (CML) 

patients. In addition, knock down of the gene from mice results in a CML-like phenotype 

(189). Furthermore, IRF8 has also been show to encourage malignant myelopoiesis via its 

synergy with the RUNX1/ETO fusion protein, the result of the t(8;21) translocation (190).  

In contrast to the other transcription factors involved in myelopoiesis, details of the link 

between PU.1 and the transformation process are less clear. An in vivo study involving the 

gradual reduction of PU.1 expression in mice demonstrated that low PU.1 levels initiate a 

leukemic state. Interestingly, the complete abolition and a 50% reduction of PU.1 had no 

effect, whereas a clear pathogenic effect was seen with an 80% reduction. This 

emphasizes the requirement for precise PU.1 levels for correct myelopoiesis (191). In this 

study, the PU.1 levels were reduced via targeted disruption of the enhancer driving PU.1 

expression.  A subsequent study identified a single nucleotide polymorphism (SNP) within 

this highly conserved region which leads to reduced PU.1 expression levels. This SNP is 

common in human AML (192). This suggests that aberrant PU.1 expression levels, possibly 

via hindered enhancer activity, could account for, or contribute to, malignant 

myelopoiesis. 

 

 



  46 
 

 CEBPA mutations and expression levels in AML 1.6.2

 

One of the most commonly mutated transcription factors is the CCAAT enhancer binding 

protein alpha (C/EBPα). C/EBPα is a member of the basic region leucine zipper family of 

transcription factors. It is encoded by an intronless gene and consists of two 

transactivation domains at the N-terminal region, and a leucine zipper region at the C-

terminus (193). The leucine zipper enables dimerization dependant DNA binding. C/EBPα 

can promiscuously dimerise with other C/EBPα family members. Dimerisation is 

dependent on specific orientations of the basic amino acid residues. Any mutations that 

effect these exact positions can hinder DNA binding.  CEBPA mRNA can be translated at 

two different AUG codons, giving rise to two different isoforms; p30 and p42. The short 

p30 protein begins at the AUG codon further downstream, so lacks the N terminal 

sequences. This means the p30 isoform lacks the regions which interact with the 

transcriptional machinery, whereas the ability to dimerise and bind to the DNA is 

preserved (194). The cellular ratio of p42/p30 is regulated by extracellular signalling via 

the protein kinase R and target of rapamycin signalling pathways (195). 

As outlined previously, the role of mutations in lineage-specific transcription factors to 

leukaemia development has been an intense area of research over the past decade. 

CEBPA mutation is the most frequently studied, probably, at least in part, due to the fact 

that CEBPA mutation are found in approximately 9 % of all AML cases (196). This high 

prevalence of CEBPA mutation in myeloid-lineage leukaemia is consistent with the effect 

of CEBPA knockouts in mice. C/EBPα deficient mice display impaired myelopoiesis, 

specifically a block in granulocyte maturation, and die at birth due to hepatic dysfunction 
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(197). A conditional CEBPA knockout in adult mice blocks the CMP to GMP transition and, 

as a consequence, myeloid blasts accumulate. In patients, null mutations are extremely 

rare. Instead the CEBPA gene can be subject to a variety of different point mutations.  

There are two main groups of point mutation. The first are N-terminal frame shift 

mutations which truncate the p42 isoform but leave the p30 is unaffected. The p30 

isoform then inhibits the remaining wildtype p42 in a dominant negative fashion. The 

second group are mutations at the C-terminal which affect the structure of the basic 

zipper region and therefore DNA binding.  Most AML patients with CEBPA mutation have 

more than one, usually a combination of both N and C terminal mutations, positioned on 

different CEBPA alleles.  

As well as abnormalities effecting genomic sequence, C/EBPα function can be significantly 

affected at the expression level. For example, expression levels are extremely low in 

t(8;21) AML. This is due to repression of the CEBPA promoter by RUNX1/ETO and a 

physical interaction between C/EBPα and RUNX1/ETO proteins, which inhibits CEBPA 

autoregulation (198). Furthermore, analysis in t(8;21) cell lines and patient samples has 

shown binding of the repressive RUNX1/ETO at the +42 kb enhancer, an enhancer 

essential for CEBPA expression in myeloid cells specifically (199, 200).  

In addition, C/EBPα protein is subject to posttranslational modifications which can affect 

its activity. Phosphorylation at specific serine residues on the transactivation domain 

affects its structure and means the C/EBPα molecules in a dimer are further apart from 

each other, thus activity is inhibited. The differentiation block in leukaemia with 
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constitutively active FLT3 may be mediated by this phosphorylation, and therefore 

inhibition, of C/EBPα by downstream ERK1/2 (201).  

It is well established that CEBPA mutations, and aberrant expression, are linked to 

leukemic transformation. How these abnormalities mediate this oncogenic effect is now 

under investigation. One theory is that the tumour suppressive role of C/EBPα comes 

from its repression of stem cell genes, like SOX4. HSCs from CEBPA null mice have 

upregulated SOX4 expression. Upon knockdown of SOX4 in these cells, self-renewal was 

blocked. Consistent with this finding, SOX4 was found to be highly expressed in patients 

with abnormal C/EBPα function (202). Therefore a dual role for C/EBPα has been 

proposed; the upregulation of the myeloid gene expression programme and the 

suppression of genes associated with stemness and self-renewal. In patients with 

abnormal C/EBPα activity, the inhibition of both of these processes is likely to be the 

driver of leukemic transformation. 
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Figure 1-12: C/EBPα dysregulation in acute myeloid leukaemia.  
This image shows the functional domains of C/EBPα and some of the ways in which C/EBPα can be 
dysregulated in human AML. There are two transactivation domains (TAD1 and TAD2). The basic 
region (Basic) mediates DNA binding and the leucine zipper region (Zip) mediates dimerization. 
C/EBPα mRNA can be translated from either of the two ATGs (p42 or p30) to yield a 42-KDa and 
30-KDa C/EBPα protein respectively. The p42 protein can be truncated by frame shift mutation at 
the N-terminus. Mutations at the C-terminus can affect DNA binding. Phosphorylation at serine 21 
can lead to C/EBPα inactivation. This can be caused by constitutive activation of the Mitogen-
activated protein kinase (MAPK) pathway by FLT3-ITD. Physical interaction with RUNX1/ETO, and 
RUNX1/ETO mediated repression of the C/EBPα promoter, inhibits C/EBPα autoregulation and 
leads to low expression levels.  

 Clonal evolution of leukaemia 1.6.3

The clonal evolution theory of leukemia development is based on the expansion of a 

single cell after the initiating mutation. This initial mutation in the origin cell blocks its 

maturation and increases proliferation, driving clonal expansion and cancer progression. 

As the leukemia continues to grow, some cells will obtain additional mutations that are 

favorable for survival, generating sub-clonal populations. As a consequence, all cells of 

the leukemia will contain the initiating mutation, but the entire population is 

heterogeneous. Due to this, drugs targeting the products of initiation mutations, such as 

the t(8;21) translocation, are attractive drugs targets (203). 
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 AML with the t(8;21) translocation 1.6.4

The first of the four WHO subtypes is ‘AML with recurrent genetic abnormalities’. The 

majority of AML cases fall into this category and are associated with non-random 

chromosomal translocations (204). One such translocation is the t(8;21) translocation; the 

most common and first chromosomal abnormality to be identified in AML (205). The 

abnormality is identified in approximately 10% of all AML patients; the exact figure 

depends on the geographical location and genetic background of the considered 

population (206).  The figure is also dependent on the age of the patients, as the t(8;21) 

translocation is more common in children/younger patients (207). 

The t(8;21) translocation event leads to the fusion of the RUNX1 gene on chromosome 21 

with almost the entire ETO gene on chromosome 8. As a result of the translocation, 

RUNX1 loses its transactivation domain but keeps its runt homology domain (RHD), thus 

retaining the ability to bind DNA. The transactivation domain is primarily responsible for 

the recruitment of transcriptional activators, such as p300/CBP. Its replacement, ETO, 

possesses nervy homology regions which recruit transcriptional repressors such as the N-

CoR/mSin3/HDAC1 complex (208). The result is the transcriptional repression of genes 

which would normally be activated by RUNX1 (figure 1-13). As many RUNX1 target genes 

are critically involved in granulocytic differentiation, it is not surprising that this 

abnormality results in a block in differentiation and inhibits the maturation of progenitor 

cells. Cell survival is also increased, thus cells are predisposed to develop leukemia (209). 
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Figure 1-13: The t(8;21) chromosomal translocation 
A) The t(8;21) translocation event results the in the replacement of the transactivation domain 
(TAD) with almost the entire ETO gene. The runt homology domain (RHD) is retained. B) RUNX1 
can act as a transcriptional activator, via the recruitment of the p300 and transcription factors 
(TF). The fusion with ETO leads to its transformation into a transcriptional repressor, via the 
recruitment of the N-CoR/mSin3/HDAC1 complex. Both RUNX1 and RUNX1/ETO heterodimerise 
with CBFβ (redrawn from (210)). 
 

  Secondary mutations are required for the development of t(8;21) AML 1.6.5

The t(8;21) translocation is not sufficient to cause leukaemia; secondary mutagenic 

events are required for the development of overt disease. Evidence of this is that, in some 

cases, the abnormality is detected in utero but disease does not occur until later life 

(211). Furthermore, adult mice engineered to express RUNX1/ETO via an inducible system 

(to circumvent embryonic lethality) do not develop the disease (212). However, upon 

administration of mutagenic agents, mice harboring the fusion protein develop AML 

whereas wild type mice do not (213). This is supported by findings by Nina Cabezas 

Wallscheid et al. which demonstrated, using a mouse model, the very slow disease 
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progression following RUNX1/ETO expression (214). These experiments suggest that the 

translocation is necessary, but insufficient, for the development of AML; there is a clear 

requirement for one or more additional mutations.  

Further evidence for the requirement of additional mutation is the disproportionate 

number of t(8;21) AML patients harbouring additional cytogenetic abnormalities, such as 

the loss of a sex chromosome (215). Table 3 presents the frequency of various 

cytogenetic abnormalities in t(8;21) AML,  as well as the gene mutations associated with 

t(8;21) leukaemia (216). The secondary mutations can occur in pathways involved in 

proliferation, differentiation, avoidance of apoptosis, escape from anti-growth signals and 

enhanced self-renewal (the hall marks of cancer) (217). The most common are mutations 

in growth factor receptors such as stem cell growth factor receptor (c-KIT) and FMS-

related tyrosine kinase 3 (FLT3). Mutations in the transcription factor gene SPI1 and the 

oncogene N-RAS are also associated with t(8;21) AML (216).  

Mutations Frequency, no./total (%) 

Cytogenetic abnormalities  

-X in female patients 115/331 (35) 

-Y in male patients 235/419 (56) 

Del (9q) 80/454 (18) 

Trisomy 4 8/75 (11) 

Trisomy 8 28/454 (6) 

Others 77/454 (16) 
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Molecular genetic mutations  

FLT3-length mutations: 
FLT3/ITD 

27/386 (6.9) 

FLT3 D853 activating 
mutations 

5/184 (2.7) 

c-KIT (D>Y, D>V, D>H, D>I) 43/351 (12.3) 

c-KIT N822K 10/54 (19) 

NRAS: codons 12, 13, 61 40/469 (8.5) 

PU.1 1/19 (5.3) 

RUNX1 1/26 (3.8) 
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Table 3: The cytogenetic abnormalities and gene mutations associated with t(8;21) leukaemia 
(table modified from (189)).  

 

1.7  Molecular pathogenesis of t(8;21) leukaemia 

It is well established that RUNX1/ETO expression leads to a differentiation block and 

primes hematopoietic cells for oncogenic transformation. The exact mechanism by which 

is does so is currently under investigation by various research groups. The classical model 

suggests RUNX1/ETO  is oncogenic due to dominant inhibition of RUNX1 function, as a 

result of the fusion of RUNX1 with a transcriptional repressor (218). More recent research 

has led to the questioning of this model, with the suggestion of a more complex 

disturbance in gene regulation, gene expression and chromatin structure (217) (219). This 

will be outlined in the rest of this section. 

 The function of RUNX1 transcription factor 1.7.1

 

Runt Related Transcription Factor 1 (RUNX1), belongs to the Runt family of transcription 

factors. These transcription factors share a runt homology domain, a region homologous 

to the Drosophila gene Runt, which is essential for normal Drosophila embryogenesis 

(220).  It is via this Runt homology region that RUNX1 binds DNA. The Runt domain is also 

required for the interaction of RUNX1 with CBFβ, forming a heterodimeric complex 

termed the core binding factor (CBF) complex. This interaction enhances the DNA binding 

ability of RUNX1 (221). The (CBF) complex is essential for definitive haematopoiesis and 

its deregulation can lead to haematological disorders, such as t(8;21) leukaemia (222).  



  55 
 

 

 

RUNX1 is versatile in its interactions and can cooperate with various transcriptional co-

regulators in addition to CBFβ. As a result, it has the ability to both activate and repress 

genes. For example, RUNX1 can interact with the histone acetyltransferase, p300, to 

activate genes. Conversely it can interact with co-repressors, such as the histone 

deacetylase mSin3A, an interaction which is regulated by RUNX1 phosphorylation (223, 

224). 

RUNX1 plays a critical role in the specification of the definitive HSC. The presence of 

RUNX1 marks the earliest HSC; it is detected in the AGM and foetal liver during 

embryogenesis (225). The fundamental role of RUNX1 in definitive haematopoiesis was 

clearly demonstrated using knock out mouse studies. Mice lacking RUNX1 had no 

significant problems with primitive haematopoiesis, whereas definitive haematopoiesis 

was completely absent and mice exhibited embryonic lethality between 12.5 and 13.5 

days. Furthermore, in a chimeric mouse experiment the RUNX1 null embryonic stem cells 

gave no contribution to adult haematopoiesis (226). More recent studies have shown this 

is because RUNX1 is required for the generation of haematopoietic progenitors and HSCs 

from the endothelial cells of the vasculature (227).  

It is well established that RUNX1 is absolutely required for the generation of HSC. 

However, the importance of RUNX1 during adult life is less clear. A study in which RUNX1 

function was inhibited using a conditional gene-targeting strategy showed that RUNX1 is 

not absolutely crucial for adult haematopoiesis; mature blood cells were still present in 
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peripheral blood and bone marrow of mice (227, 228). However, RUNX1 must play a role 

as its absence in adult mice leads to several hematopoietic abnormalities. Such as the 

significant expansion of putative HSC and myeloid progenitor cells, demonstrative of a 

myeloproliferative phenotype (228). Moreover, the RUNX1 gene locus is commonly 

mutated in AML, which strongly suggest RUNX1 has a role in adult haematopoiesis.  

The transcription factor activity of RUNX1 may help explain the phenotypic difference 

between wild type and RUNX1 null mice. During adult haematopoiesis RUNX1 is known to 

regulate the expression of genes involved in myeloid growth factor signalling, by directly 

binding to their promoters at the consensus DNA sequence PyGPyGGT. These include IL-3, 

GM-CSF, CSF1R and c-MPL. (206). Furthermore, RUNX1 regulates PU.1, a transcription 

factor gene which is critical for terminal myeloid differentiation; PU.1 null mice exhibit a 

complete block in myeloid differentiation (229, 230).  

 RUNX1/ETO exhibits dominant inhibition of RUNX1 function 1.7.2

 

The classical model of RUNX1/ETO driven leukaemogenesis suggests that the presence of 

RUNX1/ETO results in malignant haematopoiesis by interfering with RUNX1 function. 

RUNX1/ETO is believed to exhibit dominant inhibition of RUNX1 function via the 

recruitment of co-repressors to RUNX1 target genes. This simple model was based on 

various observations. The principal observation being that the translocation event does 

not affect the DNA binding ability; RUNX1/ETO can still bind RUNX1 target genes. This 

lead to the presumption that it is through these genes that RUNX1/ETO has a leukemic 

effect (231).  
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The classical model was supported by a transgenic mouse study. A RUNX1/ETO ‘knock-in’ 

mouse demonstrated embryonic lethality and a block in definitive haematopoiesis. This is 

a phenotype almost identical to that of a RUNX1 knockout mouse (232, 233). The 

similarity of the two phenotypes was regarded as in vivo evidence of dominant RUNX1 

inhibition.  

The ability of RUNX1/ETO to repress RUNX1 target genes, via the recruitment of 

transcriptional repressors, has also been demonstrated experimentally. Using amino-

terminal deletions in a transcriptional repression assay, a research group characterised 

the ETO modular structure and its interaction with the corepressors N-CoR and mSin3A 

(234). Further support is offered via experiments with inhibitors of HDACs; one group 

found that treatment of RUNX1/ETO expressing cells with trichostatin and phenylbutyrate 

partially relieved the ETO-mediated repression and differentiation block (235).  

 RUNX1/ETO has effects distinct from RUNX1 inhibition 1.7.3

 

There is significant evidence for the classical model of RUNX1/ETO mediated 

leukaemogenesis. However, more recent reports suggest that this model, although 

logical, is an oversimplification of RUNX1/ETO action. For example, the observed 

phenotypic similarity between RUNX1/ETO knock-in and RUNX1 null mice does indeed 

suggest a mechanism of dominant RUNX1 inhibition. However, further investigation 

revealed the phenotypes are not identical. RUNX1/ETO knock-in mice lived one day 

longer than RUNX1 null mice. In addition, the foetal liver contained absolutely no 
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progenitor cells in the RUNX1 null, whereas a small number were detected in RUNX1/ETO 

knock-in mice. This suggests that the presence of RUNX1/ETO has effects distinct from 

the deregulation of RUNX1 target genes (233). This theory was further supported by a 

study which showed that RUNX1/ETO can affect the expression of genes not normally 

controlled by RUNX1. The study identified 24 RUNX1/ETO target genes and of these 24 

genes, only 10 were also RUNX1 regulated targets (236).  

The classical model suggests the leukemic effect of RUNX1/ETO is mediated via the 

repression of genes normally activated by RUNX1, via the recruitment of various co-

repressors. However, unexpectedly, micro-array analysis revealed RUNX1/ETO can also 

lead to the activation of genes, and the proportion of activated and repressed genes is 

actually similar. Furthermore, the genes interrogated were all directly bound by 

RUNX1/ETO, suggesting the phenomenon seen was not exclusively a downstream effect 

of RUNX1 inhibition (199). This offers convincing evidence that RUNX1/ETO mediated 

pathogenesis is likely to be far more complex than the simple direct repression of RUNX1 

targets. 

Based on the classical model, repression of RUNX1 genes is pivotal to the 

leukaemogenicity of RUNX1/ETO. It was therefore hypothesised that if RUNX1/ETO lost 

its repressor function, the leukemic effect of the fusion protein would dramatically 

decrease. One research group investigated this question by truncating RUNX1/ETO at the 

C-terminus, rendering it unable to recruit co-repressors. They obtained very interesting 

results; the truncated RUNX1/ETO in fact promoted leukaemia development (237). This 

offers more evidence that RUNX1/ETO has other pathogenic activities beside the down 
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regulation of RUNX1 targets. However, it must be noted that subsequent experiments by 

Link, K et al. demonstrated that the levels of truncated RUNX1/ETO required to cause 

leukaemia are supraphysiological, in both murine and human experimental systems (238).  

Another research group investigated if RUNX1/ETO mediates its oncogenic effects 

primarily via gene repression, via the use of histone deacetylase inhibitors (HDACi) in 

leukemic cells. In this case, the inhibition of RUNX1/ETO repressor function partly 

alleviated the myeloid differentiation block (236, 239). However, a more recent in vivo 

study showed that the treatment of RUNX1/ETO expressing leukemic mice with HDAC 

inhibitors gave no reduction in disease progression and no survival benefit (240).  This 

suggests that, although RUNX1/ETO does repress genes via co-repressor recruitment, it 

must have additional oncogenic activities.  

 RUNX1/ETO interferes with the activity of various transcription factors 1.7.4

There is now substantial evidence that RUNX1/ETO does indeed have additional activities 

beside the modulation of RUNX1 activity. Numerous studies have demonstrated that 

RUNX1/ETO can alter the behaviour of several other transcription factors that are 

implicated in haematopoiesis, such as PU.1, GATA and C/EBPα (8). 

PU.1 is essential for normal myelopoiesis; without PU.1, mice have a severe block in 

differentiation and no mature myeloid cells are present. RUNX1/ETO has been shown to 

repress PU.1 via a direct physical interaction. This interaction leads to the dissociation of 

PU.1’s co-activator JUN, dramatically hindering the transcription factor activity of PU.1. As 
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PU.1 regulates the expression of several genes involved in haematopoiesis, it is likely that 

this mechanism contributes to the leukaemogenicity of RUNX1/ETO (241).  

Another transcription factor key to normal haematopoiesis is C/EBPα. It has been 

observed that AML patients with the t(8;21) translocation have very low C/EBPα 

expression relative to other AML subtypes. Research has provided a mechanism to 

explain this observation. Via conditional expression of RUNX1/ETO in vitro,  it was 

established that the fusion protein suppresses C/EBPα mRNA levels via the inhibition of 

positive autoregulation at the C/EBPα promoter (242). The role of C/EBPα in AML 

development is discussed is in more details in sections 1.6.2 and 1.7.8. 

GATA-1 is a transcription factor crucial for erythroid lineage commitment. During normal 

erythropoiesis, GATA-1 is acetylated by p300, a mechanism which is essential for 

appropriate GATA-1 function. RUNX1/ETO binds to GATA-1 and blocks this acetylation 

step, resulting in an inhibition of normal differentiation. This RUNX1/ETO mediated 

interference with erythroid lineage commitment is believed to contribute to leukaemia 

development (243).  

Another mechanism featuring p300 has been described, which involves the E protein 

transcription factors, E2A and HEB. E2A is essential for early B cell differentiation and is a 

potential tumor suppressor. HEB has been implicated in both myogenesis and 

hematopoiesis. Both transcription factors interact with p300 via their AD1 domain, an 

interaction which is required for their activity. RUNX1/ETO stably binds to the AD1 

domains of E2A and HEB, thus displacing p300 and inhibiting their transcriptional 

activation (244).  
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 RUNX1/ETO alters the epigenetic landscape 1.7.5

 

This chapter has already described several examples of how RUNX1/ETO interferes with 

normal haematopoiesis via inhibition of key transcription factors. We know that 

transcription factors interact with epigenetic modifiers (see section 1.2.2). It is therefore 

perhaps not surprising that RUNX1/ETO presence can interfere with the epigenetic 

environment of the cell. This has been described by several publications over the last 

decade and it is believed that these epigenetic alteration are pivotal to the pathogenesis 

of t(8;21) leukaemia (199, 204, 206, 245-247).  

The first investigation of RUNX1/ETO mediated chromatin modification was focused on 

the c-FMS locus. The gene is normally bound by RUNX1 at the promoter, however in 

t(8;21) AML the gene is also bound by RUNX1/ETO at an intronic regulatory region. 

RUNX1/ETO binds as part of a complex (see section 1.7.6) and is associated with the 

reduction of gene expression. The binding of this complex correlated with specific 

epigenetic modifications; the de-acetylation of histones and the tri methylation of histone 

H3K27. A very interesting observation was that, although RUNX1/ETO binds to the 

intronic regulatory region and represses gene expression, the promoter region is still 

accessible to, and is bound by, other transcription factors. This demonstrates that, as the 

RUNX1/ETO complex does not completely block binding of other transcription factors, 

RUNX1/ETO target genes should not be irreversibly silenced. Therefore, the continuous 

presence of RUNX1/ETO is perhaps required to maintain the established epigenetic 
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modifications (206). This prompted investigation into the effect of RUNX1/ETO 

knockdown in t(8;21) AML (see section 1.6.6). 

With the advent of affordable next generation sequencing, genome wide analysis of the 

t(8;21) epigenetic landscape is now possible. One research group used ChiP-seq and 

unsupervised clustering analysis to measure histone modifications, DNA methylation and 

p300 localisation. These data were used to define 6 classes of chromatin accessible 

regions; each class was distinct in its functional make up. It was shown that RUNX1/ETO 

bound to the class characterised by p300 enrichment and lower than normal histone 

acetylation levels. This offers evidence that alterations to the histone modification 

pattern, via the abnormal recruitment of epigenetic modifiers, is a key part of RUNX1/ETO 

mediated pathogenesis (245).  

Another genome-wide study confirmed that RUNX/ETO binds to acetylated sites involved 

in haematopoiesis, and provided a mechanism by which is does so. ERG and FLI1 are ETS 

transcription factors that play a key role in normal haematopoiesis, by the acetylation of 

histones and subsequent gene activation. The study proposed a model in which 

RUNX1/ETO is recruited to these acetylated sites, via an interaction with ERG/FLI1, and 

removes the acetyl groups thus repressing haematopoetic genes (204). This is another 

example of how RUNX1/ETO disrupts the epigenetic landscape via its aberrant 

recruitment of histone modifiers. 
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 RUNX1/ETO functions in an oligomeric complex 1.7.6

 

Figure 1-13A demonstrates that RUNX1/ETO is made up of different domains. It has a 

RUNT domain for DNA binding and four nervy homology regions. The nervy homology 

region 2 (NHR2) is responsible for the oligomerisation of RUNX1/ETO, which is essential 

for RUNX1/ETO mediated leukaemogenesis (248-251). As individual molecules of 

RUNX1/ETO complex with each other, RUNX1/ETO has a preference for double RUNX1 

binding motifs (252). 

