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Abstract

The aim of this thesis is to study stellar evolution and asteroseimology of red-giant
stars mainly from a modelling point of view, in particular the impact on core-
convective-burning stars of adopting different mixing schemes. Thanks to NASA
space telescope Kepler, asteroseismology of thousands of giants provided us new
information related to their internal structure, that can be used for finding con-
straints on their cores. I used several stellar evolution codes (MESA, BaSTI, and
PARSEC) to investigate the effect of different mixing schemes in the helium-core-
burning stars. Comparing them with observed stars, I concluded that standard
stellar models, largely used in literature, cannot describe the combined observed
distribution of luminosity and period spacing. I then proposed as solution a pene-
trative convection model with moderate overshooting parameter. Additional tests
on Kepler’s open clusters (NGC6791 and NGC6819) and secondary clump stars,
allowed me to revised to my mixing model.
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Introduction

In recent years, seismology of red-giant stars has become an extraordinarily fruitful
field in stellar astrophysics, mainly thanks to the availability of data of unprece-
dented quality from the space-based telescopes Kepler and CoRoT. Red-giant stars
have very rich frequency spectra that provide, for the first time, direct constrains on
their internal structures, which are inaccessible to traditional observations. Using a
combination of theoretical models, photospheric and asteroseismic constraints, it is
now possible to make a step forward in the study of the physical processes that occur
in their interiors and in the determination of their global parameters (like mass, age,
distance, and metallicity). This has strong implication on both our understanding
of stellar physics and on the characterisation of stellar populations in our Galaxy.

This thesis is mainly focused on red giants in their helium-core burning phase. The
helium-core-burning (HeCB) phase of low-mass stars affects many aspects of their
subsequent evolution, and has therefore been the subject of numerous studies in
the literature. In particular, the red clump (RC) is a well-known feature in the
Hertzsprung-Russell diagram – as well as the color-magnitude diagram – of simple
and composite stellar populations, and is associated to the low-mass, metal-rich stars
in the He-core-burning phase (Cannon, 1970). The RC plays a key role in many
fields of astrophysics: its luminosity, for instance, can be used as a distance and age
indicator of clusters and nearby galaxies, while the observed chemical composition
of its members is useful to investigate the chemical evolution of galaxies (e.g., see
Girardi & Salaris, 2001; Catelan, 2009; Nidever et al., 2014).

Current models of the internal structure and evolution of such stars, however, still
suffer from systematic uncertainties which are due in most cases to our limited un-
derstanding of the physical processes in stellar conditions (energy transport and
nuclear processes). In particular, predictions of stellar lifetimes in the HeCB phase
are strongly dependent on the (poorly constrained) amount of mixing applied be-
yond boundaries of convective regions and on the adopted definition (and correct
implementation) of such boundaries (e.g. see Chiosi 2007; Castellani, Giannone &
Renzini 1971a; Gabriel et al. 2014; Bressan et al. 2015). Crucially, our ability to
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4 Introduction

test models has been limited so far by the lack of observational constraints which
are specific to the internal structure of evolved stars.
Asteroseismology of thousands of red giants observed by CoRoT (Baglin et al., 2006)
and Kepler (Borucki et al., 2010) has changed the situation. We can now use the
pulsation frequencies to place tight constraints not only on the fundamental stellar
properties, but also to probe their internal structure (see e.g. Chaplin & Miglio 2013
and references therein). In particular, as presented in Montalbán et al. (2013), the
frequencies of oscillation modes detected in HeCB stars are sensitive diagnostics of
the chemical and thermal stratification of the energy-generating core, providing us
with a novel and independent constraint, which is specific to the core structure of
HeCB stars.
The main aim of this thesis is to use these new seismic constrains in order to take
a significant step forward in the characterization and quantification of uncertainties
in stellar modelling, with the final goal to produce accurate models.

This thesis is organized as follows:
The first part presents an overview of the foundations of stellar structure, evolution,
and pulsation theory.

• In Chapter 1 I will give a brief introduction to low- and intermediate-mass
stars, which are the main subject of this thesis. I will describe the evolution
of their internal structure and the main physical processes involved.

• In Chapter 2 I will introduce the theory behind stellar oscillations. I will derive
the general equations that describe them, and I will then describe the evolution
of the oscillation properties of a low-mass stars, from the main sequence to the
early asymptotic giant branch.

In the second part I focus on the original results obtained in my work.

• The first part of Chapter 3 is dedicated to the description of the micro and
macro physics used as an input in the stellar evolution models presented in this
thesis. I will introduce my investigation on the near-core mixing in helium-
core-burning stars, giving an exhaustive review of the possible mixing treat-
ments that various codes adopt during this phase. The second part concerns
the description of the tools I used to extract seismic information from stellar
models (large separation of the acoustic modes and small separations δ01 and
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δ02). The discussion includes few practical application of the technical work
described in this chapter.

• Chapter 4 describes the work presented in Bossini et al. (2015). I will show
how in low mass stars, classical parameters (luminosity) can be combined with
global seismic attributes (period spacing) in order to constrain the properties
of the mixed core during the helium-core burning phase, discriminating be-
tween competing models. I will outline an optimum model able to describe
simultaneously the observed distribution of luminosity and period spacing in
the APOKASC sample.

• Chapter 5 aims to continue the work started in Chapter 4, testing model
predictions using the period spacing of red clump stars observed in the old-
open clusters monitored by Kepler. I will also evaluate the uncertainties that
chemical composition, mass, and 12C(α,γ)16O reaction rates introduce in the
prediction of the period spacing.

• The last chapter contains my preliminary results on the study secondary clump
stars. The particular behaviour of period spacing during the He-core burning
as a function of mass is strongly dependent on the core mixing during the main
sequence. This allows me to investigate and calibrate the size of the mixed
core also for these phases, which is one of the major current uncertainties in
stellar models.
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Theoretical Background





Chapter 1

Stellar Evolution of Low- and
Intermediate-Mass Stars

The main subject of this thesis is the study of stars with masses belonging to the
interval between 0.45 − 0.55 and 5 − 6 solar masses (M�).In the first part of this
chapter I will briefly introduce some of the physical processes that occur in such stars
in order to outline the four fundamental equations of stellar structure. These
define a system of differential equations that specifically designed codes need to solve
to predict the structure and evolution of stars, along with a set of ordinary relations
between the thermodynamic variables involved (i.e pressure, density, temperature,
and mean molecular weight).
The four equations of stellar structure:

1 equation of hydrostatic equilibrium (conservation of momentum)

dP (r)

dr
= −GM(r)ρ

r2
. (1.1)

2 mass continuity equation (conservation of mass)

dM(r)

dr
= 4πr2ρ. (1.2)

3 equation of energy transport (temperature stratification)
radiative

dT (r)

dr
=

3

16πacG

κρ

r2T 3
L(r). (1.3)

convective
dT (r)

dr
=

Γ2 − 1

Γ2

T

P

dP (r)

dr
. (1.4)
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10 Stellar Evolution of Low- and Intermediate-Mass Stars

4 energy equation (conservation of energy)

dL(r)

dr
= 4πr3ρ(εnuc − εν + εg), (1.5)

where P is the pressure, ρ is the density, T is the temperature, L is the luminosity,
Γ1 is an adiabatic coefficient, ε terms are the energy generation rates from different
sources, M and r are respectivelly the mass and radius coordinates, and G, a, and
c are three physical constants (Gravitational constant, radiation constant, and light
speed). Explanations of the single terms will be given in the following paragraphs.
Based on their mass, we can divide the stars studied in this thesis in two main
categories (according to the definition given by Kippenhahn, Weigert & Weiss,
2013, from now on KWW):

low-mass stars (LMS). From 0.45− 0.55 to 1.80− 2.20 M�. Stars that form
electron-degenerate helium cores after the end of hydrogen-burning phase and
ignite the helium nuclear reaction in a highly-degenerate condition.

intermediate-mass stars (IMS). From 1.80−2.20 to 5−6 M�. Stars that can
ignite helium nuclear reactions in non-degenerate conditions, but, like LMS,
terminate their evolution as carbon-oxygen white dwarfs.

The limits given are slightly dependent on the initial chemical composition of the
star, i.e. the helium mass fraction Y and the metallicity Z (mass fraction of all
the elements with atomic number greater than helium). It must be notice that the
upper limit given to the IMS is referred to the range of interest of this thesis, while,
in reality, masses up to ∼10 M� are still considered intermediate masses.
Additional categories are the very-low-mass stars (VLMS), with masses smaller
than 0.45 − 0.55 M�, and massive stars (M > 10 M�). Their characteristics,
however, will not be (or just partially) discussed here. I refer an interested reader
to KWW.

1.1 Mechanic Equilibrium

1.1.1 Hydrostatic Equilibrium

Stars usually maintain a status of equilibrium between the expanding and collapsing
forces, called hydrostatic equilibrium. For a spherical non-rotating and non-magnetic
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star, the hydrostatic equilibrium requires a perfect balance between the pressure-
gradient forces and the gravity forces in each point of its structure:

dP

dr
= −GM(r)

r2
ρ. (1.6)

Deviations from eq. 1.7 generate a restoring force with acceleration

d2r

dt2
1

ρ

dP

dr
+
GM(r)

r2
, (1.7)

from which we can derive a characteristic timescale, called hydrostatic timescale
(τhydr), by imposing equal to zero one of the two terms in the right part of the
equation. The hydrostatic timescale indicates the time necessary to a sound wave
generated in the centre to reach the surface and is equal to the time of free fall
(τff), obtained imposing to zero the pressure term in eq. 1.7, or, alternatively, to the
explosion timescale (τexpl, gravity term to zero). The hydrostatic timescale is equal
to:

τhydr =

√
3

2π

1

Gρ̄
, (1.8)

where ρ̄ is the mean density of the star. For the Sun, τhydr is about 27 minutes, while
a small deviation of the order of 1% from the hydrostatic equilibrium generates
an acceleration that contracts (or expands) the stellar radius of about 10% in a
timescale of hours (Chiosi, 2008). Since a similar situation has never been observed,
the condition of hydrostatic equilibrium in stars is generally fulfilled. Despite for
few exceptions (collapsing protostars and evolved iron-core stars), τhydr is several
orders of magnitude smaller than any timescales corresponding to radius changes in
stellar evolution theory (e.g the ascent on the red giant branch, see section 1.4.3).
Therefore we can consider that a star evolves through approximatively continuous
states of hydrostatic equilibrium in its evolution.

1.1.2 Mass Distribution

The second equation of stability (mass continuity equation) simply states that the
total mass M remains constant with time and is given by the integration of the
density ρ over the volume:

M =

∫ R

0

4πr2ρdr. (1.9)
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In differential form it can be written as:

dM(r)

dr
= 4πr2ρ, (1.10)

which means that a variation of radius in a spherical shell, at fixed time, induces a
variation of mass that maintains constant their ratio. Equation 1.10 is particularly
useful to change the system of coordinates from Lagrangian (independent variables
mass and time) to Eulerian (independent variables radius and time):

d

dM(r)
=

d

dr

1

4πr2ρ
. (1.11)

1.1.3 Equation of State

An equation of state (EoS) is an expression that describes the behaviour of pres-
sure in function of the other thermodynamic quantities, like temperature T , density,
and mean molecular weight µ (average mass of the particles in a gas divided by the
atomic mass unit). In stellar evolution, we can encounter several types of equation
of states, specifically designed to describe particular gas conditions. In the mass
interval of the LMS and IMS stars, we are mainly interested in these EoS:

perfect non-relativistic gas. In a non-relativistic gas of ions and electrons,
the pressure is simply described by the Boyle’s law:

P =
kBρT

muµ
. (1.12)

This EoS is typical of stellar cores with nuclear-burning and the envelopes.

degenerate non-relativistic gas. The EoS of a degenerate gas of electrons
follows the Fermi-Dirac statistics and the expression for pressure results to be
dependent only on the density. Therefore any changes in temperature will not
impact the pressure. The expression is:

Pe ∝ ρ5/3, (1.13)

where the power equal to 5/3 indicates that the gas in non-relativistic. The
complete degenerate gas of electrons is an extreme case, nevertheless, it can
be used as a good approximation in case of high e−-degeneracy scenarios.
Moreover, the total gas pressure is given by the sum of the electron pressure
with the ion pressure, that is usual in the perfect gas condition. For stars that
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belong to the LMS and IMS mass interval, this condition is typical of their
cores during the red-giant branch, asymptotic-giant branch, and white dwarf
evolutionary phases (see sections 1.4.3 and 1.4.6).

gas of photons. The radiative pressure is described by a relativistic gas of
bosons and its expression depends only on the temperature:

P =
1

3
aT 4, (1.14)

where a is the radiation density constant. If we consider a system with a
mixture of radiation and particles behaving like an ideal, the total pressure
will be given by the sum of eq. 1.12 and 1.14 (particle and radiation parts).
The radiative pressure will be particularly relevant at high temperature, where
the T 4 term in the radiative parts dominates, or at low density, that only affects
the particle part.

1.2 Energy Transport in Stellar Interiors

From the centre to the surface of a star, there is a small, usually negative, gradient
of temperature dT

dr
. Therefore, stars have mechanisms to transport heat from hotter

to the colder regions. The main types of energy transport are:

• radiation. Energy is carried outward by photons.

• conduction. Collision of electrons and nuclei.

• convection. Energy is transported by macroscopic movements of material.

In addition, there is also a fourth type: the energy loss by neutrino emission, that
becomes relevant in electron-degenerate condition (e.g at the final stage of the RGB
phase and at the start of the helium flash, see section 1.4.4). Since the cross section
of the neutrinos with the matter is very low, they escape easily from the star.
Each of these mechanisms is responsible for a component of the local flux of energy.
The determination of the dominant mechanism will give fundamental information
about thermodynamic and chemical properties in each point of a stellar structure,
like for instance the local dT

dr
. The conductive energy transport is usually relevant

only in degenerate conditions (typical e.g. of the red giant branch star cores, section
1.4.3), while for the other cases its contribution can be easily neglected (KWW).
In the remaining cases, usually the only two important mechanisms present are
radiation and convection.
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1.2.1 Radiative Energy Transport

The energy transport by radiation in stars is characterized by extremely frequent
processes of emission, absorption, and scattering of photons that results in a net flux
of energy from the hotter to colder layers. The expression that describes this flux
can be written in form of diffusive equation:

Frad = −4acT 3

3κρ

dT

dr
, (1.15)

where c is the speed of light, T is the temperature, ρ the density, and κ is the mean
absorption coefficient (or opacity, radiative cross section per unit mass averaged
over frequency). The equation 1.15 is built under the condition that the mean free
path of the photons is small compared to the scale of variation of temperature and is
generally fulfilled over the entire structure of a star, with the only exception for the
most external layers. The time necessary to transport the photons from the centre
to the surface is of the order of about 105 years.
Equation 1.15 can be also written substituting the flux with the local luminosity l

l(r) = −4πr2 4acT 3

3κρ

dT

dr
= −16πac

3

r2T 3

3κρ

dT

dr
. (1.16)

Rearranging the formula in order to get dT
dr
, and introducing the logarithmic gradient

of temperature ∇ = d lnT/d lnP , we find:

∇rad = − 3

16πacG

κlP

mT 4
. (1.17)

∇rad is a fictitious gradient of temperature that represents the value that the actual
gradient temperature ∇T would have if all the energy was transported by radiation.
It is easy to notice that ∇rad increases in regions of strong energy generation (which
is typical of the strong nuclear burning regions), and of high opacity (which is typical
of the colder outer regions).

Opacity

The efficiency of radiative transport is strongly related to the value of the opacity,
which, in turn, depends on the mechanisms of interaction between photons and
matter. The main mechanisms of photon-particle interaction are:

Thomson scattering. A photon interacts with a free electron and modifies
its direction without changing the frequency. The contribution of the Thomson
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scattering to the opacity (κThs) is therefore independent from the frequency of
the radiation and is given by the simple equation:

κ = 0.2(1 +X), (1.18)

where X is the mass fraction of hydrogen.

free-free absorption. In the proximity of a nucleus, a photon is absorbed by
an electron, that increases its kinetic energy.

bound-free absorption. A bound electron absorbs a photon and becomes
free.

bound-bound absorption. A bound electron absorbs a photon, moving into
a higher-energy state.

At a given frequency ν, the opacity is the sum of the contribution of the single
processes:

κT (ν) = [κff(ν) + κbf(ν) + κbb(ν)] ·
(

1− e
−hν
kBT

)
+ κThs, (1.19)

where the exponential term represents the effect of the stimulated emission. An
atomic system in a radiation field of frequency ν , in fact, is stimulated to emit
photons at the same frequency of the field, adding a negative contribution to the
total opacity.
The correct determination of the single contributions to the opacity, however, re-
quires complex calculations, since each process may be more or less efficient in
different regions of the star, according to the thermal proprieties of the matter and
the chemical mixture. Every element has different absorption and emission coef-
ficients, which can also vary with temperature, density, and ionization state. In
general the heavier elements are associated to higher opacities, therefore, also their
abundance plays a fundamental role to determine the overall opacity, as we will see
in the helium-core-burning and asymptotic giant branch stars (sections 1.4.5 and
1.4.6). For these reasons, nowadays stellar evolution codes use interpolation algo-
rithms over pre-compiled tables in order to estimate the opacity value (see section
3.1.3 for details).
Assuming a Plank distribution of the radiative energy B(ν, T ), the total opacity can
be expressed by the mean Rosseland opacity equation:

κ =

[∫
1

κT (ν)
dB(ν,T )

dT
dr∫ dB(ν,T )

dT
dr

]−1

. (1.20)
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1.2.2 Conductive Energy Transport

The conductive energy transport is caused by the collisions between the particles in
thermal motion. Its efficiency is usually negligible compared with the mechanism
of radiation and convection, since the high densities of the stellar interiors guar-
antee that the particles have a mean free path significantly smaller than photons.
However this condition is not fulfilled anymore in a electron-degenerate gas, typical,
for instance, of LMS and IMS cores during the red-giant branch phase. The high
degeneracy forces, in fact, the electrons in higher energy states since the lower are
all occupied, with the consequence that their mean free path increase substantially.

The conductive flux can be expressed as a diffusive equation of conductive coefficient
Dcond:

Fcond = −Dcond
dT

dr
. (1.21)

1.2.3 Convective Energy Transport

Convection is a phenomenon that involves macroscopic movements of material and
may affect large portions of a star. The simplest and most popular theory describing
convective heat transport in stars is the Mixing Length Theory (MLT).

Consider a small parcel of matter in a perfect chemically homogeneous gas. If a
small quantity of energy is introduced in the parcel, its temperature slightly rises
by a quantity δT . The variation of temperature will lead the pressure to increase
too. As a consequence, the density tends to decrease by δρ in order to restore the
equilibrium of pressure between the parcel and the rest of the medium. The lower
density generates a buoyancy force that pulls the parcel outwards for a distance of the
order of ∆r. Maintaining the equilibrium of pressure, the parcel will expand almost
adiabatically. After the parcel has travelled a distance ∆r we have two possible
scenarios: if the density of the parcel is lower than surroundings, then (1) the parcel
will continue to rise (the medium is convectively unstable), in the opposite case, if
the density is higher, (2) the parcel will tend to sink back to the initial position
(the medium is convectively stable). Therefore, convection is established when the
gradient of density of the parcel is steeper than the one of the surroundings or, in
terms of temperature, if the temperature gradient of the parcel is:∣∣∣∣dTdr

∣∣∣∣
parcel

<

∣∣∣∣dTdr
∣∣∣∣
medium

. (1.22)

Supposing that the parcel can only release energy to the surroundings by radiation
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or conduction, its gradient of temperature will be similar to:(
dT

dr

)
s

=
Γ2 − 1

Γ2

T

P

dP (r)

dr
, (1.23)

where Γ2 is one of the adiabatic exponents. This gradient, known as adiabatic
gradient of temperature, can be written in logarithmic form as

∇ad =
Pδ

TρcP
, (1.24)

where cP is the specific heat capacity at constant pressure and δ is

δ =

(
d lnρ
d lnT

)
P

. (1.25)

Similarly to the radiative case, ∇ad is a fictitious term that represents the gradient of
temperature that a star would have if all the thermodynamic transformations were
in adiabatic form. If all the energy is transported by radiation, then the temperature
gradient of the medium (right term in eq. 1.22) would be equal to ∇rad (radiative
region, ∇T = ∇rad). Therefore, if we associate the temperature gradient of the
parcel and the medium respectively to ∇ad and ∇rad, the sufficient condition for
convection in an homogeneous gas is (Schwarzschild criterion):

∇rad > ∇ad. (1.26)

In case of inhomogeneous gas, a gradient of µ is also present and the eq. 1.26
becomes (Ledoux criterion):

∇rad > ∇ad +
χµ
χT
∇µ, (1.27)

where ∇µ = ∂ lnµ/∂ lnP , while χµ and χT are two of the set of three structure
variables:

χT =

(
∂lnP

∂lnT

)
ρ,µ

, χρ =

(
∂lnP

∂lnρ

)
T,µ

, χµ =

(
∂lnP

∂lnµ

)
T,ρ

. (1.28)

If the condition for convention is fulfilled (convective region), the established
motion of material will participate to the transport of heat from the hotter and
deeper layers of a star to the colder and outer layers. The convective region will
modify the temperature profile in order to reach an equilibrium between the radiative
and convective transport and the actual ∇T will assume a value between ∇rad and
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∇ad (super-adiabaticity). In the deeper convective regions the level of super-
adiabaticity is expected to be small enough to consider with a good approximation
∇T = ∇ad.

Mixing Length Theory

In the regions where the super-adiabaticity is not negligible, like in the most external
and coldest parts of the stars, the full treatment by MLT must be taken in account
in order to determine the actual ∇T . To do that we need to derive the total flux of
energy that will be given by the sum of the radiative and convective contribution
(from eq. 1.16):

F = Frad + Fconv =
4acT 4g

3κP
∇rad (1.29)

(in the hypothesis that the conductive flux is negligible). g is the local gravity. Since
Frad was been already derived in the paragraph 1.2.1 (eq. 1.15), the only expression
that has to be determined is the convective flux. In analogy with the conductive
transport, we can use a diffusive equation to describe the convective flux. Before
dissolving, a convective element will move of a average quantity λMLT with a mean
velocity v̄, generating a flux equal to

Fconv =
1

2
ρv̄cPT

λMLT

HP

(∇T ,medium −∇T ,parcel) (1.30)

where Hp is the pressure of scale

1

Hp

= −dlnP

dr
=
ρg

P
(1.31)

λMLT is usually taken equal to a factor αMLT multiplied by the pressure of scale. αMLT

is an arbitrary value, normally calibrated on the Sun (see section 3.1.6). However, we
still need to find an expression for the mean velocity v̄. Given a convective element
that shows a density excess of ∆ρ with respect to the surrounding density ρ0, it will
be affected by a buoyancy force per unit of volume:

fB =

(
−g − 1

ρ

∂P

∂r

)
∆ρ ≈

(
−g0

∆ρ

ρ0

)
∆ρ = −g∆ρ (1.32)

If the convective element, initially at rest, is accelerated by fB, after travelling a
distance ∆r, the new force that acts on it will be:

fB = −g∆ρ(∆r) (1.33)
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Using eq. 1.33, it is possible to calculate the mean work per unit of volume necessary
to move the element by averaging on ∆r and introducing λMLT:

W̄ = −1

8
∆ρ(λMLT)λMLT (1.34)

In MLT it is claimed that that during the movement only half of W̄ is converted in
kinetic energy, therefore the mean velocity of the elements will be:

1

2
ρv̄2 =

1

2
W̄ =⇒ v̄2 = −1

8

∆ρ(λMLT)

ρ
λMLT (1.35)

Introducing the gradient of temperature and the expression for v̄ in eq. 1.30, the
convective flux will therefore become

Fconv =

√
2

8
ρcPT

√
gδ
λMLT

2

H
3/2
P

(∇T ,medium −∇T ,parcel)
3/2 (1.36)

This equation, combined with the expression for the total and radiative flux, leads
to a relation between ∇rad, ∇T ,medium, and ∇T ,parcel

∇rad = ∇T ,medium +
3

16
√

2ac

cPκδ
1/2ρ5/2gλMLT

2

P 1/2T 3
(∇T ,medium −∇T ,parcel)

3/2 (1.37)

that can be simplified, defining the convective effiency Γ (.i.e the ratio between
the excess of energy of a parcel before dissolving in the medium and the energy lost
during its motion):

Γ =
3

4ac

cPκρ
2

T 3
v̄
V

A
=

1

12
√

2ac

cPκδ
1/2ρ5/2gλMLT

2

P 1/2T 3
(∇T ,medium −∇T ,parcel)

1/2 (1.38)

where V/A is the ratio between volume and surface of the parcel and is equal to
2/9λMLT. Equation 1.37 will therefore become:

∇rad = ∇T ,medium +
9

4
Γ(∇T ,medium −∇T ,parcel) (1.39)

or
Γ =

9

4

∇rad −∇T ,medium

∇T ,medium −∇T ,parcel

(1.40)

It is obvious that we need estimate ∇T ,parcel, in order to determine ∇T ,medium, which
is the actual ∇T of the star. This gradient is related to the adiabatic gradient and
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the convection efficiency by the equation:

Γ

1− η
=
∇T ,medium −∇T ,parcel

∇T ,parcel −∇ad

(1.41)

where η is a corrective factor that consider the of energy production in the parcel.
Since we are interested in the external regions of the stars, where no relevant energy
production is present, η can be considered negligible. Combining equations 1.40 and
1.41 together, is possible to estimate the gradient of temperature in any situation.
For the extreme cases, we can find again:

• for an high convection efficiency Γ→∞, ∇T ,medium = ∇T ,parcel → ∇ad.

