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Abstract 

 

Given the increasing demand for precision engineering applications, the evaluation of 

measurement error and uncertainty has been the focus of intensive research to meet the 

requirements of precision manufacturing processes. Systematic errors of mechanical 

components affect the accuracy of the production parts. It is therefore best to analyse 

the geometric accuracy of machine tools before production processes begin. This 

proposed method is based on simulation in the MATLAB programme, which 

investigates the influence of the geometric errors of the Coordinate Measuring Machine 

(CMM) on the calibration. The advantages of this measurement procedure are reduced 

physical measuring times, reduced measurement uncertainties as well as volumetric 

measurement, and compensation for CMM geometric errors. 

 In this research, theoretical modelling of the local, kinematic error model and the 

Gaussian Process (GP) model are presented and explored in depth. These proposed 

methods are simulations providing an integrated virtual environment in which user can 

generate the inspection path planning for specific tasks and evaluate the errors and 

uncertainty associated with the measurement results, all without the need to perform a 

number of physical CMM measurements. The estimated errors and uncertainty can 

serve as rapid feedback for users before performing actual measurements or as a prior 

evaluation of the results of the CMM calibrations. 

The estimation of CMM geometric errors are usually described using 21 

kinematic errors which consist of three positional and three rotational error functions for 

each of the three axes, along with three squareness errors. This assumes that the method 

to estimate of these kinematic errors can be generated by performing an artefact 

measurement such as for a hole or a ball plate in the numbers of the positions of the 

CMM working region and then matching the kinematic errors to the measured changes 

in artefact geometry.   

The process validation of a local, kinematic error model and a GP model has 

been determined with the design and analysis of CMM measurement using a ball plate 

as an artefact, calculating the percentage error to compare their effective results. 

 

 

 

 



 
 

This research project has led to the following contribution to knowledge: 

 Mathematical model development for making effective choices regarding the 

local, kinematic error model and GP model is performed and formulated; this is 

verified by particular kinematic errors of the CMM measurements, presenting 

high accuracy and reliability of the error and uncertainty evaluation 

performance. 

 The improvement achieved by the proposed method over the traditional 

approaches between the simulated datasets and actual CMM data measurements 

has been demonstrated. 

 The numerical simulations with a well-designed strategy providing accurate 

estimates of the CMM kinematic errors using only a nominal CMM calibration 

with a ball plate have been validated and evaluated in both approaches. 

 The influences of kinematic errors affected through the measurement process of 

the CMM on the calibration have been investigated. 
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J   The 𝑚 𝑥 𝑛 Jacobian matrix 
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P  Air pressure (Pascal) 

R  Relative humidity (percent) 

r  Rotational Deviations 

Rx(x, r)  Rotation matrix 

Rx(x,y,z)  Rotational error along x-axis 

Ry(x,y,z) Rotational error along y-axis   

Rz(x,y,z) Rotational error along z-axis 

T    Temperature (degrees Celsius) 

t   Straightness Deviations   

u(F)    The standard uncertainty of the form error 

u(Pcal)  Uncertainty of air pressure from certificate of calibration  
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  the ball plate 
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U3   The average uncertainties associated with the CMM measurements at the 

  whole working volume 

v  Covariance function  

X   A random function, distributed as a Gaussian Process 
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yry  Moving axis rotational deviation 

yrz  Vertical axis rotational deviation 
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ytz  Vertical Straightness Deviation 
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Chapter 1 Introduction 

1.1. Research background 

1.1.1. Research background 

Generally, due to the increasing emphasis on the evaluation of measurement 

uncertainty, Coordinate Measuring Machine (CMM) researchers have developed several 

techniques to evaluate the CMM measurement uncertainties and further enhance the 

measurement performance in both hardware and software. Among these uncertainties, 

CMMs software has been demonstrated to be an effective tool for both error 

compensation and uncertainty evaluation. Of course, there have been several different 

approaches taken in the evaluation of CMM errors and uncertainty. But they all can be 

seen as methods to exploit the computing power which has become increasingly 

available through a virtual CMM (Pahk, et al., 1998; Okafor & Ertekin, 2000; Van 

Dorp, et al., 2001; Trek, et al., 2004; Hu, et al., 2012). 

 The mechanical approach presented in this research is similar to those 

described in previously published papers in the sense that it measures a calibrated 

artefact using a ball plate to align precisely a reference object for machined tools 

(Cauchick-Miguel, et al., 1996; Phillips, et al., 1997). There is some work evaluating the 

errors by using a laser interferometer to measure ring gauges (Kim & Chung, 2001). 

These generally use the ball plate, providing that accurate spheres and the distance 

between the axes of the spheres are certified in a plane measured by a CMM (Knapp, 

1988; Forbes, 1991; Balsamo, et al., 1997). Parametric errors of CMMs can be 

determined using conventional methods such as a laser interferometer (Trapet & 

Wiudele, 1991). However, these methods are time-consuming, and require skill and 

expensive equipment. To overcome these problems, reference artefacts have been 

introduced such as a ball plate (Kunzmann, et al., 1990; Trapet & Wiudele, 1991), a ball 

array (Zhang & Zang, 1991) and a device consisting of a ball plate (Kruth, et al., 1994; 

Bringmann, et al., 2005). To calibrate CMMs using 2D reference objects, National 

Metrology Institute – Physikalisch-Technische Bundesanstalt (PTB) (Kunzmann, et al., 

1990; Trapet & Wiudele, 1991) proposed a method to determine the parametric errors by 

placing the reference object in vertically and horizontally different orientations with a 

multiple of probe styli. This method generates a set of grids in the MATLAB 

programme. Thus, parametric errors can be calculated. Ball plate-based (Balsamo, et al., 
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1997) techniques were validated by the international comparison on CMM calibration. 

The results showed the benefit of ball plate-based techniques for determining the 

parametric errors. 

 

1.1.2. Definition and scope of the CMM 

1.1.2.1 Introduction 

 

 

Figure 1.1CMM (PMM-C700P) 

 

The CMM probing system is part of the coordinate measurement machine that senses all 

the coordinates of the surface needed for measurement calculation. Depending on the 

type and scale of measurement, appropriate probes need to be selected and placed on the 

CMM swindle based on the measurement application. First generation probes were 

usually solid or hard, for example tapered plugs used in locating holes. Such probes 

usually need to be manipulated manually in order to establish contact with the 

workpiece before the measurement can be read from the digital display output. Current 

generation probes, such as optical probes, transmission trigger-probes, cluster or 

multiple probes and motorised probes, do not require manual intervention during the 

measurement operation of the work piece. The second generation of probes, the touch 

trigger probe, invented by David McMurty in the 1970s, was vital to the development of 
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the probing technology in yielding high-precision measurements. The probe has a 

loaded steel ball stylus and comes with a precise micro-switch which responds to 

smaller order displacement. When it comes in contact with the surface of the shape to be 

measured, the stylus will deflect and then trigger an electronic signal to get the current 

coordinate of the probe to be recorded. The measurement method used a touch-trigger 

probe to greatly enhance the accuracy and precision of the CMM. It also reduces the 

errors as a result of measurements taken by different operators. CMMs usually utilise 

optoelectronic, electromechanical or electronic measuring systems. These include linear 

encoders or rotary encoders, inductive transducers or capacitive transducers, and 

interferometers (Yang 1992). Since the invention of the electronic touch trigger probe 

by David McMurty, many new types of probe have been developed. Probes can be 

generally classified as contact (tactile) or non-contact.  

Some newer models of contact probing system have features that will enable the 

probe to be moved along the surface being measured and at certain intervals of points, 

information is collected. These types of probe are also known as scanning probes and 

are known to be more accurate and faster than the conventional contact probing system. 

There are new research interests in combing both the non-contact and contact probing 

system into one integrated CMM system. The combination of the distinct characteristics 

of both contact and non-contact probing system will be beneficial in improving 

inspection speed while retaining high precision, or will fit a wider range of usage (Shen, 

et al., 1997; and Qin, et al., 2008). 

 The errors of a CMM can be categorised into two types. Dynamic errors are 

effects that are associated with short timescales vibration for example. Quasi-static 

errors are systematic effects associated with the imperfect kinematic behaviour of the 

CMM, such as scale and squareness errors that are associated with much longer 

timescales. It is estimated that the quasi-static errors account for about 70% of the errors 

of the machine (Bryan, 1990). 

  

1.1.3. Overview of CMM kinematic errors model simulation 

One of the problems in using kinematic error components, such as translational errors, 

rotational errors, and squareness errors, is that they vary in their measurement position. 

The local kinematic error model solves this difficulty in that it can only operate to the 

particular location of the CMM working volume used for the measurement task and the 

ball plate probes being used. It seems like a dynamic task that can reuse the model next 
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time by updating it facilitated within the limited time period to perform this measurement 

task. Therefore, the effect of the measurement location offsets can be overlooked when 

using this local kinematic error model. 

  However, the specification in this research uses a local kinematic model to 

describe the error behaviour of the CMM. Through the repeated use of a simple artefact, 

a ball plate, the parameter kinematic error model has been determined using non-linear 

least-square, together with a total of 21 relevant and suitable configuration parameters: 

three positional and three rotational error functions for each of the three axes, along with 

three squareness errors. The general methodology to evaluate the 21 parameter 

kinematic error configurations into the volumetric error map of a CMM by using the 

rigid body model is described in other works (Hockwn, et al., 1977; Schultschik & 

Matthias, 1977; Knapp & Matthias, 1983; Zhang, et al., 1985; Jouy & Clement, 1986; 

Belforte, et al., 1987; Kruth, et al., 1994; Sartori & Zhang, 1995). This methodology 

allows the CMM measurement errors and uncertainty to be calculated based upon the 

local, simplified kinematic error model, the propagation of uncertainty, and numerical 

simulations. A comprehensive mathematical model has been estimated to investigate the 

CMM parameter kinematic errors (Zhang, et al., 1988; Soons, et al., 1992). These 

evaluation methods are based on the experimental uncertainty determination according 

to the ISO 10360 standard for CMMs (ISO 10360-2 2002). The aim of this research is to 

simulate a local, simplified kinematic error model and a Gaussian process (GP) model, 

which together form a powerful accurate numerical virtual CMM, to evaluate the error 

and uncertainty of an actual CMM. These approaches lead to the precise error modelling 

of coordinate measurements, take as little time as possible, estimate real measurement, 

and reduce costs by task-specific definitions.   

 

1.1.4. Overview of the CMM GP model 

The GP model is a distribution over functions, which is basically the joint distribution of 

all the infinitely random variables. In statistical modelling, GP is important due to the 

properties inherited from the normal methods. When a process is modelled as GP, its 

distribution of various derived quantities, such as the average value of the process over 

certain duration and the error in the estimation of the average, could be obtained 

explicitly. GP is determined by its mean and covariance function. In terms of notation, 

the GP could be written as: 
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𝑋~ 𝐺𝑃(𝑚 , 𝑣) (1.10) 

 

Where X is a random function, distributed as a GP with a mean function, m, and a 

covariance function, v. The random variables are assumed to have a zero mean, which 

will simplify the calculations without loss of generality and the mean square of the 

process is entirely determined by the covariance function. These are computed quickly 

using a recursive formula. GP is used in analysing a geometric feature into three 

components: 

 Designed geometric form – This is done by deciding the line function and 

approach direction and solving the intersection points between functions. 

 Systematic manufacturing errors – This refers to the deviation from an ideal 

form that is identically independent distributed random. 

 Random manufacturing errors – This refers to the deviation from an ideal form 

that is non-identically independent distributed random. 

The method models the systematic manufacturing errors as a spatial model using a 

Gaussian correlation function. The random manufacturing errors are modelled as 

independent and identical distributed noises. With a small number of coordinated 

measurements, the GP model could reconstruct the part surface and assess the form 

error better than traditional methods. It also provides an empirical distribution of the 

form error the quantification of the decision risk in part acceptance which works for 

generic features. The authors, Dowling et al. (1993), Yang and Jackman (2000) and Xia 

et al. (2008) used a GP method to provide information on the error and uncertainties in 

deciding on CMM acceptance or rejection. 

 

1.2 Aim and objectives of the research 

The aim of this research is to achieve a cost-effective evaluation of CMM kinematic 

errors by a desirable approach using reference artefacts and thus further explore the 

mathematical understandings of the CMM kinematic errors. 

 

The objectives of the research are as follows: 

 To develop a mathematical model for making effective choices regarding the 

local kinematic error simulation and Gaussian Process model based upon the real 

physical CMM performance. 
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 To demonstrate the improvement achieved by the proposed method using 

simulated datasets over the traditional approaches based on actual CMM data 

measurements. 

 To validate and evaluate the numerical simulations with a well-designed strategy 

providing accurate estimates of the kinematic errors using only a nominal CMM 

calibration and a ball plate. 

 To investigate the influence of CMM kinematic errors on the CMM calibration. 

 

1.3 Outline of the thesis 

This work is outlined in eight chapters. The comprehensive details of the thesis are 

demonstrated as in figure 1.2. 

 

Modelling & 

Simulation

Experimental 

investigation 

Local Kinematic 

Error Model

Numerical simulation 

procedures

Numerical simulation 

procedures

Error & Uncertainty 

Calculations

CMM calibration 

using a ball plate

Chapter 4 Chapter 5 Chapter 6

CMM Verification 

approach

Literature review 

Introduction 

Chapter 3

Chapter 2

Chapter 1

Conclusions

Data Analysis

Chapter 8

Chapter 7

Gaussian 

Processes Model

Error & Uncertainty 

Calculations
Error Analysis

 

Figure 1.2 Chapter plan of the thesis 

 

Chapter 1, the background, overview of CMM kinematic error model simulation and 

research aims/objectives to understand the body of the thesis are introduced. 
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Chapter 2, the state of the art of CMM, the systems, configurations and measuring 

methodologies will be reviewed. The errors and uncertainty of the CMM measurement 

will also briefly be emphasised. The discussion of the CMM kinematic errors model and 

the GP model for numerical simulation will be carried out to analyse the errors 

calculation and uncertainty evaluation of this model in the research area. 

Chapter 3, the necessary theoretical backgrounds of the CMM, structures, systems and 

its measurement strategies will be explained. Also, the CMM measurement errors and 

uncertainty calculation will be introduced. 

Chapter 4, the theoretical simulation procedures, including calculation of model 

parameters, errors calculation, and uncertainty evaluation, will be proposed. Then, the 

process of CMM kinematic errors model simulation presenting the local, kinematic 

errors model will be presented. The 21 kinematic errors parameters, including 

translational, rotational, and squareness errors, will be explained. The simulation 

processes used in this research, including locations of the artefact, probe qualification, 

and numerical procedures, will be implemented. Within this chapter, error compensation 

and uncertainty evaluation applying to the model will be assessed in the model of local, 

kinematic errors simulation. The mathematical model will be evaluated for uncertainty 

evaluation and the errors model using the local, simplified kinematic error model will be 

emphasised. 

Chapter 5, GP simulation will be studied. In this chapter, the GP and its simulation, 

including the background theory in order to understand GP and its numerical simulation, 

will be investigated; errors that occur in the model will be compensated for. 

Chapter 6, the experiment will be set up including preliminary operations: CMM 

calibration using a ball plate, measurement procedure and error analysis.  

Chapter 7, the discussion of this work comparing the simulation between the local, 

kinematic errors model and the GP model will be analysed. The results from the CMM 

measurement using a ball plate as an artefact will be investigated, comparing it with the 

simulations. 

Chapter 8, the results and conclusions from this work will be discussed. Further 

recommendations will be also provided at the end. 
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Chapter 2 Literature Review 

 

2.1 Introduction    

In this chapter, the literature reviews of coordinate measuring machine (CMM) and it 

related technologies are discussed.  Sections 2.2 to 2.5 cover the following introduction 

to CMM which covers CMM system configuration, probing system, inspection 

planning, errors and uncertainty; CMM Kinematic errors model solution detailing Local 

Kinematic error model and Gaussian Process model; CMM numerical simulation 

calculation and its compensation strategies and the optimisation and control using 

Matlab programme.   

 

2.2 Coordinate Measuring Machine (CMM)    

2.2.1 Introduction  

Coordinate Measuring Machine is a useful metrological instrument for measuring 

geometrical characteristics of a device. It is used in manufacturing and assembly 

processes, for testing parts with respect to their design specification. CMMs aid in the 

location of point coordinates on three dimensional structures or platforms.  According to 

the International Organisation for Standard, CMM is a measuring system with means of 

moving a probing system and is capable of determining the spatial coordinates of an 

object on the workpiece surface.  The measurements are conducted by a probe 

connected to the third moving axis of the machine. Probe used for CMM could be 

optical, laser, mechanical or white light. CMM simultaneously integrate both the 

dimension and orthogonal relationships. The machine could be operated by an operator 

in manual settings.  When combined with computer systems, it becomes automated and 

could carry out complex analysis which could be useful in learning measurement 

routines and compares how a part conforms to the required specification.  The 

measurement duration while using CMM is shorter compared to using traditional single 

axis instruments.  One major advantage of using CMM for measuring is that it offers 

precision and speed for measuring complex objects.  CMM takes its reading in six 

degree of freedom and these readings are displayed in mathematical form.  It is 

composed of three axes which are orthogonal to one another just like the normal three-

dimension coordinate system.   With the three axes combined, the probe moves in a 

three dimensional space which makes it possible to conduct complex measurement with 
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high accuracy compared to single dimension instruments such as metre rule, tape rule 

etc. CMM uses the three coordinates (X, Y, and Z) of each of these points to calculate 

the size and position with a precision of micrometre. The probe of a CMM can rotate 

and tilt to varying degrees which makes it able to inspect objects with a great degree of 

access. After taking the correct reading of the three coordinates of the work piece, 

necessary points could be generated, which then could be analysed using a variety of 

regression algorithms to construct the features of the work piece. Coordinate points are 

collected via the CMM probe that is positioned either by an operator manually operating 

the machine or automatically through Direct Computer Control (DCC).  Figure 2.1 

showing two examples of CMM, FALCIO Apex G Series 355 High Accuracy Large 

CNC CMM and COORD3 Universal Bridge. 

