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Abstract

A problem with cluster analysis is to determine the optimal number of clusters in the

multivariate and functional data. In many of the clustering methods, the number of

clusters is assumed to be fixed a priori. Moreover, in most exploratory applications, the

number of clusters is unknown. That makes the determination of the number of clusters a

very important problem in cluster analysis. Practically, determining the correct number

of clusters depends on the experience of the investigator and the nature of the study.

Statistically, many attempts and algorithms have been suggested in order to determine

the optimal number of clusters. Over the last 40 years, a wealth of publications has been

developed, introduced and discussed many graphical approaches and statistical algorithms

in order to determine the optimal the number of clusters. In this work, we consider the

problem of determining the number of clusters in the multivariate and functional data,

where the data are represented by a mixture model in which each component corresponds

to a different cluster without any prior knowledge of the number of clusters. For the

multivariate case, the forward search algorithm is a graphical approach that helps us in

this task. Three different forward search algorithms are considered in this study. The

traditional forward search approach based on Mahalanobis distances has been introduced

by Hadi (1992) and Atkinson (1994), while Atkinson et al (2004) used it as a clustering

method. But like many other Mahalanobis distance based methods, it cannot be correctly

applied to asymmetric distributions and more generally, to distributions which depart from
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the elliptical symmetry assumption. We propose a new forward search methodology based

on spatial ranks, where clusters are grown with one data point at a time sequentially, using

spatial ranks with respect to the points already in the subsample. The algorithm starts

from a randomly chosen initial subsample. We illustrate with simulated data that the

proposed algorithm is robust to the choice of initial subsample and it performs well in

different mixture multivariate distributions. We also propose a modified algorithm based

on the volume of central rank regions. Our numerical examples show that it produces

the best results under elliptic symmetry and it outperforms the traditional forward search

based on Mahalanobis distances.

In addition, a second multivariate clustering method is proposed in this study. It is a

new nonparametric clustering method based on different weighted spatial ranks (WSR)

functions. They are completely data-driven and easy to compute without any need to

parameter estimates of the underlying distributions, which make them robust against

distributional assumptions. The WSR is more accurate in the purpose of intuitive visu-

alization since we can easily determine the number of clusters from the weighted ranks

contours for a low-dimensional input space, using dimension reduction. The main idea

behind WSR is to define a dissimilarity measure locally based on a localized version of

multivariate ranks. As a result, the proposed method can be used to determine the as-

sumed number of clusters, and to assign each observation to its cluster. Selection of a

proper weight function will lead to better identification of clusters when the data do not

follow any standard parametric distribution. We have considered parametric and non-

parametric weights for comparison. We have also introduced some WSR functions based

on different robust weights like Mallow weight that has been introduced by Simpson et al.

(1992) and Naranjo and Hettmansperger (1994). Moreover, many other different kernel

weight functions have been considered. We give some numerical examples based on both

simulated and real data sets to illustrate the performance of the proposed method.
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In the age of technology, challenges of analysis, storage, and visualization of big-

data have been become a very active topic in statistics, especially when the dimension

d is large compared to the number of observations. Recently, functional data analysis

received an attention in very diversified areas of scientific disciplines. In this study, there

is a large body of work on using the ordinary and weighted spatial ranks as functional

data clustering approaches. We propose two different clustering methods for functional

data. The first method is an extension to the forward search based on spatial ranks

that we proposed for the multivariate case, and it can initially be used to identify the

number of clusters in the curves. This method can be considered as a new raw-data

method since we do not use any preprocessing functional data steps, and we do not need

to perform a data registration or a dimension reduction before clustering. In the second

method, we extend the WSR method that has been introduced for the multivariate case

to the functional data analysis. The proposed weighted functional spatial ranks (WFSR)

method can be considered as one of the 2-stage methods, or the filtering methods, where

it first approximate the curves into some basis functions and reduce the dimension using

the functional principle components analysis (FPCA) and then perform the clustering

using the basis expansion coefficients and the functional principle components scores.

The WFSR method can be used to determine the assumed number of clusters, and assign

each curve to its cluster. Both methods are completely data-driven and easy to compute

without any need to estimate parameters of the underlying distributions, which make them

robust against distributional assumptions. Different numerical examples from simulated

and real data have been given in order to check the reliability of the proposed methods.

Comparison between the existing methods, using the probability of misclassification error,

has been considered as well. The results showed that the two proposed methods give a

competitive and quite reasonable clustering analysis.
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Chapter 1

Introduction

1.1 Introduction

Recently, cluster analysis has become one of the most important statistical tools to study

and clarify many scientific disciplines that require to cluster data in the aim to understand

and interpret the studied phenomenon. It is a helpful exploratory tool for analysis of the

low and high dimensional multivariate data and functional data as well. A particular

attention is paid to the cluster analysis for the higher dimensional data. There have been

many clustering methods, techniques and algorithms scattered in publications in very di-

versified areas such as pattern recognition, artificial intelligence, information technology,

image processing, biology, psychology, market research, astronomy, psychiatry, weather

classification, archaeology, bioinformatics and genetics (Gan et al., 2007; Everitt et al.,

2011). However, the problem of determination the best number of clusters has been con-

sidered a kind of limitation in the most previous studies. Moreover, choosing a suitable

clustering technique is another serious issue in cluster analysis. We postpone the discus-

sion on the first problem to Section 1.6, where we present some of the common ways that

try to address this problem of estimating the number of clusters, while we address the

discussion on the second point to the next two Sections.
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Examples of the first literature that discussed the clustering analysis have been given

by Hartigan (1975), where the word clustering was known at this time as the numerical

taxonomy. Sokal and Sneath (1963) has considered the first and most important book

in numerical taxonomy. Some methods of measuring similarity are proposed in it, with

particular attention given to category data. Clustering analysis is also known as Q-

analysis, clumping, unsupervised learning, and typology. Many definitions for cluster

analysis have been used in the literature. A simple one that has been considered by

Hartigan (1975) is: “clustering is the grouping of similar objects”. Jain and Dubes (1988)

have defined the cluster analysis as “the formal study of algorithms and methods for

grouping or classifying objects”, while Kaufman and Rousseeuw (2005) defined it as “the

art of finding groups in data”. In pattern recognition and neural network studies, cluster

analysis is known as unsupervised learning (training patterns with unknown category

labels), and it is called segmentation analysis especially in the market studies.

It can be clearly seen that, all the previous definitions agree on an important point that

the cluster analysis aims to group and partition a given set of data or objects into clusters,

subsets, or groups, we need to know any properties should to be in this partitioning. The

first property or assumption is the homogeneity within the clusters, i.e. points that belong

to the same cluster should be as similar as possible. The second one is the heterogeneity

between clusters, i.e. points that belong to different clusters should be as different as

possible (Hoppner et al., 1999).

In order to illustrate the importance of cluster analysis, we provide some common

examples that are usually used in the literature. The first example is the taxonomy of

animals and plants. Taxonomy is the science of describing, naming, and classifying organ-

isms which are described by their structure, appearance and hypothesized evolutionary

relationships. The main interest of this science is that we need to cluster each animal,

plant and species in the best way, which implies the homogeneity within the clusters and
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the heterogeneity between clusters.

The same methodology can be considered for the phylogenetic tree of life, where there

are three domains of life bacteria, archaea, eukarya and each of them consists of some

components. For instance, the bacteria consist of 9 components while the animals and

plants belong to the eukarya which contains 10 components as shown in Figure 1.1 (c).

This tree gives a good example for the importance of the cluster analysis in our life, since

it has provided physical significance in the evolutionary theories of Darwin. Figure 1.1

shows some examples of the taxonomy of animals and plants, where plots (a), (b), (c)

and (d) give the evolutionary tree, classification of plant tissues, phylogenetic tree of life

and general tree of life respectively.

A third example is the handwriting recognition. Recently, the handwriting recogni-

tion has become one of the important topics after the computerized information revolution

has appeared. Many publications have been introduced and discussed some graphical ap-

proaches and statistical clustering algorithms that can be used to detect the handwriting

numbers. Handwriting recognition concerns with the ability and performance of a com-

puter to reed and interpret some handwritten inputs. These inputs may come from either

paper documents or touchscreens. Cluster analysis and its novel algorithms that are intro-

duced continuously, play an important role in this topic. Figure 1.2 shows some examples

of the handwriting recognition, where plots (a) and (b) give the hierarchical clustering

of handwritten numbers of a particular writer and some different handwritten numbers

respectively.

Many other examples that show the importance of the cluster analysis could be given

in this context, for example, one of the common cluster analysis examples is measuring the

similarities of 11 languages, which has been introduced by Johnson and Wichern (2007).

In this example, the main interest is clustering the most like European languages that use

the Roman alphabet based on the numeral of these 11 languages.

3



(a) Evolutionary tree (b) Plant tissue classification

(c) Phylogenetic tree of life (d) General tree of life

Figure 1.1: Examples of cluster analysis: The taxonomy of animals and plants (a) Evolu-
tionary tree[64], (b) Classification of plant tissues[163], (c) Phylogenetic tree of life[162]
and (d) General tree of life[75].

We cannot leave these examples of cluster analysis without mentioning the gene ex-

pression data topic, since cluster analysis is one of the most frequently approaches that

are used to analyze the gene expression data. A particular attention is paid to the cluster

analysis for the gene expression data, which is helpful to understand the functions of genes

whose information has not been previously available (Eisen et al., 1998). As an example,

a biologist would like to find out the clusters from the DNA microarray data on gene

expressions, and consequently detecting the classes or subclasses of diseases. Full details

about the cluster analysis for gene expression data can be found in (Gan et al., 2007). A

good collection of the cluster analysis examples are available in (Hartigan, 1975; Gan et

al., 2007; Everitt et al., 2011).
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(a) Hierarchical clustering of handwritten numbers of a par-
ticular writer

(b) Different handwritten numbers

Figure 1.2: Examples of cluster analysis: The handwriting recognition (a) Hierarchical
clustering of the 12 pen-strokes centroids of a particular writer[101], (b) Different hand-
written numbers[53].

1.2 Hierarchical Clustering Methods

There are two major concerns in the existing literature regarding to the clustering tech-

niques; hierarchical clustering techniques and non-hierarchical clustering techniques. How-

ever, the graphical approaches have been considered a third concern in literature. In this

Section, we will discuss the similarity measures, the distance measures, the hierarchical

clustering techniques and the graphical approaches.

In order to measure the homogeneity within or between clusters, we need to use some

similarity measures. The similarity and dissimilarity measures in many cases are based

on some measures of distance that help us to use some techniques in order to group the

observations into clusters. Logically, after we use one of these measures, we need to apply

some approach which can be considered as the initial clustering indicator. The graphical

approaches are very useful approaches that give us initial view about if the data may

contain clusters, and consequently we need to apply some formal clustering methods to
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it. Two common types of techniques, known as hierarchical clustering techniques and

non-hierarchical clustering techniques are usually used as attempt to find all grouping

possibilities.

In order to measure the similarity between groups or samples, a measure of similar-

ity or dissimilarity has to be defined. According to the data types, similarity measures

can be used to determine either the similarity between entities or groups. For instance,

one can use the association coefficients as similarity measure if the variable is binary,

or use Gower coefficient (Gower, 1971) if the data is multinomial or quantitative data.

Alternatively, dissimilarity (distance) measures can be used to determine the distance

degree between entities or groups. A similarity coefficient indicates the strength of the

relationship between two data points (Everitt, 1993). The various measures can be de-

fined for several types of data such as: numerical, categorical, binary and mixed-typed

data. Sneath and Sokal (1973), subdivided the similarity and dissimilarity coefficients

into four groups; correlation coefficients, distance measures, association coefficients, and

probabilistic similarity measures.

It is worth mentioning that there are two types of similarity or distance measures, the

first is between entities (individuals) and the second is between groups. As we focus on

measuring the similarity between entities, we give brief discussion about the similarity

and dissimilarity measures between entities in Sections 1.2.1 and 1.2.2 respectively.

1.2.1 Similarity Measures

Similarity measures are used to describe how similar two data points (two clusters) are.

There are many ways to measure the similarity or proximity between pairs of objects. One

can consider the association coefficients as a similarity measures for the binary data, in

order to cluster items, where each variable takes two cases in terms of counts of matches

and mismatches (presence and absence) in each variable for two individuals. Suppose
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that a represents the frequency of 1− 1 matches, b is the frequency of 1− 0 matches, c is

the frequency of 0− 1 matches, and d is the frequency of 0− 0 matches, then we can put

the frequencies of the matches and mismatches for item i and item k in the form of the

contingency table 1.1:

Table 1.1: Counts of binary outcomes for two items.

Item k
Outcome 1 0 Total

Item i 1 a b a+ b
0 c d c+ d
Total a+ c b+ d p = a+ b+ c+ d

There are many association coefficients that depend on the 2 by 2 association table like

matching coefficient, Jaccard (1908) coefficient, Rogers and Tanimoto (1960) coefficient,

Sneath and Sokal (1973) coefficient, and Gower and Legendre (1986) coefficient. More

extensive coefficients can be found in Gower and Legendre (1986). Table 1.2 shows the

common similarity measures for the binary data based on the frequencies in Table 1.1.

One of the important similarity measures that can be used to cluster variables is the

correlation coefficient, which suggested by Karl Pearson (Pearson, 1920). Suppose that

our variables are binary which can arranged in the contingency table 1.1, so we can get

the usual product moment correlation coefficient, which is considered a common measure

of the similarity between two binary variables and equivalent to the chi-square statistic

for testing the independence of two categorical variables, as following:

r =
ad− bc

[(a+ b)(c+ d)(a+ c)(b+ d)]1/2
. (1.2.1)

Jukes and Cantor (1969), Tajima (1993) and Dyen et al. (1992) suggested some

similarity measures for categorical data with more than two levels, while Gower (1971)

proposed an important similarity measure that can apply for binary, multinomial, metric
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Table 1.2: Common similarity measures for the binary data based on the frequencies.

Measure Coefficient Name

a+d
a+b+c+d

Matching coefficient: Sokal and Michener

a
a+b+c

Jaccard coefficient

a+d
a+2(b+c)+d

Rogers and Tanimoto coefficient

a
a+2(b+c)

Sneath and Sokal coefficient

a+d
a+1/2(b+c)+d

Gower and Legendre coefficient

a
a+1/2(b+c)

Gower and Legendre coefficient

2a
2a+b+c

Czekanowski, Dice and Sorensen coefficient

a
a+b+c+d

Russell and Rao coefficient

a
b+c

Ratio of matches to mismatches coefficient

(quantitative), and mixed data. Suppose that SMik is the mean of similarity coefficient

between the two points k, i ; xij is the i− th observation for the variable j; and p is the

number of variables, then Gower’s coefficient for the mixed data takes the form:

SMik =

∑p
j=1 SMikj∑p
j=1Wikj

; i 6= k = 1, ..., n (1.2.2)

where Wikj is a weight that takes two values, 1 when both entities i, k have the same

property that we are interested in, and 0 otherwise; and SMikj is the similarity coefficient

between the two entities i and k based on the variable j, which can be calculated in many

ways depending on the type of data. More details can be found in Gower (1971).
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1.2.2 Distance Measures

On the contrary of the similarity measures, dissimilarity (distance) measures determine

the degree of distance between two entities, items or groups. Four standard criteria

(mathematical properties), that can be used to judge whether a similarity measure is a

true metric or not, are mentioned in Aldenderfer and Blashfield (1984), however not all

the distance measures mentioned below are metrics.

The most popular distance measure, which is usually used for the numerical data, is the

Euclidean distance (squared Euclidean distance, when the value of distance is squared).

This distance is also known as the l2 norm. Let dik be the distance between the two points

k and i; xij is the i− th observation for the variable j; and p is the number of variables,

then the Euclidean distance can be written as:

dik =

{
p∑
j=1

(xij − xkj)2
}1/2

. (1.2.3)

However, it is well known that the Euclidean distance is affected by changes in the units

of measurement, for example we would get two different values for the Euclidean distance

between the weight and height if we considered the unit of measurement for the weight

variable is kilograms instead of lbs. To address this problem, we need to standardize the

variables by dividing by the standard deviation of each variable, such that:

dik =

{
p∑
j=1

[
(xij − xkj)2

σ2
j

]}1/2

. (1.2.4)

this standardized form is not affected by the changes in the units of measurement. Another

way to standardize the variables is based on the rangeRj instead of the standard deviation.

It is known as the maximum distance, which is defined to be the maximum value of the

distances of the attributes, such that:
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Rj = max
i,k
|xij − xkj| . (1.2.5)

Another well-known metric, which is used for the numerical data, is the city block or

Manhattan distance (l1 norm). The Manhattan distance was used in a cluster analysis

context by Carmichael and Sneath (1969). It is usually used when the units of measure-

ment are same for all the variables, and it takes the form:

dik =

p∑
j=1

Wj |xij − xkj| . (1.2.6)

It is worth mentioning in this context that, the Euclidean metric, Manhattan metric

and maximum distance in (1.2.5) are special cases of the general Minkowski distance (lr)

at r = 2, 1 and∞ respectively, where r is called the order of the Minkowski distance, and

they satisfy the mathematical requirements of a distance function. The general form of

Minkowski distance is:

dik =

{
p∑
j=1

Wj |xij − xkj|r
}1/r

. (1.2.7)

In literature Mahalanobis distance, also called generalized distance (Mahalanobis,

1936), has been considered as a very important metric that can be used for the nu-

merical data. It takes the correlations among variables in the account by the inclusion of

the variance-covariance matrix Σ, therefore, this distance applies a weight scheme to the

data. The second feature is that Mahalanobis distance is invariant under all nonsingular

transformations. When the correlation between variables is zero, Σ is the identity ma-

trix; the squared Mahalanobis distance is same as the squared Euclidean distance. The

Mahalanobis distance between two points X i = (Xi1, ..., Xid)
T and Xk = (Xk1, ..., Xkd)

T

in the d-dimensional space Rd is defined as:
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dik =
√

(Xi −Xk)TΣ−1(Xi −Xk). (1.2.8)

A generalized Mahalanobis distance has been introduced by Morrison (1967), where

the weight of each variable has been included in the measure by adding a diagonal matrix

containing the p weights. At the same time, Gower (1967) suggested another distance

measure for the numerical data which can be calculated by using the form:

dik = − log10

(
1− 1

p

p∑
j=1

|xij − xkj|
βj − αj

)
. (1.2.9)

where αj = mini6=k (xij − xkj) and βj = maxi6=k (xij − xkj). Many other non-metric dis-

tance measures for the numerical data that do not meet the metric conditions have been

introduced over the literature. For instance, Sokal and Sneath (1963) proposed a distance

function in order to measure the distance between two entities, such that:

dik =

√√√√1

p

p∑
j=1

[
(xij − xkj)
(xij + xkj)

]2
. (1.2.10)

Canberra distance measure, introduced by Lance and Williams (1967), is often re-

garded as a generalization of the dissimilarity measure for binary data. They proposed

the following two distance measures:

d
(L)
ik =

∑p
j=1 |xij − xkj|∑p
j=1 |xij + xkj|

, d
(W )
ik =

∑p
j=1 |xij − xkj|∑p
j=1 |xij|+ |xkj|

. (1.2.11)

Although all the above distance measures are used for the numerical data, there are

many other distance measures that can be used for the categorical, binary and mixed data.

For example, the simple matching dissimilarity measure and Harrison (1968) measure are

usually used for the categorical data. Moreover, some studies suggested that we can use

the relationship between the similarity and dissimilarity measures in order to get a distance
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measure for the categorical data. So, one can use the transformation dik = 1 − SMik ,

if the data is binary, or Gower (1966,1967) transformation, dik =
√

2 (1− SMik) , if the

data is mixed data.

1.2.3 Agglomerative Hierarchical Methods

Two common types of methods, known as agglomerative hierarchical methods and divisive

hierarchical methods, are usually used under the hierarchical clustering techniques. For

the first type of methods, agglomerative hierarchical methods, they depend on the merging

process so that we start with number of groups equals to the number of elements, in other

words each element is in a cluster of its own. The most similar elements are first grouped,

and then these groups are also merged, until all elements end up being in the same cluster.

The result of the clustering can be displayed as a dendrogram, which illustrates the merger

that have been made.

Linkage-Based Methods

In order to use one of the agglomerative hierarchical methods, we have to start by calcu-

lating the similarity or dissimilarity matrix between entities, and finish with the dendro-

gram. The most common and important agglomerative hierarchical methods are; single

linkage, complete linkage, average linkage, coordinate centroid clustering, median clus-

tering method, Ward’s hierarchical clustering method and Lance and Williams flexible

method. The only difference between the various agglomerative hierarchical methods, is

that how can we calculate the similarity or distance measures between entities or sub-

groups. For instance, in the single linkage, complete linkage, and average linkage methods

we start by searching about the most two similar elements in the distance (similarity)

matrix, then we merge them to form the first cluster. The next step is calculating the

distances between this cluster and the remaining elements by using specific distance func-

tion. After that, we continue in choosing the most two similar elements (clusters) in the

12



distance (similarity) matrix until all elements end up being in the same cluster. It is

worth mentioning that, each of these three methods has its own distance function. The

single linkage method has been considered one of the oldest methods of cluster analysis;

it was suggested independently by Florek et al. (1951), McQuitty (1957) and Sneath

(1957). Sibson (1973) proposed an important optimality efficient algorithm (SLINK) for

the single linkage method, which can be applied on an unprecedented scale. Recently,

many publications have developed this method. A useful overview is given in Muja and

Lowe (2009), where they suggested an automatic algorithm to get fast approximate of

the nearest neighbors and a system which takes any given dataset and desired degree

of precision and use these to automatically determine the best algorithm and parameter

values. On the other hand, the complete linkage method has been developed by Lance

and Williams (1967) and Johnson (1967). Along the line of Sibson (1973), Defays (1977)

introduced an efficient algorithm for the complete linkage method which is based like the

(SLINK) algorithm and offers economy in computation. Following, we give brief discus-

sion regarding to the three linkage-based methods, (single linkage, complete linkage, and

average linkage methods).

We can conclude the main steps of the agglomerative hierarchical clustering algorithm

as the following:

1. We start with number of groups equals to the number of elements, where each

element is in a cluster of its own. Suppose we have n items, so we get firstly

n × n distance (similarity) matrix by using any one of the measures that we have

mentioned above.

2. In this step, we start by searching about the most two similar elements in the

distance (similarity) matrix. Suppose that the most similar items (clusters) are i

and k, and their distance di,k are the smallest one, then we merge them to form the

first cluster (i, k).
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3. An update in the distance matrix should be done by omitting the rows and columns

corresponding to items (clusters) i and k, and then we should add a new row and

column giving the distances between cluster (i, k) and the other items (clusters)

by using some distance function, where each method of them has its own distance

function as we show below.

4. Continue in choosing the most two similar elements (clusters) in the distance (sim-

ilarity) matrix and update it until all elements end up being in the same cluster.

Single Linkage Method

The single linkage method, which is also known as nearest neighbour clustering, depends

on the nearest-neighbour rule. In this method, the distance between specific cluster (t)

and another cluster (ik) that consists of the two entities i and k is calculated by using

the distance function:

dt(ik) = min
i6=k

(dit, dkt) , (1.2.12)

or

SMt(ik) = max
i6=k

(SMit, SMkt) , (1.2.13)

if we use a similarity matrix instead of dissimilarity matrix.

Complete Linkage Method

On the other hand, the complete linkage method, which is also known as farthest neigh-

bour clustering, depends on the furthest-neighbour rule. In this method, the distance

between specific group (t) and another group (ik) is calculated by using the distance

function:

dt(ik) = max
i6=k

(dit, dkt) , (1.2.14)
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or

SMt(ik) = min
i6=k

(SMit, SMkt) , (1.2.15)

if we use a similarity matrix.

Average Linkage Method

In the third agglomerative hierarchical method, average linkage, which is also known as

unweighted pair group method with arithmetic mean (UPGMA), the distance between

two clusters can be considered as the average distance between all pairs of items where

one member of a pair belongs to each cluster (Johnson and Wichern, 2007). Suppose that

n(ik) and nt are the number of items in clusters (ik) and t, respectively, then the distance,

duv, between object u in the cluster t and object v in the cluster (ik) is obtained by:

dt(ik) =

∑
u

∑
v duv

n(ik).nt
, (1.2.16)

or

SMt(ik) =

∑
u

∑
v SMuv

n(ik).nt
, (1.2.17)

if we use a similarity matrix.

Example 1.2.1 Breakfast Cereals Data

In this example, we consider the data on brands of breakfast cereals [Source: Data courtesy

of Chad Dacus, Table 11.9 of Johnson and Wichern (2007)], which contains 43 types of

breakfast cereals produced by three different American companies (General Mills (G),

Kellogg’s (K), and Quaker (Q)). It also contains eight variables, where eight numerical

nutritional characteristics have been measured for each cereal. The variables are: Calories,

Protein, Fat, Sodium, Fiber, Carbohydrates, Sugar, and Potassium. Also, the name of

each cereal and the company that produced the cereal have been given.
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Our target is clustering these 43 types of breakfast cereals based on the above 8 vari-

ables, by using the linkage-based methods (single, complete and average linkage meth-

ods). As we mentioned in the agglomerative hierarchical clustering algorithm, we start

with number of groups equals to the number of breakfast cereals types (43), and we start

clustering by merging the two cereals that have smallest nonzero distance in the distance

matrix until all the cereals end up being in the same cluster. Figures 1.3, 1.4 and 1.5

show the single, complete and average linkage dendrograms for the distances between

the 43 types of breakfast cereals respectively, where they illustrate the grouping and the

partitions produced at each stage, for each method.

As we can see in Figure 1.3, the single linkage dendrogram does not give a clear

clustering and it is very difficult visually to determine the number of clusters from the

dendrogram. This is due to the distances between observations are not big enough to

distinguish the separation between groups. For example, if we cut the tree at the height

h = 100, then we get two clusters, one of them with only one cereals brand (AllBran)

and the second cluster with the remaining 42 cereals brands. However, cutting the tree

at h = 85 gives 3 clusters, which in fact means for each point xij, every other point xkj

in its cluster satisfies dik 6 85, where dik is the Euclidean distances defined in (1.2.3).

Compared to Figure 1.4, it can be clearly seen that the complete linkage dendrogram shows

clearer clustering structure, where it is obviously gives an evidence about the existence

of three clusters. The distances in this dendrogram are much wider, and that makes it

easy visually to distinguish the number of clusters. For instance, cutting the complete

linkage tree at h = 250 gives 3 clusters, which means for each point xij, every other point

xkj in its cluster satisfies dik 6 250. For the average linkage method, we can see from

Figure 1.5 that the dendrogram does not give reasonable result as the distances are not

wide enough comparing to them in the complete linkage method. Like the single linkage

dendrogram, the average one has assigned only one cereals brand (AllBran) in one cluster.
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So, we can conclude that the complete linkage method outperforms both of the single and

average linkage methods in this data. From this example, we can see that determining

the cutting point in the linkage based methods is questionable, and may require some

different methods to decide the right number of clusters.

Other Agglomerative Hierarchical Methods

The coordinate centroid clustering method, which is also known as unweighted pair-

group method using the centroid approach (UPGMC), has been suggested by Sokal and

Michener (1958), and then developed by King (1967) in order to cluster the variables. This

method tries to merge each two subgroups to be fused together depending on the distance

between their coordinate centroids. It starts also by searching about the most two similar

elements in the distance matrix, then merging them to form the first cluster and calculate

its corresponding centroid in order to adjust the distance matrix. We continue in choosing

the most two similar elements (subgroups) in the distance matrix until all elements end

up being in the same cluster like the linkage-based methods.

A disadvantage of this method is that, it is affected by the group size when one of the

two subgroups to be fused has very different size than the other such that the centroid of

two merged groups will be very close to that of the larger group and may remain within

that group, and consequently the smaller group will lose its properties. For that reason,

Gower (1967) has suggested the median clustering method, which assumes the equality

of the size of each group to be fused.

Ward (1963) has introduced another hierarchical clustering procedure, which is de-

pending on the error sum of squares (ESS) criterion. He pointed out that with each

merging occur, there will be some loss of information, which can be measured by calcu-

lating the error sum of squares. According to Ward’s method, one can consider that a

merged group is acceptable if the increase in the total within-cluster error sum of squares

(information loss) has been minimized as can as possible, and it is the reason to refer to
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this method as the minimum variance method. Lance and Williams (1967) have

suggested a recurrence formula that gives the distance between two clusters t and (i, k),

the formula is given by:

dt(i,k) = αidti + αkdtk + βdik + γ |dti − dtk| ,

where dik is the distance between groups i and k while α, β and γ are parameters whose

values are different for different methods above. It is worth mentioning that, all the

distance measures between groups that are used by many cluster analysis methods satisfy

Lance and Williams’ recurrence formula by a suitable choice of the parameters α, β and

γ. For instant, when αi = αk = 1
2
, β = 0 and γ = −1

2
the concept of single linkage is

achieved. A table of parameters for standard methods can be found in Gan et al. (2007)

and Everitt et al. (2011).

1.2.4 Divisive Hierarchical Methods

On the contrary of the agglomerative hierarchical methods, the divisive hierarchical meth-

ods start with a single cluster and then split it into two subclusters by using 2n−1 − 1

possible divisions (Everitt, 1980), where n the number of elements, then successively split-

ting clusters. Divisive hierarchical clustering methods consist of two types of methods,

monothetic divisive methods and polythetic divisive methods. A monothetic method di-

vides the data on the basis of the possession or otherwise of a single specified attribute,

while a polythetic method divides the data based on the values taken by all attributes.

MacNaughton-Smithe et al. (1964) have proposed the main features of the polythetic

divisive methods. They pointed out that we have to find the element that is furthest

away from the others within a group, and considering it as the seed for a splinter group.

Then a splinter group is accumulated by sequential addition of the entity whose total
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dissimilarity with the remainder less its total dissimilarity with the splinter group is a

maximum (Everitt, 1980). Kaufman and Rousseeuw (1990) have developed a program for

the polythetic divisive method which is known as DIANA (DIvisive ANAlysis clustering).

On the other hand, monothetic techniques are usually used when the data is binary,

since they divide the data on the basis of the possession or otherwise of a single speci-

fied attribute. Basically, these monothetic techniques depend on optimizing a criterion

reflecting either cluster homogeneity or association with other variables. Accordingly, two

monothetic methods have been discussed in more details by Everitt (1980). The first

one is the association analysis which creates division of a cluster into two sub-clusters in

terms of the presence and absence of one of the binary characters for specific variable. By

calculating the association coefficients (chi-square coefficient), we can divide the cluster

according to the variable that has the maximum value of the calculated association coeffi-

cient. The second method is the automatic interaction detector method which determines

the variables, and the categories within them, that are maximally different with respect

to some dependent variable (Everitt, 1980). A good collection of the hierarchical methods

applications is available in (Everitt et al., 2011), while many clustering algorithms have

also been extensively studied in (Gan et al., 2007; Kaufman and Rousseeuw, 2005).

1.2.5 Graphical Approaches

A particular attention is paid to the graphical approaches over the existing literature,

where they have become more and more popular in clustering analysis. They are consid-

ered an important tool that helps us in the clustering process, where some of them give

initial view about if the data may contain clusters and consequently some formal cluster-

ing methods should be used. Other graphical approaches are used in order to determine

the number of clusters in the multivariate and functional data. It is worth mentioning

that, whether we use the hierarchical techniques or the non-hierarchical techniques, we
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will desperately need to such that tool. However, some publications consider the graph-

ical approaches are just helpful tool and others consider them as one of the clustering

techniques. As part our study basically focuses on the forward plots as an indicator that

gives us the expected number of clusters, we see that it is more reasonable to consider the

graphical approaches as clustering techniques.

Thorndike (1953) has been considered one of the earlier graphical approaches to de-

termine the suitable number of clusters. He pointed out that, with the increase in the

number of clusters k, the average within-clusters distance will decrease, and the number

of clusters will be acceptable when sudden fluctuation happen in the curve. Carmichael

and Sneath (1969) also have used the graphical approaches in order to cluster the multi-

variate data by using the method of taxometric maps. Another graphical approach has

been introduced by Sokal (1966). He have proposed a graphical representation of the dis-

similarities matrix between the objects. After that, the distance graph was proposed and

used by Chen et al. (1974). Hartigan (1975) showed how to plot the distances to detect

clusters. Rousseeuw (1987) introduced a graphical representation a so-called silhouette

(banner) plot that tell us how well each object lies within its cluster. He clarified that the

height of the silhouette of a cluster gives information about the number of objects that

lie within it, while its width tells us about the tightness of the cluster with respect to the

other clusters. For more details about how to detect clusters graphically, see Everitt et

al. (2011) and Kaufman and Rousseeuw (2005).

Many other publications used the scatterplot matrix and histograms that can be used

as initial indicator to the presence of clusters. For instance, Atkinson (1994) and Riani

and Cerioli (1999) have described variety of plots, such as scatterplot matrix and the

stalactite plots, to detect the multivariate outliers which can be used as cluster technique.

Many forward plots and entry plots are given by Atkinson et al. (2004), Atkinson et al.

(2006), Atkinson and Riani (2007) and Riani et al. (2009) that are used to determine the
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number of clusters in the multivariate data.

Basically, part of our methodology completely depends on the area of graph clustering,

since the distinctive feature of this study is to introduce new algorithms and plots that

can detect the right number of clusters in both multivariate and functional data. Our

proposed forward plots based on either spatial ranks or volume of central rank regions and

the weighted spatial ranks contours can be considered a new contribution to the graphical

approaches group that can be used to determine the number of clusters graphically in

both multivariate and functional data.

1.3 Non-hierarchical Clustering Methods

Non-hierarchical clustering methods, or partitional clustering methods, are usually used

to group the elements into a collection of K clusters, rather than group the variables.

The number of clusters, K, may either be specified in advance or determined as part

of the clustering procedure. The non-hierarchical clustering methods operate in differ-

ent direction to the hierarchical methods, since they find all the clusters simultaneously

as a partition of the data unlike the hierarchical clustering methods that find the clus-

ters in a hierarchical structure. In order to know this direction, three common types

of non-hierarchical clustering techniques should be discussed here. They are known as

optimization clustering techniques, density search techniques, and clumping techniques.

1.3.1 Optimization Clustering Techniques

For the first type of techniques, optimization clustering techniques, they are also known

as iterative partitioning methods (Aldenderfer and Blashfield, 1984), and they can cluster

the data by firstly assuming a specific number of clusters which can be determined by

the investigator. An advantage of the optimization clustering techniques is that, they

allow for the relocation of entities which can be considered as a correction step at every
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clustering phase. It is worth mentioning that, there are two groups of the optimization

clustering techniques that can be used. The first group is the methods that depending on

the initial partition of the data, and the second group is the methods that depending on

the clustering criterion.

The clustering methods based on the initial partition of entities usually start with an

initial group of entities that known as seed points. These seed points are considered as

initial estimates of the clusters center, and an entity can be allocated to the cluster with

nearest center. Moreover, the seed point should be updated after every addition to the

cluster. An important point should be noted in this context is the way of selection of

these points, such that it has to be random way without any bias in the selection.

K-means Method

The most popular optimization clustering technique based on the initial partition of en-

tities is known as K-means method. A particular attention is paid to the K-means over

all the cluster analysis literature. In many publications, K-means has been considered a

very important clustering algorithm that can be used given an important requirement.

The initial number of clusters should be determined firstly. K-means has been indepen-

dently introduced in different fields by Steinhaus (1957), Lloyd (1957), Ball and Hall

(1965), and MacQueen (1967). However the huge number of clustering algorithms that

have been published recently, it is still one of the most widely used algorithms for clus-

tering for many reasons as ease of implementation, simplicity, efficiency, and empirical

success (Jain, 2010). One of the distinctive features of K-means algorithm is that, it can

be divided into two phases; the first one is the initialization phase where the elements

can be randomly assigned into k clusters. The second one is the iteration phase, where

the distance between each element and each cluster should be calculated and then the

element can be assigned to the nearest cluster (Gan et al., 2007). The essential steps in

the K-means algorithm are:
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1. Start with an initial partition of the n items into K initial clusters.