• for a low convection efficiency Γ→ 0, ∇T ,medium = ∇T ,parcel → ∇rad.

1.3 Energy Sources

Together with the mechanical equilibrium, the thermal equilibrium is also necessary
to guarantee the stationary state of stars. Since a gradient of temperature is always
present in the stellar interiors (except in particular situations), it is therefore known
from the previous section that an energy flux is established. Given an element of
mass with volume V and surface area A, the thermal equilibrium in stars states
that the energy is radiated at its surface at the same rate at which is produced or
transported in its interior: ∮

A

F · dA =

∫
V

ρεdV, (1.42)

where ε represents the total energy generation rate per second per gram in the
volume dV .
Applying the divergence theorem, we have:

∇ · F = ρε. (1.43)

For a spherical symmetric star, eq. 1.43 becomes:

1

r2

d

dr

(
r2F (r)

)
= ρε, (1.44)

that can be written in terms of luminosity gradient (L(r) = 4πr2F (r)):

dL(r)

dr
= 4πr2ρε. (1.45)
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The main sources of energy that occur in stars are:

• Nuclear Energy (εnuc)

• Gravitational Energy (εgrav)

• Energy loss by neutrinos (εν)

Each of them gives a contribution to the overall energy generation rate ε:

ε = εnuc + εgrav − εν (1.46)

1.3.1 Nuclear Energy

The internal thermal conditions of stars allow nuclear reactions to take place.Nuclear
reactions are divided in two categories: reactions that generate significant amounts of
energy to impact on the stellar evolutionary timescales, and the reactions important
mainly for the synthesis of new elements.
A nuclear burning consists in one or many reactions that belong to the two categories.
In LMS and IMS we can identify two major burning events (the hydrogen and
the helium burning), that, as we will see, are confined in stellar cores or in shells,
depending on the evolutionary stage.

Hydrogen burning

Hydrogen burning is present for the entire life of a LMS and IMS star, with the only
exception of stellar formation phases (pre-main sequence, PMS) and white dwarfs
(WD). During the burning, the hydrogen is converted into helium by two main series
of reactions: the proton−proton chain (pp-chain) and the CNO cycle.
The pp-chain consists in a direct fusion of four protons in a nucleus of helium:

p+ p → 2He→ 2H + e+ + νe × 2

p+ 2H → 3He + γ × 2

3He + 3He → 4He + 2p (1.47)

This group of reactions is also indicated by PP1, in order to distinguish it from
two alternative channels (PP2 and PP3) that might appear when a considerable
amount of helium is present in the medium. Nevertheless, the relative efficiency of
the three pp-chains changes with increasing temperature from PP1 to PP3.
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The CNO cycle, instead, uses C, N, and O as catalysts to burn four protons into He
(indirect channel). The cycle consists in several reactions that destroy and recreate
the catalyst elements. The main cycle of this nuclear burning (CNO-I) is:

12C + p → 13N + γ

13N → 13C + e+ + νe

13C + p → 14N + γ

14N + p → 15O + γ

15O → 15N + e+ + νe

15N + p → 12C + 4He (1.48)

During the burning the overall abundance of the heavy elements involved remains
unchanged, however the single element abundances reach asymptotic values, accord-
ing to the relative efficiencies of the reactions. In addition to the main cycle, there
are additional branches of reactions connected to it. Moreover, the CNO cycle can
start from any reaction.

Once we compare the two nuclear burnings, we can see that the pp-chain is dominant
in a range of temperature ∼ 0.6−1.5·107 K, while the CNO cycles start to be efficient
at T > 2 · 107 K.

In terms of energy generation rates, the two main H-burning processes are propor-
tional to:

εpp ∝ ρX2
1HT

4, (1.49)

εCNO ∝ ρX1HX12CT
18, (1.50)

where X1H and X12C are respectively the mass fraction of hydrogen and 12C. In
the stars where CNO cycle is dominant, εnuc is so high that the energy transport
by radiation alone is not able to transport all the energy (like in the pp-chain), and
core-convection sets in.

Helium burning

Helium burning takes place in the later phases of the LMS and IMS evolution (as
well as in massive stars), in particular during the helium-core-burning (HeCB) and
the asymptotic giant branch phase (AGB). It consists of two main reactions chains:
the triple-alpha reaction (Eq.1.51) and carbon-to-oxygen reaction (12C(α,γ)16O).
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The triple-alpha reaction converts three nuclei of 4He (i.e. α particles) in 12C:

4He + 4He → 8Be
8Be + 4He → 12C∗ → 12C + 2γ (1.51)

12C(α,γ)16O, instead consists in an α-capture by a nucleus of 12C:

12C + 4He→ 16O + γ

These two reactions may act simultaneously with an efficiency that depends on
the evolutionary phase of the star. The helium burning starts to be efficient at
temperatures higher than 108 K, and the energy generation rates (especially the
triple-α) have an extremely high dependence on temperature :

ε3α ∝ ρ2X3
4HeT

40 (1.52)

ε12C(α,γ)16O ∝ ρX4HeX12CT
20. (1.53)

This is the reason why the core where helium burning takes place is very compact
and convective.

1.4 Evolutionary Phases

During its life, a star evolves through several stages, in which the internal structure
changes. The evolution can be followed on different diagrams. For example, the
Hertzsprung-Russell diagram (HRD) describes how the surface luminosity (L)
and the effective temperature Teff vary with age (figure 1.1), while theKippenhahn
diagram shows schematically the evolution of the internal structure with age (figure
1.2).

In the following paragraphs I will give an overview of the evolutionary stages that
Low- and Intermediate-Mass Stars undergo.

1.4.1 Main Sequence

Stars spend most of their life in the Main Sequence (MS, figure 1.3). During
the Main Sequence, the hydrogen burning provides the nuclear energy necessary to
maintain the stability of the star. In stars where the CNO cycle is the main burning
channel, the core tend to become convective, since the radiation is not sufficient to
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Figure 1.1: Evolutionary track of 1 M� star with solar chemical composition on the Hertzsprung-
Russell diagram from the Main Sequence to the first thermal pulse on the Asymptotic Giant Brunch.
The model is computed using the publicly available stellar evolution code MESA, Paxton et al.
2011, 2013, 2015

carry outward the energy produced by the nuclear reactions. On the contrary, stars
where pp-chain is the dominant nuclear burning develop a radiative core.
As I previously mentioned in section 1.3, the factor that mostly influences the ef-
ficiency of the nuclear burning is the temperature, which, in turn, has a strong
dependence on the initial mass of the star. The transition between the two H-
burning channels is located in the LMS interval, in particular stars with masses
around 1.2− 1.3 M� start to develop CNO-burning convective cores, whose size in-
creases with the stellar mass. Stars with masses higher than 1.2− 1.3 M�, however,
still have a radiative region above the mixed core where pp-chain dominates.

1.4.2 Sub Giant Branch

Once the hydrogen in the core is depleted, the nuclear reactions in the centre stop.
The star leaves the MS and continues its evolution along the Sub Giant Branch
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Figure 1.2: Kippenhahn diagram. The graph shows the internal evolution of a star of 1.5 M� with
solar chemical composition from the Main Sequence to the first thermal pulse on the Asymptotic
Giant Brunch. The grey regions corresponds to the zones of the star affected by convection, the
blue regions are instead the zones where a strong nuclear burning is active, while the two solid
lines represent the mass fractions of hydrogen (blue) and helium (red). The model is computed
using MESA, Paxton et al. 2011, 2013, 2015.

(SGB, figure 1.4).

Without the nuclear reactions, the core, mainly made of helium, contracts and
becomes more and more hot and dense. As a result, the layers immediately above the
core rise their temperature too and ignite hydrogen nuclear reactions in a thick shell
surrounding the core. The burning shell becomes thinner and thinner, converting
hydrogen by the CNO-cycle channel into helium, which is deposited on the core in
contraction. In the meantime, the envelope reacts to the contraction expanding and
cooling down. The external convection slowly penetrates deep in the interior of the
star (figure 1.2), bringing the products of the nuclear reactions to the surface (first
dredge-up). During the process, the star maintains an almost constant luminosity,
while the effective temperature decreases. As consequence, the total radius increases,
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since L and Teff are related by the black body equation:

L = 4πσR2Teff
4. (1.54)

Schönberg-Chandrasekhar limit

With the exhaustion of hydrogen in the core and the end of nuclear reactions, the
luminosity in the centre goes to zero as well as the gradient of temperature. Depend-
ing on the initial mass, stars can develop an isothermal core in a non-e−-degenerate
regime. For such stars the hydrostatic equilibrium persists until the mass of the
helium core, in constant growth, exceeds the limit of Schönberg-Chandrasekhar
(Schönberg & Chandrasekhar, 1942):

MSC = M · 0.37

(
µenv

µcore

)2

, (1.55)

where µenv and µcore are respectively the mean molecular weight of the envelope and
the core. For a core mass larger than MSC, the electron gas in core starts to become
degenerate.

1.4.3 Red Giant Branch

Continuing along its evolution, the star then approaches the Hayashi limit, an almost
vertical line in the HRD where fully convective objects are in hydrostatic equilibrium.
Almost the entire envelope is convective and the H-burning shell is now thin. The
core is still in contraction but Teff cannot decrease any longer, since no stars in
hydrostatic equilibrium can exist at Teff cooler than the Hayashi limit. Therefore
the only possibility to expand the envelope is to increase the luminosity: the Red
Giant Branch (RGB) begins (figure 1.5). The electron component of the gas
gradually becomes fully degenerate and creates a strong pressure able to contrast
the gravity and slows down the contraction:

Pe ∝ ρ5/3. (1.56)

The total pressure is formed now of two components: the pressure of the electrons
Pe (Eq.1.56) and the pressure of the nuclei of helium which are still in a perfect gas
condition:

P = Pe + Pnuclei = Kρ5/3 +
kBρT

muµ
(1.57)

µ is the molecular weight.
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age for a 1 M�between the end of the Main Sequence and the top of the RGB. Pc,e− grows with
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and the centre density rises. The Model is computed with MESA (Paxton et al., 2011)

The pressure of the perfect gas component is negligible with respect to the degenerate
component, hence the central temperature does not affect the total pressure but
depends only on the density (Figure 1.6).

Since the H-burning shell is active, new helium is produced and deposited on the
surface of the core, which grows in mass and becomes more and more hot and dense
(figure 1.7). The H-burning shell is also responsible for the surface luminosity. It
can be shown that luminosity and core mass are connected by homology relations,
L ∝ M8−10. Low-mass stars ascend the RGB until the overall mass of the helium
core reaches the critical value MHeF = 0.45 − 0.55M�. Once MHeF is reached, the
star experiences the helium flash which lifts the electron degeneracy and starts the
helium-core-burning phase (section 1.4.4)

In the case of VLMS, this situation cannot happen since the overall mass is lower
than the critical value. VLMS are the prototypes of helium white dwarfs. On the
other hand, IMS (and higher masses) reach the temperature needed for He ignition
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before they experience high degeneracy. Therefore IMS develop an helium core with
mass smaller than MHeF.

RGB bump

During their ascent on the RGB, the H-burning shell crosses the chemical disconti-
nuity left by the first dredge-up. In low-mass stars this event generates the RGB-
bump (RGBb). The monotonic increase of luminosity is abruptly interrupted since
the molecular weight µ in H-shell decreases. In fact, the homology relation shows
that L ∼ µ7. Once the H-burning shell has passed the discontinuity, the luminos-
ity rises again. Observationally speaking, the bump produces an accumulation of
stars that is easily visible as a peak in the luminosity function of globular and open
clusters.

1.4.4 Helium Flash

As already anticipated in section 1.4.3, low-mass stars need to grow their helium core
to the mass of MHeF(figure 1.8) in order to reach temperatures necessary to ignite
the helium nuclear reactions. Due to the energy release by He-burning reactions,
the temperature in the core increases further. However, the pressure is dominated
by the electron-degenerate component, therefore the gas can not expand and cool
down. Since the temperature and the nuclear energy production are strongly related,
a thermal runaway occurs. When the temperature becomes high enough, the perfect
gas component of the total pressure (eq.1.57) is no longer negligible and the gas is
free to expand and cool down, removing the degeneracy. The entire process is called
helium Flash (HeF). The critical mass MHeF is independent from the initial mass
of the star and has a slight dependence on metallicity. However, stars with mass
higher than 1.8− 2.2 M�(high and intermediate-mass stars) reach the temperature
needed to ignite helium nuclear reactions before the electrons are fully degenerate.
Stars with mass lower than 0.45 − 0.55 M�(very low-mass stars) have not enough
material to form cores with mass equal to MHeF and they evolve into helium white
dwarfs.

1.4.5 Helium-Core Burning

Once the helium-core-burning is set up, the star has a different structure and global
properties with respect to the RGB phase. From the surface to the centre, the
internal structure consists of a large convective envelope, a H-burning shell and a
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Figure 1.7: Typical internal structure of a 1 M� star during the RGB. The red dot indicates
the location on the HR diagram. The solid lines corresponds to the mass faction in function of
the mass coordinate of hydrogen (blue), helium (yellow), carbon (green), and oxygen(purple). The
dashed lines are respectively the density (red) and the temperature (black) profile.
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Figure 1.8: Typical internal structure of a 1 M� star at the tip of the RGB. The red dot indicates
the location on the HR diagram. The solid lines corresponds to the mass faction in function of
the mass coordinate of hydrogen (blue), helium (yellow), carbon (green), and oxygen(purple). The
dashed lines are respectively the density (red) and the temperature (black) profile.
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Figure 1.9: Typical internal structure of a 1 M� He-core-burning star. The red dot indicates
the location on the HR diagram. The solid lines corresponds to the mass faction in function of
the mass coordinate of hydrogen (blue), helium (yellow), carbon (green), and oxygen(purple). The
dashed lines are respectively the density (red) and the temperature (black) profile.
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region composed of a plasma composed primarily of helium (figure 1.9). At the
center two nuclear reactions are present simultaneously: the triple-alpha reaction
and carbon into oxygen reaction. Given the high dependence on the temperature
of helium-burning reactions, nuclear energy generation is confined inside a very
compact and convective core.
Due to the central convection, the helium core is chemically homogeneous. There-
fore, since the core grows, a chemical discontinuity at the convective border devel-
ops, and becomes more and more pronounced as He-burning proceeds (the situa-
tion changes depending on the mixing prescription adopted to define the convective
boundaries, see chapter 4.2).
At the beginning of the helium burning phase, the tri-alpha reactions dominate until
the mass fraction of helium in the core drops under ∼ 0.2 (Straniero et al., 2003).
Then, the energy production by the 12C(α,γ)16O reactions becomes greater than
that by the triple-α reactions. The entire helium core becomes more compact, the
H-burning shell increases its energy generation rate and the total luminosity rises.

1.4.6 Asymptotic Giant Branch

With the exhaustion of helium in the core, He-burning stops hence the central con-
vective region rapidly recedes and disappears. The luminosity in the centre goes
to zero as well as the gradient of temperature, therefore the core becomes almost
isothermal. The star approaches again the Hayashi limit and its luminosity starts
to increase, climbing the Asymptotic Giant Branch (AGB). The core contracts
again and, analogously to the H-burning in the SGB, the He-burning ignites in a
shell. The nuclear burning in the He-shell is not convective, thus the He-burning
shell moves outward as the helium abundance decreases, leaving behind the prod-
ucts of the nuclear reactions, increasing the mass of the C/O core, and bringing the
He-shell closer to the H-shell.
During the AGB phase the structure of the star from the centre is (Figure 1.10):

• a core composed primarily of C and O and degenerate electrons,

• a He-burning shell,

• a H-burning shell,

• and a deep convective envelope.

In low-mass stars, the overall mass is not enough to reach the temperature of the
carbon nuclear reaction, thus the star continues to increase its luminosity until
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Figure 1.10: Typical internal structure of a 1 M�star at the first thermal pulse. The red dot in-
dicates the location on the HR diagram. The solid lines corresponds to the mass faction in function
of the mass coordinate of hydrogen (blue), helium (yellow), carbon (green), and oxygen(purple).
The dashed lines are respectively the density (red) and the temperature (black) profile.
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L ' 104L�. At the end of the AGB phase the two shells are very close together and
start to experience periodic thermal instabilities, called Thermal Pulses. The base
of the envelope becomes unstable and detaches from the star forming the Planetary
Nebula (PN). The remnant is a compact object made mainly of carbon and oxygen
in high electron degeneracy called White Dwarf (WD).

AGB bump

On the HRD the formation of the He-burning shell corresponds to the AGB bump
(AGBb). Similarly to the RGB bump, it consists in a decrease followed by an
increase of the total luminosity. The reason behind the AGBb must be searched
immediately after the end of the Helium-core-burning. Without any nuclear energy
production in the centre, the entire stellar structure reacts in order to compensate
the loss of this energy source. Outside the border of the former convective core,
the energy generation rate from He-burning reactions rises in a shell, mainly due to
the larger helium abundance relative to the inner zone (the discontinuity) and the
temperature profile. First, the total luminosity and the H-shell-burning luminosity
drops, while the He shell provides a higher and higher fraction of L. At some
point the He-burning-shell replaces the H-burning-shell as the main source of nuclear
energy. Therefore the total luminosity starts to grow again while the H-burning shell
decreases its energy production, since it has expanded and cooled down due to the
ignition of a second burning shell.
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Chapter 2

Theory of Oscillation in Stars

Asteroseismology is a branch of stellar astrophysics specialised in the detection and
interpretation global oscillations that can be observed at the surface of stars. Os-
cillations in single stars are excited by two main mechanisms (Aerts, Christensen-
Dalsgaard & Kurtz, 2010):

• Self-exited oscillations (e.g. κ-mechanism);

• Stochastic oscillations (excited by external convective layers).

While the the former are unstable oscillations, typical in stars like Cepheids, RR
Lyrae, Mira, δ Scuti, β Cephei, and other classical pulsators, the latter are dumped
modes which have been investigated for the first time in the Sun (Helioseismology)
and they are called Solar-Like Oscillations. Solar-like oscillations are present
in stars with a Teff low enough to have a superficial convective region, typical, for
instance, in low main sequence stars, or in the sub-giant and in the red-giant stars.
The concepts introduced in sections 2.1-2.4 are mostly based on (Aerts, Christensen-
Dalsgaard & Kurtz, 2010) and the Unno et al. (1989) books on stellar oscillations,
and gives a brief review of the theory behind oscillations in stars.

2.1 Mathematical tools in Spherical Coordinates

To describe oscillations under the condition of spherical symmetry, it is useful to
adopt a spherical system of coordinates for the equations. In a three dimensional
space, the system of Cartesian coordinates x, y, z can be converted in spherical co-

39
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ordinates r, θ, φ through the equations
r =

√
x2 + y2 + z2

θ = arccos

(
z√

x2 + y2 + z2

)
φ = arctan

(y
x

) (2.1)

Assuming the generic scalar and vectorial variables ϕ and ψ, the basic mathematical
operations of gradient, divergence and the Laplacian become respectively:

∇ϕ =
∂ϕ

∂r
ur +

1

r

∂ϕ

∂θ
uθ +

1

r sin θ

∂ϕ

∂φ
uφ (2.2)

∇ ·ψ =
1

r2

∂

∂r

(
r2ψr

)
+

1

r sin θ

∂

∂θ
(sin θψθ) +

1

r sin θ

∂ψφ
∂φ

(2.3)

∇ · (∇ϕ) = ∇2ϕ =
1

r2

∂

∂r

(
r2∂ϕ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+

1

r2 sin2 θ

∂2ϕ

∂φ2
(2.4)

where ur, uθ, and uφ are the unit vectors of the three coordinates r, θ, φ. If we
consider the θ and φ coordinates together, we can define the already introduced
horizontal (or angular) component h for which is valid:

ψh = ψθuθ + ψφuφ (2.5)

With the notation ∇h, ∇h·, and ∇2
h are indicated the three differential operations

acting only on the horizontal coordinate. The displacement δr and the other vec-
torial quantities can be expressed as sum of the radial and horizontal components.

δr = ξrar + ξh. (2.6)

For instance, the Laplace operator (eq. 2.4) can be written as the sum of a operators
Dr, that acts only on the radial coordinate, and a operator L2, for the angular part:

∇2ϕ = Drϕ+
1

r2
L2ϕ −→


Drϕ =

1

r2

∂

∂r

(
r2∂ϕ

∂r

)
L2ϕ =

1

sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+

1

sin2 θ

∂2ϕ

∂φ2

(2.7)
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2.2 Adiabatic Oscillations

2.2.1 Hydrodynamic equations

In order to present the theory behind stellar oscillations, I need first to introduce
the set of hydrodynamic equations that describe an ideal fluid.

Equation of continuity

This equation was already introduced in Chapter 1, eq. 1.10, which is here expressed
in differential form:

∂ρ

∂t
+∇ · (ρv) = 0, (2.8)

where v is the time derivative of the position r.

Equation of motion

The equation of motion in differential form is written as:

ρ

(
∂

∂t
+ v · ∇

)
v = ρf −∇p−∇ · Ts (2.9)

In this equation, f represents the body force per unit of mass. Under the condition of
a non-rotating non-magnetic star, the only existing force that contrasts the pressure
gradient is the gravitational force ρg (force per unit of volume), whose potential Φ

satisfies the equation

∇2Φ = 4πGρ (Poisson’s equation) (2.10)

The term Ts is a tensor associated to viscosity. Since we are assuming that the gas
is ideal, this term can be ignored (typical situation in stellar conditions).