 

 

     

   (a)      (b) 

 

Figure 2.1Showing (a) FALCIO Apex G Series 355 High Accuracy Large CNC CMM and (b) 

COORD3 Universal Bridge (Mitutoyo, 2016 and COORD3, 2016) 

 

  Though a CMM could be controlled either by an operator, manually or by using 

a computer system, modern CMM are generally computerised. Computerising CMM 

automated the measuring process and enabled it to have powerful computational 

capabilities. It could gather positional information through a number of points based on 

the coordinates system and then calculates geometrical characteristics of the object such 

as the radius for spherical objects.  It could be used to determine relationship between 

characteristics such distance between the centre point of two spheres, angles between 

surface, distance and angles etc.  When comparing CMM with most conventional 
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approaches, it has a number of benefits; some of these benefits are automation, 

precision, accuracy, efficiency and its universality.  Using CMM enhances inspection 

greatly by introducing computer automated coordinate system and data fitting 

algorithms that help inspectors to set up the work piece in an orientation that is very 

convenient for inspection.  With calibration in place, the data measured are corrected to 

remove any error due to the references. In conventional geometry inspection aligning 

the workpiece manually is difficult and to determine the right reference position can 

both labour intensive and time consuming (Gu 1994). 

Performing measurement with high accuracy and precision is vital and CMM could be 

used to eliminate errors that were accumulated resulting from hard gauging inspection.  

With CMM, measurements are conducted in temperature controlled environment where 

the common procedure guidelines are followed and the operator influence in introducing 

errors could also be kept to a minimal value (Gu 1994). CMM could be used to measure 

any object, however there are few limitations to it.  They are precise robots that 

effectively operate in the universal Cartesian coordinate system (Kurfess 2006 and 

Wang et al 2006). Today’s CMMs are generally automated and integrated with control 

systems. Dimensional Measurement Interface Specification (DMIS) is a standard 

programming language designed for controlling CMM and also for communication 

between CMMs and Computer aided design (CAD) systems.  

  In 1963, an Italian company, Digital Electric Automation (DEA) designed and 

developed the first CMM with three dimensional coordinate systems and a hard probe. 

However, another company in Scotland, Ferranti Metrology also claimed to be the first 

inventors of the CMM, except that their design was for a measurement machine with 

only two axes. This makes the DEA the world first designer of CMM with a three 

dimensional frame work that currently is the standard frame work for CMM.  Ferranti, 

which is now known as International Metrology System (IMS), introduced the first 

Direct Computer Control Coordinated Measurement Machine (DCC CMM). This could 

be programmed accurately and automatically measure identical parts of the workpiece, 

making it a specialized form of an industrial robot. DEA later developed the first 

Computer Numerical Control Coordinate Measurement Machine (CNC CMM). As with 

the saying, “necessity is the mother of invention,” so the invention of CMM was done 

by the urgent need to develop instruments with very high measuring precision in the 

manufacturing industry in the late mid-20
th

 century.  The emergence of automated and 

computerised CMM could be linked to the rapid development of micro-electronics, 
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precision mining technology and manufacturing industry needs for reliable, flexible, 

efficient and fast measurement technology (Yang 1992).  

  It took over 10 years after the invention of CMM to achieve big success 

commercially, though industries were born almost immediately after its invention.  

CMM processes and techniques are still being enhanced to meet up with the challenges 

of the fast development of advanced manufacturing industry.  With an increase in more 

complicated and aesthetic shapes on the rise, improvement of CMM for higher 

measurement qualities for such shapes are also being pursued.  Nowadays, artificial 

intelligence is added to provide better measuring capabilities, increase reliability in 

inspection. This makes CMM measurement machines are one of the most accurate 

metrological instruments in manufacturing sector. 

 

2.2.2 CMM system and configuration  

A coordinate measurement machine basically consists of a platform and probe. A 

platform is the surface where the workpiece is placed and moved with linearity during 

measurement. The probe is normally attached to the head and it is capable of taking both 

horizontal and vertical measurement. The first generation of CMM probes were 

generally connected with a probe holder at the end of the spindle. They mostly consist 

of a hard ball tip connected to the end of stem. Other probes have their tips in other 

shapes and sizes. First generation probes were usually physically held by the operator 

and then carefully brought in contact with the points on the surface of the feature to be 

measured by hand. Spatial positional measurements were then read from the digital read 

out or digital display or simply stored on a computer. Using such method of taking 

measurements gives a wider room for errors and uncertainty.    

  Measurements conducted by such procedure were generally considered not 

reliable. The probe is susceptible to be damaged or the work piece deformed due to the 

excess pressure applied. In order to mitigate such damage from occurring, additional 

motors were added that drive each axis. With the addition of motors to the axes, the 

operators don’t need to hold and move the probe by hand, instead a joystick could be 

used in controlling the movement of the probe. 

 

2.2.2.1 CMM Design 

When CMMs were first designed and developed, they were equipped with a direct 

digital display or equipped with a digital read out.  With the innovation of computers, 
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CMM were equipped with a computer for data processing but manually operated by an 

operator.  Currently, CMMs   could be driven automatically using the CMM program.  

This development enabled modern CMMs to have new features compared to the first 

generation of CMMs. Some of these features are:   

 Compensating temperature 

 Crash Protection    

 Reverse Engineering  

 CAD model import capability 

 Shop Floor Suitable  

 SPC Software 

 Offline programming 

   

 CMMs architecture and appearance have rapidly advanced since its invention in 

the early 1960s. Most modern designs are based on a Cartesian coordinate system. This 

is due to the simplicity and the universal arrangement of a three axes dimensional 

system (Yang, 1992). The International Organisation for Standardization in their 

guideline, ISO 10360-1, listed the configurations and types of CMMs which are: 

 

(1) Fixed table cantilever Coordinate measurement machine 

Most fixed table cantilever CMM are usually limited to small and medium sized 

machines.  They offer easy access and occupy relatively small floor space where space 

requirement is important. This is one of the first CMM machines used in the 

manufacturing industry. 
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   (a)        (b) 

Figure 2.2 Showing the Fixed table cantilever CMM structure and a typical Fixed table 

cantilever CMM product (Precision Engineering Specialization, 2012 and Bhagat, 2015) 

 

(2) Moving bridge Coordinate measurement machine 

This comprises of a CMM table which is normally produced from granite or steel; a 

bridge assembly and a Z-axis assembly.  The CMM table has a grid pattern of threaded 

insert of either M8 or M10 size for easy clamping and is also used to support the object 

to be measured.  For most manufacturers, the X-axis moves from left to right front view, 

Y-axis moves from front to back from a front view and the Z-axis moves vertically. 

Moving bridge CMM   either use air bearing or mechanical bearing. Air bearing has its 

bridge mechanism sliding directly on the surface of the table while mechanical bearing 

has its bearing mechanism connected to either the side or top of the table.  For improved 

performance when using air bearing, the air bearing ways machine directly into the 

granite plate.  
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(a)        (b) 

Figure 2.3 Showing the moving bridge CMM structure and a typical moving bridge CMM 

product (Bhagat, 2015) 

 

The X-axis of the air bearing CMM is mostly produced from steel, granite, aluminium 

or ceramic. The CMM machines were formerly produced from steel or granite but over 

the decades, CMM machines are produced from ceramic and aluminium. Granites 

generally have lower thermal coefficient of expansion and slow thermal diffusion rate 

which makes it slow to respond to changes in temperature. Aluminium has a high 

coefficient of expansion which makes it unsuitable material for the surface but it 

handles temperature change due to its high thermal diffusion rate. Ceramic is from 

glass. It is light and fragile but exhibits same metrological properties as the granite.  

Steel on the other hand has a low co-efficient of expansion and responds to changes to 

temperature. Materials used to build CMM are selected based on the operating 

environment. Moving Bridge CMM is the most common CMM due to its accurate 

design. This uses pneumatic counter balance system to maintain a balanced motion of 

the Z axis.  

 

(3) Gantry Coordinate measurement machine 

A Gantry Configuration CMM consists of its support pillars and horizontal beams, 

bridge assembly and Z axis Assembly.  It has elevated horizontal beams which the 

bridge assembly slides upon. Gantry CMM has excellent dynamics because both X and 

Y axes are almost on the same height.  Most Gantry CMM have their X-axis from the 

front view moving from left to right, Y-axis moving front to back when viewed from the 
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front and Z-axis is vertical.  It could use either air bearing, with the bridge mechanism 

sliding on top of the horizontal beams or mechanical bearing, with the guide bearing 

mechanism attached to the side or top of the beams.  They are mostly used for 

measuring large shape and could be used with monolithic base to remove the need of a 

foundation. 

 

 

    (a)        (b) 

Figure 2.4 Showing the fixed table cantilever CMM structure and a typical fixed table cantilever 

CMM product 

 

(4) Fixed bridge Coordinate measurement machine,  

Fixed bridge CMM supports only a unidirectional motion. This motion is linear only in 

the y-axis direction and it supports the weight of the part to be measured.  Typically, the 

Fixed Bridge CMM supports lesser weight when compared to the Moving Bridge 

CMM.  The Y-axis moves from left to right from a front view. Most Fixed Bridge 

CMMs use the air bearing structure as their bearing mechanism and have the best 

configuration in consideration that it has improved dynamics over the moving bridge 

CMM. It uses a pneumatic counter balance system to maintain a balanced motion of the 

object and Pneumatic Isolation System to remove any vibrations that could affect the 

measurement negatively.  Fixed Bridge CMM is not common because of its high cost 

and is typically used for measuring complex applications where micro range tolerance is 

required. It is only available as a CNC CMM and uses a fixed head scanning probe.  

http://coordinate-measuring-machine.net/wp-content/uploads/2011/01/Gantry-CMM.png
http://coordinate-measuring-machine.net/wp-content/uploads/2011/01/Typical-Gantry-CMM.jpg


16 
 

 

(a)        (b) 

Figure 2.5 Showing the Fixed Bridge CMM structure and a Fixed Bridge CMM product 

(Bhagat, 2015) 

 

 Other CMM configurations include L-shaped Bridge Coordinate Measurement 

Machine, Moving Table Cantilever CMM, Column CMM, Moving Ram Horizontal-arm 

CMM, Fixed Table Horizontal-arm CMM, and Moving Table Horizontal-arm CMM. 

Table 2.1 shows the typical accuracies for a number of configurations (Rodger et al., 

2007). 

 

Table 2.1 Showing the typical CMM accuracy 

Configuration Indicative errors 

Bridge ±<5 µm 

Gantry ±10 µm 

Column ±10 µm 

Cantilever ±10 - 50 µm 

Articulated arm ±50 – 250 µm 

 

 

2.2.2.2 Probing systems   

  In the late 1970s, the founder of Renishaw PLC, David McMurty, invented an 

electronic touch trigger probe.  This invention was vital to the development of the 

probing technology in yielding measurement with high precision. The probe has a 

loaded steel ball stylus and comes with a precise micro switch which responds to 

smaller order displacement.  When it comes in contact with the surface of the shape to 

be measured, the stylus will deflect and then trigger an electronic signal to get the 

http://coordinate-measuring-machine.net/wp-content/uploads/2011/01/Fixed-Bridge-CMM.png
http://coordinate-measuring-machine.net/wp-content/uploads/2011/01/Moving-Table-CMM1.jpg
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current coordinate of the probe to be recorded. The measurement method used   trough-

trigger probe to greatly enhance the accuracy and precision of CMM.  It also reduces the 

errors as a result of measurements taken by different operators.  CMMs usually utilize 

optoelectronic, electromechanical or electronic measuring systems. These include linear 

encoders or rotary encoders, inductive transducers or capacitive transducers and 

interferometers (Yang 1992).  

  Since the invention of the electronic touch trigger probe by David McMurty, 

many new types of probe were developed. Probes could be generally classified as 

contact (tactile) or non-contact types.  The British Standard Institution (BS6808-1 1987) 

and the International Organisation for Standardization (ISO 2000) defined and classified 

the probing systems into the following:  

 Contacting probe system: ― Contact probes make contact with the surface that is 

being measured and are the most common probes used today. Though contact 

probes are slower when carrying out measurement as compared to non-contact 

probes, they are more accurate and very suitable when measuring rigid work pieces 

comprising of geometrical shapes that are primitive.  

 Non-contacting probe system: ― Non-contact probing system does not need any 

material contact with a surface being measured in order to function. For example, 

optical probe system is a non-contacting probing system that creates a connected 

measured point by probing via an optical system. 

 Multi-probe system: ― a multi probing system is a probing system having more 

than one probe attached to the coordinate measurement machine.  

 Articulating probe system: ― An Articulating probe system is probing system that 

could be rotated into various spatial angular positions through the use of manual 

position device or motorized positioning device. 

 

Table 2.2 shows some of the most common probes used in coordinate measurement 

machine for both contact and non-contact probes.  
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Table 2.2 Showing some common probes used in coordinate measurement machine 

(contact and non-contact probes) 

Probe  Type Function  

Touch-trigger 

probe 

Contact This probe outputs a binary signal as a result of the 

contact made with a workpiece.  

Analogue 

contacting 

Probe  

Contact This probe generates and outputs a signal or series of 

signals in proportion to the displacement of the probe 

from the initial position.  The displacement information is 

then mapped to coordinates.  

Nulling 

contacting 

probe 

Contact This probe outputs a signal or series of signal that make 

the coordinate measuring machine to be driven to a 

position in referenced to a workpiece. It always gives a 

constant probe reading which is usually near zero output 

or a zero output. It does output values higher than zero.  

Passive (solid) 

probe 

Contact This is a probe which locates the movable components of 

the CMM mechanically relative to the workpiece 

Laser 

scanning 

optical probes 

Non-

contact 

Laser scanning optical probe is a non-contact type of 

probe which uses laser scanning and technologies such as 

CCD (charge-coupled device) systems and machine 

vision (MV) systems. 

White light 

scanning 

optical probes 

Non-

contact 

White light scanning optical probe is a non-contact type 

of probe which uses white light scanning and utilizes 

technologies such as CCD (charge-coupled device) 

systems, machine vision (MV) systems. 

 

  Some newer models of contact probing system have features that will enable the 

probe to be moved along the surface being measured and at certain intervals of points, 

information are collected. These types of probe are also known as scanning probes and 

are known to be more accurate and faster than the conventional contact probing system.   

For non-contact probes, advance technologies are used in making it possible to collect 

huge amount of high density data containing information about the coordinate points in 

short time. The number of points could be thousands of points per inspection.  These 

data could be used to recreate the 3D image of the shape and not only for checking its 

geometrical features. When integrated to CAD software, it makes it possible for the 
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software to create a 3D model of the workpiece from the millions of points taken per 

inspection.  With this feature, non-contact scanning probe is ideal for reverse 

engineering   for rapid prototyping of the workpiece, most especially for workpieces 

with complex geometrical features. Another benefit of non-contact probing system is 

that it could be used to measure delicate, soft or deformable workpieces since the probe 

will not touch the surface of the object.  Currently, non-contact probing systems are less 

accurate when compared to contact probing systems but the accuracy margin is closing 

up due to rapid advancement in probing technology and electronics.  There is new 

research interest in combing both the non-contact and contact probing system into one 

integrated coordinate measuring machine system. The combination of the distinct 

characteristics of both contact and non-contact probing system will be beneficial in 

improving inspection speed while retaining high precision or will fit a wider range of 

usage (Shen et al 200 and Qin et al 2008). 

  Microprobe is another area with new research interest.  Microprobes are smaller 

than the regular probes in terms of their size and measurement scope. Microscale 

probing technologies are basically scaling down a number of the conventional probing 

technologies such as laser scanning probe, white light optical probe, standing wave 

optical probe, Touch-trigger probe, Analogue contacting Probe, Nulling contacting 

probe, and Passive (solid) probe. Despite the fact that there are a number of 

commercially available applications for micro probing system, it is still facing a number 

of critical challenges. Some of the challenges it is facing are lack of having a high 

aspect ratio probe with the capability of accessing deep or very narrow features, 

vulnerability to environmental influences such as humidity and surface interactions, 

maintain microscale contact in order to prevent damaging a high precision surface for 

example at nanometre level and unreliability during measurement (Bauza et al. 2005) 

 

Optical and inductive Transmission Probes 

Optical probe system is a non-contacting probing system that creates a connected 

measured point by probing via an optical system. Non-contact probing system does not 

need any material contact with a surface being measured in order to function. Optical 

and inductive Transmission Probes were developed for changing the tool automatically. 

The probe system receives power through the inductive link between the modules fitted 

to the machine structure and the probe system. The hard wired transmission probe is 

used mainly for tool setting and usually mounted in a fixed position on a machine 
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structure. Figure 2.6 shows the inductive probe system and automatic probe changing 

and figure 2.7 shows the optical transmission probe. The probe rotates between gaging 

moves which makes it very useful for datuming the probe. The probe wide angle gives it 

greater axial movement of the probe making it suitable for majority of the installation. 

 

 

Figure 2.6 The inductive probe system and automatic probe changing (Bauza et al., 2005) 

 

 

Figure 2.7 Showing the optical Transmission probe (Bauza et al., 2005) 

 

Contacting probe system 

Contact probes make contact with the surface that is being measured and are the most 

common probes used today. Though contact probes are slower when carrying out 

measurement as compared to non-contact probes, they are more accurate and very 

suitable when measuring rigid work pieces comprising of geometrical shapes that are 

primitive.  
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Motorised Probe 

Motorised probe offers a total of 720 distinct probe orientations from it 48 position in 

the horizontal axis and it 15 position in the vertical axis. Figure 2.8 shows the motorised 

Probe system and Figure 2.9 show the typical application of motorised probe. The 

figures show that within the range of light weight extension, the probe head could reach 

into the deep holes and recesses. Figure 2.9 reveal the probe head is quite compact to be 

regarded as an extension of the machine quill. This architecture enables the inspection 

of complex components that would otherwise require complex or impossible setups. 