2. Assign each item to the cluster whose mean is nearest by using a distance measure,

and then calculate the change in the mean produced by moving each item to another

group.

3. Repeat the previous step until no more reassignments (no improvement) take place.

Now, we consider the data on breakfast cereals introduced in Example 1.2.1. For the

selection criterion, the CH index (Calinski and Harabasz, 1974) has been used. So we

start with computing the CH index of K-means clustering assignments, over a range of

the number of clusters K, in order to determine the initial suitable number of clusters.

For a given number of clusters K, we can compute the CH index as following:

CH(K) =
B(K)/(K − 1)

W (K)/(n−K)
, (1.3.1)

whereW (K), B(K) are the within and between cluster variations of CH(K) respectively.

Table 1.3 gives the CH index for the breakfast cereals data based on the K-means

clustering method, it can be clearly seen that the largest score CH(K) existing when

K = 6, the yellow shaded score in the table. That means K = 6 maximizes the CHindex.

Figure 1.6 shows the CH index for the breakfast cereals data based on the K-means

clustering method. Also, from this Figure, it can be clearly seen that the maximal point

of CH(K) occurs at K = 6, however the real number of clusters in this data is 3.

Table 1.3: Example 1.2.1: CH index for the breakfast cereals data based on the K-means
clustering method.

K 2 3 4 5 6 7 8 9 10
CH(K) 26.12 34.76 38.28 42.69 48.10 46.07 45.83 42.82 47.48

Figure 1.7 is a scatterplot matrix which represents the K-means cluster centers and

cluster assignments for the breakfast cereals data. The clustering assignments are marked
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Figure 1.6: Example 1.2.1: CH index for the breakfast cereals data based on the K-means
clustering method.

by colors. It can be clearly noticed from Figure 1.7 that we have six clusters, since K = 6

represents all the observations with the existence of homogeneity within the clusters and

the heterogeneity between clusters. The K-means cluster centers are shown in Table 1.4.

Clearly, the K-means behaves so poorly in this real dataset, where it failed to give the

right clustering and it is difficult visually to see any clustering pattern in the scatterplot.

Table 1.4: Example 1.2.1: The K-means cluster centers for the breakfast cereals data.

Calories Protein Fat Sodium Fiber Carbohydrates Sugar Potassium
114.44 3.11 1.67 171.11 2.78 15.00 6.56 123.89
107.14 2.71 0.71 282.86 0.79 18.21 4.43 56.43
111.43 1.93 1.00 199.29 0.68 14.68 8.57 51.43
110.00 1.60 0.60 110.00 0.80 11.40 13.20 29.00
112.50 3.25 0.75 225.00 5.75 12.50 10.75 245.00
75.00 2.75 0.50 0.00 1.68 9.50 2.00 68.75
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A good overview of K-means method is given in Jain (2010) with a review for K-means

algorithm, its historical developments, its parameters, and some of its extensions. Also

Jain (2010) showed that K-means is one of the preferred algorithms in pattern recognition

due to the nature of available data. Moreover, the author introduced a general review

for various topics in cluster analysis, such that, data clustering and its historical develop-

ments, some major approaches to cluster analysis, the number of clusters, cluster validity,

comparing clustering algorithms, trends in data clustering, semi-supervised clustering,

large-scale clustering, and multi-way clustering.

Although K-means has been considered a very important clustering algorithm, some

problems and properties should be mentioned in this context. The first problem is the

computational complexity, where finding the optimal solution to the K-means clustering

problem for n observations in d dimensions is computationally difficult (NP-hard), how-

ever, there are efficient heuristic algorithms (such as Lloyds algorithm) that are commonly

employed and converge quickly to a local optimum. So, there is no guarantee that the

solution will converge to the global optimum because it is a heuristic algorithm, and the

result may depend on the initial clusters. Moreover, there is also no guarantee that the

K-means algorithm gives clustering that globally minimizes the within-cluster variation.

Third problem is that the final solution depends on the number and choice of the initial

cluster centers, where different initial centers lead sometimes to different final clustering.

So we may need to run K-means many times with random initial cluster centers and

choose the one which gives the smallest within-cluster variation.

K-Medoids Method

A similar optimization clustering technique based on the initial partition of entities, is

known as partitioning around medoids (PAM), has been proposed by (Reynolds et.al.,

1992). The optimum average silhouette width (Kaufman and Rousseeuw, 1987) is usually

used to estimate the number of clusters in the PAM algorithm. The method is also know

29



as K-median algorithms (Brusco and Kohn, 2009; Kohn et al., 2010). Instead of using

the mean in the K-means method, K-medoids uses the median of the data to represent

the clusters. It is similar to the K-means algorithm, except when fitting the centers we

use the points themselves as centers without using their means. One of the important

advantages of using K-medoids is that, it is more robust to noise and outliers compared

to K-means. This is due to that the medoid is less influenced by outliers and extreme

values than a mean. Moreover, it works efficiently for small datasets, but does not scale

well for large data.

The essential steps in the partitioning around medoids (PAM) algorithm are:

1. Randomly Partition the items into K initial clusters by selecting K of the n data

points as the medoids.

2. Associate each data point to the closest medoid by using some distance measure.

3. Compute the total cost of the configuration each medoid with each non-medoid data

point.

4. Select the configuration with the lowest cost.

5. Repeat steps 2 to 4 until there is no change in the medoid.

The second group of the optimization clustering techniques is the methods that depend

on the clustering criterion. These methods search about the entity that needs to relocate

to another group, such that an improvement in a particular clustering criterion should be

happen as a result of this reallocation. Many clustering criteria have been used for this

purpose (Everitt, 1980). Three of them depend on the matrix T = W + B, where T is

the total scatter or dispersion matrix, W is the matrix of within-groups dispersion, and

B is the between-groups dispersion matrix. These clustering criteria are: minimization

of trace(W ), minimization of the determinant of W , and maximization of trace(BW−1).
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It should be noticed that minimization of trace(W ) is equivalent to maximization of

trace(B), where trace(T ) = trace(W ) + trace(B), and minimization of the determinant

of W is equivalent to maximization of the ratio |T |/|W |.

Rubin (1967) have proposed another clustering criterion, which is known as average

entity stability. It is based on the average similarity between the entity and the members

of the group which is known as the attraction of an entity to specific group. An entity is

said to be unstable when it is attracted to another group more than to the group it is in. In

addition, there is another criterion proposed which is known as the information measure

(Everitt, 1980). It is a function of the data, measurement accuracies and parameters

of certain distributions. This criterion is applicable for the variables whether they are

continuous and normally distributed or they are multistate and follow a multinomial

distribution.

1.3.2 Density Search Techniques

In the second type of non-hierarchical clustering techniques (density search techniques),

it is assumed that the entities are depicted as points in a metric space suggests that there

should be parts of the space in which the points are very dense, separated by parts of low

density. This could form the basis for the definition of a natural cluster (Everitt, 1980).

Many clustering methods have been proposed for this purpose, like the TAXMAP method

of Carmichael and Sneath, Gitman and Levine’s methods for detecting unimodal fuzzy

sets, Cartet count method, mode analysis, and method of mixtures.

TAXMAP method, it is also called the method of taxometric maps, is proposed by

Carmichael and Sneath (1969), which has been considered the most popular density search

technique. It represents a partition using a diagram in which the groups are displayed as

circles and each diameter of a circle can be considered as the corresponding diameter of the

cluster. If a cluster contains only one element, then it is represented by one point. In this
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method, the clusters can be initially formed in a similar way to the single linkage method

using some criteria to help us to know when we should stop adding elements to the cluster.

Then it attempt to place the clusters in the map in such a way that the distances between

them are proportional to their actual distance. Gitman and Levine (1970) proposed

another method also starts in a similar way to the single linkage clustering technique

with using a particular order to allocate each element to a suitable cluster. Mode analysis

method also is a derivative of single linkage clustering that searches for natural subclusters

by estimating disjoint density surfaces in the sample distribution. A disadvantage of mode

analysis is that it cannot identify the large and small clusters simultaneously (Everitt et

al., 2011). For more comprehensive details of this subject, Cartet count method, and

Method of mixtures, the reader is referred to Everitt (1980) and Everitt et al (2011).

1.3.3 Clumping Techniques

Regarding to the third type of non-hierarchical clustering techniques (clumping tech-

niques), they are usually used when there is an overlap between the clusters. In many

studies and fields there is a correlation between the variables and groups which makes

an overlap between the clusters, and it could be addressed by using one of the clumping

techniques. These techniques depend on minimizing some function, which called a cohe-

sion function, between each pair of groups. Needham (1967) proposed a mathematical

form in order to define a symmetric cohesion function while Parker-Rhodes and Jackson

(1969) modified it. Extensive review for the clumping techniques and their algorithms

can be found in (Everitt et al., 2011).

1.4 Model-based Clustering

All the hierarchical and non-hierarchical clustering methods discussed earlier are intu-

itively reasonable procedures but they do not have a model to explain the way that the
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observations were produced and their probabilistic distribution(Johnson and Wichern,

2007). Model-based clustering is a popular tool in clustering analysis due to its prob-

abilistic foundations and its flexibility (Bouveyron and Brunet-Saumard, 2014). In the

model-based clustering, the clusters are defined in a probabilistic framework, and this

in fact helps to formalize the clusters’ notion based on their probability distribution to

interpret the obtained partition from a statistical concept. So, in model-based clustering,

the data are represented by a mixture model in which each component corresponds to

a different cluster, and each component is described by a density function and has an

associated probability or weight in the mixture. In principle, any probability model for

the components can be considered, but usually it is assumed that the components have

p-variate normal distributions. Thus, the probability model for clustering will often be

a mixture of multivariate normal distributions and each component in the mixture rep-

resents a cluster. In edition, Gaussian components with different parametrizations and

cross-cluster constraints are usually used to formalize the models with different geometric

properties.

The first works on finite mixture models were fromWolfe (1963) and Scott and Symons

(1971). The classic reference for the model-based cluster analysis is Banfield and Raftery

(1993) where they proposed the model-based Gaussian and non-Gaussian clustering based

a reparameterization of the covariance matrix. They also proposed an approximate

Bayesian method for choosing the number of clusters based on the Bayesian informa-

tion criterion(BIC). Model-based clustering has been extensively studied in McLachlan

and Basford (1988), McLachlan and Peel (2000), Banfield and Raftery (1993), Fraley

(1998), Fraley and Raftery (1999) and Fraley and Raftery (2002), and it has become then

a popular and reference technique. More comprehensive details and review are given in

(Melnykov and Maitra, 2010; Bouveyron and Brunet-Saumard, 2014).

In a model based clustering approach, one may assume that the d-dimensional data
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X1, . . . ,Xn are coming from a mixture probability density function

f(x) = p1f1(x) + · · ·+ pkfk(x), (1.4.1)

where f1, . . . , fk are d-dimensional unimodal density functions and p1, · · · , pk are the

mixing proportions with p1 + · · · + pk = 1. The clusters are often modeled by the same

parametric density function with the finite mixture model:

f(x) =
K∑
k=1

pkf(x; θk), (1.4.2)

where θk is the vector of parameters for the k-th mixture component. Accordingly, the

log-likelihood of the above mixture model is:

`(θ; x) =
n∑
i=1

log(
K∑
k=1

pkf(xi; θk)). (1.4.3)

Since the group labels z1, · · · , zn of the observations are unknown, the inference of

this model cannot be directly done through the maximization of the likelihood. This is

due to the exponential number of solutions to explore, the maximization of the previ-

ous equation is unfortunately intractable, even for limited numbers of observations and

groups (Bouveyron and Brunet-Saumard, 2014). As a result, we have to use some other

inference algorithm. The expectation-maximization (EM) algorithm is the most popular

inference algorithm in this case. The motivation behind using EM algorithm is to make

inference for the models that not all their variables are observed, and this happens in some

complicated applications where we directly observe some variavles x1, · · · , xn, but some

other variables (a set of unobserved latent data) z1, · · · , zn are unobserved. This situation

will be complicated, because of the missing variables z1, · · · , zn, we cannot estimate the

parameter θ and without estimating θ we cannot consequently infer what the value of z
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may be. The EM algorithm depends on the complete log-likelihood:

`c(θ; x, z) =
n∑
i=1

K∑
k=1

zik log(pkf(xi; θk)), (1.4.4)

where zik = 1 if the i-th observation belongs to the k-th cluster and zik = 0 otherwise. So,

in the EM algorithm we start with an initial guess of the model parameters θ and derive

the expected values of the missing variables z1, · · · , zn. Based on this initial expected

values, we can maximize the likelihood w.r.t. θ, and again based on this initial estimated

value of θ, we can derive the new expected values of z1, · · · , zn and so on. So, we assume

that one of both z and θ is known in each iteration, and we repeat this iterative process

until the likelihood cannot be increased anymore.

The expectation-maximization algorithm is considered one of the basic tools in model-

based clustering. It has been extensively used in the literature for inferring the mixture

models and determining the partitions. The EM algorithm iteratively maximizes the

conditional expectation of the complete log-likelihood through two steps. The first step

is the expectation step (E-step), which computes the expectation of the complete log-

likelihood conditionally to the current value of the parameter set. In other words, we

calculate the expected value of the log likelihood function, with respect to the conditional

distribution of z given x under the current estimate of the parameters θ. The second step

is the maximization step (M-step), which maximizes the expectation of the complete log-

likelihood over the parameter to provide an update for the parameter set. Once a stopping

criterion is satisfied, the algorithm would stop after many iterations, and the partition

of the data can be deduced from the posterior probabilities by using the maximum a

posteriori (MAP) rule, where we can assign the observation xi to the group with the

highest posterior probability.

Model-based clustering of high-dimensional data is considered one of the active topics
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in clustering analysis. Many approaches related to the clustering of high-dimensional

have been introduced such as, the dimension reduction methods, regularization methods,

constrained and parsimonious methods and subspace clustering methods. For more details

about these methods, the reader is referred to (Bouveyron and Brunet-Saumard, 2014).

We apply now the model-based clustering algorithm of Fraley and Raftery (2002),

which was implemented in the R package mclust, on the breakfast cereals data. Fra-

ley and Raftery (2003) assumed a family of different models of the parameterization of

the Gaussian mixture models (parsimonious models), introduced earlier by Banfield and

Raftery (1993), to be fitted in the EM phase of clustering. The models’ names and de-

tails of the number of free parameters to estimate for the parsimonious Gaussian mixture

models with K components and p variables, are available in Table 2 of Bouveyron and

Brunet-Saumard (2014) and in the function mclustModelNames(model) in the package

mclust. For example, EII refers to a spherical equal volume model, which assumes that

the covariance matrices of each class are equal and spherical such that Σk = Σ = σ2Ip,

for k = 1, . . . , K and with σ2 ∈ R, while VEI refers to a diagonal varying volume and

equal shape model which assumes that the covariance matrices of each class are different.

Figure 1.8 shows the optimal model according to BIC for EM initialized by hierar-

chical clustering for parameterized Gaussian mixture models. As we can see, the best

model according to BIC values is a diagonal equal shape model (VEI) with 4 clusters,

where the maximum BIC value was for this model with (BIC= -2158.89). However, the

algorithm failed to give the right number of clusters based on the Bayesian information

criterion(BIC).

1.5 Functional Data Clustering

Recently, functional data analysis (FDA) has become one of the most important and

active topics in statistics. This is due to its ability to represent the sequences of individual
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Figure 1.8: Example 1.2.1: BIC plot based on model-based clustering (mclust) for the
breakfast cereals data.

discretely observed data as functions and analyze them as single entities. The greatest

advantage of FDA is the additional information that can be extracted from the underlying

functions, derivatives and primitives. In the functional data, the data are usually sampled

along a continuum, and the random variables take values into an infinite dimensional space

such as a space of functions defined on some set T , where T ⊂ R could be time interval.

For example, the stochastic process X = {X(t); t ∈ T }; where T ⊂ R is a good example

of the functional data. Functional data can exist as univariate or multivariate. Ramsay

and Silverman (2005) and Ferraty and Vieu (2006) have been considered the classic and

popular references for the functional data analysis. They proposed different definitions

and examples for the functional data.

In the FDA, it is important to distinguish between two different kinds of the sam-

pled curves. The first one is the regularly sampled curves, where the evaluation points
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t ⊂ T are supposed to be fixed for each curve with the same length and knots. For ex-

ample the discrete observations Xij of each sample path Xi(t) at a finite set of knots

{tij : j = 1, . . . ,m} ; i = 1, . . . , n is considered a regularly sampled curves, where the

curves’ length (m) is fixed among the different functions. The second one is the ir-

regularly sampled curves, where the evaluation points are assumed to be different and

each curve has its own length based on the number of knots that represent the discrete

observations in the sampled curve. In other words, we have discrete observations Xij of

each sample path Xi(t) at a finite set of knots {tij : j = 1, . . . ,mi} ; i = 1, . . . , n, where

the curves’ length (mi) changes for each function.

Functional data are observed discretely. Suppose we have discrete observations Xij of

each sample path Xi(t) at a finite set of knots {tij : j = 1, . . . ,mi}, then each functional

observation of a single curve Xi(t) consists of mi pairs (Xij, tij), where Xij is the i-th

observation of the function Xi(t) at time tij. Modeling of functional data depends on

whether sample curves are observed without error or with error. For the first case, the

functional predictor will be,

Xij = Xi(tij); j = 1, . . . ,mi, (1.5.1)

and for the second case, when the sample curves are observed with error eij, we formally

write:

Xij = Xi(tij) + eij; j = 1, . . . ,mi. (1.5.2)

Nowadays, many researchers from diversified areas use FDA in order to study different

applications in many scientific fields such as medical studies, weather researches, phonet-

ics, economics, social science and stock market. The most widely used example in FDA

is the Berkeley Growth Study (Tuddenham and Snyder, 1954). It has been extensively

studied in Ramsay and Silverman (2005). We give more extensive and detailed analysis
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of growth data in Chapter 5 in the context of functional data clustering. Other examples

for using the clustering analysis in the functional data is clustering gene expression time

series, electrocardiograms (ECG) for the cardiac pathology, and the weather forecast.

Many functional data clustering methods have been proposed in the literature. An

classification of the different functional data clustering approaches is given by Jacques

and Preda (2014). It classifies the functional data clustering approaches into four groups,

the raw-data methods, filtering methods, adaptive methods and distance-based methods.

An example of the raw-data methods is the work by Boullé (2012). Moreover, many other

methods that have been introduced for the multivariate case, have been considered as raw-

data methods, more details are given in Chapter 5. On the other hand, examples of the

filtering methods based on the functional principle components analysis (FPCA) and the

spline coefficients in literature are the work that have been introduced by Peng and Müller

(2008), Abraham et al. (2003), Rossi et al. (2004) and Kayano et al. (2010). Different

adaptive methods based on the probabilistic model of the basis expansion coefficients

have been introduced by James and Sugar (2003), Heard et al. (2006), Ray and Mallick

(2006), Samé et al. (2011) and Giacofci et al. (2012). In addition, other adaptive methods

based on the probabilistic model of the FPCA scores have been proposed by Chiou and

Li (2007), Delaige and Hall (2010), Bouveyron and Jacques (2011), and Jacques and

Preda (2013). For the distance-based methods, many publications introduced different

methods like Cuesta-Albertos and Fraiman (2000), Tarpey and Kinateder (2003), Ferraty

and Vieu (2006), Tokushige et al. (2007), and Ieva et al. (2012). More extensive review

of the functional data clustering methods is given in Chapter 5.

1.6 Determination of the Number of Clusters

A problem with cluster analysis is to determine the optimal number of clusters in the

multivariate data. Most of the previous methods that have been discussed above, require
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the number of clusters to be fixed a priori and suppose that it is known. In fact, determin-

ing the suitable number of clusters has been considered one of the important clustering

analysis topics, and it has been investigated extensively over the last several decades by

many publications.

Some clustering methods; like K-means, K-medoids, linkage-based methods and ex-

pectation - maximization algorithm; assume an initial number of clusters depending only

on the investigator’s experience. However, many hierarchical methods assume that the

number of clusters K is implicitly defined by cutting a hierarchical clustering tree at a

given height, and in the most of exploratory applications the number of clusters K is

unknown. So, particular attention should paid to the methods that can determine the

number of clusters. The main message of this study is to propose novel methods and

algorithms that can be utilized to determine the suitable number of clusters. Practically,

determining the correct number of clusters depends on the experience of the investigator

and the nature of the study. Statistically, there are many attempts and algorithms have

been suggested in order to determine the optimal number of clusters.

While a comprehensive review of these methods is difficult simply because of the

huge number of the literature involved, we try to review the most important and related

literature. Over the last 40 years, a wealth of publications in this topic has been developed.

Many of them have been introduced and discussed different graphical approaches and

statistical algorithms to detect the number of clusters in the multivariate data. In this

Section, we discuss the most important related methods.

The early works on cluster number determination methods were from Thorndike

(1953), where he has introduced a graphical approach, which can determine the suit-

able number of clusters in the multivariate data. It depends on choosing a number of

clusters which assumes that adding different cluster will not improve the modeling of the

data. This method is known as the "elbow method", and it concerns with the percentage
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Figure 1.9: Example 1.2.1: Elbow plot for the breakfast cereals data.

of variance explained as a function of the number of clusters. Thorndike (1953) pointed

out that with the increase in the number of clusters K, the average within-clusters dis-

tance will decrease. Accordingly, the number of clusters will be acceptable when sudden

fluctuation happen in the curve of the percentage of variance explained by the clusters

against the number of clusters (elbow criterion). Figure 1.9 shows the elbow plot for the

breakfast cereals data, which wrongly suggests 2 clusters.

On the other hand, a different method has been proposed by Beale (1969). He has

proposed an F statistic to test if the number of clusters k2 is better than a different

number of clusters k1 or not, where k2 > k1. This F statistic is:

F (k1, k2) =

Rk1
−Rk2

Rk2(
n−k1
n−k2

)((
k2
k1

) 2
p − 1

) , (1.6.1)
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where Rk = (n − k)S2
k , and S2

k is the means squared deviations for the clusters mean

in the sample. Beale (1969) illustrated that we have to compare between the above F

statistic and the tabulated F value at p(n− k2), p(k2 − k1) and level of significance α. If

the result of the test is significant, we would say that the number of clusters k2 is better

than the number of clusters k1.

An important attempt that has been introduced in the same context, was for Marriott

(1971). He supposed that under the equality of the variances-covariances matrices, the

number of clusters can be determined when K2 |W | becomes a minimum value, where

W is the matrix of within-groups dispersion. Everitt (1977) confirmed that Marriott’s

method is considered one of the better ways to determine the number of clusters K.

One of the most popular techniques that can be used to determine the number of

clusters has been introduced by Calinski and Harabasz (1974), and it is known as the CH

index that we mentioned in (1.3.1). Alternative form can be used instead of (1.3.1) by

using the trace of B and W . For a given number of clusters K, we can compute the CH

index as following:

CH(K) =
trace(B)/(K − 1)

trace(W )/(n−K)
, (1.6.2)

whereW , B are the within and between cluster variations matrices of CH(K) respectively.

Figure 1.10 gives the K-means partitions cascade comparison using a range of values of

K based on Calinski index, for the breakfast cereals data, which wrongly suggests 10

clusters. The algorithm is implemented in the R package vegan.

There are also many rules and ways that can be used in this context when the mixture

models with unknown number of components are considered. The most important one

is the log-likelihood ratio test statistics, where we test the significance of k1 against the

significance of k2 by using the statistic, −2lnλ, where λ = Lk1/Lk2 , Lk1 is the likelihood

function using k1, and Lk2 is the likelihood function using k2. Wilks (1938) proved that,

under some assumptions, the test statistic −2lnλ becomes asymptotically and probabilis-
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Figure 1.10: Example 1.2.1: K-means partitions cascade comparison using a range of
values of K based on Calinski index for the breakfast cereals data.

tically close from χ2 distribution with degrees of freedom equal to the difference between

the number of parameters for the two tested hypotheses. Moreover, Wolfe (1971) used

this test to design his algorithms (NORMIX, NORMAX), to fit the multivariate mixture

normal distributions by adjusting the test statistic to become, −2( 1
n
)(n− 1− p− k2

2
)lnλ.

This statistic becomes also probabilistically close from χ2 distribution with degree of free-

dom 2p(k1 − k2). For more comprehensive details about the other methods, the reader is

referred to Lennington and Flake (1975); Engelman and Hartigan (1969) and Everitt et

al. (2011).

Along the line of all the previous methods, there are many other attempts and algo-

rithms have been suggested in order to determine the optimal number of clusters. For

instance, Duda and Hart (1973), Baker and Hubert (1975), Mojena (1977), Davies and

Bouldin (1979), Milligan (1980, 1981), Milligan and Cooper (1985), Overall and Magee
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(1992) and Gordon (1998) have suggested many of indices and criteria in order to deter-

mine the suitable number of clusters.

Gap statistic is considered one of the popular methods that can be used to deter-

mine the number of clusters. It has been introduced by Tibshirani et al. (2001). The

idea of this statistic is to compare the observed within-cluster variation W (K) with the

within-cluster variation for points distributed uniformly, Wunif (K), which is computed by

simulation. After that we have to compute the standard error s(K) of logWunif (K) over

the simulations. The gap for K clusters is defined as,

Gap(K) = logW (K)− logWunif (K). (1.6.3)

Then we choose K as following,

K̂ = min {K ∈ {1, ..., Kmax} : Gap(K) > Gap(K + 1)− s(K + 1)} . (1.6.4)

Figure 1.11 shows the gap plot for the breakfast cereals data. In the gap plot, the highest

point of gap value refers to the suggested number of clusters. It can be clearly seen that,

the plot suggests 10 clusters, however the real number is 3.

Sugar and James (2003) introduced an information theoretic approach which can find

K in a dataset by applying the rate distortion theory. This method chooses the num-

ber of clusters that maximizes efficiency while minimizing error by information theoretic

standards.

Another important clustering concept that has been introduced by Rousseuw (1987)

is the silhouette. Silhouette is a method of interpretation and validation of the clusters.

Moreover, it can be utilized in choosing the number of clusters K. This method tells us

how well each object lies within its cluster by using some graphical tool. Let a(i) be the

average dissimilarity of the item i with all other data within the same cluster, and let b(i)

44



●

●

●

●

●

● ●
●

●

●

2 4 6 8 10

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

k

G
ap

k

Figure 1.11: Example 1.2.1: Gap plot for the breakfast cereals data.

be the lowest average dissimilarity of i to any other cluster which i is not a member, then

we can write the silhouette function as following:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (1.6.5)

which can be written as:

s(i) =


1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i)− 1, if a(i) > b(i)

(1.6.6)

It can be clearly seen that, −1 ≤ s(i) ≤ 1 , which means when the value of silhouette

is close to 1 that implies the point (datum) is in an appropriate cluster, while when the
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Figure 1.12: Example 1.2.1: Bivariate cluster plot (clusplot) and Silhouette plot based on
the partitioning around medoids clustering (PAM) for the breakfast cereals data.

silhouette value is close to -1 that implies the datum is in the wrong cluster. Figure 1.12

gives the bivariate cluster plot (clusplot) and Silhouette plot based on the partitioning

around medoids clustering (PAM) for the breakfast cereals data, suggesting the right

number of clusters. In the clusplot, a bivariate plot visualizing the clustering assignments

of the data is given. All observation assignments are marked by symbols in the plot,

and around each cluster an ellipse is drawn. On the other hand, the silhouette plot

displays how close each point in some cluster is to other points in the neighboring clusters.

Moreover, the silhouette plot shows the number of horizontal lines for each cluster. In

the right hand column of the plot we can see the mean similarity of each cluster to its

own cluster minus the mean similarity to the next most similar cluster, and the average

silhouette width.

The previous example and plots are in fact a good example to show two important
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facts in clustering analysis. The first one is there is no completely acceptable solution to

the optimal number of clusters due to high complexity of real data sets. The second fact

is that different methods give different numbers of clusters.

On the other hand, there is another set of methods for determining the number of

clusters that depend on the information criterion approach. In literature the information

criteria; such as the Akaike information criterion (AIC), Bayesian information criterion

(BIC), integrated complete-data likelihood (ICL), or the deviance information criterion

(DIC); have been considered very important tools to determine the number of clusters.

For instance, in the model-based clustering, BIC is considered an important criterion as

shown in Figure 1.8. Moreover, we can also use the cross-validation as a tool that helps to

analyze the number of clusters. The idea of using the cross-validation is that, we partition

the data into two types of sets, the first one is the test set and the second is the training

set. For each set, some goal function (like the sum of the squared distances) should be

calculated and averaged for each alternative number of clusters. The suitable number

of clusters then is that minimizes the test set errors. Other methods like kernel matrix

and the detection of multivariate outliers can also be utilized in order to determine the

optimal number of clusters.

One of the common ways to determine the number of clusters is to detect the presence

of outliers in a sample of multivariate data. Many of the outlier detection methods

have been later considered as clustering methods. Recently, many publications have

been introduced and discussed some graphical approaches and statistical algorithms to

detect the outliers and consequently determining the expected number of clusters. The

use of robust methods for the detection of outliers was introduced by Rousseeuw and

Leroy (1987). This was followed by other publications such Rousseeuw and van Zomeren

(1990), Cook and Hawkins (1990), Hadi (1992), Woodruff and Rocke (1993), Hawkins

and Simonoff (1993), Atkinson and Mulira (1993), Atkinson (1993) and Riani and Cerioli

47



(1999) who described variety of algorithms and plots for the detection of multivariate

outliers. It is well known that the detection of outliers is usually used in two common

cases, the first is for the regression problem and the second is for the multivariate data.

We focus our interest in the last one since our methodology is related to the clustering

of multivariate data. The minimum volume ellipsoid (MVE) method is usually used for

the detection of masked multivariate outliers. Many publications have been proposed

regarding to MVE. For instance, Cook and Hawkins (1990) showed that the MVE-based

method can detect many of outliers, but the changes in the algorithm are effected on the

detection. Woodruff and Rocke (1993) compared a variety of algorithms for calculation of

the MVE. Along the line of Woodruff and Rocke (1993), Hadi (1992) introduced a similar

search for the MVE and used a robustly estimated starting point for his single search.

Stalactite plot that can be used as a detector of multivariate outliers has been proposed

by Atkinson and Mulira (1993), where the pattern of multivariate outliers can be detected

during each search. Atkinson (1993) described the fast forward algorithm for multivariate

outliers, while Atkinson (1994) improved it to get a fast very robust method for the

detection of multiple outliers for both regression and multivariate case. In our paper

(Baragilly and Chakraborty, 2016) we have proposed a new forward search methodology

based on nonparametric multivariate spatial rank functions and it is robust in terms of

determining the number of clusters by the data. We illustrated in this paper that the

proposed algorithm is robust to the choice of initial subsample and it performs well in

different mixture multivariate distributions. We also proposed a modified algorithm based

on the volume of central rank regions. Our numerical examples show that it produces

the best results under heavy tailed mixture distributions with elliptic symmetry and it

outperforms the forward search based on Mahalanobis distances for non-normal mixture

distributions.

Mahalanobis distance has an important role in the detection of multivariate outliers’
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methods, since such that methods based on the Mahalanobis distance has been extensively

studied in many publications. They assumed that the data follow a multivariate normal

distribution and consequently the distribution of the Mahalanobis distance behaves as a

Chi-Square distribution for a large number of instances. Examples of the outlier detection

methods based on the Mahalanobis distance are Rousseeuw and Leroy (1987), Hadi (1992),

Atkinson (1993, 1994); and Woodruff and Rocke (1993).

It is very important to mention in this context that, some of these methods have

been later considered as clustering methods. For instance, the forward search approach

introduced by Hadi (1992) and Atkinson (1994) has been used as a clustering method in

Atkinson et al. (2004), where they introduced many applications of the forward search in

the analysis of multivariate data. Moreover, Atkinson et al. (2006) used the forward search

based on Mahalanobis distances in combination with envelopes, to give tests for multiple

outliers in multivariate data. Atkinson and Riani (2007) presented using of the forward

search as exploratory tools for clustering multivariate data. Another example is Jörnsten

(2004), where she proposed an important clustering algorithm based on the L1 data depth

which depends on an outlier detection method. Her algorithm, which is known as DDclust,

finds and selects the number of clusters which maximizes a combination between average

silhouette width and average relative data depth. The non-parametric method that she

proposed is based on the simple concept of data depth. She also discussed the relative

data depth plot which is considered a convenient visualization and validation tool. Third

example is given in Chen et al. (2009), where they introduced another important outlier

detection method based on the kernelized spatial depth function.

1.7 Outline of the Thesis

Firstly, we illustrate the methodology and objectives of study, and then we discuss the

outline of the thesis. Our objective is to propose some methods based on different notions
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of multivariate ranks in order to propose new algorithms that can be helpful in determining

the number of clusters in the high dimensional data. One of our main interests is to

propose a novel forward search algorithm based on some rank functions, which can be

used to determine the number of clusters in multivariate data. The traditional forward

search method is the subject of Chapter 2, where we discuss the performance of the forward

search algorithm based on Mahalanobis distances, and its problems and deficiencies with

some numerical examples.

Like many other Mahalanobis distance based methods, the forward search based on

Mahalanobis distances cannot be correctly applied to heavy tailed mixture distributions,

asymmetric distributions and more generally, to distributions that depart from the ellip-

tical symmetry assumption. In Chapter 3 we propose a new forward search methodology

based on spatial ranks, where clusters are grown with one data point at a time sequentially,

using spatial ranks with respect to the points already in the subsample. The algorithm

starts from a randomly chosen initial subsample. We illustrate with simulated data that

the proposed algorithm is robust to the choice of initial subsample and it performs well in

different mixture multivariate distributions. We also propose a modified algorithm based

on the volume of central rank regions. Our numerical examples show that it produces

the best results under elliptic symmetry. Chapter 3 gives more details about the forward

search method based on the spatial ranks and the volume of central rank regions with

different numerical examples. The notion of central rank regions and volume of central

rank regions are discussed in Section 3.4. Section 3.5 reveals the forward search based on

volume of central rank regions. Section 3.6 gives the simulation envelope algorithm and

the entry plot based on the multivariate ranks. In Section 3.7, we demonstrate the results

of some real data sets compared to some standard methods.

The methodology of Chapter 4 is to propose new clustering method based on different

weighted spatial rank (WSR) functions. In Section 4.2, we give a brief review of the
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parametric and nonparametric weights functions, where we consider different kernel and

robust weights. Section 4.3 introduces the proposed weighted spatial rank functions with

some numerical examples and comparisons with other standard parametric and nonpara-

metric methods. In Section 4.4, we propose a confirmatory classifier based on weighted

spatial ranks that can be used to properly assign the observations to specific cluster. Sec-

tion 4.5 demonstrates the weighted rank based clustering algorithm. Finally, in Section

4.6, we give some numerical examples based on both simulated and real datasets to show

the performance of the proposed algorithm.

In Chapter 5, there is a large body of work on using the ordinary and weighted

spatial ranks as functional data clustering approaches. We propose two different clustering

methods for functional data. The first method is an extension to the forward search

based on spatial ranks that has been introduced in Chapter three, and the second method

is considered an extension to the weighted spatial ranks WSR method that has been

introduced in Chapter 4. The proposed methods can be used to determine the number

of clusters in the functional data, and to assign each curve to its cluster. Chapter 5

is organized as follows. Section 5.2 gives a review of the important existing literature

on the functional data clustering methods giving numerical examples and comparisons.

In Section 5.3, we discuss the curse of dimensionality in the traditional forward search

method and the ability of using the forward search based on functional spatial ranks. In

Section 5.4, we propose the functional data clustering based on spatial ranks. Numerical

results based on simulation and real data, and other relevant discussions are contained in

succeeding subsections. Finally, in Section 5.5, we propose the functional data clustering

based on weighted spatial ranks with some numerical examples and comparisons with

the other functional data clustering methods. The results show that the two proposed

methods give a quite reasonable clustering analysis.
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Chapter 2

The Forward Search Algorithm

2.1 Introduction

Determining the optimal number of clusters has become one of the most important topics

in cluster analysis. Over the last 40 years, a wealth of publications has been developed

for this point. As shown in Section 1.6, there are many methods to use for determining

the number of clusters. The forward search method is one of these methods that depends

on detecting the presence of outliers in a sample of multivariate data and consequently

determining the expected number of clusters. It is worth mentioning here that the forward

search method depends on the graphical presentations to provide plots not only to detect

the clusters but also to determine the membership of the observations. We can define the

forward search approach as a graphics rich approach that leads to the formal detection of

outliers and consequently determining the expected number of clusters in the multivariate

data.