Energy equation

For an ideal fluid the energy conservation states that the rate of energy variation is
equal to the total force by unit of time for a given material volume. The equation
can be written in the following form:

ρT

(
∂

∂t
+ v · ∇

)
S = ρε−∇ · Frad, (2.11)

where S is the specific entropy, ε is the energy generation rate and Frad is the
radiative flux (eq. 1.15). In case of no viscosity, no energy dissipation, and assuming
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only adiabatic transformations, equation 2.11 is reduced to the equation of entropy
conservation:

∂S

∂t
+ v · ∇S = 0. (2.12)

This approximation can be justified by the fact that generally timescales for radiative
energy transport at each point of a star are several orders of magnitude larger than
the typical periods of oscillation, hence the right side of eq. 2.11 becomes negligible
(Aerts, Christensen-Dalsgaard & Kurtz, 2010).

The energy equation can also be written to show explicitly the relation between
adiabatic changes in pressure and density:

dp

dt
= Γ1

p

ρ

dρ

dt
. (2.13)

2.2.2 Deviation from equilibrium state: perturbation analy-

sis

The theory of stellar oscillations can be described by first order perturbations (or
small perturbations) of the basic hydrodynamic equations around a state of equilib-
rium. Within this context, a generic variable ϕ of the problem (e.g. the pressure,
the density, etc...) can be written in the form:

ϕ(r, t) = ϕ0(r) + ϕ′(r, t), (2.14)

where “0„ corresponds to the value at the equilibrium, while “ ′„ indicates the per-
turbation. Eq. 2.14 is referred to the perturbation of ϕ at fixed position (Eulerian
perturbation). Alternatively, we can instead consider the frame of reference that
follows an element of the fluid. In this case, the variation δϕ of ϕ0 induced by the
element motion from an initial position r0 to r0 +δr (Lagrangian perturbation):

δϕ = ϕ(r0 + δr)− ϕ0(r0) = ϕ(r0)− ϕ0(r0) + δr · ∇ϕ = ϕ′(r0) + δr · ∇ϕ. (2.15)

If we consider ϕ ≡ ρ and we substitute eq. 2.14 into the continuity equation, we
find

∂ρ′

∂t
+∇ · (ρ0v) = 0, (2.16)

where v is the partial time derivative of the displacement δr. ρ′∇ · v and v · ∇ρ′

were cancelled out since are terms of the second order.
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Similarly, for the equation of motion, energy, and Poisson we have:

ρ0
∂v

∂t
= −∇p′ + ρ0g

′ + ρ′g0, (2.17)

p′ + δr · ∇p0 = Γ10

p0

ρ0

(ρ′ + δr · ∇ρ0), (2.18)

∇2Φ′ = −4πGρ′. (2.19)

These four equations are the perturbed hydrodynamic equations.

2.2.3 Example of application: simple waves

In the formulation of equation 2.9 we considered the presence of two forces: the
pressure gradient and the gravity. Starting from the set of perturbed equations, this
opens up a whole range of simple oscillatory waves that we are going to explore in
the following paragraphs.

Acoustic waves

For this scenario, we assume that the fluid is spatially homogeneous and the only
restoring force is given by the pressure. Therefore the gravitational terms in the set
of equations are considered negligible and the equation of motion simply becomes:

ρ0
∂2δr

∂t2
= −∇p′. (2.20)

This equation can be further simplified by taking its divergence and introducing eq.
2.18, finding:

∂2p′

∂t2
= c2

0∇2p′, (2.21)

where c0 is the adiabatic sound speed

c0 =

√
Γ10

p0

ρ0

. (2.22)

(where Γ10 is the adiabatic coeffient). The equation found is in the form of a wave
equation. An acceptable solution is the monochromatic wave function of frequency
ω (radiant per second) and wave vector k (radiant per cm):

p′ = Aei(k·r−ωt) (2.23)
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If we substitute eq. 2.23 into 2.21, we have

− ω2 = c2
0 |k|

2 , (2.24)

which represents the dispersion relation for the acoustic wave.
We want now to identify the direction of the displacement with respect to the prop-
agation. A real solution of p′ is:

p′ = A cos(k · r + ωt). (2.25)

Considering a xyz coordinate system in which k is parallel with x, eq. 2.20 becomes:

∂vx
∂t

= − 1

ρ0

∇xp
′ =

A

ρ0

sin(k · r + ωt)kx 6= 0

∂vy
∂t

= − 1

ρ0

∇yp
′ = 0

∂vz
∂t

= − 1

ρ0

∇zp
′ = 0 .

(2.26)

Therefore only the component of v parallel to k will vary with time, while vy and
vz remain constant. Choosing the coordinate system where these components are
null, the displacement δr has same direction the wave (longitudinal wave).
The relevance of adopting a monochromatic wave function as solution of eq. 2.21
comes from the Fourier’s analysis, for which a generic wave that satisfied the equation
can be seen as a superposition of monochromatic waves of different frequencies and
amplitudes.

Internal gravity waves

We now assume the fluid to be incompressible and stratified under the action of a
gravitational potential, whose perturbations can be considered negligible. This leads
to several consequences:

1. The fluid is inhomogeneous with respect to a preferred direction. Let’s as-
sume a spherical coordinate defining only two coordinate: the radial r and the
horizontal component h (see the Chapter appendix 2.1). For simplicity the
vectorial quantities, like the displacement, can be decomposed along the radial
and horizontal coordinates

δr = ξrar + ξh. (2.27)

We assume that fluid is inhomogeneous in the radial direction.
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2. Since the gravitational perturbations are negligible, by the hydrostatic relation
the gradient of the pressure will be negligible as well.

3. Given the incompressibility of the fluid, any density perturbations induced by
changes of pressure can be ignored.

The perturbed equation of motion for this case will be:

ρ0
∂v

∂t
= −∇p′ + ρ′g0. (2.28)

If we assume again a monochromatic solution for δr, p′, and ρ′ in the form Aei(k·r−ωt),
the equations of motion for the radial and horizontal component will become ρ0ω

2ξr = ikrp
′ + ρ′g0

ρ0ω
2ξh = ikhp

′ .
(2.29)

while the equation of continuity will be:

ρ′ + ρ0ikrξr + ρ0ikh · ξh = 0. (2.30)

Combining the two equations together we find:

ρ0ω
2

(
1 +

k2
r

k2
h

)
ξr =

(
i
kr

k2
h

ω2 + g0

)
ρ′. (2.31)

If we study this equation in the very low frequency range with respect to the gravi-
tational acceleration(ω2 � k2

h/krg0) , the complex term on the right can be ignored,
simplifying to:

ρ0ω
2

(
1 +

k2
r

k2
h

)
ξr = g0ρ

′ (2.32)

and, recalling the adiabatic relation (perturbed energy equation, eq. 2.18), we find
the dispersion relation for the internal gravity waves:

ω2 =
N2

1 + k2
r /k

2
h

, (2.33)

where N is the Brunt-Väisälä frequency:

N2 = g0

(
1

Γ10

d ln p0

dr
− d ln ρ0

dr

)
. (2.34)
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The Brunt-Väisälä frequencies is strictly connected to the convective stability, and
in particular to the Ledoux criterion. This can be simply seen introducing the
logarithm gradients in eq. 2.34:

N2 =
g2

0ρ0

p0

χT
χρ

(
∇ad −∇T −

χµ
χT
∇µ

)
. (2.35)

Under the assumption of an adiabatic displacement, the Brunt-Väisälä frequency
describes at what rate a parcel oscillates vertically around its equilibrium position
in any point of the fluid. N2 could be either positive or negative. If N2 < 0, then
the fluid is unstable to convection, the frequency ω is complex and the wave solution
behaves exponentially with time. On the contrary, if N2 > 0, ω is real and the
motion is oscillatory: in this case the fluid is convectively stable.

Surface gravity waves

In this scenario I consider an indefinitely deep incompressible fluid with a free sur-
face, constant density ρo and under the presence of a uniform gravity acceleration g
directed along the radial coordinate r (with r = 0 at the surface). The situation we
are going to analyse generates waves due to a discontinuity in density on the surface
of the fluid. Moreover, the wave will propagate along the horizontal coordinate h
on surface . Since ρ′ is null (incompressible fluid), the equation of continuity will be
reduced to the divergence of v equal to 0:

∇ · v = 0. (2.36)

The perturbation of the gravity g′ will be negligible too, and the equation of motion
simply becomes:

ρ0
∂v

∂t
= −∇p′. (2.37)

Taking its divergence and substituting in the continuity equation, we find:

∇2p′ = 0. (2.38)

The solution can be in the form

p′ = f(r) cos(khh− ωt). (2.39)
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where f is (from eq. 2.37)

d2f

dr2
= k2

hf =⇒ f = Ae−khr. (2.40)

Therefore, the solutions for the displacement (in the r and h directions) are:
ξr = −A kh

ρ0ω2
e−khr cos(khh− ωt) = − kh

ρ0ω2
p′

ξh = −A kh

ρ0ω2
e−khr sin(khh− ωt) .

(2.41)

This describes a circle whose radius decreases exponentially with r (the depth).
To find the dispersion relation for the surface gravity waves, we consider first the
boundary condition at the surface that requires the local pressure to be constant
(Lagrangian perturbation δp = 0). Combining this condition with eq. 2.15 for
ϕ ≡ ρ, eq. 2.39, and h component of eq. 2.41, we find:

ω2 = g0kh. (2.42)

2.3 Equations for Non-Radial Adiabatic Stellar Os-

cillations

The purpose of this section is to derive the set of differential equations that describes
the oscillations in a spherical symmetric structure in equilibrium and under the
adiabatic assumption.

2.3.1 Variable Separation and Linear Equations

Considering a spherical coordinate system r, h (see Appendix 2.1), the four perturbed
equations 2.16-2.19 become:

ρ′ =
1

r2

∂

∂r

(
ρ0r

2ξr
)
− ρ0∇h · ξh, (2.43)


ρ0
∂2ξr
∂t2

= −∂p
′

∂r
− ρ′g0 − ρ0

∂g′

∂r
radial

ρ0
∂2ξh
∂t2

= −∇hp
′ − ρ0∇hΦ

′ horizontal ,
(2.44)

p′ + ξr
∂p0

∂r
= Γ10

p0

ρ0

(
ρ′ + ξr

∂ρ0

∂r

)
, (2.45)
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1

r2

∂

∂r

(
r2∂Φ′

∂r

)
+∇2

hΦ
′ = 4πGρ′. (2.46)

The horizontal component of eq. 2.44 can be further simplified taking its divergence
and substituting ∇h · ξh from eq. 2.43:

∂2

∂t2

[
ρ′ +

1

r2

∂

∂r

(
ρ0r

2ξr
)]

= ∇2
hp
′ + ρ0∇2

hΦ
′. (2.47)

A possible solution for the equations can be expressed as a combination of indepen-
dent functions of the individual coordinates, including time:

ϕ(r, t) = R(r)a(θ, φ)τ(t). (2.48)

For what concerns the time-dependent function τ(t) we can assume a simple ex-
pression (exp(−iωt)). Concerning the space-dependent part, possible solutions are
given by the eigenfunctions of the Laplace operator (see section 2.1): the function
u = R(r)a(θ, φ) is an eigenfunction of ∇2u = −λu only if R and a satisfy the
relation:

1

R

∂

∂r

(
r2∂R

∂r

)
+ λr2 =

L2a

a
, (2.49)

which is possible if exist a constant µ for witch:
1

R

∂

∂r

(
r2∂R

∂r

)
+ λr2 = µ (a)

L2a = −µa. (b)

(2.50)

The eigenfunctions of equation 2.50b are known to be the spherical harmonic Y m
l

(figure 2.1):
Y m
l (θ, φ) = (−1)mcl,mP

m
l cos(θ)eimφ, (2.51)

where Pm
l is the polynomial of Lagrange of angular order (degree) l and azimuthal

order m (l,m ∈ N, |m| ≤ l) and cl,m a normalization constant.

Regular solutions of eq. 2.50 will be obtained only if

µ = l(l + 1). (2.52)

The set of dependent variables can be written therefore as:

ξr =
√

4πξ̃r(r)Y
m
l (θ, φ)e−iωt, (2.53)

p′ =
√

4πp̃′(r)Y m
l (θ, φ)e−iωt, (2.54)
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Figure 2.1: Representation of spherical harmonics Y m
l . l varies with each line from

0 to 5, while m varies on each column. Credit for the picture to Clem Pryke
(http://spud.spa.umn.edu/̃pryke/logbook/20000922/static_poles.gif).

ξh =
√

4πξ̃h(r)

(
∂Y m

l

∂θ
+

1

sin θ

∂Y m
l

∂φ

)
e−iωt, (2.55)

with
ξ̃h =

1

rω2

(
1

ρ0

p̃′(r) + Φ̃′
)
. (2.56)

Finally for the vectorial displacement:

δr =
√

4πRe

{[
ξ̃r Y

m
l ur + ξ̃h

(
∂Y m

l

∂θ
uθ +

1

sin θ

∂Y m
l

∂φ
uφ

)]
e−iωt

}
. (2.57)

The explicit expression for the functions of the radial coordinates ξ̃r, ξ̃h, and p̃′ along
with Φ̃′ can be found substituting eq. 2.53-2.57 into eq. 2.43-2.46 and rearranging
as follow:
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

dξr
dr

= −
(

2

r
+

1

Γ1Hp

)
ξr +

1

ρc2

(
S2
l

ω2
− 1

)
p′ +

l(l + 1)

ω2r2
Φ′, (a)

dp′

dr
= ρω2

(
(1− N2

ω2

)
ξr +

1

Γ1Hp

p′ + ρ
dΦ′

dr
, (b)

1

r2

d

dr

(
r2 dΦ2

dr

)
= 4πG

(
p′

c2
+
ρξr
g
N2

)
+
l(l + 1)

r2
Φ′, (c)

(2.58)

where Hp is the pressure scale (eq. 1.31), N is the Brunt-Väisälä frequency (eq.
2.34) and Sl is another characteristic frequency called the Lamb frequency:

Sl = l(l + 1)
c2

r2
. (2.59)

This forms a complete set of differential equations of the 4th order (for matter of
simplicity the symbols˜and 0 were dropped), that depend on only four variables:

p, ρ, Γ1, and g.

The unknown variables are ξr, p′, Φ′, and
dΦ′

dr
(or in alternative ρ′).

Boundary Conditions

In order to solve the set of differential equations 2.58 we also need to define the
boundary conditions at the centre and at the surface, for a total of four conditions:

Centre. The central point corresponds to r = 0. It can be shown that by linear
expansions of the equations in the limit r → 0, ξr, p′, and Φ′ become:

ξr ∼

rl−1 l > 0

r l = 0
(2.60)

Φ′ , p′ ∼ rl. (2.61)

Therefore dΦ′/dr near the centre will be (first condition):

dΦ′

dr
=
l

r
Φ′. (2.62)

It can be noticed that only for l = 1, we always have ξr(r = 0) 6= 0. The second
condition comes from the expansion of eq. 2.58b and considering g = 0, N2 = 0 and
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N/g = 0 in the centre. We then obtain:

ξ̃r −
l

rω2

(
1

ρ0

p̃′ + Φ̃′
)

(2.63)

i.e., reminding eq. 2.56,
ξr ' lξh (2.64)

(for l > 0).

Surface. On the surface r = R. The third condition is found imposing the conti-
nuity of Φ′ and its derivative at the surface boundary:

dΦ′

dr
+
l(l + 1)

r
Φ′ = 0, (2.65)

which requires to have Φ′ in a form Φ′ ∼ r−l−1. The last condition is found imposing
p(R) constant at the surface that corresponds to impose the Lagrangian perturbation
δp equal to 0:

δp = p′ + ξr
∂

dr
= 0. (2.66)

In reality finding this condition on a stellar structure is more complex since it requires
a detailed analysis of the atmospheric model applied at he surface.

limit case: radial oscillations.

The radial oscillations are a particular family of solutions in which l = 0. Since
the spherical harmonic Y 0

0 is a simple constant (i.e. without the dependency from
θ and φ), the application of the operator ∇h to any dependent variables during the
resolution of the equations will return 0.

2.4 Mode properties

Solving the system of equations 2.58 is the primary aim of oscillation codes like
GYRE (Townsend & Teitler, 2013) and LOSC (Scuflaire et al., 2008). The solutions
consist in a set of discrete eigenfunctions which describe the properties of oscillation
modes. Each solution/mode can be identified by three integers numbers:

• the radial order n. The radial order corresponds to the numbers of nodes of
the mode between the centre and the surface.
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• the angular order l (or degree). The angular order represents the total
number of nodal lines on the stellar surface.

• the azimuthal order m. The azimuthal order indicates how many of these
surface nodal lines cross the equator. In absence of rotation or other features
that break the spherical symmetry of the star, m does not affect the frequen-
cies. This can be seen also in the system of differential equations, where m
does not appears and therefore cannot influence the solutions.

2.4.1 Cowling approximation

The Cowling approximation aims to simplify the system of differential equations
(eq.2.58) by neglecting the perturbation of the gravitational potential Φ′. This
approximation reduces the 4th order differential equation system (eq.2.58) down 2nd
order, which is analytically solvable. The number of boundary conditions decreases
also to 2. However, the approximation requires that the radial n and angular l orders
assume large values. Under the approximation, the equations become:

dξr
dr

= −
(

2

r
+

1

Γ1Hp

)
ξr +

1

ρc2

(
S2
l

ω2
− 1

)
p′ (a)

dp′

dr
= ρω2

(
(1− N2

ω2

)
ξr +

1

Γ1Hp

p′. (b)
(2.67)

Even if the Cowling approximation does not need to be taken when numerically
computing oscillation modes, it introduces simplifications which are very useful to
understand the physical properties of the modes, as shown in the next sections.

2.4.2 Mode classification

As a first and very rough approximation we can delete the terms in eq.2.67 in which
the derivatives of equilibrium quantities appear. The assumption here is that those
terms vary slowly compared to the eigenfunctions of high radial order modes:

dξr
dr

=
1

ρc2

(
S2
l

ω2
− 1

)
p′ (a)

dp′

dr
= ρω2

(
(1− N2

ω2

)
ξr. (b)

(2.68)

Combining these two equations leads to a second order equation:

d2ξr
dr2

=
ω2

c2

(
S2
l

ω2
− 1

)(
1− N2

ω2

)
ξr. (2.69)
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Even if eq. 2.69 was derived under rather crude assumptions, it can be used to have
simple physical information about the nature of the modes. It shows that the two
characteristic frequencies Sl and N play a fundamental role in order to define the
mode properties. We define the function K as:

K(r) =
ω2

ρc2

(
S2
l

ω2
− 1

)(
1− N2

ω2

)
. (2.70)

The sign of this function will affect the solution of ξr which is either an oscillatory
function(K > 0):

ξr = cos

(∫ √
Kdr + δ

)
(2.71)

or an exponential decay (or growth, K < 0):

ξr = exp

(
±
∫ √

|K|dr + δ

)
. (2.72)

We can therefore distinguish between four possible scenarios depending on the com-
parison between the mode frequency ω and the two characteristic frequencies:

Case 1a: |ω| > |N | and |ω| > |Sl| then K < 0: exponential function

Case 1b: |ω| < |N | and |ω| < |Sl| then K < 0: exponential function

Case 2a: |N | < |ω| < |Sl| then K > 0: oscillatory function

Case 2b: |Sl| < |ω| < |N | then K > 0: oscillatory function

Since N and Sl are functions of r, the internal structure of a star may contain several
regions where ξr goes from an oscillatory to an exponential behaviour. Figure 2.2
gives a schematic overview of the regions where K is positive or negative. In general
we identify as trapping region a region where ξr has an oscillatory behaviour,
delimited between two turning points (K(r̃) = 0). The latter correspond either
to the beginning of a region where the eigenfunction behaves exponentially or, as
a limiting case, the centre and the surface of the star. Typically the modes with
high frequency oscillate near the surface and we refer to them as p-mode. On
the contrary low-frequency modes usually are trapped near the core and they are
called g-modes (figure 2.2). This definition is related to the main restoring forces
that drive the stellar oscillations: the pressure gradient for the p-modes, and the
buoyancy for the g-modes.
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Figure 2.2: Schematic example of of a propagation diagram. The star corresponds to the Sun
(1 M� solar composition at 4.57 Gyr). Inside the stellar interior 2 types of modes propagate: the
p-modes, high frequency modes trapped between the surface and the point where ω = Sl, and
the g-modes, low frequency modes trapped in the deep interior inside a cavity delimited by the
Brunt-Väisälä frequency.

2.4.3 p modes

The pure pressure modes (or p modes) correspond to case 2a. They are standing
waves of frequency ω trapped between the surface and the turning point r̃ that
satisfies the expression ω2 = S2

l (r̃). The trapping point at the surface, which is not
explained by this simple analysis, can be inferred by a general asymptotic description
of the oscillations derived in Deubner & Gough (1984).

It is typical for the p modes having frequencies much larger than the Brunt-Väisälä
frequency (ω2 � N2). Therefore eq. 2.70 is reduced to:

K(r) ∼ 1

c2

(
ω2 − S2

l

)
, (2.73)

which recalls the properties of the acoustic waves, since K(r) depends on the vari-
ation of the sound speed with r. When n is very large, the frequencies νnl of the
p-mode and the g-mode acquire an asymptotic behaviour (Christensen-Dalsgaard,
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2012). For the p-modes with low l the following asymptotic equation holds:

νnl ' ∆ν

(
n+

l

2
+ εp

)
− δnl, (2.74)

where εp is a phase dependent on the boundary conditions. The quantity ∆ν is called
large separation and is equal to the frequency difference between two modes of
consecutive order n and the same degree l. This quantity is nearly constant, making
the pressure modes almost exactly equally spaced. The large separation is of the
order of the inverse of twice the acoustic radius (time required for a sound wave
to travel from the centre to the surface of a star):

∆ν =

(
2

∫ R

0

dr

c

)−1

. (2.75)

Finally δnl is a small correction also known as small separation (see chapter 3 for
more details).

2.4.4 g modes

g-modes are defined by the case 2b. These are low frequencies modes trapped in the
stellar interior between two turning points, which are given by the equality N2 = ω2.
Similarly to the approximation 2.76 for the p-modes, for high order g-modes we have
ω2 � Sl and, consequently:

K(r) ∼
(
N2

ω2
− 1

)
l(l + 1)

r2
. (2.76)

Equation 2.76 reveals similarities with the internal gravity waves, both related to
the buoyancy frequency N .

The asymptotic behaviour for large n g-modes periods Πnl is characterized by the
relation:

Πnl =
1

νnl
' ∆Πgl (n+ εg) , (2.77)

where εg is a phase and ∆Πl is the Period Spacing. Thus, similarly to the p-
modes, the frequencies νnl of g-modes are related by an asymptotic relation where
their periods are equally spaced by ∆Πl. The period spacing is proportional to the
inverse of the integral of the Brunt-Väisälä frequency inside the trapping cavity:

∆Πgl =
2π2√
l(l + 1)

(∫ r2

r1

N

r
dr

)−1

, (2.78)
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where r1 and r2 are the turning points that limit the cavity.