 

 

Figure 2.8 Motorized Probe head 

 

 

 

Figure 2.9 Typical application of Motorised probe 

 

 

Multiple Stylus Probe Heads 

Multi probing system is a probing system having more than one probe attached to the 

coordinate measurement machine. Some of probe heads have wide ranges of styli which 

are developed to suit quite a number of different gaging applications. Figure 2.10 shows 

some of the different styli mounted on a multiple gaging head. The application for the 

usage of the probe determines the selection of stylus that will be mounted on the probe 

head. 
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Figure 2.10 Multiple stylus probe head with variety of styli 

 

Microprobe 

Microprobes are used in both micro and nano CMM measurements with the form and 

the spacing of two reference spheres with diameters of two millimetres each. The 

application of the microprobes requires the probing system structures to be 

manufactured and assembled with very high precision in order to make the system 

function smoothly. Microprobes are smaller than the regular probes in terms of their size 

and measurement scope. Microscale probing technologies are basically scaling down a 

number of the conventional probing technologies such as laser scanning optical probe, 

white light optical probe, standing wave optical probe, Touch-trigger probe, Analogue 

contacting Probe, Nulling contacting probe, and Passive (solid) probe. Despite the fact 

that there are a number of commercially available applications for micro probing 

system, it is still facing a number of critical challenges. Some of the challenges it is 

facing are lack of having a high aspect ratio probe with the capability of accessing deep 

or very narrow features, vulnerability to environmental influences such as humidity and 

surface interactions, maintain mild contact in order to prevent damaging a high 

precision surface for example at nanometre level and unreliability during measurement 

(Bauza et al. 2005). Figure 2.11 shows Microprobe used in micro-nano CMM 

measurement. The Physikalisch-Technische Bundesanstalt (PTB) in Germany has 

developed a metrological scanning microprobe with capability of delivering micro and 

nano coordinate measurement. The PTB microprobe is able to meet the requirements for 

3D measurements of both the micro and the nano structures.  
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Figure 2.11 Microprobe used in micro-nano CMM measurement (PTB, 2009) 

 

Articulating probe system 

An Articulating probe system is probing system that could be rotated into various spatial 

angular positions through the use of manual position device or motorized positioning 

device. Non-contact probing system does not need any material contact with a surface 

being measured in order to function. The probe head provides rotational movement on at 

least one axis and with at least one rotary measurement device for the measurement of 

the angular position of the surface sensing. Figure 2.12 shows an example of an 

articulating probe system. 

 

 

Figure 2.12 Articulating probe system (Graywolfsensing, 2007) 
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2.2.3 CMM inspection planning  

In the 21
st
 century, manufacturing industries produce more workpieces that have very 

complicated geometrical features and aesthetic shape to meet both the functional and 

aesthetical environment. Due to the competition in the manufacturing industries, the 

ability and capability to rapidly design and produce these products with very high 

accuracy and precision is very important especially to a manufacturer who wants to 

thrive in the industry. Measuring the coordinate data with accuracy is another important 

procedure to be considered as sometimes it could be a bottle neck in the process of 

achieving short production cycle (Qin e al 2008).   

  Conducting CMM inspection is a requirement with more accurate and efficient 

operating procedure in order to fulfil the entire quality assurance standard with shorter 

cycle times. Coordinate measurement machines have become one of the widely 

accepted metrological instruments. Improving the measurement accuracy and increasing 

the speed of the inspection are two principal goals needed to improve the performance 

of CMM (Lu et al 1999). The inspection procedure of CMM could be divided into three 

parts  

 Inspection planning  

 Measuring program generation  

 Actual inspection  

 

  Inspection planning is the key to achieve better CMM operational performance 

and it plays a vital role in the inspection procedure. The methodology and strategy used 

has direct impact on the safety of the equipment, safety of the workpiece, efficiency of 

the measurement and the accuracy of the inspection results.   Over the last two decades, 

the study of inspection planning with the goal of improving CMM performance has 

evolved into a continuous developing research area and has attracted attention in a 

number research literature (Yang & Chen 2005 and Ziemian & Medeiros 1998). There 

are two aspect of planning when carrying out CMM inspection planning; low level 

planning and high level planning (Chen et al 2004).  

Low level planning deals with the following:  

1. Selecting measurement points on every surface 

2. Accessibility evaluation for the measurement points  

3. Sequencing and grouping of measurement points 

4. Generation of collision free inspection path 
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And high level planning covers the following  

1. Setting the work piece on the work table 

2. Determination of the required features to measure in a particular setup.    

3. Selection of the probes  

4. orientation of the probe  

 

  Quite many researchers have been done in the areas listed above and new 

approaches are still being proposed. Measurement strategies and programs are regularly 

modified due to the different configurations and requirements of workpieces since the 

main characteristic of today’s manufacturing industry is having production with low 

volume high-variety and products with close tolerance high-quality (Chen et al., 2004). 

In such scenario automating the inspection planning becomes highly desirable because 

of the following reasons: 

 Every time there is a change in the workpiece or change in the measured 

features, there is also a need for the inspection to be planned again. When 

carrying out the inspection planning manually, the process could be very time 

consuming but when carrying out the inspection planning automatically, it the 

human workload and improve the inspection speed.  

 Carrying out manual inspection planning on a CMM machine would cause more 

wear and risk collision damage considering that CMMs are expensive 

instruments. An alternative to manual inspection is to generate the measurement 

program offline and automatically which will greatly reduce cost and improve 

safety.  

 By automating the inspection planning, it will maintain a certain standard of 

reliability thereby eliminating the human differences by different operators. 

When conducting the inspection manually, its validity and effectiveness is 

dependent on the operators’ skills and experience. 

 In a computer integrated manufacturing (CIM) environment, Coordinate 

measurement machines become involved in in-process inspection. The means 

CMMs are required to be closely integrated with both computers aided design 

and computer aided manufacturing. Automating inspection planning is vital in 

improving efficiency and for communication between the other components in 

the computer integrated manufacturing environment. Combining the two will 

make it possible to have a complete automated manufacturing system. 
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  The concept of measurement and error analysis has always been in use since the 

existence of man, due to the need to assess the quality result of measurement. The 

application of error analysis hinges on two concepts, which are the actual value of the 

measurand and the measurement error. The values are difficult to be calculated exactly 

even when all components of the error have been evaluated and taken into 

consideration; an uncertainty on the correctness of the result will still remain 

(International Organization for Standardization, 2008). In the 1970s, metrologists 

discovered that it was more appropriate to use uncertainty while computing the 

characterisation of a measurement’s reliability instead of using the word error.  

Uncertainty focuses on a measurement’s dispersion which reasonably could be ascribed 

to the measurand.  

  Comité International des Poids et Mesures (CIPM) having seen the need of an 

agreement on the estimation of measurement, commissioned an organisation called 

Bureau International des Poids et Mesures (BIPM) to propose a recommendation that 

would be widely accepted.   The organisation convened a working group to publish 

guidelines on the statement of uncertainties, of which in 1980 published the general 

recommendation INC-1. Based on this recommendation and CIPM Recommendation 1 

(CI-1981) in 1981, the International Organization for Standardization (ISO) published 

guidelines the Expression of Uncertainty of Measurement in 1993.  This guide was later 

corrected and reprinted in 1995. After over a decade of development and transformation, 

the GUM was revised current version in 2008, with the title ‘Uncertainty of 

measurement – Part 3: Guide to the expression of uncertainty in measurement’ (GUM 

2008).  This guide, ISO/IEC Guide 98-3:2008, is the current active ISO guide to the 

analysis of uncertainty.  This was made possible by the Joint Committee for Guides in 

Metrology (JCGM) which comprises of leading experts selected by BIPM, the 

International Organization for Pure and Applied Chemistry (IUPAC), the International 

Organization for Standardization (ISO),  the International Organization for Pure and 

Applied Physics (IUPAP) , the International Federation for Clinical Chemistry and 

Laboratory Medicine (IFCC), the International Electrotechnical Commission (IEC) , the 

International Laboratory Accreditation Cooperation (ILAC) and the International 

Organization of Legal Metrolog (OIML).  

  Uncertainty of measurement is defined by the International Organization for 

Standardization as a parameter associated with a measurement result that characterizes 

the dispersion of values which could reasonably be attributed to the measurand 
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(International Organization for Standardization, 2008).  The GUM differentiated 

uncertainty from error stating that uncertainty of a measurement is as a result of lack of 

knowledge of the measurand value.  When all the recognised systematic effects are 

corrected, the measurement value is an estimate of the measurand’s true value, which is 

due to the imperfection of systematic effect correction and uncertainty form random 

effects. Some possible causes of uncertainty in a measurement are incomplete definition 

of the measurand, non-representative sampling, and insufficient knowledge of possible 

effects cause by the environmental conditions on the measurement or inaccurate 

measurements of the environmental conditions, personal bias in reading analogue 

instruments and Imperfect realization of the definition of the measurand. Other causes 

include the resolution of finite instrument, inaccurate values of the measurement 

standards and inexact reference materials, used of inaccurate values of constants and 

other parameters gotten from external sources in the data reduction algorithm, 

discrimination threshold, inaccurate assumptions and approximations incorporated in 

the measurement method and variations when repeated observations of the measurand is 

done under identical conditions. 

 

2.2.4 Evaluation of CMM measurement errors and uncertainty 

CMM physical structure is one of the identifiable sources of error as it comprises of 

numerous assembled parts which may provide from 1 micron to about 100-micron 

typical accuracy.  Identifying these errors in order to compensate for them, quantifying 

the remaining errors and stating the errors in relation to their effect on results are vital. 

Broadly, CMM error could be classified as either geometric error, Kinematic error, 

stiffness error or thermal error.  

i. Geometric error- Errors due to the manufacturing accuracy of component and 

mechanical adjustment after assembly of the components.  This could be found 

by measuring the flatness, squareness, angular motion and straightness errors.  

Measuring CMM geometrical errors involves the use of laser interferometer 

which is characterised by good metrological features.  Figure 2.13 shows a laser 

interferometer that measure with nanometer resolution and a feed rate of about 

1m/s.  Laser interferometer can determine the following errors; rotation errors, 

axial positional errors of particular machine, straightness errors and axial 

perpendicular errors.  The device contains compensation system to compensate 
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the wavelength due the effect of environmental factors such as humidity, 

temperature and pressure. 

 

 

Figure 2.13 Showing the measurement of straightness errors using laser interferometer 

   

ii. Stiffness error- Errors caused by the weight of moving parts and that depends on 

the stiffness, weight and configuration.  Stiffness error could be reduced by the 

application of large centre distance between the slide bearing and also the 

implementation of the Abbe and Bryan principle. 

iii. Thermal error- Error induced due the environmental temperature changes which 

cause CMM components to expand and bend.  This has a complex non-linear 

nature making quite difficult to handle.  some of the contributing components to 

the development of thermal errors are; the gradient of temperature, distribution 

of temperature of the CMM influence by external sources, uniform temperature 

changes, material of machine component and its thermal properties.   Thermal 

error compensation could be done via the control of heat flows into the system, 

compensating the error through the controlled of relative motion amidst the 

frame. 

iv. Kinematic error- Kinematic error is the inability for the coordinate measurement 

machine to accurately reach the specified position as directed by the controller. 

The authors Nawara et al (1989) and Veldhuis & Elbestawi (1995), in their 

studies on CMM presented and discussed the effect of change position on both 

the systematic and random components of the errors. This is mainly as a result of 



29 
 

the position of the machine slides, motors, couplers ball screws, controllers and 

gears do contribute to the error. Also backlash and hysteresis in the elements do 

have effect on the kinematic error. 

 

2.3 CMM Kinematic errors model solution  

2.3.1 Introduction  

Considering a CMM with perfect geometry, the scale reading on each of the three 

machine axis will be considered as accurate for the coordinate measurement.  However, 

in practice, the most improbable is that CMMs with perfect geometry in manufacturing 

or production line.  CMMs, in practice have imperfect geometry in the following 

regards  

 Straightness of each axis 

 Squareness of pairs of axes 

 Rotation describing the pitch, roll and yaw 

 

  It is vital these that these errors, also called systematic or parametric errors are 

taken in to account for in order to fully realise the accuracy potential of CMMs. Most 

manufacturers of CMMs ensure their CMM machines undergo a detailed and 

comprehensive calibration procedure as a final check before delivering them to their 

customers.  On the customer site, an acceptance test is conducted to the customer by the 

manufacturer   to show that the CMMs performance is within the international or 

national specification. Moreover, these standards include clauses that ensure other tests 

are conducted at certain intervals to maintain the CMM conformance to the 

specification. The 'other' tests are of two types: 

  Periodic re-verification test – This requires repeating the acceptance test yearly 

with the goal of identifying and compensating for the drift in CMM performance from 

the first acceptance testing.  The re-verification measurement task is usually different 

from the routine measurement made with CMM. 

  Interim Checking - This is done between formal periodic re-verification test with 

the goal of ensuring that the CMM measurements are accurate, thereby giving the user 

confidence in the measurement results.  The degree of measurement complexity varies 

between user and application of CMM machine. For some machine few test is carried to 

maintain measurement confidence while some require a complete re-calibration to 

maintain measurement confidence. NPL (1998) and Cox, Forbes and Peggs, (1997) have 
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classified the different level of checking on the degree of confidence which CMMs 

needed to be checked. Table 2.2 shows the listing.  

 

Table 2.3 Showing classified level of the CMM degree of confidence (NPL 1998). 

Class Degree of confidence 

Class 1 Verification of all degrees of freedom of the CMM accounting for any 

influence 

of temperature variations 

Class 2  Verification of the entire working volume of the CMM using a standard 

artefact 

such as a ball- or hole-plate (a two-dimensional plate with regularly spaced 

features, usually holes or spheres); 

Class 3 Verification of the space envelope of interest using a master artefact 

representing 

the work piece features measured in the user's usual application; 

Class 4 Verification of just the working volume of interest using standard artefacts, 

for 

example, length bars 

 

2.3.2 CMM kinematic error model and capabilities  

This is based on the superposition of behaviours from the three coordinate axes with 

each describe as a function of the corresponding reading scale.   For example, six 

functions of x could be used in describing the behaviour of a stylus assembly with the 

reading scale of y and z kept fixed.  The six functions comprise of three stating the angle 

of rotation that describe the pitch roll and yaw of x axis and three giving the location of 

the fixed point on the housing.  Similarly, keeping x and z fixed six function are 

generated for y axis and keeping, keeping x and y, six functions for z-axis.  Kinematic 

model is used to describe the machine in terms of the six functions of each axis.  

Considering the x axis, which could be describe by  

[

𝑥𝑥

𝑦𝑥

𝑧𝑥

] = [

𝑥(1,0,0)𝑇 + 𝛿𝑥𝑥(𝑥, 𝑎)
𝛿𝑥𝑦(𝑥, 𝑎)

𝛿𝑥𝑧(𝑥, 𝑎)

] (2.1) 
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and the orientation is described by a rotation matrix Rx(x, r) defined as a product of 

plane rotations.  The (𝛿𝑥𝑥) term is sometimes described as the x-axis scale error while 

(𝛿𝑥𝑦) and (𝛿𝑥𝑧) give the x-axis straightness errors. Similarly, the location and orientation 

along the y-axis is described by 

[

𝑥𝑦

𝑦𝑦

𝑧𝑦

] = [

𝛿𝑦𝑥(𝑦, 𝑏)

𝑦(0,1,0)𝑇 + 𝛿𝑦𝑦(𝑦, 𝑏)

𝛿𝑦𝑧(𝑦, 𝑏)

] (2.2) 

and R(y, s). This information can be combined to provide an estimate of location as a 

function of x and y 

𝑥𝑥𝑦 =  𝑥𝑥(𝑥  , 𝑎 )  +  𝑅𝑥 (𝑥, 𝑟 ) 𝑥𝑦 (𝑦 , 𝑏 ) (2.3) 

  This formulation supposes that the y-motion depends on (or is carried by) the x-

motion and moreover that at x = y = 0 the axes are orthogonal and the two rotation 

matrices Rx and Ry are aligned. Adding the z-axis (assumed to be carried by the y-axis) 

and the probe offset under similar assumptions, the model takes the form 

𝑥 =

 𝑥𝑥(𝑥 , 𝑎 )  +  𝑅𝑥 (𝑥, 𝑟 )𝑥𝑦 (𝑦, 𝑏 )  +  𝑅𝑥 (𝑥, 𝑟 )𝑅𝑦 (𝑦, 𝑠 )𝑥𝑧(𝑧, 𝑐)  +  𝑅𝑥 (𝑥, 𝑟 )𝑅𝑦 (𝑧, 𝑡 )𝑃

 (2.4) 

  Thus the kinematic model is specified in terms of 18 individual error functions, 

three positional and three rotational for each of the three axes. The basic components are 

therefore functions of a single variable and these can be specified using polynomials or 

splines, for example. The correct formulation depends on the architecture of the CMM, 

but the common CMM designs are covered by the model; see, for example, Zhang et al. 