Over several years separate studies showed that RUNX1/ETO has many interaction 

partners, such as the corepressor N-CoR/mSin3/HDAC1 complex (208), C/EBPα (198) and 

GATA1 transcription factors (243, 253) and E-proteins (204, 254, 255) . Following these 

findings, Sun, XJ et al. published detailed analysis of RUNX1/ETOs interaction partners. 

They found that RUNX1/ETO forms a high molecular weight, oligomeric complex which is 

stable in vivo. To determine the components of the RUNX1/ETO complex, the authors 

isolated the complex and performed SDS-polyacrylamide gel electrophoresis and mass 

spectrometry analysis (256).  

The main components were found to be the E proteins HEB and LYL1, the RUNX1 binding 

partner CBFβ, LIM-domain binding protein LMO2 and its interacting partner LBD1. They 

characterised the pairwise interactions within the complex and discovered a network of 

strong interactions that join all these constituents, one by one. It is likely that this 

interaction network plays a role in the assembly of the complex (figure 1-14). Weaker 
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interactions (indicated by thinner lines in the figure) are likely to add stability to the 

complex.  

 

 

Figure 1-14: Schematic of interactions within the RUNX1/ETO complex 
Thick lines represent strong interactions and thin lines represent weak interactions. All 
components of the complex may homodimerise (figure adapted from (256)).  

 

 The effect of RUNX1/ETO knockdown in t(8;21) AML  1.7.7

 

The above findings suggest that the RUNX1/ETO mediated epigenetic reprogramming 

may not be permanent. To investigate this, Dunne, J et al. designed a small interfering 

RNA (siRNA) specific to RUNX1/ETO for depletion of RUNX1/ETO expression. They used 

this knockdown system in both t(8;21) AML cell lines and patient blasts, followed by gene 

expression profiling (257). They found that RUNX1/ETO depletion led to alterations in the 

expression of 76 genes. The gene expression changes were indicative of initiation of 

myeloid differentiation and inhibited leukemic cell proliferation (258). Furthermore, cell 

staining showed an increase in myeloid maturation following RUNX1/ETO depletion. 
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These results indicated that the maintenance of t(8;21) AML is dependent on the 

continued expression of RUNX1/ETO, and highlights RUNX1/ETO as a potential 

therapeutic target.  

It was now clear that the presence of RUNX1/ETO disrupts the gene expression profile of 

t(8;21) AML cells (258). Ptasinska, A et al. investigated how RUNX1/ETO does so, in a 

genome wide fashion. The binding pattern of RUNX1/ETO and RUNX1 was assessed via 

ChIP-seq analysis, before and after RUNX1/ETO knockdown. As their shared DNA binding 

domain would suggest, the analysis showed binding of both transcription factors to a 

subset of RUNX1 targets.  Post RUNX1/ETO depletion there was an increase of RUNX1 

binding. Interestingly, this increase in RUNX1 enrichment was not only at sites previously 

blocked by RUNX1/ETO. RUNX1 was found to bind at thousands of new, ‘de novo’ sites 

that were not previously bound by RUNX1/ETO (see figure 1-16 B) (199). These results 

gave more insight into how RUNX1/ETO interferes with wild type RUNX1 to reprogram 

AML cells.  

The RUNX1/ETO ChIP-seq data was used to identify RUNX1/ETO target genes. The effect 

of RUNX1/ETO knockdown on the expression of these target genes was then investigated. 

The depletion of RUNX1/ETO resulted in both the upregulation and downregulation of 

target gene expression. In agreement with Dunne, J et al., functional analyses revealed 

that a disproportionate number of upregulated genes are involved in differentiation, 

whereas down regulated genes are involved in cell cycle progression.  

To gain further insight into the mechanism of these complex gene expression changes, 

the researchers assessed the effect of RUNX1/ETO knockdown on the epigenetic profile. 
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To this end, they conducted a genome wide analysis of the enrichment of RNA 

polymerase II and Histone H3K9 with ChIP-seq. The results showed that a significant 

proportion of genes upregulated by RUNX1/ETO knockdown had increased RNase 

Polymerase II enrichment. There was also a genome wide increase in Histone H3K9 

acetylation, which is in accordance with the recruitment of HDACs by RUNX1/ETO (199).  

The above findings suggested that the RUNX1/ETO mediated epigenetic reprogramming 

and the leukemic phenotype is dependent on the persistent expression of RUNX1/ETO. 

The complexity of the response to RUNX1/ETO knockdown prompted further 

investigation into the mechanisms involved. It was clear that the myeloid differentiation 

response is more complex than the alleviation of repression, as wild type RUNX1 is 

recruited to new sites distinct from those previously bound by RUNX1/ETO. Furthermore, 

the gene expression alterations were strikingly complex. The researchers wish to find out 

how RUNX1 was redistributed, and how such extensive changes in the epigenetic profile 

were mediated. It was hypothesised that other transcription factors and chromatin 

modifying regulators were likely to be involved. 

 In the next study the relationship between RUNX1 and RUNX1/ETO binding was 

investigated in more detail. Previous ChIP-seq analysis detected both RUNX1 and 

RUNX1/ETO binding at the same sites in the genome (199). However, as these results 

came from analyses on a population of cells, it was not possible to determine whether 

they bind together at the DNA as a complex. To circumvent this issue, re-ChIP 

experiments were conducted. The results of these experiments showed that the binding 

of RUNX1 and RUNX1/ETO is mutually exclusive (158). These findings suggest that RUNX1 
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and RUNX1/ETO may bind the DNA in a dynamic equilibrium, taking it in turns to bind 

genomic sites (figure 1-15).  

ChIP-seq then used to determine which other transcription factors and regulatory 

proteins RUNX1 and RUNX1/ETO associate with. It was shown, for the first time in vivo, 

that both proteins differ in their preference for transcriptional repressors and activators.  

However, they form complexes with similar accessory transcription factors. The factors 

included LMO2, ERG, FLI1, PU.1 and HEB/LYL. These ChIP sequencing analyses supported 

proteomic experiments which show co-occupancy of RUNX1 and RUNX1/ETO with the 

transcription factors HEB and LYL1 and the bridging factors LMO2 and LDB1 at their target 

sites (see section 1.7.6 for more details on the RUNX1/ETO complex) (256, 259). Below is 

a diagram showing competing RUNX1 and RUNX1/ETO complexes. 

 

 

Figure 1-15: RUNX1 and RUNX1/ETO compete for the same DNA binding sites 
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Figure 1-16: RUNX1/ETO knockdown leads to a genome wide increase in the binding of CEBPα 
and RUNX1 
A) Western blots detecting RUNX1/ETO, CEBPα, LMO2 and PU.1 protein expression in Kasumi-1 
cells treated with control (siMM) and with RUNX1/ETO siRNA (siRE) for 48 hours. B) Venn 
diagrams showing the overlap between RUNX1/ETO, RUNX1, CEBPα, LMO2 and PU.1 ChIP-seq 
peaks in Kasumi-1 cells treated for 48 hrs with siMM and with siRE. Experiments were conducted 
by Dr Anetta Ptasinska (199, 219) 
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 The role of C/EBPα in t(8;21) AML 1.7.8

The role of other transcription factors in reprogramming the transcriptional network after 

RUNX1/ETO knockdown was investigated. C/EBPα was an obvious candidate for 

investigation as, out of the several transcription factors analysed, it was the only 

transcription factor which showed dramatic and rapid changes in protein expression 

following RUNX1/ETO knockdown (figure 1-16 A). Furthermore, as outlined in earlier 

sections, it is a key driver of myeloid differentiation during normal haematopoiesis and 

RUNX1/ETO is known to interfere with its activity (see section 1.7.4).  

 

ChIP sequencing experiments revealed that C/EBPα binding increased considerably after 

RUNX1/ETO knockdown; C/EBPα bound to almost four times more sites in the genome. 

This was not a phenomenon universal to all transcription factors. PU.1 and LMO2 binding 

was also analysed and they exhibited no change and a loss of binding respectively (figure 

1-16 B) 

DNaseI-seq was then conducted and the results show that the majority of the C/EBPα and 

RUNX1 binding alterations occurred within pre-existing open chromatin sites. However, 

there was a subset of DNaseI sites that showed increased hypersensitivity after 

RUNX1/ETO depletion (figure 1-17). Intriguingly, these sites had an over representation of 

the C/EBP binding motif (see figure 1-18).   
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Figure 1-17: Bar graph demonstrating the fold change of DNaseI peaks after RUNX1/ETO 
knockdown 
The majority of DNaseI peaks exhibit a low fold change after RUNX1/ETO knockdown. Subsets of 
DNaseI peaks are reduced (blue bars) and increased (red bars) after knock down. DNaseI was 
conducted by Dr Anetta Ptasinska (219). 

 

 

Figure 1-18: The CEBP motif is enriched at DNaseI hypersensitive sites that are unique to 
RUNX1/ETO knockdown 
Genome wide DNaseI site mapping was conducted on cells transfected with siMM and cells 
transfected with siRE for 10 days. Motif enrichment was conducted, using HOMER software, on 
the DNaseI footprints that show an increase in hypersensitivity after RUNX1/ETO knockdown. The 
table indicates the enrichment score of various transcription factor motifs. DNaseI was conducted 
by Dr Anetta Ptasinska (219). The motif analysis is not published. 
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1.8 The role of SP1 in t(8;21) AML 

Sp1 is a transcription factor involved in haematopoietic differentiation (178, 260, 261). 

The first study into its role in t(8;21) AML found that Sp1 physically interacts with 

RUNX1/ETO via the Runt domain. This interaction inhibits the transcriptional activity of 

Sp1. It was therefore proposed that Sp1 deregulation could be involved in the 

RUNX1/ETO mediated oncogenic differentiation block (262).  

Another group investigated the relationship between Sp1 and RUNX1/ETO and, using 

ChIP-on-ChIP, mapped the gene promoters which are subject to RUNX1/ETO driven 

epigenetic repression. They found that many of these genes were involved in 

haematopoiesis. Furthermore, a significant proportion of these genes were co-occupied 

with RUNX1/ETO and Sp1. Using an Sp1 inhibitor, they demonstrated that co-occupancy 

of RUNX1/ETO with Sp1 may promote the repression of these genes, thus suggesting an 

important role for Sp1 in RUNX1/ETO mediated pathogenesis and identifying SP1 as a 

new potential therapeutic target (263).   

Work from the same research group further investigated the role of Sp1 in t(8;21) AML 

(264). Their results suggest that Sp1 is important, not only for differentiation block, but 

also for leukemic cell maintenance. The authors found that the elevated MAPK signalling 

in t(8;21) AML stabilises Sp1 and thus increases its intracellular levels. They suggest that 

this increase in Sp1 protein levels enhances leukemic cells growth, as knockdown of Sp1 

in these cells led to reduced cell growth and increased apoptosis.  These finding suggest 

an oncogenic role for SP1 in t(8;21) and provide more evidence that it would be a good 

target for treatment of t(8;21) AML. 
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Recent data from our lab appears to offer support for a role of Sp1 in the differentiation 

block which we see after RUNX1/ETO knockdown. DNaseI foot printing analysis suggests 

that there were alterations in Sp1 binding after RUNX1/ETO knockdown. When the 

DNaseI cutting frequency was aligned around the Sp1 motif across all binding sites, there 

appears to be an increase in protection of the Sp1 motif after RUNX1/ETO knockdown, 

presumably by Sp1. This suggests that RUNX1/ETO presence effects Sp1 binding, which is 

in accordance with the previously published work (figure 3-4).  
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1.9 t(8;21) AML is dependent on wild type RUNX1 for survival 

RUNX1 is a commonly mutated in myeloid malignancies, so is generally considered to be a 

tumour suppressor. However, several recent studies have shown that the presence of 

wild type RUNX1 promotes t(8;21) AML cell survival (265, 266). This result is supported by 

the fact RUNX1 mutation is almost always heterogeneous in AML with CBF abnormalities, 

whereas RUNX1 can be fully inactivated in other types of leukemia (267). Ben Ami et al. 

showed that knockdown of RUNX1 from a t(8;21) AML cells line leads to apoptosis, which 

could be rescued with knockdown of RUNX1/ETO (265). Goyama et al. propose that a 

certain level of wild type RUNX1 is crucial for leukaemogenesis. RUNX1 was knocked 

down from an engineered t(8;21) AML cells line (cord blood cells expressing RUNX1/ETO). 

Cell growth was inhibited and the same was true when mutant RUNX1 was expressed 

(266).  This is suggestive of a oncogenic role for RUNX1. However, interestingly, over 

expression of wild type RUNX1 also inhibited AML cell growth by driving myeloid 

differentiation. They therefore propose a ‘dosage-dependent’ function of RUNX1 in 

t(8;21) AML. These unexpected findings highlighted the potential for using wild type 

RUNX1 as a therapeutic target in t(8;21) AML.  

 Targeting transcription factor interaction 1.9.1

RUNX1 heterodimerises with CBFβ, via its Runt domain - an interaction which stabilizes 

DNA binding and protects RUNX1 from proteasomal degradation (268, 269). The 

dimerisation is essential for adequate RUNX1 function. This is clearly demonstrated by the 

shared phenotype between CBFβ mutant mice and RUNX1 null mice (270). The Runt 

domain is retained after t(8;21) translocation and RUNX1/ETO also interacts with CBFβ. In 
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contrast to the wild type RUNX1, the importance of CBFβ to RUNX1/ETO function is less 

certain. Roudaia et al. state that CBFβ is critical for RUNX1/ETO activity (271), whereas 

Kwok et al. found that the interaction of RUNX1/ETO to CBFβ is not needed for 

RUNX1/ETO mediated transformation of primary cells (250). Furthermore, although a 

recently published genome-wide study showed that CBFβ enrichment was detected at 

thousands of RUNX1/ETO binding sites, the majority RUNX1/ETO sites (59%) were not co-

occupied by CBFβ (204). It is therefore reasonable to predict that blocking the interaction 

between the Runt Domain and CBFβ could abolish RUNX1 activity, and may hinder 

RUNX1/ETO activity. Considering the literature outlined above, inhibiting the CBFβ-Runt 

interaction in t(8;21) AML cells could trigger apoptosis and/or differentiation, thus making 

this an attractive therapeutic approach.  

 

The targeting of protein-protein interaction is a relatively new field, and transcription 

factors have long been considered ‘undruggable’ (272, 273). However, attempts have 

been made to disrupt the Runt domain- CBFβ interaction therapeutically. RNA aptamers 

were designed against recombinant Runt-β complex and successfully inhibited RUNX1 

DNA binding in vitro (269). However, unfortunately no subsequent in vivo work has been 

published. More recent, pioneering work from the Bushweller lab has had more 

promising results. 
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 Targeting RUNX1 with small molecule inhibitors 1.9.2

 

John Bushweller’s group designed small molecules that inhibit the Runt- CBFβ interaction 

by an allosteric mechanism. The compounds bind to CBFβ at a region distinct from the 

Runt domain interaction interface, and induce a conformational change that is 

transmitted through the protein structure. This alters the dynamics of residues within the 

interface, dramatically decreasing interaction strength. These residues were previously 

shown to be vital for interaction via mutagenesis studies (274). In vitro experiments 

proved an inhibition of RUNX1 DNA binding upon treatment with the compound (275). 

Since the initial in vitro studies, the chemical structure of the compound has been subtly 

modified several times to increase its efficacy and decrease toxicity.  

Impressive results were seen with another allosteric inhibitor compound designed to 

block the interaction between the Runt domain and the CBFβ fusion protein found in 

inv(16) AML cells. This inversion leads to the fusion of the smooth-muscle myosin heavy 

chain (SMMHC) to CBFβ. This CBFβ-SMMHC is oligomeric and out competes wild type 

CBFβ for RUNX1 binding. When initially tested, the compound had only moderate potency 

and specificity for blocking CBFβ-SMMHC interaction. They therefore generated a bivalent 

derivative with the aim to target the oligomeric nature of the fusion complex (figure 1-

19). Treating inv(16) cells with the bivalent molecule (AI-10-49) lead to an inhibition of 

the CBFβ-SMMHC interaction with restoration of wild type CBFβ–RUNX1 heterodimers. 

This was accompanied by cell death of AML patient samples and delayed leukaemia 

progression in mice (276). This offers proof of principle that targeting interactions 

between RUNX1 and CBFβ is a feasible therapeutic option. 
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Figure 1-19: Targeting Runt domain to CBFβ-SMMHC interaction with allosteric small molecule 
inhibitors 
The CBFβ – SMMHC fusion protein binds to the Runt domain of RUNX1, blocking wild type CBFβ-
Runt domain interaction. The polyvalent inhibitor AI-10-49 interacts with the CBFβ – SMMHC 
fusion protein, altering its conformation allosterically, rendering it unable to bind RUNX1. RUNX1 
can then associate with wild type CBFβ and can drive the expression of its target genes (figure 
adapted from (277)).  

 
 
 
Since the above study, the focus has been targeting the Runt domain-CBFβ interaction in 

other AMLs. The researchers found that the monomeric version of AI-10-49 had a modest 

inhibitory effect on the interaction between the RUNT domain and wild type CBFβ; the 

interaction between RUNT domain and wildtype CBFβ is dimeric, so a monovalent 

compound is more appropriate. From this compound a series of analogues were 

prepared. They then established which features of the compound are necessary for 

inhibition of the Runt domain-CBFβ interaction. They did this via sequential substitution 

of the functional groups, followed by assessment of inhibition via FRET. The next 

challenge was metabolic stability in vivo. This was achieved via the introduction of a 
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trifluoromethoxy group, to yield the compound named AI-10-104 (278), which will be 

tested in this study. Administration of AI-10-104 to mice unfortunately had significant 

sedative effects. Therefore attempts were made to decrease the toxicity of AI-10-104. 

Analogues of AI-10-104 were engineered by appending a morpholine ring to the pyridine 

ring. In vitro experiments to validate inhibition of Runt domain-CBFβ interaction showed 

that the analogue ‘AI-14-91’ was as effective as the original (AI-10-104) but was well 

tolerated by mice. AI-14-91 and AI-10-104 were found to inhibit the growth of both 

leukemic and breast cancer cell lines. In embryonic stem cells, AI-14-91 was shown to 

reduce the binding of RUNX1 to RUNX1 target genes and decrease their expression (see 

section 4.1.2). 

1.10 Aims and Objectives 

The Bonifer group have lead the way in characterising the effect of RUNX1/ETO 

knockdown from t(8;21) AML. We have established that the persistent expression of 

RUNX1/ETO is required to maintain the leukemic phenotype; RUNX1/ETO knockdown 

triggers myeloid differentiation and supressed self-renewal.  We have also determined, in 

a genome wide fashion, that there are epigenetic and gene expression changes which are 

accompanied by the extensive reorganisation of transcription factor binding, primarily 

wild type RUNX1 and C/EBPα. We also see the appearance of thousands of new DNaseI 

hypersensitive sites, which are enriched for the C/EBP motif. However, several questions 

still need to be answered so we can gain more insight into the mechanisms RUNX1/ETO 

uses to reprogram haematopoietic cells. 

This thesis will systematically present the findings to the questions below: 
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1) Can we target wild type RUNX1 and/or RUNX1/ETO with small molecules inhibitors 

of the Runt domain-CBFβ interaction? 

Other research groups have recently found that t(8;21) AML depends on wild type RUNX1 

for survival (265, 266). We wish to determine whether the inhibition of wild type RUNX1 

and RUNX1/ETO with small molecule inhibitors of the Runt domain-CBFβ interaction is 

possible in t(8;21) AML cell (278). We will test the ability of the AI-10-104 compound to 

inhibit survival of t(8;21) AML cells and the effect of the compound on RUNX1 and 

RUNX1/ETO DNA binding. The experiments have the potential induce cell death via 

inhibition of RUNX1 and/or trigger differentiation via inhibition of RUNX1/ETO, which has 

exciting therapeutic implications.  

 

2) Which transcription factors drive the differentiation response after RUNX1/ETO 

knockdown? 

Our existing genome wide data points towards an important role for the myeloid 

transcription factor C/EBPα in the reprogramming of cells after RUNX1/ETO knockdown. 

We wished to determine whether this is the case by performing RUNX1/ETO knockdown 

in the absence of C/EBPα and determining how the response to knockdown is affected. 

We will also investigated if C/EBPα upregulation is the key event in reprogramming 

t(8;21) AML cells, by over expressing  C/EBPα and analysing the effect on the 

transcriptional programme.   
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Data primarily from the Alvarez lab suggest that the association between Sp1 and 

RUNX1/ETO may contribute to RUNX1/ETO mediated leukemic transformation. 

Furthermore, we have found that RUNX1/ETO knockdown may have an effect on the 

binding of proteins to the Sp1 motif. To further investigate the role of Sp1 in t(8;21) AML 

we will assess the effect of RUNX1/ETO knockdown on genome wide Sp1 binding.   

 

3) Are the epigenetic changes triggered by RUNX1/ETO knockdown reflected by 

alterations to specific promoter-cis regulatory element interactions? 

It is well established that alterations in gene expression can be reflected by changes in 

DNA looping interactions (63, 118). There is an increasing body of evidence that 

transcription factors initiate and maintain these DNA loops (63, 279-281). We therefore 

hypothesise that the changes to gene expression and transcription factor binding after 

RUNX1/ETO knockdown may be accompanied by alterations in specific promoter-

enhancer interactions. We will test this by performing chromatin conformation capture 

experiments on t(8;21) AML cells with and without RUNX1/ETO expression.   
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Chapter 2. METHODS 

2.1 Cell line culture  

 Kasumi-1 cells were maintained at 5x105 cells/ml in Roswell Park Memorial Institute 

(RPMI) 1640 (Sigma) supplemented with 15% heat-inactivated foetal calf serum, 1% 

Pen/Strep and 1% glutamine (GIBCO).  HL60 cells were maintained at 5x105 cells/ml in 

Iscove’s modified Dulbecco’s medium (Sigma)  with 10% heat-inactivated foetal calf 

serum, 1% pen/strep and 1% glutamine (GIBCO). Human Embryonic Kidney (HEK) 293T 

cells were maintained in Dulbecco’s Modified Eagle Medium, supplemented with 1% 

pen/strep and 1% glutamine (GIBCO). All cells lines were incubated at 37° C, with 

humidified air and 5% CO2 (Carbon Dioxide) supplementation. 

2.2 Small molecule inhibitor treatment 

The small molecule inhibitors and control compounds (see table 4 for details) were 

dissolved in DMSO and added to cell media at the concentration stated in the results (gift 

from Bushweller JH, University of Virginia). All ‘DMSO control’ cells were treated with 1% 

DMSO. 
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Compound Target 

AI-10-104 CBFβ 

AI-14-91 CBFβ 

AI-4-88 Control  

 

Table 4: Small molecule inhibitors of the core binding complex 

2.3 siRNA and shRNA mediated RUNX1/ETO and C/EBPα depletion 

Cells were electroporated with 200nm siRNA, in 700 μl of culture medium at a density of 

1 × 107/ml. The Fischer EPI 3500 electroporator (Fischer, Heidelberg,Germany) was used 

for all transfections with the parameters set as 350V for 10ms. Post transfection, cells 

were maintained as described in section 2.1. RUNX1/ETO knockdown was conducted with 

the following siRNAs: RUNX1/ETO siRNA (sense, 5′-CCUCGAAAUCGUACUGAGAAG-3′ 

antisense, 5′-UCUCAGUACGAUUUCGAGGUU-3′), mismatch control siRNA (sense, 5′-

CCUCGAAUUCGUUCUGAGAAG-3′ antisense, 5′-UCUCAGAACGAAUUCGAGGUU-3′). 