There are two major concerns in the existing forward search literature; using the Ma-

halanobis distances as distance measure to grow the cluster size starting from a randomly

chosen initial subsample, and the robust parameter estimates based on increasing the

subset size during the search. The traditional forward search approach based on Maha-
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lanobis distances have been introduced by Hadi (1992), and Hadi and Simonoff (1993).

They considered a forward search, which terminates when the subset size m is the me-

dian of the number of observations, while a similar method used by Atkinson and Mulira

(1993), Atkinson (1994) continues until m = n, the sample size. Cerioli and Riani (1999)

proposed an unified approach to the exploratory analysis of spatial data which is based

on a forward search algorithm. They pointed out that the search is made up of four

steps, the first one is estimating the parameters, the second step is the choice of an ini-

tial subset, the third step is the progress in the forward search by monitoring the search

and the fourth step is ordering the spatial data by monitoring of the statistics during

the progress of the search. Atkinson et al. (2004) introduced many applications of the

forward search in the analysis of multivariate data. In Atkinson et al. (2004), the forward

search has been used as a clustering method. Moreover, Atkinson et al. (2006) used the

forward search based on Mahalanobis distances in combination with envelopes, to give

tests for multiple outliers in multivariate data, while Atkinson and Riani (2006) provided

some distributional results for testing multiple outliers in regression by using the forward

search. Atkinson and Riani (2007) used the forward search as an exploratory tools for

clustering multivariate data. A good overview of the forward search and its applications

is available in (Atkinson et al., 2004; Atkinson et al., 2010).

We use the forward plot in order to detect the clusters in the data under study. The

forward plot is a plot of number of subsets with incremental size (m) versus a specific

distance measure. The forward plot has been introduced by Atkinson et al. (2004). Along

the line of Atkinson et al. (2004), Atkinson et al. (2006), Atkinson and Riani (2006),

Atkinson and Riani (2007), Riani et al. (2009), and Atkinson et al. (2010) introduced

many forward plots and shed the light on its importance in the detection of outliers and

clusters. To highlight the importance of the forward plot, two important points should

be noticed here. The first is that the forward plot is an important exploratory tool that
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can be used in order to detect the observations that could be outliers, by plotting the

distance values for each subset size during the search. The second one is that the forward

plot gives more detailed information during the search, where we can know the number

of clusters and the membership of each observation by plotting minimum Mahalanobis

distance amongst units not included in the subset. An important feature of the forward

plot is that the forward plot of the largest distance will show a sharp peak when the

first outlier is included which leads to the identification of the outliers and consequently

determining the number of clusters.

The main idea of a forward search algorithm is to grow the cluster size starting from

an initial subset of observations based on a some kind of distance measure. All the

previous literature assumed Mahalanobis distance as the distance measure to be used in

the forward search procedure. It is well known that Mahalanobis distance is invariant

under all nonsingular linear transformations and it also performs well with the Gaussian

mixture models (GMM).

To show that Mahalanobis distance is invariant under all nonsingular linear transfor-

mations, suppose that (x1, x2, ..., xn) is an original data set with covariance matrix defined

as, Σx = 1
n
XTX, where X is an (n × d) matrix with the (i, j)th element (xij − xj), and

let A be any nonsingular (d × d) matrix applied to the original data set (x1, x2, ..., xn),

such that yi = Axi. Then, the Mahalanobis distance between the two points yi and

yj equals to the Mahalanobis distance between the original two points xi and xj, i.e.,

dMahalanobis(yi, yj) = dMahalanobis(xi, xj), which means that Mahalanobis distance is invari-

ant under all nonsingular linear transformations. To prove that, recall the Mahalanobis

distance function that is defined in (1.2.8), the Mahalanobis distance between yi and yj

is obtained as,

dMahalanobis(yi, yj) =
√

(yi − yj)Σ−1y (yi − yj)T
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where the covariance matrix, Σy, can be obtained as, Σy = 1
n
Y TY = 1

n
(XAT )T (XAT )

where Y is an (n × d) matrix with the (i, j)th element (yij − yj), now the Mahalanobis

distance between yi and yj can be written as:

dMahalanobis(yi, yj) =

√
(yi − yj)(

1

n
Y TY )−1(yi − yj)T

=

√
(xi − xj)AT (

1

n
(XAT )T (XAT ))−1A(xi − xj)T

=

√
(xi − xj)(

1

n
XTX)−1(xi − xj)T =

√
(xi − xj)Σ−1x (xi − xj)T = dMahalanobis(xi, xj).

which shows that Mahalanobis distance is invariant under nonsingular linear transforma-

tions.

However, Mahalanobis distances cannot be correctly applied to asymmetric distri-

butions and more generally to distributions, which depart from the elliptical symmetry

assumptions. In this Chapter, we illustrate with numerical examples some of these cases,

considering some heavy tailed distributions like Laplace and student’s t-distributions.

2.2 Forward Search Algorithm

Suppose that X1,X2, . . . ,Xn ∈ Rd is a random sample with distribution F , then the

squared Mahalanobis distance for the d-dimensional i-th observation is defined as:

d2i = {Xi − µ̂}T Σ̂
−1
{Xi − µ̂} , (2.2.1)

where µ̂ and Σ are the unbiased moment estimators of the mean vector and covariance

matrix of the d-dimensional observations X1,X2, . . . ,Xn respectively. Atkinson et al.

(2004) showed that in the forward search the parameters µ and Σ are estimated from a

subset S(m) from the n observations. The parameters estimates can be given by:

55



µ̂ (m) =
1

m

∑
i∈S(m)

Xi, (2.2.2)

and

Σ̂(m) =
1

m− 1

∑
i∈S(m)

(Xi − µ̂(m)) (Xi − µ̂(m))> . (2.2.3)

So for every subset S(m) we get n squared Mahalanobis distances d2i (m) such that,

d2i (m) = {Xi − µ̂(m)}> Σ̂
−1

(m) {Xi − µ̂(m)} ; i = 1, . . . , n. (2.2.4)

The steps of the forward search algorithm (Atkinson et al., 2004; Atkinson and Riani,

2007) are:

1. In order to start the search, we need to choose an initial subset. Suppose that S∗(m)

is the initial subset with m = d + 1, then one search can be run from this starting

point.

2. Now we need to add observations such that the subset S(m) grows in size during the

search. We can obtain n squared Mahalanobis distances d2i (m) as shown in the last

equation from the subset S(m) that consists of m observations, m0 6 m 6 n − 1.

To determine the next subset, we need to order the squared distances and take

the observations corresponding to the m + 1 smallest as the new subset S(m + 1).

Usually this process augments the subset by one observation, but sometimes two or

more observations enter as one or more leave. This is the same case when one cluster

is completely fitted and observations from a second cluster have to be included as

the search progresses and m increases.

3. In this step we detect the outliers by examining the minimum Mahalanobis distance

amongst observations not in the subset. In the case that the observation is an
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outlier relative to the other m observations, the distance will be large compared to

the maximum Mahalanobis distance of observations in the subset. Consequently,

all other observations not in the subset will have distances greater than dmin(m),

where dmin(m) = min di(m); i /∈ S(m), and will therefore also be outliers.

4. A forward plot of the Mahalanobis distances can be obtained by plotting the mini-

mum Mahalanobis distances dmin(m) against the corresponding subset sizes (m).

2.3 Some Numerical Examples

In this Section, we applied a series of simulated cases which can show the performance

of the forward search based on Mahalanobis distances especially when we consider the

Laplace and Student’s t distributions. We generated data from either spherically or

elliptically symmetric data (correlated or uncorrelated variables). Full analysis of the

performance of the forward search based on Mahalanobis distances is given in this Section.

2.3.1 Example 1: Bivariate Mixture Distributions with Uncorre-

lated Variables

In the first example, we consider three bivariate mixture distributions with spherical sym-

metry. We suppose that the scale matrix is an identity matrix i.e. there is no correlation

among the variables. The three bivariate mixture distributions, namely, multivariate

normal, multivariate Laplace and multivariate t with 3 degrees of freedom. The mixing

proportion p is taken to be 0.3. In all three cases considered, we generate samples of

n = 100 observations and produce forward search plots with k = 100 randomly chosen

initial subsets for each as considered in Atkinson and Riani (2007).

For mixture normal distribution, we take X1,X2, . . . ,Xn ∈ Rd as a random sample

from bivariate mixture normal distribution, p.N2 (µ1,Σ)+(1−p).N2 (µ2,Σ), where µ1 =

(0, 0)>, µ2 = (5, 5)>, Σ = I2 and p = 0.3.
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For the second case, we consider multivariate Laplace distribution, Ld(µ,Σ) with the

probability density function (2.3.1), and consider a random sample from the bivariate

mixture Laplace distribution, p.L2 (µ1,Σ) + (1 − p).L2 (µ2,Σ) with µ1, µ2, Σ and p as

before, where a multivariate Laplace distribution is defined as follows:

Definition 2.3.1 : Multivariate Laplace Distribution:

Suppose X = (x1, ..., xn)T be an n ∗ d dataset, where d is the number of variables and

n is the number of observations, i.e. X is a d-variate random variable distributed as

multivariate Laplace with mean µ and covariance matrix Σ, then the density function

f(x) of X is given by:

f(X) ∝ 1

|Σ|
1
2

e−
√

(x−µ)>Σ−1(x−µ) (2.3.1)

For the third case, we consider the multivariate Student’s t-distribution with ν de-

grees of freedom, td(ν;µ,Σ) with the probability density function (2.3.2), and consider

a random sample from bivariate mixture t-distribution with ν = 3 degrees of freedom,

p.t2 (3;µ1,Σ) + (1 − p).t2 (3;µ2,Σ), with µ1,µ2 and Σ as before, and multivariate t

distribution as defined below:

Definition 2.3.2 : Multivariate Student’s t-Distribution:

Suppose that y and u are two independent variables and distributed as N (0,Σ) and χ2
ν (i.e.

multivariate normal and chi-squared distributions) respectively, where ν is the degree of

freedom of chi square distribution, the covariance Σ, is a d×d matrix, and y
√
ν/u = x−µ,

then x is said to be distributed as a multivariate t-distribution with degree of freedom ν

and parameters Σ, µ and has the density function:

f(x) =
Γ [(ν + d)/2]

Γ (ν/2)νd/2πd/2 |Σ|1/2
[
1 + 1

ν
(x− µ)>Σ−1(x− µ)

](ν+d)/2 . (2.3.2)
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Our objective is to determine the subsets for the trajectories where there is evidence

of a cluster structure. Since our generated data coming from mixture models, with mix-

ture proportions (p = 0.3, 1 − p = 0.7), we expect to get a clearly common structure

around subsets with size 30 and 70 respectively. Figure 2.1 is a forward plot of minimum

Mahalanobis distances from 100 randomly chosen initial subsets for samples size n = 100

from bivariate mixture normal, Laplace and t distributions. In general the plots in Fig-

ure 2.1 initially show that there are many different values of dmin(m) presented in many

trajectories. We are interested in the subsets S(m) for these trajectories where there is

evidence of a cluster structure. As we can see, only for the normal distribution, there is a

common structure around subsets with size 30 and 70 respectively. However, the forward

plot based on Mahalanobis distance failed to give us a reasonable result for both Laplace

and Student’s t distributions.

In plot (a), there are two clear maxima (sharp peaks), one at m = 30 and the other

at m = 70, suggesting the existence of two clusters with sizes 30 and 70. So, this plot

leads to the division of the data into two clusters, such that the first one includes 30

observations and the second cluster includes 70 observations. Actually it is a good result,

which shows that the forward search based on Mahalanobis distance performs well with

the normal distribution, and can detect the clusters in the data.

However, from plots (b) and (c) we can see that the forward plots failed to give two

clear peaks around the subsets with sizes 30 and 70. Nevertheless, in plot (c) there is slight

pattern around subset with size 70. Thus, we can conclude that the forward search based

on Mahalanobis distances works better for the data from bivariate normal distribution

with uncorrelated variables, but it poorly behaves with the data from bivariate mixture

Laplace and t distributions.
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(a) Bivariate normal
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(b) Bivariate Laplace
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(c) Bivariate t

Figure 2.1: Forward plot of minimum Mahalanobis distances from 100 randomly chosen
initial subsets for sample size n = 100 from bivariate mixture (a) normal, (b) Laplace and
(c) t distributions with uncorrelated variables.
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2.3.2 Example 2: Bivariate Mixture Distributions with Corre-

lated Variables

In this example we assume the elliptic symmetry case such that there is correlation among

the variables and the scale matrix is not the identity matrix (Σ 6= I). The generated data,

as before, are from three bivariate mixture distributions (normal, Laplace and Student’s

t) with (p = 0.3), (k = 100), and (n = 100). In the previous set-up, consider

Σ =

 1 0.5

0.5 1

 .

Figure 2.2 is a forward plot of minimum Mahalanobis distances from 100 random

starts for sample size n = 100 from bivariate mixture normal, Laplace and t distributions

with correlated variables. Since our target is to determine the subsets S(m) for these

trajectories where there is evidence of a cluster structure, only for the normal distribution,

there is a common structure around subsets with size 30 and 70 respectively. Form plot

(a) we can see that there is clearly common structure around subsets with size 30 and

70 respectively, where there are two clear sharp peaks, one at m = 30 and the other at

m = 70, suggesting the existence of two clusters with sizes 30 and 70. This concludes that

the forward search based on Mahalanobis distances also performs well with the bivariate

mixture normal distribution when the variables are correlated.

On the other hand, the forward plot based on Mahalanobis distance failed again to

detect the two clusters in the data from both bivariate mixture Laplace and t distributions,

where it does not give us common structure or clear peaks around subsets with size 30 and

70. Thus, we can conclude that the forward search based on Mahalanobis distances does

not correctly work with data from bivariate mixture Laplace and t distributions when the

variables are correlated as well.
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(a) Bivariate normal
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(b) Bivariate Laplace
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(c) Bivariate t

Figure 2.2: Forward plot of minimum Mahalanobis distances from 100 randomly chosen
initial subsets for sample size n = 100 from bivariate mixture (a) normal, (b) Laplace and
(c) t distributions with correlated variables.
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2.3.3 Example 3: Trivariate Mixture Distributions with Uncor-

related Variables

In order to check the stability of the forward search approach, we consider here a higher

dimensional data. We assume in this example that the number of variables is three d = 3,

such that the generated data come from trivariate distributions. We suppose that the

data come from trivariate mixture normal, Laplace and Student’s t with 3 degrees of

freedom, as before, and the scale matrix is an identity matrix, i.e. there is no correlation

among the variables, (p = 0.3), (k = 100), and (n = 100).

We suppose that X1,X2, . . . ,Xn ∈ Rd is a random sample from trivariate mixture

normal Laplace and t distributions with spherical symmetry as in the bivariate case with

µ1 = (0, 0, 0)>, µ2 = (5, 5, 5)>, Σ = I3 and p = 0.3.

Figure 2.3 is a forward plot of minimum Mahalanobis distances from 100 random starts

for sample size n = 100 from trivariate mixture normal, Laplace and t distributions with

uncorrelated variables. Only the forward plot (a) gives an evidence for the existence of

the two clusters, with two clear peaks at m = 30 and 70. Increasing the dimension of

the data did not improve the performance of the forward plot for both trivariate mixture

Laplace and t distributions. However, in plot (c) there is slight pattern around subset with

size 70, which wrongly suggest the number of clusters. Thus, we can conclude that the

forward search based on Mahalanobis distances performs well for the data from trivariate

normal distribution with uncorrelated variables, but it poorly behaves with the data from

trivariate mixture Laplace and t distributions.
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(a) Trivariate normal
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(b) Trivariate Laplace
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(c) Trivariate t

Figure 2.3: Forward plot of minimum Mahalanobis distances from 100 randomly chosen
initial subsets for sample size n = 100 from trivariate mixture (a) normal, (b) Laplace
and (c) t distributions with uncorrelated variables.
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2.3.4 Example 4: Trivariate Mixture Distributions with Corre-

lated Variables

We suppose in this example that the variables are correlated with (ρ = 0.5). For the

normal distribution, we suppose that X1,X2, . . . ,Xn ∈ Rd is a random sample from

trivariate mixture normal, Laplace and t distributions with elliptic symmetry. In the

previous set-up, consider

Σ =


1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

 .

Figure 2.4 is a forward plot of minimum Mahalanobis distances from 100 random starts

for samples size n = 100 from trivariate mixture normal, Laplace and t distributions with

correlated variables. As usual, the forward plot (a) gives two clear peaks at m = 30 and

70, suggesting two clusters with sizes 30 and 70. Both plot (b) and (c) did not detect

the clusters in the data. So, we conclude that the forward search based on Mahalanobis

distances performs well for the data from trivariate normal distribution with correlated

variables, but it poorly performs with the data from trivariate mixture Laplace and t

distributions.

2.4 Simulation Envelope

Using the envelopes in the forward plot is helpful to provide a guide as to what kind of

fluctuations are to be expected in such plots. These envelopes can be found by simulation.

The simulation envelope has been studied and used in Atkinson et al. (2004), Atkinson

et al. (2006), and Atkinson and Riani (2007) for establishing cluster membership in their

procedure. They used the random start forward searches combined with envelope plots

of forward Mahalanobis distances to detect the clusters in the data. Atkinson and Riani
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(a) Trivariate normal
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(b) Trivariate Laplace
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(c) Trivariate t

Figure 2.4: Forward plot of minimum Mahalanobis distances from 100 randomly chosen
initial subsets for sample size n = 100 from trivariate mixture (a) normal, (b) Laplace
and (c) t distributions with correlated variables.
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(2007) proposed a flexible polynomial approximations to the envelopes in the forward

search based on Mahalanobis distances. The envelope is an indicator to judge if the point

is lying on, or outside the normal pattern of the data and consequently it is an outlier.

The envelope’s line can be considered as a lower/upper limit to the points in the forward

plots, such that if the point lyes outside the simulation envelope’s line then it should be

classified as outlier. Atkinson and Riani (2007) described the structure of the forward

plot of simulation envelopes for minimum Mahalanobis distances from 1000 simulations.

They pointed out that it is virtually horizontal in the center of the plot and the plot

looks like a series of superimposed prows of viking long ships. The steps of the simulation

envelope’s algorithm are:

1. Simulate data from the empirical standard underlying distribution.

2. Choose an initial subset S(m) withm = d+1, and start the search from this starting

point.

3. Calculate the Mahalanobis distance di(m) based on the observations in the subset

S(m).

4. Compute dmin(m), where dmin(m) = min di(m); i 6∈ S(m).

5. Grow the subset S(m) to S(m + 1) by taking m + 1 observations Xi’s, which cor-

respond to smallest m+ 1 di(m)’s. Set m = m+ 1.

6. Iterate 3− 5 until m = n− 1

7. Iterate 1− 6 1000 times, so for each subset size m we have 1000 values of dmin(m).

8. Take 99% percentiles of these dmin(m) and plot it againstm to get the 99% envelope.

Figure 2.5 is a forward plot of minimum Mahalanobis distances from 100 random starts

with 1%, 50% and 99% envelopes for sample size n = 100 from bivariate mixture normal
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Figure 2.5: Forward plot of minimum Mahalanobis distances from 100 random starts
with 1%, 50% and 99% envelopes for sample size n = 100 from bivariate mixture normal
distribution with uncorrelated variables.

distribution with uncorrelated variables. The figure shows that the smallest and largest

observations all lie on or within the simulation envelopes except those around subset with

sizes 30 and 70, as they are outliers. Figure 2.6 is a forward plot of simulation envelopes for

minimum Mahalanobis distances from 1000 simulations for samples sizes n = 200, 500, 700

and 1000. The envelope given is the 99 point of the empirical distribution of the minimum

Mahalanobis distance amongst observations that are not in the subset for d = 2, 5 and

10. There is clearly some common structure as n and d vary, where small d at the bottom

of the plot.
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Figure 2.6: Minimum Mahalanobis distances: 99% point for n = 200, 500, 700 and 1000
and d = 2, 5 and 10. Small d at the bottom of the plot.

2.5 Entry Plot

The entry plot essentially shows which groups of observations are in the subset. The

main idea of the entry plot is to order the observations based on Mahalanobis distances

di(m); i = 1, . . . , n, then plot the observations in the subset against the subset size.

Thus, the dots in the plot indicate to the presence of an observation in specific subset.

Accordingly, the number of dots increases towards the right of the graph when the subset

size increase consequently. Atkinson et al. (2004), Atkinson et al. (2006), and Atkinson

and Riani (2007) have used the entry plot as a confirmatory stage in the forward search

method.

Figure 2.7 is an entry plot based on Mahalanobis distances from m0 = 3 with 100

randomly chosen initial subsets for a mixture bivariate normal data set with 3 mixing
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densities. The data is simulated from a mixture of 3 bivariate normal distributions,

p1N2(µ1, I) + p2N2(µ2, I) + (1− p1 − p2)N2(µ3, I), (2.5.1)

where µ1 = (0, 4)>, µ2 = (−4,−4)>, µ3 = (4,−4)> and p1 = 0.2, p2 = 0.3. As we can see

in the entry plot, the observations are ordered so that 1-20 are those from the small group

with the 20 observations, 21-50 are those from the second group with the 30 observations

and 51-100 coming from the big group with 50 observations. The plot at m = 3 shows

that the initial subset includes observations from the three groups, where the first subset

includes the three observations 60, 15 and 76. In the second subset of the forward search,

at m = 4, a large amount of interchange has been happened, where the observations

in this subset started to enter in the third group. Thereafter, until m = 50 the subset

consists solely of observations from the big group. From m = 61 only observations from

the second group started to join the subset. From m = 81 the observations from the small

group started to join the subset. At the end of the search (m = 100), all the observations

entered the search.

2.6 Problems

From the previous numerical examples, we can conclude that however Mahalanobis dis-

tance is invariant under all nonsingular linear transformations and it also performs well

with the Gaussian mixture models (GMM), it cannot be correctly applied to asymmet-

ric distributions and more generally to distributions, which depart from the elliptical

symmetry assumptions.

According to the previous results, it was noticed that using the forward search based

on Mahalanobis distances does not give an effective performance with the heavy tailed

distributions. In other words, the forward plots based on Mahalanobis distances did not
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Figure 2.7: Entry plot based on Mahalanobis distances from m0 = 3 with 100 randomly
chosen initial subsets for a mixture bivariate normal data set with 3 mixing densities.

give us reasonable results, where they did not detect the clusters in the data coming from

either bivariate or trivariate Laplace and t mixture distributions with either correlated or

uncorrelated variables.

Moreover, for large number of clusters, the forward search plots may produce too many

peaks and makes it very difficult visually to determine the number of clusters and the

cluster sizes (Baragilly and Chakraborty, 2016). In Figure 2.8, we present an example

of a forward plot based on Mahalanobis distances, where the data is simulated from a

mixture of 3 bivariate normal distributions that defined in (2.5.1). With trajectories from

100 randomly chosen initial subsets, we see a clear pattern of 4 cluster sizes here, however

the simulated data includes 3 clusters .

As a conclusion, we recap that, there are some deficiencies with the forward search

based on Mahalanobis distances algorithm, where it is not suitable for the heavy tailed
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Figure 2.8: Forward plot based on Mahalanobis distances with 100 randomly chosen initial
subsets for a mixture bivariate normal data set with 3 mixing densities.

distributions like multivariate Laplace, Student’s t, Cauchy and Log-normal distributions

under either spherical or elliptical case, where most of the previous literature assumed

the multivariate normal case. Moreover, its performance is getting worse when higher

dimensional data with elliptic symmetry problems are considered as we noticed in the

trivariate distributions case.

In order to address this limitation, in this study, we propose a new forward search

methodology based on some nonparametric methods like spatial ranks and volume of

central rank regions (Chaudhuri, 1996; Serfling, 2002) to tackle the problem of heavy tailed

mixture distributions with higher dimensional data. In the next Chapter we consider the

forward search based on spatial ranks and the volume of central rank regions algorithms

in order to improve the algorithm of the forward search.
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Chapter 3

Multivariate Signs and Ranks

3.1 Introduction

In the previous Chapter, we pointed out that there are some deficiencies with the tra-

ditional forward search algorithm that does not make it suitable to be used in different

types of multivariate data. According to the results in Chapter 2, the forward plots based

on Mahalanobis distances failed to detect the right number of clusters in the simulated

data coming from either multivariate mixture Laplace and t distributions under either

spherical or elliptic symmetry.

In many statistical analyses some nonparametric multivariate methods, as spatial signs

and ranks, are usually used to solve and tackle the problems in analyzing the multivariate

data parameterically, and to get techniques which are less sensitive to the statistical model

assumptions. For last two decades, spatial ranks are being used in analyzing multivariate

data nonparametrically. They are easy to compute, and do not depend on parameter

estimates of the underlying distributions, which make them robust against distributional

assumptions. Koltchinskii (1997) also proved that the spatial ranks characterize a mul-

tivariate distribution. More robust results can be obtained by using the ranks instead of

the original values. The novelty of this Chapter is to develop the forward search technique
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by using some methods based on notions of multivariate ranks.

The remainder of the Chapter is organized as follows. In Section 3.2, we give some

definitions of multivariate signs and ranks with some properties. In Section 3.3, we propose

the forward search method based on spatial ranks and we give some numerical examples

based on simulated data sets to show the performance of the proposed algorithm when

some heavy tailed mixture distributions under the elliptic symmetry case are considered.

We define the concepts of central rank regions and volume of central rank regions in

Section 3.4, while the forward search method based on volume of central rank regions with

some numerical examples based on simulated data are proposed in Section 3.5. Section

3.6 gives the simulation envelope algorithm and the entry plot based on the multivariate

ranks. Finally, we demonstrate the results of some real data sets compared to some

standard methods in Section 3.7.

3.2 Multivariate Signs and Ranks

Signs and ranks functions have been considered as important nonparametric tools in the

statistical multivariate analysis. In this Section we start with discussing the notions of sign

and ranks functions and their properties, then we introduce the forward search algorithm

based on spatial ranks with some numerical examples.

3.2.1 Multivariate Signs

The concept of sign function is related with the possibility to order the data. We start

with the univariate sign function definition, and then the multivariate sign definition can

be generalized after that. Basically, the sign function of a real number x is defined as

follows;

Definition 3.2.1 : The univariate sign function:

For a real number x, the univariate sign function can be obtained by:
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sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0,

(3.2.1)

equivalently, we can use the form:

sign(x) =


x
|x| , if x 6= 0

0, if x = 0.
(3.2.2)

Definition 3.2.2 : The multivariate sign function:

For x ∈ Rd, the multivariate spatial sign function is defined as:

sign(x) =


x
‖x‖ if x 6= 0

0 if x = 0,
(3.2.3)

where ‖x‖ is the Euclidean norm such that; ‖x‖ =
√
x21 + x22 + . . .+ x2d. Note that this

is nothing but the direction of the d-dimensional vector x.

3.2.2 Multivariate Ranks

Using the ranks instead of the original observations can provide us with more information

for each observation about how central it is, and in which direction it is moving from the

center. This is due to that length of rank (x) tells us how far away this point is from

the center and the direction of rank (x) tells us about the direction of x from the center

of the data. We start with the univariate centered rank definition for both sample and

population, and then a generalization form with the multivariate rank definition can be

considered.

Definition 3.2.3 : The univariate spatial ranks functions:

The usual univariate rank can be defined as
∑n

i=1 I(Xi 6 x), and a sample version for
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the univariate centered rank of x w.r.t. X1, X2, . . . , Xn can be defined as,

Rank(x) = RX(x) =
1

n

n∑
i=1

sign (x−Xi) . (3.2.4)

It can be noticed that Rank(x) satisfies:

−1 6 Rank(x) 6 1, (3.2.5)

and this property makes the Rank(x) a useful quantity for measuring both the direction

and length of each observation from the center. For instance, when Rank(x) = −1

this implies that x is smaller or equal to the minimum ordered statistics such that x 6

min(x1, x2, . . . , xn). Conversely, when Rank(x) = +1 this implies that x is larger or

equal to the maximum ordered statistics such that x 6 max(x1, x2, ..., xn), and when

Rank(x) = 0 this implies that x is the median. Furthermore, we can show that,

E[Rank(x)] = 2F (x)− 1, (3.2.6)

where F (x) is the distribution function of Xi. It is worth mentioning in this context

that there is an important relationship between both Rank(x) and the corresponding

quantiles, such that Rank(x) = u implies that x is the u+1
2
th quantile, and it is very

important property that can be utilized in order to address the problem of ordering the

high dimensional data.

Definition 3.2.4 : The population and sample multivariate spatial ranks functions:

Suppose that X ∈ Rd has a d-dimensional distribution F , which is assumed to be absolutely

continuous throughout this study, then the multivariate spatial rank function of the point

x ∈ Rd with respect to F can be defined as:

RankF (x) = EF

(
x−X

‖x−X‖

)
. (3.2.7)
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Now suppose that X1,X2, . . . ,Xn ∈ Rd is a random sample with distribution F , then

the sample version of the multivariate spatial rank function of x ∈ Rd with respect to

X1,X2, . . . ,Xn is given by:

RankFn(x) =
1

n

n∑
i=1

Sign(x−Xi) =
1

n

n∑
i=1

x−Xi

‖x−Xi‖
. (3.2.8)

Some important properties of the spatial rank function are:

1. If RankF (x) = 0, then x is the spatial median.

2. RankF (x) = u implies that x is the u-th geometric quantile (Chaudhuri, 1996) of

F .

3. ‖RankF (x)‖ are bounded by 1, i.e. ‖RankF (x)‖ 6 1 for all x ∈ Rd.

4. The distribution function F is a 1− 1 function of RankF (x).

5. The spatial ranks are invariant under orthogonal transformations, but they are not

invariant under general affine transformations of the data.

It is well known that both of spatial depth and spatial ranks are completely depended

on each other, since SD(x) = 1− ‖Rank(x)‖, where SD(x) is the spatial depth function

and hence SD(x) = 1 implies that x is the spatial median. The origins of the spatial

approach date back to Brown (1983), when he introduced the idea of spatial median

considering the problem of robust location estimation for two-dimensional spatial data.

After that, the geometry notions of the data started to be used in different important

nonparametric functions such that the multivariate spatial quantiles by Chaudhuri (1996)

and the multivariate spatial depth function by Serfling (2002).
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3.3 Forward Search Based on Spatial Ranks

In this Section we propose a novel forward search algorithm which can be used as a clus-

tering tool. As we discussed earlier, the forward search based on Mahalanobis distances

cannot be correctly applied to asymmetric distributions and more generally to distribu-

tions, which depart from the elliptical symmetry assumptions, so an adjustment in the

forward search technique will be helpful in order to address theses problems. We develop

the forward search technique by using some methods based on notions of multivariate

ranks. As a first step, we started with using the spatial ranks instead of Mahalanobis dis-

tances. To highlight the effect of this adjustment on the efficiency of the forward search, a

comparison between the proposed and traditional algorithms has been considered in this

Section considering either the spherically or elliptically symmetric cases.

3.3.1 Forward Search Based on Spatial Ranks Algorithm

In the forward search algorithm, let S(m) be a subset of sizem at a particular stage. Then

define the spatial ranks of individual observations corresponding to the subset S(m) as

ri(m) =
1

m

∑
j∈S(m)

Xi −Xj

‖Xi −Xj‖
, (3.3.1)

for i = 1, . . . , n. Let us now introduce the forward search procedure based on the multi-

variate spatial ranks (Baragilly and Chakraborty, 2016).

Forward search algorithm with spatial ranks:

1. In order to start the search, we need to choose an initial subset. Suppose that S(m)

is the initial subset with m = d + 1, then one search can be run from this starting

point.

2. Calculate the spatial ranks ri(m) depending on the observations in the subset S(m).
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3. Compute rmin(m), where rmin(m) = min ‖ri(m)‖; i 6∈ S(m).

4. Grow the subset S(m) to S(m + 1) by taking m + 1 observations Xi’s, which cor-

respond to smallest m+ 1 ‖ri(m)‖’s. Set m = m+ 1.

5. Iterate 2− 4 until m = n− 1.

6. The forward plot of the spatial ranks can be obtained by plotting the rmin(m) against

the corresponding subset sizes m.

The previous algorithm is computationally easy and straightforward. It can be noticed

that, when the points in S(m) belong to the same cluster, ‖ri(m)‖ for a point Xi belonging

to the same cluster is expected to be smaller than that of point from a different cluster.

Even if our initial subset contain points from different clusters, the algorithm will ensure

that S(m) will move to a single cluster as it grows in size and is constructed by taking

points with smallest ranks. So whenever S(m) grows bigger than the cluster it originally

belonged to, we expected to see a jump in the magnitude of the rank function as the

nearest point to S(m) is then from a different cluster. However, we can observe that

‖rankF (x)‖ < 1 for all x ∈ Rd. Thus, all ‖ri(m)‖’s are bounded by 1. Hence, even

if a particular point Xi, is far from the cluster S(m), the corresponding ‖ri(m)‖ may

not be very large compared to an observation Xj, which is an extreme observation in

S(m). For this reason, the plot of rmin(m) against m may not show any sharp increase

even when we include a point from a different cluster, and it becomes visually difficult to

detect the clusters (Baragilly and Chakraborty, 2016). To enhance the visual detection of

clusters, we modify the algorithm by using central rank regions determined by rmin(m).

We postpone the discussion on the forward search based on volume of central rank regions

to Section 3.5, where we need firstly to know how the spatial rank’s algorithm behaves

and why we need to improve it by using the volume of central ranks region.
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3.3.2 Some Numerical Examples

Example 1: Bivariate Mixture Distributions with Uncorrelated Variables

Similarly, as we did in Section 2.4.1, we now consider three bivariate mixture spherically

symmetric distributions, where the variables are uncorrelated. The three bivariate mixture

distributions are normal, Laplace and Student’s t distributions with the same mixing

proportion (p = 0.3), number of random starts (k = 100), and samples size (n = 100).

Figure 3.1 is a forward plot of minimum spatial ranks from 100 randomly chosen initial

subsets for samples size n = 100 from bivariate mixture normal, Laplace and Student’s t

distributions with uncorrelated variables. Both Figure 2.1 and 3.1 give similar results. As

we mentioned before, we are interested in the subsets S(m) for these trajectories where

there is evidence of a cluster structure.

It can be clearly noticed that there are many different values of rmin(m) presented

in many trajectories. Moreover, the three plots in Figure 3.1 show that there is clearly

common structure around subsets with size 30 and 70 respectively, where there are two

clear maxima in these plots, one at m = 30 and the other at m = 70, suggesting the

existence of two clusters. So these plots lead to the division of the data into two clusters,

which means that the forward search based on spatial ranks performs well with the three

spherically symmetric distributions, and it outperforms the one based on Mahalanobis

distances for Laplace and t distributions.

Example 2: Bivariate Mixture Distributions with Correlated Variables

Now we consider that the data are generated from the same three bivariate mixture

distributions but with correlated variables with same mixing proportion (p = 0.3), number

of random starts (k = 100), and samples size (n = 100). Figure 3.2 is a forward plot of

minimum spatial ranks from 100 randomly chosen initial subsets for samples size n = 100

from bivariate mixture normal, Laplace and t distributions with elliptic symmetry. From
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(a) Bivariate normal (b) Bivariate Laplace

(c) Bivariate t

Figure 3.1: Forward plot of minimum spatial ranks from 100 randomly chosen initial
subsets for sample size n = 100 from bivariate mixture (a) normal, (b) Laplace and (c) t
distributions with uncorrelated variables.
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plots (a), (b) and (c) we see that there is again clearly common structure around subsets

with size 30 and 70 respectively, where there are two clear maxima around m = 30 and

m = 70, suggesting the existence of two clusters. So these plots also lead to the division of

the data into two clusters. Compared to the forward plot based on Mahalanobis distances

we can say that the forward search based on spatial ranks performs well with the three

elliptically symmetric distributions, and it outperforms the one based on Mahalanobis

distances for Laplace and t distributions.