(1988). If all three rotation matrices are set to the identity matrix, then x* is given by 

𝑥∗ = 𝑥 + 𝑃𝑥  +  [𝛿𝑥𝑥(𝑥)  + 𝛿𝑦𝑥(𝑦)  + 𝛿𝑧𝑥(𝑧)] (2.5) 

Where the actual position of the probe in x-axis is 𝑃𝑥 and similarly for y* and z*, 

showing that the positional correction for x includes a sum of functions of x, y and z. If 

each of these functions includes a constant term, there will be degrees of freedom in the 

model which cannot be determined from the data. The simplest way to resolve this is to 
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constrain 𝛿𝑦𝑥(0)  =  𝛿𝑥𝑥(0)  = 0. In fact, similar constraints have to be placed on all six 

types of component as will become clear when we consider a linearized version of the 

kinematic model.  If we evaluate the kinematic model at points along each axis we 

obtain 

𝑥∗([𝑥, 0,0]𝑇) =  𝑥𝑥(𝑥, 𝑎)  +  𝑅𝑥(𝑥, 𝑟)𝑃 (2.6) 

𝑥∗([0, 𝑦, 0]𝑇) =  𝑥𝑦(𝑦, 𝑏)  +  𝑅𝑥(𝑦, 𝑠)𝑃 (2.7) 

𝑥∗([0,0, 𝑧]𝑇) =  𝑥𝑧(𝑧, 𝑐)  +  𝑅𝑧(𝑧, 𝑡)𝑃 (2.8) 

showing that each of the three sets of parameters can be determined by measurements 

along the three axes. Thus, a measurement strategy which includes measurements along 

or parallel to each of the three axes using three or more probe offsets will be sufficient 

to determine the model parameters, assuming that there are enough measurements along 

each axis. Often the kinematic model is used not as given above but in a simpler, 

linearized form. Employing the linearization, then R is given by: 

 

𝑅̃𝑥𝑦𝑧 = RxRyRz  = [−

1 (wx  + wy +  wz) −(vx  +  vy +  vz)

(wx  +  wy +  wz) 1 (ux  + uy +  uz)

(vx  +  vy +  vz) −(ux  +  uy +  uz) 1

]

 (2.9) 

 

Rxxy  =  [

δyx(y) + wx (x)y 

δyy(y) + y

δyz(y) −  ux(x)y

] (2.10) 

 

RxRyxz  =  [

δzx(z)  − (vx (x) + vy (y)z) 

δzy(z)  + (ux (x) + uy (y)z)

δzz(y)   +   z

] (2.11) 

With these linearisations, the expressions for the location of the probe stylus tip become: 



33 
 

𝑥∗ = 𝑥 + 𝑃𝑥  +  [𝛿𝑥𝑥(𝑥)  + 𝛿𝑦𝑥(𝑦) + 𝛿𝑧𝑥(𝑧)]  + 𝑤𝑥 (𝑥)𝑦  − (𝑣𝑥 (𝑥) + 𝑣𝑦 (𝑦)) 𝑧

+   (𝑤𝑥(𝑥) +  𝑤𝑦(𝑦) +  𝑤𝑧 ( 𝑧)) 𝑃𝑦 −  (𝑣𝑥(𝑥) +  𝑣𝑦(𝑦) + 𝑣𝑧 (𝑧)) 𝑃𝑧 

 (2.12) 

𝑦∗ = 𝑦 + 𝑃𝑦  +  [𝛿𝑥𝑦(𝑥)  + 𝛿𝑦𝑦(𝑦) + 𝛿𝑧𝑦(𝑧)]  +  (𝑢𝑥 (𝑥) + 𝑢𝑦 (𝑦)) 𝑧

−   (𝑤𝑥(𝑥) +  𝑤𝑦(𝑦) +  𝑤𝑧 ( 𝑧)) 𝑃𝑥 −  (𝑢𝑥(𝑥) +  𝑢𝑦(𝑦) +  𝑢𝑧 (𝑧)) 𝑃𝑧 

 (2.13) 

𝑧∗ = 𝑧 + 𝑃𝑧  +  [𝛿𝑥𝑧(𝑥)  + 𝛿𝑦𝑧(𝑦) + 𝛿𝑧𝑧(𝑧)]  −  𝑢𝑥 (𝑥)𝑦 

+ (𝑣𝑥 (𝑥) + 𝑣𝑦 (𝑦) +  + 𝑣𝑧 (𝑧)) 𝑃𝑥 −  (𝑢𝑥(𝑥) +  𝑢𝑦(𝑦) +  𝑢𝑧 (𝑧)) 𝑃𝑦 

 (2.14) 

 

where x* is the positional correction for x, y* is the positional correction for y, and z* is 

the positional correction for z. 

 

2.4 Selected technique 

2.4.1 CMM Kinematic error model  

 

 

 

Figure 2.14 The coordinate system: top view x-y plane to the left while  

the front view y-z plane to the right (Ali R. and Kristiaan S., 2014) 
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The coordinate system of the coordinate measurement machine is shown in figure 2.14. 

The base of the CMM is placed at the origin O (0, 0, 0) and the joints intersect the base 

at points a (𝑝𝑎), b (𝑝𝑏) and c (𝑝𝑐). The x-axis divides the angle at point an equally while 

the z-axis is perpendicular to the base plane (a, b, c). The geometric parameters are 

𝜃𝑖 representing the angle between tetrahedron legs 𝑙𝑖 , 𝑙𝑖𝑛  with the angles 𝜃𝑎 = 𝜃𝑏 =

𝜃𝑐 = 68𝑜 (Rugbani and Schreve, 2014). 𝑙𝑖  is the distance between the probe tip 𝑝0  and 

the pivot point of the ball joint 𝑝𝑖 .  𝑙𝑚𝑖𝑛  𝑎𝑛𝑑 𝑙𝑚𝑎𝑥  are maximum and minimum 

extensions of the legs. With the assumption that the probe tip (x, y, z) at the point of 

intersecting of the three legs, which is the main vertex of the moving tetrahedron. Due 

to the spherical joints, the legs equation of movement could be expressed suing the 

following equations: 

 

𝑙𝑎
2 = ( 𝑥 − 𝑥𝑎)2 + ( 𝑦 − 𝑦𝑎)2 + ( 𝑧 − 𝑧𝑎)2 (2.15) 

 

𝑙𝑏
2 = ( 𝑥 − 𝑥𝑏)2 + ( 𝑦 − 𝑦𝑏)2 + ( 𝑧 − 𝑧𝑏)2 (2.16) 

 

𝑙𝑐
2 = ( 𝑥 − 𝑥𝑐)2 + ( 𝑦 − 𝑦𝑐)2 + ( 𝑧 − 𝑧𝑐)2 (2.17) 

 

  The values of the moving motors (zi+1 and zi-1) on the z coordinate could be 

computed relative to z component of the stationary motor (zi), where distances dzi+1 and 

dzi-1, i can be calculated provided that the legs la, lb and lc, as well as angels (β) between 

them are known. Let the subscript i and represent (a, b, c) when i rotates around z-axes 

in clockwise direction when seen from above, subscripts ip and in refer to the previous 

and next points, respectively.  

 

𝑧𝑖𝑛 =  𝑧𝑖 −  𝑑𝑧𝑖𝑛  (2.18) 

 

𝑧𝑖𝑝 =  𝑑𝑧𝑖𝑝 − 𝑧𝑖 (2.19) 

 

𝑑𝑧𝑖𝑛
2 = (𝑑𝑖𝑛)2 −  (𝑏𝑖𝑛)2   (2.20) 

 

𝑑𝑧𝑖𝑝
2 = (𝑑𝑖𝑝)2 − (𝑏𝑖𝑝)2   (2.21) 

 

𝑑𝑖𝑛
2 = 𝑙𝑖𝑛

2 +  𝑙𝑖𝑛
2  − 2𝑙𝑖𝑙𝑖𝑛 cos(𝛽𝑖𝑛)   (2.22) 
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𝑑𝑖𝑛
2 = 𝑙𝑖𝑝

2 +  𝑙𝑖
2  − 2𝑙𝑖𝑙𝑖𝑝 cos(𝛽𝑖𝑝)  (2.23) 

 

Where i is the pivot point of the ith joint, i = [a, b, c]. in and ip are the pivot point of the 

next and previous pivot points, respectively, din and dip are the distance between ith 

pivot point and the next and previous pivots, respectively. Dz is the height difference 

between the pivot point of the joint on stationary motor and moving joints. βin and βip 

are the distance between p1 and p2 at z2 = z1 and z3 = z1, respectively. 

  βin and βip are the angles between leg li and legs lin and lip, respectively. At the 

start of the operation, z is assumed to be equal to zero, or alternatively, the stationary 

point will have z = −zi, and zi = 0. The coordinate of the probe location can be found by 

solving Eqs. (2.24), (2.25) and (2.26) and replacing the values of zin and zip from Eq. 

(2.27). This yields explicit expressions for the x, y and z coordinates of the centre point 

of the probe as follows 

 

𝑦 =
−𝑣±√𝑣2−4𝑢𝑤

2𝑢
 (2.24) 

 

𝑧 =  𝐹 +  𝐷 (𝑦) (2.25) 

 

𝑥 =  𝐴 +  𝐵 (𝑦) (2.26) 

 

𝐴 =
(

𝑐𝑖𝑛−𝑐𝑖
2𝑧𝑖𝑛

− 
𝑐𝑖−𝑐𝑖𝑝

2𝑧𝑖𝑝
)

(
𝑥𝑖−𝑥𝑖𝑝

𝑧𝑖𝑝
− 

𝑥𝑖𝑛−𝑥𝑖
𝑧𝑖𝑛

)

 𝐵 =
(

𝑦𝑖𝑛−𝑦𝑖𝑛
𝑧𝑖𝑛

− 
𝑦𝑖𝑝−𝑦𝑖

𝑧𝑖𝑛
)

(
𝑥𝑖−𝑥𝑖𝑝

𝑧𝑖𝑝
− 

𝑥𝑖𝑛−𝑥𝑖
𝑧𝑖𝑛

)

 𝐷 = (
𝑦𝑖𝑛−𝑦𝑖

𝑧𝑖𝑛
−  B 

𝑥𝑖𝑛−𝑥𝑖

𝑧𝑖𝑛
)  𝐹 =

𝑥𝑖𝑛−𝑥𝑖

𝑧𝑖𝑛
−

𝑐𝑖𝑛−𝑐𝑖

2𝑧𝑖𝑛

 (2.27) 

 

𝑐𝑖 =  𝑙𝑖
2 −  𝑥𝑖

2 −  𝑦𝑖
2 − 𝑧𝑖

2  (2.28) 

 

𝑢 =  1 +  𝐵2 + 𝐷2  (2.29) 

 

𝑣 =  2𝐷𝐹 + 2 𝑥𝑖𝐵 −  2𝐴𝐵 + 2𝑦𝑖    (2.30) 

 

 W=  𝐴2 + 𝐹2 −  2𝑥𝑖𝐴 −  𝑐𝑖 (2.31) 
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2.4.2 Gaussian process model  

  Gaussian process (GP) is a time dependant statistical distribution where all 

points in some input space are associated with normal distributed random variable and a 

finite collection of the random variables do have a multivariate normal distribution.  GP 

distribution is a distribution over functions which are basically the joint distribution of 

all the infinitely random variables. In statistical modelling, GP is important due to the 

properties inherited from the normal. When a process is modelled as GP, its distribution 

of various derived quantities such as the average value of the process over certain 

durations and the error in the estimation of the average could be obtained explicitly. GP 

is determined by its mean and covariance function. Notation wise, Gaussian process 

could be written as  

 

𝑋~ 𝐺𝑃(𝑚 , 𝑣) (2.32) 

 

Where X is a random function, distributed as a GP with a mean function, m, and a 

covariance function, v. when the random variables are assumed to have a zero mean 

which will simplify the calculations without loss of generality and the mean square of 

the process is entirely determined by the covariance function.   These are computed 

quickly using recursive formula. GP is used in decomposing a geometric feature into 

three components 

 Designed geometric form - This is done by deciding the line function and 

approach direction and solve the intersection points between functions. 

 Systematic manufacturing errors- This refers to the deviation from an ideal form 

that are identically independent distributed random (i.i.d.). 

 Random manufacturing errors - This refers to the deviation from an ideal form 

that is non-identically independent distributed random (non-i.i.d.). 

 

  The method models the systematic manufacturing errors as a spatial model using 

Gaussian correlation function.  The random manufacturing errors are modelled as 

independent and identical distributed noises.  With a small number of coordinated 

measurements, the Gaussian process model could reconstruct the part surface and 

assesses the form error better than traditional methods.  It also provides an empirical 

distribution of the form error the quantification of the decision risk in part acceptance 

which work for generic features. The authors, Dowling et al. (1993), Yang and Jackman 
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(2000) and XIA et al (2008)   used Gaussian process method to provide information on 

the error and uncertainties in deciding CMM acceptance or rejection.  

 

2.5 CMM numerical simulation calculation 

The international standard organisation in 2006 provided a set of general guideline and 

simplified equation   for the calculation of CMM test uncertainty in ISO/TS 23165:2006 

(International Organization for Standardization, 2006). In 2008, they provided another 

guideline, ISO/TS 15530-4:2008, which specifies the requirement for the application of 

simulation based uncertainty evaluation to CMM measurement. The guideline also 

contains description on testing methods for such simulation alongside various general 

testing procedures International Organization for Standardization, 2008).  The 

International Organization for Standardization, in two other guidelines, ISO/TS 15530-

3:2004 and ISO/DIS 15530-3:2009 (International Organization for Standardization 2004 

and International Organization for Standardization 2009), describe an experimental 

approached when determining CMM measurement. This approach, instead of using an 

actual workpiece, it uses substituted measurements that are carried on calibrated work 

piece with similar shape and size. It then uses the obtained difference between the 

measured result and the known calibrated values to estimate the measurement 

uncertainty.  

Empirical models are used to account for the unknown systematic effects of a GP model 

(Forbes, 2015). The GP model can be approximated by an empirical model with a prior 

correlation structure leading to a less computational expense. This approach is to fit a 

function f(x) to data points (xi, yi) by assigning a suitable Gaussian prior to establish the 

response of a correlation structure. 

The standard GP model:  

 

y = f(x + a) + e (2.33) 

 

Where f(x + a) is the response function from the known effects and a Gaussian 

distribution effect is described as e. 

While the empirical model is: 

 

y = f(x + a) + e(x, b) (2.34)
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  An empirical function, such as a polynomial, spline, radial basis function, etc., 

has been concerned with fitting data that is subject to systematic effects representing  

e(x, b) as a correlation structure imposed by assigning a Gaussian prior to b. The 

applications included in the empirical models are such as liner least-squares regression, 

Gauss-Markov regression, spatially correlated empirical models, etc. 

 

2.6 Optimisation and control  

A number of tools are available for the optimisation and control of the coordinate 

machine measurement errors and uncertainty evaluation. For this project and in this 

section, Matlab software is used for evaluation and will be discussed in section. 

 

Matlab programme 

Matlab developed an optimization toolbox that could be used for optimisation of CMM 

error and uncertainty evaluation. The optimisation toolbox provides functions that 

search out parameters that either minimize or maximize specified objectives while 

satisfying constraint. The Matlab optimisation toolbox contains solvers for linear 

programming, mixed-integer linear programming, quadratic programming, non-linear 

optimisation and non-linear least square.  The solvers could be used to obtained optimal 

solutions to continuous and discrete problem, conduct trade-off analysis, incorporation 

of optimisation methods into algorithms and applications.  The Matlab optimisation 

toolbox using the following steps while obtain a satisfactory solution  

 Solver Selection - Selecting the most appropriate solver and algorithm 

 Writing Objective Function- Defining the required functions to minimize or 

maximize 

 Writing Constraints -Giving details of the necessary bounds, linear constraints, and 

non-linear constraints of the problem. 

 Set Options -Setting the optimization options  

 Parallel Computing - Utilisation of parallel computing in Solving the constrained 

nonlinear minimization or multi-objective optimisation problems defined by the user.  

 

2.7 Conclusions   

In this chapter, the state of art of the CMM related technologies are reviewed with focus 

on system and configuration, measuring and probing system, inspection path planning, 

Evaluation of measurement errors and uncertainty, Kinematic errors model solution, 
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numerical simulation, Optimisation and control using Matlab programme. CMMs have 

high precision and accuracy due to their inherent characteristics of their measuring 

techniques.  They are essentially universal measurement machines making them able to 

measure any dimensional characteristics of a part configuration.  Combined with 

software control, most part could be inspected in a single setup, thereby eliminating the 

need to reorient the object. The accuracy and precision are improved as human errors 

and setup time are reduced.  These advantages help make CMM more productive and 

the traditional inspection techniques. Both local kinematic error model and Gaussian 

process model were used to analyse the systematic measurement errors and 

measurement uncertainty. Local Kinematic error model only applies to a small region of 

the volume used for the measurement task and the limited time period it takes to 

conduct the task. The advantage of this approach is the compensation of medium term 

systematic effects due to thermal effect without the CMM needing full parametric 

compensation procedure. Gaussian process is a time dependant statistical distribution 

where all the points in some input space is connected with a normal distributed random 

variable. Combing both local kinematic modem and Gaussian model offers a novel 

approach in reducing the error and uncertainty characterisation process and 

compensating for them.    
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Chapter 3 CMM verification approach 

 

3.1 Introduction  

Right from the first Coordinate measurement machine over four decades ago, it 

certainly has revolutionised dimensional metrology while becoming an integral part of 

the industry quality systems. This advancement has resulted to increase in productivity 

and lower inspection cost (Miguel et al 1995). However, the machines require 

appropriate checks to be carried out on installation and periodically to the operational 

lifetime of the machine to maintain optimal performance. The development of 

techniques that are both accurate and efficient in checking the health of CMMs are 

necessary and still a priority in many research groups. Standards have been introduced 

to effectively obtain CMM performance and such standards include the international 

standard organisation, Coordinate Measuring Machine Manufacturers Association and 

other numerous national standard. The Coordinate Measuring Machine Manufacturers 

Association publish the first and second edition of the CMM Accuracy Specification in 

1982 and 1989 respectively, the International Standard Organisation published its CMM 

standard, ISO 10360-2, for the acceptance test and interim machine checking in 1994. 

The British Standard Technical Committee published its standard for the verification of 

the coordinate measurement machine in three parts, titled BS 6808: Coordinate 

Measuring Machine, With the 1st, 2nd and 3rd parts published in 1987,1987 and 1989 

respectively (ISO 1994, BS 1987, BS 1989).  