2.4.5 Mode inertia

An important property of the oscillation modes is the inertia. This quantity is
related to the kinetic energy of the mode of frequency ω by the expression:

Ek =
1

2

∫
V

|v|2 ρ0dV =
1

2
EMv2

rms, (2.79)

where M is the total mass, vrms the mean square speed (averaged over the spherical
surface and the time), and E is the normalized inertia (hereafter simply inertia).
The inertia is defined as the integral of the second moment of the density over the
volume, normalized by its value at the surface:

E =

∫
V

ρ0 |δr|2 dV

M |δrsurf |2
. (2.80)

It is useful here to introduce the mean square components of δr, calculated taking
the average over the spherical surface and time:

δr2
rms =

〈
|δr · ur|2

〉
=

1

2

∣∣∣ξ̃r(r)∣∣∣2 radial

δh2
rms =

〈
|δh|2

〉
=

1

2
l(l + 1)

∣∣∣ξ̃h(r)∣∣∣2 horizontal
(2.81)

Inserting these terms in eq.2.80, we finally find:

E =

4π

∫ R

0

[∣∣∣ξ̃r(r)∣∣∣2 + l(l + 1)
∣∣∣ξ̃h(r)∣∣∣2] ρ0r

2dr

M

[∣∣∣ξ̃r(R)
∣∣∣2 + l(l + 1)

∣∣∣ξ̃h(R)
∣∣∣2] , (2.82)

with R being the total radius. Pressure modes have in general a lower value of E than
gravity modes. This is due to the term ρ0r

2 in eq. 2.82 that has a maximum in the
near-centre region, where g modes have the largest amplitudes of their eigenfunction
ξ, differently from p modes that have larger amplitudes near the surface. This
characteristic will become useful in section 3.4.3, in which we will be dealing with
stars that show rather complicated spectra with modes of mixed pressure and gravity
character.
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2.5 Global properties of solar-like oscillation spec-

tra

The Fourier analysis of stellar light curves can reveal their detailed oscillation spec-
tra, it is however useful at this point to introduce few global properties of such
a spectrum. An example of an observed oscillation spectrum is shown in figure
2.3, where the power spectral density (PSD) of the star KIC 6442183, a SGB star
observed by Kepler is presented as a function of frequency.
It can be observed that the amplitude of the frequencies are distributed consistently
with a Gaussian-like envelope. The centre of the Gaussian envelope corresponds to
the frequency of the maximum oscillation power, also called νmax. It can be noticed
that the closer an observed frequency is to νmax, the easier it is to detect it. The
behaviour of νmax as a function of stellar properties has yet no a solid theoretical
base but has been observed to scale – to a first approximation – with the acoustic cut
off ωac (Brown et al., 1991). Kjeldsen & Bedding (1995) proposed a scaling relation
to estimate νmax as:

νmax ∝ ωac ∝MR−2Teff
−1/2. (2.83)

An estimate of the width of the Gaussian envelope was instead given by Mosser
et al. (2012a) who provided an empirical equation for the standard deviation σ, as
function only of νmax:

σ = 0.66 · ν0.88
max. (2.84)

In addition, frequencies in the power spectra often show a regular pattern in fre-
quency which is due to the near-constant large separation ∆ν. ∆ν scales to a very
good approximation with the square of the mean density of the star:

∆ν '
√
ρ∆ν� =

√
M/M�
R/R�

∆ν�, (2.85)

where ∆ν� is the large frequency separation of the Sun.
The relation 2.85 and 2.83 are known as seismic scaling relations. Their impor-
tance is fundamental since, in combination with the Teff and/or the luminosity, they
are able to provide us a direct measure of the mass, and radius of the stars:

L =

(
∆ν

∆ν�

)−4(
νmax

νmax�

)2(
Teff

Teff,�

)5

, (2.86)

M =

(
∆ν

∆ν�

)−4(
νmax

νmax�

)3(
Teff

Teff,�

) 3
2

, (2.87)
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Figure 2.3: Power spectrum of a SGB star observed by Kepler

R =

(
∆ν

∆ν�

)−2(
νmax

νmax�

)(
Teff

Teff,�

) 1
2

. (2.88)

Testing the accuracy of the ∆ν scaling is therefore key to making accurate inferences
on stellar properties, and will be addressed in chapter 3.

2.6 Mixed Modes in Red Giants

As the central density increases the Brunt-Väisälä frequency reaches high values
in the central regions. The frequency range of the g-modes and p-modes start
to overlap, generating a new peculiar set of modes called mixed modes. The
eigenfunctions of this class of modes are characterised by a p-like behaviour in the
envelope and a g-like behaviour near the centre. Since by definition pure g-modes
have no radial solutions (no l = 0), the mixed mode are possible only for modes
with angular degree l > 0.

2.6.1 Evolution of the modes

I will now present how the frequencies change along the evolution of a Sun-like
star(1.0 M� , [Fe/H] = 0). For the purpose of the discussion, I use here stellar
models that will described in more detail in section 4.2. As introduced previously
in this chapter, the behaviour of the modes depend on two fundamental frequencies,
the Lamb and the Brunt-Väisälä frequency. However, other factors are involved in
the modes properties and in their detectability, like νmax and the inertia.
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Main sequence Starting from the main sequence, the distinction between p-
modes and g-modes is obvious (figure 2.4a). In stars like the Sun, the only modes
that appear in the power spectrum are p-modes, since νmax assumes very high val-
ues (e.g. νmax� = 3100 µHz). On the contrary, g-modes are confined to a very low
frequency range, making their detection a hard – and still open – challenge for he-
liosesmology (Christensen-Dalsgaard, 2002), This is due to the external convective
zone which damps the oscillations.
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Figure 2.4: Left. Propagation diagram for a MS 1.0 M�star. The violet line is the Brunt-Väisälä
frequency, the red line the Lamb frequency for l = 1, the green and gold horizontal lines indicate
respectively the g-modes, and p-modes for l = 1, the black lines give an indication of the range of
detectability of the oscillations (νmax ± 3σ, where σ is given by eq. 2.84).
Right. l = 0, 1, 2, frequencies for 5 models along the evolution of a 1.0M�track. top panel. Mode
Inertia against frequencies. bottom panel. period spacing against frequencies.

Sub Giant Branch The situation changes after the end of the central hydrogen
burning and the contraction of the core. The Brunt-Väisälä frequency rises and the
first mixed modes appear (figure 2.5).

Red Giant Branch Red Giants are excellent laboratories to study the properties
of mixed modes. From an observational point of view, all the modes that we can
detect (with the exception of radial modes) belong to the mixed mode class. Along
the red-giant branch, the core becomes more and more compact while the envelope
expands. With the dependence of νmax on radius (eq. 2.83), the range of detectability
of the modes shifts to low frequencies, while the growing central density increases
the Brunt-Väisälä frequency, increasing the frequencies of g-modes. The number
of detected modes in the power spectrum is therefore increasing along the RGB
(figures 2.6-2.7). Figure 2.7 is an excellent example of a typical power spectrum of a
red-giant star. This model is calculated just after the RGB bump. It can be noticed
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SUB GIANT BRANCH
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Figure 2.5: Propagation diagram and fl = 0, 1, 2, frequencies for a SGB 1.0M�star (see caption
figure 2.4)

that all the l = 1 frequencies around νmax are mixed modes. Looking at the top-
right, we can see how the inertia of the l = 0, 1, 2 vary with the frequency and with
the angular degree. Focusing on the l = 1 modes, the inertia describes a series of
“arches” as a function of ν. Within each arch we can identify a mode with low inertia
with respect to the others and a numerous number of modes with high and similar
inertia (around the centre of each arch). The modes with the lower inertia have
characteristics more similar to a p-mode then a g-modes and are therefore called
p-like modes. We can in fact see that they are almost equally spaced in frequency,
as expected from the asymptotic expression for the p-mode, eq. 2.74. On the other
hand, the modes with higher inertia appear to be regularly spaced in period (figure
2.7, bottom-right panel). These modes have more g-like characteristics, and they
tend to follow a law similar to eq. 2.77.
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Figure 2.6: Propagation diagram and fl = 0, 1, 2, frequencies for a 1.0M�star at the bottom of
the RGB (see caption figure 2.4)
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POST RGB BUMP
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Figure 2.7: Propagation diagram and fl = 0, 1, 2, frequencies for a 1.0M�star after the RGB
bump (see caption figure 2.4)

Helium Flash At the tip of the RGB, the stars reach the temperature to ignite
the helium nuclear reactions in the near-core region. As I introduced in Chapter
1, the presence of those reactions is coupled with convection, due to their high
energy generation rate. In additiction, stars along the RGB are affected by neutrino
energy loss that moves the maximum of temperature (Tmax) outside the centre. As
consequence , stars during the helium flash develop a convective shell in their He-
rich core, that forms an extra internal g-cavities and makes their power spectrum
extremely complex.

Helium-Core Burning Helium-core-burning stars are the main subject of chap-
ter 4, I therefore just anticipate some of their characteristics. Similarly to RGB,
these stars have a spectrum rich of mixed modes (figure 2.8). However, since the
core is convective, the extension of the g-cavity is reduced, increasing their period
spacing (in agreement with equations 2.78 and 2.35). Moreover, the chemical com-
position discontinuity of the core might, in some particular models (like overshooting
models, see chapter 4 and Bossini et al. 2015), create glitches in the power spectrum,
introducing an extra periodicity for the period spacing of the g-like modes.

Post Helium-Core Burning Despite for the additional burning shell, the AGB
stars have internal properties similar to RGB stars: a compact core and a single
g-cavity.
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Burning (see caption figure 2.4)
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Chapter 3

Stellar Model Computations:
Evolutionary Tracks and Seismic
Predictions

3.1 Evolutionary Tracks Computations

A stellar evolution code is a program designed to solve numerically the set of funda-
mental differential equations introduced in chapter 1. It outputs a series of “snap-
shots” of the stellar interior at consecutive timesteps of varying duration, allowing
to track the evolution of a star from its formation to the more advanced stages.
In this work, I make extensive use of evolution codes, especially the Modules for
Experiments in Stellar Astrophysics (MESA) code (Paxton et al., 2011, 2013, 2015).
In this section I describe the basic physical inputs I adopted in the majority of the
models presented in this work. From now on, I will refer to these settings with the
abbreviation “IP1”, specifying any possible variation case by case. IP1 was adopted
in the papers by Bossini et al. (2015), Rodrigues & Bossini et al. (in preparation),
and Handberg et al. (submitted, see appendix).

3.1.1 Chemical Elements.

One of the main input parameters in a stellar evolution code is the initial chemical
composition. It is defined by the mass fraction of hydrogen (X), helium (Y ), and
the rest of the elements (metals, Z), so that

1 = X + Y + Z. (3.1)

65
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However, in order to track the abundances of the single elements (like C, O, etc...),
it is necessary to know their relative initial distribution in Z. Usually their relative
abundances are assumed to scale as in the Sun. In our case, the initial partition of
heavy elements chosen is the one described in Grevesse & Noels (1993). In some
special scenarios, like for instance very-metal-poor stars, it important to take into
account deviations from the solar partition, enhancing the α elements. I refer to
these cases with the term α-enhancement and the abundance of the α elements is
given by [α/Fe]:

[α/Fe] = log

(
Xα

XFe

)
star

− log

(
Xα

XFe

)
�
, (3.2)

where Xα and XFe are the mass fractions of the α elements and of Fe.

3.1.2 Nuclear Reactions

Another important ingredient in stellar models are nuclear reaction rates. In IP1 I
adopted the rates given by Angulo et al. (1999). They provide a large number of
tabulated nuclear cross sections relevant to the main nuclear-burning stages in stellar
evolution (e.g. hydrogen and helium burning). These values are measured by ex-
trapolation from laboratory experiments. Once we move from laboratory conditions
to the astrophysical environment, such as the stellar interior, the uncertainties on
the nuclear cross section become relevant (e.g. Imbriani et al., 2001; degl’Innocenti
et al., 2004), changing the efficiency of the nuclear reactions which affects also the
lifetimes of the burning phases and the chemical abundances of the stellar interi-
ors. One major source of uncertainty is, for instance, the nuclear cross section of
the 12C(α,γ)16O (see e.g. Metcalfe, Salaris & Winget, 2002; Straniero et al., 2003;
Cassisi, Salaris & Irwin, 2003) reaction. Its effect on the helium-core burning and
the subsequent phases will be presented in Chapter 5.

3.1.3 Opacity

The value of the local opacity inside the stellar structure is estimated by inter-
polating in pre-compiled tables. In IP1 I used the tables produced by the OPAL
group (Iglesias & Rogers, 1996). They use a code that determines the opacity for a
given chemical composition (including the initial partition of heavy elements), the
temperature and density. They make available two types of opacity tables:

Type 1 (TO1): These tables are meant to be used in the regions where there is
no nuclear burning that affects the relative distribution of metals in Z. The opacity
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is given by the interpolation in 4 variables: X, Z, log T , and log R. The latter is
defined as:

logR = log ρ− 3 · log T. (3.3)

An example of these tables is given in figure 3.1, where the opacity is plotted as a
function of log T and log R at fixed X (0.35) and for 2 values of Z (0.004, and 0.1)

Type 2 (TO2): During the He-burning stage one has to properly account for
the C and O abundance changes in the stellar matter and their effect on radiative
opacities. Therefore the final interpolation will be made in 6 variables: X, Zini, C,
O, log T , and log R.
While the TO1 can be adopted only when the metallicity is not significantly changed
from the initial value, TO2 can in principle cover both pre and post He-burning
events. However, it must be underlined that TO1 have usually a better resolution
than TO2, improving the accuracy of the interpolation. In order to test and compare
how MESA and other codes estimate the opacity, I created a program that integrates
MESA opacity module and recalculates κ taking as input a previously computed
structure. I will give here an simple example of the functionality of the code applied
to two RG models in the RGB and HeCB phase. The two models have equal mass
(M = 1.6 M�) and metallicity (Z = Z�), and similar luminosity (logL/L� ∼ 1.76).
I tested the opacity under different conditions:

1. type 1 opacity table with current Z (standard MESA);

2. type 1 opacity table with initial Z;

3. type 2 opacity table.

The effects can be seen in figure 3.2, which shows the near-core opacity profile in the
two red giants. No difference in the RGB model can be noticed 1, suggesting that all
the three methods achieve similar precision. The situation in HeCB star is however
different. It is possible to divide the model in three main areas: the convective core
(from the centre to about mass coordinate ∼ 0.2 M�), the rest of the He-rich core
(from the convective border to mass ∼ 0.48), and the H-rich region above. Without
any extra input, MESA uses the TO1 as default in all the three areas, interpolating
on the local Z (blue line). However, this may lead to inaccurate opacities in the
central area for two main reasons. First of all, the upper limit for Z in OPAL table
is Z = 0.2, therefore the program cannot interpolate when the metallicity grows over

1except for a small variation near the centre between the original model and the program output,
due to different numerical precision.
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Figure 3.1: An example of tables produced by OPAL group (Iglesias & Rogers, 1996). Opacity
is plotted as function of log T and log R at fixed X (0.35) and for Z = 0.004 (left), and Z = 0.100
(right).

this threshold, preventing the opacity to increase –as expected– in the convective
core. Second, during the helium burning the metallicity increases only due to the
contribution of the carbon and oxygen, changing their mass partition in Z. If the
C/O enhancement is not taken in account, a simple increment of Z will increase also
the mass fractions of heavier metals (like e.g. Fe) that introduce a large contribution
to the opacity, especially in the initial phases of the HeCB and in the He-rich region
(since the helium flash has slightly increased by ∼ 0.2 the C+O mass fraction in
this region). As a consequence this set-up tends to overestimate the opacity in the
convective core at the beginning of the HeCB, while κ is underestimated in the
later phases of the central burning. Considering the initial Z instead of the current
value, prevents only the overestimation of κ in the He-rich core, but does not solve
the issue in the centre. The latter case (TO2 only) is able to better reproduce
the condition of the entire core. In order to compute models from the pre-main
sequence to the first AGB thermal pulse, I set up MESA to maintain the standard
TO1 interpolation (case 1) above the H-shell only and to use TO2 below it. This
is done also considering a blending region in which the two solutions are linearly
composed between the 10−10 < X < 10−6.

The OPAL opacities were used complemented by low-temperature opacities from
Ferguson et al. (2005) in the range 30000− 500 K.
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Z = 0.0350 for NGC 6791). In black the tracks computed with Krishna Swamy (1966) atmosphere
model while in grey with an Eddington-grey atmosphere model. It can be noticed that the black
lines fit better the RGB stars of the clusters.
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Atmosphere model αMLT Z� Y� log L/ L� log R/ R�
Eddinton-grey 1.692784 0.01756 0.26556 0.246360 · 10−7 0.103382 · 10−6

Krishna Swamy (1966) 1.965719 0.01756 0.26618 0.364275 · 10−5 −0.421175 · 10−6

Table 3.1: Result of the solar calibration for the physical inputs IP1 end two different atmosphere
models.

3.1.4 Atmosphere

3.1.5 Convective Core on the Main Sequence

In convective cores, extra mixing (overshooting) is considered. Our standard pre-
scription for main-sequence stars is the one described in Maeder (1975), which con-
sists in an instantaneous mixing of the region above the classical border. The size of
the extra-mixing region is assumed to be 0.2Hp, where Hp is the pressure scale at the
border of the convective core. An exhaustive description of the mixing schemes will
be presented later in the section 3.2. The value 0.2 is compatible with the results
presented in Aerts (2015) for OB stars.

3.1.6 Solar Calibration

Once the physical inputs are fixed, the output of the computation must be calibrated
on a real star. The most logical choice is the Sun, since is a typical and well
known low-mass star. This means that the 1.0 M� solar-abundance track must
reproduce the solar proprieties at the age equal to the age of the Sun. I performed
an iterative algorithm in which I search for a combination of the mixing length
parameter (αMLT), the initial metallicity, and the initial helium mass fraction that
reproduces the solar radius and luminosity at the age of 4.57 Gyr with a precision
of δ logR, δ logL < 10−5. The algorithm is based the minimization method “Nelder-
Mead”(Nelder & Mead, 1965) applied to χ2:

χ2 =

(
logRmod − logR�

δ logR

)2

+

(
logLmod − logL�

δ logL

)2

. (3.4)

The results of the solar calibration for are listed in Tabel 3.1.

3.2 Mixing Schemes

During the main sequence and the helium-core-burning phase, stars may develop
convective cores. However, the treatment of the core convection is still matter of
discussion (especially in the HeCB, Straniero et al. 2003), and the different assump-
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tions, which usually affect the size of the mixed region, have a direct impact of
various aspects of the current and subsequent phases. For example, the duration of
the HeCB phase: a larger core increases the helium available for the nuclear reac-
tions, and more time is required to burn it all. The effect of the different mixing
schemes is the main topic of the chapters 4, 5, and 6. In this section I will simply
introduce their main characteristics. Sections 3.2.1 and 3.2.2 are reported as written
in (Bossini et al., 2015).

3.2.1 Bare-Schwarzschild

This mixing scheme considers no extra mixing involved. The border of the convective
core is imposed in accordance with the Schwarzschild criterion. In the case of HeCB
stars, the convective core is not allowed to grow (in mass), leading to a discontinuity
in the chemical composition (hence in the radiative gradient) at its border. The
discontinuity becomes more pronounced as well as the evolution proceeds (Figure
3.4 panel a).

3.2.2 Induced Overshooting and He-Semiconvection

A recent paper by Gabriel et al. (2014) showed how this implementation of the
Schwarzschild criterion in HeCB stars leads to an inconsistent location of the con-
vective border, as the convective luminosity is non-zero there (∇rad > ∇ad at the
inner side of the convective boundary). The book of Schwarzschild (1958) and the
analysis presented in Castellani, Giannone & Renzini (1971a) also led to similar con-
clusions. The latter consider the BS convective border as in an unstable equilibrium,
in the sense that by extending outwards the convective core by an arbitrarily small
quantity, ∇rad at the new border may be larger than ∇ad, hence, the region is con-
vectively unstable according to the Schwarzschild criterion. To find a stable border,
the convective core must be extended until the radiative and adiabatic gradient be-
come equal (induced overshooting). However, as the HeCB proceeds (Yc ∼ 0.69)
this scheme generates a local minimum in ∇rad within the mixed core. The addition
of radiative layers surrounding the increasingly larger convective core will decrease
∇rad to the value of ∇ad at the location of the minimum. This creates a separate
convective region in layers beyond the location of this minimum, where ∇rad is still
larger than ∇ad. The treatment of this external convective region is problematic.
Full mixing between layers inside the minimum of ∇rad and the external convective
shell cannot happen, because otherwise the minimum of ∇rad would decrease below
the local value of ∇ad and the layer would end up being convectively stable. A so-
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lution to this problem is the formation of a partially mixed –semiconvective– region
between the minimum of ∇rad and the outer radiative zone (Castellani, Giannone
& Renzini, 1971b). This is usually treated with dedicated algorithms that allow for
partial chemical mixing to satisfy ∇rad = ∇ad in this region, with the consequence of
creating a smooth gradient of chemical composition before the sharp discontinuity
due to the HeCB.
I include in MESA a special routine in order to implement a similar prescription.
This routine consists in the following steps:

1. at the beginning of each timestep I set the position of the convective-core
boundary and fully mix the convective region according to the Schwarzschild
criterion as implemented in MESA.

2. I let the code calculate the burning during the timestep.

3. at the end of the timestep, I check whether the radiative gradient (with the
new composition determined by the burning) at the convective border is higher
than the adiabatic gradient.

4a. if this is the case, I restart the timestep from point 1, but extending the core
boundary by one mesh.

4b. if not, the equality of the gradients has been achieved and the code can continue
to the next timestep (point 1).

As a result of this algorithm, the convective core extends naturally (Fig. 3.4 panel
b). However, a routine to treat He-semiconvection is still to be developed in MESA,
limiting the evolution of this treatment until Yc ∼ 0.69.

3.2.3 Step Function Overshooting

One of the possible treatments that extends the mixing beyond the classical border
is the convective overshooting. It is based on the hypothesis that the convective
elements that reach the point where ∇rad = ∇ad still have a residual kinetic energy.
Therefore they can penetrate into the surrounding radiative zone, increasing the
region affected by convective mixing. This phenomenon is not limited to HeCB phase
but can be applied also to MS stars and any other phases that require convection.
The Step Function is a type of possible mixing scheme that goes under the name
overshooting. It follows the description given by Maeder (1975) and consists in
extending the mixed region above the classical border by a fixed fraction of the
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Figure 3.5: Schematic description of the step function overshooting (section 3.2.3).

pressure scale height, which is taken at the Schwarzschild border. This scheme is
completely parametric and the value of the fraction of the pressure scale height,
called overshooting parameter, might change from one burning type to another.
I will use αovH to refer to overshooting in the H-burning phase, while αovHe is used
for helium burning. The overshooting region is considered to be quickly mixed with
respect to the typical evolutionary timesteps. In MESA a diffusive coefficient, whose
value is fixed and taken just below the Schwarzschild border, is applied on the entire
region. Figure 3.5 gives a schematic overview of the scheme for a star during the
HeCB. However, the profile ofHp as function of the radius tends to diverge to infinite
for r → 0, making the treatment for small core tricky. As highlight in Deheuvels
et al. (2016), MESA redefines Hp as RccαMLT (Rcc, radius of the classical core) when
lmlt > Rmc. An alternative approach is to consider the minimum between Hp and
the radius of the convective core (Roxburgh, 1992).

3.2.4 Penetrative Convection

In addition to the overshooting parameter, another source of uncertainty can be the
thermal stratification (∇T ) to adopt in the extra mixed region. According to the
definition given in Zahn (1991), if we impose ∇T ovsh = ∇rad we have the classic
overshooting (OV), while if ∇T ovsh = ∇ad, we have penetrative convection (PC,
figure 3.5). In terms of their effects on global evolutionary properties (age and
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location on HRD), the overshooting and the penetrative convection do not differ
significantly. However, the two schemes modify differently the profile of Brunt-
Väisälä frequency and, therefore, the period spacing with the effect that ∆ΠOV is
usually smaller than ∆ΠPC.

3.2.5 Diffusive Overshooting

Another type of overshooting is the Diffusive Overshooting (Herwig, 2000). In
this case the overshooting parameter fovsh defines the diffusive coefficient Dovsh at
each point of the star above the classical border by the equation:

Dovsh(r) = D0 exp

(
−2

r −Rcc

fovshHp

)
, (3.5)

where D0 is the diffusive coefficient taken just inside the classical border. This
kind of overshooting does not allow the formation of chemical discontinuities. It
must be noticed that, since eq.3.5 is an exponential decay law, a jump in chemical
composition for evolved HeCB stars will be present anyway, even if it will be smooth.