Example 3: Trivariate Mixture Distributions with Uncorrelated Variables

Here, we consider trivariate mixture distributions of normal, Laplace and Student’s t

with 3 degrees of freedom, as before with same mixing proportion (p = 0.3), number of

random starts (k = 100), and samples size (n = 100). Figure 3.3 is a forward plot of

minimum spatial ranks. There are two clear maxima one around m = 30 and the other

around m = 70, which can be considered as indicator of the existence of two clusters.

Compared to Figure 2.3, we can see that Figure 3.3 gives better results, where it gives

plots with a clearer structure around the subsets with size 30 and 70, which means that

the forward search based on spatial ranks gives better result for the data with higher

dimensions. Moreover, it outperforms the one based on Mahalanobis distances for Laplace

and t distributions.

Example 4: Trivariate Mixture Distributions with Correlated Variables

Now consider the same data but under elliptic symmetry. Figure 3.4 is a forward plot of

minimum spatial ranks from 100 randomly chosen initial subsets for samples size n = 100

from trivariate mixture normal, Laplace and t distributions. Similarly, this Figure gives

a reasonable structure like Figure 3.3, and it gives better results than Figure 2.4, where

there are also two clear maxima one around m = 30 and the other around m = 70, which

suggests two clusters. So, the forward search based on spatial ranks outperforms forward
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(a) Bivariate normal (b) Bivariate Laplace

(c) Bivariate t

Figure 3.2: Forward plot of minimum spatial ranks from 100 randomly chosen initial
subsets for sample size n = 100 from bivariate mixture (a) normal, (b) Laplace and (c) t
distributions with correlated variables.
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(a) Trivariate normal (b) Trivariate Laplace

(c) Trivariate t

Figure 3.3: Forward plot of minimum spatial ranks from 100 randomly chosen initial
subsets for sample size n = 100 from trivariate mixture (a) normal, (b) Laplace and (c) t
distributions with uncorrelated variables.
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search based on Mahalanobis distances for the three trivariate mixture distributions under

the elliptic symmetry case.

So, we conclude that the forward search algorithm based on spatial ranks outperforms

the traditional one based on Mahalanobis distances under either spherical or elliptic sym-

metry, especially for Laplace and t distributions. However, as mentioned earlier, the

spatial ranks are bounded by 1 and hence do not produce a good visual effect to detect

clusters in an easier way. In order to enhance the visual detection of clusters, we modify

the algorithm by using central rank regions determined by rmin(m).

3.4 Central Rank Regions and Volume of Central Rank

Regions

3.4.1 Geometric Quantiles for Multivariate Data

To calculate the central rank regions, we may use the geometric quantiles (Chaudhuri,

1996). Serfling (2002) proposed the concept of volume functional based on spatial cen-

tral regions. He considered the spatial quantiles, introduced by Chaudhuri (1996) and

Koltchinskii (1997) as a certain form of generalization of the univariate case based on the

L1 norm.

According to Chaudhuri (1996), the spatial quantiles can be defined as vectors in Rd

that are indexed by a vector u in d-dimensional unit ball. LetB(d) =
{
u | u ∈ Rd, ‖u‖ < 1

}
,

be an open ball, for any u ∈ B(d) and t ∈ Rd, Φ(u, t) = ‖t‖+ < u, t > where < ., . >

denotes the usual Euclidean inner product. So, the spatial quantile corresponding to u

and based on X1, . . . ,Xn ∈ Rd can be defined as,

Q̂n(u) = arg min
Q∈Rd

n∑
i=1

Φ(u,Xi −Q).
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(a) Trivariate normal (b) Trivariate Laplace

(c) Trivariate t

Figure 3.4: Forward plot of minimum spatial ranks from 100 randomly chosen initial
subsets for sample size n = 100 from trivariate mixture (a) normal, (b) Laplace and (c) t
distributions with correlated variables.
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And from Theorem 1.1.2 of Chaudhuri (1996) we observe that,

n∑
i=1

Xi − Q̂n(u)

‖Xi − Q̂n(u)‖
+ nu = 0,

if Q̂n(u) 6= Xi for all 1 6 i 6 n, which implies,

u =
1

n

n∑
i=1

Q̂n(u)−Xi

‖Q̂n(u)−Xi‖
. (3.4.1)

In addition, Serfling (2004) has defined RankFn(x) as the inverse function of the geo-

metric quantile, Q̂n(u). Consequently, we can write the previous equation as,

u = RankFn(Q̂n(u)) = RankFn(x),

hence,

Q̂n(u) = x implies RankFn(x) = u.

Serfling (2002) has considered the volume functional as a spatial scale curve that

provides a convenient two-dimensional characterization of the spread of a multivariate

distribution of any dimension. Suppose that QF (u) is the u− th spatial quantile (Chaud-

huri, 1996) corresponding to the underlying distribution function F for X on Rd, and for

u ∈ B(d−1)(0), a QF (u) having both direction and magnitude. By Koltchinskii (1997),

the quantile QF (u) may be represented as the solution X = Xu of:

−E
{

X− x

‖X− x‖

}
= u, (3.4.2)

namely, it is that spatial quantile QF (ux) indexed by the average unit vector ux pointing

to x from a random point having distribution F . we interpret ux as the inverse at x of
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the spatial quantile function QF and denote it by Q(−1)
F (x).

Definition 3.4.1 : The sample spatial quantile function:

For a dataset X1, . . . ,Xn ,computation of the sample spatial quantile function can be

obtained by:

− 1

n

n∑
i=1

Xi − x

‖Xi − x‖
= u, (3.4.3)

where the left-hand side of (3.4.2) is the sample version of the centered rank function.

3.4.2 Volume of Central Rank Regions

Definition 3.4.2 : Central rank regions:

Corresponding to the spatial quantile function QF , we call the r−th central region:

CF (r) = {QF (u) : ‖u‖ 6 r} , (3.4.4)

and the central rank regions:

CF (r) = {x : ‖rankF (x)‖ 6 r} , 0 < r < 1. (3.4.5)

Definition 3.4.3 : Volume functional of multivariate central ranks region:

According to the central rank regions’ definition, one can define the (real-valued) volume

functional of the multivariate central ranks region as:

VF (r) = volume(CF (r)), 0 6 r < 1. (3.4.6)

Serfling (2002) pointed out that as an increasing function of r, VF (r) characterizes

the spread of F in terms of expansion of the central regions CF (r). For each r, VF (r)

is invariant under shift and orthogonal transformations, and VF (r)1/d is equivariant un-

88



der homogeneous scale transformations. Serfling (2006b) proposed applications of depth

functions by using the central regions and the volume functional, and showed that depth-

based central regions CF (r) are affine equivariant, nested, connected, and compact. Now

we define the sample central rank regions and the sample volume of central rank regions:

Definition 3.4.4 : Sample central ranks region and sample volume functional:

The Sample central rank regions can be defined as:

CFn(r) = {x : ‖rankFn(x)‖ 6 r} , 0 < r < 1. (3.4.7)

in this case we can define the sample volume functional of multivariate central ranks region

as:

VFn(r) = volume(CFn(r)), 0 6 r < 1. (3.4.8)

Theorem 3.4.1 : The spatial rank vector, spherically symmetric case:

For the random vector X with the distribution function F , suppose that F is spherically

symmetric about θ, then the spatial rank vector of x can be written as a multiplication

of an increasing function h(.) and the basic term in the spatial rank function x−θ
‖x−θ‖ , such

that:

RankF (x) = h(‖x− θ‖) x− θ
‖x− θ‖

. (3.4.9)

Moreover, from the previous Theorem, the central rank region CF (p) for the spherically

symmetric case can be written as:

CF (p) = {x : ‖x‖ 6 rF (p)} , (3.4.10)

where rF (p) is the p−th quantile of ‖X− θ‖.

Theorem 3.4.2 : The spatial rank vector, spherically symmetric case:

For the random vector X with the distribution function F , suppose that F is spherically
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symmetric about θ, CF (p) is the central rank region, rF (p) is the p−th quantile of ‖X−θ‖,

and VF (p) is the volume of the central rank region CF (p), then VF (p) can be written as:

VF (p) =
π

d
2 (rF (p))d

Γ (d
2

+ 1)
. (3.4.11)

For more comprehensive details and proof of this theorem, the reader is referred to(Guha,

2012).

An important point has been considered by Guha (2012) regarding to the p−th quan-

tile rF (p). She pointed out that if the underlying distribution is the standard multivariate

normal distribution, then r2F (p) will be the p−th quantile of the χ2
d distribution. On the

other hand, if the distribution is the standard multivariate Laplace distribution, then

rF (p) will be the p−th quantile of the Γ (d, 1) distribution and for the standard multivari-

ate t distribution with ν degrees of freedom, r2F (p)/d will be the p−th quantile of the Fd,ν

distribution.

3.4.3 Spherically and Elliptically Symmetric Distributions

Oja (2010) proposed a good review of the construction of the multivariate models. He

illustrated the concepts of the spherically symmetrical, marginally symmetrical, centrally

symmetrical and exchangeable cases. Moreover, he discussed the multivariate ellipti-

cal distributions and their properties. Maxwell (1860) is considered one of the earlier

publications that discussed the spherically symmetric distributions and their properties.

Hartman and Wintner (1940) gave a discussion about the spherical approach to the nor-

mal distribution. Chmielewski (1981) introduced an extensive review for the spherically

and elliptically symmetric distributions. Some notions of multivariate symmetry and

asymmetry have been considered by Serfling (2006a).

Firstly, we start with the definition of spherically symmetric distributions, then the

concept of elliptically symmetric distribution can be easily discussed. One can say that
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the random vector X has a spherically symmetric distribution about the point θ if the

distribution of (X−θ) remains unchanged under any orthogonal transformation. A math-

ematical expression can be written in this context as,

X− θ = A(X− θ), (3.4.12)

where A is an orthogonal d × d transformation matrix. Lord (1954) derived the charac-

teristic function of the random vector X and he illustrated that it has a density function

which is a function of the form (x− θ)T (x− θ) if it exists.

It is worth mentioning in this context that the spherically symmetric distributions have

an important property which is both ‖X−θ‖ and the random unit vector (X−θ)/‖X−θ‖

which is distributed uniformally are independent.

Now, we consider the concept of elliptically symmetric distribution. One can say that

the random vector X has an elliptically symmetric distribution with parameters θ and Σ

if there exists an orthogonal d × d transformation matrix A such that A(X − θ) has a

spherically symmetric distribution about 0. Alternative definition can be introduced such

that the random vector X has an elliptically symmetric distribution if it can be written

in the following mathematical expression,

X = AY + θ, (3.4.13)

where Σ = AAT , and Y has a spherically symmetric distribution about 0. It can be

noticed that when θ = 0 and Σ = Id, then X is said to have spherically symmetric

distribution centered at zero. An extensive discussion of the properties of the elliptically

symmetric distributions can be found in Fang et al. (1990).

91



3.5 Forward Search Based on Volume of Central Rank

Regions

As a second improvement in the forward search method, we modify the previous algorithm

by using central rank regions determined by rmin(m) to enhance the visual detection of

clusters. We modify Step 6 of the above algorithm and produce a forward plot of the

volume functional, vol(m) against the subset size m, where vol(m) is the volume of the

central rank region determined by rmin(m), i.e. vol(m) = VS(m)(rmin(m)) based on the

subset S(m). Note that, as soon as we include a point from a different cluster in the

subset, the volume of the central rank region increases substantially and then it may

remain around that large volume as it includes more and more points from that cluster

and we may see a sharp decrease in volume after some time if the subset S(m) moves to

the new cluster completely. However that depends on the relative cluster sizes and how

far they are from each other. Eventually, points from all clusters will be in S(m) and the

volume of the central rank regions will grow with m.

According to Baragilly and Chakraborty (2016), in order to compute the volume of

the central rank regions, we first compute a discretized boundary of CF (r) by computing

geometric quantiles corresponding to index vector u with ‖u‖ = r following Chaudhuri

(1996). We construct a convex hull of this discretized boundary of quantiles to obtain

a convex polyhedra and then compute the volume of that convex polyhedra using the

quickhull algorithm of Barber et al. (1996). So, the volume of the discretized central

rank region CF (r) is computed using the quickhull algorithm of Barber et al. (1996),

which was implemented in the R package geometry. The computation of volumes may

be computationally expensive in very high dimensions. This computational simplification

produces an estimate of the volume of CF (r), however, the precision of the estimate

increases with the increase in the number of points chosen on the boundary. We may
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need to choose the level of discretization sensibly to balance between the computational

time and accuracy in estimation. As this is a visualization tool, even if our estimate of

volume is not too precise, we are still able to see the distinct jumps for the clusters when

they are well separated.

In principle the initial subset size can be anything more than 1 as the rank of any

x ∈ Rd with respect to a single data point is always 1 and we cannot proceed in our

algorithm. Also, note that in the modified version of the algorithm, we are computing

volumes of central rank regions and as we mentioned earlier that the volume provides a

measure of scale, the computation of volumes are meaningful only when the number of

observations are at least d+1. Thus, purely for more stability in the algorithm, we choose

a initial subset size of d + 1. If there are large number of clusters and all are with sizes

smaller than d+ 1, then our algorithm will not be able to estimate the number of clusters

efficiently, but that is a rarity for large sample size n (Baragilly and Chakraborty, 2016).

3.5.1 Algorithm for the Forward Search Based on Volume of Cen-

tral Rank Regions

1. In order to start the search, we need to choose an initial subset. Suppose that S(m)

is the initial subset with m = d + 1, then one search can be run from this starting

point.

2. Calculate the spatial ranks ri(m) depending on the observations in the subset S(m).

3. Compute rmin(m), where rmin(m) = min ‖ri(m)‖; i 6∈ S(m).

4. Grow the subset S(m) to S(m + 1) by taking m + 1 observations Xi’s, which cor-

respond to smallest m+ 1 ‖ri(m)‖’s. Set m = m+ 1.

5. Iterate 2− 4 until m = n− 1.
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6. Compute vol(m) which is the volume of the central rank region determined by

rmin(m), i.e. vol(m) = VS(m)(rmin(m)) based on the subset S(m).

7. The forward plot of the volume of central rank region can be obtained by plotting

the vol(m) against the corresponding subset sizes m.

3.5.2 Some Numerical Examples

In this Section, we apply a series of simulated cases which can show the efficiency of the

forward search based on the volume functional of central rank regions especially when we

consider the Laplace and t distributions under elliptical symmetry. Again, we generated

data from bivariate and trivariate mixture normal, Laplace and t distributions, when the

variables are either correlated or uncorrelated, with (p = 0.3), (k = 100), and (n = 100).

Example 1: Bivariate Mixture Distributions with Uncorrelated Variables

Figure 3.5 is a forward plot of the volume functional of central rank regions from 100

randomly chosen initial subsets for samples size n = 100 from bivariate mixture normal,

Laplace and t distributions with uncorrelated variables. For the three plots (a), (b) and

(c) there is clearly some common structure around subsets with size 30 and 70 respectively.

There are two clear maxima in the three plots, one at m = 30 and the other at m = 70,

suggesting the existence of two clusters. Compared to Figure 3.1, we can notice that both

the forward plot based on the spatial ranks and volume of central rank regions were able to

detect the clusters in the generated data, however, the forward plots based on the volume

of central rank regions give better results, specially in Laplace and t distributions, where

it gives plots with a clearer structure around subsets with size 30 and 70. Moreover, it is

more accurate in the purpose of visualization since we can easily determine the number

of clusters from the plot based on volume of central rank regions. Thus, it should be

concluded that the forward search based on volume of central rank regions outperforms
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forward search based on Mahalanobis distances and spatial ranks for the bivariate mixture

distributions under spherical symmetry.

Example 2: Bivariate Mixture Distributions with Correlated Variables

Now, we assume that there is a correlation among the variables in the previous model.

Figure 3.6 is a forward plot of volume of central rank regions from 100 randomly chosen

initial subsets for samples size n = 100 from bivariate mixture normal, Laplace and

t distributions with correlated variables. Similarly, the three plots (a), (b) and (c) in

Figure 3.6 show that there is clearly common structure around subsets with size 30 and

70 respectively, where there are two clear maxima in these plots, one at m = 30 and the

other at m = 70, suggesting the existence of two clusters. The peaks in the three plots are

clearer than those in Figure 3.2 which conclude that the forward search based on volume

of central rank regions outperforms forward search based on Mahalanobis distances and

spatial ranks for the bivariate mixture distributions under elliptic symmetry.

Example 3: Trivariate Mixture Distributions with Uncorrelated Variables

Here we consider trivariate mixture distributions of normal, Laplace and Student’s t with

3 degrees of freedom, as before with (p = 0.3), (k = 100), and (n = 100). Figure 3.7 is

a forward plot of volume of central rank regions for samples size n = 100 from trivariate

mixture normal, Laplace and t distributions with uncorrelated variables. It is very clear

that the three plots (a), (b) and (c) give sharp peaks clearer than them in the plots of the

bivariate distributions, which indicate that the algorithm performs well with the higher

dimension.

Example 4: Trivariate Mixture Distributions with Correlated Variables

Now, we assume that there is a correlation among the variables in the previous model.

As we can see in Figure 3.8, which is a forward plot of volume of central rank regions for

samples size n = 100 from trivariate mixture normal, Laplace and t distributions with
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(a) Bivariate normal (b) Bivariate Laplace

(c) Bivariate t

Figure 3.5: Forward plot of volume of central rank regions from 100 randomly chosen
initial subsets for sample size n = 100 from bivariate mixture (a) normal, (b) Laplace and
(c) t distributions with uncorrelated variables.
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(a) Bivariate normal (b) Bivariate Laplace

(c) Bivariate t

Figure 3.6: Forward plot of volume of central rank regions from 100 randomly chosen
initial subsets for sample size n = 100 from bivariate mixture (a) normal, (b) Laplace and
(c) t distributions with correlated variables.
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(a) Trivariate normal (b) Trivariate Laplace

(c) Trivariate t

Figure 3.7: Forward plot of volume of central rank regions from 100 randomly chosen
initial subsets for sample size n = 100 from trivariate mixture (a) normal, (b) Laplace
and (c) t distributions with uncorrelated variables.
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correlated variables, there are two sharp peaks at m = 30 and m = 70. Clearly, they are

clearer than them in the plots of the bivariate distributions as well, which indicate that

the algorithm performs well with the higher dimension unlike the traditional algorithm

based on Mahalanobis distances, where its performance is getting worse when higher

dimensional data under elliptic symmetry.

It should be concluded that the forward search based on volume functional of cen-

tral rank regions outperforms forward search based on Mahalanobis distances for either

bivariate or trivariate Laplace and t distributions under either spherical or elliptical sym-

metry. Moreover, the algorithm based on the volume of central rank regions gives better

visualization with sharp peaks than the algorithm based on spatial ranks.

Mixture of 3 bivariate normal distributions

In Figure 3.9, we present an example of a forward plot based on both spatial ranks and

volume of central rank regions, where the data is simulated from a mixture of 3 bivariate

normal distributions that defined in (2.5.1):

p1N2(µ1, I) + p2N2(µ2, I) + (1− p1 − p2)N2(µ3, I),

where µ1 = (0, 4)>, µ2 = (−4,−4)>, µ3 = (4,−4)> and p1 = 0.2, p2 = 0.3. With

trajectories from 100 randomly chosen initial subsets, we see a clear pattern of 3 cluster

sizes here in both of the forward plots based on spatial ranks and volume of central rank

regions unlike the forward plot based on Mahalanobis distances in Figure (2.8), which gives

a clear pattern of 4 cluster sizes here, however the simulated data includes 3 clusters.
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(a) Trivariate normal (b) Trivariate Laplace

(c) Trivariate t

Figure 3.8: Forward plot of volume of central rank regions from 100 randomly chosen
initial subsets for sample size n = 100 from trivariate mixture (a) normal, (b) Laplace
and (c) t distributions with correlated variables.
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(a) Forward plot based on spatial ranks
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(b) Forward plot based on volume of central
rank regions

Figure 3.9: Forward plot based on (a) spatial ranks and (b) volume of central rank regions,
from 100 randomly chosen initial subsets for a mixture bivariate normal data set with 3
mixing densities.

3.6 Simulation Envelope and Entry Plot Based on Spa-

tial Ranks

As we we mentioned earlier, using the envelopes in the forward plot is helpful to know

the level of fluctuations to be expected in the forward plots. In this Section, we gives the

steps of the simulation envelope’s algorithm based on the spatial ranks.

1. Simulate data from the empirical standard underlying distribution.

2. Choose an initial subset S(m) withm = d+1, and start the search from this starting

point.

3. Calculate the spatial ranks ri(m) based on the observations in the subset S(m).

4. Compute vol(m), where vol(m) = VS(m)(rmin(m)) based on the subset S(m).
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5. Grow the subset S(m) to S(m + 1) by taking m + 1 observations Xi’s, which cor-

respond to smallest m+ 1 ‖ri(m)‖’s. Set m = m+ 1.

6. Iterate 3− 5 until m = n− 1

7. Iterate 1− 6 1000 times, so for each subset size m we have 1000 values of vol(m).

8. Take 99% percentiles of these vol(m) and plot it against m to get the 99% envelope.

Figure 3.10 is a forward plot of volume of central rank regions from 100 random

starts with 1% and 99% envelopes for sample size n = 100 from bivariate mixture normal

distribution with uncorrelated variables. The figure shows that the volume values at the

beginning of the search all lie on or within the simulation envelopes until m = 16 where

the volume values have been increased to reach to the first peak at m = 30 and then they

started to decrease again. Following that, the values started to exit from the simulation

envelopes again as a preface to reach to the second peak at m = 70 and naturally they

started to increase gradually until the end of the search.

Now, we propose the entry plot based on spatial ranks. The entry plot essentially shows

which groups of observations are in the subset. To get the entry plot based on spatial

ranks we have to order the observations based on the spatial ranks ri(m); i = 1, . . . , n,

then plot the observations in the subset against the subset size. Figure 3.11 is an entry

plot based on spatial ranks from m0 = 3 with 100 randomly chosen initial subsets for a

mixture bivariate normal data set with 3 mixing densities that defined in (2.5.1). From

the Figure we can see that the observations are ordered so that 1-20 are those from the

small group with the 20 observations, 21-50 are those from the second group with the 30

observations and 51-100 coming from the big group with 50 observations. The plot at

m = 3 shows that the initial subset includes observations from the three groups. In the

second subset of the forward search, at m = 4, a large amount of interchange has been

happened, where the observations in this subset started to enter in the second group.
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Figure 3.10: Forward plot of volume of central rank regions from 100 random starts with
1% and 99% envelopes for sample size n = 100 from bivariate mixture normal distribution
with uncorrelated variables.

Thereafter, from m = 32 to m = 44 the subset consists solely of observations from the

small group. From m = 36 some observations from the third group started to join the

subset. From m = 63 the observations from the small group started to join again the

subset. At the end of the search (m = 100), all the observations entered the search.

3.7 Real Data Examples

In this Section, we check the performance of the forward search algorithm based on

volume of central rank regions in different real datasets. We compare the performance

of the proposed forward search method for three different real datasets with two popular

clustering methods: mclust approach (Fraley and Raftery, 2003) where the best number

of groups is chosen according to BIC and K-means where the best number of groups is

chosen according to CH index.
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Figure 3.11: Entry plot based on spatial ranks from m0 = 3 with 100 randomly chosen
initial subsets for a mixture bivariate normal data set with 3 mixing densities.

3.7.1 Financial Data

The first real dataset we consider in this Chapter is a financial data, which stems from

the Italian financial journal Il Sole - 24 Ore for May 7th, 1999 and has been analyzed

in Atkinson et al. (2004). It is a real data contains measurements on three variables

monitoring the performance of 103 investment funds operating in Italy since April 1996

[Table A.16 of Atkinson et al. (2004)]. These three variables are, y1: short term (12

month) performance, y2: medium term (36 month) performance, and y3: medium term

(36 month) volatility. Additionally, this data include two different kinds of fund, since

the units 1- 56 are all stock funds whereas units 57- 103 are balanced funds.

Atkinson et al. (2004) and Atkinson et al. (2006) applied their forward search method

based on Mahalanobis distances to the clustering of these financial data and introduced

detailed analysis of it. Table A.16 of Atkinson et al. (2004) shows the Italian investment
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funds since April 1996 in the short and medium term performance (y1, y2) and medium

term volatility (y3).

As a preliminary analysis, we prepare a scatter-plot matrix of the data in Figure 3.12,

and 3D scatter-plot in Figure 3.13. Initially, from either the scatter-plot matrix or the

3D scatter-plot, it can be clearly seen that there are two clusters with some observations

between them, it is clearer in the y1 vs y3 panels, and these observations are not close to

either cluster centre.
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Figure 3.12: Financial data: scatter-plot matrix.

105



−5  0  5 10 15 20 25

 5
10

15
20

25
30

10

20

30

40

50

y1

y2

y3
●●

●

●

●

●
●

●●
●

●

●
● ●●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●●
●

● ●●
●

●

●

●

●

●

●

●

●
●●

● ●

●

●●

●
●

●

●
●●●

●

●● ● ●
● ● ●

●
● ●

●
●●

●
●

● ●

●

●
●

●●

●
●

●

●

●

●

●

●

●
● ●

●●

● ●

●● ●

Figure 3.13: Financial data: 3D scatter-plot.

Similarly, we can note from Figure 3.14, which is a forward plot of minimum Maha-

lanobis distances among units not in the subset from 100 random starting points, that

there are two clusters. Clearly, we can see two trajectories with high values (outliers)

around m = 50, one of them with twin peaks and the other has one only.

Now we consider the forward search method based on the volume of central rank

regions. Figure 3.15 is a forward plot of volume of central rank regions among units not

in the subset from 100 random starting points with 1% and 99% envelopes. It can be

clearly seen that there are two clear peaks in the plot at m = 44 and 56 suggesting two

clusters.

For more investigation, we tried to analyze every cluster separately. We started with

the first trajectory which represents the first cluster, and stopped at the maximum value

of the volume of central rank regions (vol(m)) corresponds to each subset (m), as shown

in the right panel of Figure 3.16. In this trajectory we can see that during the search, the
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Figure 3.14: Financial data: forward plot of minimum Mahalanobis distances among units
not in the subset from 100 random starts. Two clusters are evident around m = 50.

highest value of the volume of central rank regions occurs when the subset size equal to 56,

we can check this from Table 3.1 which gives the volume of central rank regions for each

subset (m) regarding to the first cluster, where the yellow shaded value, vol(56) = 1904.01,

is the highest one. Moreover, if we started with different points and consequently with

different subsets, most of trajectories for this second cluster will take the same pass

starting from subset number 33 which has a volume value, vol(33) = 161.544. This

appears as the blue shaded distance in Table 3.1. The left panel of Figure 3.16 is a

scatterplot of y1 against y2, where the red points refer to the units in cluster 1, and green

points are unassigned units.

The left-hand panel of Figure 3.17 is a scatterplot of y1 against y2, also the red points

in this case mean that all the units entered the search and it is the end of it. The right-

hand panel of the Figure shows the forward plot of volume of central rank regions amongst
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Figure 3.15: Financial data: forward plot of volume of central rank regions among units
not in the subset from 100 random starts with 1% and 99% envelopes. Two clusters are
evident at m = 44 and 56.

units not in the subset at the end of search (m = 102) which has a peak at m = 56. If

we take the 55 units before the peak in this trajectory, we can get the first cluster. Table

3.2 gives the units that have been grouped in the first cluster. The units from 1 to 56 are

stock funds, which means we have roughly found the reasonable clustering, where it can

be clearly seen from Table 3.2 that the first cluster is including all the units from 1 to 55

except the units number 10, 20, 37, 39, 50, 52 and 54. These units are undecided units

and remain to be clustered. Initially, it is acceptable and reasonable result, but we still

need to investigate the units that are belonging to the second cluster.
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Figure 3.16: Financial data: Cluster 1: left panel, scatterplot y1 vs y2, red points are
the units in cluster 1, and green points are unassigned units; right panel, forward plot of
volume functional of central rank regions at the first peak m = 56.

Table 3.1: Financial data: The volume of central rank regions for each subset (m) for
Cluster 1

m vol(m) m vol(m) m vol(m) m vol(m) m vol(m)

4 0.0719617 26 87.05440 48 567.6713 70 1497.523 92 5461.964

5 135.8755000 27 83.87361 49 841.5898 71 1551.585 93 5036.461

6 110.8953000 28 97.71099 50 1130.6070 72 1625.693 94 5643.386

Continued
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Table 3.1 – Continued

m vol(m) m vol(m) m vol(m) m vol(m) m vol(m)

7 85.5589800 29 88.33577 51 1259.4540 73 1736.155 95 5051.731

8 92.6583000 30 111.29430 52 1194.9950 74 1533.900 96 5657.606

9 78.3433100 31 91.08209 53 1315.4720 75 1642.381 97 8434.414

10 24.9538500 32 111.73520 54 1256.2410 76 1482.590 98 10226.270

11 14.8005700 33 161.54400 55 1319.6020 77 1607.370 99 11550.110

12 14.5966000 34 146.12570 56 1904.0100 78 1503.613 100 14206.020

13 12.9266700 35 138.56190 57 1861.9580 79 1826.217 101 32669.900

14 11.4619900 36 133.77460 58 1551.5990 80 1887.760 102 54312.470

15 18.3696500 37 154.92370 59 1456.3800 81 1817.943

16 20.7959200 38 230.95390 60 1664.0910 82 1730.348

17 21.5905700 39 236.48800 61 1466.5730 83 2046.090

18 23.7899700 40 264.54790 62 1671.7770 84 2276.736

19 25.0441700 41 234.39340 63 1510.9080 85 2784.036

20 26.2108100 42 245.10590 64 1703.2300 86 3011.890

21 36.0838900 43 269.66800 65 1543.9850 87 3531.806

22 49.2971700 44 301.87910 66 1671.7620 88 4290.074

23 70.6884200 45 332.02540 67 1592.9330 89 4411.096

24 88.4231800 46 490.70320 68 1520.4910 90 4770.362

25 93.5353400 47 607.27360 69 1399.6860 91 4495.690

Now, we consider the second trajectory which represents the second cluster. We

stopped again at the maximum value of the volume of central rank regions (vol(m)) as

shown in the right-hand panel of Figure 3.18. From this Figure we can see that there is a

first peak at m = 44, where the volume of central rank regions at this time is very high,
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Figure 3.17: Financial data: Cluster 1: left panel, scatterplot y1 vs y2; right panel, forward
plot of volume of central rank regions at m = 102.

vol(m) = 1931.516, as shown in Table 3.3 which gives the volume of central rank regions

for each subset (m) for the second cluster, where the first yellow shaded distance represents

the first peak. Also, if we started with different points and consequently with different

subsets, most of trajectories for this second cluster will take the same pass starting from

subset number 26 which has a volume, vol(26) = 87.08442. This appears as the blue

shaded value in Table 3.3. The left panel of Figure 3.18 is a scatterplot of y1 against y2,

where the red points refer to the units in cluster 2, and green points are unassigned units.

We considered the end of search for this trajectory at m = 102, as shown in Figure
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Table 3.2: Financial data: The assigned units in the first cluster by using forward search
based on volume of central rank regions (55 units).

47 45 17 36 23 5 28 24 1 31 4 40 13 27
51 7 42 48 2 56 15 22 19 26 46 9 18 3
49 8 53 12 25 34 32 29 6 33 89 16 55 38
43 11 35 30 41 90 44 21 14 68 70 77 71

3.19, which has a peak at m = 44, followed by a second similar sized peak at m = 56

which means also that some remote observations are entering in this region. The right

panel of Figure 3.19 is a forward plot of volume of central rank regions amongst units not

in the subset at the end of search (m = 102). It clearly shows that there is a second peak

at m = 56 again, where the volume of central rank regions at this subset is a maximum,

vol(56) = 1704.919, as shown in Table 3.3, the second yellow shaded distance represents

this second peak. The left panel is a scatterplot of y1 against y2, also the red points in

this case mean that all the units entered the search and it is the end of it. Similarly, if we

take the 43 units before the first peak in this trajectory, we can get the second cluster.

Table 3.4 gives the units that have been grouped in the second cluster. The units from

57 to 103 are balanced funds, which means we have roughly again found the reasonable

clustering, where it can be clearly seen from Table 3.4 that the second cluster is including

all the units from 57 to 103 except only the unit number 80 that remains to be clustered.

Unlike Table 3.2, Table 3.4 includes the units 77 and 89 which means that they have

been clustered at this time. We took the 55 units before the peak in the first trajectory

and likewise the 43 units before the first peak in the second trajectory, with three units

have been incorporated in both clusters, they are 68, 70 and 71 and they could belong to

either cluster, grey shaded units in Tables 3.2 and 3.4. If we considered that these three

clusters are belonging to the second cluster according to their positions in the scatterplot,

and that agrees with the nature of data since the units from 57 to 103 are balanced funds

as we mentioned before, thus, out of 103 units, 95 are clustered and 8 are remote from
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Figure 3.18: Financial data: Cluster 2: left panel, scatterplot y1 vs y2, red points are
the units in cluster 2, and green points are unassigned units; right panel, forward plot of
volume functional of central rank regions at the first peak m = 44.

either cluster. In other words, first group consists of 55 observations, from unit 1 to unit

56 less seven undecided, and the second group consists of 43 observations, from unit 57

to unit 103, less three belonging to cluster 1. So we now know which units belong to the

first and second clusters.
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Figure 3.19: Financial data: Cluster 2: left panel, scatterplot y1 vs y2; right panel, forward
plot of volume functional of central rank regions at m = 102.

Table 3.3: Financial data: The volume of central rank regions for each subset (m) for
Cluster 2

m vol(m) m vol(m) m vol(m) m vol(m) m vol(m)

4 0.4772787 26 87.08442 48 1260.830000 70 2.808459 92 5461.964

5 1.8012360 27 77.72739 49 1036.742000 71 2.426188 93 5036.461

6 2.1085420 28 138.37920 50 933.862500 72 2.416222 94 5643.386

7 3.4626790 29 179.41430 51 1112.098000 73 2.602631 95 5051.731

Continued
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Table 3.3 – Continued

m vol(m) m vol(m) m vol(m) m vol(m) m vol(m)

8 8.5510760 30 152.53420 52 1166.376000 74 4.462318 96 5657.606

9 9.1133460 31 197.73910 53 1153.281000 75 465.450200 97 8434.414

10 9.4057640 32 162.90650 54 1586.840000 76 324.447300 98 10226.270

11 11.4020600 33 176.16300 55 1577.416000 77 555.739500 99 11550.110

12 20.0848000 34 236.03560 56 1704.919000 78 1763.363000 100 14206.020

13 19.5499300 35 288.04900 57 1447.157000 79 1702.002000 101 32669.900

14 21.5188100 36 325.72630 58 1556.648000 80 1693.037000 102 54312.470

15 20.7002000 37 390.37050 59 1322.775000 81 2105.913000

16 23.6334400 38 553.06720 60 1075.426000 82 2366.689000

17 21.9519200 39 511.84190 61 989.384000 83 2321.202000

18 32.2182700 40 695.82850 62 892.998100 84 2276.736000

19 31.1849000 41 832.20280 63 985.487900 85 2784.036000

20 33.4025300 42 1048.10500 64 829.677300 86 3011.890000

21 46.7386500 43 1264.99000 65 867.188300 87 3531.806000

22 44.4261900 44 1931.51600 66 1057.223000 88 4290.074000

23 49.6965700 45 1310.49600 67 1077.354000 89 4411.096000

24 53.9726500 46 1325.88100 68 4.612333 90 4770.362000

25 57.3836100 47 1286.75100 69 2.826030 91 4495.690000

Table 3.4: Financial data: The assigned units in the second cluster by using forward
search based on volume of central rank regions (43 units).