   The American standard, ANSI/ASME B89.1.12M was published in 1989 and a 

revised edition published in 1990 (ASNI/ASME 1989). Other commonly used standard 

are the French, German, Japanese and Austrian standards (VDI/VDE 2617 1991, NFE 

1986, ONORM 1989, JIS 1987, CMMA 1982). Table 3.1 captures the different CMM 

specification. With the development of control system, CMM plays an important role in 

reducing the duration of the inspection process with some used as layout machine before 

machining and verifying feature location after machining.  
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Table 3.1 Showing some of the CMM Specification standards 

Parameters ISO 

10360-

2 

 BS 

6808 

B89.1.12M VDI/VDE 

2617 

NF Ell 150 

 

JISB 

7440 

CMMA 

Measuring 

task 

Length Length Various Length Various Various Various 

 Test Length  5 5 or 10 CMM 

dependant 

5 8 5 3 

 Repeat  3 5 or 10  1 10 5 5 3 

confidence 

interval 

99.7% 95% 99.7% 95% 99.7% 95% 95% 

Repeatability  No Yes Yes No Yes No  Yes 

Artefacts Gauge 

blocks, 

step 

gauges 

Gauge 

blocks, 

step 

gauges 

Gauge 

blocks 

with ball-

ended bars 

for 

volumetric 

accuracy 

Gauge 

blocks, 

step 

gauges 

Various. 

Geometrical 

elements in 

addition to 

gauge 

blocks. 

Gauge 

blocks, 

step 

gauges 

Gauge 

blocks,  

Position 7 8 20-30 7 12 5 7 

Thermal 

Drift 

No  Yes Yes No  No Yes  Yes 

Probe Test Yes No Yes Optional  No No No 

 

3.2 CMM measurement strategies  

The CMM could be used to evaluate surfaces in 1, 2 or 3-dimensionsional coordinate 

systems depending on the required application and designated quality requirements. 

With a CMM, a single point data could be generated or numerous points could be 

generated with fitting routines for characterisation of part surfaces; these points could be 

measured by the probe on any surface that can be reached by the probe. 

  Prior to combining CMM and CAM, for decades CMM could be used off-line as 

quality evaluation tool in the manufacturing industry. However, this leaves no room for 

direct process control due to the time lag between the manufacturing machine and the 

offline CMM machine. Integrating the CMM directly with the manufacturing machine 
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allows immediate inspection that will enable a hundred percent inspection and a direct 

feedback to machine for other process control evaluation. This approach makes 

reconfiguring the machine an important aspect of this process-inspection integration 

because it must act both as material removal device in one instant and a measurement 

device the next instant. 

  Attaching a control unit enables manual measurements and programming in 

addition to CNC operation. A microprocessor is used to control the control unit. In a 

coordinate measurement machine, both the hardware and software are inseparable and 

they both represent one system. The CMM's software largely determines the 

effectiveness and efficiency of the CMM. Most CMM software includes the following 

features; measurement of plane and spatial curves, measurement of diameters, 

measurement of lengths, measurement of centre distance, measurement of geometrical 

and form errors in prismatic components, digital input and output commands for process 

integration, Interface to CAD software, Data communications, Parameter programming 

to minimize CNC programming time of similar parts, Measurement of plane and spatial 

curves, Program for the measurement of spur, helical, bevel and hypoid gears, and 

Online statistics for statistical information in a batch.  

  CMM has become an essential and useful tool in Computer aided manufacturing 

(CAM). Prior to using CMMs in CAM, it was difficult for designs to be checked if they 

conform to the specification. This was due to the fact that CAM old standards only used 

unidirectional communication which only translated data that was converted into design 

forms. With the addition of CMM to CAM, a new bi-directional standard was introduce 

known as Dimensional Measurement Interface System(DMIS) and it is used in 

communication of inspection data between the manufacturing machines and the 

inspection equipment to compare what has been made to what ought to be made. This 

approach generally improved the accuracy of the CAM machines.  

   CMM probe is the data collecting unit of a CAM machine. This means that the 

selection of the probe and its placement are very important. Instructions are sent to the 

CMM system with details that contain the positioning of the probe, the path the probe 

will follow and the angle that the probe will approach the machine. After production, the 

CMM is used to as part of the inspection to verify the part. The data of the checked part 

is the forwarded back to the system where the original geometry is kept. On the system, 

the produced part is the evaluated in relation to the design and the deviations are 

computed and identified. This approach has help in identifying and solving many 
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manufacturing issues that existed prior to the combination of CMM and CAM. Figure 

3.6 showing the relationship between the CNC machine tool, CAD system and CMM. 

Implementing the right measurement strategies is vital in making metrologists make the 

best educated selections of the appropriate number of probing points and their 

equivalent distribution when measuring a work piece on coordinate measurement 

machine. It is imperative that the accuracy can be estimated and traceability 

demonstrated to ensure quality system. Having quality systems brings an increase in 

user awareness of the numerous benefits a provided by reliable and frequent check. 

Over the couple of decades’ guidelines and standards were developed to enable 

metrologists make useful and appropriate comparison of different vendor's CMM and 

when purchased to be able to re-verify the CMM test specification results. It is of 

extreme importance that metrologists can demonstrate traceability to both international 

and national standards while estimating the accuracy of measurement carried out by a 

three dimensional CMM. The international Standard organisation detailed the necessary 

procedure for the acceptance, re-verification test and the interim checks requirement to 

ascertain if a CMM performance is within acceptable limits as indicated by the 

manufacture. However, due to the uncertainties associated with CMM, it is difficult to 

make concrete statement on the length measurement capability of a machine. This 

means that the length measurement gotten from a small sample of measurement could 

not be substantially considered as the representative of every possible length 

measurement task. In this regard the test results do not necessarily guaranty the 

traceability of the measurement foe all the measurement task that could be performed. 

  Being aware of this important fact, the metrologist need to develop task related 

measuring strategies for each set of measurement undertaken in order to provide the 

right level of measurement confidence on the entire result. There is an essential 

requirement of skill, relevant experience and attention to detail on the side of the 

metrologist when determine the right measurement strategies that offer an acceptable 

measurement result. The technological advancement of both hardware and software 

over the last two decades has produced machines that demonstrate high accuracy in 

measurement. The measurement accuracy is largely associated with the software and 

machine while the user is responsible for the sampling strategy for an inspection 

process. 

  The National Physics Laboratory (NPL) has identified keys tasks a user could 

follow and help in assisting the user to the uncertainties inherent in the CMM use and 
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suggesting the strategies will aid in ensuring confidence in the measuring results. Some 

of the recommended strategies include: 

Definition the work piece datum feature(s) to be used within the co-ordinate system.  

A datum feature could be defined as an actual feature of a part that is used to establish a 

datum. This could be an axis plane, median plane or surface of a component. 

It is very important to understand datum in order to prevent causing large error from 

using in inappropriate datum. Appropriate drawing should present all required 

manufacturing dimension that are related to datum information. Datum features are 

classified into the following:  

1. The primary datum - Primary datum could be defined as feature(s) that are used for 

the levelling the component that are normally an axis or on a surface. 

2. The secondary datum - Secondary datum could be defined as feature(s) used for the 

rotation of the component(s) that are relative to the primary datum.  

3. The tertiary datum - Tertiary datum could be defined as a feature(s) that are used in 

completing the coordinate system in relation to both the primary datum and secondary 

datum.  

 

Selection of the work piece orientation 

  The Selection of the work piece orientation within the measurement volume of 

the CMM come after both the measurement and datum features are determined. The key 

consideration is to verify accessibility of the surfaces and feature that are required for 

probing. During the measurement campaign, it is necessary that the datum features are 

free and not use to hold the work piece since the feature require probing. The user ought 

to be have knowledge of the work piece to enable the optimum measurement are taken. 

The National Physics Laboratory recommends aligning the critical features of length 

along any axis of the CMM, to ensure only an axis is utilising for measurement which 

will remove any uncertainty as a result of other axes. When selecting the work piece 

holding method, considering should be taken on the following; the measurement force, 

Heavy items, light items, Fixtures and adhesive. 

  For any measurement procedure, it is important that the work piece is not over 

constrained. Where possible let the clamping be done at only one point to minimise 

distortion even though clamping on one point may allow the work piece rotate during 

measurement. The use of a light clamp with materials such as cork or rubber placed 



45 
 

between the workpiece will help drive down distortion and avoid damage to the 

workpiece. 

 

3.3 CMM calibration 

Calibration of coordinate measuring machine is vital requirement in ensuring the 

authenticity of measurement results. Calibration is generally defined as a comparison 

between two measurement systems, with one from a known uncertainty also known as 

the standard and the other with unknown uncertainties referred as test equipment. 

Calibrated systems ensure appropriate measurement standards are maintained and are 

traceable to the value of stated references either national or international values. 

  Calibration of CMM must demonstrate accuracy and repeatability and must 

factor in external influences which include vibration, humidity, temperature, electrical 

power supply, humidity, radiated energy etc. In calibration, the sensitivity and stability 

of measurement instruments must be taken into account as the two parameters determine 

duration of a calibrated machine and the frequency of calibration. The Stability is 

generally expressed as the degree of change in the calibrated output of an instrument 

over a given duration of time. This is mostly measured in percentage and the duration 

could span from 90 days to 12 months in consideration of normal operating conditions. 

These results enable the performance of the instrument to be judge and rated. 

  Two popular standards used in calibrating are the U.S. standard, American 

Society of Mechanical Engineers (ASMEB89.4.1) and the international standard, (ISO 

10360). 

 

3.4 CMM Local Kinematic Model 

Local Kinematic error model only applies to a small region of the volume used for the 

measurement task and the limited time period it takes to conduct the task. The 

advantage of this approach is the compensation of medium term systematic effects due 

to thermal effect without the CMM needing full parametric compensation procedure. 

This model only needs low but sufficient points in the region that are required to 

determine local kinematic model with the possibility of updating the local kinematic 

model continually.  Figure 3.1 shows the schematic of the proposed approach with some 

examples of local evaluation tasks. The local evaluation task could be performed either 

through a physical CMM or simulation based on a physical CMM. The local kinematic 

model is based upon an axis-upon-axis build-up of the physical CMM concerned.  The 
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calibration information, partial or full, of the reference artefact is also required.  After 

acquiring the measurement, a best fit algorithm based on Gauss-Newton could be used 

to estimate the model parameters which include artefact parameters. This model will 

then be used to compute and compensate the systematic errors and evaluate the 

uncertainties associated with fitted parameters and the measurement in the area of 

interest. 

 

 

Figure 3.1 Schematic of the local kinematic error model measurement. 

Reposted from (Yang, et al., 2008) 
 

A model is used to evaluate the uncertainties and errors associated with the fitted 

parameters of the kinematic model in the measurement region interest.   This was based 

on the law of propagation of uncertainty. 

  A numerical solution is used to investigate and determine the behaviour and 

performance of kinematic models as the following task: 

I. Calculating the Model parameter 

Each set of measurement data is applied to a Gauss-Newton method to calculate the 

model parameters.  A QR approach is then used to solve the rank-deficiency problem 

and the parameters passed to another local evaluation. 

II. Error calculation and simulation  
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The model that is now identified could be used to determine the errors in the evaluated 

region of the coordinate measuring machine volume based on the measurement results 

III. Uncertainty calculation  

The uncertainties from the model parameters and artefact are generated based on the 

Jacobean matrices.   This is further extended to determine the uncertainties of the 

coordinated measurement machine in the entire working volume.  

 Other method used in calculating model parameters Least-Square method, 

Cheby-Chev, Monte-Carlo, Parametric model and polynomial model. 

  The specific details and further simulations and discussions on local kinematic 

error model are also included in Chapter 4. 

 

3.5 CMM GP Model  

The GP model is a distribution over functions, which is essentially the joint distribution 

of all the infinitely random variables. In statistical modelling, GP is important due to the 

properties inherited from the normal distribution. When a process is modelled as GP, its 

distribution of various derived quantities, such as the average value of the process over 

certain duration and the error in the estimation of the average, could be obtained 

explicitly. GP is determined by its mean and covariance function. 

 

GP Model

Estimated parameters

Training the 

Sampling data

Approximated 

Mean & Errors

Add noise

 

Figure 3.2 Illustrates the scheme of the GP model simulation 

 

In the GP model, training data from the sampling points (in this case, using a ball plate 

position) is simulated to find the approximated parameters associated in the model using 
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likelihood estimation or GP function in the MATLAB programme etc. To simulate it as 

a real experiment, noise is added into the model. Then, mean and covariance functions 

are approximated and errors of the ball plate are also calculated. 

More details and further analysis of GP regression model can be found in 

Chapter 5. 

 

3.6 CMM measurement errors 

CMM physical structure is one of the identifiable sources of error as it comprises of 

numerous assembled part which may provide from 1 micron to about 100-micron 

typical accuracy. Identifying these errors in order to compensate for them, quantifying 

the remaining errors and stating the errors in relation to their effect on results are vital.  

 

3.6.1 Sources of CMM errors  

3.6.1.1 Kinematics of CMM 

Kinematic error is the inability for the coordinate measurement machine to accurately 

reach the specified position as directed by the controller. The authors Nawara et al 

(1989) and Veldhuis & Elbestawi (1995), in their studies on CMM presented and 

discussed the effect of change position on both the systematic and random components 

of the errors. This is mainly as a result of the position of the machine slides, motors, 

couplers ball screws, controllers and gears do contribute to the error. Also backlash and 

hysteresis in the elements do have effect on the kinematic error. 

 

3.6.1.2 Form of work piece 

Errors occur due to the manufacturing accuracy of components and mechanical 

adjustment after assembly of the components. This could be found by measuring the 

flatness, squareness, angular motion and straightness errors. Measuring CMM 

geometrical errors involves the use of laser interferometer which is characterised by 

good metrological features. Figure 2.6 shows a laser interferometer that measure with 

nanometre resolution and a feed rate of about 1m/s. Laser interferometer can determine 

the following errors; rotation errors, axial positional errors of particular machine, 

straightness errors and axial perpendicular errors. The device contains compensation 

system to compensate the wavelength due the effect of environmental factors such as 

humidity, temperature and pressure. 
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3.6.1.3 Environmental conditions 

Error induced due the environmental temperature changes which cause CMM 

components to expand and bend. This has a complex non-linear nature making quite 

difficult to handle. some of the contributing components to the development of thermal 

errors are; the gradient of temperature, distribution of temperature of the CMM 

influence by external sources, uniform temperature changes, material of machine 

component and its thermal properties. Thermal error compensation could be done via 

the control of heat flows into the system, compensating the error through the controlled 

of relative motion amidst the frame. 

  Stiffness error- Errors caused by the weight of moving parts and that depends on 

the stiffness, weight and configuration. Stiffness error could be reduced by the 

application of large centre distance between the slide bearing and also the 

implementation of the Abbe and Bryan principle (Bryan J.B., 1979). 

 

3.6.2 CMM kinematic errors 

Considering a CMM with perfect geometry, the scale reading on each of the three 

machine axis will be considered as accurate for the coordinate measurement. However, 

in practice, it is most improbable that CMMs will have perfect geometry in the 

manufacturing or production line. CMMs in practice have imperfect geometry in the 

following regards  

 Straightness of each axis 

 Squareness of pairs of axes 

 Rotation describing the pitch, roll and yaw 
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Figure 3.3 Errors of a CMM carriage. Reproduced from (Trapet and Waldele, 1991) 

 

Figure 3.3 describes these component errors for a CMM carriage. Assuming the rigid 

body behaviour, the six error components are the positioning error, two straightness 

errors parallel to the axes, and three rotational errors (roll, pitch, and yaw). Thus, a 

three-axis machine has 18 errors and three squareness errors. 

  It is vital these that these errors, also called systematic or parametric errors are 

taken in to account for in order to fully realise the accuracy potential of CMMs. Most 

manufacturers of CMMs ensure their CMM machines undergo a detailed and 

comprehensive calibration procedure as a final check before delivering them to their 

customers. On the customer site, an acceptance test is conducted to the customer by the 

manufacturer to show that the CMMs performance is within the international or national 

specification. Moreover, these standards include clauses that ensure other tests are 

conducted at certain intervals to maintain the CMM conformance to the specification. 

The 'other' tests are of two types: Periodic re-verification test - This requires repeating 

the acceptance test yearly with the goal of identifying and compensating for the drift in 
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CMM performance from the first acceptance testing. The re-verification measurement 

task is usually different from the routine measurement made with CMM. 

  This is done between formal periodic re-verification test with the goal of 

ensuring that the CMM measurements are accurate, thereby giving the user confidence 

in the measurement results. The degree of measurement complexity varies between user 

and application of CMM machine. For some machines, few tests are carried out to 

maintain measurement confidence while some require a complete re-calibration to 

maintain measurement confidence. NPL (1998) and Cox, Forbes and Peggs, (1997) have 

classified the different level of checking on the degree of confidence which CMMs 

needed to be checked. Considering a CMM with perfect geometry, the scale reading on 

each of the three machine axis will be considered as accurate for the coordinate 

measurement. However, in practice, it is most improbable that CMMs will have perfect 

geometry in the manufacturing or production line. It is vital these that these errors, also 

called systematic or parametric errors are taken into account for in order to fully realise 

the accuracy potential of CMMs. On the customer site, an acceptance test is conducted 

to the customer by the manufacturer to show that the CMMs performance is within the 

international or national specification. Moreover, these standards include clauses that 

ensure other tests are conducted at certain intervals to maintain the CMM conformance 

to the specification. The 'other' tests are of two types. This requires repeating the 

acceptance test yearly with the goal of identifying and compensating for the drift in 

CMM performance from the first acceptance testing. The re-verification measurement 

task is usually different from the routine measurement made with CMM. This is done 

between formal periodic re-verification test with the goal of ensuring that the CMM 

measurements are accurate, thereby giving the user confidence in the measurement 

results. The degree of measurement complexity varies between user and application of 

CMM machine. For some machine few test is carried to maintain measurement 

confidence while some require a complete re-calibration to maintain measurement 

confidence. NPL (1998) and Cox, Forbes and Peggs, (1997) have classified the different 

level of checking on the degree of confidence which CMMs needed to be checked.  