3.2.6 Modified Overshooting

The treatment of He-semiconvection is important also in overshooting (and pen-
etrative convection) schemes, especially for low and moderate values of the αovHe.
Similarly to the induced overshooting, during the HeCB evolution a local minimum
in ∇rad is formed in the mixed region, while a local maximum is present at the
extra-mixing border due to the increasing opacity (consequence of the high C+O
abundance). If this local maximum becomes higher than ∇ad, a He-semiconvection
region is formed. Without a dedicated semiconvection treatment, if αovHe is not large
enough, ∇rad will at some point increase above ∇ad, joining together the two convec-
tively unstable regions (see figure 3.6). In codes like MESA this particular situation
generates a numerical problem: MESA in fact is not able to distinguish the actual
classical border from the overshooting region (since they are both convective and
now joined) and it will attach the overshooting to the former extra-mixing region,
leading to an non-physical injection of helium in the core (figure 3.6, fourth panel).

To overcome this problem I implemented a new prescription named modified over-
shooting. In this scheme I define the convective border as the point where ∇rad =

∇ad, in accordance with Schwarzschild criterion, or the minimum of ∇rad, if it has
increased over ∇ad (figure 3.7).
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3.3 A New Grid of Models

The procedures and techniques I described in the previous sections have been used
to build a new grid of models. The grid of models was computed using MESA. The
physical inputs are the ones I have described as PI1 (section 4.2). The range of
mass considered is M = 0.6− 2.5 M�, in combination with 7 different metallicities
([Fe/H]= [−1.00; 0.50]). The following points summarize the additional physical
inputs used:

• The tracks were computed starting from the pre-main sequence (PMS) up to
the first thermal pulse of the AGB (TP-AGB).

• The atmosphere is taken according to Krishna Swamy (1966) model.

• Overshooting was applied during the core-convective-burning. I use overshoot-
ing with a parameter of αovH = 0.2Hp during the main sequence, while, fol-
lowing the and the results in Bossini et al. 2015 (see Chapter 4), I consider
αovHe = 0.5Hp penetrative convection in the HeCB phase.

• Metallicities [Fe/H] were converted in mass fractions Z by the formula Z =

Z� · 10[Fe/H] where Z� = 0.1756, from the solar calibration. The initial helium
Y depends on Z and was set using a linear helium enrichment expression:

Y = Yp +
∆Y

∆Z
Z, (3.6)

with the primordial helium abundance Yp = 0.2485 and the slope ∆Y/∆Z =
Y�−Yp
Z�

= 1.007. Table 3.2 shows the relationship between metallicity [Fe/H],
the mass fraction of heavy elements Z, and the initial helium mass fraction Y
for the tracks computed.

The HRD of the tracks is presented in figure 3.8. For every track I saved about 100-
200 single structures along their evolution. The grid is extensively used in Chapter
5 to study the dependency of the period spacing on the mass and metallicity and in
Rodrigues & Bossini et al..

3.4 Frequency Computations

In this work, the computation of theoretical oscillation frequencies was carried out
using GYRE (Townsend & Teitler, 2013). GYRE is a code that calculates oscilla-
tion modes from a given stellar structure, solving the equations presented in Chapter
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Figure 3.8: HRD for all the models computed
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Table 3.2: Initial masses and chemical composition of the computed tracks

Mass (M�)
0.60, 0.80, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.65,
1.70, 1.75, 1.80, 2.00, 2.15, 2.30, 2.35, 2.40, 2.45, 2.50

[Fe/H] Z Y
−1.00 0.00176 0.25027
−0.75 0.00312 0.25164
−0.50 0.00555 0.25409
−0.25 0.00987 0.25844
0.00 0.01756 0.26618
0.25 0.03123 0.27994
0.50 0.05553 0.30441

2. GYRE allows me to compute the oscillation spectra of the models, i.e., for in-
stance, the adiabatic frequencies of oscillations, the mode inertias, and the radial
and horizontal displacement profiles. In this section I will give an overview of the
methods used in whis work in order to extract global seismic quantities from the
models.

3.4.1 Average Large Separation

An important global property of the oscillation spectra, introduced in Chapter 2,
is the large separation ∆ν. In a first approximation, ∆ν can be estimated in the
models by the equation 2.85. However, this estimate can be inaccurate, since is
affected by a systematic effects which depend e.g. on the evolutionary phase and,
more generally, on the how the sound speed behaves in the stellar interior. An
improvement compared to using the scaling relation at face value requires to calculate
the radial modes (l = 0) and then to average the frequency spacing between them.
I refer to this quantity as the average large separation.

Observational measurements of the average ∆ν are indeed limited by the frequencies
around νmax. Therefore, with the aim of a self-consistent comparison between data
and models, any <∆ν> calculated from stellar oscillation codes must take in account
the restrictions given by the observations. Handberg et al. (submitted, see appendix)
estimated the quantity ∆νfit for the stars in the Kepler’s cluster NGC 6819. In
that paper, we estimated ∆νfit by a simple linear fit of the individual frequencies
(weighted on their errors) as function of the radial order. The value of the slope
resulting from the fitting line gives the estimated ∆ν. However, the same method
cannot be applied to theoretical models since their frequencies have no errorbars. I
therefore needed to take in account the uncertainties associated to each frequency
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in order to give them a consistent weight. Observational errors depend primarily
on the frequency distance between a given oscillation mode and νmax, with a trend
that follows approximatively the inverse of a Gaussian envelope (smaller errors near
νmax, larger errors far away from νmax, Handberg et al., submitted). For this reason
I considered to use a Gaussian function described in Mosser et al. 2012a to calculate
the individual weights.

w = e−
(ν−νmax)2

2·σ2 , (3.7)

where w is the weight associated to the oscillation frequency ν and σ is give by
eq. 2.84. I then explored five alternative ways to calculate <∆ν> using Gaussian
weights. The methods, here described, are visually explained in figure 3.9:
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Figure 3.9: Schematic overview of the method proposed to calculate the average large separation
in the models. From the top to the bottom, the five panels correspond to the methods described
in section 3.4.1 and presented in the same order.

1. Mean of ∆ν(n,n+1),0 (νn+1,0 − νn,0), taking the weight at the middle point of
every l = 0 interval (figure 3.9, panel 1).

2. Mean of ∆ν(n,n+1),0, taking the weight at the start of every l = 0 interval
(figure 3.9, panel 2).
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3. Mean of ∆ν(n,n+1),0, taking the weight at the end of every l = 0 interval (figure
3.9, panel 3).

4. Mean of ∆ν(n,n+1),0, taking the weight as the mean value of the Gaussian
function in every l = 0 interval (figure 3.9, panel 4).

5. linear fitting of νn,0 as function of the radial order n, with the weights taken
at each νn,0 frequency (figure 3.9, panel 5).

In order to test my estimations I use the observed frequencies in Handberg et al.
(submitted) simulating their errors using the Gaussian weight function in eq. 3.7.
Figure 3.10 summarizes the comparison between <∆νgauss>, determined from the
methods above, with <∆νfit> estimated in the paper using the actual errors. The
most compatible method (lower χ2) is method 5 (linear fitting, green dots), which
has also been used in the paper to calculate <∆νfit>. Nevertheless, all the methods
estimate <∆νgauss> with relative differences within the errorbars for the majority
of the stars.

Although the definition of <∆ν> may seem a minor technical issue, it plays an
important role in avoiding systematic effects on e.g. the mass and age estimates.

Correction to the Scaling Relations

In Miglio et al. (2013b) the seismic quantities ∆ν and νmax were introduced in the
grid-based Bayesian tool PARAM (da Silva et al., 2006) to estimate global stellar
properties of giants obserevd by CoRoT in two regions of the Galaxy. Rodrigues
et al. (2014) used PARAM to calculate distances and extinction in the APOKASC
sample (Pinsonneault et al. 2014). However, the asteroseismic quantities were cal-
culated in the models by asteroseismic scaling relations, and are therefore affected
by systematic uncertainties which may lead to inaccurate estimates of stellar prop-
erties. In order to improve on this issue, I worked to map the deviation between the
scaling ∆ν and the value calculated from individual frequencies (by the method de-
scribed in section 3.4.1), extending the preliminary results presented in White et al.
(2011) and, for red giants, in Miglio et al. (2012) and Miglio et al. (2013a). These
papers have shown that corrections to ∆ν scaling are evolutionary-state dependent
and can affect the seismic estimation of mass to a level of ∼ 10%. It is therefore
crucial to use ∆ν from theoretical predicted frequencies to avoid (known) systematic
biases in the mass and age estimation. To do so I used my grid of models in which
I computed individual radial modes for each structure. Figures 3.11 and 3.12 show
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Figure 3.10: Comparison between the average large separation <∆νfit> of the star in NGC 6819,
estimated by linear fitting with the actual error, and the output of the five methods, described in
section 3.4.1, for which the actual errors were substituted by a Gaussian function centred in νmax.
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the ratio between ∆νscal. and <∆ν> as a function of the effective temperature and
νmax for a large number of tracks in the grid.

As is well known current models suffer from an inaccurate description of near-surface
layers leading to a mismatch between theoretically predicted and observed oscillation
frequencies. These so-called surface effects have a sizeable impact also on the large
frequency separation, and on its average value. When utilising model-predicted ∆ν

it is therefore needed to correct for such effects. As usually done, a first attempt
at correcting is to use the Sun as a reference, hence by normalising the ∆ν of a
solar-calibrated model with the observed one.

A comparison between the large frequency separation of the calibrated solar model
belonging to the grid (M = 1.0 M�, [Fe/H] = 0 at τ� = 4.57 Gyr) and that from
solar oscillation frequencies (Broomhall et al., 2014) is shown in Fig. 3.13. The
predicted average large separation (∆νmod = 136.1 µHz) is 0.8 % larger than the
observed one (∆νobs = 135.0 µHz). Tracks shown in figure 3.11 and 3.12 have been
already corrected by surface effects.

3.4.2 Examples of scaling relation correction

Two examples of the relevance of the corrections to scaling relations are given in
Handberg et al. (submitted, in appendix) and Miglio et al. (2016, in appendix).

In both papers we proceeded as in Miglio et al. (2012) and estimated stellar masses
by using several combinations of the available seismic and non-seismic constraints
by scaling relations in these four forms:

M

M�
'

(
νmax

νmax,�

)3(
∆ν

∆ν�

)−4(
Teff

Teff,�

)3/2

, (3.8)

M

M�
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(
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∆ν�

)2(
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Teff

Teff,�

)−6

, (3.9)

M

M�
'

(
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)(
L
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)(
Teff

Teff,�

)−7/2

, (3.10)

M

M�
'

(
νmax

νmax,�

)12/5(
∆ν

∆ν�

)−14/5(
Teff

Teff,�

)3/10

. (3.11)

In the first paper we applied the theoretical corrections to the scaling relation on
the RGB stars and RC stars in NGC 6819 and we compared them to empirical ones
calculated from our measurements by assuming the distance modulus to be (m −
M)V = 12.42 and on a star-by-star basis adjusting ∆ν until mass eq.3.10 and 3.11
(and therefore all four mass equations) yield the same mass (figure 3.14). The mean
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Figure 3.11: Correction of scaling relation in function of Teff
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Figure 3.12: correction of ∆ν in function of νmax



86 Stellar Model Computations

1500 2000 2500 3000 3500 4000 4500
130

132

134

136

138

140

142

ν [µHz]

∆
ν
 [

µ
H

z
]

 

 

Model

BiSON data

Figure 3.13: Comparison between calibrated solar model (red line) and that from solar oscillation
frequencies (blue line, Broomhall et al., 2014). In grey the Gaussian function used to weight the
frequencies of the solar model in order to calculate <∆ν>.
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mass of the red giants in NGC 6819 found to be 1.61± 0.02M� and 1.64± 0.02M�,
respectively, independent of whether empirical or theoretical corrections to ∆ν were
used. As seen, there is in general very good agreement between the theoretical and
empirical correction with a scatter caused by errors in the measurements of ∆ν,
νmax, and Teff . The agreement strongly supports the theoretical corrections to ∆ν.
This also suggests that no correction is needed for the other global parameter νmax

(at least not at this metallicity). The fact that we are able, for the first time, to
observationally confirm that the size of the ∆ν correction changes with evolution
up the RGB also shows that there is no significant evolutionary state dependent
correction to νmax on the RGB. The agreement on the ∆ν correction for both the
RGB and RC phases also confirms that νmax should remain uncorrected, also for
the RC phase of evolution. This confirms the result of Miglio et al. (2012) for ∆M

between RGB and RC, but now with much higher confidence.

In the second paper we studied eight red giants (7 RGB and 1 HeCB stars) belong-
ing to the globular cluster M4, observed by Kepler during the K2 campaign. The
masses calculated for each star and for each scaling equation are shown in figure
3.15 (upper panel). To estimate a set of corrections we computed stellar models
using MESA, taking an initial mass M = 0.85M� and heavy element abundance
Z = 0.003 (obtained using the expression in Salaris, Chieffi & Straniero 1993, and
the spectroscopically determined metallicity and alpha-enhancement from Marino
et al. 2008). A Reimers’ mass-loss efficiency parameter of η = 0.2 was also assumed.
Our results suggest that the seven RGB stars with detected oscillations are in a νmax

range where the mean density will be underestimated by 8% when strict adherence of
the classic ∆ν scaling is assumed. For the HeCB star (S8) the comparison suggests
an overestimation of the mean density by ∼ 4%. If we apply these corrections to
the mass determinations, we end up with a significantly lower scatter in the results
(see 3.15, lower panel) for all RGB stars.

It can be noticed that the four measurements are scattered along the M axis and
present a systematic shift based on which equation was used. For example eq. 3.8
gives highest mass estimation, while than eq. 3.9 the lowest. We then apply the
model predicted correction on the large separation, based on the difference between
∆ν from scaling relation (eq. 2.85) and < ∆ν > from computed frequencies (as
described in section 3.4.1). The track taken in account for estimate the correction
was a M = 0.85 M� Z = 0.003. The results are shown in figure 3.15 (lower panel),
where the scatter is substantially reduced.

For more details, both papers are presented in the appendix.
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Figure 3.15: Mass of M4 giants as inferred from Eq. 3.8 to 3.11 (in order, Eq. 1 to Eq. 4) with
(lower panel) and without (upper panel) applying a model-predicted correction to the ∆ν scaling
relation. The last star to the right (S8) is a HeCB star.

3.4.3 Small Separations

The small separation δν01 and δν02 are quantities that describe how the p-mode
frequencies l = 1 and l = 2 differ from the first order asymptotic approximation.
These quantities are defined as follows:

• δν01 is the distance between the middle point of two consecutive radial l = 0

modes and the nominal l = 1 p-mode within the interval.

• δν02 is the distance between the nominal l = 2 p-mode and the next l = 0

mode.

A visual illustration of δν01 and δν02 is presented in figure 3.16.
Estimating small separations does not require particular efforts in MS, since only p-
modes show up in the spectra. On the other hand, models present many mixed modes
along the RGB and simply selecting the modes at lower inertia (in ∆ν interval) is
not necessarily the best solution. Therefore, I need to design a specific method to
extract from a spectrum of mixed modes the frequency locations that pure l = 1

and l = 2 p modes would have. Since the final goal is compare theoretical models
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with observational data, I limit the interval of frequencies around νmax ± 3σ, where
σ indicates the estimated size of the Gaussian envelope as described in Mosser et al.
(2012a) and eq. 2.84.

The stellar track I use in this test is a 1.6M�, solar composition from the ZAMS
to the TP-AGB, for which I calculate the individual frequencies for several models
(Figure 3.17). For the sake of simplicity, I focus on l = 2 frequencies of model
number 41 (figure 3.18 ). The discussion can be easily transferred to other models
and angular degrees. The first step is to normalize the inertia of the l = 2 modes
with the inertia of the l = 0 modes. I fit the l = 0 mode inertia with a spline, then
I use the function found to normalize the inertia of the l = 2 (E20).

method 0: minimum of inertia I consider all the l = 2 frequencies in interval
between two consecutive l = 0 modes (∆Ii). For each interval I just pick the mode
with the lowest inertia.

method 1: local weighted mean around the minimum of inertia I re-
define the interval ∆Ii taking the minimum of inertia ±1

4
∆ν and I calculate the
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Figure 3.17: RGB of 1.6 M� solar composition on the HRD. The red dot indicates the test model
used in the main text with the purpose of estimating δ02.

mean frequency weighted on the inverse of the normalized inertia:

ν =

∑
ν · (E10)−1∑

(E10)−1
. (3.12)

method 2: local Lorentzian fitting around the minimum of inertia Ac-
cording with Unno et al. (1989), the inertia of the mixed mode l = 1, 2 as a function
of the mode frequency can be described by a Lorentzian function:

fLorentz =
a

1 + 4
b2
· (x− c)2

, (3.13)

with a, b, and c free parameters. Using the same intervals as in the previous method
I fit fLorentz to the frequencies and the inverse of inertia. The nominal p-mode will
be the central value of the function.

Figure 3.19 shows results of using the three methods on model 41, applied order
by order. The dashed lines indicate the solutions of method 0 (blue) and 1 (red),
while the green lines are the Lorentzian fits and their central peaks (method 2).
The fourth panel of figure 3.18 summarizes the results found as a function of the
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Figure 3.18: l=2 frequencies of model 41. top panel: log inertia against frequency. second panel:
period spacing against frequency. second panel: period spacing against frequency. third panel:
l = 0-normalized inertia against frequency. bottom panel: δ02 of the individual orders against the
radial modes. The green vertical lines indicate the location of the nominal l = 2 p-like modes
estimated by the method 2 described in the main text.

frequency of modes l = 0 (the solid lines represent the mean value found for each
method). As a side note, it is important to point out the case of SGB stars, where
the first mixed modes start to appear but are relatively few, typically less than 4
per order. In this case, fitting the inertia with functions having many parameters,
like the Lorentzian function, is not possible and we therefore preferred to use the
mean value with a weight that depends on the inertia of the modes. Alternative
approaches like Benomar et al. (2015) are better suited in these cases.

Finally, to estimate the average small separation, it is not possible to adopt a linear
fit as for ∆ν. The proposed method here simply consists in calculating the differences
radial order by radial order and to define <δν02> as the average δν02(n) weighted
by a Gaussian function taken at the l = 2 p-like modes. These weights have also
been determined by comparison with typical observational uncertainties as derived
in Handberg et al. (submitted).
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Figure 3.19: Identification of the nominal l = 2 p modes of different radial orders. The dashed
lines indicate the solutions of method 0 (blue) and 1 (red), while the green lines show the Lorentzian
fit and the location of their central peak (method 2). For the model considered, many orders have
the three solutions very close together.

3.4.4 Small separations in NGC 6819

As an example of an application of the work presented in the previous section, I show
here the preliminary results of the model-data comparison performed in Handberg
et al. (submitted). In this paper we extracted the individual frequencies from the
power spectra of about 50 NGC 6819 red giants. The stars were observed by Kepler
in a timespan of 3.5 years. These frequencies were then used to estimate the average
large and small separations for each star. In this context I contributed to generating
the stellar models specific for the cluster. One of my evolutionary tracks has been
already presented in figure 3.17 (M = 1.60 M�, [Fe/H] = 0). I then estimated
∆ν (using the linear fitting, method 5 section 3.4.1) and δν02 (using the Lorentzian
fitting, method 2 section 3.4.3 ) for a series of models along the RGB and in the RC
phase, in order to reconstruct the track on the ∆ν-δν02 plane. Figure 3.20 shows
the comparison between my model and the observations. It can be noticed that the
majority of the stars observed are compatible within 1σ to the stellar track, showing
an excellent agreement also in the red clump.
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Chapter 4

Uncertainties on Near-Core Mixing
in Red-Clump Stars

This chapter will report the effects of different mixing schemes during the HeCB
phase on classical and seismic observables. The text presented here is taken from
Bossini et al. (2015).
In the context of the paper, I computed various stellar models with different mixing
treatments during the HeCB phase and I studied how they affect the predictions
of observable parameters, such as the luminosity of the AGB bump and the period
spacing of gravity modes. I then compared my theoretical models with observed
stars in order to outline the characteristics of a mixing scheme able to describe
both the parameters. Teramo and Padova stellar groups gave a large contribution
providing me additional models to analyse from their evolutionary codes (BaSTI
and PARSEC).

4.1 Observational constraints on helium-core-burning

models

One of the main observables used to constrain the mass of the fully mixed core
during the HeCB phase is the R2 ratio (Buonanno, Corsi & Fusi Pecci, 1985). R2 is
defined as the ratio between the number of early Asymptotic Giant Branch (eAGB)
Horizontal Branch (HB) stars in simple stellar populations (chemically homogeneous
and coeval stars) and is directly connected to the lifetime of the two phases (R2 ∼
τAGB/τHB). The value of R2 is affected by the core mixing during the HeCB phase,
as discussed in, e.g., Bressan, Bertelli & Chiosi (1986), Caputo et al. (1989). The
use of R2 has hitherto been limited to stars in clusters, due to the small number of
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field stars with accurate distance available, and due to the inherent complication of
dealing with an ensemble of stars with a spread in age and chemical composition
(which also hampers robust inferences on their evolutionary state).

Another important observable related to the HeCB and AGB evolution of low- and
intermediate-mass stars is the luminosity of the AGB bump (AGBb, see e.g. the
review by Catelan 2007). Similarly to the bump in RGB, the AGBb is a feature of
the eAGB that consists in three passages of the evolutionary track in a small interval
of luminosity and causes a local increment of stars in the luminosity distribution of a
stellar population. The occurrence of the AGB bump is connected to the formation
of the helium-burning shell (see e.g. Cassisi & Salaris 2013, paragraph 5.2). The
luminosity at which it occurs depends on the location in mass of the He shell at its
ignition, hence it is determined by the maximum extension of the mixed core during
the HeCB phase. While the AGB bump had been highlighted in stellar evolutionary
tracks a few decades ago (see, for instance Caputo, Castellani & Wood, 1978), its
first identification as a distinct observational feature in galaxies was reported by
Gallart (1998). The AGBb is nowadays observed in a large number clusters and
nearby galaxies (e.g., see Alcock et al., 1997; Ferraro et al., 1999; Beccari et al.,
2006; Dalcanton et al., 2012). A further important property of the AGBb is the
weak dependence of the luminosity ratio between the RC and the AGBb on the
metallicity and initial helium abundance (Castellani, Chieffi & Pulone 1991; Bono
et al. 1995).

Asteroseismology of white dwarfs may also provide us with observational constraints
to test models in the HeCB and AGB phase. The C/O profile of a white dwarf at the
beginning of the cooling sequence corresponds to that of the stellar core at the end of
the AGB, hence it is largely determined by the combined action of chemical mixing
and nuclear burning during the HeCB phase. Using pulsation modes detected in
WDs, Metcalfe, Salaris & Winget (2002) found a discrepancy in the central oxygen-
to-carbon ratio between stellar models and the value inferred from seismic data.
They ascribed this difference to an underestimation of 12C(α,γ)16O cross section,
however, as pointed out by Straniero et al. (2003), the final C/O ratio in models
also depends on the amount of mixing applied in the convective regions beyond the
Schwarzschild border, and on the adopted definition of such boundaries.

While providing valuable information, currently available tests cannot be used to
discriminate competing models. In this chapter I propose a way forward, which is
based on the combination of said constraints and the more direct diagnostics of the
conditions in the core provided by non-radial modes observed in HeCB stars.