76 61 63 102 81 92 99 75 74 91 65
69 86 94 79 66 98 87 84 103 85 101
62 93 100 58 88 83 72 82 64 71 78
60 70 97 67 95 73 59 68 57 96
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Atkinson et al. (2004) clarified the economic interpretation of the data. They men-

tioned that the undecided units show different features, which can explain their behavior

along the forward search. They pointed out that the Italian Stock Exchange experienced

a remarkable increase in most stock prices at that time. Also there were positive short

and medium term performances of many funds, especially so for stock funds. Stock funds

also exhibited higher volatility, which is synonymous with higher risk.

For the K-means, the selection criterion that we use is again the CH-index (Calinski

and Harabasz, 1974), where we use it to estimate the number of clusters that K-means

algorithm should start with it, and for the BIC criterion we use the mclust library (Fraley

and Raftery, 2003), where Fraley and Raftery (2003) assumed 10 models of the param-

eterization of the Gaussian mixture models (parsimonious models) introduced earlier by

Banfield and Raftery (1993). According to Figure 3.20, like our method, K-means indi-

cated two clusters, while the mclust approach based on BIC again failed to give the true

number of clusters, where the maximum value of the BIC criterion was for the EEE model

(BIC=-1664.278 ).

3.7.2 Old Faithful data

The second dataset we consider is known as the Old Faithful Geyser Data, which are taken

from Azzalini and Bowman (1990) and the MASS library Venables and Ripley (2002).

This data gives the waiting time between eruptions and the duration of the eruption in

minutes for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA, with

two apparent groups in the data. The analysis of this data using the standard forward

approach based on Mahalanobis distances had been done in Atkinson and Riani (2012).

It includes 272 observations with two variables, x1i: the duration of the i − th eruption

and x2i: the waiting time to the start of that eruption from the start of eruption i − 1.

Figure 3.21 gives the scatter-plot of old faithful data. Initially, from the scatter-plot we
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(b) K-means clustering
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(c) BIC based on mclust

Figure 3.20: Financial data: (a) CH index suggests K = 2, (b) K-means with 2 clusters,
and (c) BIC plot suggesting 6 clusters with best BIC values for EEE model.
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can clearly see that there are two clusters with some observations between them.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

eruptions

w
ai

tin
g

Figure 3.21: Old faithful data: Scatter-plot

Figure 3.22 shows the forward plot of volume of central rank regions among units not

in the subset from 100 random starts for old faithful data. As we can see, there are two

clear maxima in this plot, one at m = 105 and the other at m = 179, suggesting the

existence of two clusters, which gives the right number of groups in the data with their

sizes.

Figure 3.23 shows the behavior of the CH-index, K-means, and BIC. Panels (a) and

(b) of Figure 3.23 are the CH-index plot which indicates ten clusters and the clustering

with K-means respectively. Clearly, the K-means behaves so poorly in this real dataset,

where it failed to give us the right clustering. On the other hand, from panel (c) we can

see that the best model according to BIC is an equal-covariance model with three clusters,

where the maximum value of the BIC criterion among the 10 parsimonious models was
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Figure 3.22: Old faithful data: forward plot of volume of central rank regions among units
not in the subset from 100 random starts with 1% and 99% envelopes. Two clusters are
evident at m = 105 and 179.

for the EEE model (BIC=-2314.386) with similarly shaped covariance matrices, and the

next best model had four clusters (BIC=-2320.207) with the same covariance structure.

This indicates that the mclust approach based on BIC criterion failed to give the right

number of clusters as well as K-means method. The forward plot in Figure 3.22 in fact

outperforms K-means and mclust approach in this data, where it gave the right number

of groups.

3.7.3 Iris data

The third real dataset used in this Chapter, is the iris data (Fisher, 1936). In iris data,

one of the clusters contains iris setosa, while the other cluster contains both iris virginica

and iris versicolor. In clustering analysis, most of the clustering techniques consider this
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(b) K-means clustering
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(c) BIC based on mclust

Figure 3.23: Old faithful data: (a) CH index suggests K = 10, (b) K-means with 10
clusters, and (c) BIC plot suggesting 3 clusters with best BIC values for EEE model.
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data includes 2 groups, this is due to both iris virginica and iris versicolor is not separable

without the species information that Fisher used, which consider a good example to

explain the difference between supervised and unsupervised methods. Figure 3.24 is a

scatter-plot matrix of the iris data which shows that there are two clusters with some

observations between them.
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Figure 3.24: Iris data: Scatter-plot matrix
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Figure 3.25 shows the forward plot of volume of central rank regions among units not

in the subset from 100 random starts for the iris data. As we can see, there are two clear

maxima in this plot, one at m = 50 and the other at m = 100, suggesting the existence

of two clusters, with sizes 50 and 100.
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Figure 3.25: Iris data: forward plot of volume of central rank regions among units not in
the subset from 100 random starts with 1% and 99% envelopes. Two clusters are evident
at m = 50 and 100.

Figure 3.26 gives the clustering of iris data based on the K-means and mclust. Panel

(a) of Figure 3.26 gives the CH-index plot which indicates three clusters, while panel

(b) gives the K-means clustering with the three groups. Panel (c) shows that the best

model according to BIC is an ellipsoidal equal-shape model with two clusters, where the

maximum value of the BIC criterion among the 10 parsimonious models was for the VEV

model (BIC=-561.7285), which agree with our method.
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(b) K-means clustering
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Figure 3.26: Iris data: (a) CH index suggests K = 3, (b) K-means with 3 clusters, and
(c) BIC plot suggesting 2 clusters with best BIC values for VEV model.
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Chapter 4

Clustering Multivariate Data

Using Weighted Spatial Ranks

4.1 Introduction

One of the most important properties of the traditional spatial ranks function that have

been discussed earlier is that, they tell us how central each observation is and in which di-

rection it is moving from the centre. However they do not consider the distances between

the observations and each other. On the other hand, the weighted spatial rank functions

that are discussed in this chapter take in consideration the distances between the observa-

tions and each other as weights, which makes it easier to group and partition a given set

of data or objects into specific number of clusters based on the homogeneity assumption

such that the objects belong to the same cluster should be as similar as possible.

In this chapter, we propose a new nonparametric cluster detection methodology based

on different weighted spatial rank (WSR) functions. Our proposed weighted spatial ranks

are completely data-driven and easy to compute without any need to parameter estimates

of the underlying distributions, which make them robust against distributional assump-

tions. Moreover, the weighted spatial ranks are more accurate in the purpose of intuitive
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visualization since we can easily determine the number of clusters from the weighted ranks

contours for a low-dimensional input space, using dimension reduction that allow to map

the data cloud. This is due to the weighted spatial ranks can capture the clusters struc-

ture because of considering the weights as a similarity (dissimilarity) measure, where the

weight value of each observation presents the distance between it to the others. The main

idea behind WSR is to define a dissimilarity measure locally based on a localized version

of multivariate ranks. As a result, the proposed method can be used to determine the

assumed number of clusters, and to assign each observation to its cluster consequently by

using the weighted ranks as a classifier and confirmatory tool.

Selection of a proper weight function will lead to better identification of clusters when

the data do not follow any standard parametric distribution. We have considered paramet-

ric and nonparametric weights for comparison. One of the most popular weights functions

is the kernel weights. In pattern analysis, over the last decade a particular attention is

paid to the use of kernels in classification, cluster analysis, machine learning and support

vector machines (Hofmann et al., 2008). Many different kernel weight functions have

been considered in this study. Moreover, we have introduced some weighted multivariate

spatial ranks based on different robust weights such as the generalized Mallow weights

function that has been introduced by Simpson et al. (1992) and adjusted by Naranjo and

Hettmansperger (1994).

This chapter is organized as follows. Section 4.2 gives a brief review of the parametric

and nonparametric weights functions, where we consider some kernel and robust weights.

Section 4.3 introduces the proposed weighted spatial rank functions with some numerical

examples and comparisons with other standard parametric and nonparametric methods.

In Section 4.4, we propose a confirmatory classifier based on weighted ranks that can be

used to properly assign the observations to specific cluster. Section 4.5 demonstrates the

weighted rank based clustering algorithm. Finally, in Section 4.6, we give some numerical
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examples based on both simulated and real datasets to show the performance of the

proposed algorithm.

4.2 Parametric and Nonparametric Weights Functions

Two different types of weights functions have been considered in this study. The first

one is a nonparametric, which depends on many different kernel functions like Gaussian,

triangular, uniform, Laplacian, and logistic kernels. The second is a parametric, and

it is related to the weights functions to be used for some robust statistics such as the

generalized Mallow weights (Simpson et al., 1992) and Naranjo and Hettmanspergers’

weights (Naranjo and Hettmansperger, 1994).

4.2.1 Kernel Weights Functions

Recently, the kernel functions and methods have raised researchers’ concerns regarding

their helpful use, especially the positive definite kernels of a reproducing kernel Hilbert

space. They are usually used to improve many different algorithms like support vector

machines, Bayes point machines, kernel principal component analysis, and Gaussian pro-

cesses to solve problems of classification, regression, density estimation, and clustering.

A good overview of the usage of kernel is given in (Genton, 2001; Vapnik, 1995; Cris-

tianini and Shawe-Taylor, 2000). It is worth mentioning in this context that, there are

many different kernel functions, like Gaussian, exponential, Laplacian, logistic, triangular,

uniform, Epanechnikov, linear, polynomial, rational quadratic, multiquadric, spherical,

Cauchy, and chi-square kernels. For more comprehensive details about the other kernels,

the reader is referred to Souza (2010). In this study, we considered the following 6 kernel

functions. The first one is the Gaussian kernel function,

k(x) = e−x
2/2, (4.2.1)
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the second function is the Laplacian kernel function,

k(x) = e−|x|, (4.2.2)

the third function is the logistic kernel function,

k(x) =
1

ex + 2 + e−x
, (4.2.3)

the fourth function is the triangular kernel function,

k(x) =

 1− |x| if |x| 6 1

0 otherwise ,
(4.2.4)

the fifth function is the uniform kernel function,

k(x) =


1
2

if |x| 6 1

0 otherwise ,
(4.2.5)

and the last function is the Epanechnikov kernel function (Epanechnikov, 1969),

k(x) =


3
4
(1− x2) if |x| 6 1

0 otherwise ,
(4.2.6)

where x in the above kernel functions has been considered as the Euclidean norm of the

distance between the observation x and all the other observations Xi, i.e. ‖x − Xi‖,

where ‖x‖ is the Euclidean norm such that; ‖x‖ =
√
x21 + x22 + ...+ x2d, the direction of

the d-dimensional vector x.
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4.2.2 Robust weight Functions

One of the popular weights functions to be used for robust statistics is the generalized

Mallow weights which was proposed by Simpson et al. (1992) and adopted by many

authors like Naranjo and Hettmansperger (1994) and Chang et al. (1999). An important

feature of this function is that it reduces the sensitivity of the estimate to leverage points

compared to other weights. The generalized Mallow weights can be written as:

k(x) = min

1,

(
c

(x− µ̂)tΣ̂−1(x− µ̂)

)r/2
 , (4.2.7)

where µ̂ and Σ̂ are some robust estimates of location and scatter of the d-dimensional

vector x. Such a choice for µ̂ and Σ̂ might be the minimum volume ellipsoid (MVE)

estimator (Rousseeuw and van Zomeren, 1990) or S estimator. In order to determine the

value of c, one can use the fact that (x− µ̂)tΣ̂−1(x− µ̂) has the distribution χ2(d), so we

can consider c as the 95th percentile of χ2(d), and it is clear that with r = 0 we move to

the unweighted case. For a discussion on the choice of r, the reader is referred to section

1 of Simpson et al. (1992).

On the other hand, Naranjo and Hettmansperger (1994) proposed their optimal robust

weights,

k(x) = min

1,
c(

(x− µ̂)tΣ̂−1(x− µ̂)
)1/2

 , (4.2.8)

we used both of generalized Mallow weights and Naranjo and Hettmanspergers’ weights in

the weighted ranks function, to compare them with the proposed kernel weights, in order

to determine the proper weight function that can improve the performance of the spatial

ranks. In the next section, we present a numerical example to compare the performance

of the weighted spatial ranks based on both the kernel and robust weights functions.
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4.3 Weighted Spatial Rank Functions

In this section, we propose two different functions of the weighted spatial ranks based

on the weight functions that we discussed in the previous Section. We start with giving

definition of the WSR functions, then we compare them with other standard parametric

distance methods.

Definition 4.3.1 : The weighted spatial rank function:

Suppose that X ∈ Rd has a d-dimensional distribution F , which is assumed to be absolutely

continuous throughout this chapter, then the first weighted spatial rank function of the

point x ∈ Rd with respect to F can be defined as:

WSRFn(x) =
1∑n
i=1wi

n∑
i=1

wiSign(x−Xi) =
1∑n
i=1wi

n∑
i=1

wi
x−Xi

‖x−Xi‖
, (4.3.1)

and the second weighted spatial rank function can be defined as:

WSRFn(x) =
1

n

n∑
i=1

wiSign(x−Xi) =
1

n

n∑
i=1

wi
x−Xi

‖x−Xi‖
. (4.3.2)

and their L2 norm is:

WSRNFn(x) = ‖WSRFn(x)‖. (4.3.3)

On one hand, we can observe that, the weighted spatial rank function (4.3.1) is a local

function, where the denominator
∑n

i=1wi is a function of x, such that wi = wi(x), and this

makes it a data-dependent function. This in fact explains why its contour plot has more

than one centre as we will see in the next numerical example. Moreover, we observe that

the unweighted function (traditional spatial ranks function (3.2.8)) is a global function,

where the denominator n does not depend on x, which makes it a data-independent

function. On the other hand, the weighted spatial rank function (4.3.2) is a trade-off

between the local function (4.3.1) and the global function (3.2.8), where its denominator
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n is data-independent and its numerator
∑n

i=1wi is data-dependent making it a trade-off

between the local and global ones. This in fact explains why its contour plot has only

one centre as we will see in the next numerical example, which makes the WSR in (4.3.2)

better than WSR in (4.3.1) in terms of the clustering detection and visualization.

Using the weights functions that are defined in equations (4.2.1) to (4.2.8), we can

write the weights (wi) as following: if we consider the Gaussian kernel weights,

wi = e−‖x−Xi‖2/2, (4.3.4)

if we consider the Laplacian kernel weights,

wi = e−‖x−Xi‖, (4.3.5)

if we consider the logistic kernel weights,

wi =
1

e‖x−Xi‖ + 2 + e−‖x−Xi‖
, (4.3.6)

if we consider the triangular kernel weights,

wi =

 1− ‖x−Xi‖ if ‖x−Xi‖ 6 1

0 otherwise ,
(4.3.7)

if we consider the uniform kernel weights,

wi =


1
2

if ‖x−Xi‖ 6 1

0 otherwise ,
(4.3.8)
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if we consider the Epanechnikov kernel weights,

wi =


3
4
(1− ‖x−Xi‖2) if ‖x−Xi‖ 6 1

0 otherwise ,
(4.3.9)

if we consider the generalized Mallow weights,

k(x) = min

1,

(
c

(x−Xi)tΣ̂−1(x−Xi)

)r/2
 , (4.3.10)

and if we consider Naranjo and Hettmansperger (1994) robust weights,

k(x) = min

1,
c(

(x−Xi)tΣ̂−1(x−Xi)
)1/2

 . (4.3.11)

4.3.1 Numerical Examples and Comparison with Other Standard

Methods

In order to highlight the efficiency of our proposed weighted ranks based clustering in terms

of fitting the shape of clusters in the data cloud; we give this numerical example based on

simulated data. We consider in this example a bivariate Gaussian mixture distribution

with two clusters, mixture proportion (p = 0.3), and sample size (n = 1000), such that

X1,X2, . . . ,Xn ∈ Rd is a random sample from bivariate mixture normal distribution:

pN2(µ1,Σ) + (1− p)N2(µ2,Σ), (4.3.12)

where µ1 = (0, 0)>, µ2 = (5, 5)> and Σ = I.

Figure 4.1 shows the contour plots of the Euclidean distances, Mahalanobis distances,

spatial ranks, and spatial depth based on 1000 random observations from bivariate mixture
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(a) Euclidean distances
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(b) Mahalanobis distances
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(c) Spatial ranks
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(d) Spatial depth

Figure 4.1: Simulated data example: Contour plots of (a) Euclidean distances, (b) Ma-
halanobis distances, (c) spatial ranks, and (d) spatial depth based on 1000 random obser-
vations from bivariate mixture normal distribution with two groups.
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normal distribution with two groups. However the contours produced from the different

four methods fit nicely to the shape of the data cloud, they failed to map the shape of

the two present clusters structure.

As we mentioned before, one of the advantages of the weighted spatial ranks is that,

they are completely data-driven without any need to parameter estimates. Moreover, we

can easily determine the number of clusters from the weighted ranks contours that allow

to map the data cloud. We consider now the weighted ranks contours produced from the

weighted rank function that is defined in (4.3.1).

Figure 4.2 gives the contour plots of the weighted spatial ranks, using Gaussian, Lapla-

cian, logistic, triangular, uniform, and Epanechnikov kernel weights, based on the same

simulated data that have been considered above. It can be clearly seen that on each

contour, the weighted spatial rank function is constant with the indicated value. The

weighted ranks values increase outward from the center (i.e., the spatial median) of the

cloud, which indicates that a point with a high weighted rank value is easily to be clas-

sified in one group than a point with a low weighted rank value, which can be assigned

in any of the two clusters. This in fact sheds the light on the possibility of using the

weighted ranks to identify the expected number of clusters.

Compared to Figure 4.1, we can notice from Figure 4.2 that, the weighted ranks based

on the different kernel functions fit nicely to the shape of the data cloud and to the shape of

the two present clusters as well. However, the weighted ranks contours based on Gaussian,

Laplacian and logistic kernels, gave some lines between the two clusters, suggesting the

potential presence of a third cluster, due to the presence of some observations that are not

close to either cluster centre, and can be classified either in third cluster or in one of the

two groups. On the other hand, the weighted ranks contours based on triangular, uniform

and Epanechnikov kernels gave an indicator of the right number of clusters, however the

two groups’ contours are very close to each other.
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(a) Gaussian
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(b) Laplacian
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(c) Logistic

Figure 4.2: Contour plots of the weighted spatial rank function (4.3.1) using: (a) Gaussian,
(b) Laplacian, (c) logistic, (d) triangular, (e) uniform, and (f) Epanechnikov kernel weights
based on 1000 random observations from bivariate mixture normal distribution with 2
groups.
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(d) Triangular
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(e) Uniform
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(f) Epanechnikov

Figure 4.2: Continued.
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Figure 4.3 gives the contour plots of the weighted spatial ranks based on generalized

Mallow weights, at r = 1, r = 3, r = 5 and Naranjo and Hettmanspergers’ weights. As

we can see, the weighted spatial ranks based on generalized Mallow weights do not fit

nicely to the shape of the clusters when r = 1, and they give similar contour shapes to

the weighted ranks contours based on Gaussian kernels when r=3 and 5 with some lines

between the two clusters. From the last panel in this figure, it can be clearly noticed that

the weighted spatial ranks based on Naranjo and Hettmanspergers’ weights failed to fit

the shape of clusters and gave similar contour shape to the generalized Mallow weights

at r = 1. Finally, it should be mentioned that their codes take longer time because of

the MVE estimations and the calculations of the denominator of functions (4.3.10) and

(4.3.11) for each observations of the data.

In order to choose the weighted rank function that performs well and its contours that

completely fit to the shape of the data cloud and accurately map the clusters structure, we

use the same simulated data to apply on the second weighted spatial rank function that

defined in (4.3.2), and compare its performance with the other weighted ranks function.

We consider now the weighted ranks contours produced from the weighted spatial rank

function that is defined in (4.3.2). Figure 4.4 gives the weighted spatial ranks contours

based on the Gaussian, Laplacian, logistic, triangular, uniform, and Epanechnikov kernel

weights. Compared to Figure 4.2, we can see that the contour plots that presented in

Figure 4.3 are more accurate and can fit better to the shape of the clusters structure.

Moreover, the weighted ranks contours based on Gaussian, Laplacian and logistic kernels,

did not give many lines between the two clusters, which suggesting the presence of two

groups only. Explicitly, the weighted ranks contours based on the Gaussian kernel weights

gave the best result, as they captured each observation carefully and assigned it in the true

group without any misclassifications. Only one observation that has not been captured

due to its location since it is not close to either cluster centers, and can be classified
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(a) Mallow weights at r = 1
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(b) Mallow weights at r = 3
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(c) Mallow weights at r = 5
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(d) Naranjo and Hettmansperger weights

Figure 4.3: Contour plots of the weighted spatial rank function (4.3.1) using generalized
Mallow at (a) r = 1, (b) r = 3, (c) r = 5 and (d) Naranjo weights based on 1000 random
observations from bivariate mixture normal distribution with 2 groups.
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in any of the two groups. Here, the confirmatory weighted spatial rank classifier, which

introduced in the next Section of this Chapter, plays its rule and easily determines the

suitable cluster for this observation to be assigned. More explanation about this point

has been considered in the numerical examples Section, where we provide some similar

cases from real dataset.

On the other hand, the weighted ranks contours based on the triangular, uniform

and Epanechnikov kernel weights gave clearer visualization than before, where it can be

easily seen that the number of clusters depending on the contour lines. As we saw before,

the weighted spatial ranks contours using function (4.3.1) and based on the triangular,

uniform and Epanechnikov kernel weights produced the groups’ contours that are very

close to each other, and may it be difficult in other dataset to differentiate the observations

in each groups. Conversely, the contours produced by using the weighted ranks in (4.3.2)

and the same kernel weights, are very clear and we can easily see the true number of

clusters that has been captured. Hence, we strongly recommend the efficiency of using

the weighted spatial rank function that defined in (4.3.2), and considering the Gaussian

kernel weights as the best weight function for it until now.

Figure 4.5 shows the weighted spatial ranks contours using function (4.3.2) and based

on generalized Mallow weights, at r = 1, r = 3, r = 5 and Naranjo and Hettmanspergers’

weights. Compared to Figure 4.3, it can be noticed that using the weighted spatial

ranks that are defined in (4.3.2) based on generalized Mallow weights gives better result,

where their contour fit the shape of the clusters whether r = 1, 3 or 5. Clearly, when

r=5, we get more accurate contour lines, suggesting that the bigger value of r takes, the

better result we get. On the other hand, the weighted spatial ranks based on Naranjo

and Hettmanspergers’ weights failed to fit the shape of clusters again and did not give

any evidence of the existence of two clusters in the simulated data. Finally, it should be

noticed from the above contour plots that, the weighted spatial rank function that defined
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(c) Logistic

Figure 4.4: Contour plots of the weighted spatial rank function (4.3.2) using: (a) Gaussian,
(b) Laplacian, (c) logistic, (d) triangular, (e) uniform, and (f) Epanechnikov kernel weights
based on 1000 random observations from bivariate mixture normal distribution with 2
groups.
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(d) Triangular
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(e) Uniform
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Figure 4.4: Continued.
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in (4.3.2) based on Gaussian kernel weights gives the best result.

4.4 Confirmatory Analysis Based on Weighted Spatial

Ranks Classifier

In this section, we propose a confirmatory nonparametric classifier that can be used to

check and confirm if the observations’ assignment based on the weighted spatial rank

contours are right or not. The proposed confirmatory classifier is based on the weighted

spatial ranks, and it is simple and easy to compute without any need to parameter esti-

mates of the underlying distributions.

Two clusters case:

Suppose that we have two groups, with distributions F and G respectively, then based

on the weighted spatial ranks classifier (WSRC) rule, we can assign the d-dimensional

observation vector x to the first group if the Euclidean norm of the weighted spatial ranks

of the observation x based on F is less than the Euclidean norm of the weighted spatial

ranks of the observation x based on G such that assign x to the group with distribution

F if:

WSRNF (x) < WSRNG(x), (4.4.1)

and assign it to the second group with distribution G otherwise, where WSRNF (x) =

‖WSRF (x)‖ and WSRNG(x) = ‖WSRG(x)‖ as defined in equation (4.3.3).

More than two clusters:

Suppose that we have K groups, with distributions F1, F2, . . . , Fk, then we can assign the

d-dimensional observation vector x to the i-th group if:

WSRNFi
(x) = min

16j6k
WSRNFj

(x), (4.4.2)

where i 6= j, 1 6 i 6 k.
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(a) Mallow weights at r = 1
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(b) Mallow weights at r = 3
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(d) Naranjo and Hettmansperger weights

Figure 4.5: Contour plots of the weighted spatial rank function (4.3.2) using generalized
Mallow at (a) r = 1, (b) r = 3, (c) r = 5 and (d) Naranjo weights based on 1000 random
observations from bivariate mixture normal distribution with 2 groups.
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So, after determining the number of clusters using the weighted spatial ranks contour,

we can now use the above weighted spatial ranks classifier as a confirmatory analysis in

order to assigning each observation to the most suitable clusters. Moreover, we introduce

a confirmatory plot based on the weighted spatial ranks, which can be used easily to now

the assignment of each observation as we present in the numerical examples section.

4.5 Weighted Spatial Ranks Clustering Algorithm

Now, we present the weighted spatial ranks clustering algorithm. We start with the

bivariate case (d = 2), and then we consider the higher dimensional case d > 2.

Weighted spatial ranks clustering algorithm for bivariate case (d = 2)

1. Let X1,X2, . . . ,Xn ∈ Rd is a 2-dimensional random sample with the two variables

x1 and x2, and let Sx1 and Sx2 are two vectors of the generated regular sequences

from the minimum to maximum value of x1 and x2 respectively (grid points) with

length l, then construct the matrix Sx which is a grid matrix consists of the two

vectors Sx1 and Sx2 .

2. For each s ∈ Sx , calculate WSRN(s) with respect to Xi:

WSRN(s) = ‖WSR(s)‖ = ‖ 1

n

n∑
i=1

wi
s−Xi

‖s−Xi‖
‖, (4.5.1)

where i = 1, . . . , n and wi = exp(−‖s−Xi‖2/2).

3. Get the outer product Z of the arrays Sx1 and Sx2 based on the WSRN(s) with

respect to Xi from step 2.

4. Plot the weighted functional spatial ranks contour based on Sx1 , Sx2 and Z, and

determine the number of clusters K from the contour lines.
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5. Based on the contour lines, specify the observations that are allocated in each cluster.

We can use a lower contour level for better visualization.

6. Use the confirmatory weighted spatial rank classifier’s rule that is shown in (4.4.1)

and (4.4.2) to confirm the assignment of each observation, assign the unassigned

observations to the proper cluster, and get the confirmatory plot.

Weighted spatial ranks based clustering algorithm for higher dimensions (d >

2)

If the dimension of the data is higher than 2, then we need to use the principle component

analysis PCA in order to reduce the dimension and get the contour plot. In this case,

the proposed method can be classified as a filtering method based on PCA. The high

dimensional data are often transformed into lower dimensional data via the PCA or sin-

gular value decomposition where coherent patterns can be detected more clearly (Jolliffe,

2002). The main idea of using PCA as a dimension reduction tool is that PCA tries to

choose the dimensions with the largest explained variances, or in mathematical words

it is equivalent to find the best low rank approximation in L2 norm of the data via the

singular value decomposition SVD (Eckart and Young, 1936). So, PCA constructs a set of

uncorrelated directions that are ordered by their variance. The unsupervised dimension

reduction is used in very diversified areas of scientific disciplines such as image processing,

meteorology and information retrieval.

In clustering analysis, different filtering methods have been proposed using the PCA

and kernel principal component analysis (KPCA). For example, Ng et al. (2001) proposed

a spectral clustering algorithm based on eigenvectors and KPCA with a Gaussian kernel,

and they pointed out that K-means can be applied after the data embedded in a low-

dimensional space. Moreover, in Zha et al. (2002) the PCA has been used to project data

to a lower dimensional subspace and then K-means has been applied in the subspace. On

the other hand, Ding and He (2004) proved that principal components are the continuous
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solutions to the discrete cluster membership indicators for K-means clustering, as the

subspace spanned by the cluster centroids are given by spectral expansion of the data

covariance matrix truncated at K-1 terms. They also applied their technique on DNA

gene expression and Internet newsgroups data. Ben-Hur and Guyon (2003) discussed a

method based on PCA, which can be used in detecting the stable clusters.

In order to get the k-th component based on PCA, we have first to remove the mean

effect by substracting the mean vector from each d-dimensional observations vector. After

getting the mean-corrected version, we can define the d-dimensional vectors of weights

or loadings w(k) = (w1, . . . , wd)(k) that constrained to be a unit vector, and they may

be chosen to be the eigenvectors of X>X, where X ∈ Rd has a d-dimensional, in order

to satisfy the condition below. These loadings map each row vector x(i) of X to a new

vector of principal component scores C(i) = (C1, . . . , Ck)(i). Then we can get a vector of

principal component scores:

Ck(i) = x(i) ·w(k), (4.5.2)

The previous set-up should satisfy that each individual variables of C considered over the

data set successively inherit the maximum possible variance from x. The first loading

vector w(1) should satisfy:

w(1) = arg max

{
w>X>Xw

w>w

}
, (4.5.3)

where w is a matrix of the d-dimensional vectors of the loadings w(k), and for the sym-

metric matrix X>X the maximum possible value is the largest eigenvalue of the matrix,

which occurs when w is the corresponding eigenvector. Now, the k-th component can be

found by subtracting the first k − 1 principal components from X, such that:

X̂k = X−
k−1∑
s=1

Xw(s)w
>
(s), (4.5.4)
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so the loading vector which extracts the maximum variance from this new data matrix

satisfy:

w(k) = arg max

{
w>X̂>k X̂kw

w>w

}
. (4.5.5)

Finally, we can get the full principal components decomposition of X:

C = XW, (4.5.6)

where W is a d-by-d matrix whose columns are the eigenvectors of X>X.

The steps of the weighted spatial ranks clustering algorithm when d > 2, are as the

following:

1. Let X1,X2, . . . ,Xn ∈ Rd is a d-dimensional random sample, then use the PCA to

get the two components C1 and C2 of that sample, and construct the matrix C,

which is a matrix consists of the two components C1 and C2.

2. Now let SC1 and SC2 are two vectors of the generated regular sequences from the

minimum to maximum value of C1 and C2 respectively with length l, then construct

the matrix Sc, which is a matrix consists of the two vectors SC1 and SC2 .

3. For each s ∈ Sc , calculate WSRN(s) with respect to Ci:

WSRN(s) = ‖WSR(s)‖ = ‖ 1

n

n∑
i=1

wi
s−Ci

‖s−Ci‖
‖, (4.5.7)

where i = 1, . . . , n and wi = exp(−‖s−Ci‖2/2).

4. Get the outer product Z of the arrays SC1 and SC2 based on the WSRN(s) with

respect to Ci from step 3.

5. Plot the weighted functional spatial ranks contour based on SC1 , SC2 and Z, and

determine the number of clusters K from the contour lines.
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6. Based on the contour lines, specify the observations that are allocated in each cluster.

We can use a lower contour level for better visualization.

7. Use the confirmatory weighted spatial rank classifier’s rule that is shown in (4.4.1)

and (4.4.2) to confirm the assignment of each observation, assign the unassigned

observations to the proper cluster, and get the confirmatory plot.

Figure 4.6 shows the flowchart of the weighted spatial ranks based clustering algorithm.

4.6 Numerical Examples

We present some systematic evaluations of the proposed weighted spatial ranks based

clustering algorithm. In the first example, we test the performance of the weighted spatial

ranks on simulated data includes four variables and three clusters from mixture normal

distribution. Next, we consider another simulated data includes six variables and four

groups. Finally, on three different real datasets, we check the performance of the weighted

spatial ranks based clustering algorithm.

4.6.1 Simulated Data

In the first simulated data example, we consider a mixture of three 4-dimensional Gaussian

distributions. The mixing proportions p are taken to be p1 = 0.3, p2 = 0.4, and the sample

size (n = 100), such that X1,X2, . . . ,Xn ∈ Rd is a random sample from 4-dimensional

mixture normal distribution:

p1N4(µ1,Σ) + p2N4(µ2,Σ) + (1− p1 − p2)N4(µ3,Σ), (4.6.1)

where µ1 = (4, 4, 4, 4)>, µ2 = (−4, 4,−4, 4)>, µ3 = (−4,−4,−4,−4)> and Σ = I.

The problem of this data is that, it is a misleading data, where it can be possible to view

it as a data includes 2 clusters; however we simulated it to include 3 groups. For example,
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Figure 4.6: The steps of the weighted spatial ranks based clustering algorithm
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it is clear from the var1 vs var2 panels, in the scatterplot matrix of the data in Figure

4.7, that we have 3 clusters, but if we look to the var1 vs var3 or var2 vs var4 panels, we

definitely decide that we have only 2 clusters. The upper left and right panels of Figure

4.7 are the scatterplot matrix of the PCA components, and the total variance explained by

each component respectively. Clearly, we can see that the first two components give very

strong evidence about the number of clusters which suggests 3 clusters, and they explain

97% (61.75) of the total variances explained by the four components (63.66). Panels (c)

and (d) are the weighted spatial ranks contour of the first two components and the contour

at level 0.005 respectively. It can be clearly seen that the weighted spatial ranks contour

accurately fit to the shape of the three clusters, without any misclassification. Panels

(e) and (f) show the confirmatory plots based on weighted ranks classifier for the first 2

components and the original data respectively. Successfully, we got the right observations’

assignment compared to the simulated three clusters data. Based on this result, we can

say that we have a full clustering methodology that gives us the right number of clusters

and accurate assignment.

To check the stability of our proposed method against the dimensions and the number

of clusters, in this example, we consider a higher dimensional data with four clusters.

In this example, we consider a mixture of four 6-dimensional Gaussian distributions,

with equal proportions weights (p = 0.25), and the sample size is (n = 100) again. So,

X1,X2, . . . ,Xn ∈ Rd is a random sample from 6-dimensional mixture normal distribution:

pN6(µ1,Σ) + pN6(µ2,Σ) + pN6(µ3,Σ) + pN6(µ4,Σ), (4.6.2)

where µ1 = (4, 4, 4, 4, 4, 4)>, µ2 = (−4, 4,−4, 4,−4, 4)>, µ3 = (−4,−4,−4,−4,−4,−4)>,

µ4 = (4,−4, 4,−4, 4,−4)> and Σ = I.

We simulated this data in the same way of the previous one as well, where it can be

possible to view it as a data includes either 2 or 4 clusters; however we simulated it to
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(c) WSR contour

Figure 4.7: Simulated data 1: (a) scatterplot matrix of the PCA components, (b) the
total variance explained by each component, (c) the weighted spatial ranks contour, (d)
the contour at level 0.005 and confirmatory plots based on weighted ranks classifier for
(e) the first 2 components and (f) the original data.
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(e) Confirmatory plot: first 2 components
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(f) Confirmatory plot: original data

Figure 4.7: Continued.
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include 4 groups. From the scatterplot matrix of the data in Figure 4.8, we can see that

we have 4 clusters based on the var1 vs var2 panels. Conversely, it seems that we have

only 2 clusters if we look to the var1 vs var3 or var2 vs var4 panels.

According to the scatterplot matrix of the PCA components that shown in the upper

left panel of Figure 4.8, we can see that the first two components strongly suggest the

right number of clusters K = 4. Moreover, these two components explain 98% (96.22) of

the total variances explained by the six components (98.16), as shown in the scree plot

for each component in panel (b) of the same figure.

From the weighted spatial ranks contour of the first two components, this is given in

panel (c) of the figure, it can be clearly noticed that the weighted spatial ranks contour

completely fit to the shape of the four clusters. For better visualization, we used a lower

contour level at level 0.001, as shown in panel (d), in terms of viewing the observations

that belong to each cluster. Finally, we give the confirmatory plots based on the weighted

spatial ranks classifier for the first 2 components and the original data. From panels (e)

and (f), we can get information about which observation belongs to which cluster. Again,

we got the true assignment which is consistent with the simulated observations.