 

3.6.2.1 Translational errors  

3.6.2.1.1 Positioning errors 

The positioning errors of the Coordinate Measurement Machine in relation to its motion 

axis could be measured directly and comparing it with 3 non-contact capacitive probes. 
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The approach is suitable for CMM with either good or bad repeatability. When a CMM 

has good repeatability, it is also feasible to do the positioning measurement of the CMM 

on its moving axis while using an uncalibrated ball array though offer lesser accuracy 

compare to the former method. Two runs are required for a positional error 

measurement. The first run reads from the X channel of the capacitive probe with the 

following expression: 

 

𝑅𝑥(𝑥𝑖) =  𝑙𝑖 − 𝛿𝑥(𝑥𝑖) (3.1) 

 

Where 𝛿𝑥(𝑥𝑖) is the position error of x motion when the carriage is moved to position 

𝑥𝑖 .  After the first run, the ball array becomes shifted to a distance equal to the spacing 

between the two balls. The capacitive probe reading will now be  

 

𝑅𝑥
′(𝑥𝑖) =  𝑙𝑖−1 − 𝛿𝑥(𝑥𝑖) (3.2) 

 

Figure 3.4 shows the positional error found by intersecting regression lines with 

reference line through rows of measured points. The positional error is the deviation of 

the intersection from the ideal coordinate system intersections. 

 

 

Figure 3.4 showing the positional error measurement (Trapet and Waldele, 1991) 

 

3.6.2.1.2 Straightness errors  

This is a deviation from the original line of travel perpendicular to the direction of travel 

in the horizontal plane. A deviation of straightness in the travel of X-axis stage will 

cause a positioning error in the Y direction while in the Y-axis stage will cause a 

positioning error in the X direction.  
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Figure 3.5 showing the straightness error measurement (Trapet and Waldele, 1991) 

 

Figure 3.5 (Figure above) shows the measurement process of straightness error which is 

measured using the reversal method. Y and Z channel reading of the capacitive probe are 

expressed as  

 

𝑅𝑦(𝑥𝑖) =  𝛿𝑣𝑖 + 𝛿𝑦(𝑥𝑖) (3.3) 

 

𝑅𝑧(𝑥𝑖) =  𝛿𝑢𝑖 − 𝛿𝑧(𝑥𝑖) (3.4) 

 

Where the y and z readings of the capacitive probe channel are 𝑅𝑦(𝑥𝑖) and 𝑅𝑧(𝑥𝑖). The 

straightness errors in the u and v direction of the ball surface are 𝛿𝑢𝑖 and 𝛿𝑣𝑖. 𝛿𝑦(𝑥𝑖) and 

𝛿𝑧(𝑥𝑖) represent the straightness errors. The ball array is then reversed 180 degrees 

about the x axis. The y and z will be as follows:  

 

𝑅𝑦
′(𝑥𝑖) =  𝛿𝑣𝑖 − 𝛿𝑦(𝑥𝑖) (3.5) 

 

𝑅𝑧
′(𝑥𝑖) =  𝛿𝑢𝑖 − 𝛿𝑧(𝑥𝑖) (3.6) 

 

The straightness error could be computed by combining the four equations, this will 

yield to  

𝛿𝑦(𝑥𝑖) = (𝑅𝑦(𝑥𝑖) −  𝑅𝑦
′(𝑥𝑖) ) ∗ 1/2 (3.7) 

 

𝛿𝑧(𝑥𝑖)  =  (𝑅𝑧(𝑥𝑖) − 𝑅𝑧
′(𝑥𝑖) )  ∗ 1/2 (3.8) 
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3.6.2.2 Rotational errors 

3.6.2.2.1 Roll errors 

This is the rotation around an axis in the horizontal plane parallel to the direction of 

travel. Roll errors are calculated by measuring straightness errors of two parallel lines. 

The error is not essentially in the straightness measurements as the ball array slope in 

reference to moving axis is removed during data processing. The non-parallelism of the 

array in the measurements is necessary in computing the roll error. For best result, using 

only one mount of ball array with measurement done with extension rods mounted on 

both directions as linear components cannot be eliminated during data processing. 

 

 3.6.2.2.2 Pitch and Yaw errors 

The rotation around an axis along the horizontal plane perpendicular to the direction of 

travel is called pitch and Yaw is the rotation around an axis in the vertical plane 

perpendicular to the direction of travel. Pitch and yaw errors of the CMM can be 

determined by measuring the positioning errors of two parallel lines separated at a 

distance z or y. Then the pitch and yaw errors are calculated from the differences 

between these two series of readings divided by the separation. When for certain axis 

the machine design complies with the Abbe principle an extension rod should be used in 

determining the errors. 

 

3.6.2.3 Squareness errors 

This is the displacement errors of either one or two diagonals on each of the 3 

coordinate planes. Measuring two diagonals and taking their average will improve the 

accuracy of the measurement by eliminating random effects. The equation used to 

compute the squareness measurement is as follows: 

 

𝑑 = 1 −  √(𝑥𝑏 − 𝑥𝑎)2 +  (𝑦𝑏 −  𝑦𝑎)2 (3.9) 

 

Where the calibrated distance from ball A to ball is l, the values of coordinate point A is 

(𝑥𝑎 , 𝑦𝑎) and for point B is (𝑥𝑏 , 𝑦𝑏). 
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Figure 3.6 Showing the measurement of squareness errors (Trapet and Waldele, 1991) 

 

3.6.3 CMM error calculation and compensation strategies 

A good error calculation and compensation strategy will enhance the accuracy and 

effectiveness of a coordinate measurement machine. The international standard 

organisation in 2006 provided a set of general guideline and simplified equation for the 

calculation of CMM test uncertainty in ISO/TS 23165:2006 (International Organization 

for Standardization, 2006). In 2008, they provided another guideline, ISO/TS 15530-

4:2008, which specifies the requirement for the application of simulation based 

uncertainty evaluation to CMM measurement. The guideline also contains description 

on testing methods for such simulation alongside various general testing procedures 

International Organization for Standardization, 2008). The International Organization 

for Standardization, in two other guidelines, ISO/TS 15530-3:2004 and ISO/DIS 15530-

3:2009 (International Organization for Standardization 2004 and International 

Organization for Standardization 2009), describe an experimental approached when 

determining CMM measurement. This approach, instead of using an actual workpiece, it 

uses substituted measurements that are carried on calibrated work piece with similar 

shape and size. It then uses the obtained difference between the measured result and the 

known calibrated values to estimate the measurement uncertainty.  

 

3.7 Mechanical artefacts based methods  

Mechanical artefacts could be categorised according to the number of spatial 

coordinates associated with the principal calibrated features which could either be 1-

dimensional, such as gauge block and ball bars or 2- dimensional such as ball plate or 3-

dimensional artefacts such as space frame. Gauge blocks can be considered as the 

simplest method for testing coordinate measurement machines. The use of ball bars has 

been considered as a simple and economical method for determining volumetric errors 
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of coordinate measurement machine. The test procedure involves measuring the 

distance between spheres followed by repositioning and measuring the ball bar in a 

number of orientations throughout the working volume of the coordinate measurement 

machine. A space frame is a standard in which the co-ordinates of a number of points in 

3-dimensional space within the work zone of a coordinate measurement machine are 

established by reference to points on the space frame. 

 

3.8 CMM measurement uncertainty  

3.8.1 Uncertainty of measurement 

This is doubt pertaining to the result of a measurement. For every measurement, there is 

always a margin of doubt. Quite a number of factors introduce uncertainty in the 

measurement, ranging from the work piece to be measured, the operator and the strategy 

implemented for the measurement. The measurement strategy comprises the procedure 

of measurement, the location of workpiece in the CMM volume styli configuration and 

the probing strategy. The uncertainty of measurement will be estimated according to the 

ISO Guide to the Expression of Uncertainty in Measurement. 

  The uncertainty of coordinate measurements can be evaluated into two 

categories: ‘Type A’ and ‘Type B’. The Type A uncertainty evaluation is based on the 

analysis of a series of observations by statistical uncertainty methods. The Type B 

evaluation of standard uncertainty is based on scientific knowledge other than statistical 

analysis. 

 

3.8.2 CMM test uncertainty calculation 

For the standard uncertainty of the probing error, the general equation is as follows  

 

𝑢(𝑃) =  √(
𝐹

2
)

2

+ 𝑢2(𝐹)  (3.10) 

 

Where the form error of the test sphere is represented as F and it is usually reported on 

the calibration certificate. u(F) is the standard uncertainty of the form error stated on the 

certificate. The probing error equation is  

 

𝑢(𝑃)  = √𝑢2(𝜀𝑐𝑎𝑙) + 𝑢2(𝜀𝛼) + 𝑢2(𝜀𝑡) + 𝑢2(𝜀𝑎𝑙𝑖𝑔𝑛) + 𝑢2(𝜀𝑓𝑖𝑥𝑡) (3.11) 
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Where 𝜀𝑐𝑎𝑙 , 𝜀𝑎𝑙𝑖𝑔𝑛 ,𝜀𝑓𝑖𝑥𝑡 , 𝜀𝑡 , 𝜀𝛼 represent calibration error of the material standard of 

size, misalignment of the material standard of size, error due to the fixturing of the 

material standard of size, error due to the input of the temperature of the material 

standard of size and error due to the input of the CTE of the material standard of size 

respectively. The uncertainty U(P) or U(E) are obtained by the multiplication of a 

coverage factor k  

 

U (P) = k × u (P)  (3.12) 

 

U (E) = k × u (E) (3.13) 

 

In this research, mathematical model of this ball plate calibration is 

 

 )()()(0   xdmAxnRPisvmx tttlllllll             (3.14) 

  

Where:   

 xl    :  Length of the ball plate observed; 

  vml  : Deviation of verification measurement; 

   isl   : Correction for the errors of indication of the CMM; 

  
RPl  : Correction due to reproducibility of probe system; 

 nl    : Correction due to reflective index of air; 

 Axl  : Correction due to miss-alignment of ball plate; 

 0l    : Nominal length of the ball plate considered; 

     : The thermal expansion coefficient of the ball plate; 

     : Correction for the thermal expansion coefficient of the ball plate;  

 mt    : Correction for temperature measuring device; 

 dt    : Correction for distribution temperature of the ball plate; 

  xt    : Correction due to the temperature different between the ball  

                                    plate with reference standard; 
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1. Length of observation; xl  

The measurements are n times repeatability for ball plate calibration. The uncertainty 

evaluates from observed maximum standard deviation. Distribution is normal, so the 

standard uncertainty is: 

)( xlu  = 
n

ls x )(
 (3.15) 

 

2. Deviation of verification measurement; vml  

In case of verification measurement, the results of measurements between each repeat 

measurement are not different more than x µm. calculating an uncertainty probability 

assuming to be a rectangular distribution(√3).   

)( vmlu    = 
3

x
 µm (3.16) 

 

3. Correction for the error of indication of the CMM; isl  

The resolution of the CMM is x µm and calculating an uncertainty probability assumes 

a rectangular distribution(√3). The standard uncertainty is: 

)( islu   = 
32

x
 µm  (3.17) 

 

4. Correction due to reproducibility of probe system;
RPl  

In the case of measurement stylus tip with standard ball, it has reproducibility of probe 

system less than x µm and calculating an uncertainty probability assume a rectangular 

distribution(√3). The standard uncertainty is;  

)( RPlu    = 
3

x
 µm (3.18) 

 

5. Correction due to reflective index of air; nl  

Ball plate is measured in a laboratory under ambient conditions. However, the metre is 

defined in terms of the distance that light travel in vacuum. The refractive index of air 

alters the wavelength according to airv n  . In most laboratories affecting the density 
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of the air, and then calculating the index of air by using a modified version of the Edlen 

equation. 
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Where:   

 P represents air pressure in Pascal units 

 T   represents temperature in degrees Celsius 

 R represents relative humidity in percent 

 ϒ  is the vacuum wave number in mm
-1

 units 

 

6. Uncertainty of relative humidity from certificate of calibration; u(Rcal) 

The relative humidity device has an expanded uncertainty ± x % (k = 2) and multiplies 

by the sensitivity coefficient (a1). The distribution is normal distribution (assume to be 

2). The standard uncertainty is: 

)(
2

%
)( 1a

x
Ru cal 








                             (3.20) 

 

7. Uncertainty of relative humidity from resolution; u(Rread) 

The resolution of the relative humidity reading is x % and has a rectangular distribution 

with multiplying by the sensitivity coefficient (a1). The distribution is rectangular 

distribution (√3). The standard uncertainty is: 

)(
32

%1
)( 1aRu read 








            (3.21)                    

 

8. Uncertainty of air pressure from certificate of calibration; u(Pcal) 

The air pressure device has an expanded uncertainty ± x Pa (k = 2) and multiplies by the 

sensitivity coefficient (𝑎2).  The distribution is normal distribution. The standard 

uncertainty is: 
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)(
2

)( 2a
x

Pu cal 







  (3.22) 

 

9. Uncertainty of air pressure from digital resolution; u(Pread) 

The digital resolution of the pressure reading is x Pa and considered to have a 

rectangular distribution with multiplying by the sensitivity coefficient (𝑎3). The 

distribution is rectangular distribution (√3). The standard uncertainty is: 

)(
32

x
)( 3aPu read 








                              (3.23) 

 

10. Uncertainty of thermometer from certificate of calibration; u(Tcal) 

The thermometer device has an expanded uncertainty x C (k = 2) and multiplies by the 

sensitivity coefficient (𝑎4). The distribution is normal distribution (assuming to be 2). 

The standard uncertainty is: 

)(
2

C
)( 4a

x
Tu cal 




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






 (3.24) 

 

11. Uncertainty of thermometer from digital resolution; u(Tread) 

The digital resolution of the thermometer reading is x C and considered to have a 

rectangular distribution with multiplying by the sensitivity coefficient (𝑎5). The 

distribution is rectangular distribution (√3). The standard uncertainty is: 

)(
32

C
)( 5a

x
Tu read 












 (3.25) 

 

12. Correction due to miss-alignment of ball plate; Axl  

The cosine error is occurring from miss-alignment of the ball plate. In case of ball plate 

620 mm length aligned parallelism with X-axis of the CMM, the deviation should less 

than 10 µm. An uncertainty probability assumes a rectangular distribution (√3). So, 

)( cosinelu  = 
3

))cos(1( L
 (3.26) 

 

Where L: The nominal length of the ball plate: 0l   (mm) 
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13. Correction for temperature measuring device; mt  

The thermometer device has an expanded uncertainty ± x °C (k = 2) multiply with 

thermal expansion coefficient (α), the distribution is normal distribution (assuming to be 

2). The standard uncertainty is: 

)( mtu    = 
2

Cx
          (3.27) 

 

14. Correction for distribution temperature of the ball plate; dt  

The temperature distribution of the ball plate ± x °C multiply with thermal expansion 

coefficient (α). The distribution is rectangular distribution (√3). The standard 

uncertainty is: 

)( dtu    = 
3

Cx
          (3.28) 

 

15. Correction due to the thermal expansion coefficient;   

The uncertainty of thermal expansion coefficient multiplies (α) with temperature 

distribution of the ambient ± x °C. The distribution is rectangular distribution (√3). The 

standard uncertainty is: 

)( dtu    = C
3

x


       (3.29)              

 

3.9 Conclusions 

Standards have been introduced to effectively obtain CMM performance and such 

standards include the international standard organisation, Coordinate Measuring 

Machine Manufacturers Association and other numerous national standard. CMMs have 

high precision and accuracy due to their inherent characteristics of their measuring 

techniques. They are essentially universal measurement machines making them able to 

measure any dimensional characteristics of a part configuration. The advantage of this 

approach is the compensation of medium term systematic effects due to thermal effect 

without the CMM needing full parametric compensation procedure. Gaussian process is 

a time dependant statistical distribution where all the points in some input space are 

connected with a normal distributed random variable. The First generation probe was 

usually solid or hard for example tapered plugs used in locating holes. Such probes 
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usually require to be manipulated manually in order to establish contact with the work 

piece before measurement could be read from the digital display output. The second 

generation of probes, touch trigger probe, are loaded with steel ball stylus and comes 

with a precise micro switch which responds to smaller order displacement. Currently 

generation probes don't require manual intervention during the measurement operation 

of the work piece, such as optical probes, transmission trigger-probes, Cluster or 

multiple probes and motorized probes.  
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Chapter 4 Simulation of CMM local, kinematic errors model  

 

4.1 Introduction 

With the high growth of rapid developments in various fields of precision technology, 

measurement uncertainties and errors are widely assessed not only in industry but also 

in scientific applications. 

  Many emerging products need ultra-precision positioning (nanometre-level) 

components with complex surface topography – while the manufacturing research is 

now being addressed, the metrology explanations are not. As many of the necessary 

metrology explanations do not exist, industry is currently using costly functional testing 

and trying to design such high-value components. 

  A prototype of proposed virtual CMM for the needs of metrological laboratories 

and industrial sections with high accuracy of uncertainty measurement has been 

developed. Its capability and performance could be greatly improved if there was a 

complete solution to simulate the measurement process and perform error analysis and 

uncertainty evaluation without the need to use a physical machine. Many approaches are 

permissible to integrate the many task-specific uncertainty and error measurements; 

however, it depends on a type of artefact and objectives of that measurement. High-

precision simulation techniques always require greater performance when operating in 

industry. Therefore, there is a strong need for the development of an assessment method. 

 

4.2 CMM kinematic error simulation procedure 

The schematic diagram of CMM simulation is illustrated in figure 4.1. It can be seen 

that we assigned a 3x3 ball plate (a total of nine balls) to the positions of the spheres of 

a ball plate in order to simulate the data in the MATLAB programme. Constraint 

parameters are applied in this kinematic model to establish the frame of reference and 

probe qualification for the corrected positions of the ball plate using a Jacobian matrix. 