C/EBPα knockdown was conducted with the following siRNAs: 

GAAGUCGGUGGACAAGAAC and mismatch control UAGGAGCUGGUGAACAAGAC 

RUNX1/ETO was depleted from SKNO-1 R/E cells via an doxycycline inducible shRNA 

expression system. The SKNO-1  R/E cells (courtesy of Olaf Heidenreich) are SKNO-1 cells 

stably transduced with a pTRIPZ-derived vector (Open Biosystems) encoding shRNA for 

RUNX1/ETO. Cells were incubated with 1µg/ml doxycyline to induce expression of the 

shRNA, via a Tet-On® system. 
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2.4 Western blotting 

Cells were lysed in RIPA buffer (Cell Signalling).Western Blotting was conducted following 

a standard protocol (13). In short, proteins were separated using gel electrophoresis with 

a 10% SDS polyacryl amide gel at 40 mA for ~1.5 hrs. The proteins were transferred on to 

a nitrocellulose membrane (Thermo Scientific Pierce) at 70 V for 1 hour 15 minutes at 4 °C 

using transfer buffer (192 mM glycine, 25 mM Tris).  The membrane was blocked with 5 % 

non-fat dry milk (Marvel) in TBST (Tris-buffered saline, 0.1% Tween 20) solution for 1 

hour and then incubated with a primary antibody overnight at 4°C. A horse radish 

peroxidise-conjugated antibody (Abcam) was added and detected via enhanced 

chemiluminescence after incubation with Super-Signal® west Pico Chemiluminescent 

substrate (Thermo Scientific) and visualised by exposure to an X-ray film. Films were 

developed with a Compact X4 imaging system (Xograph Healthcare Limited). The primary 

antibodies used were as follows:  

Table 5: Western blot antibodies 

Antibody target Manufacturer Serial number 

ETO Santa Cruz sc-9737 

RUNX1 Abcam 23980 

C/EBPα Abcam 40761 

SP1 Santa Cruz Sc-17824 X 

GAPDH Abcam 8245 

H3 Abcam 1791 
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2.5 Flow cytometry  

For each analysis, 2 x 105 cells were counted and centrifuged for 5 minutes, at 300 x g at 

room temperature. The pellet was washed twice with MACS buffer (PBS, 0.5% BSA and 2 

mM EDTA). After the second wash, the pellet was resuspended in the remainder of the 

supernatant (approximately 200 µl). 2 µl of antibody was added and the cell suspension 

was incubated at 4 °C, in the dark, for 30 minutes. The cell suspension was then washed 

with MACs buffer and analysed with a CyAn™ ADP flow cytometer (Beckman Coulter).  

Table 6: Flow Cytometry Antibodies 
 

Antibody target Manufacturer Serial number 

Annexinv-FITC/PI kit BD Pharminogen 556547 

CD11b – APC Miltenyi-biotech 130091241 

CD117-APC  Miltenyi-biotech 130091733 

IgG FITC Miltenyi-biotech 130093192 

IgG APC Miltenyi-biotech 130093194 
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2.6  Apoptosis detection assay 

Apoptosis was assessed using an Annexin V-FITC Apoptosis Detection Kit II (BD 

Pharminogen). At the time points stated in the results, 105 cells were collected, washed 

with phosphate buffered saline, and then stained with Annexin V-FITC and propidium 

iodide (PI) according to the manufacturer’s protocol.  Analysis of Annexin V-FITC binding 

was determined by flow cytometry with a CyAn™ ADP Analyser (Beckman Coulter).  

2.7 Extraction of RNA, cDNA synthesis and analysis of gene expression analysis 

Approximately 5 x 106 cells were centrifuged (300xg, 5 minutes, room temperature) and 

lysed with 350μl of RLT buffer with ß- mercaptoethanol (Qiagen). Total RNA was 

extracted using RNeasy columns, according to the manufacturers protocol (Qiagen).  An 

on-column DNase I digestion was conducted using an RNase-Free DNase kit, according 

to the manufacturers protocol (Qiagen). The RNA was quantified using a NanoDrop™ 

2000 (Thermo Scientific) and cDNA was synthesized as follows: 2 µg of total RNA 

extracted was annealed to 1 µl of oligo dT (deoxythymidine) primers (80µM) in a total 

volume of 15µl and incubated at 70°C for 5 minutes. Samples were then placed on ice for 

5 minutes. Reverse transcription was conducted via the addition of 5 µl of 5 x Reaction 

Buffer (Invitrogen), 5 µl of 10mM dNTPs, 1 µl of 200 U/µl MLV- Reverse Transcriptase 

(Invitrogen), 0.625µl of 400 U/µl of RNase inhibitor (Invitrogen) and the reaction was 

incubated at 42 °C for 60 minutes. 
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cDNA was quantified by Real-Time qPCR, with the  primers listed below and SYBR® Green PCR 

master mix (Applied Bio systems). Analysis was conducted using an ABI 7500 Real-Time PCR 

system (Applied Biosystems), with the step one software. The expression of individual genes was 

calculated relative to GAPDH expression. A cDNA standard curve was made using cDNA 

synthesized from mRNA extracted from the cell line undergoing analysis. The standard cDNA was 

diluted to 1:10, 1:50, 1:250, 1:1250 and 1:6250 with water. cDNA to be tested was diluted 1:50 

times. Genomic DNA derived from chromatin immunoprecipitation was analysed by qPCR as 

stated above, but standards were made using genomic DNA. 
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Table 7: Primers used for qPCR 
 

Gene target Forward Primer Sequence Reverse Primer Sequence 

CEBPA GAGGGACCGGAGTTATGACA AGACGCGCACATTCACATT 

CEBPE ATGTCCCACGGGACCTACTACGA ACAGTGTGCCACTTGGTACTGCAG 

CSF1R AGCACGAGAACATCGTCAACC TTCGCAGAAAGTTGAGCAGGT 

CST7 CCAACCACACCTTGAAGCAGA  GGGTCAGTGACAACGGAGAAC 

CTSG TCAGTTGCTGCTGTGCTTC  TTCTCAATCCCCTGTCCCCAC 

ERG ATGGAGGAGAAGCACATGCC ATAGCGTAGGATCTGCTGGC 

GAPDH CCTGGCCAAGGTCATCCAT GGGGCCATCCACAGTCTT 

IGFBP7 GAAGTAACTGGCTGGGTGCTG GCTGATGCTGAAGCCTGTCC 

MPL TCAGCAGCCAAGATGTCTCC TGCCTCTTCCTCATCCCAGA 

MS4A3 CCAAGCCATAAACAACCCCA  TTCTGGTCCCGTCTCACTGC 

NFE2 CCAAGGTGTGTTCAAAGAGGC GGAGCCGAGTCAGGGAAGAC 

NKG7 CTGATTGCTTTGAGCACCGA CCTGATATGATGTCCCCATGC 

PU.1 TCTTGGCCACCAGGTCTCCTA CGCCCTCCTCCTCATCTGA 

RNASE2 CCCCTGAACCCCAGAACAA ACCATGTTTCCCAGTCTCCG 

RUNX1/ETO TCAAAATCACAGTGGATGGGC CAGCCTAGATTGCGTCTTCACA 

SOX4 AAGATCATGGAGCAGTCGCC CGCCTCTCGAATGAAAGGGA 

SP1 GCACCTGCCCCTACTGTAAA TGGATGTGGCAAATATGCTGT 

UBASH3B ACCATCAAGCATGGATCGGC GGTCACCGACATGGGAGAAT 

Table 8: Primers used for ChIP-qPCR 
 

Gene target Forward Primer Sequence Reverse Primer Sequence 

IVL promoter GCCGTGCTTTGGAGTTCTTA CCTCTGCTGCTGCCACTT 

PU.1 14Kb enhancer  AACAGGAAGCGCCCAGTCA TGTGCGGTGCCTGTGGTAAT 

IGFBP7 promoter  GTCAAGCACTAAAAGGACAAACCG TGAATGCCACTGGGAGACAAAG 
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2.8 Chromatin Immunoprecipitation (ChIP) 

2x107 cells were counted, centrifuged (300 xg, 5 minutes, 4 oC) and resuspended in media. 

Whole cells were treated with 1% formaldehyde (Sigma) at room temperature for 10 

minutes to crosslink protein to DNA. 0.5M glycine was added and the reaction was 

quenched for 5 minutes at room temperature. Cells were pelleted via centrifugation (300 

xg, 5 minutes, 4 oC) and washed  twice with ice cold PBS and resuspended in buffer A (10 

mM HEPES pH 8.0, 10 mM EDTA, 0.5 mM EGTA, 0.25% Triton X-100, proteinase inhibitor 

cocktail (Roche UK) and 0.1 mM PMSF)) and rotated at 4 oC for 10 minutes. The solution 

was centrifuged (500 xg, 5 minutes, 4 oC) and pelleted nuclei were resuspended in buffer 

B (10 mM HEPES pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.01% Triton X-100, 

protease inhibitor cocktail and 0.1 mM PMSF ) by rotation for 10 minutes at 4 oC. 

Chromatin was pelleted (500g, 5minutes, 4 oC), snap frozen with liquid nitrogen and 

stored at -80 oC. For immunoprecipitation, the chromatin pellet was resuspended in 600 

μl ChIP buffer 1 (25 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 

0.25% SDS, protease inhibitor cocktail and 0.1 mM PMSF) and sonicated twice, for 10 

minutes of 30s ON 30s OFF each time with the Bioruptor™ sonicator (Diagenode). 

Chromatin was pelleted (16,000xg, 5 minutes, 4 oC) and the supernatant was diluted 1:3 

with ChIP buffer 3 (25 mM Tris-HCl pH 8.0,150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 

7.5% glycerol, protease inhibitor cocktail and 0.1 mM PMSF).  

Dynabeads® Protein G beads (Invitrogen) were used for immunoprecipitation. 15μl 

beads were added to 0.5% BSA, phosphate buffer and 2 μg of antibody; RUNX1 (Abcam), 

ETO (Santa Cruz), CBFβ (Abcam) and PU.1 (Santa Cruz). The immunoprecipitation mixture 
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was incubated at 4 oC for 1 hour, with rotation and then added to chromatin and 

incubated for 4 hours at 4 oC with rotation (5% of the volume of chromatin added was 

taken as an input control). The following wash steps were performed (a magnet was used 

to collect the beads); once with wash buffer 1 (150 mM NaCl, 1% Triton X-100, 20 mM 

Tris-HCl, 0.1% SDS and 2mM EDTA), twice with wash buffer 2 (500 mM NaCl,1% Triton X-

100, 20 mM Tris-HCl, 0.1% SDS and 2mM EDTA), once with LiCL buffer (250 mM LiCl , 

0.5% NP-40, 10 mM Tris-HCl pH 8.0, 0.5% Na-deoxycholate  and 1 mM EDTA) and finally 

twice with 1 ml TE/NaCl buffer (50 mM NaCl,10 mM Tris-HCl pH 8.0 and 1 mM EDTA). 

Using a shaker for 15 minutes at room temperature, DNA was eluted twice with 50 μl of 

elution buffer (1% SDS, 100mM NaHCO3). The input control was made up to 100 μl with 

the same elution buffer. The crosslink was reversed overnight at 65 oC with 50 μg 

proteinase K. DNA purification was conducted using Agencourt AMPure beads (Beckman 

Coulter) following the manufacturers standard protocol. DNA was eluted with 50 μl of 

water (6).  

Genomic DNA was assessed via qPCR (see section 2.7). Relative enrichment was 

calculated by normalizing data to the input chromatin. Data is also presented with 

normalisation against the input chromatin and the enrichment observed at negative 

control regions (Ch18 and Involucrin (IVL) promoter).  
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Table 9: ChIP Antibodies 
 

Antibody target Manufacturer Serial number 

RUNX1 Abcam 23980 

ETO Santa Cruz sc-9737 

PU.1 Santa Cruz sc-352 X 

SP1 Santa Cruz sc-17824 X  

 

2.9 Retroviral production 

A retrovirus was used to stably transduce Kasumi-1 cells with the C/EBPA-ER vector (see 

figure 3-8 A), a generous gift from Dr Chris Van Oevelen (University Pompeu Fabre, 

Barcelona). This vector was constructed using the MSCV-IRES-GFP retroviral vector back 

bone. Viral particles were made in HEK293T cells. The virus was collected and 

concentrated and then used to transduce Kasumi-1 cells. The genes encoding the packing 

and envelope proteins are on a separate plasmid. Therefore, virus cannot be produced in 

the Kasumi-1 cells following transduction.  

 Transfection of HEK293T cells for retroviral production  2.9.1

For virus production HEK293T were cultured to a 80-90% confluency. Following the 

manufacturers protocol, Trans-IT (Mirus, USA) was used to transfect three 10 cm plates of 

HEK293T cells with three construct: 30µg C/EBPA-ER vector, 30µg gag/pol, 9 µg Envelope 

(gift from Dr James Mulloy, Cincinnati, USA). Viral supernatant was harvested at 12 hours, 

36 hours and 48 hours after transfection. 
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 Virus concentration 2.9.2

To pellet cell debris, the viral supernatant was centrifuged for 15 minutes at 4 °C at 3000 

rpm. The supernatant was collected and filtered (0.45 µM filter disc). Following the 

manufacturer’s instructions, a Centricon Plus 70 100kDa filter column (Millipore, USA) 

was used for concentration. Centrifugation was conducted at 1000 x g for 25 minutes at 4 

°C. 

 Retroviral transduction with RetroNectin 2.9.3

RetroNectin (Takara, Japan) assists viral transduction efficiency by bringing together viral 

particles and the target cell.  A 6 well, non-tissue culture plate was coated with 

RetroNectin. To do this a 24 µg/ml solution of RetroNectin in PBS was added to the plate 

for 2 hours at room temperature. The solution was subsequently removed and the plate 

was blocked with BSA (2% BSA in PBS) at room temperature for 20 minutes. The plate was 

then washed with 2.5% HEPES in HBSS (Hank’s Balanced Salt Solution, SIGMA).  

The concentrated virus was then bound to the RetroNectin coated plates, by two 45 

minutes centrifugations at 2000 xg. Finally, 1 x 106 Kasumi-1 cells were added to each well 

of the plate, in a 1:1 ratio with the remaining concentrated virus. Polybrene was then 

added at a final concentration of 8 µg/ml.  
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The plate was incubated overnight at 37 °C with 5% CO2 (standard tissue culture 

conditions). The following day, cells were pelleted at 300 xg for 5 minutes at room 

temperature. The cell pellet was resuspended in standard tissue culture medium (see 

1.1). The efficiency of transduction is indicated by the proportion of GFP positive cells. 

GFP expressing cells were isolated by Florescence Activated Cell Sorting (FACS) with the 

MoFlo Astriso EQ (Beckman Coulter Life Sciences).  

2.10  Circularised chromosome conformation capture (4C-seq)  

  Fixation and cell lysis 2.10.1

1x107 Kasumi-1 cells, transfected with mismatch siRNA (siMM) or siRNA specific to 

siRUNX1/ETO (siRNA), were fixed with 2% formaldehyde and incubated for 10 minutes at 

room temperature. 1.425 ml of 1M glycine was added to quench the cross-linking 

reaction. Fixed cells were immediately centrifuged for 8 minutes at 4°C, 500 xg. 

Supernatant was removed and the pellet resuspended in 1ml lysis buffer (500µl 1M TRIS 

pH 7.5, 300µl 5M NaCl, 100µl 0.5M EDTA, 250µl 20% NP-40 and 100µl Triton X-100 made 

up to 10ml with H2O) and incubated at room temperature for 5 minutes, followed by 5 

minutes at 65°C. Cells were then kept on ice whilst complete cell lysis was determined via 

Trypan blue (Gibco) staining. Cells were centrifuged at 800 xg for 5 minutes and the pellet 

was taken up in 440 µl H20 and 60 µl 10X RE buffer 2 (NEB).  
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  Digestion with primary restriction enzyme 2.10.2

 15 µl of SDS was added and the tube placed at 37°C for 1 hour. 75 µl of 20% Triton X-100 

was added and the tube incubated at 37°C for 1 hour. A 5 µl aliquot was removed as an 

‘undigested control’ sample before 200 units of the restriction enzyme DpnII was added. 

The tube was incubated for 4 hours at 37°C, and then another 200 units of DpnII was 

added, followed by overnight 37°C incubation. The following day 200 units of DpnII was 

added for 4 hrs at 37°C. A 5 µl aliquot was removed as a ‘digested control’ sample. To 

this, along with the ‘undigested’ sample, 90 µl of 10mM Tris pH 7.5 and 5µl Proteinase K 

(10 mg/ml) was added to reverse the cross links. These control samples were run on a 

0.6% agarose gel to assess the digestion efficiency. All 37°C incubations were conducted 

in a heated block, shaking at 900 RPM. DpnII was selected as the restriction enzyme as it 

functions in SDS, and combined with the second restriction enzyme (Csp6I) it generates 

restriction fragments near the target loci, with a suitable size for efficient ligation and PCR 

amplification. Both of these enzymes are 4bp cutters, so will cut the genome into 256 bp 

fragments, on average. This allows for a high resolution assay.  

  Ligation and DNA purification 2.10.3

The DpnII was inactivated by incubation at 65°C for 20 minutes. On ice, 700 µl of 10X 

ligation buffer, 7 ml of milli-Q H20 and 10 µl T4 Ligase (Roche 5U/µl) were added then 

samples were incubated overnight at 16 °C. The following day, to assess ligation 

efficiency, a 100 µl aliquot of the sample was taken as the ‘ligated control’. The crosslinks 

were reversed as above and the sample run on a 0.6% agarose gel (as previously 

described).  
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To reverse the crosslinks, 30 µl Proteinase K (10mg/ml) was added and samples were left 

overnight at 65°C. The next day, 30 µl RNAse A (10mg/ml) was added and samples were 

incubated for 45 minutes at 37°C. DNA was extracted by adding 7 ml phenol-chloroform. 

Samples were mixed thoroughly then centrifuged at 3000 xg at room temperature. The 

water phase was transferred to a new 50 ml tube to which 7 ml of milli-Q H20, 7 µl of 

glycogen, 1.5 ml 2M NaAC pH 5.7 and 35 ml ethanol was added. Samples were placed at –

80°C overnight. The next day samples were centrifuged at 4°C for 30 min, 3000 xg. The 

supernatant was removed and 10 ml of cold 70% ethanol was added. Samples were 

centrifuged again for 15 min, 3000 xg at 4°C. The supernatant was removed and the pellet 

left to dry at room temperature. The pellet was dissolved in 150µl 10mM Tris pH 7.5. 

 Digestion with secondary restriction enzyme 2.10.4

 Each sample was transferred to a 1.7 ml tube, 50 µl 10X restriction buffer and 50 units of 

the restriction enzyme Csp6I (Fermentas # ER0211) was added and the volume made up 

to 500 µl with milli-Q H20. After an overnight incubation, 500 RPM shaking, at 37°C, a 5 µl 

aliquot of the sample was taken. This ‘digestion control’ was run on a 0.6% agarose gel.  

  Second ligation and DNA purification 2.10.5

The enzyme was inactivated as previously describe and the samples transferred to a 50 ml 

tube. 1.4 ml of 10X ligation buffer and 20 µl of ligase (100 U) (Roche Catalogue # 

10799009001) was added, then the reaction made up to 14ml with milli-Q H2O. After an 

overnight ligation at 16 °C, 1.4ml 2M NaAC pH 5.6, 14µl glycogen and 35ml of 100% 

ethanol were added.  Samples were stored at –80°C overnight. The next day samples 
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were centrifuged at 4 °C for 45 minutes, at 3750 RPM. The supernatant was removed and 

15 ml of cold 70 % ethanol was added. The samples were then centrifuged again for 15 

minutes, at 20°C and 3750 RPM.  Again, the supernatant was removed and the pellet then 

left to dry at room temperature. Once dry the pellet was dissolved in 150 µl 10mM Tris 

pH 7.5 at 37°C. Samples were then purified using a QIAquick PCR purification kit, 

according to the manufacturer’s protocol. Samples were eluted in 50 µl 10mM Tris pH 7.5 

and pool samples. DNA concentration of each 4C template was determined via analysis 

with a NanoDrop™ 2000 (Thermo Scientific). 

  View-point fragment selection and primer design 2.10.6

Restriction fragments greater than 350 bp and within 2kb of the target genomic region 

were selected as viewpoint fragments, dependent on the ability to design specific 

primers. A 5’ Illumina adapter sequence was added so the inverse-PCR products did not 

need further processing prior to sequencing. Reading primers were designed as close to 

the primary restriction site as possible, to reduce reads from the known viewpoint 

sequence. Non-reading primers were designed to regions less than 120kb from the 

secondary restriction site (table 10). 
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 PCR amplification and sequencing 2.10.7

200 ng of 4C template was used per PCR reaction. For each viewpoint and template, 16 

PCR reactions were conducted using an Expand Long Template system (ROCHE # 

11681834001) (see table 10 for primer sequences). The pooled PCR products (total 

volume 800 µl) were then purified using the High Pure PCR Product Purification Kit (Roche 

# 11732676001), to remove any adaptor containing primers (<120 bp). Samples were 

centrifuged to pellet any beads that escaped the column. The supernatant was taken, 

then the concentration and purity of this 4C template was assessed by a NanoDrop™ 

2000 (Thermo Scientific) (260/280 ration > 2 and 260/230 ratio > 1.8 was required). The 

libraries were then visualized on a 1.5% agarose gel. All 8 of the 4C libraries were pooled, 

and then multiplexed sequencing was performed on the HiSeq 2500 platform. The 

libraries were de-multiplexed, mapped and normalized using a published bioinformatic 

pipeline (282). 

 Differential analysis of 4C interactions 2.10.8

Individual fragment counts were calculated for every 1kb bin. A median was calculated, 

with a 3kb sliding window, and data from both biological replicates was merged. The R 

package DESeq2 was used to calculate the log2 fold change (RUNX1/ETO knockdown vs 

control) at the local genomic coordinates 
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Table 10: Viewpoint specific 4C-seq PCR primers 
 

Sample View point Primer sequence 

siMM REP 1 SPI1 PROMOTER FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGAGGAGCAGTGGCGATC 

siRUNX1/ETO REP 1  SPI1 PROMOTER FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGTGAGGAGCAGTGGCGATC 

siMM REP 2 SPI1 PROMOTER FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGTGAGGAGCAGTGGCGATC 

siRUNX1/ETO REP 2 SPI1 PROMOTER FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTTAGTGAGGAGCAGTGGCGATC 

 SPI1 PROMOTER REVERSE CAAGCAGAAGACGGCATACGAACTATGCCCTGGCTCAGA 

siMM REP 1 SPI1 URE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTCCAGGGAAGCCCAGATC 

siRUNX1/ETO REP 1  SPI1 URE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTGTGTCCAGGGAAGCCCAGATC 

siMM REP 2 SPI1 URE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTATGTCCAGGGAAGCCCAGATC 

siRUNX1/ETO REP 2 SPI1URE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGTCCAGGGAAGCCCAGATC 

 SPI1 ENHANCER REVERSE CAAGCAGAAGACGGCATACGATTCACCAGGCACAGACTT 

siMM REP 1 CD34 PROMOTER FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGATAGCCTCACCAGATC 

siRUNX1/ETO REP 1  CD34 PROMOTER FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTCAGTGATAGCCTCACCAGATC 

siMM REP 2 CD34 PROMOTER FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGTGATAGCCTCACCAGATC 

siRUNX1/ETO REP 2 CD34 PROMOTER FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTTAGTGATAGCCTCACCAGATC 

 CD34 PROMOTER REVERSE CAAGCAGAAGACGGCATACGAGTGCGTCTCTCTAGGAGC 

siMM REP 1 CD34 URE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTCGTGTGGCCCCATACAGATC 

siRUNX1/ETO REP 1  CD34 URE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTACGTGTGGCCCCATACAGATC 

siMM REP 2 CD34 URE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTGCGTGTGGCCCCATACAGATC 

siRUNX1/ETO REP 2 CD34 URE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGTGTGGCCCCATACAGATC 

 CD34 URE REVERSE CAAGCAGAAGACGGCATACGAAGGAAGCAATAGAGTGGAGG 

siMM REP 1 CD34 DRE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTTTTCCCCCTGCTCGATC 

siRUNX1/ETO REP 1  CD34 DRE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTACTTTTTCCCCCTGCTCGATC 

siMM REP 2 CD34 DRE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTTTTTCCCCCTGCTCGATC 

siRUNX1/ETO REP 2 CD34 DRE FORWARD AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTTCTTTTTCCCCCTGCTCGATC 

 CD34 DRE REVERSE CAAGCAGAAGACGGCATACGAAAAACTGCCAAGCAGCAG 
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Table 11: Genomic co-ordinates of selected viewpoint restriction fragments 
 

View point Primer sequence 

SPI1 Promoter  chr11:47399040-47398740 

SPI1 Upstream Regulatory Element (URE) chr11:  47414944-47414201 

CD34 Promoter  chr1:208,081,333-208082113 

CD34 Upstream Regulatory Element (URE) chr1:208,095,318-208,095,781 

CD34 Downstream Regulatory Element (DRE) chr1:208,034,222-208,035,512 
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Figure 2-1: Overview of the 4C method 
A) Schematic of 4C-seq experimental procedure. After formaldehyde cross-linking and digestion 
with the first restriction enzyme (DpnII) the chromatin is religated under dilute conditions to fuse 
interacting fragments. The DNA is digested with a second restriction enzyme (Csp6I) then ligated 
to form small DNA circles, which should now contain only one primary ligation junction. Inverse 
PCR primers designed to the view-point (restriction fragment of interest) allow specific 
amplification of fragments ‘captured’ by the viewpoint. The resultant library of fragments is 
subject to high throughput sequencing. B) Outline of 4C-seq primer and inverse PCR design. 
Inverse PCR primers specific to the viewpoint carry an illumina sequencing adaptor which means 
the resultant library does not require further processing. Sequencing reads consequently begin 
with the reading primer binding site. Therefore reading primers are designed as close to the 
primary restriction site as possible, to maximise coverage of the un-known sequence. Non-reading 
primers are designed to a sequence less than 120kb from the secondary restriction site. 