HeCB Mixing 97

4.2 Stellar models

In my exploratory analysis I consider models with M = 1.5 M�and solar chemical
composition. This set of parameters are both typical of the sample of RC giants
observed by Kepler (see e.g. Pinsonneault et al., 2014; Mosser et al., 2014), and
similar to those of giants in the cluster NGC6819 (see Basu et al., 2011; Miglio
et al., 2012; Sandquist et al., 2013). Models in HeCB phase are computed using
three different stellar structure and evolution codes (MESA, BaSTI, and PARSEC)
and several assumptions about near-core mixing.
A first set of models presented in this study is computed using the MESA. The
choice of parameters and of the relevant physics is the one described in chaper 3:
IP1 with Eddington-grey atmosphere.
I compute the following MESA models with different schemes for convective mixing:

BS The “bare Schwarzschild” model (BS, to follow the notation in Straniero et al.
2003).

HOV Step function overshooting model with high parameter value αovHe = 1

(HOV).

HPC Penetrative Convection model with a high overshooting parameter αovHe = 1

(HPC).
For low and moderate values of αovHe, overshooting models (as well as penetrative
convection) might develop a semiconvective region similar to the case presented
by Castellani, Giannone & Renzini (1971b). For high values of the overshooting
parameter (e.g HOV and HPC) the extra mixed region becomes large enough to
prevent the formation of a semiconvective region (see e.g. Bressan, Bertelli &
Chiosi, 1986; Straniero et al., 2003). Moreover, in these cases the determination
of the fully mixed region requires the application of the Schwarzschild criterion in
layers where there is no chemical composition gradient/discontinuity, which greatly
simplifies the numerical implementation of the convective-instability criterion.
In order to extend my study of the mixing-schemes commonly adopted, I also con-
sider stellar models from other evolution codes (BaSTI and PARSEC). To compute
those models I used, where possible, the same physical inputs adopted in MESA.

BaSTI-SC Collaborators provided me models computed with the BaSTI code
(A Bag of Stellar Tracks and Isochrones, Pietrinferni et al., 2004, 2006, 2013).
The BaSTI model has M = 1.5 M�, computed for Z = 0.0176, Y = 0.266, and
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αMLT = 1.69 with Grevesse & Noels (1993) heavy element partition. The input
physics relevant to this analysis is the same as in the MESA calculations but for
the 12C(α,γ)16O reaction rate that comes from Kunz et al. (2002). Core mixing
during the HeCB stage, induced overshooting and semiconvection have been taken
into account by adopting the numerical scheme firstly introduced by Castellani et al.
(1985) and previously described. Indeed, a semiconvective region starts to appear
when the central abundance by mass of He is ∼ 0.7. The occurrence of breathing
pulses - which appear when the central abundance of He drops below of 0.12 - is
inhibited by imposing that the abundance of Helium in the core is not allowed to
increase at each time step. The evolution starts from the pre-main sequence to the
RGB-tip, and is resumed at the start of the HeCB after the core electron degen-
eracy has been removed (the helium-flash evolution is not computed), and 3% of
carbon has been produced during the He-flash. No core convective overshoot during
the central H-burning stage and no mass loss during the RGB phase are taken in
account.

PARSEC-LOV Models computed using PARSEC (PAdova & TRieste Stellar
Evolution Code, Bressan et al., 2012, 2013) are also considered for M = 1.5 M�,
Z = 0.017, and Y = 0.279. I briefly summarize below the main input physics
adopted for the current models. The nuclear reaction rates and corresponding Q-
values are the recommended values in the JINA reaclib database (Cyburt et al.,
2010). The high-temperature opacities, 4.2 ≤ log(T/K) ≤ 8.7, are provided by the
Opacity Project At Livermore (OPAL) team (Iglesias & Rogers, 1996, and refer-
ences therein) and the low-temperature opacities, 3.2 ≤ log(T/K) ≤ 4.1, are from
ÆSOPUS1 tool (Marigo & Aringer, 2009). The equation of state is computed with
the FreeEOS code (A.W. Irwin2). The heavy element partition is from Caffau et al.
(2011). The MLT parameter, αMLT = 1.74, is calibrated on the solar model account-
ing for element diffusion. The standard mixing scheme in PARSEC considers an
overshooting parameter of Λc = 0.5 across the formal Schwarzschild border, which
means about 0.25Hp above it, and a radiative thermal stratification of the extra-
mixed region. Similar to BaSTI, the evolution starts from the pre-main sequence,
stops at the helium flash and restarts after the core electron degeneracy has been
removed after the flash. The amount of carbon consumed to remove the electron
degeneracy is computed from the variation of the gravitational binding energy of
the core during the flash. During the HeCB phase, besides accounting for core over-

1http://stev.oapd.inaf.it/aesopus
2http://freeeos.sourceforge.net/
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shooting, the code may deal with residual semi-convective instabilities using the
Schwarzschild criterion, and suppresses possible breathing pulses of convection.

PARSEC-MPC PARSEC developers also provided me a modified track in which
the mixed He core is extended by penetrative convection (adiabatic stratification)
with a moderate value of overshooting (Λc = 1.0, i.e. αovHe ∼ 0.5).

ES Finally, I include in the analysis a model obtained with MESA computed with
an external routine to implement a similar prescription as in BaSTI-SC (see section
3.2.2)

4.3 Predicted stellar properties of models in the

HeCB and AGB phase

I now compare the properties of the series of models presented in Section 4.2, with
particular emphasis on those which can be tested via a direct comparisons to obser-
vations. I start by comparing predictions of non-seismic observables (see Sec. 4.1),
while in Sec. 4.3.3 I focus on seismic diagnostics.

The main consequence of applying different mixing schemes in the HeCB phase is to
vary the core mass undergoing convective mixing. I refer to convective-core mass
(Mcc) as the core mass in which ∇rad ≥ ∇ad (formal Schwarzschild core), while
the mixed-core mass (Mmc) includes also the extra-mixing region (e.g convective
core + overshooting and/or semiconvection). The mixed-core mass also indicates
the location in the stellar structure of the discontinuity in the chemical composition
due to HeCB. In the ES models (in the domain I was able to explore) and BS
models, Mcc corresponds to Mmc since no extra mixing is introduced. This is also
true for the BaSTI-SC model when Yc > 0.7, i.e. where semiconvection has not
appeared yet, and during the last stages of the HeCB, where the convective core
grows rapidly and the size of the semiconvective region is reduced (see Figure 4.1,
upper panel). In HOV, HPC, PARSEC-LOV, and PARSEC-MPC, Mcc and Mmc

are distinct from the beginning to the end of the HeCB phase (Figure 4.1, upper
and middle panels). Although penetrative convection models are expected to have
smaller Mcc and Mmc than overshooting models (see Godart, 2007; Noels et al.,
2010, in the case of massive main-sequence stars), max(Mmc) in HOV and HPC is
very similar, providing a similar LAGBb (see Figure 4.1, upper and lower panels).
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Figure 4.1: Convective-core (upper panel), mixed-core mass (middle panel) and total luminos-
ity (lower panel) as a function of time for the BS, HOV, HPC, BaSTI-SC, PARSEC-LOV, and
PARSEC-MPC models from the start of the HeCB phase up to the first AGB-TP. Both HPC and
HOV models show micropulses.
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4.3.1 Luminosity and duration of the HeCB and eAGB phases

An obvious effect of increasing Mmc is to increase the duration of the HeCB phase
(τHeCB). In models with larger Mmc more fuel is available for the triple-α and
12C(α,γ)16O nuclear reactions, increasing the time necessary to deplete all the helium
in the core, i.e. the lifetime of the HeCB phase. In HOV and HPC models, the HeCB
lifetime increases by about 40% compared to the BS model, while in BaSTI-SC and
PARSEC-LOV by about 20%. However, if we look at the lifespans of the single
phases, the increase in duration of the HeCB phase corresponds to a (non-linearly
proportional) decrease of the duration of the AGB phase, since the formation of the
He shell takes place closer to the H shell. The BS model has shorter lifetime with
respect to the HPC and HOV models, however, it has a longer AGB phase. The
BaSTI-SC, PARSEC-LOV, and PARSEC-MPC tracks have a behaviour which is
in between the BS and the HPC/HOV models. In general we expect that models
with increasing Mmc produce a longer HeCB phase and a less populated early-AGB,
combined with a decreasing R2 factor from BS models to the HOV and HPC models.
These results are reported in Table 4.1.

The stellar luminosity is also affected by the mixing scheme adopted during HeCB
(Figure 4.1, lower panel), and LAGBb increases when extra mixing is added, while
it remains almost unchanged when comparing HOV and HPC tracks (Table 4.1).
The maximum extension of Mmc (which is very similar in HOV and HPC models)
corresponds to the inner border of the He-shell at its ignition and it determines the
LAGBb.

Models with larger cores (HOV and HPC) showmicropulses (Mazzitelli & D’Antona,
1986), i.e. a series of secular instabilities that may occur during the formation of
the He-burning shell. Micropulses appear after the maximum in luminosity of the
AGB bump if the nuclear reactions in the core stop before the shell is ignited in
“thin” conditions (see Schwarzschild & Härm 1965). To support this statement I
have looked at the central helium abundance and the nuclear energy generation rate
at the start of the AGB bump. The values found indicate that in the HPC and
HOV models the contribution of HeCB to the luminosity is negligible, since helium
is almost completely depleted. On the other hand, in the BS model core-He burning
still contributes significantly to the luminosity. I note that for micropulses to be
resolved by a stellar evolution code, a small timestep is needed in the numerical
simulations: each pulse lasts for about 5 · 104 yr and the duration of the entire
phenomenon is about 2 million years.

The study of micropulses goes beyond the purpose of this thesis and for detailed
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MESA MESA MESA MESA BaSTI PARSEC PARSEC
BS HOV HPC ES SC LOV MPC

timespan HeCB phase (τHeCB) (Myr) 60.4 126.2 131.1 — 100.2 100.6 107.0
R2 ratio ( τAGB

τHeCB
) 0.71 0.06 0.06 — 0.12 0.15 0.12

Mcc at Yc ∼ 0.7 (M�) 0.100 0.113 0.084 0.162 0.165 0.140 0.107
Mmc at Yc ∼ 0.7 (M�) 0.100 0.292 0.242 0.162 0.165 0.187 0.206
maximum extension Mcc (M�) 0.100 0.130 0.114 — 0.243 0.199 0.158
maximum extension Mmc (M�) 0.100 0.305 0.302 — 0.243 0.251 0.262

Table 4.1: Non-seismic properties of 1.5 M� models computed adopting different mixing schemes.
the empty enters

explanations I refer the reader to Mazzitelli & D’Antona (1986) and the more recent
work by Gautschy & Althaus (2007). Also notable of citation are the papers by Bono
et al. (1997) and Sweigart et al. (2000) where the connection between “gravonuclear
instabilities" and micropulses is investigated.

4.3.2 Asymptotic gravity-mode period spacing

I have shown that there are no significant differences between models with similar
Mmc when considering the luminosity as a function of time (see e.g. HOV and
HPC in Fig. 4.1). These models, however, have very distinct seismic properties.
Montalbán et al. (2013) showed that extending the adiabatically stratified central
region leads to a larger value of the gravity-mode period spacing. The reason why
the asymptotic period spacing of gravity modes (∆Πg) during the HeCB phase is
a sensitive probe of the temperature stratification of near-core regions is directly
related to the behaviour of the Brunt-Väisälä frequency N , and its relation with
∆Πg.
In the stellar interior, N depends on the local temperature and chemical composition
gradients (eq. 2.35). In a fully mixed region, ∇µ is null, therefore the N2 profile is
directly proportional to the difference between ∇T and ∇ad (Figure 4.3a).
In the extra-mixed region of models with overshooting (e.g. HOV and PARSEC-
LOV) ∇rad < ∇ad, therefore

N2 ∝ ∇ad −∇T = ∇ad −∇rad > 0,

while in the corresponding region of a penetrative convection model (e.g. HPC and
PARSEC-MPC) ∇T = ∇ad, hence

N2 ∝ ∇ad −∇T = 0.

The asymptotic period spacing of gravity modes is related to the Brunt-Väisälä fre-
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Figure 4.2: Period spacing against the central helium mass fraction during the HeCB phase for
the model computed. Bare-Schwarzschild models present the smallest period spacing, while the
penetrative convection models have the largest values. Moreover penetrative convective models
start with larger period spacing.

quency according to the relation 2.78. Consequently, HeCB penetrative-convection
models have higher values of ∆Πg compared to overshooting models (Figure 4.2).

A similar effect can be found if I compare models with increased mixed-core size.
Bare-Schwarzschild models, in fact, have lower ∆Πg compared all other models,
followed by models with induced overshooting (BaSTI-SC and ES), then high over-
shooting model, and finally high penetrative convection models (see Fig. 4.3a).

Independently from the convective-mixing scheme adopted (BS, HOV and HPC),
the period spacing of models in the HeCB is higher compared to that on the RGB
at the same luminosity (∆ΠgRGB ∼ 60−50 s), while after the early-AGB phase ∆Πg

decreases to similar or smaller values (Montalbán & Noels, 2013).

It is interesting to notice that if models present multiple gravity-mode cavities, we
do not expect them to show a regular period spacing. This is the case of HOV and
HPC models in the in the post-HeCB phase during the micropulses. In fact, the He
shell can experience convection within each pulse, in conjunction with the maximum
of the nuclear energy generation. Stars presenting this scenario (if any at all exist)
may be missed by analysis based upon looking for a simple pattern in ∆Πg (e.g.
Mosser et al., 2012b).
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Figure 4.3: (a): Brunt-Väisälä frequency in the stellar interior of models with Yc ' 0.7 and
different convective-mixing scheme. Figures (b-h): Oscillation modes properties for the different
convective schemes. Upper panel: mode inertia as a function of the frequency for modes with
angular degree ` = 0, 1, 2. Lower panel: period spacing of numerically computed dipolar-mode
frequencies (dots) compared with the asymptotic value (solid orange line).
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4.3.3 Period spacing of numerically computed adiabatic fre-

quencies

From the observed frequency spectra we can estimate ∆Πg based on the detection of
modes that have relatively small inertias, i.e. gravity modes that have a significant
coupling with the low-inertia acoustic modes (see e.g. Christensen-Dalsgaard 2012
and reference therein). The frequencies of these mixed gravito-acoustic modes are
expected from theory to follow a relatively simple pattern (see e.g. Unno et al.,
1989; Mosser et al., 2012b), which can be fitted to the observation to estimate ∆Πg,
provided that a sufficient number of modes are detected, and that the analytical
approximation for the expected pattern of mixed modes is accurate (see e.g. Beck
et al., 2011; Montalbán et al., 2013; Mosser et al., 2012b; Jiang & Christensen-
Dalsgaard, 2014; Cunha et al., 2015).

It is thus crucial not only to make predictions of RC ∆Πg using the approximated
expression in eq. 2.78, but also to compute the spectrum of individual modes, which
may show interesting departures from the expected approximated relation/pattern,
and that eventually can be compared with the detailed observed frequency spectrum.

In Figures 4.3b−f I present the properties of adiabatic pulsation modes computed
with GYRE (Townsend & Teitler, 2013), and compare frequency spectra of models
with the same central helium abundance (Yc ' 0.7), but computed with different
convective-mixing schemes. In the upper panel of each figure it is possible to see
how the inertia (E) of each mode varies in a frequency interval around the fre-
quency of maximum oscillations power (νmax). Figures 4.3b−f also show that the
characteristic asymptotic behaviour of the modes (the constant frequency separation
for the low-inertia, pressure-dominated modes and the constant period spacing for
the high-inertia, gravity-dominated modes) is a good representation of the detailed,
numerically computed frequency spectrum. Moreover, the asymptotic value of the
period spacing clearly reflects the differences in the Brunt-Väisälä frequency near
the core (Fig. 4.3a and eq. 2.78), with the BS model having the lowest ∆Πg, and
the HPC model the highest.

4.3.4 Signatures of sharp-structure variations in the period

spacing

As evinced from Fig. 4.3a and, more clearly, from Fig. 4.4, N may have sharp
changes due e.g. to chemical composition gradients and/or in the temperature gra-
dient in radiative regions. Whether such glitches have a significant impact of the
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HOV model, Yc ∼ 0.7
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Figure 4.4: Brunt-Väisälä frequency as a function of the normalised buoyancy radius Πr/ΠR

(see text) in a HOV model with Yc ' 0.7. In the rectangle, ` = 1 period spacing as a function of
period for the same model. The period spacing of high-order g modes (e.g. in the period range
4.7 − 5.3 104 s) is well described by the superposition of the asymptotic ∆Πg (orange line) and
a component with periodicity ∆n ' 6. This periodicity indicates (see Eq. 4.1) a sharp-structure
variation located at ΠR/Πr ' 1/∆n ' 0.17, which corresponds well with the position of glitch in
N .

period spacing depends on their location, their sharpness, and to the typical local
wavelength of the gravity modes of interest.
As described in the literature (see e.g. Brassard et al., 1992; Miglio et al., 2008;
Berthomieu & Provost, 1988), the signature of a sharp feature in the Brunt-Väisälä
frequency is a periodic component in the periods of oscillations, and therefore in the
period spacing, with a periodicity in terms of the radial order n given by:

∆n ' ΠR

Πglitch

, (4.1)

where the total buoyancy radius is defined as:

Π−1
R =

∫ R

r0

N

r′
dr′ , (4.2)

and local buoyancy radius is

Π−1
r =

∫ r

r0

N

r′
dr′ , (4.3)

with r0 and R being the inner and outer boundary of the g-mode propagation region.
The periodicity of the components in terms of radial order is therefore an indicator
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of the location of the glitch, expressed in terms of its normalised buoyancy radius
(ΠR/Πglitch).
In the models I am focusing on, I notice two main glitches. A prominent, yet smooth,
glitch due to the H-burning shell and associated with ∇µ (see e.g. the glitch located
at ΠR/Πr ' 0.7 in Fig. 4.4). In models at the beginning of the HeCB phase, in
which the H-burning shell is still very thin, this glitch is sharper and may give rise to
significant departures from a smooth g-mode period spacing (see Bildsten et al. in
preparation). In models during most of the HeCB phase, however, this glitch does
not appear to give rise to significant deviations from the asymptotic ∆Πg expected
for high-order g modes.
More interestingly, in the HOV model (see Fig. 4.3c and 4.4) I notice a sharp
variation in N which can be well described by a step function3. Given the location
of this glitch ΠR/Πr ' 0.17 (see Fig. 4.4) we expect a periodic deviation from the
asymptotic ∆Πg with a periodicity of ∆n ' 6, where n is the radial order of gravity
modes (see e.g. Miglio et al. 2008). This corresponds well (at least in the regions of
pure g modes, e.g. in the range 4.7− 5.3 104 s) to the periodicity of the component
(see inset of Fig. 4.4).
While the full description of these glitches is beyond the scope of the present work, I
note that departures from the simple description of ∆Πg expected from the interac-
tion between high-order g modes and an acoustic mode (Unno et al., 1989; Mosser
et al., 2012b; Jiang & Christensen-Dalsgaard, 2014, e.g., see) provide additional,
potentially very sensitive, probes of sharp-structure variations in near-core regions
during the HeCB phase.

4.4 First comparison with observations: AGB bump

and period spacing

4.4.1 The AGB bump in Kepler red giants

A catalogue of seismic (∆ν and νmax) and spectroscopic ([M/H] and Teff) constraints
for ∼ 1600 Kepler giants was recently published by the APOKASC collaboration
(Pinsonneault et al., 2014).
I estimate stellar masses, and luminosities of these stars by using the so-called direct
method, i.e. by combining Teff with the seismic radii (estimated using ∆ν and νmax

3At the boundary of the fully mixed radiative (overshoot) region, the discontinuity in opacity,
due to the difference between carbon rich mixed layers and He rich surrounding layers, leads to a
discontinuity in ∇T and thus in N .
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through scaling relations). This method is known to lead to less precise estimates of
M and R than so-called “grid-based” approaches, yet it is less dependent on stellar
evolutionary tracks (e.g. see Chaplin & Miglio, 2013, and references therein) and
completely independent of bolometric corrections. I select stars from the APOKASC
catalogue in a range of mass M =1.3–1.7 M� and metallicity [M/H] =-0.4–0.4. The
luminosity function of such stars displays a peak that is spread over about 4 bins
and a has maximum at logL/L� ∼ 2.2: I interpret this peak as a strong candidate
for the AGB bump (Figure 4.5). This statement is supported by the fact that 97.5%

of the stars have errors smaller than the bin size. I also calculated 1000 realisations
of the observed sample, assuming gaussian errors on ∆ν, νmax, Teff (taken from the
APOKASC catalogue) and found that the properties of the peak in the luminosity
function are not significantly affected.

As a word of caution I would like to stress that the APOKASC catalogue may,
however, be affected by target selection biases (Pinsonneault et al., 2014). Although
the maximum in the observed luminosity distribution does not appear to be signifi-
cantly affected by widening the metallicity range, I notice that, if I extend the range
of masses down to 1 M�, the position of the peak is lowered by 1 bin (0.07 dex).

To check whether the AGBb is a feature we expect to be able to detect in a composite
stellar population I use the TRILEGAL code (Girardi et al., 2012) to simulate the
galactic population expected in Kepler field. The stellar models used are based on
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Padova tracks (Bressan et al., 2012), with an overshooting parameter of Λc = 0.5

(i.e. 0.25Hp, same mixing scheme adopted for PARSEC-LOV model). I apply to
the synthetic sample the same selection in mass and metallicity as in the observed
sample. The synthetic population also displays a well defined peak with a luminosity
compatible with that of the candidate AGBb in the APOKASC catalogue (Figure
4.6).

From the simulations I estimate that about half of the red-giant stars in that peak
belong to the RGB. This means that in the case of the full APOKASC catalogue
(considering the entire range of mass and metallicity) I expect about 20− 40 AGBb
stars.

In order to make a first comparison between my models and the observations, I
generate histograms of the luminosity based on each of my tracks. Results of this
comparison are shown in Figure 4.7. For the sake of clarity in the figure I have omit-
ted RGB models. All the models are able to reproduce reasonably well the position
of the RC, taking into account also the fact that my models are representative of a
single-mass, single-metallicity population only, and that I have not added the effect
of observational uncertainties when building the synthetic luminosity function.

The luminosity of the AGB-bump predicted by BaSTI-SC, and PARSEC-MPC are
remarkably similar, and in good agreement with the candidate AGB-bump lumi-
nosity as detected in the observations. While PARSEC-LOV is another acceptable
model, interestingly, the AGBb predicted by the BS, HOV, and HPC models is in
clear disagreement with the observations, being either too faint (BS) or too bright
(HOV, HPC).

4.4.2 Period spacing of Kepler RC stars

Mosser et al. (2014) recently published a catalogue that contains a large sample
of red giants in the Kepler field for which g-mode asymptotic period spacings were
inferred by modelling the interaction between pressure and gravity modes (see Unno
et al., 1989; Mosser et al., 2012b). Thanks to this catalogue I am able to compare
the observed period spacing with theoretical predictions. Iselect RC stars (i.e. stars
with ∆Πg > 175 s) in a range of mass between 1.3 M� and 1.7 M�, and compare
the distribution of observed ∆Πg with predictions from my models (see Fig. 4.8).

None of the models considered seems to describe satisfactorily the entire observed
distribution. The BS model can be ruled out, since max ∆Πg is 80−90 s smaller than
the maximum in the observed data. BASTI-SC, which was one of my best candidate
models based on the comparison with the AGBb luminosity, shows a main peak in
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the ∆Πg distribution about 20 − 30s below the observed one and cannot describe
period spacings higher than 300s . PARSEC-LOV has a very similar behaviour to
BaSTI-SC and has a maximum ∆Πg ' 285 s. The HPC model is able to reproduce
a large domain of the observed distribution, although its ∆Πg appears shifted to
higher values with respect to the observations. Finally, although PARSEC-MPC
and HOV cannot reproduce the highest observed ∆Πg, their main peaks agrees with
the observed one within 1-2 bins resolution.