There are three positions of the ball plate locations to determine accurate results from 

the simulation. A random noise can be added to complete the data simulation 

procedures. The Gauss-Newton method is used to solve the model parameters. Error 

compensation and uncertainty evaluation for CMM would be drawn as the results.   
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Applying Constraints: Frame of 

reference, Probe offsets

Simulate Data

(Positions of spheres of a ball plate)

Compare the results 

(three locations)

Errors

Location 0

(of a ball plate)

Add random noise

Fit parameters

Uncertainty 

evaluation

Location1

(of a ball plate)

Add random noise

Fit parameters

Uncertainty 

evaluation

Errors

Location2

(of a ball plate)

Add random noise

Fit parameters

Uncertainty 

evaluation

Errors

 

Figure 4.1 Schematic diagrams of CMM simulation procedures 

 

4.3 Local, simplified kinematic errors model  

The geometric errors associated with a CMM are relatively error motions between the 

tool and the work piece which show the mechanical imperfections of the CMM structure 

and the misalignment of the elements. Figure 4.2 shows the layout of the kinematic error 

components. The effect of the geometric errors are usually described by the 21 

kinematic errors which consist of the positioning errors in each axis direction – δx(x,y,z), 

δy(x,y,z), and δz(x,y,z) – which are the linear displacement errors and vertical and 

horizontal straightness errors, the rotational errors along three axes: Rx(x,y,z), Ry(x,y,z), 

and Rz(x,y,z), which are the roll, pitch and yaw angular errors, and three squareness 

errors: Øxy, Øyz, and Øzx (Wang, 2003). The estimation of error correction and 

uncertainty evaluation can be determined by evaluating these kinematic errors using 

mathematical simulations.  
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CMM Kinematic Errors

21 model parameters

1 positional errors x 3 axes:

δy (x, y, z) = δyx  δyy  δyz

   2 straightness errors x 3 axes

δx (x, y, z) = δxx δxy  δxz

δz (x, y, z) = δzx  δzy  δzz

  

3 rotational errors x 3 axes

Rx (x, y, z) = Rxx  Rxy  Rxz

Ry (x, y, z) = Ryx  Ryy  Ryz

Rz (x, y, z) = Rzx  Rzy  Rzz

3 squareness errors

Øxy  Øyz  Øzx

 

Figure 4.2 Details of the kinematic error components 

 

  Hunzmann et al. (1990) introduced a uniform approach to CMM calibration, 

acceptance and reverification tests. These suggested that applications still require 

precise experimental procedures and a number of datum points in the CMM working 

volume, which usually need a full calibration and long-term stability of the reference 

artefacts requirements (Sartori and Zhang, 1995). However, this approach requires much 

time and effort to establish. 

The approach presented in this research is similar but it introduces a local, 

simplified kinematic error model specific to the measurement procedures. This 

kinematic error model is local in the sense that it applies only to the particular region of 

the CMM working volume used for the measurement task and the contact probes being 

used. Furthermore, it can be used in the sense that the model applies only during the 

limited time period it takes to perform the measurement task. 

The advantages of this method are that, for example, the thermal effects, medium-term 

systematic effects associated with the CMM, can be compensated for without the 

requirement to conduct a full parametric error compensation measurement. Then, a low 

density of datum points in the entire CMM working region are performed, but still 

require a sufficient density of the datum in the working volume that matters to 

determine the local kinematic models. Moreover, it is also achievable to constantly 

update the local kinematic models. Figure 4.3 illustrates the proposed approach of the 

local kinematic error model. 
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Figure 4.3 Schematic of the local kinematic error model measurement (Yang et al., 2008) 

 

  To begin with, the errors are determined by using a 2D ball plate in different 

orientations (three positions along x-, y-, and z-axis) and measuring probe offsets in six 

different orientations of both physical experiments, using CMM and simulation 

programming in MATLAB and recorded as a set of points coordinates. Then, the 

calibration data is included in the data, which includes results from the experiment and 

simulation to establish a model simulation. Among several local kinematic 

measurements, the model can be updated from its measurement data by matching the 

kinematic errors in a number of locations and probe qualifications in the CMM working 

volume. This local kinematic model requires a limited time period of iterative 

measurements without the need to perform a full parametric error compensation exercise. 

Thus, the accurate radius/diameter and the position in each axis (x, y, z) of the ball plate 

have been shown and the calculation of error compensation and uncertainty as well. 

  A physical CMM or CMM simulation can perform some examples of local 

evaluation tasks. The simulation should be performed and based on the real physical 

CMM, e.g. measuring range and measurement repeatability, etc. Furthermore, the probe 

qualifications simulation should be inserted in this model. While 2D ball plates are 

shown in the schematic, other reference artefacts (e.g. hole plates, ball plate, or step 

gauge, etc.) may also be used. The partial or full measurement for calibration 

information of the reference artefact is also required. The local kinematic model is based 

upon an axis-upon-axis build-up of the physical CMM. 
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  After obtaining the measurement data, either through a physical CMM 

measurement or a simulation, a based fit algorithm based on the Gauss-Newton method 

is assigned to estimate the model parameters and additional related parameters 

(including the artefact parameters). The local kinematic model will subsequently be 

used to calculate and compensate for the systematic CMM errors. Based on the law of 

propagation of uncertainty, the model can also be used to evaluate the uncertainties 

associated with the fitted parameters (both the kinematic model and artefact parameters) 

and the CMM measurements in the working volume of interest. 

Numerical simulation has been presented in this approach to analyse the 

behaviour and performance of the local kinematic error models, including the 

procedures and preliminary results described in the next section. 

 

4.4 Numerical simulation procedure  

4.4.1 Determination of kinematic errors parameters 

The geometric errors associated with a CMM are usually described by the 21-parameter 

kinematic error model, which consists of three positional and three rotational error 

functions for each of the three axes, along with three squareness errors. As an indirect 

method, the estimation of these kinematic errors can be analysed by measuring a 

calibrated artefact such as a hole plate or ball plate in a number of datum positions in the 

CMM working volume and then matching the kinematic errors to the measured changes 

in artefact geometry. 

 

4.4.1.1 Translational errors 

𝑥𝑥(𝑥, 𝑎) = x(1,0,0)
T
 + 𝛿𝑥(𝑥, 𝑎) , 𝛿𝑥(𝑥, 𝑎) = [

𝛿𝑥𝑥(𝑥, 𝑎)

𝛿𝑥𝑦(𝑥, 𝑎)

𝛿𝑥𝑧(𝑥, 𝑎)

] (4.1) 

 

𝑥𝑦(𝑦, 𝑎) = y(0,1,0)
T
 + 𝛿𝑦(𝑦, 𝑎) , 𝛿𝑦(𝑦, 𝑎) = [

𝛿𝑦𝑥(𝑦, 𝑎)

𝛿𝑦𝑦(𝑦, 𝑎)

𝛿𝑦𝑧(𝑦, 𝑎)

]  (4.2) 

 

𝑥𝑧(𝑧, 𝑎) = z(0,0,1)
T
 + 𝛿𝑧(𝑧, 𝑎) ,  𝛿𝑧(𝑧, 𝑎) = [

𝛿𝑧𝑥(𝑧, 𝑎)

𝛿𝑧𝑦(𝑧, 𝑎)

𝛿𝑧𝑧(𝑧, 𝑎)

]   (4.3) 
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4.4.1.2 Rotational errors 

𝑅𝑥(𝑥, 𝑎) = 𝑅𝑧(𝑒𝑥𝑧(𝑥, 𝑎))𝑅𝑦 (𝑒𝑥𝑦(𝑥, 𝑎)) 𝑅𝑥(𝑒𝑥𝑥(𝑥, 𝑎))  (4.4) 

 

𝑅𝑦(𝑦, 𝑎) = 𝑅𝑧 (𝑒𝑦𝑧(𝑦, 𝑎)) 𝑅𝑦 (𝑒𝑦𝑦(𝑦, 𝑎)) 𝑅𝑥 (𝑒𝑦𝑥(𝑦, 𝑎))  (4.5) 

 

𝑅𝑧(𝑧, 𝑎) = 𝑅𝑧(𝑒𝑧𝑧(𝑧, 𝑎))𝑅𝑦 (𝑒𝑧𝑦(𝑧, 𝑎)) 𝑅𝑥(𝑒𝑧𝑥(𝑧, 𝑎))  (4.6) 

      

Then 

𝑒𝑥(𝑥, 𝑎) =  (𝑒𝑥𝑥(𝑥, 𝑎), 𝑒𝑥𝑦(𝑥, 𝑎), 𝑒𝑥𝑧(𝑥, 𝑎))
𝑇

  (4.7) 

 

4.4.1.3 Squareness errors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then related squareness errors can be written in notation as: 

 

фxy, фyz, фxz (4.8) 

 

 

 

90
o
 

өx 

өy 

Y 

X 

Angle between best fit 

reference lines 

= 90
o
 + өx + өy 

 

Squareness error = өx + өy 

Figure 4.4 illustrates how the squareness error between two line axes of motion is calculated. 

The solid black lines represent the X and Y axes of the machine. The solid red and blue lines 

represent the variation in straightness deviation in the motion of the X and Y axes (i.e. their 

trajectories) recorded along the length of the axis. Reposted from (Chapman, 2013) 
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Axis-upon-axis build-up of the local kinematic model: 

 

𝑥∗ (𝑥, 𝑎) =  𝑥𝑥(𝑥, 𝑎) +  𝑅𝑥(𝑥, 𝑎) [𝑥𝑦(𝑦, 𝑎) +  𝑅𝑦(𝑦, 𝑎)[𝑥𝑧(𝑧, 𝑎) +  𝑅𝑧(𝑧, 𝑎)𝑝]] (4.9) 

 

where p is the probe offset. This equation gives the modelled position of the probe 

centre as the function of the recorded scale reading x = (𝑥, 𝑦, 𝑧)𝑇 and a is the parametric 

error coefficients. Thus the kinematic error behaviour is specified in terms of the 18 

individual error functions, three positional and three rotational for each of three axes 

(𝛿𝑥𝑥, 𝛿𝑥𝑦, 𝛿𝑥𝑧 , 𝛿𝑦𝑥 , 𝛿𝑦𝑦, 𝛿𝑦𝑧, 𝛿𝑧𝑥, 𝛿𝑧𝑦, 𝛿𝑧𝑧 , 𝑅𝑥𝑥, 𝑅𝑥𝑦, 𝑅𝑥𝑧 , 𝑅𝑦𝑥, 𝑅𝑦𝑦, 𝑅𝑦𝑧 , 𝑅𝑧𝑥, 𝑅𝑧𝑦, 𝑅𝑧𝑧). 

Therefore, these functions of a single variable can be specified by polynomials or spline, 

for instance. It is suitable to include the probe qualifications to offset in this kinematic 

error model in order to evaluate the associated uncertainties. Up to six frame-of-

reference constraints may need to be applied to fix the frame of reference of the probe 

geometry with that of the CMM. 

We set: 

 

𝑒(𝑥, 𝑎) = 𝑥 − 𝑥∗(𝑥, 𝑎) (4.10) 

 

If the CMM measures a point 𝑠∗ then the measurement is modelled as: 

 

𝑥∗(𝑥, 𝑎) =  𝑠∗ +  𝜖 (4.11) 

 

or the measurement equation is of the form: 

 

𝑥 =  𝑠∗ + 𝑒(𝑥, 𝑎) +  𝜖 (4.12) 

 

describing the observed scale readings x as a function of systematic 𝑒(𝑥, 𝑎) and random 

effects 𝜖. 

 

4.4.2 2D reference ball plate 

The numerical simulations (in the MATLAB programme) are based upon the 

measurements of a 2D ball plate in three locations (positions and orientations) in the 

CMM working volume, including the measuring probes qualifications. This simulated 
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CMM is a moving-bridge type and has a volume of the working region of 1200 × 1000 

× 700 mm. To allow possible comparison with physical CMM task measurements, a 

measurement repeatability of 0.5 μm is used in this simulation, which is close to the 

repeatability of the real CMM at National Institute of Metrology Thailand. 

 

 

Figure 4.5 2D reference ball plate 

 

4.4.3 Locations of the ball plate 

The measurement of a ball plate is located in one local region of the CMM working 

volume where the actual measurement tasks will be calibrated. There are a number of 

suitable measurement approaches, e.g. using one or more of the three locations shown in 

figure 4.6. 

 

 

Figure 4.6 Three locations of a ball plate 

0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.35

0.4

0.45

0.5

0.55

0.6

 2D Ball Plate

0.3

0.4

0.5

0.6

0.7 0.3
0.4

0.5
0.6

0.7

0.3

0.4

0.5

0.6

0.7

Y axisX axis

Z
 a

x
is

Location 0 

Location 2 
Location 1 



71 
 

 

 Location 0 is horizontal at z = 0.5 m, with the balls shown as circles. 

 Location 1 is vertical, with the balls shown as stars. 

 Location 2 is also vertical, with the balls shown as crosses. 

    

4.4.4 Probe qualification measurements  

The probe qualification measurements are also used in the modelled evaluation, with six 

probe offsets shown in figure 4.7. Offsets 1 and 2 are used in Location 0 measurements; 

other offsets may be used in the calibrations for Locations 1 and 2. 

 

 

Figure 4.7 Six probe offsets 

 

4.5 The performance of each local evaluation 

The correct formulation depends on the architecture of the CMM, as the physical CMM 

is a moving-bridge type (FXYZ). Thus, the actual position of the probe tip relative to 

the workpiece is represented by the model equation as: 

 

x* = xx + Rx (xy + Ry (xz + Rzp)) (4.13) 

 

where xx, xy, xz are the positions along x, y and z axes, respectively; they consist of the 

scale errors and straightness errors as well. The rotational matrices 𝑅𝑥 , 𝑅𝑦, 𝑅𝑧 are the 

orientations of x, y and z axes, respectively, including the rotational errors, pitch, roll 

and yaw. The model could encompass up to 21 parametric errors (three translational and 
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three rotational errors, plus three squareness errors); however, it may be simplified to 

just include 18 translational and rotational error components.  

  The Cheby-shev polynomial approach is used in this model to calculate each of 

these error components. Assuming that the required numerical stability for the local 

assessments (with low density of datum points) is achieved, it is necessary to simplify 

the model with a very low order of the polynomial (e.g. 2 or even 1).  

For each local evaluation, the measurement data are simulated first, with an 

added repeatability error of 0.5 μm. Three tasks are then performed, as detailed below. 

 

4.5.1 Calculation of model parameters 

To calculate the model parameters, each set of measurement data is evaluated by using a 

Gauss-Newton algorithm for solving a non-linear, least-squares problem. QR 

factorisation approach is used to solve the problem of possible rank-deficiency. The 

estimated parameters can then be passed to and updated by another local evaluation.  

Gauss-Newton algorithm can be started by minimise the function: 

 

𝐸(𝑎) =  ∑ 𝑑𝑖
2(𝑎)𝑚

𝑖=1  (4.14) 

 

as from n parameters 𝑎1, 𝑎2, … , 𝑎𝑛 where 𝑚 ≥ 𝑛. The solution of 𝑎∗is estimated to be 

𝑎𝑒. First, the linear least-squares problem is solved from the equation: 

 

𝐽𝑝 =  −𝑑 (4.15) 

 

where J is the 𝑚 𝑥 𝑛 Jacobian matrix whose ith row is the gradient of 𝑑𝑖 with respect to 

the parameter a evaluated at 𝑎𝑒 as: 

 

𝐽𝑖𝑗 =  
𝜕𝑑𝑖

𝜕𝑎𝑗
(𝑎𝑒) (4.16) 

 

where d is a vector those ith component is 𝑑𝑖(𝑎𝑒). Thus, the estimation of 𝑎∗ is updated 

by repeating as the equation: 

 

𝑎𝑒 ∶=  𝑎𝑒 + 𝑝 (4.17) 
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  These estimation and update are repeated until the approximates are judged to 

have converged. 

 

4.5.2 Error calculations and compensation  

The identified kinematic model can then provide productive predictions for analysing 

the geometric errors in the evaluated region of the CMM working volume, based on the 

nominal measurement results. This has been investigated with the kinematic errors 

simulation. In figure 4.8, a positioning error of 0.5 µm is proposed on the x-axis for the 

local evaluation using location 1, the nominal centres of the ball, shown as stars, the 

simulated centres (with positioning errors), shown as circles, and the centres predicted 

by the local kinematic model, shown as crosses, with all the errors magnified by 2000. 

Similarly, figure 4.9 shows straightness errors of 0.5 µm, introduced on the y-axis with 

a magnification of 2000 as well. Furthermore, figure 4.10 shows a yaw error of five 

arcseconds of the z-axis, magnified 2000 times. All of these plots have demonstrated the 

acceptable predictions of the local, kinematic error model using location 2. Other 

parametric error components and different local evaluations can be similarly 

investigated. 

 

 

Figure 4.8 Simulation of positioning errors along X-axis and their prediction 

with local kinematic model  

 

 

*  the nominal centres of the ball 

o  the simulated centres (with 

positioning errors) 

+  the centres predicted by the 

local kinematic model 
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Figure 4.9 Simulation of Y-axis straightness errors and their prediction 

with local kinematic model 

 

 

 

Figure 4.10 Simulation of Z-axis yaw errors and their prediction with local kinematic model 

    

4.5.3 Uncertainty simulation calculation 

The identified model parameters can be propagated based on the estimation of Jacobian 

matrices; the uncertainties associated with the model parameters and artefact parameters 

can be evaluated and further generated to assess the uncertainties associated with the 

CMM measurements in the measuring volume. 