  99 
 

2.11 Capture HiC  

 

 

Figure 2-2: Schematic of Capture Hi-C experimental procedure 
Chromatin is fixed and digested as in 4C. In this case, biotin is incorporated into the ligation 
junction, allowing enrichment for ligation junctions via streptavidin pull down. Sequencing 
adapters are added during PCR amplification. The library is then enriched for promoter containing 
ligated fragments with biotinylated baits, designed to hybridize to 22,000 promoters. Streptavidin 
pull down is used to select promoter containing fragments. The resultant library is subject to 
paired-end sequencing. 

 

 

 Fixation and lysis of cells 2.11.1

 

5× 107 Kasumi-1 cells were fixed via suspension in 37 ml of RPMI-1640 supplemented with 

15% FBS and 2% formaldehyde. The cells were fixed for 10 minutes at room temperature 

while mixing. 6 ml of 1M glycine (0.125 M final concentration) was added to quench the 

reaction. Cells were incubated at room temperature for 5 min, followed by 15 minutes on 

ice. Cells were then pelleted by centrifugation at 400 x g for 10 minutes at 4 °C. The 
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supernatant was discarded and cells were washed in ice cold PBS. The cells were then 

pelleted and after removing the supernatant, each sample was flash frozen in liquid 

nitrogen, and stored at −80 °C. 

Cells were lysed in a tight dounce homogeniser (ten cycles) with 3ml of cold lysis buffer 

(10 mM Tris-HCl pH 8, 10 mM NaCl, 0.2% Igepal CA-630, one tablet protease inhibitor 

cocktail (Roche complete, EDTA-free, 11873580001)). Cells were left on ice for five 

minutes then homogenised another ten times. The lysed cells, in 3 ml lysis buffer, were 

added to 47ml of lysis buffer and incubated on ice for 30 minutes with occasional mixing.  

The chromatin was pelleted at 1800 rpm for 5 minutes at 4C and the supernatant 

discarded. The pellet was resuspended in 1ml of 1.25x NEBuffer 2 and split into four. Each 

sample was then pelleted at 1000 rpm and resuspended in 358 µl of 1.25x NEBuffer 2. 11 

µl 10% SDS was added and each tube was incubated at 37°C for 60 minutes, rotating at 

950 rpm. Samples were mixed by pipetting up and down every 15 minutes. The SDS was 

quenched with 75µl 10% Triton X-100 and incubated at 37˚C for 60 minutes, rotating at 

950 rpm. During the incubation, samples were mixed by pipetting up and down every 15 

minutes. 

 HindIII digestion, biotinylation and ligation of digested DNA ends 2.11.2

The chromatin was digested overnight with 1500 units of HindIII (NEB R0104T), rotating 

(950 rpm) at 37 °C. The HindIII cleavage of its restriction site (5’ AAGCTT 3’) generates a 5’ 

overhang (5’-AGCT-3’), which was repaired to include a biotinylated nucleotide, allowing 

the enrichment of Hi-C ligation products. To do this, 6µl 10x NEB2, 2µl H2O, 1.5µl 10mM 
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dCTP, 1.5µl 10mM dGTP, 1.5µl 10mM dTTP, 37.5µl 0.4mM biotin-14-dATP (Life 

Technologies 19524-016), and 10μl 5U/μl Klenow (DNA polymerase I large fragment, NEB 

M0210L) were added to each tube. Samples were mixed carefully and incubated for 60 

minutes at 37˚C, with mixing by pipetting every ten minutes. 

The digested chromatin mixture was added to a falcon tube with 8 ml of ligation buffer 

(750µl 10x ligation buffer (NEB B0202S), 75 μl 10mg/ml BSA (NEB B9001S) and 50 μl  

1U/μl T4 DNA ligase (Invitrogen 15224-025). These dilute conditions favour ligation of 

fragments crosslinked within the same chromatin complex (intra-molecular ligation). The 

tubes were mixed by inversion and incubated overnight at 16 °C. The following day, 

samples were incubated for a further 30 minutes at room temperature. 

 Crosslink reversal and DNA purification 2.11.3

Crosslinks were reversed and proteins degraded by incubating the tubes over night at 65 

˚C, with 60µl 10mg/ml proteinase K (Roche 03115879001). After the overnight 

incubation, another 60 µl of 10 mg/ml proteinase K per tube was added, followed by a 2 

hour incubation at 65˚C. 

 

The reaction mixtures were cooled to room temperature and 12.5 µl of 10 mg/ml RNase 

A (Roche 10109142001) was added. Samples were incubated at 37˚C for 60 minutes. The 

DNA in these tubes was purified with two phenol extractions. After ethanol precipitation, 

the DNA pellets were resuspended in 25µl 1x TE and the four samples were pooled. The 

Quant-iT assay was used to determine the DNA concentration of the resultant HiC library 

using a Qubit® 3.0 Fluorometer (Thermo Scientific).  
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 HiC ligation efficiency and quality controls 2.11.4

To check the library was sufficiently ligated, a 1/10 dilution was resolved on a 0.8% 

agarose gel. The majority of the library should run at around 10 kb. To confirm that blunt-

end ligation was successful, the fact that fill-in and ligation of a HindIII site (AAGCTT) 

creates a NheI restriction site (GCTAGC) was exploited. A particular ligation product 

formed by the MYC promoter and a known 1.8 MB long range interaction was amplified 

with 3C PCR (see table 12 for primer sequences). The same was done for a ligation 

product formed by the MYC promoter and an adjacent restriction fragment. 200ng of the 

purified PCR products were split into four and digested with HindIII, NheI or both 

enzymes, with undigested DNA is used as a control. The resultant DNA samples were run 

on a 1.5% gel (see figure 2-3) 

Table 12: 3C PCR primers 
 

Target restriction fragment Primer Sequence 

MYC promoter GGAGAACCGGTAATGGCAAA 

Restriction fragment < 1 kb from MYC promoter  TGAGGTCCCAGGCATTCTTT  

Restriction fragment 1.8 MB from MYC promoter AATAACAAGGCCCCCAAATTCT 
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Figure 2-3: Capture-HiC quality controls 
A) Hi-C libraries were resolved on a 0.8% agarose gel. The majority of DNA runs at approximately 
10 kb, which is indicative of sufficient ligation. The ligation efficiency is not 100%, hence the 
smear below. B) The purified HiC DNA is used as a template for PCR amplification. The DNA 
fragments generated from ligation of the MYC promoter with a neighbouring restriction fragment, 
and the MYC promoter with a 1.8MB distal fragment, is amplified using standard 3C PCR 
conditions. The amplicon is then digested with HindIII and/or NheI. Ligation products which have 
been efficiently biotinylated can be cut by NheI but not HindIII. C) After biotin pull down, one 
tenth of the immobilised Hi-C library was amplified from the streptavidin beads with 6, 9 or 12 
PCR cycles. The resultant DNA was resolved on a 1.5% agarose gel. A smear is just about visible at 
6 cycles. Therefore 7 cycles was selected for bulk amplification. D) Bioanalyser traces of HiC 
libraries pre and post sure select promoter enrichment. 
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 Removal of biotin from non-ligated DNA ends 2.11.5

To avoid pulling down any non-ligated fragments, biotin was removed from free ends 

using the exonuclease activity of T4 DNA polymerase. 8 reactions of  5μg of Hi-C library, 

0.5μl 10 mg/ml BSA, 5μl 10x NEBuffer 2, 2μl 2.5mM dATP, and 5μl T4 DNA polymerase 

(NEB M0203L) in a total volume of 50μl were made and incubated at 20˚C for 4 hours. 

The reaction was stopped by adding 2ml of 0.5M EDTA pH 8.0. Two reactions were 

pooled to generate four tubes of approximately 10ug DNA. The DNA was purified via 

phenol:chloroform extraction and ethanol precipitation. Each sample was reconstituted in 

130 μl H2O 

 DNA shearing and end repair 2.11.6

 An E220 focused-ultrasonicator (Covaris) was used to fragment the DNA with the 

intensity set to 4, the duty cycle set to 10% and with 200 cycles per burst for 55 seconds. 

After sonication,  the entire volume of each sample was transferred into a fresh 

Eppendorf tube and 18μl 10x ligation buffer (NEB B0202S),18μl 2.5mM dNTP mix, 6.5μl T4 

DNA polymerase (NEB M0203L),6.5μl T4 DNA Polynucleotide kinase (NEB M0201L) and 

1.3μl Klenow (NEB M0210L) were added. The reaction was left for 30 minutes at room 

temperature. Each sample was then split into two and purified with a MinElute column 

(Qiagen 28004), according to the manufacturer’s instructions. Each column was eluted 

twice with 15 μl TLE (10mM Tris pH8.0, 0.1mM EDTA). 
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  A-taling and size selection 2.11.7

To the sheared and end repaired DNA , 5 μl of NEBuffer 2 10x, 11.5 μl dATP 1mM and 3.5 

μl Klenow exo- (NEB M0212L) were added. The reaction was incubated for 30 minutes at 

37 ˚C. To inactivate the enzyme, each reaction was incubated at 65˚C for 20 minutes, and 

put on ice immediately afterwards. Fragments between 200 and 650 base pairs were size 

selected by double-sided SPRI bead (ampure) size selection (0.6x followed by 0.9x), 

following the manufacturers protocol.  All Hi-C library samples were then pooled and 

quantified with the Quant-iT™ High-Sensitivity DNA Assay Kit (Invitrogen) and assayed on  

the  Qubit™ Fluorometer (Invitrogen).  

 Biotin-streptavidin pulldown and adapter ligation 2.11.8

The biotin marked fragments were immobilized via MyOne Strapavidin C1 DynaBeads 

(Invitrogen) following manufacturers protocol. The fragments were ligated to illumina 

paired-end adaptors. The immobilized Hi-C fragments were amplified via PCR, using PE 

PCR primers 1 and 2 with 7 cycles. 

PE PCR 1 - AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT  

PE PCR 2- CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGA  

The Hi-C library was then purified twice with solid phase reversible immobilization (SPRI) 

beads (Beckman Coulter Ampure XP beads A63881) with a 1:1.8 DNA to SPRI bead ratio. 
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 Test PCRs to determine conditions for Hi-C library amplification 2.11.9

To determine the optimal number of PCR cycles for Hi-C library, test PCRs were set up 

with 6, 9 and 12 amplification cycles. Each reaction contained 2.5 µl of Hi-C library DNA 

on beads, 5 µl of phusion buffer 5x (NEB F531), 0.7 µl dNTP mix, 0.75 ul PE PCR primer 1, 

0.75 µl PE PCR primer 2, 0.3 µl Phusion polymerase (NEB F531)  and 16.35 µl of H2O. The 

PCR programme was set as follows: 

 

1 cycle 98°C  30 seconds 

 65°C 30 seconds 

 72°C 30 seconds 

n - 2 cycles  98°C 10 seconds 

 65°C 30 seconds 

 72°C 30 seconds 

1 cycle: 98°C 10 seconds 

 65°C 30 seconds 

 72°C 7 minutes 

 

The amount of amplified DNA was assessed by running the entire reaction (25 μl) on a 1.5 

% agarose gel. A smear in the range of 300 bp to 600 bp was be just about visible at 6 

cycles of amplification and increased in intensity with increasing number of PCR cycles. 7 

cycles were selected for bulk PCR amplification. 
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 Final PCR amplification of Hi-C library 2.11.10

The remaining volume of HiC library DNA on beads was amplified following the above PCR 

reaction set up (i.e. 2.5 µl of beads per reaction). The beads were separated from the 

reaction mixture with a magnet and the supernatant was purified twice with solid phase 

reversible immobilization (SPRI) beads (Beckman Coulter Ampure XP beads A63881), 

following the manufacturer’s instructions. The library was quantitated with the Quant-iT™ 

High-Sensitivity DNA Assay Kit (Invitrogen) and assayed on the Qubit™ 

Fluorometer (Invitrogen) and run on the bioanalyzer (Agilent).  

 Hybridization of Hi-C library with biotin-RNA 2.11.11

750 ng of each library was desiccated with a SpeedVac. After evaporation of all liquid, the 

HiC DNA pellet was suspended in 3.4 μl of H2O. 2.5 μl of custom block 1, 2.5 μl of custom 

block 2 μl and 0.6 μl of custom oligo block (Agilent Technologies) were added. After 

thorough mixing the solution was transferred into a PCR strip and kept on ice. 49 µl of 

hybridisation buffer was made per sample. Hybridisation buffer consists of 25 μl 

SureSelect Hybridization solution 1 (Agilent Technologies), 1 μl SureSelect Hybridization 

solution 2 (Agilent Technologies), 10 μl SureSelect Hybridization solution 3 (Agilent 

Technologies) and 13 μl SureSelect Hybridization solution 4 (Agilent Technologies). The 

buffer was mixed thoroughly, heated to 65˚C for 5 minutes, then transferred into a PCR 

tube strip and kept at room temperature.   
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The SureSelect RNase Block (Agilent Technologies) was diluted 1:4 with nuclease free 

water. 2 µl of the dilution was added to 5 μl biotinylated RNA baits (custom made, Agilent 

Technologies (77).After thorough mixing, the whole 7 μl was transferred to a PCR tube 

strip and kept on ice.  

A PCR machine (Thermocycler, Biometra) was set to 95 ˚C for 5 minutes at 65 ˚C forever, 

with the lid heated to 98 ˚C. The PCR strip containing the HiC library and custom blockers 

was added to the pre-heated PCR machine and the protocol was started.  After just over 5 

minutes (once the temperature had reached 65˚C) the PCR strip with the hybridization 

buffer was added to the PCR machine.  After 5 minutes (10 minutes since the start of the 

PCR program), the PCR strip with the biotinylated RNA bait was transferred to the PCR 

machine.  After 2 minutes, 13 μl of hybridization buffer from the PCR strip was added to 

the 7 μl of RNA bait (grey into cross-hatched).  The PCR strip containing the hybridization 

buffer was discarded. Immediately after, all of the HiC library and custom blockers (9 μl) 

was added into the 20 μl of RNA bait with hybridization buffer.  

After 24 hours at 65˚C, a biotin pulldown and washes were performed as follows. Per 

capture HiC sample, 60 μl of Dynabeads MyOne Streptavidin T1 (Life Technologies 65601) 

were washed three times with binding buffer (Agilent). With the streptavidin beads in 200 

μl of binding buffer, the entire hybridization reaction was taken from the PCR machine 

and transferred into the tube containing the streptavidin beads. This was incubated on a 

rotating wheel for 30 minutes at room temperature. 
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After 30 minutes, the beads were washed with 500 μl wash buffer I (agilent). The beads 

were incubated in wash buffer I at room temperature for 15 minutes and vortexed every 

2 to 3 minutes for 5 seconds. The beads were then washed with wash buffer II (pre-

warmed to 65˚C). The beads with wash buffer II were incubated at 65˚C for 10 minutes 

and vortexed for 5 seconds every 2 to 3 minutes. This was repeated for a total of 3 

washes. After removing the supernatant, the beads were washed in 200 μl 1xNEB2, then 

resuspend in 30 μl of 1xNEB2 and transferred to a fresh tube.  

 Capture HiC library amplification 2.11.12

A post-capture PCR amplification step was carried out, using PE PCR 1.0 and PE PCR 2.0 

primers, following the previously describe protocol with only 4 PCR cycles.  DNA was 

purified twice with 1.8x volume of SPRI beads (Beckman Coulter Ampure XP beads 

A63881), following the manufacturer’s instructions and resuspend in nuclease free H2O. 

The library was quantitated with the Quant-iT™ High-Sensitivity DNA Assay Kit 

(Invitrogen) and assayed on the Qubit™ Fluorometer (Invitrogen) and run on the 

bioanalyzer (Agilent).  

 Capture HiC data analysis 2.11.13

 

The capture Hi-C paired-end sequencing reads were put through a publically available 

pipeline called HiCUP (283).  The raw sequencing reads are separated and mapped against 

the positions of the human genome (hg19). The reads were then filtered for experimental 

artefacts and duplicate reads, and then re-paired.  By aligning the reads a read count per 
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restriction fragment was obtained. Statistically significant interactions were called with 

another bioinformatic package called GOTHiC (284). This uses a cumulative binomial test 

to detect interactions between distal genomic loci that have significantly more reads than 

expected by chance, by using a background model of random interactions. This analysis 

assigns each interaction with a p-value, which represents its significance. Differential 

interactions (control vs RUNX1/ETO depletion) were determined by comparing the p-

values with HOMER bioinformatic software (285). A difference with a p-value of less than 

0.1 was deemed to be significant. 
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Chapter 3. RESULTS 

3.1 CBF complex inhibition in t(8;21) AML cells 

 Treatment of HL60 and Kasumi-1 cells with CBF complex inhibitor induces 3.1.1

apoptosis in a dose dependant manner 

Experiments using RUNX1 specific siRNA have shown that RUNX1 is essential for the 

viability of t(8;21) AML cells  (265, 266). This identified wild type RUNX1 as a novel 

therapeutic target in t(8;21) AML. However siRNA is not an easily feasible therapeutic 

option. For this reason, as well as several others, efforts have been made to generate 

small molecule inhibitors of RUNX1. One such compound is an allosteric inhibitor 

designed to block the Runt domain-CBFβ interaction, and thus inhibit RUNX1 DNA binding 

and transcriptional activity.  

As RUNX1/ETO also interacts with CBFβ via its runt domain, the compound may also 

inhibit RUNX1/ETO function. The effect of RUNX1 knockdown on cell viability is not seen 

with a combined knockdown of RUNX1/ETO and RUNX1 (266). This suggests that the 

extent to which the compound affects either protein will determine the outcome on cell 

viability. We therefore set out to test whether these compounds were efficient at 

inhibiting DNA binding of RUNX1 and RUNX1/ETO. 

Firstly, it was necessary to determine the cytotoxicity of the compounds, in order to 

accurately assess the effect of the inhibitor in subsequent gene expression and Chromatin 

immunoprecipitation (ChIP) experiments. To this end, Kasumi-1 and HL60 cells were 
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treated with increasing concentrations of the inhibitor compound, in increments of 10 

μM. Kasumi-1 cells are a widely used and well characterised model of t(8;21) AML (199, 

204, 219, 256, 265). HL60 cells, a promyelocytic leukaemia cell line with only wild type 

RUNX1, was included in the analysis to examine whether RUNX1 dependence was specific 

to AML cells with CBF abnormalities. The same titration was conducted with the inactive 

control compound. An additional DMSO vehicle control was included. In this condition, 

the DMSO concentration applied was equal to the amount of DMSO administered with 

the inhibitor and control compounds.  

The proportion of apoptotic cells was assessed by staining cells with PI and Annexin V 

followed by flow cytometry analysis at 6 hrs, 24 hrs and 48 hrs after inhibitor application. 

The results from treatment with 10 μM, 50 μM and 100 μM concentrations are presented 

in figure 3-1.  An increase in inhibitor concentration was associated with an elevated 

percentage of apoptotic cells at 24 hrs and 48 hrs. In contrast, at 6 hrs, cell viability was 

unaffected. HL60 cells were more sensitive to the inhibitor than Kasumi-1 cells (figure 3-

1).  
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Figure 3-1: Treatment of HL60 and Kasumi-1 cells with CBF complex inhibitor induced apoptosis 
in a dose dependant manner 
Titrations of 10 μM -100 μM CBF complex inhibitor, the control compound, and a vehicle control 
(the concentration of DMSO used in each condition) were applied to Kasumi-1 and HL60 cells. 
Annexin V and propidium iodide (PI) staining followed by flow cytometry analysis was used to 
assess cell viability at 6 hours, 24 hours and 48 hours. Annexin V-FITC (x-axis; log scale) and PI (y-
axis; log scale) plots are shown from 10 μM, 30 μM and 100 μM of each compound, and from the 
DMSO control for each concentration. An untreated control was also included. The percentage 
stated to the right of each plot represents the sum of the proportion of cells in quadrants R3 (cells 
positive to for Annexin V) and R5 (cells positive for Annexin V and PI). A) Kasumi-1 cells treated for 
6 hours. B) Kasumi-1 cells treated for 24 hours. C) Kasumi-1 cells treated for 48 hours. D) HL60 
cells treated for 6 hours. E) HL60 cells treated for 24 hours. F) HL60 cells treated for 48 hours. The 
results presented are from one of three experiments with the same findings. 
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 The CBF complex inhibitor has no significant effect on transcription factor binding 3.1.2

Application of the CBF complex inhibitor led to cell death in both Kasumi-1 and HL60 cells. 

To determine whether this was due to the inhibition of Runt domain to DNA binding, 

Chromatin immunoprecipitation (ChIP) analysis was conducted and RUNX1 binding was 

measured at the Pu.1 enhancer where this factor, as well as RUNX1/ETO, is known to bind 

(199). ChIP analysis cannot be conducted on apoptotic cells since cell death will affect 

transcription factor binding, and mask the specific effects of the compound. To 

circumvent this issue a low, non-toxic concentration was applied for 24 hours and 48 

hours, and binding of RUNX1 to the target loci was assessed at these time points. 

Inhibitor treatment had no effect on RUNX1 enrichment (figure 3-2 A). We hypothesised 

that an effect was not seen due to an insufficient concentration of inhibitor. 100 μM of 

inhibitor killed both cell lines at 24 hours, thus suggesting the inhibitor is potent at this 

concentration. Therefore, ChIP analysis was conducted after 6 hr incubation with 100 μM 

compound; under these conditions inhibitor treated Kasumi-1 and HL60 cells had not yet 

gone into apoptosis. We also measured PU.1 binding as a control, as it is a protein that 

should not be affected by the compound. The ChIP results, in both cell lines, suggested 

the inhibitor still had no effect on the binding of RUNX1, CBFβ, PU.1 or RUNX1/ETO to the 

Pu.1 enhancer, despite the increase to the concentration of inhibitor applied (figure 3-2 

B).  

In conclusion, the application of the CBF complex inhibitor led to the death of Kasumi-1 

and HL60 cells. However, the inhibitor treatment resulted in no detectable effect on the 

DNA binding of RUNX1 or RUNX1/ETO.  
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Figure 3-2: The CBF complex inhibitor had no significant effect on transcription factor binding 
A) ChIP-qPCR showing RUNX1 enrichment at the PU.1 enhancer and IGFBP7 promoter in Kasumi-1 
cells treated with 10 µM control compound and 10 µM CBf complex inhibitor for 24 hours (left) 
and 48 hours (right). Bar graph presents two biological replicates (REP 1 and REP 2). B) To 
circumvent issues with cell death; a high concentration (100 µM) was applied for a short incubation 
time (6 hours). Cell viability was not effected (data not shown). Bar graphs present ChIP-qPCR data 
showing RUNX1, RUNX1/ETO, CBFβ and PU.1 enrichment at a shared target, the - 14 kb PU.1 
enhancer. 
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3.2 The effect of RUNX1/ETO depletion on gene expression and the role of Sp1 in 
t(8;21) AML 

Work published by the Alvarez lab suggests that an association between the transcription 

factor Sp1 and RUNX1/ETO may contribute to RUNX1/ETO mediated leukemic 

transformation. Furthermore, our DNaseI data revealed that RUNX1/ETO knockdown may 

have an influence on the binding of Sp-factor family binding proteins to the SP1 motif. 

Therefore, to investigate the role of Sp1 in t(8;21) AML we assessed the effect of 

RUNX1/ETO knockdown on genome wide Sp1 binding via ChIP-seq. 

These experiments involved depletion of RUNX1/ETO from t(8;21) AML cells. An efficient 

siRNA mediated knockdown system has already been established (199, 219, 257). We 

recently obtained an inducible shRNA system for the depletion of RUNX1/ETO from 

SKNO-1 R/E cells. These are SKNO-1 cells (a t(8;21) AML cell line) transduced with a 

doxycycline inducible shRNA specific to RUNX1/ETO (courtesy of Olaf Heidenreich). This is 

a favourable system as it allows prolonged, stable RUNX1/ETO depletion and circumvents 

the need of repeat transfections, which will allow more accurate time course analysis of 

gene expression. Furthermore, it will facilitate the manipulation of t(8;21) AML cells in the 

presence and absence of RUNX1/ETO. 
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 RUNX1/ETO depletion leads to the upregulation of genes involved in 3.2.1

myelomonocytic differentiation 

The reversible nature of the RUNX1/ETO mediated block in differentiation has already 

been demonstrated via targeted depletion of RUNX1/ETO with siRNA (199). Here we wish 

to test a doxycycline inducible shRNA specific to RUNX1/ETO and see if comparable 

results are obtained. 

We performed RUNX1/ETO knockdown with both systems (siRNA and shRNA), followed 

by quantitative PCR. These experiments were conducted to confirm efficient RUNX1/ETO 

knockdown for use in future experiments and will also manually validate our existing 

microarray data (obtained with the siRNA system) (199). Quantitative PCR analysis was 

conducted to quantify RUNX1/ETO mRNA levels at 24 hrs, 48 hrs and 72 hrs after 

transfection or doxycycline induction. In order to avoid depletion of wild type RUNX1, the 

siRNA and shRNA sequences were designed to target the RUNX1-ETO junction within the 

transcript of RUNX1/ETO (199).  The specificity of the siRNA and shRNA to RUNX1/ETO 

was assessed by RUNX1 mRNA quantification. As shown in Figure 3-3, effective 

knockdown of RUNX1/ETO mRNA was achieved with both systems, on the protein and 

mRNA level; a greater than 50% mRNA knockdown was seen at each time point. 