In the observed distribution of ∆Πg(see Fig. 4.8) I notice, in addition to the main
peak, a secondary peak at ∆Πg ∼ 253 s, which still belongs to the RC population.
Interestingly all my models, but BS, show the presence of this second structure.
The reason behind it can be deduced simply following the theoretical tracks in the
Yc − ∆Πg diagram (see Fig. 4.2). The tracks cross 3 times a narrow interval of
period spacing: the first two times at the very beginning of the HeCB phase, i.e
where ∆Πg decreases until a local minimum and then starts to rise, while the third
passage happens during the rapidly decrease that follows the absolute maximum
(at the end of the HeCB). Since time and Yc are, in first approximation, linearly
related during the HeCB, the third passage is very quick compared to the first and
the second, therefore the peak is almost entirely populated by stars at the beginning
of the phase. In the BS model the main and the second peak are not resolved since
∆Πg stays nearly constant for most of the HeCB phase.

At this stage I am however limited to a qualitative comparison between observed
and theoretical distributions of ∆Πg. Such limitation arises from the fact that
observational biases at the target selection stage, and in the determination of the
∆Πg from the power spectra, have not been fully explored yet. Moreover, although I
have chosen models with a mass and metallicity representative of the stars observed
by Kepler ([M/H] = −0.07 ± 0.24), and selected stars according to the mass, my
synthetic population is rather simplistic. As a first test of the effect of changing the
mass and metallicity, I consider HOV models with different mass (M = 1 M�) or
metallicity (Z = 0.007). I find that while the ∆Πg distribution depends little on the
mass, the effect of reducing significantly the metallicity is to extend to the range of
∆Πg by ∼ 20 s. This effect needs to be taken into account when making quantitative
comparisons between the observed and theoretically predicted distributions.

While these limitations can be partly mitigated by a more realistic synthetic popu-
lation, and by a thorough examination of selection biases, it is likely that the most
robust inference will be possible when applying my test to simple stellar populations,
i.e. to red giants in the old-open clusters NGC6791 and NGC6819 (see chapter 5).
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4.5 R2 ratio: Comparison with the Literature

As introduced in section 4.1, the R2 ratio is one of the most used observables for
constraining the mass of the fully mixed core during the HeCB phase. Buonanno,
Corsi & Fusi Pecci (1985), for the first time, estimated R2 in three old and metal
poor globular cluster (M15, M92, and NGC5466) founding an average of 0.14. In a
more recent paper, Constantino et al. (2016) gave a new measurement of R2 using 48
globular clusters analysed by Piotto et al. (2002) and Sarajedini et al. (2007), finding
R2 = 0.117±0.005. They then compared the model presented in their previous work
(Constantino et al., 2015) with this new estimation (table 2 in their paper). However
all the mixing schemes they proposed produce a R2 smaller than observation. On
the contrary, PaRSEC-MPC (and also BaSTI-SC) produces a R2 = 0.12 compatible
with the mean value found by Constantino et al. (2016) within the error. This
positive result gives further support to the goodness of this mixing scheme.

4.6 Summary and future prospects

The ability to predict accurately the properties of He-core-burning stars depends
on our understanding of convection, which remains one of the key-open questions in
stellar modelling (e.g. see Castellani, Giannone & Renzini 1971a; Chiosi 2007; Salaris
2007; Bressan et al. 2015). Crucially, stringent tests of models have been limited
so far by the lack of observational constraints specific to the internal structure of
evolved stars.
In this work I propose a way forward. I argue that the combination of two ob-
servational constraints, i.e. the luminosity of the AGB bump and the RC period
spacing of gravity modes, provides me with a decisive test to discriminate between
competing models of HeCB low-mass stars.
I have computed a series of stellar models with various prescriptions for the trans-
port of chemicals and for the thermal stratification of near-core regions, and using
different evolution codes (MESA, BaSTI, and PARSEC). First, I used these models
to make predictions about the duration of the RC and eAGB phases, the luminosity
of the AGB bump, and C/O ratios in WDs. A summary of the models charac-
teristics can be found in Table 4.1. I then focussed on the prediction of seismic
observables (see Sec. 4.3.3). I found that the asymptotic period spacing of gravity
modes depends strongly on the prescription adopted (with differences up to about
40%, when comparing the BS and HOV model).
I complemented this analysis by a numerical computation of adiabatic oscillation fre-
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quencies. This allowed meto confirm that the asymptotic approximation (eq. 2.78)
is a good representation of the period spacing of gravity-dominated modes. More-
over (see Sec. 4.3.4), the detailed behaviour of the period spacing of g modes shows
the seismic signature of sharp variations in the Brunt-Väisälä frequency, which could
potentially give additional information about near-core features (localised chemical
composition gradients and near-discontinuities in the temperature gradient).
I then presented (Sec. 4.4) a first comparison between my predictions and the obser-
vational constraints obtained from the analysis of Kepler light curves (Pinsonneault
et al., 2014; Mosser et al., 2014). I found evidence for the AGB-bump among Ke-
pler targets, which allowed meto make a first combined analysis of classical (AGBb
luminosity) and seismic (RC ∆Πg) constrains. my main conclusion is that, while
standard models (BaSTI-SC, PARSEC-LOV) are able to reproduce the luminosity of
the AGBb, they cannot describe satisfactorily the distribution of the observed period
spacing of RC stars while models with high overshooting (HOV), although giving a
much better description of the observed RC ∆Πg distribution, fail to reproduce the
AGBb luminosity. I then suggest a candidate model to describe simultaneously the
two observed distributions: a model with a moderate overshooting region in which
I apply an adiabatic thermal stratification. This prescription (which I have tested
using PARSEC, see PARSEC-MPC model) gives indeed a better description of the
observations.
At this stage of the analysis I am however prevented from drawing any further
quantitative conclusions. To achieve the latter, I will follow two complementary
approaches. On the one hand, I will couple my models with TRILEGAL, to gen-
erate synthetic stellar populations which can be quantitatively compared with the
observed composite disk population. I will also investigate in detail possible ob-
servational biases, both in the target selection and in the detection of the period
spacing from oscillations spectra. On the other hand, to limit/quantify such biases,
I will test our models considering stars in the clusters NGC6791 and NGC6819, in
which oscillations were detected in ∼ 30 HeCB giants (e.g., see Stello et al., 2011;
Miglio et al., 2012; Corsaro et al., 2012).
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Chapter 5

HeCB Period Spacing in Clusters
and Field Stars

Recently, Vrard, Mosser & Samadi (2016) presented a revised catalogue of APOKASC
red giants, for which they measured the gravity-mode period spacing. In addition,
their data sample also contains red giants belonging to the clusters NGC 6791 and
NGC 6819. This gives me the unique opportunity to study ∆Πg in open clusters,
reducing considerably the uncertainties given by the metallicity and mass.

5.1 Period Spacing of Cluster Stars: NGC6791 and

NGC6819

5.1.1 Data and Target Selection

Differently from field stars, open clusters are formed by single stellar populations,
i.e coeval and chemical homogeneous stars. Moreover, in the regime of LMS, the
two RC are formed by stars with nearly the same mass. Coeval stars with slightly
larger (or smaller) mass are, in fact, in later (or earlier) evolutionary stages. We can
therefore test the plausibility of the “best-model” proposed in Chapter 4 (i.e. the
moderate penetrative convection) in samples free of selection biases. Among all the
clusters’ stars by observed Kepler, I excluded non-clump stars and stars with mass
larger than the average (Handberg et al., submitted, see appendix). The complete
samples of the two clusters are shown in figure 5.1 (NGC 6791) and 5.2 (NGC 6819)
in magnitude - effective temperature diagrams. In both figures the stars studied in
Vrard, Mosser & Samadi (2016) are highlighted in red and marked with a cross if
∆Πg is available. Targets selected for this study are circled in green.
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5.1.2 Stellar Models

I compute models representative of the giants in the two clusters, adopting different
extra-mixing schemes: bare-Schwarzschild (BS), high overshooting (HOV), and high
penetrative convection HPC (as defined in chapter 4). I also add the moderate pene-
trative convection (MPC) model, assuming an overshooting parameter of αovHe = 0.5

Hp. Despite the problems related with the He-semiconvection, the range of ∆Πg that
this scheme spans during the HeCB is compatible with the observed values (see for
instance figure 5.3). The physical inputs used for these tracks are IP1 (with Krishna
Swamy 1966 atmosphere models). For NGC 6791 I calculate evolutionary track for
which I assume M = 1.15 M�, Z = 0.0350, and Y = 0.300 (Brogaard et al., 2011),
while for NGC 6819 M = 1.60 M�, Z = 0.0176, and Y = 0.267 (Handberg et al.,
submitted). For each of the tracks I create simple synthetic populations, imposing
a scatter on ∆Πg in accordance with the real data. This can help us understand
in which part of the RC evolution we expect to observe more stars. Figure 5.3
shows the comparison between the observed data and our models in the ∆Πg-∆ν
diagram. Large separations in the models is estimated using using individual radial
frequencies (see section 3.4.1). The green lines corresponds to the moderate pene-
trative convection, i.e. the proposed “best-model” in chapter 4. In both cases this
model appear to be compatible with the range of period spacing observed. Differ-
ences in ∆ν between predictions and observations might be due to systematic shifts
in the effective temperature related to the atmosphere model, which modifies the
photospheric radius, and hence ∆ν (eq. 2.85).

5.2 Period Spacing of Field stars: Mass and Metal-

licity Effects

In this section I explore the effects on the asymptotic period spacing in HeCB stars
due to a different initial mass and metallicity. The dataset I use contains field stars
and it was obtained by crossing the APOKASC catalogue (Pinsonneault et al., 2014)
with the stars in Vrard, Mosser & Samadi (2016) for which ∆Πg were provided.
The HeCB stars are selected looking for period spacings greater than 200s. The
range of metallicity considered is [Fe/H] ∈ [−0.50, 0.50]. I limit the mass range
to Mseism ∈ [1.0, 1.7] M� in order to avoid stellar masses that are approaching to
the secondary clump condition. The behaviour of ∆Πg for higher masses will be
discussed in chapter 6. Figure 5.4 shows the period spacing of the final selection
plotted against the mass (upper panel) and metallicity (lower panel). It can be
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noticed that, in the interval considered, the period spacing is limited in a “strip"
between a maximum (∆Π1,max) and a minimum (∆Π1,min) value. These quantities
remain constant with the mass, while they decrease as [Fe/H] increases. To quantify
∆Π1,max and ∆Π1,min I bin the dataset in mass and metallicity and for each bin I
determine the 95th (representing ∆Π1,max) and 5th percentiles (∆Π1,min).

In order to evaluate the uncertainties on the percentiles I use a technique called
bootstrapping. First of all I create 1000 realisations of the observed population
assuming in ∆Πg mass and [Fe/H]. I then bin the artificial samples inM and [Fe/H]
and measure the 95th and 5th percentiles. Finally I assemble all the 1000 iterations
and calculate means and standard deviations of each 95th and 5th percentiles (see
the black lines in figure 5.4). The data show an average decrease of ∆Πg with the
metallicity, while it remains constant with the mass. As previously mentioned, the
asymptotic period spacing is related to the inverse of the integral of the Brunt-
Väisälä frequency (N) over the radius in the g-mode propagation cavity (Tassoul
1980 and eq. 2.78). The reason behind these variations in ∆Πg with the metallicity
and mass have therefore to be searched in the differences in the N profile (see figure
5.8), which, in turn, mainly depends on the physical properties of the core (e.g.
pressure, density, opacity, and temperature).

To investigate the mass and metallicity effect on N and ∆Πg, I use the grid tracks
introduced in section 3.3 that cover the entire range of mass and metallicity of the
stellar catalogue, with steps respectively of 0.1 M� and 0.25 dex and considering
a penetrative convection mixing scheme of 0.5 Hp. Looking at the Brunt-Väisälä
frequency at the very beginning of the HeCB phase, we can notice that for a fixed
metallicity all the profiles overlap, while visible differences are found by changing the
metallicity (figure 5.8). The region that mostly influences N is the convective core.
Since N is typically null in the deep fully convective regions, larger convective cores
will lead to larger values of period spacings (Montalbán et al. 2013 and chapter
4). Models suggest that stars with similar masses have similar convective cores,
while the latter are generally smaller at increased metallicity. The reason behind
this has to be searched in the mass on the helium rich core (MHe) at the He-burning
ignition. MHe depends on the previous evolution and determines the initial condition
of the central regions at the beginning of HeCB, such as the central temperature
(larger MHe, larger core temperature, see figure 5.5). Given the high dependence
of the nuclear energy generation εnuc on the temperature (∼ T 30−40 for the triple-
α reaction), a small difference of the latter leads to large variation of ε3α with an
impact on L/M hence on the ∇rad (∇rad ∝ (L/M)κρ), that modifies the location of
the edge of the convective core. More precisely the size of the convective cores in
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the HeCB phase decreases with increasing metallicity, while it remains almost equal
when varying the mass. MHe is very similar to the value that the mass of the He
core assumes at the RGB tip (Mc,RGB−tip), i.e. the mass that a degenerate core must
reach in order ignite the He burning in degenerate condition (helium flash, section
1.4.4). While the critical mass is almost independent from the initial mass, it varies
with the chemical composition, i.e. [Fe/H] (but also initial helium mass fraction).
As explained in detail in Cassisi & Salaris (2013), Mc,RGB−tip is mainly affected by
the efficiency of the Hydrogen burning shell, which is higher in metal rich stars
with respect to the metal poor ones. The dependence of the central temperature at
the beginning of the HeCB on MHe is summarised in figure 5.7. A linear relation
is found between Tc and Mc,RGB−tip for models with different metallicity, while Tc

remains almost unchanged along the lines of constant [Fe/H]. However, this is true
only for M . 1.5 − 1.7 M�(depending on the metallicity). Above this value, MHe

starts to decrease since we approach the secondary clump condition (stars that do
not experience the Helium flash, Girardi 1999).
In Figure 5.4 I also show ∆Π1,max and ∆Π1,min for the models in the grid. In the lower
panel I consider models with mass equal to 1.20 M� (the closest value to the average
mass of the observed distribution, which is ∼ 1.25 M�), while for the upper panel I
fixed the metallicity to [Fe/H] = 0.00 (mean observed value is [Fe/H] = −0.034). To
better highlight the dependence of ∆Π1,min on theMc,RGB−tip, I show its variation in
figure 5.6. It can be noticed that, excluding M > 1.6 M�, the values of ∆Π1,min as
a function of Mc,RGB−tip collapse along a line that monotonically decreases with the
metallicity. Moreover, the metallicity effect is more evident in ∆Π1,max with respect
to ∆Π1,min. The behaviour of ∆Π1,max is also present in clusters, where it is easy to
see that the period spacing of NGC6891 clump stars reaches higher values than the
more metal rich NGC6791, and they are both well represented by the MPC models.

5.3 Sources of Uncertainties

I show here the results of a series of additional tests that we perform on models to
ascertain whether the constrains on the mixing are robust.

5.3.1 Initial Helium Mass Fraction

An additional test is made to quantify the effect of the initial helium on the period
spacing. Y is in fact coupled in my grid with Z, by the relation eq. 3.6. I therefore
compute three tracks of mass 1.50M�: the first and the second share the same
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Figure 5.4: Period spacing of stars in APOKASC catalogue crossed with Vrard, Mosser & Samadi
(2016) plotted against the mass (upper panel) and the metallicity (lower panel). Black lines
correspond to the 95th and 5th percentiles of the data distribution along the period spacing. The
data show an average decrease of ∆Πg with the metallicity, while it remains constant with the
mass. Models (red lines) also suggest this behaviour. An indication of the typical error on the
data is visible in the top-right corner of each panel. NGC6791 (grey dots) and NGC6819 (yellow
dots) cluster stars are also shown. Their range of period spacing is compatible with the APOKASC
sample.
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metallicity Z = 0.031 ([Fe/H] = 0.25) but differ in initial helium (Y = 0.25 to
Y = 0.28), while the third has a lower metallicity (Z = 0.002) but the same Y
(0.25) as the first track. The choice of Z and Y was done considering the limits of
the grid. In particular the first and third tracks are located at the opposite corners
of the grid, while the second track represent a sort of midpoint between the two.
The right panel in figure 5.9 shows the evolution of ∆Πg with central helium for the
three tracks. It can be easily noticed that the differences in ∆Πg are dominated by
the metallicity (in a range of 15 − 40 seconds). The effect of helium results to be
relevant only at the very beginning of the HeCB phase with an increment of ∆Πg

that can reach ∼ 10 s. However, this difference becomes negligible immediately after
the local minimum of the period spacing, with a variations of at maximum 1 − 2 s
in the rest of the phase (that could be ascribed to numerical noise).

5.3.2 12C(α,γ)16O nuclear reaction rate.

One of the major sources of uncertainty in stellar modelling are nuclear reaction
rates (see e.g. Straniero et al., 2003; Cassisi, Salaris & Irwin, 2003). One of the
least well-known reaction rates is indeed the 12C(α,γ)16O reaction, that, along with
triple-α, plays a fundamental role during the HeCB. Its effects are relevant to several
properties of the subsequent evolution. For instance, different values of this reaction
rate can modify the duration of the HeCB phase and the central C/O abundance
at the end of the core burning. However, the impact of 12C(α,γ)16O on the period
spacing is still poorly studied. A first attempt was recently done by Constantino
et al. (2015). In their work, the authors tested the effect of 12C(α,γ)16O on a 1
M� stellar model with 0.001 Hp diffusive overshooting (exponential decay function,
Herwig 2005, Campbell & Lattanzio 2008), finding a deviation of about 5 sec on the
average ∆Πg if a standard uncertainty (about 40% of the reaction rate) is considered.
However, the deviation can also depend on the mixing scheme adopted. I compute
a series of HeCB evolutionary tracks (M = 1.5 M�, solar abundance) in which I
adopt four 12C(α,γ)16O reaction rates in conjunction with 3 mixing schemes: Bare-
Schwarzschild model (BS), 1.0 Hp step function overshooting (HOV), and 1 Hp

penetrative convection (HPC). The 12C(α,γ)16O reaction rates considered are the
tabulated values given by JINA (Cyburt et al., 2007), K02 (Kunz et al., 2002),
CF88 (Caughlan & Fowler, 1988), and NACRE (Angulo et al., 1999) and already
made available in MESA. While no differences can be noticed at the beginning of
the phase, the models suggest that the effect of the different reaction rates becomes
relevant as the evolution proceeds, reaching a maximum at the end of the HeCB
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(Figure 5.9). This is expected, since the relative contribution of the 12C(α,γ)16O
with respect to triple-α becomes more and more important with the increasing 12C
abundance. The impact of the different mixing schemes is evident at the maximum
period spacing where HOV tracks show a scatter of around 6-7 s between them,
compared to only ∼ 2 s for BS. I therefore expect an uncertainty contained between
6 and 2 s on the MPC model. This value is of the same order magnitude of the
average ∆Πg error for clump stars (∼ 3.5 s).

5.4 Final Remarks

With an exception of few stars, figure 5.3 shows a good agreement between the
period spacing of NGC6819 and NGC 6791 red clump giants and the model pre-
dictions, computed adopting the mixing scheme I proposed at the end of chapter 4.
The mixing scheme consists in a moderate (αovHe = 0.50) penetrative convection. I
was also able to test the mixing scheme on a large number of field stars with different
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masses and chemical composition, studying the effects that the metallicity and the
stellar mass might introduce in the HeCB ∆Πg (section 5.2). While ∆Πg shows no
appreciable dependence on the mass, I have found a clear dependence of ∆Πg on
metallicity (figure 5.4) also suggested by the models, which strengthens even fur-
ther the result on the clusters (since clusters’ stars are chemically homogeneous).
Moreover, the limited effects found performing tests on the initial helium abundance
and concerning the nuclear reactions (section 5.3.1 and 5.3.2) suggest that these two
possible source of uncertainties do not have a large impact on the model prediction.
However, the comparison between the data percentiles and the predicted values for
∆Π1,max and ∆Π1,min in figure 5.4, suggests that the models fail at fully covering
the observed range of period spacing. While the maximum can be extended simply
increasing the overshooting parameter, the minimum can be reduced only by chang-
ing the thermal stratification in the overshooting region from adiabatic, to radiative.
The issue might also be present in figure 5.3, in which the MPC models is not able
to reach the low ∆Πg values of stars number 21 and 43 in NGC6819. This seems to
indicate that he mixing scheme I adopted should be somehow revised, for instance by
considering in the overshoot region a thermal stratification in between the radiative
and the adiabatic one (see e.g. Christensen-Dalsgaard et al. 2011).
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Chapter 6

Effect of Main-Sequence Mixing
Processes on Secondary-Clump Stars

6.1 Introduction

In the previous chapter I focused the analysis on stars with masses lower than of
1.6− 1.7 M�. From this value upward, stars approach the transition between LMSs
and IMSs. In the interval between 1.2 − 2.5 M�, the ZAHB (zero age horizontal
branch) presents a minimum in luminosity (figure 6.1). In composite stellar pop-
ulations, this local minimum forms a separate feature in the HR diagram, named
secondary clump (SC, Girardi, 1999, and references therein). The mass of stars at
the luminosity minimum (transition mass, Mtr) essentially separates the low-mass
stars from the intermediate- and high-mass stars.

Stars belonging to the secondary clump have been also identified investigating aster-
oseismic quantities (see e.g. Bedding et al., 2011; Mosser et al., 2011). For instance,
by analysing the observed period spacing dispersion and the large separation of
HeCB stars, Mosser et al. (2011) identified at high-∆ν and low-∆Πg a tail in the
distribution that they ascribed to the secondary clump.

Montalbán et al. (2013) used the observed ∆Πg provided by Mosser et al. (2012b)
as diagnostic for studying the central properties of secondary clump stars. They
showed that at the same mass Mtr, the predicted average HeCB period spacing
presents a minimum as well, pointing out that in stellar models increasing MS-
overshooting modifies Mtr, shifting the expected minimum to lower mass values.
Finally, they compared their models with the period spacing of RGs field stars with
Mosser et al. (2012b) catalogue. However, their data-model comparison suffered
from a few limitations, primarily related to the observed dataset used. Mosser

129
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Figure 6.1: HRD of the Zero Age Horizontal Branch based on evolutionary tracks (in grey, from
the ZAHB to the early AGB) in a mass interval between M = 0.8 M� and M = 2.5 M� and initial
metallicity [Fe/H]=0.0. The tracks are computed with MESA with IP1 physical inputs.

et al. (2012b) catalogue, in fact, has a limited number of stars and, crucially, no
information on the stellar metallicity. Therefore they could not take into account
any biases introduced by the metallicity. Moreover, the ∆Πg provided corresponds
to the observed value, defined using the period differences of observed frequencies,
that is generally lower than the corresponding asymptotic period spacing (used e.g.,
in the my previous chapters).

In this chapter I will present my attempt to continue their work comparing the new
APOKASC catalogue of red giants (Pinsonneault et al. 2014 with ∆Πg determined
by with Vrard, Mosser & Samadi 2016 and the metallicity) with a series of models
computed by MESA with different MS overshooting parameters, which substantially
extends the models considered in Montalbán et al. (2013). Varying the overshooting
parameter in MS, I will investigate how Mtr and the HeCB-∆Πg depend on the
amount of overshooting considered. Finally, I will compare my predictions with
data to set constraints on the amount of extra near-core mixing on MS, which is one
of the key uncertainties in stellar modelling (Chiosi, 2007).
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6.2 Models and Data

Before looking in detail at the physical reasons behind the dependence with the mass
of both luminosity and ∆Πg in HeCB stars, I will introduce the models and the data
used in this work.