4.6.2 Real Data

In this section, we check the performance of the weighted spatial ranks based clustering

algorithm when we consider some real data. The three datasets that we consider here are

the iris data (Fisher, 1936), financial data (Atkinson et al., 2004), and old faithful geyser

data (Azzalini and Bowman, 1990; Venables and Ripley, 2002).

In iris data, as we mentioned before, one of the clusters contains iris setosa, while

the other cluster contains both iris virginica and iris versicolor. In clustering analysis,

most of the clustering techniques consider this data includes 2 groups, this is due to

both iris virginica and iris versicolor is not separable without the species information that
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(c) WSR contour

Figure 4.8: Simulated data 2: (a) scatterplot matrix of the PCA components, (b) the
total variance explained by each component, (c) the weighted spatial ranks contour, (d)
the contour at level 0.001 and confirmatory plots based on weighted ranks classifier for
(e) the first 2 components and (f) the original data.
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(d) Contour at level 0.001

−10 −5 0 5 10

−
10

−
5

0
5

10

Comp.1

C
om

p.
2

1

2

3

4

5

6

7
8

9
10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

36

37

38

39

40

41

4243

44 45

46
47

48

49

50

51

5253

54

55

56

5758
59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81
82

83

84

85

86

87

88

89

90

91 92

93

94
95

96

97

98

99

100

(e) Confirmatory plot: first 2 components
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(f) Confirmatory plot: original data

Figure 4.8: Continued.
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Fisher used, which consider a good example to explain the difference between supervised

and unsupervised methods. As we can see from Figure 4.9, the weighted ranks contours

based on the first two components, which explain 97.8% of the total variances, indicate

two clusters. Successfully, the confirmatory plots based on the weighted spatial ranks

classifier gave the exact assignment in Iris setosa group, and both iris virginica and iris

versicolor group.

The second real dataset is the financial data (Atkinson et al., 2004) that has been

analyzed in Chapter 3 and as we mentioned before it includes 103 observations, 3 variables

and 2 clusters. From Figure 4.10, the weighted ranks contours of components 1 and 3,

which explain 96.4% of the total variances and give initial idea about the number of

clusters, indicate two clusters. Moreover, the confirmatory plots based on the weighted

spatial ranks classifier gave the true observations’ assignment which is consistent with the

two types of fund.

For the Old Faithful data, as we mentioned before it includes 272 observations with

2 variables and 2 clusters. From Figure 4.11, the weighted ranks contours of the data

indicate 2 clusters with one observation (number 174) located between them. Using the

confirmatory weighted spatial ranks classifier is helpful in such a case, as it assigned this

observation in the second cluster, as shown in the confirmatory plots that gave the true

observations’ assignment which is consistent with the two types of eruptions (the short

and long eruptions).

We implement ten of the clustering methods on the three real datasets that we dis-

cussed above, in order to compare them with the proposed WSR method. These methods

are: K-means (Lloyd, 1957), K-Centroids (Leisch, 2006), linkage based methods (hclust),

model-based clustering "mclust" (Fraley and Raftery, 2002), high dimensional data clus-

tering "HDDC" (Bouveyron et al., 2007), mixtures of probabilistic principle component

analysers "MixtPPCA" (Tipping and Bishop, 1999), partitioning around medoids cluster-
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Figure 4.9: Iris data: (a) scatterplot matrix of the PCA components, (b) the total variance
explained by each component, (c) the weighted spatial ranks contour, (d) the contour at
level 0.07 and confirmatory plots based on weighted ranks classifier for (e) the first 2
components and (f) the original data.
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Figure 4.9: Continued.

157



Comp.1

−5 0 5 10

●

●

●

●
●

●

●
●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

● ● ●
●

●

●

●

●

−
50

−
40

−
30

−
20

●

●

●

●
●

●

●
●

●

●

●

●

●●●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

●● ●
●

●

●

●

●

−
5

0
5

10

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

Comp.2 ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

−50 −40 −30 −20

● ●

● ●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●●
●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

−4 −2 0 2 4

−
4

−
2

0
2

4

Comp.3

(a) Scatterplot matrix

Comp.1 Comp.2 Comp.3

pc

V
ar

ia
nc

es

0
20

40
60

80

(b) Scree plot

● ●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

−50 −40 −30 −20

−
4

−
2

0
2

4

Comp.1

C
om

p.
3

 0.005 

 0.005 

 0.005 

 0.005 

 0.005 

 0
.0

05
 

 0.005 

 0
.0

05
 

 0
.0

05
 

 0.005 

 0.005 
 0.005 

 0.005 

 0.005 

 0.005 

 0.01 

 0.01  0
.0

1 
 0.01 

 0
.0

1 
 0

.0
1 

 0.01 

 0.01 

 0
.0

1 

 0
.0

1 

 0.01 

 0.01 

 0
.0

15
 

 0.015 

 0.015 

 0
.0

15
 

 0.015 

 0.015 

 0.015 

 0
.0

15
 

 0
.0

15
 

 0.02 

 0.02 

 0
.0

2 
 0

.0
2 

 0.02 

 0.02 

 0.02 

 0.025 

 0
.0

25
 

 0.025 

 0.025 

 0.03 

 0
.0

3 

 0
.0

3 

 0.03 

 0.03 

 0
.0

35
 

 0.035 

 0.035 

 0
.0

35
 

(c) WSR contour

Figure 4.10: Financial data: (a) scatterplot matrix of the PCA components, (b) the total
variance explained by each component, (c) the weighted spatial ranks contour, (d) the
contour at level 0.0006 and confirmatory plots based on weighted ranks classifier for (e)
the first 2 components and (f) the original data.
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(e) Confirmatory plot: first 2 components
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Figure 4.10: Continued.
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(b) WSR contour
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(d) Confirmatory plot

Figure 4.11: Old faithful data: (a) scatterplot of the faithful data, (b) the weighted spatial
ranks contour, (c) the contour at level 0.005 and (d) confirmatory plots based on weighted
ranks classifier for original data.
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ing "PAM" (Reynolds et al., 1992), convex clustering "cclust" based on the hard compet-

itive learning method (Ripley, 1996), clustering with divisive analysis "DIANA" (Kauf-

man and Rousseeuw, 1990), and clustering large applications "CLARA" (Kaufman and

Rousseeuw, 1990).

In order to perform this comparison, we need to use some cluster validity index. The

cluster validity index measures how accurate the clustering results are, after a clustering

algorithm produces its result. This is done by determining how many points have been

correctly associated with their class labels accurately and how many belong to a class label

with which they should not be associated. In other words, the cluster validity measure

can be used to test the performance and accuracy of various algorithms or accuracy of one

algorithm for various parameter values or number of clusters. Different validity measures

have been proposed in the literature, and they are classified into three types. The first

type is the external indexes that can be used to measure the extent to which cluster

labels match externally supplied class labels. The second one is the internal indexes that

measure the goodness of a clustering structure without respect to external information.

The third type is the sum of squared error (SSE) relative indexes that compare two

different clusterings or clusters.

The cluster validation has been considered one of the questionable topics in the clus-

tering analysis. This is due to the fact that there is no completely acceptable solution for

the different measures of the cluster validity. For instance, we may get different validity

results using the same measure if we get different clustering from the same clustering

method. A good example for this situation is the kmeans algorithm, where we may get

different clustering every time we run the algorithm for the same data. This is because

the algorithm starts with different initial points (partitioning) in every run, and this will

definitely cause getting different validity result. Certainly, the problem will be getting

worse and worse when we get different number of clusters every run. For this reason,
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there is no preferable cluster validity measure to tackle this problem. In the next part, we

use the probability of misclassification error as a cluster validity tool, however it is still

suffering from the previously mentioned problem.

Table 4.1 gives the probabilities of misclassification error based on the different clus-

tering approaches for the three real datasets. Some of these methods give different rate

of misclassification error in every time we run the algorithm due to the difference in the

initial partitioning of the data points in every time. To address this problem and to

calculate a fair version of the probability of misclassification error, we have repeated the

algorithms 1000 times, and then we took the average of their correspondence probabil-

ities. From Table 4.1, we can see that the proposed WSR method gives optimal and

competitive results for the three real datasets, where it gives the smallest probability of

misclassification error amongst all the other methods. As a conclusion, we recap that:

1. The main idea behind WSR is to define a dissimilarity measure locally based on a

localized version of multivariate ranks.

2. The WSR is completely data-driven.

3. The WSR is Easy to compute without any need to parameter estimates of the

underlying distributions.

4. The WSR is Robust against distributional assumptions.

5. The WSR is more accurate in the purpose of intuitive visualization since we can

easily determine the number of clusters from the weighted ranks contours for a

low-dimensional input space, using dimension reduction.

6. The WSR can be used to determine the assumed number of clusters, and to assign

each observation to its cluster.
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Table 4.1: The probabilities of misclassification error based on the different clustering
methods for faithful, financial and iris datasets.

Method Old Faithful Financial Iris
WSR 0.0184 0.0291 0.0000

K-means 0.5116 0.5000 0.4856

K-Centroids 0.4701 0.5217 0.4943

Single linkage 0.3603 0.4660 0.0000

Complete linkage 0.0515 0.0583 0.1867

Average linkage 0.0184 0.0291 0.0000

Mclust 0.1654 0.6214 0.0000

HDDC - 0.5083 0.4680

MixtPPCA - 0.0291 0.0000

PAM 0.0184 0.0291 0.0067

Cclust 0.4884 0.4755 0.5038

DIANA 0.0037 0.0388 0.0000

CLARA 0.0184 0.0291 0.0133
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Chapter 5

Clustering of Functional Data

5.1 Introduction

In the age of technology, challenges of analysis, storage, and visualization of big-data

have been become a very active topic in statistics, especially when the dimension d is

large compared to the number of observations. A particular attention is paid, in the

literature, to the case that the random variables taking values into an infinite dimensional

space such as a space of functions defined on some set T , where T ⊂ R could be time

interval. In these circumstances, this type of data can be explained well by curves, and

then it is called functional data.

Recently, functional data analysis received an attention in diversified areas such as

medical studies, weather researches, phonetics, economics, social science and stock market.

Many definitions for functional data have been used in the literature. A simple one

that was considered by Ferraty and Vieu (2006) is: "functional data is the data that is

represented by a set of curves belonging to an infinite dimensional space". Ramsay and

Silverman (2005) pointed out that functional data can be a function of time and it consist

of observed functions or curves.

Ferraty and Vieu (2006) defined the functional random variable X as a random variable
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with values in an infinite dimensional space or functional space, such that the functional

data represents a set of observations X1, . . . ,Xn of X . For instance, the stochastic process

X = {X (t); t ∈ T }; where T ⊂ R is a good example for the functional data which taking

values in some Hilbert space H of functions defined on some set T which represents an

interval of time, of wavelengths or any other subset of R (Jacques and Preda, 2014). So,

one can say that:

Xi(tij) = {{X1(t11), X1(t12), . . . , X1(t1d1)} , . . . , {Xn(tn1), Xn(tn2), . . . , Xn(tndn)}} is

a finitely observed functional dataset, where i ∈ {1, . . . , n} and j ∈ {1, . . . , di}, if

X1(t), X2(t), . . . , Xn(t) is a functional dataset generated by the functional random vari-

ables X1(t),X2(t), . . . ,Xn(t). Functional data may take univariate or multivariate version.

For the multivariate functional data, the elements of H are Rd-valued functions (d > 2).

For more comprehensive details of this subject, the reader is referred to Ramsay and Sil-

verman (2005), Jacques and Preda (2013b), Claeskens et al. (2014) and Ferraty and Vieu

(2006).

Many publications have been introduced and discussed different statistical topics in

order to analyze the functional data. One of the most important topics that are usually

used to explain the functional data is the clustering analysis. Over the last decade, a

wealth of publications has been developed for the clustering of functional data. We review

many of these publications in the next section. In this chapter, there is a large body

of work on using the ordinary and weighted spatial ranks as functional data clustering

approaches. Here, we propose two different clustering methods for functional data. The

first method is an extension to the forward search based on spatial ranks that has been

introduced in Chapter 3, where we extend it to the functional data case. This method can

be considered as a new raw-data method without any use of a dimension reduction, since

it performs the clustering directly to the discrete observation of the curves or functions,

which can initially be used to identify the number of clusters in the curves.
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In the second method, we extend the weighted spatial ranks (WSR) method that has

been introduced in Chapter 4 to the functional data. This method can be considered as

one of the 2-stage methods, or the filtering methods, where it first approximate the curves

into some basis functions and then perform the clustering using the basis expansion co-

efficients and the functional principle components scores. As discussed earlier, the main

idea behind WSR is to define a dissimilarity measure locally based on a localized version

of spatial ranks. As a result, the proposed method can be used to determine the assumed

number of clusters, and to assign each curve to its cluster. Both methods are completely

data-driven and easy to compute without any need to estimate parameters of the underly-

ing distributions, which make them robust against distributional assumptions. Different

numerical examples from simulated and real data have been introduced in order to check

the reliability of the proposed methods. Comparison between the existing methods, using

the probability of misclassification, has been considered as well. The results showed that

the two proposed methods give a quite reasonable clustering analysis.

The chapter is organized as follows. Section 5.2 gives a review of the important

existing literature on the functional data clustering methods giving numerical examples

and comparisons. Along the line of Jacques and Preda (2014), we classify them into

four groups, raw-data methods, filtering methods, adaptive methods and distance-based

methods. In Section 5.3, we discuss the curse of dimensionality in the traditional forward

search method and the ability of using the forward search based on functional spatial

ranks. In Section 5.4, we propose the functional data clustering based on spatial ranks.

Numerical results based on simulation and real data, and other relevant discussions are

contained in succeeding subsections. Finally, in Section 5.5, we propose the functional data

clustering based on weighted spatial ranks with some numerical examples and comparisons

with the other functional data clustering methods, which shows the good behavior of our

methods.
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5.2 Functional Data Clustering Methods

Many functional data clustering methods have been reviewed in this Section. We follow

the same classification of the different approaches that Jacques and Preda (2014) pre-

sented. Actually, it classifies the functional data clustering approaches into four groups.

The first group is the raw-data methods that consist of the methods that are directly

working on the evaluation points of the curves without any use of approximation or di-

mension reduction. The second group is the filtering methods that start to approximate

the curves into a known finite basis of functions and then perform the clustering approach

using the basis expansion coefficients or the functional principle components scores. The

third group is the adaptive methods that consist of the methods that are simultaneously

performing dimensionality reduction of the curves and clustering leading to functional

representation of data depending on clusters. Finally, the fourth group which is known

as the distance-based methods and it is clearly obvious from the name that these meth-

ods use some clustering algorithms based on specific distances for functional data, like

K-means based on the distance d0 (the L2-metric) or with the semi-metric d2.

For more illustration and explanation of these different methods, we have chosen two

case studies to cover a comparison between these methods throughout this Section. The

first case study is the Berkeley Growth Study (Tuddenham and Snyder, 1954). It is

extensively used in the literature related to the functional data analysis. It gives the

heights of 54 girls and 39 boys in centimeters measured at a set of 31 ages from 1 to 18

years old. Our aim is to determine whether the resulting clusters reflect gender differences

or not. The data is available in the fda package of R. For more comprehensive details of

growth data, the reader is referred to Ramsay and Silverman (2005).

The second case study is the Gun-Point data (Ratanamahatana and Keogh, 2004). It

is a content-based video retrieval, as it is coming from the video surveillance domain. It
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consists of 200 instances and two clusters, each containing 100 instances that were created

using one female actor and one male actor in a single session and for each instance there

are 150 data points. The first cluster is known as Gun-Draw class, where in this one

the actors have their hands by their sides, and draw a replicate gun from a hip-mounted

holster, then they point it at a specific target for approximately one second, after that

they return the gun to the holster, and their hands to their sides. The second cluster

is known as Point class, where the actors have their gun by their sides, and point with

their index fingers to a target for approximately one second, and then return their hands

to their sides. The centroid of the actor’s right hands in both X and Y axes has been

tracked in the two classes and the similarity between the two different moves, makes a

subtle distinction between the clusters. The overlapping between the classes makes it

hard to discriminate the two groups in this data, even for supervised classifiers. The data

can be found in UCR Time Series Classification Archive. For more details of gun-point

data, the reader is referred to Ratanamahatana and Keogh (2004). Figure 5.1 shows both

of gun-point and growth curves. The figure shows clearly the two groups in each dataset,

where the black color refers to curves in first cluster while the red color refers to the

curves in second cluster. From now on, we will use the black color to refer to curves in

first cluster and red color to refer to the curves in second cluster. In this Section, the two

case studies are comprehensively reviewed. Further analysis of the data sets is given in

the next two Sections where our proposed methods are considered in full.

5.2.1 Raw Data Methods

The raw-data methods are considered the simplest methods among the other functional

data clustering methods, as they are directly clustering the curves based on the basis of

their evaluation points or based on the discretization of the underlying data (Jacques and

Preda, 2014). In other words, when the functions are considered as discrete observation
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Figure 5.1: Gun-point and growth data curves with two groups for both datasets. Black
curves are the curves in cluster 1, and red curves are the curves in cluster 2.

points, then the raw-data methods can be directly applied by performing the clustering

on the discretized points. These methods neither need to reconstruct the functional form

of the data nor any filtering techniques like using the spline coefficients or the functional

principle component analysis.

Some of the disadvantages related to these methods when the evaluation points of

the curves are considered are that, they do not take into account the functional feature

of data like the continuity and derivatives. In addition, when the curves observed at

different evaluation points then such a case cannot be taken into account by these methods.

Moreover a loss of information can be happened if the researcher extract the true signal

from noisy data and use some specific metric related to the functional feature of the data

(Jacques and Preda, 2014). The previous deficiencies make the using of such methods is

not preferable, however using them leading sometimes to interesting results. Bouveyron
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and Brunet (2013) introduced a survey on the clustering techniques for high-dimensional

vectorial data that have to be used when the number of evaluation points being usually

large. For more details about these techniques, see Bouveyron and Brunet (2013).

On the other hand, when the raw-data clustering methods are based on the discrete

observation of the curves, in this case they will not suffer from the previous disadvantages

and deficiencies that have been mentioned above. If we do not use the basis expansion

of the evaluation points, with their constraints on the nature of curves, this will lead to

getting better use of the original curves without losing any information. From now on, we

will use the raw-data methods concept to denote to these methods that depending on the

discrete observation of the curves (discretized case), where we will use them throughout

this chapter.

An example of the raw-data method is the work that has been introduced by Boullé

(2012), who introduced a clustering algorithm based on the probability distribution of the

number of discrete observations of the curves. Other methods can be well reviewed from

the survey on the functional data clustering by Jacques and Preda (2014), where they in-

troduced some numerical illustration which includes implementation of some well-known

standard clustering methods. In the next part, we implement ten of the raw-data meth-

ods on the two case studies that we discussed above, and give some analysis regarding

the clustering results. These methods are: K-means, K-Centroids, linkage based meth-

ods (hclust), model-based clustering (mclust), high dimensional data clustering (HDDC),

mixtures of probabilistic principle component analysers (MixtPPCA), partitioning around

medoids clustering (PAM), convex clustering (cclust) based on the hard competitive learn-

ing method, clustering with divisive analysis (diana), and clustering large applications

(clara). The words in brackets refer to well-known functions and packages in R. Fig-

ure 5.2 shows the CH index scores (Calinski and Harabasz, 1974) and k-means clustering,

based on the algorithm of Lloyd (1957), for the discretized gun-point and growth datasets.
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For the gun-point data, CH-index suggests 2 clusters and accordingly K-means assigned

the different curves in 2 clusters with 50% misclassification rate. Table 5.1 and 5.2 give

the probability of misclassification based on the different functional data clustering ap-

proaches for the two datasets. Comparing the curves in panel (a) of Figure 5.1 and panel

(b) of Figure 5.2 shows the misclassification clearly. For the growth data, CH index sug-

gests 7 clusters; clearly, the K-means behaves so poorly in this real dataset, where it failed

to give the right clustering.

Compared to K-means, the K-centroids clustering based on the algorithm of Leisch

(2006) gives the same result for gun-point data. It is required to specify the number of

clusters in the used algorithm. Figure 5.3 shows the K-centroids clustering for the two

functional datasets, with misclassification rate 50% and 49.62% for gun-point and growth

data respectively.

Next, the linkage based methods (hclust) has been considered, as a raw-data method

as well, based on the three hierarchical methods; single, complete and average linkage

methods. Figure 5.4 shows their dendrogram for the discretized gun point and growth

datasets.

It can be clearly seen that, the three hierarchical methods give an evidence about the

existence of two clusters in gun-point data. However, the complete linkage dendrogram

shows clearer clustering structure, where it is obviously gives an evidence about the exis-

tence of two clusters as the distances in this dendrogram are much wider, and that makes

it much easier visually to distinguish the number of clusters. On the other hand, the

single linkage dendrogram for growth data does not give a clear clustering and it is very

difficult visually to determine the number of clusters from the dendrogram. Obviously,

the complete and average linkage dendrograms give an evidence about the existence of

two clusters. For instance, cutting the complete and average linkage trees at h = 120 and

h = 70 respectively gives 2 clusters for growth data. According to table 5.1 and 5.2, the
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(d) Growth data: K-means

Figure 5.2: CH index scores and K-means clustering for the discretized gun-point and
growth datasets. CH index suggests 2 and 7 clusters for gun point and growth data
respectively.
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Figure 5.3: K-centroids clustering (kcca) for the discretized (a) gun-point data and (b)
growth data.

average linkage method outperforms both of the single and complete linkage methods in

the two datasets, where it gave smaller misclassification rate, which is 44% and 37.63%

for gun-point and growth data respectively.

Regarding to the model-based clustering (mclust) that introduced by Fraley and

Raftery (2002), Figure 5.5 shows the optimal model according to BIC and ICL for EM

initialized by hierarchical clustering for parameterized Gaussian mixture models. For Gun

point data, the best model according to BIC values is an equal-covariance model with 1

cluster only, where the maximum BIC value (BIC=150522.8), was for the EEE model

(elliposidal multivariate normal model). For Growth data, the best model according to

the maximum BIC values (BIC=-6091.822), was for the EEE model again with 1 cluster

only, which behaves poorly in the two dataset because of giving wrong number of clusters.

In order to calculate the misclassification rates, we assumed that K = 2 in mclust and
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(b) Gun-point data: Complete linkage
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(c) Gun-point data: Average linkage

Figure 5.4: Linkage based methods for the discretized gun-point and growth datasets.
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(f) Growth data: Average linkage

Figure 5.4: Continued.
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the rates were 50% for the gun-point data and 34.41% for growth data.

The high dimensional data clustering (HDDC) method has been introduced by Bou-

veyron, Girard, and Schmid (2007). It is a model-based clustering method based on

the Gaussian mixture model when the data lives in subspaces with a lower dimension

than the dimension of the original space. Like the other model-based clustering meth-

ods, it uses the expectation-maximization algorithm to estimate the parameters of the

model. For gun-point data, if K is unknown, the best model is the most general model

AKJBKQKDK (Berge et al., 2012) with 10 clusters and maximum BIC=46465.62, and for

growth data, if K is unknown, the selected model is also AKJBKQKDK with 3 clusters

and maximum BIC=-12037.43. The AKJBKQKDK model refers to that each class has

its parameters and its proper noise, there is one parameter for each dimension, all classes

have its proper orientation matrix and the dimensions are free and proper to each class.

Figure 5.6 shows the Cattell’s scree-test and BIC criterion based on HDDC when K = 2.

The Cattell’s scree-test gives the intrinsic dimension of each class which can be selected

also by the BIC criterion. When K = 2, the rates of the misclassification error were 50%

for the gun-point data and 51.61% for growth data.

The mixtures of probabilistic principle component analysers method (MixtPPCA) has

been introduced by Tipping and Bishop (1999). They used the PCA within a mixture-

likelihood framework, based on a specific form of Gaussian latent variable model and

the parameters can be estimated using an EM algorithm. We used the function (mp-

pca.metabol) in R, by the authors Nyamundanda et al.(2010) in order to perform the

clustering based on MixtPPCA. Figure 5.7 shows the best models with the number of

groups and PCs based on the BIC criterion based on the MixtPPCA for the discretized

gun point and growth datasets. For gun-point data, the plot of BIC suggests 4 PCs and

4 groups and for growth data it suggests 4 PCs and 2 groups. So it gave a wrong number

of clusters for gun-point data. Based on MixtPPCA, when K = 2, then the rates of the
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(a) Gun-point data: BIC
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(b) Gun-point data: ICL
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(c) Growth data: BIC
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(d) Growth data: ICL

Figure 5.5: BIC and ICL plots based on Gaussian Mixture Models (GMM) for the dis-
cretized gun-point and growth datasets. One cluster is evident for both data.
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Figure 5.6: Cattell’s scree-test and BIC criterion based on High Dimensional Data Clus-
tering (HDDC) for the discretized gun point and growth datasets suggest the intrinsic
dimensions.
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Figure 5.7: BIC plot based on the mixtures of probabilistic principle component analysers
(MixtPPCA) for the discretized: (a) gun-point data suggests 4 PCs and 4 groups, and
(b) growth data suggests 4 PCs and 2 groups.

misclassification error will be 50% for the gun-point data and 31.18% for growth data.

We considered the partitioning around medoids (PAM) clustering (Reynolds et.al.,

1992) as a raw-data functional clustering method. The optimum average silhouette width

(Rousseeuw, 1987) has been considered on order to estimate the number of clusters. Figure

5.8 shows the bivariate cluster plot (clusplot) and silhouette plot based on the partitioning

around medoids clustering for the discretized gun point and growth datasets. For the gun-

point data, if K is unknown then the number of clusters estimated by optimum average

silhouette width is 3, which is not the real number. On the other hand, if K is unknown in

growth data, then the number of clusters estimated by optimum average silhouette width

is the right number 2. According to PAM algorithm, when K = 2, then the rates of the

misclassification error will be 50% for the gun-point data and 29.03% for growth data.

Clustering with Convex Clustering (cclust) based on the hard competitive learning
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(a) Gun-point data: clusplot
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(c) Growth data: clusplot
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Figure 5.8: Bivariate cluster plot (clusplot) and silhouette plot based on the partitioning
around medoids clustering (PAM) for the discretized: (a) gun-point data suggest 3 groups,
and (b) growth data suggest 2 groups.

180



0 50 100 150

−
2

−
1

0
1

2

t

cu
rv

e

(a) Gun-point data

5 10 15

80
10

0
12

0
14

0
16

0
18

0
20

0

Age
S

iz
e

(b) Growth data

Figure 5.9: Convex clustering (cclust) based on the hard competitive learning method for
the discretized: (a) gun point data and (b) growth data.

method has been introduced by Ripley (1996). The method works by randomly drawing

an observation from x and moving the closest center towards that point. It is required to

specify the number of clusters in this algorithm. Figure 5.9 shows the hard competitive

learning clustering for the two functional datasets, with misclassification rate 50% and

50.39% for gun-point and growth data respectively.

DIANA (DIvisive ANAlysis Clustering) algorithm has been introduced by Kaufman

and Rousseeuw (1990). It is a hierarchical clustering technique that constructs the hierar-

chy in the inverse order, which make a difference with the agglomerative method. Figure

5.10 displays the banner and dendrogram plots, where the banner shows the hierarchy of

clusters and plots the diameter of each cluster being splitted. Like the other hierarchical

methods, we can use the cutree command to cut the dendrogram into 2 groups. So, when

K = 2, the rates of the misclassification error were 33.5% for the gun-point data and
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38.71% for growth data.

Kaufman and Rousseeuw (1990) suggested the clustering for large applications algo-

rithm (CLARA), which performs a partitioning around medoids clustering with known

number of clusters. The clara algorithm is an extension to the K-medoids approach for

a large number of objects with the focus on clustering large numbers of elements in high

dimensions. The main idea of this method is to start by clustering a sample from the

dataset then assigning all the elements in the dataset to these clusters. It is required

to specify the number of clusters in CLARA algorithm. Figure 5.11 shows the bivariate

cluster plot (clusplot) and silhouette plot based on the clara algorithm for the discretized

gun point and growth datasets. The number of clusters estimated by Calinski- Harabasz

index, which suggests 2 clusters for both gun-point and growth data. The rates of the

misclassification error based on CLARA algorithm are 50% for the gun-point data and

33.33% for growth data.

From the previous comparison, we can clearly notice that, the majority of these raw-

data methods gave the same rate of misclassification error for gun-point data, which

is 50%. This is due to the overlapping between the two classes that makes it hard to

discriminate the two groups in this data. However, the least misclassification rate was

for DIANA algorithm with a minimum percentage (33.5%). On the other hand, when

we consider the growth data, we can easily see that the methods gave different rate of

misclassification error and PAM algorithm gave the smallest rate (29.03%).

5.2.2 Filtering Methods

As we discussed earlier, in the filtering methods we start with approximating the curves

into a known finite basis of functions and then we can perform the clustering approach

using the basis expansion coefficients or the functional principle components scores. So, in

the first step, which known as the filtering step (James and Sugar, 2003), we try to reduce
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(b) Gun-point data: dendrogram
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Figure 5.10: Banner and dendrogram plots of a divisive hierarchical clustering based
on the DIvisive ANAlysis algorithm (DIANA) for the discretized gun-point and growth
datasets.
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These two components explain 69.6 % of the point variability.
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(c) Growth data: clusplot
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(d) Growth data: silhouette plot

Figure 5.11: Bivariate cluster plot (clusplot) and silhouette plot based on the Clustering
Large Applications (CLARA) algorithm for the discretized: (a) gun-point data and (b)
growth data. Two groups are evident for both data.
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the dimension of the data by approximating the curves into a finite basis of functions,

while in the second step, which known as the clustering step, we use the clustering methods

for the finite dimensional data that we obtained from the first step.

Two different tools are usually used in the filtering step. The first one is the functional

principle components analysis (FPCA) that requires reconstructing the functional nature

of the curves, by approximating them into a finite number of their principal component

scores. The second tool is the spline basis which considers a common choice due to

their optimal properties (Wahba, 1990). However the popularity of these two tools, some

other tools like the ANOVA’s coefficients for functional data using a mixture of Gaussian

distributions that introduced by Serban and Jiang (2012), can be associated to the filtering

methods category (Jacques and Preda, 2014). In the next two subsections, we discuss the

filtering methods based on both functional principle components scores and the spline

coefficients in details.

Filtering Methods on FPCA Scores

Recently, using of functional principal components analysis (FPCA) has been clearly

increased, because it is one of the main tools that can be used in the exploratory analysis,

modeling and classification of functional data. The main idea of the FPCA is that, it

gives a small dimension space that captures the main patterns of variability of the data.

The functional PCA is different from the multivariate PCA since the eigen functions that

exhibit the main modes of variability of the data are also functions and can be naturally

interpreted as modes of variability varying along time (for more details, see Ramsay and

Silverman, 2002).

A recent review paper has been introduced by Hall (2011), who provided a detailed

overview on the roles of FPCA in functional linear regression and density estimation

for functional data. Along the line of Hall (2011), Shang (2014), in his recent survey

paper, describes the roles of FPCA in functional data exploratory analysis, modeling
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and forecasting functional data, and classification of functional data. There are two

major viewpoints in the existing literature regarding to the use of FPCA; the linear

operator viewpoint and the kernel viewpoint. For the first one, many literatures have

been proposed, such as Besse (1992), Cardot et al. (1999), Bosq (2000), Ferraty and Vieu

(2006), and Mas (2008). On the other hand, a particular attention is paid to the view

of FPCA from the kernel aspect, for instance the work by Yao et al. (2005), Hall and

Vial (2006), Hall and Hosseini (2006), Hall et al. (2006), Hall and Horowitz (2007), and

Shen (2009) are related to the FPCA from the kernel aspect (Shang, 2014). For more

comprehensive review of this subject, the reader is referred to Hall (2011) and Shang

(2014).

The aim of FPCA is to represent the functional data in a small dimension space that

captures the main modes of variability in the curves. Suppose that H is a Hilbert space

of the real functions on T , such that for each t ∈ T , the evaluation functional Lt, which

associates f with f(t), Ltf → f(t), is a bounded linear functional (Ingrassia and Costanzo,

2005), then the functional principal component’s target is the orthogonal decomposition

of the variance function:

ν(t, u) =
1

n− 1

n∑
i=1

{xi(t)− x(t)} {xi(u)− x(u)} . (5.2.1)

The decomposition of the variance function for the functional version can be defined

as:

ν(t, u) =
∑
j

λjξj(t)ξj(u), (5.2.2)

where ξj are called the principle component weight functions, and λj, ξj(t) satisfy the

eigen-equation,
〈
ν(s, ), ξj

〉
h

= λj, ξj(u), and the eigenvalues λj =
∫
T ξj(t)ν(t, u)ξj(u) dt du

are positive and non-decreasing while the eigen-functions must satisfy the constraints:∫
T ξ

2
j (t)dt = 1 and

∫
T ξjξi(t)dt = 0; (i < j). Then, the principle component scores of the
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units in the dataset are the values Si given by:

S
(j)
i =

〈
xi, ξj

〉
=

∫
T
ξ(t)xi(t)dt. (5.2.3)

The decomposition (5.2.2) defined by the eigen-equation permits a reduced rank least

squares approximation to the covariance function ν. Thus, the leading eigen-functions

ξ define the principal components of variation among the sample functions xi. On the

other hand, one can use the mean function µ(t) in order to get the principle components

{Cj}j>1 such that:

Cj =

∫ T

0

(
X(t)− µ(t)

)
ξj(t)dt, (5.2.4)

where µ =
{
µ(t) = E

[
X(t)

]}
t∈T , the principal components {wj}j>1 are zero-mean un-

correlated random variables with variance λj, j > 1 and X is a L2-continuous stochastic

process:

∀t ∈ T , lim
h→0

E
[
|X(t+ h)−X(t)|2

]
= 0, (5.2.5)

so, the KarhunenŰLoeve expansion (Karhunen, 1947; Loève, 1945) holds:

X(t) = µ(t) +
∑
j>1

Cjξj(t), t ∈ T , (5.2.6)

and the best approximation in norm L2 of X(t) can be obtained by truncating (5.2.6) at

the first q terms (Saporta 1981),

Xq(t) = µ(t) +

q∑
j=1

Cjξj(t), t ∈ T . (5.2.7)

An example of the filtering method is the work that has been introduced by Peng

and Müller (2008), where the K-means algorithm is used on principal component scores

and the number of principal component scores is selected according to the percentage
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of explained variance. Now, we apply the ten methods that we used before, based on

the FPCA scores of the first two harmonics on the two case studies. Figure 5.12 shows

the CH index scores and K-means clustering for the FPCA of gun-point and growth

datasets. For the gun-point data, CH-index suggests 9 clusters and accordingly K-means

assigned the different curves in 9 clusters. However, if we consider K = 2, then the rate

of misclassification error is 50%. For the growth data, CH index suggests 5 clusters and

when K = 2, the rate of misclassification error is 48.13%. It can be clearly seen that, the

K-means algorithm based on the FPCA scores behaves so poorly in the two datasets.

Figure 5.13 shows the K-centroids clustering based on the FPCA scores for the two

functional datasets, with misclassification rate 50% and 51.38% for gun-point and growth

data respectively. Compared to Figure 5.1, the K-centroids based on FPCA scores gives

totally different clustering for growth data, as we can see that the curves have been

assigned wrongly and the misclassification rate has been increased consequently.

Regarding to the linkage based methods (hclust) based on the FPCA scores, Figure

5.14 shows the dendrogram for the single, complete and average methods based on FPCA

scores for gun point and growth datasets. For the gun-point data, the average linkage

method outperforms both of the single and complete linkage methods, where it gave

smaller misclassification rate, which is 39%, however it does not behave well with growth

data, where the complete linkage gave smaller misclassification rate equals to 51.61%.