Knockdown efficiency was similar with both systems. With the exception of SKNO-1 R/E 

cells at 72 hours, RUNX1/ETO siRNA and shRNA appeared to have no effect on RUNX1 

expression.  
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Next we investigated the effect of RUNX1/ETO depletion on the expression of known 

RUNX1/ETO target genes and control genes. The level of mRNA was measured at 24 hrs, 

48 hrs and 72 hrs after siRNA transfection/shRNA induction in Kasumi-1 or SKNO-1 R/E 

cells respectively. We observed a significant up regulation of RUNX1/ETO target genes in 

both (t8;21) cell lines. With the exception of CEBPA, all genes showed the greatest up 

regulation 48 hrs and 72 hrs post siRNA/shRNA induction. For example NFE2, a 

transcription factor gene involved in haematopoietic differentiation, displayed a 3-4 fold 

increase in both cell lines (286). There was also upregulation of CSF1R and IGFBP7. CSF1R 

is a gene encoding the receptor for colony-stimulating factor-1, a growth factor involved 

in the control of macrophage differentiation (287). IGFBP7 is gene that has recently been 

associated with normal hematopoiesis and acute leukemia (288) (figure 3-3). 
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Figure 3-3: RUNX1/ETO depletion led to the up regulation of genes involved in haematopoietic 
differentiation  
Upper panels shows, via western blot and qPCR, the expression level of RUNX1/ETO following three 
days of RUNX1/ETO knockdown via siRNA transfection (A) or induction of RUNX1/ETO specific 
shRNA with doxycycline (B). Lower graphs show myeloid gene expression in Kasumi-1 and SKNO-1-
R/E cells, 24 hours, 48 hours and 72 hours after transfection with RUNX1/ETO specific siRNA for 
Kasumi-1 cells (A) or induction of RUNX1/ETO specific shRNA with doxycycline for SKNO-1-R/E cells 
(B). All data is normalised to GAPDH and relative to the control; the control for Kasumi-1 is cells 
treated with the control siRNA, the control for SKNO-1-R/E is non induced cells (- doxycycline). 
Results shown are the average of three biological replicates. Error bars represent the standard 
deviation between the three replicates.  
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 The SP1 motif is more protected from DNaseI digestion after RUNX1/ETO 3.2.2

knockdown 

Given the extensive gene expression changes and transcription factor binding alterations, 

we hypothesised that RUNX1/ETO knockdown may have an effect on chromatin 

accessibility. DNaseI digestion was therefore conducted on cells before and after 

RUNX1/ETO knockdown in order to determine the effect of RUNX1/ETO knockdown on 

chromatin accessibility (see section 1.8 and figure 1-13). This DNaseI experiment was 

conducted by Dr Anetta Ptasinska (219).  

Work primarily from Alvarez et al. has suggested that Sp1 may play an important role in 

t(8;21) AML leukaemogenesis, via an interplay with RUNX1/ETO (247, 262). We therefore 

used the above DNaseI-seq data to investigate whether Sp1 has a role in the response to 

RUNX1/ETO knockdown. Using footprinting analysis, we determined whether the Sp1 

motif (which is also bound by other members of the Sp-family) was differentially 

protected from digestion after RUNX1/ETO knockdown, which would indicate that Sp-

factor family binding was is affected by RUNX1/ETO. Interestingly, when all DNaseI cuts 

are aligned around the Sp1 motif, we see an increase in protection of the motif after 

RUNX1/ETO knockdown. This suggests that following RUNX1/ETO knockdown the 

genome wide binding of Sp proteins might increase (figure 3-4).  
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 RUNX1/ETO knockdown has no effect on the expression of Sp1 3.2.3

The apparent increase in protection of the Sp1 motif after RUNX1/ETO knockdown could 

be due to an increase in Sp1 expression. To determine the effect of RUNX1/ETO 

knockdown on Sp1 expression, Kasumi-1 cells were transfected with either control or 

RUNX1/ETO specific siRNA and after two days protein and mRNA levels were assessed. 

RUNX1/ETO knockdown appeared to have no effect on SP1 mRNA or protein expression 

(figure 3-5).   
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Figure 3-4: RUNX1/ETO knockdown increased protection of the Sp1 motif. 
 DNaseI cutting frequency data was aligned around the SP1 motif, across all binding sites. Data from 

siMM (red) and from siRE (grey) cells were compared. The reduction in cuts at the centre represents 

the protection of the motif from cleavage by DNaseI, presumably by transcription factor binding. 

DNaseI experiment conducted by Dr Anetta Ptasinska. 

Figure 3-5: RUNX1/ETO knockdown had no effect on the expression of Sp1 
A) qRT-PCR showing expression of SP1 over a 3 day time course of siRNA mediated RUNX1/ETO 
knockdown. Error bars represent the standard deviation between three biological replicates.  
B) Western blot detecting Sp1 protein in Kasumi-1 cells treated for 48 hrs with mismatch control 
siRNA (siMM) and with RUNX1/ETO siRNA (siRE). Both nuclear protein and protein from whole cell 
lysate are shown. GAPDH and H3 expression were used as loading controls for whole and nuclear 
protein respectively.  
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 Sp1 and RUNX1/ETO bind to distinct sites in the genome  3.2.4

The DNaseI footprinting analysis suggested that RUNX1/ETO knockdown has an effect on 

Sp1 binding (figure 3-4). To assess whether this was the case, we performed Sp1 ChiP-seq 

on Kasumi-1 cells transfected with either mismatch or RUNX1/ETO specific siRNA. 

RUNX1/ETO knockdown led to the loss of 2934 Sp1 binding sites, with the acquisition of 

only 415 new sites (3-6 A). Maiques-Diaz A et al. found that that there is an enrichment of 

Sp1 binding at RUNX1/ETO target genes and propose an important role for Sp1 in the 

DNA binding pattern of RUNX1/ETO (264). In order to determine whether, in our system, 

RUNX1/ETO and Sp1 are associated with each other at the DNA, we overlapped Sp1 ChIP-

seq peaks with RUNX1/ETO ChIP-seq peaks from control Kasumi-1 cells. We found that 

RUNX1/ETO and Sp1 do not bind the same genomic sites; less than 7% of Sp1 binding 

sites were co-occupied by RUNX1/ETO (3-6 B). This suggests that Sp1 and RUNX1/ETO do 

not associate with each other at the DNA.  

We then wished to see whether differential Sp1 binding was associated with the gene 

expression changes which occur after RUNX1/ETO knockdown. This would help us to 

determine if Sp1 plays a role in RUNX1/ETO mediated transformation and transcriptional 

reprogramming. To do this, we determined the number of genes differentially expressed 

by RUNX1/ETO knockdown that were within 1.5 Kb of a Sp1 peak. In control and 

RUNX1/ETO knockdown cells, Sp1 binds to less than 30% of genes which respond to 

RUNX1/ETO knockdown. This is the case for both up and down regulated genes (figure 

3.2.4 D). Sp1 is predominantly a promoter binding transcription factor, this was confirmed 

by our analysis (figure 3-6 C) (289). 
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In summary, we found no association between RUNX/ETO and Sp1 binding. RUNX1/ETO 

knockdown did not have a considerable effect on Sp1 binding and the two proteins do not 

associate with each other at the DNA. Sp1 is therefore unlikely to contribute to 

RUNX1/ETO mediated leukaemogenesis.    
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Figure 3-6: Sp1 and RUNX1/ETO bound to distinct sites in the genome and RUNX1/ETO 
knockdown had no effect on Sp1 binding  
A) RUNX1/ETO knockdown has little effect on genome wide binding of Sp1. Kasumi-1 cells were 
electroporated with either RUNX1/ETO specific siRNA (siRE) or control siRNA (siMM) . Two days 
after siRNA electroporation, SP1 binding was measured by ChIP sequencing in both populations. 
The Venn diagram demonstrates the overlap between siMM SP1 ChIP-seq peaks and siRE SP1 
ChIP-seq peaks. B) Sp1 and RUNX1/ETO bind to primarily distinct sites in the genome. The Venn 
diagram shows the overlap between Sp1 ChIP-seq (siMM data set) and RUNX1/ETO ChIP-seq 
peaks. RUNX1/ETO ChIP-seq data from Ptasinska et al. was used in the analysis (198).  
C) RUNX1/ETO knockdown has no effect on the distribution of Sp1 peaks relative to transcription 
start site (TSS) of the nearest gene. The plot demonstrates the proportion of Sp1 ChIP-seq peaks 
that are proximal or distal to the TSS in both siMM and siRE data sets. D) There is no correlation 
between Sp1 binding and gene expression. The plot demonstrates the proportion of Sp1 ChIP-seq 
peaks in Kasumi-1 cells electroporated with either RUNX1/ETO specific siRNA (siRE) or control 
siRNA (siMM) which are within 1.5 kb of a gene differentially expressed by RUNX1/ETO 
knockdown. Blue bars are genes upregulated after RUNX1/ETO knockdown. Red bars are genes 
down regulated after RUNX1/ETO knockdown.  
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3.3 The importance of C/EBPα expression levels in t(8;21) AML 

Previous experiments have shown that CEBPA is strongly down-regulated in t(8;21) cells. 

The repression comes from inhibition of CEBPA auto-regulation via a direct interaction 

between the RUNX1/ETO and C/EBPα, as well as the direct repression of the CEBPA 

promoter and enhancer by RUNX1/ETO binding (199) (198). Of the several transcription 

factors analysed, C/EBPα was the only protein significantly upregulated after RUNX1/ETO 

knockdown. This was accompanied by an increase in genome wide C/EBPα binding by 

more than fourfold (figure 1-12), indicating that this factor plays an important role in re-

establishing a myelomonocytic gene expression program after knock-down.  Combined 

with the already established crucial role of C/EBPα in myeloid differentiation, these data 

led us to question whether C/EBPα is the key driver of the differentiation response seen 

after RUNX1/ETO knockdown.  
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 C/EBPα is required for the full upregulation of myeloid genes after RUNX1/ETO 3.3.1

depletion 

To test the above hypothesis, we knocked down RUNX1/ETO with and without 

concomitant knockdown of C/EBPα. As seen in previous experiments (3-3), there was an 

approximately two fold increase in CEBPA expression following RUNX1/ETO knockdown 

(figure 3-7 A and B) and an increase in the expression of other RUNX1/ETO target genes 

(MS4A3, NKG7, RNASE2) (figure 3-7 C). The addition of C/EBPα knockdown to RUNX1/ETO 

knockdown significantly inhibited the upregulation of these genes. These data show that 

the alleviation of CEBPA repression by RUNX1/ETO knockdown is required for the full 

upregulation of at least a subset of RUNX1/ETO target genes.  

MS4A3, NKG7, RNASE2 genes had inhibited upregulation in response to the addition of 

C/EBPα knockdown to RUNX1/ETO knockdown. We found that these genes were 

upregulated in response to C/EBPα overexpression (see section 1.3.3 and figure 3-11). 

This validates the role of C/EBPα in the upregulation of myeloid genes after RUNX1/ETO 

knockdown.  
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Figure 3-7: C/EBPα is required for the full upregulation of myeloid genes after RUNX1/ETO 
depletion  
A) qRT-PCR showing RUNX1/ETO and CEBPA mRNA expression levels in Kasumi-1 cells 72 hrs 
after electroporation with the indicated siRNAs. Results represent the mean ± SEM of five 
independent experiments. *p < 0.05 by paired student’s t test. B) Western blot indicating 
RUNX1/ETO and C/EBPα protein expression levels in mock transfected (no siRNA), RUNX1/ETO 
knockdown, C/EBPα knockdown and double knockdown Kasumi-1 cells. Cells were transfected 
with the indicated siRNAs. An antibody against H3 was used as a loading control. C) mRNA levels 
of MS4A3, NKG7, and RNASE2 72 hrs after electroporation with the indicated siRNAs. The bars 
represent the mean ± SEM of five independent experiments. *p < 0.05, **p < 0.01 by paired 
Student’s t test. Data published in Ptasinska et al 2014. 
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 Activation of a β-Estradiol inducible form of C/EBPα in t(8;21) AML cells alleviates 3.3.2

differentiation block  

Given that the alleviation of CEBPA from RUNX1/ETO mediated repression was critical for 

the full differentiation response, we tested if overexpression of C/EBPα is sufficient to 

override the differentiation block. C/EBPα was overexpressed using a 17β-Estradiol 

inducible system (290). Kasumi-1 cells were transduced with a retrovirus from which a 

C/EBPα – estrogen receptor fusion protein is constitutively expressed (see figure 3-8 A 

and methods section 1.9) (290). However, only upon 17β- Estradiol addition can the 

fusion protein translocate into the nucleus and have transcriptional activation activity 

(figure 3-8 A). Induction of C/EBPα over a time course of 8 days lead to a gradual increase 

in myeloid differentiation, demonstrated by an increase in the surface expression of the 

myeloid marker CD11b (figure 3-8 B). This was accompanied by a decrease in the surface 

expression of c-Kit (figure 3-8 C).  

C/EBPα is known to both drive the expression of myeloid genes and supress stem cell 

genes (202). This was also true in this study as manual qPCR gene expression analysis 

showed that C/EBPα induction led to an increase in the expression of myeloid genes such 

as CTSG and a down regulation of the stem cell genes MPL, SOX4, ERG and CD34 (figure 3-

8 D). 
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Figure 3-8: Activation of a β-Estradiol inducible form of C/EBPα in t(8;21) AML cells alleviated 
differentiation block with a reduction in self renewal  
A) Kasumi-1 cells were transduced with a construct from which a C/EBPα – estrogen receptor fusion protein 
is constitutively expressed. Upon 17β- Estradiol addition, the fusion protein can dissociate from Hsp90 and 
translocate into the nucleus. B) C/EBPα activation in Kasumi-1 cells stably transduced with C/EBPα-ER 
fusion leads to an increase in CD11b cell surface expression. The flow cytometry plots show a gradual 
increase in CD11b expression over 8 days of 17β-Estradiol mediated C/EBPα activation. C) C/EBPα activation 
in Kasumi-1 cells stably transduced with C/EBPα-ER fusion leads to a decrease in Kit surface expression after 
4 days. D) C/EBPα activation in Kasumi-1 cells stable transduced with C/EBPα-ER fusion leads to a decrease 
in the expression of selected self-renewal genes and an increase in the expression of selected myeloid 
genes. Mock transduced Kasumi-1 cells were used as a control (Kasumi-1). Results shown are the average of 
three biological replicates and error bars indicate the standard deviation. ‘ctrl’ is no 17β-Estradiol ‘B-
Estradiol’ is four days 17β-Estradiol treatment  

D 



  135 
 

 Genes that are differentially expressed after RUNX1/ETO knockdown are 3.3.3

correlated with genes that are differentially expressed by C/EBPα induction 

 

Our experiments so far suggest that C/EBPα overexpression may be sufficient to override 

the RUNX1/ETO mediated differentiation block and direct cells back on course for 

myeloid differentiation. Such a process entails that the changes in gene expression 

patterns observed during myelopoiesis would be restored. To test this theory, and 

directly compare the effect of RUNX1/ETO knockdown with C/EBPα over expression, we 

conducted a genome wide mRNA expression analysis. RNA-seq libraries were prepared 

from Kasumi-1 cells with and without C/EBPα induction, as well as mock transduced cells 

with and without 17β- Estradiol treatment as a control. These data were then compared 

to existing RNA-seq data sets generated from Kasumi-1 cells with and without 

RUNX1/ETO knockdown, which were generated in Olaf Heidenreich‘s lab (199).  

Expression data from genes which changed expression by at least two fold, in response to 

either C/EBPα or RUNX1/ETO knockdown, were subject to unsupervised hierarchical 

clustering and presented using a heat map (figure 3-9 A). The data show very few changes 

in gene expression in control cells whereas the induction of C/EBPα led to a dramatic 

alteration in the gene expression pattern. We then identified genes which changed 

expression by more than two-fold after 4 days of C/EBPα induction, as well as after 4 days 

of RUNX1/ETO knock-down. Figure 3-9 B displays an unsupervised clustering of fold-

change of gene expression, indicating common clusters of genes which were up- or 

downregulated by both RUNX1/ETO knockdown and C/EBPα overexpression.  
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To examine the significance of the association between the genes differentially expressed 

by RUNX1/ETO knockdown and those differentially expressed by C/EBPα induction, we 

performed Gene Set Enrichment Analysis (GSEA) (figure 3-9 C). GSEA analysis determines 

the enrichment of genes differentially expressed by C/EBPα in the set of genes 

differentially expressed by RUNX1/ETO knockdown. Furthermore, it determines whether 

the genes respond in the same way to each manipulation. The plots demonstrate that 

many of the differentially expressed genes are shared between the two gene sets. A p-

value of <0.001 indicates that the genes differentially expressed by induction of C/EBPα 

represent a statistically significant proportion of the set of genes differentially expressed 

by RUNX1/ETO depletion.  Furthermore, it shows that those genes upregulated by C/EBPα 

are often also upregulated by RUNX1/ETO. The same is true for genes which are down 

regulated by each condition. Examples of shared, upregulated genes include the myeloid 

genes CTSG, LAPTM5, LCP1, MS4A3, NKG7 and RNASE2. Examples of shared down 

regulated genes include DUSP6 (a regulator of cell signalling) (291) and the stem cell gene 

CD34. 
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To visually compare the data sets in a genome wide fashion, principal component analysis 

was conducted with all expressed genes (figure 3-9 D). The three largest components 

were used to separate the gene sets. The expression of C/EBPα-ER (via the addition of 

17β- Estradiol) led to changes in the gene expression profile of Kasumi-1- C/EBPαER cells, 

leading to a separation of ‘ER plus and ER minus’ data sets by principal components two 

and three. In contrast, ‘CTRL plus and CTRL minus’ are positioned directly adjacent to 

each other, demonstrating the lack of gene expression change following doxycycline 

addition. The siMM and siRE gene sets are spread in the same direction by the same 

principal components (two and three), suggesting similar gene expression changes occur 

following RUNX1/ETO knockdown and C/EBPα overexpression. However, principal 

component one separates the RUNX1/ETO knockdown and C/EBPα over expression gene 

sets, suggesting there are some differences in the gene expression profiles.  
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Figure 3-9: Genes that are differentially expressed by RUNX1/ETO knockdown were correlated with 
genes that were differentially expressed by C/EBPα induction 
A) Hierarchical clustering of genes differentially expressed in response to 4 days CEBPα induction .The 
genes included in the heat map are those which are differentially expressed between ‘ER minus’ and ‘ER 
plus’ datasets i.e. genes that change expression following C/EBPα induction with 17β-Estradiol . The 
expression level of these genes in mock transduced Kasumi-1 cells with and without 17β-Estradiol is 
shown in lanes 1 and 2 respectively). B) Hierarchical clustering of genes differentially expressed, by at 
least twofold, in response to 4 days RUNX1/ETO knockdown and 4 days CEBPα induction in Kasumi-1 
cells. The heat map plots the RNA log2 raw expression derived from RNA-seq data. Dark red indicates 
highly upregulated genes and grey indicates highly downregulated genes. Note how there are subsets of 
genes which are upregulated/downregulated by both C/EBPα induction and RUNX1/ETO knockdown. 
These represent a significant proportion of the heat map. These are highlight by the yellow and light blue 
boxes. ‘ER plus’ and ‘ER minus’ are data sets from Kasumi-1 cells transduced with the CEBPα-ER 
construct, with and without 17β-Estradiol treatment respectively. siMM and siRE are data sets from 
Kasumi-1 cells transfected with mismatch siRNA and RUNX1/ETO specific siRNA respectively. C) Gene Set 
Enrichment Analysis (GSEA) of genes differentially expressed following CEBPα induction vs genes 
differentially expressed following RUNX1/ETO knockdown. The upper section of the plot (green line) 
indicates the running enrichment score for the gene set as the analysis goes along the ranked list of 
genes (gene differentially expressed siMM vs siRE). The middle section of the plots (black vertical lines) 
indicates where genes of the gene set appear in the ranked list of genes. The lower portion is the ranking 
metric of the ranked gene list  (siMM vs siRE genes). The iCEBPα and siMM vs siRE gene expression data 
were obtained via RNA-seq. D) 3D Principal component analysis using the three largest principal 
components to separate the gene expression data set, which were derived from RNA-seq experiments. 
‘CTRL plus’ is data from mock transduced Kasumi-1 cells treated with 17β-Estradiol. ‘CTRL minus’ is data 
from mock transduced Kasumi-1 cells without 17β-Estradiol treatment. See ‘B’ for explanation of point 
labels. 
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 Almost half of the genes differentially expressed by RUNX1/ETO knockdown are 3.3.4

also differentially expressed by C/EBPα induction 

The results so far suggest that RUNX1/ETO knockdown and C/EBPα overexpression have 

similar effects on the gene expression profile of Kasumi-1 cells. To directly quantify the 

extent to which C/EBPα induction mimics RUNX1/ETO knockdown, we overlapped the 

genes upregulated by RUNX1/ETO knockdown with genes upregulated by induction of 

C/EBPα, and presented the data in a Venn diagram (figure 3-10).  The same analysis was 

performed for down-regulated genes. Almost half the genes upregulated by C/EBPα 

induction were also upregulated by RUNX1/ETO knockdown. This was also the case for 

down regulated genes (figure 3-10 A) (See the appendices for a list of differentially 

expressed genes that are shared between RUNX1/ETO knockdown and C/EBPα 

overexpression). 

To try and determine if the effects seen by C/EBPα overexpression are directly due to 

C/EBPα binding, we calculated the proportion of genes differentially expressed by C/EBPα 

overexpression that are C/EBPα targets. We used existing C/EBPα ChIP-seq data to assign 

C/EBPα target genes (219). We found that the majority of upregulated genes are C/EBPα 

targets, however only 20% of down regulated genes are normally bound by C/EBPα 

(figure 3-10 B). 
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We next investigated whether the genes differentially expressed by C/EBPα induction 

were also bound by RUNX1/ETO, to examine whether C/EBPα up-regulation could directly 

override the repression mediated by RUNX1/ETO. The results suggest this could be the 

case; the majority of differentially expressed genes were RUNX1/ETO targets (figure 3-10 

B). 

Taken together, our data indicated that C/EBPα is necessary for the differentiation 

response seen after RUNX1/ETO knockdown, and C/EBPα overexpression was sufficient 

to override the RUNX1/ETO mediated blockade of differentiation. This demonstrated that 

C/EBPα is an essential part of the pathway repressed by RUNX1/ETO.  
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Figure 3-10: Almost half of the genes differentially expressed by RUNX1/ETO knockdown 
were also differentially expressed by C/EBPα induction  
A) Left Venn diagram demonstrates the overlap between genes upregulated by induction of 
C/EBPα and those upregulated by siRE. Right Venn diagram demonstrates the overlap 
between genes downregulated by induction of C/EBPα and those downregulated by siRE. 
Data was obtained via RNA-seq and only genes with a greater than two fold expression 
change were included. B) The bar graph presents the proportion of genes upregulated (dark 
grey)/down regulated (light grey) by C/EBPα that are bound by RUNX1/ETO or C/EBPα or 
both. Binding was determined by ChIP-seq.  
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 Figure 3-11: RUNX1/ETO target genes that were inhibited by C/EBPα knockdown were 
upregulated by induction of C/EBPα 
UCSC genome browser screen shot of RNA-seq data. Tracks represent, from top to bottom: mock 
transduced Kasumi-1 cells, mock transduced Kasumi-1 cells with 17β-Estradiol, Kasumi1-C/EBPαER 
cells and finally Kasumi1-C/EBPαER cells with 17β-Estradiol. Y-Axis represents normalised RPKM 
values for the expression of A) NKG7 B) MS4A3 and C) RNASE2. Data shown is from one of two 
biological replicates with similar results.   
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3.4  The effect of RUNX1/ETO knockdown on selected promoter-enhancer interactions 

It is well established that alterations in gene expression can be reflected by changes in 

DNA looping interactions (63, 118). There is an increasing body of evidence that 

transcription factors initiate and maintain these DNA loops (63, 279-281). We therefore 

hypothesised that the gene expression changes and alterations to the transcription factor 

binding profile after RUNX1/ETO knockdown may be accompanied by alterations in 

specific promoter enhancer interactions. To this end we used 4C-seq before and after 

RUNX1/ETO depletion to look at the contact intensity of specific DNA interactions.  

4C-seq is a method used to assess all the interactions taking place with a specific region of 

the genome, termed the ‘viewpoint’. The techniques follows the fundamental principles 

of chromosome conformation captures; DNA is crosslinked, then fragmented and re-

ligated to generate chimeric DNA fragments which represent regions of the genome that 

interact in vivo. These are then characterised by high throughput sequencing. 
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We used 4C-seq to determine interactions at the CD34 locus and SPI1/PU.1 locus. CD34 

gene was of interest as CD34 expression is associated with the immature status of 

hematopoietic cells; expression is rapidly lost after hematopoietic cells differentiate. 