6.2.1 Models

The evolutionary tracks are computed with MESA considering only the solar metal-
licity. The range of mass varies between 1.40 M� and 4.00 M�, with a step 0.05 M�
in the interval 1.50 − 2.5 M�. Differently from the works in the previous chapters,
I adopted here a diffusive overshooting (Herwig 2000 and section 3.2.5) with a pa-
rameter αovH,diff = 0.00, 0.01, 0.02,0.04. The choice of changing the mixing scheme
is due to the fact that MESA is not able to treat correctly receding convective cores
(like in MS) if the step function overshooting is applied. In fact, it produces many
discontinuities and an irregular chemical profile due to numerical problems. Nev-
ertheless this does not affect the HeCB and it is important only during the early
RGB of LMS and before the HeCB of IMS, i.e. in the phases between the end of the
hydrogen-core burning and the moment when the H-shell encounters the chemical
discontinuity left by the first dredge-up.
Similar problems have been also noticed at the bottom of the convective envelope
along the RGB, and therefore I decided to apply here as well a very small amount of
diffusive undershooting. The value of the parameter chosen (0.005) is small enough
to not affect considerably the evolution of the models. For LMS, it produces a
small extension in luminosity of the RGB bump. On the other hand, the mixing
scheme adopted during the HeCB is kept unvaried, i.e. a step function penetrative
convection of 0.5 HP .
In addition to my grid of models, I have also computed a series of tracks without
HeCB extra mixing (bare Schwarzschild, BS see section 3.2.1) with αovH,diff = 0.00

and αovH,diff = 0.02 in MS.

6.2.2 Data

The data presented here are an extension of the catalogue used in the the previous
chapter. I have considered field stars in the APOKASC catalogue (Pinsonneault
et al., 2014) which have period spacings determined by Vrard, Mosser & Samadi
(2016) and I have expanded the mass range to values greater than 1.40 M�. In
order to compare the data with solar metallicity models, I limit the range of [Fe/H]
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Figure 6.2: left panel: HRD of the HeCB stars in the APOKASC catalogue crossed with Vrard,
Mosser & Samadi (2016). The stars are selected in a metallicity range of −0.2 < [Fe/H] < 0.2. In
black the model ZAHB. right panel: the luminosity distribution of the stars in the left panel. The
graphs brackets mark indicatively the position of the secondary clump and the red clump.

in the interval [−0.2, 0.2]. The selection of the HeCB stars has been done considering
only stars with period spacings greater than 100 s. The HRD of the catalogue is
presented in figure 6.2 (left panel), where we can see the presence of stars with
luminosity below the red clump with masses on average greater than in the RC. For
further clarity, the corresponding luminosity distribution was also plotted (figure
6.2, right panel) in which are shown the indicative locations the SC and RC stars.
The stellar masses are calculated using the scaling relation eq. 2.87, while the errors
are estimated using the formula

σM =

√(
∂M

∂νmax

)2

σ2
νmax

+

(
∂M

∂∆ν

)2

σ2
∆ν +

(
∂M

∂Teff

)2

σ2
Teff
. (6.1)

The distribution of the relative error σM/M is shown in figure 6.3 where we observe
that the vast majority of the stars have uncertainties in mass between 6% and 10%.
The estimation of the σM , however, does not consider systematic errors in mass due
to the limitation of the scaling relation (see section 3.4.1, figure 3.12c) that, for a
metallicity [Fe/H] = 0.00, are of the order about 0.5−1% in the mass range between
1.00 M� and 2.50 M�. Figure 6.3 also shows the relative error in ∆Πg.
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Figure 6.3: Relative errors in mass (left panel) and period spacing (right panel) of the stars in
figure 6.2.

6.3 Dependence of Mc,RGB−tip and HeCB-∆Πg on the

MS overshooting

In Chapter 1, we saw that LMSs climb the RGB growing a highly degenerate helium
core until the latter reaches the critical value of MHeF and starts the process that
will remove the electron degeneracy (helium flash). On the contrary, IMSs ignite
the helium-core-burning in quiescent conditions, i.e. before encountering the total
electron degeneracy. In figure 6.4 I show how the size of the helium core at the RGB-
tip (Mc,RGB−tip) varies with the mass, assuming different amount of MS overshooting.
Let’s first focus only the models without extra mixing (black line). We can identify
three regimes: (1) Mc,RGB−tip is independent of the mass for M . 1.70 M�, (2) it
decreases with mass until a minimum at ∼ 2.30 M�, after which (3) the Mc,RGB−tip

grows monotonically with the stellar mass. The first regime corresponds to LMS
stars that develop no or small convective core in MS. The core of these stars becomes
degenerate before the temperature necessary to activate helium nuclear reactions
(THe,ignite) is reached. Simultaneously with the growth of the He-core, the central
degeneracy also increases, along with the neutrino cooling of the centre that shifts the
temperature maximum off-centre. In LMS the position of the maximum temperature
and the size of the He core is independent from the stellar mass. However, when
increasing the initial mass, the He-core mass at the end of the MS becomes large
enough and sufficiently far from degenerate conditions so that THe,ignite requires a
smaller He core (second regime).

From the mass corresponding to the minimum upward (third regime), stars ignite
helium-core burning in quiescent conditions and the size of their cores starts to
increase with the initial mass. It is now easy to understand that by increasing the



134 Effect of Main-Sequence Mixing Processes on Secondary-Clump Stars

M (M⊙)

M
H
e
(M

⊙
)

 

 

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

αovH ,diff = 0.00
αovH ,diff = 0.01
αovH ,diff = 0.02
αovH ,diff = 0.04
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MS overshooting parameter, we are going to increase as well the He core at the
beginning of the RGB, anticipating in mass the second and third regimes.
Resuming the discussion presented in section 5.2, in which I explained the depen-
dence of ∆Πg on the metallicity, we saw there that the period spacing of the gravity
modes during the HeCB phases has a dependency on the central temperature of the
star which, in turn, is related to the Mc,RGB−tip. Again, a larger Mc,RGB−tip will
increase the central temperature in the HeCB phase and as a consequence it will
also increase the range of the period spacing in HeCB. We define a average value of
∆Πg that stars have during the helium-core burning, this value will have the same
behaviour with mass than Mc,RGB−tip, presenting a decrease with mass until a mini-
mum atMtr followed by a monotonic increase (see figure 6.4 and 6.6). By modifying
Mtr, the MS-overshooting has therefore a large impact also on the range of period
spacing.

6.4 Comparison with Data and Discussion

The main comparison between the data and the models has been done on the diagram
∆Πg −M (figure 6.6).

• In order to highlight the behaviour of ∆Πg in the data, I need to estimate
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Figure 6.5: Visualization of how the bootstrapping was applied. The figure shows the period
spacing against initial mass of the selected stars in the APOKASC catalogue (see the main test).
The grey lines are the 95th, 50th, 5th percentiles of the single synthetic populations based on the
original catalogue. The black lines are the mean value of each group of percentiles.

the mean maximum and minimum values that the period spacing assumes in
function of the mass. To do so, similarly to the previous chapter on section 5.2,
I estimate the 95th, 50th, and 5th percentiles of the ∆Πg distribution within
bins in mass taking advantage of a bootstrapping technique (figure 6.5). In
figure 6.5 and 6.6 we notice that in all the three curves, corresponding to the
bottom (5th percentile,∆Π1,min), the top (95th percentile∆Π1,max), and the
median ∆Πg(50th percentile, ∆Π1,aver.) in HeCB, a monotonically decreasing
trend is followed by an increase in ∆Πg. However, the position of the minimum,
that appears to be located around 2.2 M� (according to ∆Π1,aver.and ∆Π1,max),
is not clearly identified. This is mainly caused by the scarceness of stars with
masses M & 2.2 M�. This increases the errorbars on the percentiles, and the
uncertainties on the mass estimation (6-10%) spread artificial stars along the
M axis in a region where we expect large variations in the ∆Πg axis.

• Regarding the models, in order compare them with the data, I estimate the
minimum, maximum, and average ∆Πg in the HeCB phase. I therefore gener-
ate a synthetic population along each track (limiting it to the HeCB phase) in
which I calculate the 95th, 50th, and 5th percentiles of the ∆Πg distribution.
As we discussed in the previous chapters, models reach the maximum value of
∆Πg near the end of the HeCB (Yc ∼ 0.1− 0.2), while the ∆Π1,min is referred
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Figure 6.6: Period spacing against the initial mass for the selected stars in the APOKASC
catalogue with their 95th, 50th, and 5th mean percentiles.The coloured lines are the ∆Π1,min curve
predicted by the models for several MS diffusive overshooting.

to stars at the beginning of the phase. Since the latter are the only struc-
tures that are not affected by the known issues related to He-semiconvection,
I decide to use in this analysis only the model-predicted ∆Π1,min. In figure
6.6 I plot the ∆Π1,min −M curve for each track. The observed average ∆Πg

suggests that the mixing scheme that better represents, among those explored
here, the data has confined between 0.00 < αovH,diff < 0.02 with a preference for
the value 0.01. However, since the ambiguity in the location of the minimum
in the data, due to the size of the errorbars on the 50th percentile, additional
statistical tests are needed for a quantitative inference on αovH,diff, which will
be carried out in future work.

• Another important difference between the models and the data is given by the
offset of the ∆Π1,min curves at masses M < 2M�. The offset is due to the
adiabatic ∇T in the overshooting region that tends to create a larger period
spacing with respect to a radiative gradient (as explained in chapter 4). The
difference disappears when the adiabatic excess in the extra-mixing region is
reduced or removed. The BS models (represent by dashed lines in figure 6.6)
seem to reproduce well the behaviour of ∆Π1,min for M . 1.6 − 1.7M� but
starts to deviate approching to the transition mass. We can also notice that
the minimum in each curve is independent from the mixing scheme adopted
in the HeCB. This is because the interval in which the ∆Πg varies depends
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Figure 6.7: Period spacing against the initial mass for the ∆Π1,min curve predicted by the models
and linear shifted in mass by +0.15 M� every increment of ∆αovH,diff = 0.01.

on the mass of the He-core at the start of the HeCB phase, that is the result
of the past evolution. At the very beginning of the HeCB, BS models have
similar ∆Πg with respect to low and high overshooting models (see figure 4.2).
The comparison between PC and BS models suggests that at the start of the
helium-core burning the pure penetrative convection is not the preferred model.
However, the only pure radiative overshooting scheme we saw able to produce
the period spacing compatible with the observation is the high overshooting
(HOV) which, on the other hand, we know is not able to describe classical
proprieties, like the AGBb luminosity. A possible solution may be a mixing
scheme in which the temperature stratification has a smooth transition from
the fully adiabatic one in the convective core, to the radiative one at the outer
border of the overshooting region (see e.g. Christensen-Dalsgaard et al., 2011).

• Finally, figure 6.6 and figure 6.4 also show that the mass corresponding to the
minimum ∆Πg (i.e. Mtr) appears to be in linear relation with the MS over-
shooting parameter αovH,diff. More precisely, for an increase of ∆αovH,diff = 0.01,
Mtr decreases of about 0.15 M�. Moreover, the four curves are perfectly over-
lapped during the second regime (figure 6.7). This suggests that the behaviour
of ∆Π1,min in this region can be predicted by a simple parametrization of the
∆Π1,min curve without extra mixing in MS (black lines in figure 6.6), with the
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Figure 6.8: Comparison on the ∆Πg-M diagram between the 5th percentile and the BS models
for αovH,diff = 0.00, 0.01, 0.02 . The curve corresponding to αovH,diff = 0.01 was predicted by shifting
in mass αovH,diff = 0.00 by −0.15 M�.

only free parameter αovH,diff that shifts linearly the the curve in mass. Since
the second regime is well populated in the APOKASC catalogue, the deter-
mination of the optimum value for αovH,diff can be done by comparing the 5th
percentile in the mass range 1.4 M�< M < 2 M�with the parametrized curve,
varying the αovH,diff values. As a preliminary test I create the ∆Π1,min curve for
αovH,diff = 0.01 and BS scheme in HeCB by shifting the no extra-mixing curve
of −0.15 M�. By comparing the curve with 5th percentile (figure 6.8, red line)
I found an excellent agreement.



Conclusions

The main topic of this thesis was the investigation of the propierties of red-giant
stars throughout the different stages of their evolution, with particular emphasis on
stars that burn helium in their cores. The ability to predict accurately the properties
of He-core-burning stars depends on our understanding of convection, which remains
one of the key-open questions in stellar modelling (e.g. see Castellani, Giannone &
Renzini 1971a; Chiosi 2007; Salaris 2007; Bressan et al. 2015). Crucially, stringent
tests of models have been limited so far by the lack of observational constraints
specific to the internal structure of evolved stars. In recent years, however, the
seismology of red giants has become a very fruitful field in stellar astrophysics,
mainly thanks to space-based telescopes like Kepler and CoRoT. Red giants have
very rich frequency spectra that can provide several stringent constraints to their,
otherwise inaccessible, internal structures.
Using a combination of theoretical models, classical and asteroseismic data, I have
shown that it is now possible to make a step forward in the study of the physical
processes that occur in their interiors, as well as in the determination of their global
parameters (like mass, age, radius, and metallicity).

Near-core mixing, AGB bump, and Period spacing

In Chapter 4 I investigated how stellar models of helium-core-burning stars are af-
fected by various prescriptions for the transport of chemicals and for the thermal
stratification of near-core regions. Here I resume my conclusion, also written written
in (Bossini et al., 2015). I have computed a series of models using different evolution
codes (MESA, BaSTI, and PARSEC). First, I used these models to make predic-
tions about the duration of the red clump and early AGB phases, the luminosity of
the AGB bump, and C/O ratios in White Dwarfs (a summary of the models char-
acteristics can be found in Table 4.1). I then focussed on the prediction of seismic
observables (see Sec. 4.3.3), and found that the asymptotic period spacing of gravity
modes depends strongly on the prescription adopted (with differences up to about
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40%, when comparing the BS and HOV model).
I complemented this analysis by a numerical computation of adiabatic oscillation
frequencies. This allowed us to confirm that the asymptotic approximation (eq. 2.78)
is a good representation of the period spacing of gravity-dominated modes. Moreover
(see Sec. 4.3.4), the detailed behaviour of the period spacing of g modes shows the
seismic signature of sharp variations in the Brunt-Väisälä frequency, which could
potentially give additional information about near-core features (localised chemical
composition gradients and near-discontinuities in the temperature gradient).
I then presented (Sec. 4.4) a first comparison between our predictions and the obser-
vational constraints obtained from the analysis of Kepler light curves (Pinsonneault
et al., 2014; Mosser et al., 2014). I found evidence for the AGB-bump among Ke-
pler targets, which allowed us to make a first combined analysis of classical (AGBb
luminosity) and seismic (RC ∆Πg) constrains. The main conclusion is that, while
standard models (BaSTI-SC, PARSEC-LOV) are able to reproduce the luminosity
of the AGBb, they cannot describe satisfactorily the distribution of the observed pe-
riod spacing of RC stars. On the other hand models with high overshooting (HOV),
although giving a much better description of the observed RC ∆Πg distribution, fail
to reproduce the AGBb luminosity. I then suggested a candidate model to describe
simultaneously the two observed distributions: a model with a moderate overshoot-
ing region in which I apply an adiabatic thermal stratification. This prescription
(which I have tested using PARSEC, see PARSEC-MPC model) gives indeed a better
description of the observations.
With only this evidence in hand, however, I could not draw any further quantitative
conclusions. Stars in the catalogues used belong in fact to the composite disk pop-
ulation an therefore of different mass and metallicity. This may introduce possible
observational biases, both in the target selection and in the detection of the period
spacing from oscillations spectra. To limit/quantify such biases, it is necessary to
test models considering stars in the clusters, which, differently from field stars, are
formed by single stellar populations, i.e they are coeval and chemical homogeneous
stars.

Clusters and Field Stars

Recently, Vrard, Mosser & Samadi (2016) presented a revised catalogue of APOKASC
red giants, for which they measured the gravity-mode period spacing. In addition,
their data sample also contains red giants belonging to the clusters NGC 6791 and
NGC 6819. This gave me the unique opportunity to study ∆Πg in open clusters,
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testing the prescription introduced in Chapter 4, reducing considerably the uncer-
tainties given by the metallicity and mass. With the exception of few stars, I found a
good agreement between the period spacing of NGC6819 and NGC 6791 red clump
giants and the model predictions, computed adopting the mixing scheme I proposed
at the end of chapter 4. The mixing scheme consists in a moderate (αovHe = 0.50)
penetrative convection (MPC).
To test the robustness of this conclusion, I then analysed the source of uncertainties
that can affect the model predictions. First of all I tested my MPC mixing scheme
on a large number of field stars with different masses and chemical composition, in
order to quantify the effect that the metallicity and the stellar mass might introduce
in the HeCB ∆Πg (section 5.2). I have found a clear dependence of ∆Πg on the
metallicity (figure 5.4) also suggested by the models, which strengthens further the
result on the clusters (since cluster stars are chemically homogeneous). However,
the comparison between the data percentiles and the predicted values for ∆Π1,max

and ∆Π1,min, suggests that the models fail at fully covering the observed range of
period spacing. While the maximum can be extended by simply increasing the
overshooting parameter, the minimum can be reduced only by changing the thermal
stratification in the overshooting region from adiabatic, to radiative. The issue could
also explain why a few stars in NGC6819 are not fitted by the MPC track. This
might suggest that the mixing scheme I adopted should be somehow revised, for
instance by considering in the overshoot region a thermal stratification between the
radiative and the adiabatic one (see e.g. Christensen-Dalsgaard et al. 2011).
Finally, I found that the effects of changing the initial helium abundance and using
different nuclear reaction rates available in the literature (section 5.3.1 and 5.3.2)
are limited, suggesting that these two possible source of uncertainties do not have a
large impact on the model prediction of ∆Πg.

Secondary Clump

The discussion presented in Chapter 5 was limited to low-mass stars with mass lower
then ∼ 1.5 M�. From this value upward, stars approach the secondary clump, in
which the transition between LMSs and IMSs takes place.
In Chapter 6 I analysed the period spacing of the APOKASC catalogue of red
giants (Pinsonneault et al., 2014) for HeCB stars with mass larger then 1.40 M� up
to 2.80 M�. The data show indeed a decreasing trend of ∆Πg with the mass for
stars between M = 1.40 M� up to M = 2.20 M�, as also predicted by the models
(Girardi, 1999; Montalbán et al., 2013).
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Varying the overshooting parameter in MS in models computed by MESA, I investi-
gated the dependence of Mtr and of the HeCB-∆Πg on the amount of overshooting
considered, finding results comparable to those presented in Montalbán et al. 2013.
However, their comparison with data was limited to a small number of stars, no
information on [Fe/H]was available, and only the observed value of ∆Πg, On the
contrary, the catalogue I used was significantly larger, and with information about
metallicity and asymptotic period spacing. This allowed me to perform a more
stringent comparison with model predictions, reducing the biases introduced by the
metallicity by selecting stars in a interval −0.2 < [Fe/H] < 0.2]. The main results
of the analysis can be summarized as follows:

• Despite both the 5th(∆Π1,min), 95th(∆Π1,max), and the 50th percentile of the
∆Πg distribution in HeCB showing a monotonically decreasing trend with
mass, the position of the expected minimum, which appears to be located
around 2.2 M�, is not clearly identified. The observed median ∆Πg suggests
that the mixing scheme that better represents the data, among those explored
in the chapter, has a parameter in the range between 0.00 < αovH,diff < 0.02

with a preference for the value 0.01. However the ambiguity in the location
of the minimum in the data does not allow me to quantify with accuracy the
best value for αovH,diff.

• The observed median ∆Πg suggests that the mixing scheme that better repre-
sents, among those explored here, the data is confined between 0.00 < αovH,diff <

0.02 with a preference for the value 0.01. However, since the ambiguity in the
location of the minimum in the data, additional statistical tests are needed for
a quantitative inference on αovH,diff, which will be carried out in future work.

• Another important difference between the models and the data is given by the
offset of the ∆Π1,min curves at masses M < 2M�. The offset is due to the
adiabatic ∇T in the HeCB overshooting region that tends to create a larger
period spacing with respect to a radiative gradient (as explained in chapter
4). The difference disappears when the adiabatic excess in the extra-mixing
region is reduced or removed. The bare-Schwarzschild models (BS) seems to
reproduce well the behaviour of ∆Π1,min for M . 1.6 − 1.7M� and starts
to deviate from the observation when the decreasing region begins. At the
very beginning of the HeCB, BS models have similar ∆Πg with respect to
low and high overshooting models (see figure 4.2). The comparison between
PC and BS models suggests that at the start of the helium-core burning the
pure penetrative convection is not the preferred model. However, the only
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pure radiative overshooting scheme we saw able to produce the period spacing
compatible with the observation is the high overshooting (HOV) which, on
the other hand, we know is not able to describe classical proprieties, like the
AGBb luminosity. A possible solution may be a mixing scheme in which the
temperature stratification has a smooth transition from the fully adiabatic
one in the convective core, to the radiative one at the outer border of the
overshooting region (see e.g. Christensen-Dalsgaard et al., 2011).

• Finally, I found that the mass corresponding to the ∆Π1,min (i.e. Mtr) appears
to be in linear relation with the MS overshooting parameter αovH,diff. More
precisely, for an increase of ∆αovH,diff = 0.01, Mtr decreases of about 0.15

M�. Moreover, the four curves are perfectly overlapped during the decreasing
regime of ∆Π1,min. This suggests that the behaviour of ∆Π1,min in this region
can be predicted by a simple parametrization of the ∆Π1,min curve without
extra mixing in MS (black lines in figure 6.6), with the only free parameter
αovH,diff that shifts linearly the the curve in mass. Since the second regime is
well populated in the APOKASC catalogue, the determination of the optimum
value for αovH,diff can be done by comparing the 5th percentile in the mass range
1.4 M�< M < 2 M�with the parametrized curve, varying the αovH,diff values.
As a preliminary test I create the ∆Π1,min curve for αovH,diff = 0.01 and BS
scheme in HeCB by shifting the no extra-mixing curve of −0.15 M�. By
comparing the curve with 5th percentile I found an excellent agreement.

Future prospects

The issue related with the He-semiconvection is, indeed, one of the major problems
encountered during my work. Correct models for the final stages of the Helium-core-
burning are necessary to fully explore the physics of the observed stars and to give
more accurate predictions of the global parameters of the current and subsequent
evolutionary phases. It become necessary, therefore, to introduce a treatment for
He-semiconvection in MESA code, in order also to revise the results obtained, if
needed. However, classical He-semiconvection treatments already implemented in
various codes, like e.g. BaSTI and PARSEC, have not a solid physical background
and in reality require many times arbitrary numerical “tricks”. This, on the hand,
gives the opportunity to explore alternative ways to treat this delicate phase. A first
attempt was already proposed in section 3.2.6 and provisionally called “Modified
Overshooting”. This model however still needs to be tested thorougly.
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In addition, an alternative to the standard mixing schemes was recently proposed by
(Christensen-Dalsgaard et al., 2011) to describe the overshooting region underneath
the solar convective envelope, and it may represent the correct solution to describe
the period spacing distribution of the observed stars showed in Chapters 5 and 6.
Once a well-tested mixing scheme is ready to be used, I will be able to perform
more accurate data-model comparison in order to calibrate stellar models. These
models will be also used to develop PARAM, a unique tool introduced in Chapter
3 that, joining classic and asteroseismic information, can determine precise stellar
proprieties. PARAM can be then used to characterize thousands of stars for the
most different cases: from the purpose of studying a single stellar population to
helping galactic archaeology in improving our knowledge of the Milky Way.
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