Figure 5.15 shows the optimal model according to BIC and the classification uncer-

tainty plot for mclust algorithm based on the FPCA scores of gun point and growth

datasets. For Gun point data, the best model according to BIC values is an equal-

covariance model with 9 clusters, where the maximum BIC value (BIC=1360.639), was

for the VEV model (elliposidal equal shape) which behaves poorly and giving wrong num-

ber of clusters. For Growth data, the best model according to the maximum BIC values

(BIC=308.4225), was for the model EEV (ellipsoidal, equal volume and shape) model
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(d) Growth data: K-means

Figure 5.12: CH index scores and K-means clustering for the FPCA scores of gun-point
and growth datasets. CH index suggests 9 and 5 clusters for gun point and growth data
respectively.
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Figure 5.13: K-centroids clustering (kcca) for the FPCA scores of (a) gun-point data and
(b) growth data.

with 2 clusters. Compared to the discretized mclust, when K = 2, the algorithm based

on the FPCA scores gives better results for the two datasets, where the misclassification

rates are 49.5% for the gun-point data and 3.23% for growth data.

Now, we consider the high dimensional data clustering (HDDC) method based on

FPCA scores. The HDDC algorithm based on FPCA scores cannot be applied for

2 components, so 3 components are considered for the two datasets. For gun-point

data, if K is unknown, the selected model is AKJBKQKDK with 10 clusters and max-

imum BIC=2114.501. For growth data, if K is unknown, the selected model is also

AKJBKQKDK with 2 clusters and maximum BIC=437.4071. Figure 5.16 shows the

Cattell’s scree-test and BIC criterion based on HDDC when K = 2. The rates of the

misclassification error for HDDC based on the FPCA scores are 49.97% and 50.14% for

the gun-point and growth data respectively.
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(c) Gun-point data: Average linkage

Figure 5.14: Linkage based methods for the FPCA scores of gun-point and growth
datasets.
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(f) Growth data: Average linkage

Figure 5.14: Continued.
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(d) Growth data: uncertainty plot

Figure 5.15: BIC and classification uncertainty plots based on Gaussian Mixture Models
(GMM) for the FPCA scores of gun-point and growth datasets. Nine and two clusters
are evident for gun-point and growth data respectively.
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(c) Growth data: Cattell’s test
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(d) Growth data: BIC

Figure 5.16: Cattell’s scree-test and BIC criterion based on High Dimensional Data Clus-
tering (HDDC) for the FPCA scores of gun point and growth datasets suggest the intrinsic
dimensions.
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Figure 5.17: BIC plot based on the mixtures of probabilistic principle component analysers
(MixtPPCA) for the FPCA scores of gun-point and growth datasets suggests 1 PC and
1 group for both data.

In Figure 5.17, the best models with the number of groups and PCs using BIC based

on the mixtures of probabilistic principle component analysers for the FPCA scores of

gun-point and growth data are shown. The MixtPPCA algorithm based on FPCA scores,

cannot be applied for 2 components, so 3 components are considered for the two datasets.

The plot of BIC suggests only 1 PC and 1 group and for both gun-point and growth data,

which gives a wrong number of clusters. The rates of the misclassification error are 50%

and 58.06% for the gun-point and growth datasets respectively.

Figure 5.18 shows the bivariate cluster plot (clusplot) and silhouette plot based on

the partitioning around medoids clustering (PAM) for the first two harmonics of FPCA

scores of gun point and growth datasets. For the gun-point data, if K is unknown then

the number of clusters estimated by optimum average silhouette width is 4, which is not

the right number. On the other hand, if K is unknown in growth data, then the number
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of clusters estimated by optimum average silhouette width is 5 clusters. However, when

K = 2, then the rates of the misclassification error will be 50% for the gun-point data

and 2.15% for growth data which is the smallest rate among all the other methods.

For the convex clustering (cclust) based on the hard competitive learning method,

Figure 5.19 shows the hard competitive learning clustering for the FPCA scores of the

two functional datasets, with misclassification rate 49.61% and 48.54% for gun-point and

growth data respectively.

Figure 5.20 displays the banner and dendrogram plots based on DIANA algorithm for

the FPCA scores of the two datasets. When K = 2, the rates of the misclassification

error were 42.5% for the gun-point data and 10.75% for growth data, which is a better

result compared to DIANA algorithm based on the discretized data.

Figure 5.21 shows the bivariate cluster plot (clusplot) and silhouette plot based on the

clustering for large applications algorithm (CLARA), for the FPCA scores of gun point

and growth datasets. The number of clusters estimated by Calinski- Harabasz index,

which suggests 2 clusters for gun-point and 4 clusters for growth data. The rates of the

misclassification error based on CLARA algorithm are 50% for the gun-point data and

2.15% for growth data, which is the same for PAM algorithm, where it is the smallest

rate among all the other methods.

It was noted in the previous subsection that, the majority of these raw-data methods

gave the same rate of misclassification error for gun-point data, which is 50%. Actually it

is happened again when we considered the filtering methods based on FPCA, but the least

misclassification rate, for gun-point data, this time was for the average linkage method

with a minimum percentage 39%. Regarding to the growth data, we can easily see that

the methods gave different rate of misclassification error and both PAM and CLARA

algorithms gave the smallest rate of misclassification error (2.15%).
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(a) Gun-point data: clusplot
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(b) Gun-point data: silhouette plot
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(c) Growth data: clusplot
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(d) Growth data: silhouette plot

Figure 5.18: Bivariate cluster plot (clusplot) and silhouette plot based on the partitioning
around medoids clustering (PAM) for the FPCA scores of: (a) gun-point data suggest 4
groups, and (b) growth data suggest 5 groups.
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Figure 5.19: Convex clustering (cclust) based on the hard competitive learning method
for the FPCA scores of: (a) gun point data and (b) growth data.

Filtering Methods on Spline Coefficients

A distinctive feature of the functional data analysis is the assumption that the observations

are supposed to belong to an infinite dimensional space. Nevertheless, in reality we

usually have discrete observations Xij of each sample path Xi(t) at a finite set of knots

{tij : j = 1, . . . ,mi}, which requires reconstructing the functional form of data from these

discrete observations Xij. Some literatures consider that the sample paths belong to a

finite dimensional space spanned by some basis of functions like Ramsay and Silverman

(2005), and others consider the non-parametric smoothing of functions like Ferraty and

Vieu (2006).

Now we review the mathematical presentation of the basis coefficients of each sam-

ple path Xi(t) as shown in Jacques and Preda (2014). Suppose that the basis Φ =

{φ1, . . . , φL} generating some space of functions in the Hilbert space H and assume that
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(b) Gun-point data: dendrogram
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(d) Growth data: dendrogram

Figure 5.20: Banner and dendrogram plots of a divisive hierarchical clustering based on
the DIvisive ANAlysis algorithm (DIANA) for the FPCA scores of gun-point and growth
datasets.
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(a) Gun-point data: clusplot
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(b) Gun-point data: silhouette plot
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(c) Growth data: clusplot
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Figure 5.21: Bivariate cluster plot (clusplot) and silhouette plot based on the Clustering
Large Applications (CLARA) algorithm for the FPCA scores of: (a) gun-point data
suggest 2 groups and (b) growth data suggest 4 groups.
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X admits the basis expansion, where L ∈ N is the number of paths basis, and αil ∈ R is

the coefficients of the sample paths basis, such that:

Xi(t) =
L∑
l=1

αilφl(t). (5.2.8)

In order to estimate coefficients of the sample paths basis αil from the discrete obser-

vations Xij, we need to use some numerical methods, such as the interpolation procedure

that has been used in Escabias et al. (2005), where they proposed quasi-natural cu-

bic spline interpolation to reconstruct annual temperatures curves from monthly values

(Jacques and Preda, 2014). There are two major concerns in the existing literature re-

garding to the underlying model of curves; the first one is when the sample curves are

observed without error, and in this case the functional predictor will be:

Xij = Xi(tij); j = 1, . . . ,mi, (5.2.9)

and the second one is when the sample curves are observed with error εij such that:

Xij = Xi(tij) + εij; j = 1, . . . ,mi. (5.2.10)

Ramsay and Silverman (2005) pointed out that after choosing a suitable basis, one

can use the least squares smoothing. Some examples for the used basis are the trigono-

metric functions, B-splines or wavelets (More details regarding this topic can be found in

Ramsay and Silverman, 2005). So, the basis coefficients of each sample path Xi(t) are

approximated by:

α̂i =
(
Θ́iΘi

)−1
Θ́iX̃i, (5.2.11)

where α̂i
(
α̂i1, . . . , α̂iL

)′
,Θi =

(
φl(tij)

)
, 1 6 j 6 mi, 1 6 l 6 L and X̃i =

(
Xi1, . . . , Ximi

)′
.

Some examples of the filtering methods based on the spline coefficients in literature
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are the work that has been introduced by Abraham et al. (2003), Rossi et al. (2004) and

Kayano et al. (2010), where both of them used B-splines basis. The K-means algorithm

based on the B-splines coefficients is used in Abraham et al. (2003). Furthermore, Rossi

et al. (2004) used an unsupervised neural network based on B-spline coefficient’s basis,

while Kayano et al. (2010) used Self-Organised Map based on B-spline and Gaussian

coefficient’s basis (Jacques and Preda, 2014). We apply now the ten methods that we

used in the previous subsections, based on 10-spline coefficients on the two case studies.

Figure 5.22 shows the CH index scores and k-means clustering for the spline coefficients

of gun-point and growth datasets. In the two datasets, CH-index suggests 2 clusters

which is the real number of groups and based on this number, the K-means assigned

the different curves in 2 clusters as shown in panels (b) and (d) of the Figure. The rate

of misclassification error is 50% for gun-point data, and 49.10% for the growth data.

Furthermore, we can see that CH index suggested the right number of clusters in this

time for growth data, where it suggested 7 and 5 clusters when the discretized points and

the FPCA scores have been considered respectively. However, the K-means algorithm was

not able to give a reasonable rate of the misclassification error.

The K-centroids clustering results based on the 10-spline coefficients of the two func-

tional datasets are given in Figure 5.23. The misclassification rate in this case is 50.21%

and 49.86% for gun-point and growth data respectively. Compared to Figures 5.3 and

5.13, the K-centroids based on the spline coefficients gives similar result as the discretized

and FPCA scores cases for both of the two datasets.

The dendrogram of the single, complete and average linkage methods (hclust) based

on the 10-spline coefficients of gun point and growth datasets have been given in Figure

5.24. The complete linkage method, this time, outperforms both of the single and average

linkage methods in the two datasets, where it gave smaller misclassification rates, that

equal to 42.50% and 33.33% for gun-point and growth data respectively.
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(d) Growth data: K-means

Figure 5.22: CH index scores and K-means clustering for the spline coefficients of gun-
point and growth datasets. CH index suggests 2 clusters for both data.
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(b) Growth data

Figure 5.23: K-centroids clustering (kcca) for the spline coefficients of (a) gun-point data
and (b) growth data.

Figure 5.25 shows the best model according to the BIC and ICL for mclust algorithm

based on the spline coefficients of gun point and growth datasets. The optimal model for

gun-point data, according to the BIC values, is an ellipsoidal, varying volume, shape, and

orientation model with 7 clusters, where the maximum BIC value (BIC=4173.819), was

for the VVV model, which behaves poorly and giving wrong number of clusters again.

For growth data, the best model with BIC=-4729.44, was for the model EEE (elliposidal,

equal volume, shape and orientation) model with 4 clusters. The misclassification rates are

50% and 34.41% for gun-point and growth data respectively. Compared to the discretized

mclust, and mclust on FPCA scores, when K = 2, the algorithm based on the FPCA

scores gives better results for the two datasets.

For the high dimensional data clustering (HDDC) method based on the 10-spline

coefficients, if K is unknown, the selected model for gun-point data is AKJBKQKDK
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(a) Gun-point data: Single linkage
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(b) Gun-point data: Complete linkage
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(c) Gun-point data: Average linkage

Figure 5.24: Linkage based methods for the spline coefficients of gun-point and growth
datasets.
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Figure 5.24: Continued.
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(b) Gun-point data: ICL
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(c) Growth data: BIC
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(d) Growth data: ICL

Figure 5.25: BIC and ICL plots based on Gaussian Mixture Models (GMM) for the spline
coefficients of gun-point and growth datasets. Seven and three clusters are evident for
gun-point and growth data respectively.
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with 10 clusters and maximum BIC=-37.23889. It is the same result if we compare with

HDDC based on discretized point or FPCA scores. For growth data, if K is unknown,

the selected model is also AKJBKQKDK with 2 clusters and maximum BIC=-5111.048.

Figure 5.26 shows the Cattell’s scree-test and BIC criterion based on HDDC when K = 2.

The rates of the misclassification error for HDDC based on the spline coefficients are

50.02% and 50.53% for the gun-point and growth data respectively.

Figure 5.27 gives the best models with the number of groups and PCs using BIC based

on the mixtures of probabilistic principle component analysers for the spline coefficients

of gun-point and growth datasets. It can be clearly seen that, the plot of BIC suggests

4 PCs and 4 groups for gun-point data, which gives a wrong number of clusters. For the

growth data, the suggested number of groups is 2, which is a right, and the suggested

number of PCs is 4. The rates of the misclassification error are 53% and 80.65% for the

gun-point and growth datasets respectively.

Regarding to the partitioning around medoids (PAM) method, Figure 5.28 shows the

bivariate cluster plot (clusplot) and silhouette plot based on the PAM algorithm for the

spline coefficients of gun point and growth datasets. For the gun-point data, if K is

unknown then the number of clusters estimated by optimum average silhouette width is

3, which is a wrong number. On the other hand, if K is unknown in growth data, then the

number of clusters estimated by optimum average silhouette width is the right number

2. However, when K = 2, then the rates of the misclassification error will be 47.50% for

the gun-point data and 21.51% for growth data which is the smallest rate among all the

other methods.

In addition, the convex clustering (cclust) based on the hard competitive learning

method is given here. Figure 5.29 shows the hard competitive learning clustering for the

spline coefficients of gun-point and growth datasets. The misclassification rates in this

case are 49.99% and 49.59% for gun-point and growth data respectively. Compared to
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Figure 5.26: Cattell’s scree-test and BIC criterion based on High Dimensional Data Clus-
tering (HDDC) for the spline coefficients of gun point and growth datasets suggest the
intrinsic dimensions.

209



1 2 3 4

PCs

1

2

3

4

G
ro

up
s

BIC Values

(a) Gun-point data

1 2 3 4

PCs

1

2

3

4

G
ro

up
s

BIC Values

(b) Growth data

Figure 5.27: BIC plot based on the mixtures of probabilistic principle component analysers
(MixtPPCA) for the spline coefficients of: (a) gun-point data suggests 4 PCs and 4 groups,
and (b) growth data suggests 4 PCs and 2 groups.

the cclust based on either discretized points or FPCA scores, when K = 2, the algorithm

based on the FPCA scores gives better results for the two datasets.

Figure 5.30 displays the banner and dendrogram plots based on DIANA algorithm for

the 10-spline coefficients of the two datasets. When K = 2, the rates of the misclassifica-

tion error were 46% and 36.56% for gun-point and growth data respectively. Compared to

the DIANA algorithm based on either discretized points or FPCA scores, the algorithm

gives the best results based on the FPCA scores for growth data and based on discretized

points for gun-point data.

The bivariate cluster plot (clusplot) and silhouette plot based on the clustering for

large applications algorithm (CLARA), for the spline coefficients of gun point and growth

datasets are shown in Figure 5.31. The number of clusters estimated by Calinski- Harabasz

index, which suggests 2 clusters for gun-point and 6 clusters for growth data. The rates
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(c) Growth data: clusplot
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Figure 5.28: Bivariate cluster plot (clusplot) and silhouette plot based on the partitioning
around medoids clustering (PAM) for the spline coefficients of: (a) gun-point data suggest
3 groups, and (b) growth data suggest 2 groups.
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Figure 5.29: Convex clustering (cclust) based on the hard competitive learning method
for the spline coefficients of: (a) gun point data and (b) growth data.

of the misclassification error based on CLARA algorithm are 47.5% for the gun-point

data and 21.51% for growth data. Compared to the CLARA algorithm based on either

discretized points or FPCA scores, the algorithm gives the best results based on the spline

coefficients for gun-point data and based on FPCA scores for growth data.

Like the raw-data methods and filtering methods based on FPCA scores, many of

the filtering methods based on spline coefficients gave the same rate of misclassification

error for gun-point data, which is 50%. In addition, the smallest misclassification rate

for gun-point data among all the filtering methods based on spline coefficients was for

the complete linkage method with a minimum percentage 42.5%. On the other hand, in

growth data, we can see that the methods gave different rate of misclassification error and

again both PAM and CLARA algorithms gave the smallest rate of misclassification error

(21.51%).
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(d) Growth data: dendrogram

Figure 5.30: Banner and dendrogram plots of a divisive hierarchical clustering based on
the DIvisive ANAlysis algorithm (DIANA) for the spline coefficients of gun-point and
growth datasets.
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Figure 5.31: Bivariate cluster plot (clusplot) and silhouette plot based on the Cluster-
ing Large Applications (CLARA) algorithm for the spline coefficients of gun-point data
suggest 2 groups and growth data suggest 6 groups.
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Three filtering methods based on the spline coefficients gave the smallest rate of mis-

classification error for the gun-point data among the raw-data methods and filtering meth-

ods based on FPCA scores, these methods are Kmeans, PAM and CLARA. Furthermore,

the complete linkage method based on the spline coefficients of growth data was the only

filtering method based on spline coefficients that gave smallest rate of the misclassification

error among the other raw-data methods and filtering methods based on FPCA scores.

This in fact sheds the light on the filtering methods based on FPCA scores, where they

gave the majority of the smallest misclassification rates amongst the raw-data methods

and filtering methods based on spline coefficients.

5.2.3 Adaptive Methods

The adaptive methods group consists of methods giving a functional representation of

the data depending on clusters, and performing a dimension reduction and clustering si-

multaneously. The main idea behind the adaptive methods is that, the basis expansion

coefficients and the FPCA scores are considered to be random variables instead of con-

sidering them as parameters like the filtering methods. Furthermore, it is assumed in the

adaptive methods that these random variables have a cluster-specific probability distri-

bution (Jacques and Preda, 2014). In this group of methods, two major directions are

usually considered. In the first one the methods find the probabilistic model of the basis

expansion coefficients and then perform a dimension reduction and clustering simultane-

ously. Examples of the adaptive methods based on the probabilistic model of the basis

expansion coefficients are the works by James and Sugar (2003), Heard et al. (2006), Ray

and Mallick (2006), Samé et al. (2011) and Giacofci et al. (2012).

James and Sugar (2003) introduced a clustering approach for sparsely sampled func-

tional data by giving a cluster-specific probability distribution to the basis expansion

coefficients of the curves, which is a mixture Gaussian distribution with different means
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Figure 5.32: Clustering of gun-point and growth datasets using fclust method.

to each cluster and common variance, such that αi ∼ N(µk,Σ). They supposed that the

basis expansion coefficients are random variables, and defined some parsimonious cluster-

ing models based on the parameters in the assumed mixture Gaussian distribution. Their

method is known in the literature as fclust method. Figure 5.32 shows the clustering of

gun point and growth datasets using fclust method. It is required to specify the number

of clusters in fclust algorithm. Supposing K = 2, then the misclassification rates based

on the fclust method are 50% and 53.58% for gun-point and growth data respectively.

Heard et al. (2006) proposed Bayesian models to the basis expansion coefficients

of the curves, and they supposed that the basis expansion coefficients are distributed

normally with common mean µ and different variances σkΣ to each cluster such that

αi | σk ∼ N(µ, σkΣ) and σk ∼ IG(u, ν) where IG is the Inverse-Gamma distribution with

parameters u and ν.

In addition, in Ray and Mallick (2006), a hierarchical Bayesian model also been pro-
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Figure 5.33: Clustering of gun-point and growth datasets using the wavelets-based method
(curvclust algorithm)

posed for the basis expansion coefficients of the functional curves supposing that Σ is

modelled by two sets of random variables controlling the sparsity of the wavelets decom-

position and a scale effect (Jacques and Preda, 2014).

A Gaussian model on wavelet-based clustering for mixed-effects functional models in

high dimension have been introduced by Giacofci et al. (2012). Their algorithm is known

as curvclust in the R software. The function getFCM in the package curvclust performs

the wavelet-based clustering. Figure 5.33 shows the clustering of gun point and growth

datasets using curvclust. The number of clusters is assumed to be two in the curvclust

algorithm, and the misclassification rates based on the curvclust are 50% and 66.18% for

gun-point and growth data respectively.

On the other hand, the adaptive methods, in the second direction, are depending on the

probabilistic model of the FPCA scores then perform the dimension reduction and clus-
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tering simultaneously. For instant, Chiou and Li (2007) proposed the K-centres algorithm

which is K-means based on the L2 distance between truncations of the Karhunen-Loeve

expansions. Moreover, Delaige and Hall (2010) introduced a probabilistic model of the

FPCA scores by using the density of principal components resulting from a FPCA of the

curves, after getting an approximation of the probability density for functional random

variables based on the Karhunen-Loeve expansion as well.

The functional high dimensional data clustering (FunHDDC) method has been intro-

duced by Bouveyron and Jacques (2011). It is an extension of the high dimensional data

clustering method (HDDC) that introduced earlier by Bouveyron, Girard, and Schmid

(2007). Like the HDDC, the FunHDDC is model-based clustering method based on the

Gaussian mixture model, with the difference that it deals with a functional version of

data using some basis functions that used in FPCA approximation with considering a

family of parsimonious sub-models based on the parsimony assumptions on the variance,

which allows to cluster functional data by modeling each group within a specific functional

subspace.

Figure 5.34 gives the functional curves and means based on FunHDDC coefficients

for gun point and growth datasets. It is required to specify the number of clusters in

this algorithm as well. The BIC value based on the FunHDDC suggests 3 clusters with

maximum value of -47931.85 for gun-point data and -6827.67 for growth data. When

K = 2, then the misclassification rates based on the FunHDDC method are 57.5% and

33.33% for gun-point and growth data respectively.

Along the line of Bouveyron and Jacques (2011), Jacques and Preda (2013) intro-

duced the funclust algorithm which is using a similar algorithm based on the Gaussian

distribution of the principal components and define a probabilistic model based clustering

techniques. Like the other model-based clustering methods, the funclust algorithm uses

the expectation-maximization algorithm to estimate the parameters of the model. Figure
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(a) Gun-point data: fd curves
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(b) Gun-point data: fd means
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(c) Growth data: fd curves
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(d) Growth data: fd means

Figure 5.34: FunHDDC clustering: Plots of functional data curves and functional data
means based on FunHDDC coefficients for gun-point and growth datasets
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(a) Gun-point data
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(b) Growth data

Figure 5.35: Clustering of gun point and growth datasets using funclust algorithm

5.35 shows the clustering of gun point and growth datasets using funclust algorithm by

Jacques and Preda (2013). As it is required to identify the number of clusters, we assumed

K = 2. The misclassification rates based on the funclust method are 50.1% and 49.22%

for gun-point and growth data respectively.

The kmeans.fd function in the fda.usc package, which performs the K-means clus-

tering on functional data, has been considered as one of the adaptive methods. It depends

on the algorithm that introduced earlier by Hartigan and Wong (1979). In Figure 5.36,

the clustering and the updated centers based on kmeans.fd for gun-point and growth

data are given. The green curves have been assigned to be in the first cluster and the

red ones have been assigned to be in the second. The misclassification rates based on the

kmeans.fd clustering are 49.63% and 49.89% for gun-point and growth data respectively.

Acorrding to the results of the misclassification rates that have been given in the

previous comparison, the kmeans.fd clustering algorithm gives the smallest rate of mis-
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(a) Gun-point data: curves plot
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(b) Gun-point data: updated centers
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(c) Growth data: curves plot
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(d) Growth data: updated centers

Figure 5.36: K-means clustering for functional data (kmeans.fd algorithm): plot of the
curves and the updated centers based on kmeans.fd for the gun-point and growth datasets.

221



classification erorr (49.63%) for gun-point data amongst the other four adaptive methods.

On the other hand, for the growth data, the FunHDDC method gives the smallest rate of

misclassification erorr (33.33%) among the other four adaptive methods.

5.2.4 Distance-Based Methods

The last group of the functional data clustering methods is the distance-based methods

that use some clustering algorithms based on some dissimilarity measures and distance

functions for the functional data. Different distance-based methods have been extended

to work for the functional data clustering, like K-means, K-medoids and linkage-based

methods. According to Jacques and Preda (2014), the general form of the distances

measures between two curves Xi(t) and Xj(t) is:

dl
(
Xi(t), Xj(t)

)
=

(∫
T

(
X

(l)
i (t)−X(l)

j (t)
)2
dt

)1/2

, (5.2.12)

where X(l)
i (t) is the l-th derivative of Xi(t). Hence, the distance d0, which is the L2-metric

takes the formula:

d0
(
Xi(t), Xj(t)

)
=

(∫
T

(
Xi(t)−Xj(t)

)2
dt

)1/2

, (5.2.13)

and the distance d1 is:

d1
(
Xi(t), Xj(t)

)
=

(∫
T

(
X

(1)
i (t)−X(1)

j (t)
)2
dt

)1/2

, (5.2.14)

where X(1)
i (t) is the first derivative of Xi(t).

Examples of the distance-based methods using the distance d0 for functional data are

the work by Cuesta-Albertos and Fraiman (2000), where they used the K-means algorithm

based on the distance d0; the work by Tarpey and Kinateder (2003), who used the K-
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means based on d0 for some Gaussian processes; and the work by Tokushige et al. (2007)

who used the distance d0 with the K-means algorithm as a time-dependent clustering.

Combinations between using the distance d0 and d2 have been considered in Ferraty and

Vieu (2006) where they proposed a hierarchical clustering algorithm combined with the

distances d0 and d2. On the other hand, Ieva et al. (2012) used the K-means algorithm

with the distances d0, d1 and the combinations of d0 and d1 such as,
(
d20 + d21

)(1/2).
We have used the function eval.posfd of the fda package under the R software in

order to get the evaluations of the set of original functions first derivatives. In addition, the

function kma in the fdakma package has been used to perform K-means clustering based

on the distances d0 and d1, and alignment of a functional dataset. Figure 5.37 shows

the clustering of gun point and growth datasets using the K-means algorithm based on

the distance d0. Assuming that K = 2, the misclassification rates based on the K-means

based on the distance d0 are 50% and 48.78% for gun-point and growth data respectively.

On the other hand, Figure 5.38 shows the clustering of gun point and growth datasets

using the K-means algorithm based on the distance d1. The misclassification rates in

this case are 49.1% and 46.74% for gun-point and growth data respectively. Clearly, we

can see that the K-means algorithm based on the distance d1 behaves better than the

algorithm based on the distance d0 for the two functional datasets.

5.3 The Curse of Dimensionality in the Traditional For-

ward Search

The term “curse of dimensionality” was introduced by R. Bellman in his book (Bellman,

1957). It refers to all problems caused by the analysis of high-dimensional data, especially

if some parametric models with parameters estimation are considered. As we discussed

earlier, in order to run the traditional forward search algorithm based on Mahalanobis

distances, we need to choose an initial subset S(m), with m = d + 1. Practically, there
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(b) Growth data

Figure 5.37: Clustering of the gun-point and growth datasets using K-means based on
the distance d0 (Kmeans-d0).
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(a) Gun-point data
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(b) Growth data

Figure 5.38: Clustering of the gun-point and growth datasets using K-means based on
the distance d1 (Kmeans-d1).
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is no problem if the number of available observations is large compared to the number of

variables. However, the traditional forward search algorithm will not be able to estimate

the number of clusters efficiently when the dimension d is large.

On the contrary, if the number of observations is small compared to the number of

variables, such a situation increases the problem difficulty, and the algorithm would be

inapplicable. This is due to that, if the dimension d is bigger than the size of subset

S(m), we will not be able to estimate the variance-covariance matrix, and then we cannot

proceed in the algorithm. That makes the using of the traditional forward search based on

Mahalanobis distances not applicable for the functional data analysis, where the random

variables taking values into an infinite dimensional space, whereas in practice we only

have some sampled curves observed into a finite set of points.

This leads to the fact that the traditional forward search based on Mahalanobis dis-

tances can be only used for the multivariate samples, with finite dimensional setting less

than the underlying sample size. In addition, if the number of variables is very big and

there are some clusters with small size in the underlying data at the same time, then using

the traditional forward search based on Mahalanobis distances will lead to loss informa-

tion about the number of clusters to be determined. This in fact is due to that the search

starts from subsets with size d+ 1 and if the size of the j-th cluster kj is less than d, then

the algorithm will not be able to detect the cluster. This in fact sheds the light on the

curse of dimensionality in the traditional forward search, and makes us ask the question:

what is the case if we use a forward search algorithm based on a nonparametric function

which does not need to any parameters estimation?

To answer this question, we need to remind the reader that, our forward search algo-

rithm based on the spatial ranks, can be started with subsets with any size, which makes it

helpful in such situations that explained above. According to Baragilly and Chakraborty

(2015), they pointed out that in the forward search based on spatial ranks, the initial sub-
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set size can be anything more than 1 as the rank of any observation x ∈ Rd with respect

to a single data point is always 1. So, we can start with very small subset size which

makes the algorithm robust in the case that the size of the j-th cluster kj is less than

the dimension d. On the other hand, if we consider the forward search algorithm based

on the volume of central rank regions, we will not have the same amount of flexibility

in starting the search with small subsets comparing to the spatial ranks algorithm. The

reason behind this is that, computing volumes of central rank regions, which provides a

measure of scale, is meaningful only when the number of observations is at least d + 1.

Thus, purely for more stability in the algorithm, we choose an initial subset size of d+ 1.

That leads to, if there are large number of clusters and all are with sizes smaller than

d + 1, then our algorithm will not be able to estimate the number of clusters efficiently,

but that is a rarity for large sample size n (Baragilly and Chakraborty, 2016). For these

reasons, we are not going to extend the forward search algorithm based on the volume

of central rank regions to the functional data case, and we will limit the research to the

forward search algorithm based on the functional spatial ranks.

5.4 Functional Data Clustering Based on Spatial Ranks

A functional forward search algorithm is considered in this section. It is based on non-

parametric functional spatial ranks (FSR) and it is robust in terms of determining the

number of clusters by the data itself without any need to parameters estimation or any

filtering to be done a priori. That makes our method to be classified under the raw-data

methods’ group. The contribution of this work is to propose a forward search algorithm

that can work with the functional data case while the traditional forward search cannot

be extended to that. A key point for the FSR is to extend both sign(x) and Rank(x)

naturally from Rd to any infinite-dimensional Hilbert space H. We start with defining the

functional sign and spatial rank functions with some related literature, the functional for-
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ward search algorithm based on functional spatial ranks, and then we give some numerical

examples in order to check the performance of the proposed method.

5.4.1 The Functional Spatial Rank (FSR)

It is well known that both of spatial depth and spatial ranks completely depend on each

other for either the multivariate or functional data. The origins of the spatial approach

date back to Brown (1983), when he introduced the idea of spatial median considering

the problem of robust location estimation for two-dimensional spatial data. After that,

the geometry notions of the data started to be used in different important nonparametric

functions such that the multivariate spatial quantiles by Chaudhuri (1996) and the mul-

tivariate spatial depth function by Serfling (2002). Recently, the functional spatial depth

(FSD) has been proposed by Chakraborty and Chaudhuri (2014), where they extended

the notion of spatial depth from Rd into infinite dimensional spaces. They observed that

the multivariate spatial depth function, SD(x) = 1 − ‖E {(x−X)/‖x−X‖} ‖, can be

extended naturally to any Hilbert space, such that for any x ∈ H and a random element

X ∈ H, we can define the functional spatial depth FSD(x) using the same expression

as above, where ‖.‖ is to be taken as the usual norm in H and the expectation is in the

Bochner sense (Chakraborty and Chaudhuri, 2014; Araujo and Giné, 1980).

Serfling and Wijesuriya (2015) introduced a nonparametric description of the func-

tional data using the spatial depth function. They used the functional version of spatial

depth in some nonparametric descriptive features like the sample median curve, 50% most

central region of sample curves, selected sample quantile curves, location outliers, and an

additional possibility with functional data-shape outliers. Furthermore, Serfling and Wi-

jesuriya (2015) pointed out that if X is a random function in the Hilbert space H, then

the population spatial quantile function Q(u), indexed by elements u in the unit ball

B in H, is obtained by minimizing E {φ(u,X− x)− φ(u,X)} with respect to x, where
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φ(u, z) = ‖u‖+
〈
u, z
〉
, ‖u‖ is the L2 norm, and

〈
u, z
〉
is the inner product defined on H.

On the other hand, Cardot et al. (2013) proposed an averaged stochastic gradient

algorithm in order to compute the functional spatial median in a Hilbert space in a fast

way. Along the line, Chaouch and Goya (2012) used the functional spatial median that

proposed by Cardot et al. (2013) as a robust measure of center for a data set of electricity

loading curves.

The kernelized functional spatial depth (KFSD) has been introduced by Sguera et al.

(2014). They used the KFSD based on the functional spatial depth, which introduced

by Chakraborty and Chaudhuri (2014), for the classification of functional data. They

performed the classification by using some robust methods that involve the use of a given

functional depth functions, including FSD and KFSD. The functional K-nearest neighbor

classifier has been used in their work as a benchmark procedure.

Definition 5.4.1 : The functional sign function:

Let {X1(t),X2(t), . . . ,Xn(t)} be a functional dataset, generated by the functional random

variables {X1(t),X2(t), . . . ,Xn(t)}, taken values from Hilbert space H, where t defined on

some set T which represents an interval of time, of wavelengths or any other subset, then

we define the functional spatial sign function for the curve x ∈ H as:

FSign(x) =


x
‖x‖ if x 6= 0

0 if x = 0,
(5.4.1)

where ‖x‖ is the L2 norm such that:

‖x‖ =

(∫
T

(
x(t)

)2
dt

)1/2

, (5.4.2)

for an infinite dimensional space.

According to Chakraborty and Chaudhuri (2014), a population functional version of
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the spatial depth function is given by:

FSD(x,P) = 1− ‖E {FSign(x−X)} ‖, (5.4.3)

where x ∈ H and P is a probability distribution on H. On the other hand, when a sample

of curves is observed, such that x ∈ Xi; i = 1, . . . , n, then the population functional

spatial depth function FSD(x,P) can be replaced with its corresponding sample version:

FSDn(x) = 1− 1

n
‖

n∑
i=1

FSign(x−Xi)‖. (5.4.4)

In Chakraborty and Chaudhuri (2014), some important properties of FSD have been

considered and they can be applied for the functional spatial rank function as well, these

properties are (Sguera et al., 2014):

1. FSD(x,P) is invariant under the class of linear transformations T : H→ H, where

T (x) = cAx + b for some c > 0, b ∈ H and an isometry A on H.

2. If P is non-atomic, then FSD(x,P) is continuous in x.

3. If H is strictly convex and P is non-atomic and not supported on a line in H, then

FSD(x,P) has a unique maximum at the spatial median m of Y and its maximum

value is 1.

4. For any fixed non-zero x ∈ H and sequence {m+ nx}n∈N+, the following holds:

FSD(m+ nx,P)→ 0 as n→∞.

5. FSD(x,P) does not suffer from degeneracy for many infinite dimensional probabil-

ities distributions.

Definition 5.4.2 : The functional spatial rank function:

Suppose that X(t) ∈ H has an infinite dimensional distribution F , where t defined on
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some set T which represents an interval of time, of wavelengths or any other subset, then

a population functional spatial rank function of the curve x ∈ H can be defined as:

FSRF (x) = E
(

x−X

‖x−X‖

)
. (5.4.5)

In reality we have sampled curves observed into a finite set of observations, such that

we have discrete observations Xij of each sample path Xi(t) at a finite set of knots

{tij : j = 1, . . . ,mi}. Now suppose that {X1(t),X2(t), . . . ,Xn(t)} is sampled curves ob-

served into a finite set of observations, then the sample version of the functional spatial

rank of x(t) with respect to X1(t),X2(t), . . . ,Xn(t) is given by:

FSRFn(x) =
1

n

n∑
i=1

FSign(x−Xi) =
1

n

n∑
i=1

x−Xi

‖x−Xi‖
. (5.4.6)

Two different kinds of the sampled curves are usually considered in the functional

data literature. The first one is the regularly sampled curves, and the second one is

the irregularly sampled curves. In the regularly sampled curves, the evaluation points

t ⊂ T are supposed to be fixed for each curve with the same length and knots, such

that we have discrete observations Xij of each sample path Xi(t) at a finite set of knots

{tij : j = 1, . . . ,m} ; i = 1, . . . , n. Note that the curves’ length (m) is fixed among the

different functions. As example for the regularly sampled curves is the curves of gun-

point and growth data that shown in Figure 5.1, where each curve consists of discrete

observations based on the same set of evaluation points (time and age knots in gun-point

and growth data respectively).