Moreover, its expression is also down-regulated after RUNX1/ETO depletion (199). 

Furthermore, at this locus we see significant alterations in the enrichment of transcription 

factors, namely the myeloid transcription factor C/EBPα (219). PU.1 is a myeloid 

transcription factor encoded by the SPI1 gene. It has a crucial role in haematopoietic 

differentiation. SPI1 also exhibits changes in C/EBPα enrichment after RUNX1/ETO 

depletion (219) (figure 3-12).  

 

SPI1 and CD34 gene expression is regulated by previously characterised enhancer regions. 

These enhancers physically loop to their respective promoters to regulate gene 

expression (292-294). Work from the Tenen lab has demonstrated that RUNX1 binding 

sites are crucial for the interaction between the promoter and enhancer of both the PU.1 

and CD34 loci (295) (63). As RUNX1 and RUNX1/ETO both contain a RUNT domain, and 

both bind to these genes (199), it is possible that removal of RUNX1/ETO could therefore 

have an influence on the interactions taking place at these loci.  
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Figure 3-12: SPI1 and CD34 loci were selected for 4C experiments as they are bound by RUNX1/ETO, 
RUNX1 and C/EBPα and are differentially expressed after RUNX1/ETO knockdown  
Transcription factor binding at the A) SPI1 and B) CD34 loci. Top track (grey) shows RUNX1/ETO ChIP – 
seq peaks in Kasumi-1 cells. Tracks 2 and 3 are C/EBPα ChIP-seq peaks in Kasumi-1 cells transfected 
with siMM and siRE respectively. Tracks 4 and 5 are RUNX1 ChIP-seq peaks in Kasumi-1 cells 
transfected with siMM and siRE respectively. Tracks 6 and 7 are RNA-seq data from Kasumi-1 cells 
transfected with siMM and siRE respectively. 
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 A reciprocal interaction between the SPI1 promoter and its upstream regulatory 3.4.1

element (URE) was detected 

In order to determine the effect of RUNX1/ETO expression on selected cis-regulatory 

element interactions, RUNX1/ETO was depleted from Kasumi-1 cells via a four-day siRNA 

mediated knockdown. Chromatin from two biological replicate experiments was 

harvested. The knockdown was efficient and consistent between the two replicates. We 

then assessed DNA interactions with the SPI1 and CD34 loci using 4C-seq.  

PU.1 expression is regulated by an enhancer element 14Kb upstream of the SPI1 

promoter (URE)(293). In agreement with previous findings (293) we detected a strong 

interaction between the two cis-elements which was indicated by a peak in the median 

contact intensity trend line at the SPI1 promoter, with a corresponding red region in the 

contact intensity heat map (figure 3-13 A). The interaction was confirmed by a reciprocal 

4C experiment in which the promoter was used as a viewpoint (figure 3-13 B).  The 

reciprocal 4C revealed another interaction -22kb from the SPI1 promoter which was 

consistently associated with both the SPI1 promoter and URE (figures 3-13).  
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Figure 3-13: 4C-seq detected a reciprocal interaction between the SPI1 promoter and URE  
Local 4C contact profile with a viewpoint from the PU.1 upstream regulatory element (URE) (A) and 
PU.1 promoter (B), using chromatin from Kasumi-1 cells transfected with control siRNA (siMM) 
RUNX1/ETO specific siRNA (siRE). In the top panel (main trend), the contact intensity (black line) is 
calculated using a running median analysis of normalised read counts with a 3 kb sliding window. 
The 20th and 80th percentile are visualised as a grey trend graph. In the bottom panel, contact 
intensities are computed using linearly increasing sliding windows (scaled 2–50 kb) and displayed 
as a colour-coded heat map of positive 4C signal (maximum interaction set to 1). Local colour 
changes are log-scaled to indicate changes of statistical enrichment of captured sequences, 
corresponding to the enhancer – promoter interaction. The results presented here are an average 
of two biological replicates.  
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 A reciprocal interaction between the CD34 promoter and its URE was detected 3.4.2

Experiments in transgenic mice have shown that CD34 expression in long-term 

haematopoietic stem cells is affected by the physical interaction between the promoter 

and a -19kb downstream regulatory element (DRE) (63, 292) . With the CD34 promoter as 

a viewpoint, an interaction between this DRE and the CD34 promoter was detected in our 

human t(8;21) AML model. We also detected an interaction between the CD34 promoter 

and an element +12kb upstream (URE) (figure 3-14 A). This interaction was confirmed via 

reciprocal 4C with the URE as the viewpoint (figure 3-14 B) 

Figure 3-14 also demonstrates that the neighbouring gene, LOC148696, interacts with the 

CD34 promoter, URE and the DRE. In addition, we detected several other intervening 

interactions. These correspond to DNaseI hypersensitive sites (data not shown), 

suggesting that these interactions may have a regulatory role.  
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Figure 3-14: 4C-seq detected specific interactions at the CD34 locus  
Local contact profile analysis with a viewpoint from the CD34 promoter (A), CD34 upstream 
regulatory element (URE) (B) and CD34 downstream regulatory element (DRE) (C) using 
chromatin from Kasumi-1 cells transfected with mismatch siRNA (siMM) RUNX1/ETO specific 
siRNA (siRE). In the top panel (main trend), the contact intensity (black line) is calculated using a 
running median analysis of normalised read counts with a 3 kb sliding window. The 20th and 80th 
percentile are visualised as a grey trend graph. In the bottom panel, contact intensities are 
computed using linearly increasing sliding windows (scaled 2–50 kb) and displayed as a colour-
coded heatmap of positive 4C signal (maximum interaction set to 1). Local colour changes are log-
scaled to indicate changes of statistical enrichment of captured sequences, corresponding to the 
enhancer – promoter interaction. The results presented here are an average of two biological 
replicates.  



  151 
 

 4C-seq data was highly reproducible 3.4.3

Hierarchical clustering on pairwise correlation coefficients was used to determine the 

correlation between 4C-seq data from all samples (figure 3-15). The heat map 

demonstrates a strong correlation between biological replicates. This indicates the 

experiment was highly reproducible. There is also a strong correlation between samples 

of the same viewpoint but transfected with a different siRNA. There is no correlation 

between samples with different viewpoints. 

 Genomic proximity cannot always be used as a predictor of enhancer function 3.4.4

 

It is often assumed that cis-elements will preferentially target the nearest gene. However, 

Figure 3-13 shows that the SPI1 URE forms an interaction with the SPI1 promoter, rather 

than a gene 3 Kb closer (SLC9A13). A strong interaction is detected between the SPI1 

promoter and -14kb URE, but not between the -14kb URE and SLC39A13 promoter. This is 

despite the open chromatin conformation of SLC9A13 and the fact that its promoter is 

involved in an interaction with the SPI1 promoter. 
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Figure 3-15: 4C-seq data was highly reproducible  
Hierarchical clustering on pairwise correlation coefficients of 4C-seq data from all samples with 
viewpoints at the A) PU.1 locus and B) CD34 locus. The heat map demonstrates a strong 
correlation between biological replicates. There is also a strong correlation between samples of 
the same viewpoint but transfected with a different siRNA. There is no correlation between 
samples with different viewpoints. 
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  RUNX1/ETO depletion has no significant effect on the interactions between cis-3.4.5

regulatory elements at SPI1 and CD34 loci 

We sought to determine whether RUNX1/ETO knockdown had an effect on the 

interactions detected in the SPI1 and CD34 loci. Differential analysis was conducted with 

the R package ‘DESeq2’, to give a log2 fold change between the RUNX1/ETO knockdown 

and control data, at 1kb resolution. The log2 fold change for each genomic co-ordinate 

was then plotted (Figure 3-16). We saw no significant changes in interaction frequencies 

at the regions surrounding the viewpoint. 

In conclusion, although RUNX1 binding site elimination inhibits promoter-enhancer 

interactions at the PU.1 and CD34 loci (63, 295), RUNX1/ETO knockdown had no 

significant effect on the interactions taking place at these loci. This is despite the fact 

these genes are differentially expressed after RUNX1/ETO knockdown.  
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Figure 3-16: Differential analysis revealed no significant difference in interaction frequency 
after RUNX1/ETO depletion  
R package DESeq2 was used to calculate the log2 fold change between the median interaction 
frequency at each restriction fragment of the control (CTRL) and RUNX1/ETO knockdown (KD) 4C-
seq data, with viewpoints A) PU.1 promoter B) PU.1 URE C) CD34 promoter D) CD34 URE and E) 
CD34 DRE. The y axis represents the log2 fold change (RUNX1/ETO knockdown vs control) and the 
x-axis shows the genomic coordinates surrounding the viewpoint.    A fold change >2 was not 
detected at any restriction fragment of the genomic region analysed.  
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3.5 The effect of RUNX1/ETO knockdown on genome wide cis-regulatory element 

interactions 

RUNX1/ETO knockdown had no effect on the DNA interactions taking place at the PU.1 

and CD34 loci, despite the differential expression of these genes after knockdown. 

However we could not conclude that RUNX1/ETO had no influence on DNA interactions as 

we only interrogated two regions. There are hundreds of genes which alter their 

expression after knockdown; perhaps differences would be seen here. Preparing 

independent 4C libraries to assess all of these genes would be prohibitively expensive, as 

well as time consuming. Furthermore, this technique is limited by the ability to design 

specific and efficient primers to the region of interest.   

We therefore decided to use a genome wide approach so that we could look at thousands 

of interactions in just one experiment. The original genome wide interaction mapping 

method is called HiC. This technique is a true genome wide approach and the 

experimenter can therefore look at all ligation junctions. However, due to the massively 

complex nature of the resultant library, the level of signal for any given point in the 

genome is very low. This requires the use of an infrequently cutting enzyme and large 

windows of analysis, so that signal can be pooled in order to gain informative signal. As a 

result, resolution is low and this method is more suitable for mapping large scale domain 

structures of the genome, rather than detailed, specific promoter to cis-element 

interactions.  
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To circumvent this issue a technique was developed called Capture HiC (77, 141). In this 

method, traditional HiC library preparation is combined with solution hybridization 

selection to enrich HiC libraries for the long-range contacts of the 22,000 promoters to 

which the hybridization array is designed.  The required breadth of sequencing coverage 

is therefore reduced, so that the resolution and signal increases, enabling us to detect 

specific DNA interactions.  

 The majority of DNA interactions in Kasumi-1 cells are intrachromosomal 3.5.1

 

To map the genome wide DNA interactions we performed Capture HiC with the t(8;21) 

AML cell line, Kasumi-1. We wished to determine whether RUNX1/ETO had an effect on 

DNA interactions, so libraries were prepared using cells with and without 4 day siRNA 

mediated RUNX1/ETO knockdown. Two biological replicate samples were prepared.  

As a means of quality controlling our HiC data, we first looked for well-established 

features of genome organisation, such as chromosome territories (131). To do this we 

plotted a matrix of genome wide interactions at a 10 Mb resolution (figure 3-17). We 

found that the majority of chromosomal interactions occurred in cis i.e. within the same 

chromosome. This is clearly illustrated by the blocks of high contact intensity centred 

along the diagonal of the heat map. This trend should always occur, regardless of cell type 

or species (92, 99).  The depiction of chromosome territories offered reassurance that the 

experiment was successful. Figure 3-17 also demonstrated the reproducibility of the 

Capture HiC assay. The genome wide interactions matrices from biological replicate 1 and 

biological replicate 2 were almost identical.  
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Figure 3-17: 10 Mb resolution genome wide contact matrix showed the majority of DNA interactions 
are intrachromosomal 
Contact matrix across the whole genome. Each pixel represents a 10 Mb section of the genome. Colour 
intensity represents interaction frequency. The blocks of high contact intensity centred along the 
diagonal demonstrate the fact the majority of interactions occur intrachromosomally. The t(8;21) 
chromosomal translocation is detected. A) Interaction matrix generated with data from kasumi-1 cells 
transfected with siMM for four days. B) Interaction matrix generated with data from Kasumi-1 cells 
transfected with siRE for four days. Left hand plots are from biological replicate 1 and right hand plots are 
from biological replicate 2. Interaction data was generated by Capture HiC. 
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To further validate our data, we looked for evidence of the t(8;21) translocation in our 

interaction matrix. The ability to detect translocations with chromosome conformation 

capture analysis has been demonstrated previously (296, 297). Encouragingly, we saw a 

block of high contact intensity representing apparent interactions between chromosomes 

8 and 21, which signifies the t(8;21) translocation.  

 Interaction frequency decreases with genomic distance 3.5.2

To generate figure 3-18 we focused on a single chromosome, chromosome 8, at higher 

resolution (1 Mb). Again we saw a strong diagonal of high contact intensity. This 

represents the well-established notion that the probability of DNA interaction decreases 

exponentially with genomic distance (92, 134). Based on this concept, a plot of expected 

contact intensity would decay to almost no signal after a relatively short distance. 

However, in the matrix constructed with our data, we can see regions of significant 

interaction at large genomic distances. This suggests that we have detected specific long 

range interactions.    
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Figure 3-18: The 1 Mb resolution contact matrix of chromosome 8 showed a trend of decreased 
interaction frequency with genomic distance 
Contact matrix across chromosome 8, depicted in a heat map. Each pixel represents a 1 Mb section of 
the genome. Colour intensity represents interaction frequency. A) Interaction matrix generated with 
data from Kasumi-1 cells transfected with siMM for four days. B) Interaction matrix generated with data 
from Kasumi-1 cells transfected with siRE for four days. Interaction data was generated by Capture HiC. 
Data from replicate 1 one is shown here. 

A 

B 
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In summary, our promoter-capture HiC assays reproducibly detected interactions and 

they follow the expected trend. At the resolution of analysis used thus far it was not 

possible to define specific promoter-enhancer interactions; a higher resolution of analysis 

is required. Before doing so, it was necessary to determine which interactions are 

statistically significant. To this end, HOMER software was used to determine statistically 

significant interactions, taking into account the p-value and false discovery rate (FDR) 

relative to a background model. The heat map present in figure 3-19 shows the results of 

statistical analyses of all interactions taking place in chromosome 19.  
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Figure 3-19: Capture HiC interaction data was analysed to extract statistically significant interactions.  
Contact matrix across chromosome 19, depicted in a heat map. Each pixel represents a 50 kb section of 
the genome. The colour represents the p-value of the interaction. The more blue the interaction, the 
more statistically significant it is and the redder, the less statistically significant. A) Interaction matrix 
made with data from Kasumi-1 cells transfected with siMM for four days. B) Interaction matrix made 
with data from Kasumi-1 cells transfected with siRE for four days. Interaction data was generated by 
Capture HiC. To determine statistically significant interactions, reads from replicate 1 and 2 were 
merged. 
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 RUNX1/ETO knockdown led to alterations in specific promoter-cis element 3.5.3
interactions 

 

We next analysed our CHiC data to examine whether the knock-down of RUNX1/ETO led 

to changes in the interactions between cis-regulatory elements. At low resolution (50Kb), 

no obvious differences were visible between the genome wide interaction matrices of 

control and RUNX1/ETO depleted cells (Figure 3-17). This result suggests that RUNX1/ETO 

depletion has no effect on the overall large-scale genomic organisation in t(8;21) cells.  

However, differences between cell types are more likely to lie in specific promoter-cis –

regulatory element interactions (92). We therefore analysed our data at higher resolution 

to help us determine what was driving the gene expression changes triggered by 

RUNX1/ETO knockdown. We were particularly interested in identifying the transcription 

factors that could be driving changes in cis-regulatory element interactions. To this end, 

using HOMER bioinformatics software, we performed differential analysis between the 

Capture HiC interactions in Kasumi-1 cells with and without RUNX1/ETO knockdown. A p-

value 0.1 was considered to be a significant differential interaction.  
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To identify transcription factor binding sites within interacting cis-elements, all significant 

interactions were filtered against our DHS data, such that only those ligated HindIII 

fragments overlapping with DHS were included in the analysis. This enabled us to direct 

our analysis to the cis-regulatory elements that were likely to be controlling gene 

expression. To this end, we used previously published DNaseI data from control and 

RUNX1/ETO depleted Kasumi-1 cells (219). Figure 3-20 A shows that approximately 30% 

of the significant interactions detected were DNaseI hypersensitive, confirming that many 

of them are of a structural nature (77, 99). In contrast, the majority of the DNaseI 

hypersensitive sites in the genome are taking part in Capture HiC interactions (Figure 3-20 

B).  

 

 

 

Figure 3-20: Capture HiC interactions were filtered using DNaseI-seq data 
A) Percentage of Capture HiC interactions which are DNaseI hypersensitive B) Percentage of DNaseI 
hypersensitive sites involved in a Capture HiC interactions in Kasumi-1 cells transfected with mismatch 
(siMM) and RUNX1/ETO specific siRNA (siRE).  
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Figure 3-21 presents a comparison of all of the statistically significant interactions taking 

place in chromosome 19 between control and RUNX1/ETO depleted cells, with reduced 

interactions being plotted in blue and increased interactions plotted in red. This analysis 

shows that there were interactions which significantly change in intensity following 

RUNX1/ETO knockdown.  We found that 917 interactions were significantly upregulated 

and 1457 were significantly downregulated after RUNX1/ETO knockdown. This result 

suggests that the removal of RUNX1/ETO has an effect on promoter-cis element 

interactions. 

                 

                        

 

 

 

Figure 3-21: RUNX1/ETO knockdown led to statistically significant differences in interaction strength.  
This heat map presents the differential interactions in chromosome 19 as determined by Capture HiC. 
Each pixel represents a 50 kb section of the genome. The colour intensity represents the significance of 
the difference between the interactions strength in control and RUNX1/ETO knockdown (p-value). Blue 
interactions significantly decrease after RUNX1/ETO knockdown. Red interactions significantly increase 
after RUNX1/ETO knockdown.  
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 Capture HiC data support the 4C-seq data at the CD34 and SPI1 loci 3.5.4

 

In order to validate our CHiC results, we extracted the interaction profiles from the Spi1 

(Pu.1) and CD34 genes, visualised them on the UCSC genome browser and compared the 

results to our 4C data (Figure 3-22). This analysis revealed a significant interaction 

between the CD34 promoter and both the known upstream and downstream regulatory 

elements. We also found that the Spi.1/Pu.1 promoter was involved in a significant 

interaction with the already characterised -14kb enhancer region. These interactions did 

not change significantly after RUNX1/ETO knockdown, as demonstrated by the lack of a 

peak in the ‘up’ or ‘down’ track. Our 4C-seq experiments, which demonstrate that 

RUNX1/ETO knockdown has no effect on these interactions (figures 3-13 and 3-14), were 

therefore in concordance with the data from Capture HiC.  
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Figure 3-22: Capture HiC data agreed with 4C data 
Tracks 1 and 2 show 5 kb sections of the genome taking part in a significant interaction with the A) 
CD34 promoter or B) PU.1 promoter, in cells transfected for 4 days with siMM and siRE respectively. 
The height of the block presents the - log p-value. Tracks 3 and 4 mark interactions which change 
significantly after RUNX1/ETO knockdown. The height of the blocks represents the fold change. A) Red 
dashed lines mark the upstream and downstream regulatory elements. B) Red dashed line represents 
the -14 kb enhancer. 
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 The gene expression changes after RUNX1/ETO knockdown are associated with 3.5.5
alterations in cis-regulatory element interactions but are not directly correlated 

 

Alterations in gene expression can be reflected by changes in specific cis-regulatory 

element interactions (63, 118). This was true for gene expression changes after 

RUNX1/ETO knockdown. To examine whether differential interactions were directly 

correlated with the changes in gene expression before and after RUNX1/ETO knock-down, 

i.e. whether reduced interactions led to a loss and increased interaction led to an increase 

in gene expression, we conducted a Gene Set Enrichment analysis (GSEA). Figure 3-23 

shows that there was no direct correlation, meaning that genes which were upregulated 

after RUNX1/ETO knockdown were associated with both increased and decreased DNA 

cis-regulatory element interactions. The same was true for down regulated genes, 

indicating a complex relationship between gene expression control and cis-regulatory 

element interactions. 
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Figure 3-23: Differential interactions were not directly correlated with differential gene expression. 
Gene Set Enrichment Analysis (GSEA) based on interactions differentially increasing (left) or decreasing (right) 
by RUNX1/ETO knockdown. The upper section of the plot (green line) indicates the running enrichment score 
for the genes corresponding to the differential interaction in the ranked list of genes below (gene 
differentially expressed by RUNX1/ETO knockdown). The middle section of the plots (black vertical lines) 
indicates where genes corresponding to the differential interaction appear in the ranked list of genes. The 
lower portion is the ranking metric of the ranked gene list (gene differentially expressed siMM vs siRE). The 
siMM vs siRE gene expression data was obtained via RNA-seq.  



  170 
 

The most likely reason for this observation is that, within a given gene locus, there is not a 

binary on/off interaction with a single enhancer, rather expression control involves 

multiple cis-regulatory elements with net positive or negative effects. After RUNX1/ETO 

knockdown gene promoters alter the cis-regulatory elements they interact with; 

increasing interactions with some elements and decreasing interactions with others. This 

was the case at several differentially expressed genes. Figure 3-24 presents examples of 

significantly upregulated haematopoietic genes (PRAM1, SELPG and SRGN) which have 

both increasing and decreasing interactions with their promoters. The same is true for the 

down regulated stem cell gene CD34 (figure 3-22 A). PRAM1 encodes PML-RAR Regulated 

Adaptor protein which is associated with granulocytic maturation (298). SELPLG encodes 

a glycoprotein expressed on the surface of myeloid cells (299). SRGN encodes a 

proteoglycan granule protein and is primarily expressed in haematopoietic cells (300) .  

To visualise interactions between cis-regulatory elements of specific genes, we uploaded 

the Capture HiC interaction data to the UCSC genome browser together with other 

genome-wide data sets generated by Dr Anetta Ptasinska (199, 219). For example, in 

figure 3-24 the Capture HiC interactions taking place with the PRAM1, SELPG and SRGN 

promoter are presented along with RUNX1/ETO, C/EBPα and RNA Polymerase II ChIP-seq 

data. In addition, DNaseI-seq data is presented.   
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Figure 3-24: Differentially expressed haematopoietic gene promoters, such as SELPLG, SRGN and 
PRAM1, had both increased and decreased cis-element interactions after RUNX1/ETO knockdown 
Dashed red line represents the ‘viewpoint’ of analysis i.e. the promoter from which the interactions are 
being assessed. Tracks 1 and 2 show 5 kb sections of the genome taking part in a significant interaction 
with the A) SELPLG B) PRAM1 and C) SRGN promoters (genes significantly upregulated after RUNX1/ETO 
knockdown), in cells transfected for 4 days with siMM and siRE respectively and measured via Capture 
HiC. The height of the block presents the -log p-value. Tracks 3 and 4 mark interactions which change 
significantly after RUNX1/ETO knockdown. The height of the blocks represents the fold change. Track 3 
marks interactions that increase after RUNX1/ETO knockdown. Track 4 marks interactions with decrease 
after RUNX1/ETO knockdown. Tracks 5 and 6 show DNaseI-seq data from siMM and siRE cells respectively. 
Tracks 7-10 show the binding patterns of P300, C/EBPα, RUNX1/ETO, RUNX1 and LMO2 p300 in siMM and 
siRE cells. D) UCSC genome browser screen shots of RNA-SEQ data demonstrating the upregulation of, 
from top to bottom, SELPLG, PRAM1 and SRGN after RUNX1/ETO knockdown. siMM data is from Kasumi-1 
cells transfected with control siRNA for four days. siRE data is from Kasumi-1 cells transfected with 
RUNX1/ETO specific siRNA  

D 
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 RUNX1/ETO depletion led to differential interactions at the CEBPA locus 3.5.6

 

This study has convincingly demonstrated that maintaining low levels of C/EBPα 

expression is critical for the maintenance of t(8;21) leukaemia. We therefore examined 

the interactions made by the CEBPA promoter in detail to gain more insight into how 

C/EBPα expression levels were regulated. Figure 3-25 illustrates the local interactions 

made by the CEBPA promoter. Interestingly, this promoter interacts with the 

neighbouring downstream gene CEBPG which encodes for another member of the C/EBP 

family, and with several upstream hypersensitive sites. One of these interactions 

corresponds to the already defined +40 kb enhancer (200). The interaction strength with 

this enhancer was not significantly altered by RUNX1/ETO knockdown. However, an 

interaction at +29 kb significantly increased after RUNX1/ETO knockdown. This site is 

hypersensitive and enriched for p300 binding. It is also bound by both C/EBPα and 

RUNX1/ETO. 

To further assess the reproducibility of our data, we checked to see whether the 

promoter-promoter interaction between the CEBPA promoter and the CEBPG promoter 

were detected when either promoter was used as the ‘view-point’. Reassuringly this was 

the case. Figure 3-26 demonstrates that the interaction detected between the CEBPA 

promoter and the CEBPG promoter (figure 3-25) is detected with CEBPG promoter as the 

‘viewpoint’. In both cases this interaction decreases following RUNX1/ETO depletion. 

In conclusion RUNX1/ETO knockdown had no effect on large-scale, domain structures of 

the genome. However, the presence of RUNX1/ETO does appear to influence the 

interaction profile of specific gene promoters.  
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Figure 3-25: The C/EBPA promoter engaged in a strong interaction with a putative enhancer at +29 kb 
following RUNX1/ETO knockdown  
Dashed red line represents the ‘viewpoint’ of analysis i.e. the promoter from which the interactions are 
being assessed. Tracks 1 and 2 show 5 kb sections of the genome taking part in a significant interaction with 
the C/EBPA promoter, in cells transfected for 4 days with siMM and siRE respectively. The height of the 
block presents the – log p-value. Tracks 3 and 4 mark interactions which change significantly after 
RUNX1/ETO knockdown. The height of the blocks represents the fold change. Tracks 5 and 6 show DNaseI 
hypersensitivity in siMM and siRE cells respectively. Tracks 7-10 show the binding patterns of C/EBPα, 
RUNX1/ETO and p300.   
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Figure 3-26: The CEBPG-CEBPA promoter-promoter interaction was detected with either CEBPA or CEBPG 
promoters as the ‘viewpoint’ 
Dashed red line represents the ‘viewpoint’ of analysis i.e. the promoter from which the interactions are 
being assessed. Tracks 1 and 2 show 5 kb sections of the genome taking part in a significant interaction with 
the CEBPG promoter, in cells transfected for 4 days with siMM and siRE respectively. The height of the 
block presents the – log p-value. Tracks 3 and 4 mark interactions which change significantly after 
RUNX1/ETO knockdown. The height of the blocks represents the fold change. Tracks 5 and 6 show DNaseI 
hypersensitivity in siMM and siRE cells respectively. Tracks 7-10 show the binding patterns of C/EBPα, 
RUNX1/ETO and p300.   
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 C/EBPα and CTCF play a major role in mediating differential cis-regulatory 3.5.7
element interactions before and after RUNX1/ETO knock-down 

 

To gain more insight into the mechanisms mediating the differential interactions, we 

investigated whether the change in interaction strength was associated with the level of 

DNaseI hypersensitivity, transcription factor occupancy and changes in gene expression. 

To this end, differential interactions were ranked by fold-change in p-value (figure 3-27). 

Fold change represents the difference in interaction strength between control and 

RUNX1/ETO knockdown. Associated DNaseI hypersensitive sites involved in differential 

interactions were plotted alongside. C/EBPα, RUNX1 and RUNX1/ETO ChIP-seq reads 

were then plotted around the summit of these DNaseI hypersensitive sites. In order to 

see whether CTCF was involved in changing interactions, we also examined whether its 

binding sites changed. We did not have CTCF ChIP-seq data, so CTCF motif enrichment 

was used instead. CTCF was included in this analyses as it is has a principal role in the 

global organisation of chromatin architecture (301).  

The resultant heat map, presented in figure 3-27, again supports the lack of direct 

correlation between the differential interaction fold change and gene expression change 

(figure 3-23). It also demonstrated that some genes with differential interactions are not 

differentially expressed (column 10). We also saw that differential interactions did not 

reproducibly correspond to alterations in the DNaseI hypersensitivity of the cis-regulatory 

elements involved (columns 2 and 3).  
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Figure 3-27 shows that the DHSs mediating the differential interactions were bound by 

RUNX1/ETO, RUNX1 and C/EBPα. The differential interactions exhibited an increase in 

C/EBPα binding. The interactions which went up after RUNX1/ETO knockdown appeared 

to have a greater increase in C/EBPα enrichment, relative to those interactions that went 

down. We plotted the average C/EBPα enrichment at all the differentially interacting 

DNaseI sites, to see whether this was indeed true. The average profile presented in figure 

3-28 A offers a clear depiction of increased C/EBPα binding at differential interactions, 

particularly those that increased in interaction after RUNX1/ETO knockdown. This 

suggests that C/EBPα may play a role in driving the changes to promoter-cis-regulatory 

element interactions which follow RUNX1/ETO knockdown. The data suggest that it does 

so by either mediating interactions itself or by displacing other factors involved in 

interactions prior to knockdown. The average profile for RUNX1 enrichment, presented in 

figure 3-28 B, shows that that RUNX1 binding also increases at differential interactions, 

but to a lesser extent. 
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Figure 3-27: Differential interactions were bound by RUNX1/ETO, RUNX1 and C/EBPα, and 
contained the CTCF motif 
The first column shows the fold change (control vs RUNX1/ETO knockdown) of Capture HiC 
interactions. Red represents an increase in interaction strength and blue represents a decrease. 
Columns 2 and 3 represent the DNaseI-seq reads from the corresponding interacting region. 
Column 4 shows RUNX1/ETO ChIP-seq reads from control Kasumi-1 cells aligned to the summit of 
the DHSs. Columns 5 and 6 show RUNX1 ChIP-seq reads from Kasumi-1 cells, transfected with 
siMM and siRE respectively. For columns 2 – 8 colour intensity corresponds to the number of 
reads. Columns 7 and 8 show C/EBPα ChIP-seq reads from Kasumi-1 cells, transfected with siMM 
and siRE respectively. Column 9 shows the occurrence of CTCF motifs in the interacting DNaseI 
sites. Yellow dots represent motif enrichment. Column 10 shows gene expression fold change 
(siMM vs siRE) of the gene promoters which correspond to the differential interactions. 
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Figure 3-28: Differential interactions exhibited increased C/EBPα and RUNX1 binding after 
RUNX1/ETO knockdown, particularly those that increased in interaction strength. 
A) This plot shows C/EBPα enrichment, before and after RUNX1/ETO knockdown, at DNaseI sites 
which are involved in a differential interaction. The x-axis represents the distance from the centre 
of the DNaseI site corresponding to a differential Capture HiC interaction. Peaks represent the 
coverage of C/EBPα ChIP-seq reads. Dashed lines show ChIP-seq reads from control kasumi-1 cells 
(transfected with siMM). Full lines show ChIP-seq reads from Kasumi-1 cells with RUNX1/ETO 
knockdown (transfected with siRE). ChIP-seq data was generated by Dr Anetta Ptasinska (219) 
B) This plot is the generated by the same method as (A) but using RUNX1 enrichment obtained via 
RUNX1 ChIP-seq.  
 

A 

B 
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We found that the CTCF motif was present in the differentially interacting DNaseI 

hypersensitive sites (figure 3-27). We therefore conducted a de novo motif search in 

these sites, to verify the degree of CTCF motif enrichment. In support of figure 3-27, we 

found that the CTCF motif was significantly enriched in both interactions that increased 

and decreased following RUNX1/ETO knockdown (figure 3-29).  
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Figure 3-29: Differentially interacting DNaseI hypersensitive sites were enriched for CTCF motifs 
This table is the result of de novo motif search of differentially interacting DNaseI hypersensitive 

sites, using HOMER bioinformatics software (285). 

 

 

Figure 3-30: The density of CTCF motifs in DNaseI footprints decreased following RUNX1/ETO 
knockdown 
DNaseI footprints unique to RUNX1/ETO depleted cells (siRE, blue), unique to control transfected 

cells (siMM, red) and shared between the two (common, black) were assed for CTCF enrichment 

with HOMER software(285). The peak height represents the density of the CTCF motif in the 

DNaseI footprints.  
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Since the CTCF motif is enriched at differential interactions we hypothesised that CTCF 

may play a role in orchestrating the changes in DNA interactions triggered by RUNX1/ETO 

knockdown. In order to investigate this, we needed to see if these CTCF motifs were 

bound by CTCF and whether this was affected by RUNX1/ETO knockdown. As we did not 

have CTCF ChiP-seq data we re-ran libraries used to generate existing DNaseI data (219) 

at high sequencing depth. We then used the Wellington digital footprinting algorithm 

(302) to identify regions that were protected from DNaseI digestions, as a surrogate 

measure of factor occupancy, and then searched for the CTCF motif in the DNaseI 

footprints. We examined footprints shared between control and RUNX1/ETO knockdown; 

unique to the control data set and unique to RUNX1/ETO knockdown. Figure 3-30 shows 

that there were many more footprinted CTCF motifs in control cells indicating that CTCF 

binding changes after RUNX1/ETO knockdown. This finding, in combination with the 

enrichment of the CTCF motif at differential interactions, suggested that changes in DNA 

interaction could be mediated by a reorganisation of CTCF binding following RUNX1/ETO 

depletion.  
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Chapter 4. DISCUSSION 

4.1 CBF complex inhibition in t(8;21) AML cells 

Transcription factors have been considered an undruggable target (272, 273) until 

pioneering work from the Bushweller lab demonstrated the successful targeting of the 

CBF complex. They designed small molecule, allosteric inhibitors to block the RUNT 

domain to CBFβ interaction by inducing a conformation change in CBFβ (275, 278). We 

collaborated with the Bushweller lab to determine whether these inhibitor compounds 

could target RUNX1 or RUNX1/ETO in our t(8;21) AML model.  

 Treatment of HL60 and Kasumi-1 cells with a CBF complex inhibitor induces 4.1.1

apoptosis in a dose dependant manner 

 

We first tested the effect of the CBF complex inhibitor on the viability of Kasumi-1 and 

HL60 cells. The compound induced apoptosis in Kasumi-1 cells, in a dose dependant 

manner (figure 3-1). ‘RUNX1 dependence’ has been reported to be unique to AML cells 

with genetic abnormalities that affect the CBF complex (265, 266). However, we found 

that HL60 cell, which have no CBF abnormality, also die after inhibitor application. RUNX1 

knockdown in HL60 cells has been shown to have no reported effect on the cell viability 

(21). This suggests that the compound may induce cell death by additional mechanisms to 

RUNX1 inhibition, or that in these cells another RUNX family member compensates for 

the depletion of RUNX1. Furthermore, although published RUNX1 knockdown in Kasumi-1 
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cells does lead to increased apoptosis, it is not to the extent that we see after application 

of our inhibitors (265). However, it must be noted that knockdown and inhibitor 

experiments are not directly comparable; knockdown reduces RUNX1 protein levels 

whereas inhibitor treated cells retain protein expression.  

 The CBF complex inhibitor has no significant effect on transcription factor binding 4.1.2

 

The interaction between RUNX1 and CBFβ is known to dramatically enhance DNA binding 

(237, 269). ChIP experiments were conducted to determine whether the inhibitor could 

affect binding of RUNX1 and RUNX1/ETO to DNA. Allosteric CBF complex inhibitors have 

resulted in a reduction in the association of RUNX1 to its DNA binding motif in vitro and 

also in embryonic stem cells carrying an inducible version of RUNX1 (275, 278).  In 

contrast, our ChIP experiments at 6 hours showed there was no inhibition of DNA 

association upon inhibitor treatment (figure 3-2). This was despite the clear death 

response see at 48 hours after inhibitor application, which suggests RUNX1 inhibition may 

be taking place.  

Kasumi-1 cells undergo cell division approximately every 48 hours. During the process of 

mitosis, existing CBF complexes are likely to be dissociated from the DNA during DNA 

replication. New CBF complexes must then be formed and assembled on the DNA of 

daughter cells. We therefore hypothesised that the inhibitor may not be able to disrupt 

CBF complexes that are already assembled and bound to DNA. However, the compound 

might prevent the formation of new CBF complexes after mitosis and thus block RUNX1 

DNA binding. Without the expression of RUNX1 target genes, the cells die at this point. 
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Unfortunately by this stage the inhibition of DNA binding is undetectable due to the 

inability to do accurate ChIP experiments on dead cells.   

The above theory presumes that RUNX1 DNA binding and association with CBFβ is stable, 

unlike the highly dynamic behaviour exhibited by other transcription factors (303, 304). 

However, the majority of studies into transcription factor binding kinetics are conducted 

in vitro. It is likely that the kinetics will differ in vivo, due to the fact that chromosomal 

DNA is cluttered with other proteins and provides non-specific DNA sequences to which 

transcription factors can bind (305).  

A recent publication from our group suggests that the compound may indeed be specific 

to de novo binding (278). The CBF complex inhibitor was tested in an embryonic stem (ES) 

cell line with inducible RUNX1. Upon treatment with doxycycline, ES cells express a HA 

tagged RUNX1 which can bind to RUNX1 target genes and drive their expression. In this 

system there will be many new HA-RUNX1-CBFβ complexes generated following induction 

and no complexes at the DNA prior to induction. When doxycycline is added in the 

presence of the inhibitor compound, HA-RUNX1 DNA binding is inhibited (Figure 4-1). The 

inhibition of RUNX1 binding may be detectable in this case as the compound is effective 

at blocking the formation of the new, induced RUNX1-CBFβ complexes. This is supported 

by co-immunoprecipitation demonstrating an inhibition of RUNX1 and CBFβ interaction 

(278). This system is preferable for the detection of RUNX1 inhibition as cell are not 

dependent on RUNX1 for survival, thus it is possible to conduct accurate ChIP 

experiments.  
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Figure 4-1: CBF complex inhibitors block de novo RUNX1 binding domain  
This bar graph, published by Illendula  et al., presents enrichment of HA-Runx1 at target loci, 
following either no RUNX induction (dox –), Runx1 induction by dox (dox +), RUNX induction with 
control compound (AI-4 88) and RUNX1 induction with the inhibitor compound (AI-14-91). This 
data was generated using ChIP with an anti-HA antibody recognizing HA tagged Runx1. Manual 
qPCR was used to detect enrichment at specific loci. Enrichment is normalised to input and a 
negative control (Chr2). Error bars represent standard deviation between 5 biological replicates. A 
one-way ANOVA test was used to analyse variance in HA enrichment values between the inhibitor 
and control compound, or between inhibitor and +dox treatment, * symbolises p < 0.05 and ** 
symbolises p < 0.01 (adapted from (278)). 
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Another explanation for the observation of cell death but lack of DNA binding inhibition is 

that the compound is hindering the transcription of RUNX1 genes, but not overtly 

blocking DNA binding. This could, for example, be due to the inhibition of the recruitment 

of co-activators additional to CBFβ. 

4.2 RUNX1/ETO depletion led to the up regulation of genes involved in myeloid 
differentiation 

The siRNA mediated knockdown of RUNX1/ETO has been used in several high impact 

publications (199, 219, 257) that investigate the effect of RUNX1/ETO on the gene 

expression and epigenetic profile of t(8;21) AML cells. We wished to manually validate the 

gene expression changes and assess a new, shRNA mediated knockdown system - SKNO-1 

cells with an inducible shRNA specific to RUNX1/ETO - and compare results with 

previously published data. This inducible system will facilitate experiments in which 

conditions with and without RUNX1/ETO are required. It also avoids having to repeatedly 

transfect cells with siRNA. 

RUNX1/ETO was successfully depleted from both Kasumi-1 and SKNO-1 R/E cells (Figure 

3-3), with no significant effect on RUNX1 expression. There was a slight reduction of 

RUNX1 expression in SKNO-1 R/E cells after 72 hours, which could be attributed to 

differentiation of the cells in response to RUNX1/ETO depletion (figure 3-3 B) (199, 306). 

With both systems, there was an upregulation of genes involved in myeloid 

differentiation, which is in accordance our previously published data where a depletion 

method with the same siRNA sequence was used (199, 257).  The shRNA depletion system 

gave comparable results to the siRNA system, allowing us to confidently use this model in 
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future experimentation. This system will provide prolonged RUNX1/ETO depletion, 

relative to siRNA depletion, which will allow more accurate time course analysis. 

Furthermore, it will streamline future experiments regarding RUNX1/ETO function, which 

could require analysis in the presence and absence of RUNX1/ETO.  

 RUNX1/ETO knockdown has no significant effect on SP1 DNA binding 4.2.1

We hypothesised that Sp1 may play a role in RUNX1/ETO mediated pathogenesis. This 

hypothesis was based on publications demonstrating a physical interaction between the 

two proteins and co-occupancy of RUNX1/ETO and Sp1 at the DNA. Furthermore, we 

observed that the Sp1 motif has increased protection after RUNX1/ETO depletion (figure 

3-4).  

This increased protection of the Sp1 motif suggests an increase in Sp1 binding after 

RUNX1/ETO knockdown. However, we actually saw a loss in the total number Sp1 ChIP-

seq peaks after RUNX1/ETO knockdown. This was not due to a decrease in Sp1 

expression, as mRNA and protein levels did not change (figure 3-5). Sp1 is known to 

exhibit positive autoregulation on its own promoter (307). As RUNX1/ETO is known to 

antagonise Sp1 transactivation activity, it is sensible to think that RUNX1/ETO knockdown 

should lead to an increase in Sp1 expression, however this was not the case (262).  
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The loss of Sp1 DNA binding sites after RUNX1/ETO knockdown (figure 3-6A) could be 

because Sp1 is recruited to its binding sites by RUNX1/ETO; the two proteins have been 

shown to physically interact. However, it should be noted that the published interaction 

between Sp1 and RUNX1/ETO was detected via co-immunoprecipitation with proteins 

from 293T cells transfected with plasmids expressing AML1-ETO and HA-tagged Sp1 (262). 

This experiment has inherent limitations as often highly expressed proteins bind non-

specifically. When another group determined the constituents of the RUNX1/ETO 

complex via mass spectrometry, Sp1 was not detected (256). 

Our analyses showed that Sp1 and RUNX1/ETO bind to distinct genomic sites (figure 3-6 

B). This contradicts the work of another group, who showed RUNX1/ETO and Sp1 bind to 

the same sites (247). The reason for this could be the different cell models used. Maiques-

Diaz et al. used human stem/progenitor hematopoietic cells (HSPCs), from human 

CD34+ umbilical cord blood samples, stably transduced with retroviruses expressing HA-

tagged RUNX1/ETO. The HA tag is very short linear recognition sequence so is unlikely to 

effect the properties of RUNX1/ETO. However, this cannot be ruled out completely. One 

possible explanation for the discrepancy between our results is that the HSPCs expressed 

other transcription factors at different levels, thus RUNX1/ETO forms different complexes 

in this context. Furthermore, we performed genome wide Sp1 DNA binding analysis, 

whereas their conclusions were drawn from ChIP-Chip experiments which predominantly 

look at sequences around promoters, together with qPCR of specific loci. Perhaps the 7 

genes they analysed are indeed bound by both RUNX1/ETO and Sp1, whereas at most 

other loci their binding is unrelated. In other words, their findings may be accurate at the 

7 loci analysed, but not a genome wide phenomenon.  
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4.3 The importance of C/EBPα expression levels in t(8;21) AML 

 C/EBPα is required for the full upregulation of myeloid genes after RUNX1/ETO 4.3.1

depletion 

There is a large body of evidence suggesting that the down regulation of C/EBPα 

expression in t(8;21) AML is a critical mechanism for leukaemia maintenance (see section 

1.8.1). Our previously published ChIP-seq data suggested that alleviation of RUNX1/ETO 

mediated suppression of C/EBPα may be central to the differentiation response seen 

after RUNX1/ETO depletion, as we saw a considerable increase in C/EBPα expression and 

genome wide DNA binding following RUNX1/ETO knockdown (figure 1-16), a 

phenomenon not observed with other transcription factors. In this study we performed 

experiments in which RUNX1/ETO and C/EBPα were depleted together in order to directly 

test the importance of C/EBPα to the response to RUNX1/ETO knockdown.  

RUNX1/ETO depletion led to a rapid upregulation of C/EBPα expression (figure 3-7 A) 

which is in keeping with several studies providing evidence for direct repression of 

C/EBPα by RUNX1/ETO. A physical interaction between the two proteins has been 

reported, which inhibits C/EBPα positive autoregulation (198). In addition, RUNX1/ETO 

binds to and represses both the C/EBPα promoter and enhancer (199, 200).  

In our study, several myeloid genes were significantly upregulated after RUNX1/ETO 

knockdown (figure 3-7 C), which supports previously published gene expression data from 

our group (199). The effect of RUNX1/ETO depletion on gene expression is perhaps 
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unsurprising considering the results of gain of function studies, in which RUNX1/ETO is 

ectopically expressed in haematopoietic cells (308-310).   

When the upregulation of C/EBPα was blocked by C/EBPα siRNA, the induction of select 

myeloid genes was significantly inhibited (figure 3-7 C). We found that the same genes 

were upregulated in response to C/EBPα overexpression, which validates that C/EBPα 

inhibition is responsible for this effect (see section 1.3.3 and figure 3-11). These results 

clearly demonstrate the essentiality of C/EBPα upregulation to the differentiation 

response following RUNX1/ETO depletion. This is consistent with the known role of 

C/EBPα in driving myeloid differentiation. For example, C/EBPα deficient mice display 

impaired myelopoiesis (197). 

Not all myeloid C/EBPα target genes exhibited diminished upregulation following 

concomitant RUNX1/ETO and C/EBPα knockdown. This could be due to the compensatory 

effect of other C/EBP family members; C/EBPδ and C/EBPε are also upregulated upon 

RUNX1/ETO knockdown. These CEBP proteins may be able to drive the expression of 

myeloid genes which are not specifically dependant on C/EBPα. For example, C/EBPε 

drives the expression of genes involved in macrophage development and is primarily 

expressed in myeloid cells (311). Furthermore, gene replacement studies have shown that 

C/EBPα can be substituted for C/EBPβ in haematopoiesis (312). It is conceivable that the 

other C/EBP family members (C/EBPε and C/EBPδ) could exhibit similar redundancies and 

act synergistically with C/EBPα.  
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 Activation of a β-Estradiol inducible form of C/EBPα in t(8;21) AML cells alleviates 4.3.2

the RUNX1/ETO mediated differentiation block  

 

It has become clear that down-regulating C/EBPα repression is key to t(8;21) leukemia 

maintenance. When RUNX1/ETO is removed, thus alleviating repression, C/EBPα levels 

increase and cells undergo myeloid differentiation. To see whether the upregulation of 

C/EBPα is sufficient to override the RUNX1/ETO mediated differentiation block, we over- 

expressed an inducible form of C/EBPα (C/EBPα – ER) in t(8;21) AML cells. We found that, 

to a large extent, C/EBPα overexpression phenocopied RUNX1/ETO depletion. 

This result is supported by a previous publication from Pabst et.al who found that C/EBPα 

levels were undetectable in RUNX1/ETO expressing cells and ectopic C/EBPα expression 

triggered terminal neutrophilic differentiation; the RUNX1/ETO mediated block in 

differentiation was overcome (198). Pabst et al. demonstrated the cells undergo myeloid 

differentiation, but no further transcriptional or epigenetic analysis was conducted and it 

was not clear which gene expression patterns were induced. We therefore performed 

RNA-seq, genome wide gene expression analysis, on Kasumi-1 cells with and without 

CEBPα over-expression. 

We found that C/EBPα over expression led to both upregulation and down regulation of 

genes. A recently published study shows C/EBPα binds to and directly suppresses stem 

cell genes, such as SOX4 (202). Perhaps in our study C/EBPα is exhibiting a dual role, 

directly activating and repressing gene. However, we found that only a subset of the 

genes that are downregulated by C/EBPα overexpression are actual C/EBPα targets. This 
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suggests that C/EBPα may not be directly repressing these genes and that down-

regulation is an indirect effect of a shift in the transcriptional network towards the 

differentiated state. It must be noted that the ChIP-seq data used to classify a gene as a 

‘C/EBPα target’ was generated from Kasumi-1 cells (219) but not the very same cell line 

used in this study. Experiments examining the binding of the C/EBPα-ER fusion protein 

are therefore currently underway.  

Correlation and Principal Component Analysis (PCA) of gene expression patterns 

demonstrate that induction of C/EBPα has similar effects to RUNX1/ETO knockdown. 

However, ‘principle component one’ highlights that there are small differences in the 

gene expression profiles of the RUNX1/ETO knockdown and C/EBPα over expression gene 

sets, even at baseline, despite Kasumi-1 cells being used in both cases. This is likely to be 

an artefact of the experimental methods used. For example, the RUNX1/ETO knockdown 

data set was obtained from cells which have been electroporated with siRNA. The non-

specific effects of siRNA are well recognised and have been proven experimentally (313).  

We found that C/EBPα overexpression can mimic many of the transcriptional effects of 

RUNX1/ETO knockdown; 40% of all genes changing expression after RUNX1/ETO knock-

down also change expression by C/EBPα overexpression, despite RUNX1/ETO still being in 

the nucleus. Examples of shared, upregulated myeloid genes include NKG7, MS4A3, 

RNASE2 and LCP1. There were also many shared down regulated genes, including DUSP6 

and the stem cell gene CD34. DUSP6 gene encodes a signalling molecule which is involved 

in regulating proliferation and differentiation (314).  
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The significant overlap in gene expression change, between RUNX1/ETO knockdown and 

C/EBPα overexpression, is particularly impressive considering the majority of genes 

upregulated by C/EBPα are directly bound by RUNX1/ETO. This suggests that C/EBPα can 

override the repressive epigenetic effects of RUNX1/ETO. One possibility is that C/EBPα 

can displace the RUNX1/ETO complex from its target genes and/or transcriptional co-

regulators. C/EBPα has been shown to bind to PU.1 and displace the PU.1 co-activator 

JUN (315). Perhaps C/EBPα could interfere with the RUNX1/ETO complex in a similar 

manner.  