On the other hand, the irregularly sampled curves assume that the evaluation points

are different and each curve has its own length based on the number of knots that rep-

resent the discrete observations in the sampled curve. In other words, we have discrete

observations Xij of each sample path Xi(t) at a finite set of knots {tij : j = 1, . . . ,mi} ; i =
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1, . . . , n, where the curves’ length (mi) changes for each function. An example for the

irregularly functional sampled curves is given in Figure 1 of James and Hastie (2001),

where they used the functional linear discriminate analysis for irregularly functional sam-

pled data. The Figure gives measurements of spinal bone mineral density for 280 males

and females with different periods of time for each individual (curve).

In principle, the proposed functional spatial ranks can be applied for both of regularly

and irregularly sampled curves, since the functional spatial ranks are supposed to be

calculated in general concept using the integrations instead of the summations quantities,

then with a formal procedures and methods we can estimate the integral functions and

get the estimated values of the functional spatial ranks. However, in this study we only

consider the regularly sampled curves in order to keep the simplicity of the functional

forward search algorithm and to save on computational time, but we are looking into the

irregularly sampled curves case as a future work.

Preprocessing functional data is usually used in the functional data analysis in two

steps (Jacques and Preda, 2014). The first one is by reconstructing the functional form of

data because the curves are usually observed at discrete observation points, which requires

being in functions frame. The second step is to center and scale the curves in order to

eliminate both phase and amplitude variations into the curve’s dataset. The last step is

known as the data registration (Ramsay and Silverman, 2005).

Preprocessing functional data in clustering analysis has been considered a questionable

point. Jacques and Preda (2014) gave good examples of the side effects that are usually

happened under considering the data registration in the clustering framework. The loss

of cluster information is one of these effects and can be misleading in different cases.

Furthermore, Jacques and Preda (2014) pointed out that amplitude variation of the data is

considered a source of differentiation between clusters, and doing the preprocessing for the

data may remove this variation and consequently cause a loss of the clustering information.

231



For this reason, the majority of the existing works does not perform data registration,

assuming that either this effect is only limited or it contains cluster information.

Example for works that consider the registration step is the work by Liu and Yang

(2009), and example for works that identify the clusters due to phase and amplitude

variations is Slaets et al. (2012). On the other hand, Liu and Yang (2009), Sangalli et

al. (2010 a,b) proposed different procedures that simultaneously align and cluster the

curves without performing data registration before clustering. It is worth mentioning in

this context that, in our proposed method we do not perform data registration or any

preprocessing step before the clustering work.

5.4.2 The Functional Forward Search Algorithm Based on FSR

In the forward search algorithm, let S(m) be a subset of size m at a particular stage.

Then define the functional spatial ranks of individual curve corresponding to the subset

S(m) as:

ri(m) =
1

m

∑
j∈S(m)

Xi −Xj

‖Xi −Xj‖
, (5.4.7)

for i = 1, . . . , n. In this context, we point out that the forward search procedure based on

the functional spatial ranks is similar to the one based on the multivariate spatial ranks

that introduced in (Baragilly and Chakraborty, 2016), with only two differences. The first

difference is that we suppose that S(m) is the initial subset with sizem = 3 instead of d+1.

The second difference is that we deal here with sampled curves X1(t),X2(t), . . . ,Xn(t)

taken values from Hilbert space H, not a random sampleX1,X2, . . . ,Xn ∈ Rd. The

functional forward search algorithm with functional spatial ranks is:

1. Start the search with an initial subset S(m) with size m = 3, then one search can

be run from this starting point.

2. Calculate the functional spatial ranks ri(m) depending on the curves in the subset
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S(m).

3. Compute rmin(m), where rmin(m) = min ‖ri(m)‖; i 6∈ S(m).

4. Grow the subset S(m) to S(m + 1) by taking m + 1 observations Xi(t)’s, which

correspond to smallest m+ 1 ‖ri(m)‖’s. Set m = m+ 1.

5. Iterate 2− 4 until m = n− 1.

6. The forward plot of the spatial ranks can be obtained by plotting the rmin(m) against

the corresponding subset sizes m.

Like the forward search algorithm with spatial ranks for the multivariate case, this al-

gorithm is computationally easy and straightforward as well. When the curves in S(m)

belong to the same cluster, ‖ri(m)‖ for a curve Xi(t) belonging to the same cluster is

expected to be smaller than that of curve from a different cluster, and whenever S(m)

grows bigger than the cluster it originally belonged to, we expected to see a jump in the

magnitude of the rank function as the nearest point to S(m) is then from a different

cluster.

5.4.3 Numerical Examples

In this section, we apply the proposed functional forward search algorithm on some simu-

lated and real data. We start with the simulated data, where we considered three models,

with different mean functions and number of groups. Then, we implement the algorithm

on three real datasets, two of them have been discussed already in Section 5.2 ( gun-point

and growth data) and the third one is ECG data. More discussion about ECG data is

given in this Section.

Simulated Data

In order to check the performance of our proposed method, we give some numerical

example based on simulated data. Three models have been considered here, with different
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mean functions and numbers of clusters. In the first model we assume that we have two

groups, the first one consists of the curves of the process:

X(t) = m0(t) + e(t), (5.4.8)

where the mean function m0(t) = 30(1− t)t1.5 and e(t) is a Gaussian process with mean

0 and Cov(X(s), X(t)) = 0.2exp(− |s− t| /0.3). On the other hand, the second group

consists of the curves of the process:

Y (t) = m1(t) + e(t), (5.4.9)

with mean functionm1(t) = 30t(1−t)1.5 and same e(t) and Cov(X(s), X(t)) in the process

X(t).

Figure 5.39 (a) and (b) show the curves of model 1 and its mean function respectively.

Again, the black color refers to the curves located in the first cluster while the red color

refers to the curves that simulated to be in the second cluster. Initially, we can clearly see

that we have two different groups since we have simulated the curves to be divided into

two clusters with mixing proportion p which is taken to be 0.3 , and a sample size n = 100.

So we expect to see two clear peaks around subsets with sizes 30 and 70. The panels (c)

and (d) of Figure 5.39 give the forward plot and the entry plot of the first simulated

functional data (model 1) based on the functional spatial ranks. It can be clearly seen

that, there are two obvious maxima around subsets with sizes 30 and 70, which suggest

dividing the data into two groups with sizes 30 and 70. Obviously, it is a perfect result,

where the method was able to detect the number of clusters and determine their sizes.

Now, we move to the second model which is a little bit complicated. In this model

we simulated the curves to be divided into two groups as well with the same mixing

proportion (p = 0.3) and sample size n = 100. The difference in this model is that,
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(c) Forward plot based on FSR
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(d) Entry plot based on FSR

Figure 5.39: Simulated data, Model 1: (a) the observed curves with two groups, (b) the
mean function, (c) the forward plot based on FSR and (d) the entry plot based on FSR.
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the second group is a smoothing of the curves of the first group which makes it more

difficult to discriminate the overlapping between the two groups. Here, we assumed that

the first cluster consists of the curves of the process X(t) that defined in (5.4.8), but with

mean function: m0(t) = 30(1 − t)t2 + 3 |sin(20πt)| and e(t) is a Gaussian process with

mean 0 and Cov(X(s), X(t)) = 0.2exp(− |s− t| /0.3). The second group is made of spline

approximations, with 8 knots, of trajectories from the previous process.

Figure 5.40 shows the curves of model 2, its mean function, the forward plot based

on the functional spatial rank, and the entry plot. Like model 1, our target is to get two

clear maxima around the subset with sizes 30 and 70. From the forward plot, we can

clearly see the two peaks at m = 30 and 70, which means that our method successfully

determined the number of clusters and their sizes as well.

In order to check the stability of our method with bigger numbers of clusters, we

assumed that we have three groups in the third model, such that model 3 is a combination

between model 1 and model 2, since we assumed that we have the two groups in model 2

plus a third group which consists of the curves of the process (5.4.8) with the same mean

and covariance functions. This model is more complicated than the other two models.

The target now is to get three peaks around subsets with sizes 20, 30 and 50 since we

simulated the data to include three clusters with sizes 20, 30 and 50. Figure 5.41 gives

the curves of model 3, its mean function, the forward plot based on the functional spatial

ranks and the entry plot. The forward plot shows three clear peaks around sizes 20, 30

and 50 which successfully clusters the simulated data into three groups.

Real Data

More numerical examples are given in this Section where we considered three different

real datasets. The first and second datasets are the gun-point and growth data that

have been analyzed in Section 5.2. The third one is known as ECG data. It is taken

from the UCR Time Series Classification and Clustering Archive. This dataset consists
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(d) Entry plot based on FSR

Figure 5.40: Simulated data, Model 2: (a) the observed curves with two groups, (b) the
mean function, (c) the forward plot based on FSR and (d) the entry plot based on FSR.

237



0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

t

cu
rv

e

(a) Model 3 curves

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

t

M
ea

n 
fu

nc
tio

n

m0
m1
m2

(b) Mean function

0 20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Subset size m

S
pa

tia
l R

an
k

(c) Forward plot based on FSR

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

Subset size m

U
ni

ts
 in

si
de

 s
ub

se
t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d) Entry plot based on FSR

Figure 5.41: Simulated data, Model 3: (a) the observed curves with three groups, (b) the
mean function, (c) the forward plot based on FSR and (d) the entry plot based on FSR.
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Figure 5.42: Gun-point data: Forward plot based on the functional spatial ranks. Two
clusters are evident around subsets with sizes 100.

of 200 electrocardiograms from 2 groups of patients sampled at 96 time instants, of which

133 are normal and 67 are abnormal. The ECG data uses two electrodes to collect data

during one heartbeat which is classified of normal or abnormal. Abnormal heartbeats

are representative of a cardiac pathology known as supraventricular premature beat. The

data has already been studied in Olszewski (2001).

Figure 5.42 gives the forward plot based on the functional spatial rank for the gun-

point data. It has mentioned earlier that this data consists of two clusters each one

includes 100 curves. From the forward plot we can see that there are two clear maxima,

both of them are around subsets with sizes 100. Obviously each peak is located in different

trajectory and suggests the right number of clusters and their sizes.

Regarding to growth data, it consists of two clusters, the first one includes 39 males
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Figure 5.43: Growth data: Forward plot based on the functional spatial ranks. Two
clusters are evident around subsets with sizes 39 and 54.

and the second one includes 54 females. Figure 5.43 shows the forward plot based on the

functional spatial rank for growth data. It can be clearly seen that there are two peaks

in the plot, one is around 39 and the other is around 54 which successfully suggests the

right number of clusters and their sizes as well.

Figure 5.44 shows the curves located in the first and second clusters of ECG data,

and the forward plot based on functional spatial ranks of ECG data. As we can see from

panel (b) of Figure 5.44, there are two peaks in the forward plot, the first one is around 67

and the second one is around 133 which suggests two clusters with sizes 67 and 133 and

this is the right size of the normal and abnormal heartbeats’ groups. At the end of this

section we can conclude that the forward search plots based on functional spatial ranks

show that the algorithm performs well under different functional data models.
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(b) Forward plot based on FSR

Figure 5.44: ECG data: panel (a) is the observed curves with two groups and panel (b) is
the forward plot based on the functional spatial ranks. Two clusters are evident around
subsets with sizes 67 and 133.

The greatest advantage of the proposed forward search is that it is not necessary

to assume that the underlying data are coming from parametric family or any known

distribution as we are not estimating any parameters in our method. However, for large

number of clusters the proposed forward search plots may produce many peaks and makes

it difficult visually to determine the exact number of clusters and the cluster size. This

is because that the points start joining in from different cultures. Nevertheless, we are

looking into the problem of estimating the number of clusters from the forward search

plot by using formal procedure as a future research.
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5.5 Functional Data Clustering Based onWeighted Spa-

tial Ranks

The weighted functional spatial ranks (WFSR) method is proposed in this section. It is

an extension work to the WSR that has been proposed in chapter 4, where we considered

the data to be in curves or functions version. A dimensional reduction using FPCA is

required as a first step (filtering step) in order to get the weighted ranks contours for a low-

dimensional input space, and consequently determine the number of clusters. As a second

step (clustering step), we use the weighted functional spatial rank classifier (WFSRC) to

assign each curve to the suitable cluster. The proposed WFSR method can be classified

under the group of filtering methods based on FPCA scores. As discussed earlier, the

selection of a proper weight function leads to better identification of clusters. Here, we

use the Gaussian kernel weights that have been used in the multivariate case.

5.5.1 The Weighted Functional Spatial Rank (WFSR)

Definition 5.5.1 : The weighted functional spatial ranks function:

Let {X1(t),X2(t), . . . ,Xn(t)} be a sampled curves observed into a finite set of observations

and generated by the functional random variables {X1(t),X2(t), . . . ,Xn(t)}, taken values

from Hilbert space H, where t defined on some set T which represents an interval of time,

of wavelengths or any other subset, then the sample version of the weighted functional

spatial rank of x(t) with respect to X1(t),X2(t), . . . ,Xn(t) is given by:

WFSRFn(x) =
1∑n
i=1wi

n∑
i=1

wiFSign(x−Xi) =
1∑n
i=1wi

n∑
i=1

wi
x−Xi

‖x−Xi‖
, (5.5.1)
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and the second weighted functional spatial ranks function that corresponds to (4.3.2) is:

WFSRFn(x) =
1

n

n∑
i=1

wiFSign(x−Xi) =
1

n

n∑
i=1

wi
x−Xi

‖x−Xi‖
. (5.5.2)

and their L2 norm is:

WFSRNFn(x) = ‖WFSRFn(x)‖. (5.5.3)

where the weights wi is the Gaussian kernel weights that were giving the best identification

of clusters as we presented in Chapter 4, can be written as:

wi = e−
‖x−Xi‖

2

2 . (5.5.4)

Now, we discuss how to use the WFSR as a clustering tool for the functional data.

Actually, the WFSR is more accurate in the purpose of intuitive visualization since we can

easily determine the number of clusters from the weighted functional ranks contours for

a low-dimensional input space, using dimension reduction. In order to plot the weighted

functional ranks contour we use the FPCA components {Cj}j>1 that are defined in equa-

tion (5.2.4), where we need to get the first 2 components C1 and C2 such that:

C1 =

∫ T

0

(
X(t)− µ(t)

)
ξ1(t)dt, (5.5.5)

and,

C2 =

∫ T

0

(
X(t)− µ(t)

)
ξ2(t)dt, (5.5.6)

and let SC1 and SC2 are two vectors of the generated regular sequences from the minimum

to maximum value of C1 and C2 respectively with length l, and let S be a matrix consists

of the two victors SC1 and SC2 and C be a matrix consists of the first two components

C1 and C2, then the outer product of the arrays SC1 and SC2 is the array Z based on the
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WFSRN of s with respect to Ci, where s ∈ S:

WFSRN(s) = ‖WFSR(s)‖ = ‖ 1

n

n∑
i=1

wi
s−Ci

‖s−Ci‖
‖, (5.5.7)

where i = 1, . . . , n and wi = exp(−‖s − Ci‖2/2), then the weighted functional ranks

contour lines can be existed based on SC1 , SC2 and Z. So, we can get the weighted

functional ranks contour that can directly capture the clusters structure and suggest the

number of clusters consequently.

The main idea behind WFSR is to define a dissimilarity measure locally based on a

localized version of functional ranks. As a result, the proposed method can be used to

determine the assumed number of clusters, and to assign each observation to its cluster.

Selection of a proper weight function will lead to better identification of clusters when the

data do not follow any standard parametric distribution.

5.5.2 Confirmatory Analysis Based on Weighted Functional Spa-

tial Ranks Classifier

In this section, we propose a confirmatory nonparametric classifier that can be used to

check and confirm if the curves’ assignment based on the weighted functional spatial

rank contours are right or not. The proposed confirmatory classifier is based on the

weighted functional spatial ranks, and it is simple and easy to compute without any need

to parameter estimates of the underlying distributions.

Two clusters case:

Suppose that we have two groups, with distributions F and G respectively, then based on

the weighted functional ranks classifier (WFSRC) rule, we can assign the curve x(t) to

the first group if the L2 norm of the weighted functional spatial ranks of the curve x(t)

based on F is less than the L2 norm of the weighted spatial ranks of the curve x(t) based
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on G such that assign x(t) to the group with distribution F if:

WFSRNF (x) < WFSRNG(x), (5.5.8)

and assign it to the second group with distribution G otherwise, where WFSRNF (x) =

‖WFSRF (x)‖ and WFSRNG(x) = ‖WFSRG(x)‖ as defined in equation (5.5.3).

More than two clusters:

Suppose that we have K groups, with distributions F1, F2, . . . , Fk, then we can assign the

curve x(t) to the i-th group if:

WFSRNFi
(x) = min

16j6k
WFSRNFj

(x), (5.5.9)

where i 6= j, 1 6 i 6 k.

Thus, like the multivariate case, we can use the above weighted functional spatial

ranks classifier as a confirmatory analysis to assign each observation to the most suitable

clusters, after determining the number of clusters using the weighted functional spatial

ranks contours. Furthermore, we can use the confirmatory plot based on the weighted

functional spatial ranks, which can be used easily to now the assignment of each curve as

we present in the numerical examples section.

5.5.3 The Weighted Functional Spatial Ranks Based Clustering

Algorithm

The steps of the weighted functional spatial ranks based clustering algorithm are:

1. Use the functional principle component analysis FPCA for the purpose of the di-

mension reduction, and get the first 2 components C1 and C2 as shown in (5.5.5)

and (5.5.6) and construct the matrix C that consists of C1 and C2.
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2. Get SC1 and SC2 as vectors of the generated regular sequences from the minimum

to maximum value of C1 and C2 respectively with length l.

3. For each s ∈ S, calculate WFSRN(s) with respect to C as shown in (5.5.7).

4. Get Z as the outer product of the arrays SC1 and SC2 based on the WFSRN(s) in

step 3.

5. Plot the weighted functional spatial ranks contour based on SC1 , SC2 and Z, and

determine the number of clusters K from the contour lines.

6. Based on the contour lines, specify the observations that are allocated in each cluster.

We can use a lower contour level for better visualization.

7. Use the confirmatory weighted functional spatial rank classifier’s rule that is shown

in (5.5.8)/(5.5.9) to confirm the assignment of each curve, assign the unassigned

curves to the proper cluster, and get the confirmatory plot.

5.5.4 Numerical Examples

Here, we apply the proposed weighted functional spatial rank method on some simulated

and real data. Again, we start with the simulated data, where we considered the three

models that have been proposed in the last Section. Then we implement the method on

the gun-point and growth datasets.

Simulated Data

Now, we consider model 1 which has been proposed in the previous Section. Panel (b)

of Figure 5.45 gives plot of the functional PCA with the percentage of the total variance

explained based on the scores of the first two harmonics of model 1. They explain 90.5%

of the total variances. According to the contour plot of the first two harmonics based

on WFSR, we can clearly see that the WFSR contour captures the clusters structure
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and shows two clear groups in the reduced dimension. In order to accurately assign each

curve to the proper cluster, we use a low- level of the WFSR contour as shown in panel

(d) of Figure 5.45. It can be clearly seen that all the score-points have been allocated

properly in one of the two clusters. However, only two points (68 and 85) have not

been assigned to any of them. In this case, the WFSRC plays an important role as a

nonparametric classifier that assigns these points to the suitable group. Panels (e) and

(f) show the confirmatory plots based on WFSRC for the first 2 components and the

original data respectively. Comparing the curves in confirmatory plot with the observed

curves, we can see that our method successfully clustered the simulated data without any

misclassification error. This is a good result however; the real datasets will not be easy

to get such a perfect result, as we will see in the next subsection.

Now we move to the second model. Figure 5.46 gives the observed curves of model 2

with two groups, plot of the functional PCA showing the total variance explained by each

harmonic, the WFSR contours, the contour at level 0.005 and confirmatory plots based on

WFSRC for the first 2 components and the original data respectively. As we can see from

Figure 5.46 (b), the first two harmonics of model 2 explain 68.2% of the total variances.

The contour plot of these two harmonics based on WFSR, shows that the WFSR contour

captures the cluster structure and shows two clear groups. As shown in panel (d), we use

a low-level of the WFSR contour at level 0.005 to clearly assign each curve to the proper

cluster. As we can see, all the score-points have been allocated properly in one of the two

clusters except the point number 18. By using the WFSRC, we confirmed that the curve

number 18 belongs to the second group. Again we can see that our method successfully

clustered this model without any misclassification error.

For the third model, which includes 3 clusters, Figure 5.47 gives the observed curves of

model 3 with three groups, plot of the functional PCA with the total variances explained

by each harmonic, the WFSR contours, the contour at level 0.01 and confirmatory plots
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(a) Model 1 curves
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(b) Functional PCA
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(c) WFSR contours

Figure 5.45: Simulated data, Model 1: (a) the observed curves with two groups, (b) plot
of the functional PCA with the total variance explained by each harmonic, (c) the WFSR
contours, (d) the contour at level 0.002, and confirmatory plots based on WFSRC for (e)
the first 2 components and (f) the observed curves.
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(d) Contour at level 0.002
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(e) Confirmatory plot: first 2 components
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Figure 5.45: Continued.
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(a) Model 2 curves
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(c) WFSR contours

Figure 5.46: Simulated data, Model 2: (a) the observed curves with two groups, (b) plot
of the functional PCA with the total variance explained by each harmonic, (c) the WFSR
contours, (d) the contour at level 0.005, and confirmatory plots based on WFSRC for (e)
the first 2 components and (f) the observed curves.
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(d) Contour at level 0.005
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(e) Confirmatory plot: first 2 components
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(f) Confirmatory plot: observed curves

Figure 5.46: Continued.
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based on WFSRC for the first 2 harmonics and the original curves respectively. The

first two harmonics of model 3 explain 91.4% of the total variances. Furthermore, the

WFSR contour captures the cluster structure the three clusters. From the low-level of

the WFSR contour at level 0.01, we can clearly see that all the score-points have been

assigned properly in one of the three clusters without any misclassification error.

Real Data

Here, we check the performance of the weighted functional spatial ranks based clustering

algorithm when we consider some real functional data. The real functional datasets are

gun-point and growth datasets that have been extensively analyzed in Section 5.2. Figure

5.48 and 5.49 give the plot of fd curves after smoothing, plot of the functional PCA showing

the total variance explained by each harmonic, the WFSR contours, the contour at level

0.02 and 0.011 and confirmatory plots based on WFSRC for the first 2 components and

the original curves for gun-point and growth data respectively. From the FPCA plot, we

see that the first two harmonics of gun-point data and growth data explain 79% and 94.8%

respectively of the total variances. Moreover, the WFSR contour detects two clusters in

each of the two functional datasets. As we did before, we used a low-level of the WFSR

contour to assign each curve to the proper cluster. Clearly, most of the points have been

allocated properly in one of the two clusters except some points. By using the WFSRC,

we were able to assign the unassigned points to the suitable group.

In Table 5.1 and 5.2 we give the probabilities of misclassification error based on the

different functional data clustering approaches that are considered in this Chapter for the

gun-point and growth datasets respectively. Some of the methods that have been discussed

in Section 5.2 give different rate of misclassification error in every time we use them. This

is due to the difference in the initial partitioning of the data points in every time. To

address this problem and to calculate a fair version of the probability of misclassification

error, we have repeated the algorithms 1000 times, and then we took the average of their
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(a) Model 3 curves
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(b) Functional PCA
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Figure 5.47: Simulated data, Model 3: (a) the observed curves with three groups, (b) plot
of the functional PCA with the total variance explained by each harmonic, (c) the WFSR
contours, (d) the contour at level 0.01, and confirmatory plots based on WFSRC for (e)
the first 2 components and (f) the observed curves.
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Figure 5.47: Continued.
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(c) WFSR contours

Figure 5.48: Gun-point data: (a) plot of fd curves after smoothing, (b) plot of the func-
tional PCA with the total variance explained by each harmonic, (c) the WFSR contours,
(d) the contour at level 0.02, and confirmatory plots based on WFSRC for (e) the first 2
components and (f) the observed curves.
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(f) Confirmatory plot: observed curves

Figure 5.48: Continued.

256



5 10 15

80
10

0
12

0
14

0
16

0
18

0
20

0

t

cu
rv

e

(a) fd curves after smoothing

5 10 15

80
12

0
16

0

PCA function 1 (Percentage of variability 81.3 )

argvals

H
ar

m
on

ic
 1

++++
++++++

++++++++
++++++++

++++++++
+++++++++

++++++++++
++++++++++

++++++++++
++++++++++

+++++++++++
++++++++++++++++++++

++++++++++++++

−−−−
−−−−−

−−−−−−
−−−−−−−

−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−−−−−−
−−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−−−−−−
−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−

5 10 15
80

12
0

16
0

PCA function 2 (Percentage of variability 13.5 )

argvals

H
ar

m
on

ic
 2

++++
+++++

++++++
+++++++

++++++++
++++++++

++++++++
+++++++++

++++++++++
+++++++++

++++++++
++++++++

+++++++
++++++++

+++++++++++++++++++++++

−−−−
−−−−−

−−−−−−
−−−−−−−

−−−−−−−
−−−−−−−

−−−−−−−−
−−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−−−−−
−−−−−−−−

−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

(b) Functional PCA

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

−5 0 5

−
6

−
4

−
2

0
2

4

Harmonic 1

H
ar

m
on

ic
 2

 0.005 

 0.005 

 0.005 

 0.005 

 0.005 

 0.005 

 0.005 

 0.005 

 0.005 

 0.005 

 0.005 

 0.01 

 0.01 

 0.01 

 0.01 

 0.01 

 0.01 

 0
.0

1 

 0.01 

 0.01 

 0.01 

 0.01 

 0
.0

1 

 0.01 

 0.01 

 0
.0

1 

 0.015 

 0.015 

 0.015 

 0.015 

 0.015 

 0.015 

 0.02 

 0.02 

 0.02  0.02 

 0
.0

2 

 0.02 

 0.02 

 0.02 

 0.025 

 0.025 

 0.03 

 0.03 

 0.03 

 0.03 

 0.035 

 0.035 

 0.035 

 0.035 

 0.035 

 0.035 

 0.04 

 0
.0

4 

 0.045 

 0.05 

(c) WFSR contours

Figure 5.49: Growth data: (a) plot of fd curves after smoothing, (b) plot of the functional
PCA with the total variance explained by each harmonic, (c) the WFSR contours, (d)
the contour at level 0.011, and confirmatory plots based on WFSRC for (e) the first 2
components and (f) the observed curves.
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Figure 5.49: Continued.
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correspondence probabilities.

From Table 5.1, which gives the probabilities of misclassification error based on the

different functional data clustering approaches for gun-point dataset, we can see that our

proposed method, the weighted functional spatial ranks (WFSR) gives the smallest rate

of misclassification error (25%) for gun-point data amongst all the other methods.

On the other hand, for the growth dataset, the weighted functional spatial ranks

method gives the third smallest rate of misclassification error which is 10.75%, after

PAM, CLARA and mclust algorithms. Finally, we can conclude that WFSR algorithm

gives optimal and competitive results with different simulated and real functional datasets.
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Chapter 6

Concluding Remarks and Further

Research

6.1 Concluding Remarks

Determining number of clusters in the multivariate and functional data has become one

of the most important issues in very diversified areas of scientific disciplines. In this

study, four different clustering methods are proposed for multivariate and functional data.

We considered the data that represented by a mixture model in which each component

corresponds to a different cluster without any prior knowledge of the number of clusters.

Firstly, for the multivariate case, a forward search algorithm is considered in this thesis,

which is based on nonparametric multivariate spatial rank functions and it is robust in

terms of determining the number of clusters by the data itself. All the previous literature

assumed Mahalanobis distance as the distance measure to be used in the forward search

procedure. It is well known that Mahalanobis distance is invariant under all nonsingular

transformations and it also performs well with the Gaussian mixture models (GMM),

however, it cannot be correctly applied to asymmetric distributions and more generally

to distributions, which depart from the elliptical symmetry assumptions.
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According to the numerical examples that introduced in Chapter 2, it was noticed

that using the forward search based on Mahalanobis distances does not give the efficient

performance. In other words, the forward plots based on Mahalanobis distances did not

give us reasonable results, where they did not detect the clusters in the data coming from

either bivariate or trivariate Laplace and t mixture distributions with either correlated or

uncorrelated variables. That means it is not suitable for the heavy tailed distributions like

multivariate Laplace, Student’s t, Cauchy and Log-normal distributions, and the perfor-

mance is getting worse when higher dimensional data with elliptic symmetry problems are

considered. Moreover, in the traditional forward search the mixture densities f1, . . . , fk

should be from the same family of distributions.

In order to address this limitation, in this study, we proposed a new forward search

methodology based on spatial ranks and volume of central rank regions (Chaudhuri, 1996;

Serfling, 2002) to tackle the problem of heavy tailed mixture distributions with higher

dimensional data. Using nonparametric approaches helps to get techniques which are

less sensitive to the statistical model assumptions, and solve problems such as the heavy

tailed distributed data with high level of correlation among the variables. For last two

decades, spatial ranks are being used in analyzing multivariate data nonparametrically.

They are easy to compute, but do not depend on parameter estimates of the underlying

distributions, which make them robust against distributional assumptions. Koltchinskii

(1997) also proved that the spatial ranks characterize a multivariate distribution. More

robust results can be obtained by using the ranks instead of the original values.

The forward search plots based on spatial ranks show that the algorithm performs

well under heavy tailed mixture distributions with spherical and elliptic symmetry and it

outperforms the forward search based on Mahalanobis distances for non-normal mixture

distributions. The modified forward search plots based on volume of central rank regions

outperforms the forward search based on Mahalanobis distances and spatial ranks as illus-
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trated in the numerical examples. More visually clear results have been obtained by using

the volume of central rank regions, since it gives forward plots with a clearer structure

of clusters. The proposed algorithms are computationally easy and straightforward. In

all of numerical examples, the mixture densities f1, . . . , fk are from the same family of

distributions. We should mention that it is not necessary to assume them to be coming

from the same parametric family as we are not estimating any parameters in our proposed

visual tool. This is one of the greatest advantages of the proposed method.

It is well known that spatial ranks are invariant under orthogonal transformations,

but they are not invariant under general affine transformations of the data and hence the

proposed algorithms are not affine invariant. To make the algorithms affine invariant,

one may look for affine invariant versions of spatial ranks (see for example, (Chakraborty,

2001)) and follow the same algorithm to construct the forward search plot. To keep the

simplicity of the algorithms and to save on computational time, we refrained from using

affine invariant versions of spatial ranks in this work. Using affine invariant ranks may

improve the results if the scales of different clusters are not similar.

In addition, we proposed another multivariate clustering method in this study. It is

a new nonparametric clustering method based on different weighted spatial rank (WSR)

functions. They are completely data-driven and easy to compute without any need to

parameter estimates of the underlying distributions, which make them robust against

distributional assumptions. The WSR is more accurate in the purpose of intuitive visu-

alization since we can easily determine the number of clusters from the weighted ranks

contours for a low-dimensional input space, using dimension reduction. The main idea

behind WSR is to define a dissimilarity measure locally based on a localized version of

multivariate ranks. As a result, the proposed method can be used to determine the as-

sumed number of clusters, and to assign each observation to its cluster. Selection of a

proper weight function will lead to better identification of clusters when the data do not
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follow any standard parametric distribution.

We have considered parametric and nonparametric weights for comparison. We have

also introduced some WSR functions based on different robust weights like Mallow weight

that has been introduced by Simpson et al. (1992) and Naranjo and Hettmansperger

(1994). Moreover, many other different kernel weight functions have been considered.

From the numerical examples, it was noticed that more visually clear results have been

obtained by using the WSR functions based on the Gaussian kernel weights. The weighted

ranks contours based on Gaussian weights are more accurate and can fit better to the

shape of the clusters structure. In many of the numerical examples, the weighted ranks

contours based on Gaussian weights captured each observation carefully and assigned it

in the true group with very small probability of misclassification error.

As an extension work of using the ordinary and weighted spatial ranks, we proposed

two different clustering methods for functional data. The first method is an extension to

the forward search based on spatial ranks that we proposed for the multivariate case, and

it is used to identify the number of clusters in the underlying functional data. So, we can

consider this method as a new raw-data method since we do not use any preprocessing

functional data steps, and we do not need to perform a data registration or a dimension

reduction before clustering. In the second method, we extended the WSR method that has

been introduced for the multivariate case to the functional data analysis. The proposed

weighted functional spatial ranks (WFSR) method is considered as one of the 2-stage

methods, or the filtering methods, where it first approximate the curves into some basis

functions and reduce the dimension using the functional principle components analysis

(FPCA) and then perform the clustering using the basis expansion coefficients and the

functional principle components scores. The WFSR method is used to determine the

assumed number of clusters, and assign each curve to its cluster. Both methods are

completely data-driven and easy to compute without any need to estimate parameters of
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the underlying distributions, which make them robust against distributional assumptions.

Different numerical examples from simulated and real data have been given in order to

check the reliability of the proposed methods. Comparison between the existing methods,

using the probability of misclassification error, has been considered as well. The results

showed that the two proposed methods give a competitive and quite reasonable clustering

analysis.

6.2 Further Research

As we mentioned before, in the forward search algorithm, when we consider data with a

large number of clusters, then the forward search plots may produce too many peaks and

makes it very difficult visually to determine the number of clusters and the cluster sizes.

The future of our work includes study some formal procedures to estimate the number of

clusters from this plot. With a formal procedure, we should able to validate the estimate

against the model assumptions. One of the suggested procedures to determine the number

of clusters is to find the number of peaks computationally in the forward plot based on

the volume of central rank regions. This can be done by using some distance measure

to calculate the distance between each two successive values of the volume of central

rank regions, then we need to find the global maximum of these distances considering the

sudden increase in the values of volume at the end of the search.

Another future research direction will be on proposing some nonparametric multivari-

ate methods based on ranks to improve the traditional forward search algorithm in order

to solve problems of principal components analysis, and discriminant analysis; with study

the mathematical properties of the proposed methods as well as their implementation de-

tails with performing some simulations to illustrate their performances for various kinds

of data.

On the other hand, we do not have any formal procedure to estimate the number of
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clusters from the WSR contour plot at the moment, and we are looking into that problem

as a future research project. Using some computational procedure, we may able to validate

the estimate against the model assumptions and get an automated clustering technique.

In addition, the future of our work includes the possible extension of the weighted spatial

ranks, to consider Lp ranks in general and using Lp distance instead of the Euclidean

norm. This may give better results in different type of data, which requires performing

some simulations to check the performances for various kinds of data. Moreover, we may

use some other criterion and methods like cross validation for the purpose of choosing the

optimal value of p.

Furthermore, we consider using the spatial median, Lp median, spatial ranks and

Lp ranks as cluster-analysis stopping rules in order to determine the optimal number of

clusters in the multivariate data set. Determining the optimal value of p can be considered

an important point in order to get the most efficient stopping-rule.

In addition, as discussed earlier, the proposed functional spatial ranks can be applied

for both of regularly and irregularly sampled curves, since the functional spatial ranks

are supposed to be calculated in general concept using the integrations instead of the

summations quantities, then with a formal procedures and methods we can estimate the

integral functions and get the estimated values of the functional spatial ranks. However,

in this study we only consider the regularly sampled curves in order to keep the simplicity

of the functional forward search algorithm and to save on computational time, but we are

looking into the irregularly sampled curves case as a future work.
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