C/EBPα overexpression also has effects distinct from those of RUNX1/ETO knockdown. 

These are likely to be due to differences in total C/EBPα expression level in each 

experiment. C/EBPα levels in the overexpression experiments are likely to be much higher 

than those induced by RUNX1/ETO knockdown. The levels seen after 17β-Estradiol 

induction could be sufficient for C/EBPα to bind to relatively more accessible motifs, thus 

altering the expression of additional genes. There are publications suggesting that C/EBPα 

may act as a pioneer factor, thus enhancing its ability to manipulate the gene expression 

profile (316, 317).  Furthermore, we found an enrichment of CEBP motif in the DNaseI 

sites which appear after RUNX1/ETO knockdown (figure 1-18). Perhaps CEBPα is acting as 

a pioneer factor here, driving the formation of these new DNaseI hypersensitive sites. 
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4.4 The effect of RUNX1/ETO knockdown on specific cis-regulatory element interactions 

Since the advent of chromosome conformation capture methods, the notion that gene 

expression changes can be mediated by changes in DNA looping is well established (63, 

118). There is now an increasing body of evidence that transcription factors initiate and 

maintain these DNA loops (63, 279-281). We therefore hypothesised that the gene 

expression changes seen after RUNX1/ETO knockdown may be driven by alterations in 

promoter-cis element interactions, and these changes to DNA interactions could be 

mediated by alterations in the transcription factor binding profile. We tested this 

hypothesis by performing chromatin conformation capture experiments on t(8;21) AML 

cells with and without RUNX1/ETO expression.   

 RUNX1/ETO knockdown had no effect on specific cis-regulatory element 4.4.1

interactions at the SPI1 and CD34 loci 

Several studies have established the effect of RUNX1/ETO knockdown on the 

transcriptomic and epigenetic profile of t(8;21) AML cells. However, the effect of these 

changes on chromosome conformation was not investigated. Here the 4C-seq method 

was used as a means of interrogating specific cis-regulatory element interactions, in this 

case within the SPI1 and CD34 loci. These genes were of particular interest as they exhibit 

changes in their transcription factor binding profile and gene expression after RUNX1/ETO 

knockdown, and the level of their expression level has a clear role in haematopoietic 

differentiation (293).  
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We successfully detected reciprocal interactions between the SPI1 and CD34 promoters 

and their already characterised regulatory elements, from both selected viewpoints. 

Reassuringly, the assay appears to be specific as regions of high contact intensity 

correspond to transcription start sites, putative cis-elements and regions of DNase I 

hypersensitivity (figure 3-13 and 3-14). Furthermore the agreement between biological 

replicates indicates the experiment was highly reproducible (figure 3-15). 

Contrary to already published data, generated with manual 3C, we did not detect an 

interaction between the CD34 promoter and DRE (292) (63) (figure 3-14). This could be 

due to use of a different method, and/or the genomic distance of the selected view-point 

fragment from the defined DRE (282). Here specific 4C-seq primers were designed to a 

restriction fragment close to a RUNX1/ETO ChIP-seq peak at this element. The interaction 

may have been detectable if the viewpoint was shifted closer to the defined enhancer 

region (between +18.8 to +19.6 kb). A previous study, which used 4C-seq to detected 

interactions with the Oct4 promoter, demonstrated that minor variations in viewpoint 

positioning can significantly influence the resulting interaction profile (282).  

We had hypothesised that the reorganisation of transcription factor binding after 

RUNX1/ETO knock-down, within pre-existing open chromatin, could lead to alterations in 

specific DNA interactions. However, we saw that RUNX1/ETO depletion had no effect on 

interactions at the SPI1 and CD34 loci, despite the marked increase in CEBPα binding and 

change in gene expression (figure 3-16), indicating that changes in transcription factor 

occupancy did not impact on intra-nuclear interactions. Subsequent Capture HiC 

experiments confirmed the lack of differential interaction at these loci.  It is therefore 
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likely that the expression changes are not due to differences in enhancer - promoter 

looping. Perhaps the alleviation of RUNX1/ETO mediated repression of the promoter via 

the recruitment of co-repressors is accountable for the increase in PU.1 expression (318, 

319).  The down regulation of CD34 could be due to the increase in C/EBPα binding at the 

promoter. C/EBPα is known to repress stem cell genes by binding to gene promoters 

(202). 

The fact that we did not detect alterations in promoter-enhancer interaction, despite 

changes in gene expression and transcription factor binding profile, has also been 

observed by other researchers. For example, Eileen Furlong’s group investigated the 

interactions made by 103 loci, which were selected based on their dynamic changes in 

gene expression and transcription factor occupancy between two drosophila 

developmental stages. They found that the majority of these differences were not 

reflected in alterations in promoter-enhancer DNA interactions (320).  

However, from these limited data we could not conclude that RUNX1/ETO depletion has 

no effect on specific DNA interactions. Moreover, we only investigated loci which do not 

exhibit overt changes in DNaseI hypersensitivity after RUNX1/ETO knockdown. Although 

the majority of transcription factor binding alterations occur within pre-existing DNaseI 

sites, RUNX1/ETO knockdown does lead to the generation of many new DNaseI 

hypersensitivity sites at distal regions (figure 1-17). Interestingly, these regions are 

significantly enriched for C/EBPα motifs (figure 1-18). They may represent de novo 

enhancer regions, only engaging in promoter interaction after RUNX1/ETO depletion and 

the concomitant increase in CEBPα expression.  
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4.5 The effect of RUNX1/ETO knockdown on genome wide DNA interactions 

In Kasumi-1 cells 1,396 genes significantly change their expression after RUNX1/ETO 

depletion, and over 3000 DNaseI hypersensitivity sites form that are unique to 

RUNX1/ETO depleted cells (219).  Using 4C-seq to interrogate all of these regions would 

be very time consuming and prohibitively expensive. The logical next step was therefore 

an assessment of the conformation of the entire genome using other methods such as 

HiC, which looks at all interactions within the genome. However, the vast complexity of 

HiC libraries requires extremely deep sequencing in order to provide sufficient resolution 

to define specific DNA contacts. To circumvent this issue, a collaborator of ours recently 

developed a method which combines HiC with solution hybridization selection (“Capture 

HiC”), to enrich HiC libraries for promoter regions, thus allowing us to assess the 

interactions made by 22,000 promoters with their distal elements in a single experiment 

(figure 2-2) (77).  

Our results highlight the importance of genome wide interaction mapping. The SPI1 URE 

enhancer interacts with the SPI1 promoter and not with the promoter of the closest gene, 

SLC39A13. This supports already published data which demonstrates that not all distal cis-

elements interact with the promoter of the nearest gene (78). Therefore cis-element 

interactions must be mapped experimentally as genomic distance should not be used as a 

predictor of DNA interaction and enhancer function.  
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 The majority of DNA interactions are intrachromosomal with a trend of decreased 4.5.1

interaction frequency with genomic distance 

The aim of the ambitious Capture HiC experiments was to gain more insight into the 

global mechanisms governing the chromatin changes seen after RUNX1/ETO depletion, 

shining more light onto the molecular basis of the RUNX1/ETO mediated differentiation 

block. We therefore prepared Capture HiC libraries from Kasumi-1 cells, with and without 

siRNA mediated RUNX1/ETO knockdown.  

As a means of quality controlling our Capture HiC data, we first looked for well-

established features of genome organisation. We found that the majority of chromosomal 

interactions occur in cis i.e. within the same chromosome (figure 3-19). This should 

always be the case, regardless of cell type or species (92, 99).  This trend is due, primarily, 

to the presence of chromosome territories which separate individual chromosomes (131).  

To further validate our data, we looked for evidence of the t(8;21) translocation. The 

ability to detect translocations with chromosome conformation capture analysis has been 

demonstrated previously (296, 297). Encouragingly, we saw a block of high contact 

intensity representing apparent interactions between chromosome 8 and 21, which 

signifies the t(8;21) translocation.  
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We then focused on a single chromosome, chromosome 8, at higher resolutions (1 Mb) 

(figure 3-18) . We were able to display the well-established notion that the probability of 

DNA interaction decreases exponentially with genomic distance (92, 134). The same 

trends were seen in both biological replicates. This offered further reassurance that the 

experiment had been conducted effectively, and reproducibly, and we could continue to 

extract interaction data with confidence.  

The statistically significant interactions were determined and were then filtered against 

our DNaseI-seq data, so that only interactions involving DNaseI hypersensitive restriction 

fragments were included. This was in order to direct our analysis to the active cis-

elements which were likely to be regulating gene expression. Only approximately one 

third of the interactions were hypersensitive. This is in accordance with Mifsud, B et al. 

who generated Capture HiC libraries following the same protocol and found that 

interactions were often not enriched for DNaseI hypersensitivity, and this usually 

corresponded to a gene with low level expression (77). Some of these non-DNaseI 

hypersensitive interactions may, for example, be involved in polycomb mediated gene 

repression. Polycomb complexes have been shown to act by regulating promoter-

promoter interactions (321, 322). It would be interesting to see if these non-

hypersensitive interacting regions are predominantly promoter fragments. The non-

hypersensitive interactions may also serve a more indirect, structural role in gene 

regulation, by helping to bringing active elements together.  
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 RUNX1/ETO knockdown led to alterations in specific promoter-cis-element 4.5.2
interactions that did not correlate with gene expression change 

 

We found that the large-scale genomic structures were unaltered by RUNX1/ETO knock-

down (figure 3-19). This was expected given that features such as the topologically 

associated domains are conserved between different cell types and different species (92). 

However, when HOMER software was used to detect the interactions that were 

differential between control and RUNX1/ETO knockdown, we found that hundreds of 

promoter-cis regulatory element interactions changed significantly. These differential 

interactions were associated with differentially expressed gene promoters; however the 

change in interactions strength was not correlated with the direction of gene expression 

change (figure 3-23).  One explanation is that when the genes alter their expression, they 

both increase and decrease interactions within their profile of enhancers. This was indeed 

the case for several differentially expressed genes in this study (figure 3-24). This is in 

accordance with several studies, such as Choukrallah, MA et al. who demonstrated that, 

during B cell differentiation, enhancer repertoires are dynamically reorganised (323). 

 DNA interactions at the CEBPA locus 4.5.3

 

We have shown that low C/EBPα expression levels are critical for the maintenance of 

t(8;21) leukaemia. We investigated the interactions made by the CEBPA promoter to gain 

more insight into how CEBPA expression levels are regulated (figure 3-25). The CEBPA 

promoter is known to interact with a recently characterised +42 kb enhancer element 

(200). The interaction with this enhancer is needed for myeloid-lineage priming and to 
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drive sufficient CEBPA expression for neutrophilic differentiation (200). Prior to this study, 

we observed that RUNX1/ETO binding is highly enriched at this region. It would therefore 

be reasonable to propose that the rapid upregulation of CEBPA expression following 

RUNX1/ETO knockdown is due to the release of this enhancer from RUNX1/ETO mediated 

repression. However, our Capture HiC analysis showed that the interaction strength 

between the CEBPA promoter and this enhancer is not significantly altered by 

RUNX1/ETO knockdown. 

In contrast, an interaction at +29kb significantly increases after RUNX1/ETO knockdown. 

This element is highly DNaseI hypersensitive and enriched for p300. Avellino, R et al. also 

detected a +29kb C/EBPα promoter interaction, but only in monocytes. They found it was 

enriched for H3K27ac, thus suggesting enhancer function. Using our ChIP-seq data we can 

see that this region is also bound by RUNX1/ETO, so perhaps release of this element from 

RUNX1/ETO mediated repression is responsible for the rapid increase in CEBPA 

expression after RUNX1/ETO knockdown. This result is concordant with the finding from 

our published metagene analysis which showed that after RUNX1/ETO knock-down, the 

gene expression pattern of Kasumi-1 cell changes into a pattern resembling that of 

monocytes (199). 

We detected a strong interaction between the CEBPA promoter and the CEBPG promoter 

(figures 3-25 and 3-26). Alberich-Jordà, M et al. found that CEBPG is overexpressed in a 

subset of AMLs with silenced CEBPA, and proposed a model in which C/EBPα supresses 

CEBPG expression (324). Perhaps the physical interaction between the two promoters 

facilitates regulation of this CEBPA-CEBPG axis. 
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 CTCF and C/EBPα may play a role in reshaping the promoter-cis-element 4.5.4
interaction profile following RUNX1/ETO knockdown 

 

A de novo motif search of the differential DNA interactions revealed that these 

interactions were significantly enriched for CTCF motifs (figure 3-29). Furthermore, CTCF 

binding appears to be altered by RUNX1/ETO knockdown (figure 3-30). Taken together 

these data suggest that CTCF may play a role in reshaping the promoter-cis-element 

interaction profile following RUNX1/ETO knockdown.  

CTCF binding was long considered to be largely invariant, apart from during the imprinting 

process during which methylation of CTCF motifs disrupts CTCF binding (325). However, 

recently John Stamatoyannopoulos’s group found that CTCF binding is considerably 

different between different types of somatic cells and that these differences are strongly 

associated with DNA methylation (326). As methylation does not change significantly 

after RUNX1/ETO knockdown (data not published), methylation is unlikely to be a driver 

of CTCF binding alterations in our experiments.  Another mechanism for CTCF binding 

modification is the eviction of CTCF from its binding site, via transcription and 

nucleosome repositioning, followed by the binding of another transcription factor in its 

place (327). This mechanism is a more likely explanation for the differential CTCF binding 

that we found.  

We found a considerable increase in C/EBPα binding at the differentially interacting 

DNaseI hypersensitive sites, particularly at those which increase in interaction following 

RUNX1/ETO knockdown (figure 3-28). Perhaps C/EBPα is involved in forming these new 

promoter-cis-element interactions, and this is one of the mechanisms C/EBPα employs to 
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drive the differentiation response which follows RUNX1/ETO depletion. There is currently 

no published data proposing a role for C/EBPα in mediating DNA looping interactions. 

However, C/EBPα has been shown to co-associate with cohesin at the DNA (328), a 

protein known to be involved in maintaining promoter-enhancer interactions (329, 330). 

Furthermore, following RUNX1/ETO depletion, C/EBPα joins a transcription factor 

complex involving LMO2 which, in combination with its partner LBD1, is involved in DNA 

looping (331). 

In summary, this work demonstrates that the presence or absence of RUNX1/ETO has a 

profound impact on the intra-nuclear organisation of t(8;21) cells. It also gives a first 

indication of which transcription factors are relevant for driving these changes. 
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4.6 Future work 

 Targeting RUNX1 in t(8;21) AML 4.6.1

 

1. We have shown that CBF complex inhibition leads to the death of t(8;21) AML cells, 

suggesting that RUNX1 activity was inhibited. The compound was designed to block 

RUNX1 DNA binding. However inhibition of DNA binding was not detectable in our system 

(section 3.1). We hypothesised that the inhibitory effect was specific to de novo CBF 

complex formation. We could test this hypothesis by measuring the effect of the 

compound on the binding of RUNX1 to its de novo binding sites, which occur following 

RUNX1/ETO depletion (figure 1-16).  In these experiments we could use the shRNA 

knockdown system that was validated in this study (figure 3-3).  

 The role of C/EBPα in t(8;21) AML 4.6.2

 

1. We have convincingly demonstrated that low C/EBPα expression level are critical to 

t(8;21) AML maintenance, with the induction of C/EBPα largely phenocopying the effect 

of RUNX1/ETO depletion (section 3.3).  However, the mechanism by which C/EBPα drives 

this response is unclear. To answer this question, we will measure C/EBPα-ER binding by 

ChIP-seq before and after induction, and see how many of the differentially expressed 

genes are directly bound by CEBPαER. We will also measure the effect of C/EBPα-ER 

induction on the genome-wide binding of RUNX1/ETO to test whether C/EBPα 

overexpression can override the RUNX1/ETO mediated differentiation block and displace 

RUNX1/ETO from its binding sites.  
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2. Previous analysis revealed that the CEBP motif is enriched in DNaseI sites that are 

specific to RUNX1/ETO depleted Kasumi-1 cells (figure 1-18). It is therefore possible that 

C/EBPα is driving the formation of these de novo DNaseI sites. To see if this is the case, 

we could perform DNaseI-seq before and after C/EBPα induction. This experiment will 

enable us to gain more insight into how C/EBPα drives the differentiation response that 

follows RUNX1/ETO knockdown. 

3. In this study we show that upregulation of C/EBPα by RUNX1/ETO knockdown is 

necessary to drive the full differentiation response. However, it is unclear how important 

other C/EBP proteins are to this process. CEBPG and CEBPE are also significantly 

upregulated after RUNX1/ETO knockdown; it is possible that these proteins contribute to 

the differentiation response. To test if this is the case, we could block all CEBP protein 

activity with a dominant negative CEBP leucine-zipper peptide (332), in conjunction with 

RUNX1/ETO knockdown. We could then compare the results to those obtained by co-

depletion of C/EBPα and RUNX1/ETO (section 3.3.2).  

 Promoter-cis-element interactions in t(8;21)  4.6.3

 

1. We have successfully mapped the genome-wide promoter-distal-element interactions 

in a t(8;21) AML cell line (section 3.5). These results will be used to annotate genes to 

their respective cis-elements, which will enable us to accurately construct gene regulatory 

networks. Before doing so, we could determine which interacting elements are likely to 

be enhancers with our p300 and H3K9Ac ChIP-seq data. Additionally, we could perform 

H3K27Ac and H3K4Me1 ChIP-seq, as these modifications are indicators of potential 
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enhancer activity (333, 334). We could also assess the function of elements of interest, 

with luciferase reporter assays, such as the region +29kb of the C/EBPα promoter, which 

we found to strongly interact with the C/EBPα promoter, specifically in RUNX1/ETO 

depleted cells. 

2. This work demonstrates that RUNX1/ETO knockdown has a profound impact on the 

intra-nuclear organisation of t(8;21) cells. One of the most intriguing results from this 

study was that CTCF could play a role in reshaping the DNA interaction profile following 

RUNX1/ETO knockdown. This hypothesis was based on the enrichment of differential 

interactions for the CTCF motif and the differential protection of the CTCF motif following 

RUNX1/ETO depletion (figures 3-29 and 3-30). We will now perform CTCF ChIP-seq, 

before and after RUNX1/ETO knockdown, to directly measure CTCF binding alterations 

and see if they correlate with differential promoter-distal-element interactions. It would 

also be useful to perform ChIP-seq with members of the Cohesion complex, such as 

RAD21, given that the Cohesin complex is found at most CTCF sites (335). These data 

could then be integrated with our existing ChIP-seq data sets to analyse the interplay of 

other factors with CTCF and the Cohesin complex. 
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3. In order to determine whether our data is relevant to disease, we will correlate the 

Kasumi-1 interaction profile with that of a t(8;21) AML patient.  We have already 

prepared a Capture HiC library with a t(8;21) AML patient sample, which is now ready for 

analysis. In addition, we could compare the t(8;21) AML interaction profile with other 

AML subtypes, and normal samples of the same maturation stage. This will allow us to 

identify disease specific DNA interactions. The role of these interactions in disease 

progression could then be assessed with functional assays.  
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APPENDICES 

 

Table 1: Genes differentially expressed by both C/EBPα overexpression and RUNX1/ETO 

knockdown: 

 

 

Gene Name 

Control 
Kasumi-1 

Control 
Kasumi-1 

Kasumi-1-
C/EBPαER 

Kasumi-1-
C/EBPαER Kasumi-1 Kasumi-1 

minus E2 plus E2 minus E2 plus E2 siMM  siRE  

(fpkm) (fpkm) (fpkm) (fpkm) (fpkm) (fpkm) 

ATF3 3.38 3.00 3.00 1.88 5.64 2.02 

GUCY1A3 10.89 9.00 12.00 5.64 5.75 1.02 

MYO1B 6.14 5.00 5.00 2.90 5.83 3.27 

IRF1 5.39 5.00 5.00 2.40 5.86 2.99 

TRIM47 2.70 3.00 2.00 1.29 6.15 2.31 

ZNF436 7.43 6.00 5.00 3.35 6.24 3.17 

ETV5 6.74 6.00 5.00 2.42 6.89 2.86 

PLOD2 3.98 3.00 5.00 1.61 7.33 2.68 

PIK3C2B 3.14 3.00 3.00 2.10 7.94 3.31 

CCND1 4.30 3.00 4.00 2.16 8.06 1.44 

SVOPL 3.34 2.00 3.00 1.61 8.93 2.76 

MOV10 7.38 7.00 7.00 4.57 9.25 3.26 

GPRC5C 7.33 8.00 5.00 0.52 9.65 1.68 

FBXW9 3.13 4.00 2.00 1.90 10.01 5.73 

CHAC1 8.38 13.00 7.00 1.91 10.41 5.34 

NCKIPSD 5.40 6.00 4.00 2.28 11.02 6.49 

NAV1 4.08 4.00 3.00 2.33 11.65 3.22 

ZFP36L1 2.86 3.00 2.00 1.20 11.91 3.72 

CA8 6.52 6.00 5.00 2.62 12.98 5.50 

SLMO2-ATP5E 21.94 22.00 17.00 9.77 13.33 5.56 

HDAC7 5.11 5.00 4.00 3.32 13.87 6.15 

STC2 9.00 10.00 6.00 2.66 14.22 7.55 

APOBEC3G 13.62 10.00 15.00 3.14 14.45 3.09 

GATA2 4.88 5.00 4.00 2.57 15.50 3.70 

SLC45A3 5.43 6.00 6.00 3.45 18.05 2.80 

ANGPT1 20.06 20.00 21.00 10.35 20.01 2.04 

DHRS3 20.53 21.00 17.00 7.65 20.21 6.64 

JUN 4.25 5.00 2.00 1.52 21.30 10.39 

DDIT4 29.65 35.00 10.00 2.53 21.55 11.69 

ST18 14.29 13.00 15.00 5.84 21.64 2.36 
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Gene Name 
Control 

Kasumi-1 
minus E2 

(fpkm) 

Control 
Kasumi-1 

plus E2 
(fpkm) 

Kasumi-1-
C/EBPαER 
minus E2 

(fpkm) 

Kasumi-1-
C/EBPαER 

plus E2 
(fpkm) 

Kasumi-1 
siMM  
(fpkm) 

Kasumi-1 
siRE  

(fpkm)  

MDFI 11.94 11.00 9.00 4.69 23.50 2.35 

CD96 19.28 17.00 21.00 9.08 24.24 12.84 

ABHD4 4.14 4.00 5.00 1.95 24.78 13.51 

UBE2L6 17.56 17.00 18.00 9.28 27.23 13.74 

ISYNA1 3.95 4.00 3.00 2.78 29.14 12.65 

CD300A 32.26 32.00 22.00 5.12 30.00 16.72 

SLC2A3 27.38 26.00 24.00 9.27 30.92 1.95 

BIN1 17.72 21.00 18.00 10.80 33.99 12.88 

ASNS 81.44 88.00 66.00 16.58 34.97 20.17 

CD52 35.08 31.00 28.00 10.18 41.36 16.17 

RPTOR 15.01 19.00 12.00 8.15 43.29 19.03 

CD69 44.75 43.00 39.00 17.30 43.49 12.57 

IFI16 39.31 33.00 37.00 19.26 46.21 14.53 

TMIGD2 23.83 29.00 22.00 13.80 51.87 28.47 

TRIM8 14.60 15.00 15.00 7.94 53.44 22.55 

TBX1 6.00 6.00 6.00 3.02 57.68 22.60 

DUSP6 74.95 69.00 78.00 33.12 81.98 20.26 

NRN1 61.65 60.00 57.00 22.90 92.06 50.25 

JUP 24.98 32.00 23.00 14.74 100.29 48.22 

FSCN1 21.74 29.00 18.00 15.02 141.91 59.04 

LOC101927497 42.52 37.00 49.00 18.87 152.00 78.68 

CKB 28.24 38.00 23.00 11.52 170.00 44.72 

PTPRCAP 28.74 43.00 26.00 9.24 206.68 112.12 

EGFL7 49.79 83.00 41.00 39.59 223.04 59.09 

CD34 114.50 103.00 120.00 61.58 405.03 99.18 

TBC1D16 2.16 2.86 1.97 1.22 5.23 2.65 

RAB38 2.41 2.61 1.81 0.96 5.43 2.40 

FGF11 2.42 2.47 2.57 0.52 5.60 3.11 

FGF16 2.06 1.82 2.19 0.88 5.87 2.79 

RLTPR 2.47 2.89 2.63 1.09 7.45 3.58 

AK4 3.21 2.98 2.28 0.66 8.65 4.78 

DDN 2.60 2.83 2.27 1.65 8.91 4.13 

VWCE 2.08 3.01 1.87 1.50 9.92 5.25 

MEX3A 2.17 2.02 2.22 1.14 10.09 5.09 

MTSS1 1.97 1.67 2.25 0.99 11.20 0.74 

ZNF467 1.74 2.24 1.69 1.04 13.90 7.60 

SHANK3 1.74 2.37 1.61 0.71 16.89 5.75 

 