 

*  the nominal centres of the ball 

o  the simulated centres (with 

positioning errors) 

+  the centres predicted by the 

local kinematic model 

*  the nominal centres of the ball 

o  the simulated centres (with 

positioning errors) 

+  the centres predicted by the 

local kinematic model 
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Table 4.1 The average uncertainties for locations 0 & 1 & 2 (unit: μm) 

 
Location 0 Location 1 Location 2 

𝑢𝑥 𝑢𝑦 𝑢𝑧 𝑢𝑥 𝑢𝑦 𝑢𝑧 𝑢𝑥 𝑢𝑦 𝑢𝑧 

𝑈1 1.2122 0.8468 0.3935 0.2135 0.2567 0.2730 0.2152 0.2593 0.2673 

𝑈2 1.7268 0.7908 0.2510 0.5563 0.3223 0.1123 0.5349 0.3039 0.5072 

𝑈3 0.6631 1.8794 0.7217 0.7564 0.6223 0.7122 0.8028 0.7693 0.5721 

 

Table 1 shows:   

U1 for the average uncertainties associated with the ball centre coordinates of the ball 

plate, based upon the local evaluation at locations 0, 1 and 2.  

U2 for the average uncertainties associated with the CMM measurements at 200 random 

locations in the evaluated region, based upon the local evaluation at locations 0, 1 and 2. 

U3 for the average uncertainties associated with the CMM measurements at the whole 

working volume, based upon the local evaluation at locations 0, 1 and 2.  

The uncertainties U1 are comparable to the repeatability of the CMM. As assumed, the 

average uncertainties associated with the CMM measurements in the evaluated region 

(U2) are significantly lower than those in the whole working volume (U3). It should be 

noted that while locations 1 and 2 can be used individually for local evaluation, location 

0 alone will lead to the rank deficiency of the Jacobian matrix and numerical instability. 

 

Table 2 shows the effects of a higher density of datum points on the measurement 

uncertainties. As expected, two location combinations result in all the average 

uncertainties U1, U2 and U3 being smaller than the individual evaluation; the combined 

three local evaluations can further reduce the uncertainties U1, U2 and U3. 

 

Table 4.2 The average uncertainties for combined locations (unit: μm) 

 
Location 0 & 1 Location 0, 1 & 2 

𝑢𝑥 𝑢𝑦 𝑢𝑧 𝑢𝑥 𝑢𝑦 𝑢𝑧 

𝑈1 0.1123 0.2167 0.2535 0.1932 0.1283 0.1448 

𝑈2 0.3364 0.2122 0.0803 0.1306 0.0872 0.1162 

𝑈3 0.3271 0.4123 0.3308 0.2133 0.1202 0.1003 
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The higher density of datum points used in evaluation results in smaller uncertainties. It 

may also expand the measurement working volume at which the local kinematic model 

may be effectively implemented. 

  Different designs of ball plates (e.g. 3 × 3 and 5 × 5) with different plate sizes 

have been further investigated, and similar results were obtained, presented in table 3. 

The effects of different ball plate sizes on the average uncertainties U1, U2 and U3 are 

obtained from location 1. It is important to note that as the size of the ball plate reduces, 

the average uncertainties associated with the measurements in the evaluated region or 

the whole measuring volume generally increase, but that the uncertainties associated 

with the plate parameters become somewhat smaller. More importantly, the results have 

shown that the local kinematic model approach presented may be applied with reference 

artefacts with different sizes. 

 

 

Table 4.3 The average uncertainties for different ball plate sizes (unit: μm) 

 
Ball plate size 3 x 3  Ball plate size 5 x 5 

𝑢𝑥 𝑢𝑦 𝑢𝑧 𝑢𝑥 𝑢𝑦 𝑢𝑧 

𝑈1 0.2868 0.2597 0.2436 0.3138 0.3233 0.3642 

𝑈2 0.4268 0.2023 0.0685 0.4664 0.4223 0.1184 

𝑈3 0.5467 0.5113 0.5938 0.7112 0.6013 0.6693 

 

The investigations have shown that the effects of different ball plate sizes on the 

uncertainty evaluation are quite small, similar to the results reported in M.G. Cox et al. 

(1998). Moreover, different ball plate designs can also be applied that show a similar 

performance. Therefore, this approach is very flexible, and can establish a uniform 

approach to different conditions and applications. 

 It is also apparent from these tables that the uncertainties associated with the ball 

plate and the physical CMM measurements in the region evaluated are independent of 

the previous evaluated locations, i.e. they are dependent only on the current location(s) 

of the evaluation.   
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4.6 Conclusions 

An approach for CMM error compensation and uncertainty evaluation using artefacts 

(ball plate) and local, kinematic error models has been implemented. 

  The following conclusions can be drawn: 

1) The numerical simulation results have shown that the proposed method allows 

a relatively small number of measurements to be used to determine the parameters of the 

local kinematic models, CMM parametric errors and uncertainties associated with both 

CMM measurements and the ball plate. 

2) Suitable measurement strategies may be used to achieve a cost-effective 

evaluation of CMM systematic errors. 

3) The proposed approach has good flexibility in terms of density of datum 

points in the evaluation and possible inclusion of probe qualifications and thermal 

errors, types of the artefacts, locations of artefacts along the measurement process, thus 

offering many potential benefits in CMM performance evaluation and enhancement. 

Further verifications and experimental validations will be conducted and 

reported on in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

Chapter 5 Simulation of Gaussian Processes model  

 

5.1 Introduction 

Higher coordinate measurement precision and accuracy have become commercially 

important techniques and an active area of research in recent years. A simulation to 

maintain a high-quality, efficient operation is commonplace and is useful in many cases. 

From a Bayesian perspective, a choice of a neural network model can be viewed as 

defining a prior probability distribution over non-linear functions, and the neural 

network’s learning process can be interpreted in terms of the posterior probability 

distribution over the unknown function. 

In terms of the limit of large but otherwise standard networks, Neal (1996) has 

shown that the prior distribution over non-linear functions implied by the Bayesian 

neural network falls in a class of probability distributions known as Gaussian Processes 

(GP). GP have always been used to analyse the flexibility of the non-parametric model 

over the basis-function fitting approach. The hyperparameters of the neural network 

model determine the characteristic lengthscales of the GP. Neal’s observation motivates 

the idea of discarding parameterized networks and working directly with GP.  

Computations in which the parameters of the network are optimized are then 

replaced by simple matrix enumerating operations based on the mean function and 

covariance matrix of the GP. We have seen that a covariance function is an important 

component in a GP predictor, as it encodes the assumptions about the function with 

which we are concerned. The reliability of GP relates to how the suitable covariance 

functions are chosen. A GP approach for modelling and evaluating the kinematic errors 

is proposed in this chapter.    

 

5.2 GP simulation 

The GP method decomposes a geometric feature into these components: designed 

geometric form, systematic manufacturing errors and random manufacturing errors. The 

goal of the GP model is to study methods that can help assess the parametric errors of 

geometric features using ball plate measurements from a CMM. 
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Figure 5.1 Scheme of the GP simulation 

 

In a GP model, training data from the sampling points (in this case, using a ball plate 

position) is simulated to find the approximated parameters associated in the model when 

using likelihood estimation or GP function in the MATLAB programme. To simulate 

real physical CMM measurements, a random noise is assigned into the simulated input. 

Then the approximated initialization functions are generated; these consist of mean 

function, likelihood function, covariance function, and inference function. Finally, the 

predicted data is evaluated and errors of the ball plate are calculated as well. 

It is normally assumed that the mean of the GP is zero everywhere. What relates 

one observation to another in such cases is just the covariance function, 𝑘(𝑥, 𝑥′). A 

popular calculated method is the “squared exponential”: 

 

𝑘(𝑥, 𝑥′) =  𝜎𝑓
2𝑒𝑥𝑝 [

−(𝑥−𝑥′)
2

2𝑙2 ] (5.1) 

 

where 𝜎𝑓
2 is defined as the maximum allowable covariance – this should be high for 

functions which cover a broad range on the y-axis. If x ≈ x′, then 𝑘(𝑥, 𝑥′) approaches 

this maximum, meaning 𝑓(𝑥) is nearly perfectly correlated with 𝑓(𝑥′). If the function is 

to look smooth, then the neighbours must be alike. Now if x is distant from x′, we have 

instead 𝑘(𝑥, 𝑥′) ≈ 0, i.e. the two points cannot see each other. So, for instance, during 
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interpolation at new x values, distant observations will have a slight effect. How much 

effect this separation has will depend on the length parameter, l, so there is much 

flexibility built into (5.1). 

However, the flexibility is not quite enough: the data is also often noisy, the 

result of measurement errors and so on. Each observation y can be thought of as related 

to an underlying function f(x) through a Gaussian noise model: 

 

𝑦 = 𝑓(𝑥) + 𝑁(0, 𝜎𝑛
2) (5.2) 

 

something which should be familiar to those who carried out this type of regression 

before. Regression is the exploration for f(x). Purely for simplicity of exposition in the 

step, taking the approach of adding the noise into 𝑘(𝑥, 𝑥′), by writing: 

 

𝑘(𝑥, 𝑥′) =  𝜎𝑓
2𝑒𝑥𝑝 [

−(𝑥−𝑥′)
2

2𝑙2 ] + 𝜎𝑛
2𝛿(𝑥, 𝑥′)  (5.3) 

 

where 𝛿(𝑥, 𝑥′) is the Kronecker delta function. (When many people use GP, they keep 

𝜎𝑛 separate from k(x, x′). Given n observations y, the objective is to predict 𝑦∗, not the 

“actual” f∗; their expected values are identical according to (5.2), but their variances 

differ considering to the observation of a noise process. The expected value of 𝑦∗, and 

of 𝑓∗, is the dot at  𝑥∗.) 

To prepare for Gaussian Process Regression, we calculate the covariance 

function, (5.3), among all possible combinations of these points, summarizing the 

findings in three matrices as: 

 

𝐾 =  [
𝑘(𝑥1, 𝑥1) 𝑘(𝑥1, 𝑥2)  ⋯ 𝑘(𝑥1, 𝑥𝑛)

⋮ ⋱ ⋮
𝑘(𝑥𝑛, 𝑥1) 𝑘(𝑥𝑛, 𝑥2)  ⋯ 𝑘(𝑥𝑛, 𝑥𝑛)

] (5.4) 

 

 

𝐾∗ = [𝑘(𝑥∗, 𝑥1)   𝑘(𝑥∗, 𝑥2) …    𝑘(𝑥∗, 𝑥𝑛)] (5.5) 

 

 

𝐾∗∗ = 𝑘(𝑥∗, 𝑥∗) (5.6) 

 

It can be confirmed that the diagonal elements of K are 𝜎𝑓
2 +  𝜎𝑛

2, and that its extreme 

off-diagonal elements tend to be zero when x spreads a large enough domain. 



81 
 

Since the key assumption in GP modelling is that the data can be represented as 

a sample from a multivariate Gaussian distribution, we have: 

 

[
𝑦
𝑦∗

] ~ 𝑁 (0, [
𝐾 𝐾∗

𝑇

𝐾∗ 𝐾∗∗
])  (5.7) 

 

where T indicates matrix transposition. Concentrating on the conditional probability 

p(y∗|y): given the data, how likely is a certain prediction for y∗.  The probability follows 

a Gaussian distribution: 

 

𝑦∗|𝑦 ~ 𝑁(𝐾∗𝐾−1𝑦, 𝐾∗∗ − 𝐾∗𝐾−1𝐾∗
𝑇)  (5.8) 

 

The best estimate for y∗ is the mean of this distribution: 

 

𝑦∗̅ =  𝐾∗𝐾−1𝑦 (5.9) 

 

and the uncertainty in the estimate is calculated by its variance: 

 

𝑣𝑎𝑟(𝑦∗) =  𝐾∗∗ −   𝐾∗𝐾−1𝐾∗
𝑇  (5.10) 

 

 

5.3 Numerical simulation procedure  

This GP model simulation is based on the GPML toolbox as: 

http://www.gaussianprocess.org/gpml/code/matlab/doc/ 

5.3.1 Calculation of model parameters 

5.3.1.1 Zero mean regression 

In a set of data of x-, y-, and z-axes of the GP model based on CMM: 

- x is the 2D position of a ball plate (3 x 3 ball plate) (unit: mm) 

- y is the positioning error of the CMM (unit: mm) 

- z is the boundary of the CMM working volume (unit: mm) 

In this case, the boundaries of the x- and y-axes are 0.400–0.600 mm of the 

CMM working volume. To generate the 3 x 3 ball plate position (x) in the x-axis and y-

axis (unit: mm) as figure 5.2. 
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Figure 5.2 Shows the training data in the x- and y-coordinates 

 

With the toolbox, we can simulate a random noise of the CMM (y) (unit: mm) 

 

 

Figure 5.3 Shows the training data with random errors 

 

It begins with four initialization steps, including four functions: 

- Mean function: a cell array specifying the GP mean 

- Covariance function: a cell array specifying the GP covariance function 

- Likelihood function: the function specifying the form of the likelihood of the GP    

  model and the terms needed for prediction and inference 

- Inference function: a function computing the approximated posterior and its partial  

  derivatives 
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Part of the code with zero mean; 

% Mean function 

    meanfunc= {@meanZero}; 

% Likelihood function 

    likfunc = @likGauss;  

% Covariance function 

    covfunc=@covSEiso; % choosing SE covfunc 

 % Inference function 

    hyp.cov = [0; 0];  

    hyp.mean = [];  

    hyp.lik = log (0.1); % If we do not have the optimal parameter values,  

                            % we employ the minimise function based on CG method 

    hyp = minimize (hyp, @gp, -500, @infExact, meanfunc, covfunc, likfunc, x, y); 

                           % to get the optimal parameters 

 

To estimate the CMM working volume measuring a ball plate (z) (unit: mm) 

z1= 0.4:0.01:0.6; z1 = z1'; 

    z2= 0.4:0.01:0.6; z2 = z2'; 

    z = zeros (441, 2); 

    for i=1:1:21; 

        for j=1:1:21; 

            z ((i-1)*21+j, 1) =z1 (j); 

            z ((i-1)*21+j, 2) =z2 (i); 

        end 

    end 

 

With the gp function, we obtain the regression over z. 

[m s2] = gp (hyp, @infExact, meanfunc, covfunc, likfunc, x, y, z); 

                                               % m is the estimation 

                                               % s2 is the variance 

z_temp0=reshape (m, 21, 21); 

i=0.4:0.01:0.6; j=0.4:0.01:0.6; 

figure; 

mesh (j, i, z_temp0) 
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Figure 5.4 Shows the training data along x-axis and y-axis with zero-mean function 

 

The initial functions have many types; from which we choose freely. 

 

5.3.1.2 Regression with nonzero mean 

Considering the nonzero mean, we have chosen a mean linear function because, in this 

case, we use a CMM as a linear measurement by taking the ‘meanlinear.m’ as an 

example (toolbox V34/mean/meanLinear.m). It contains two parts: one is for the mean 

estimation when the input parameters are ‘hyp’ and ‘x’; the output is the mean 

evaluation. The other is for obtaining optimal mean function parameters in the case of 

the inputs ‘hyp’, ‘x’, and ‘i’; the output is the derivative over the i-th parameter in the 

mean function. 

Based on the above data, we define our own mean linear function according to 

the CMM: ‘meanMylinear_2D.m’. 

𝑦 =  𝑎1 + 𝑎2𝑥 + 𝑎3𝑥2 (5.11) 

 

function A = meanMylinear_2D(hyp, x, i) 

if nargin < 2, A = '3';  

return;  

end  

[n,D] = size(x); 

a = hyp(:);  

h1 = zeros(n,3);  
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for k = 1:1:n; 

    h1(k,1) = 1; 

    h1(k,2) = x(k,1);     

    h1(k,3) = x(k,1)^2;      

end 

A = zeros(n,1);                      % allocate memory 

if nargin == 2                       % compute mean vector 

    A = h1*a;     

else                                 % compute derivative vector 

  if i<=3;  

      A = h1(:,i);                   % derivative 

  else 

    A = zeros(n,1); 

  end 

end 

 

We should note that as the parameters to be estimated are numerous, the initialization is 

vital. During the regression, we can set the initialization as follows: 

1. Fit the data to the parametric model (integrant error model) to get the 

initialization of mean function parameters. 

2. Establish regression by GP regression with zero mean to achieve the 

initialization of the parameters of covariance function and likelihood function. 

 

Then continue the regression as follows: 

meanfunc = {@meanMylinear_2D}; 

likfunc = @likGauss; 

covfunc = {@covSEiso}; 

hyp.cov = [-2.013712762984104;-4.082864313671445];  

hyp.mean = [-0.179669833204103;0.778362671986138;-0.863234577981942];  

hyp.lik = -4.485943839204587;  

hyp = minimize(hyp, @gp, -500, @infExact, meanfunc, covfunc, likfunc, x, y); 

                          % -500 can be changed to -5000 if necessary 

                          % get the optimal parameters  

% Plot Figure 4: X-,Y-,Z-coordinates with nonzero mean                                
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[m s2] = gp(hyp, @infExact, meanfunc, covfunc, likfunc, x, y, z); 

z_tempmx = reshape(m,21,21); 

i = 0.4:0.01:0.6; j = 0.4:0.01:0.6; 

figure; 

mesh(j,i,z_tempmx) 

 

 

Figure 5.5 Shows the training data along x-axis and y-axis with specified mean function 

 

5.3.2 Error calculations and compensation  

The regression of a zero mean function is shown as figure 5.4 and the regression of a 

specified mean function compatible with the CMM integrant error model as figure 5.5. 

Therefore, the errors of the predicted data show as figure 5.6: 
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Figure 5.6 Shows errors along the x-axis and y-axis 

 

5.4 Conclusions 

The numerical simulation results have indicated that the evaluation of errors using a GP 

model based on CMM measurement is an achievable approach. The model is a 

collection of random variables, any finite number of which have joint Gaussian 

distributions and are completely specified by a mean function and a positive definite 

covariance function. With a sufficient number of evaluated measurements using a ball 

plate as an artefact, the hyperparameters associated with the covariance function can be 

accurately determined. They also indicated that the CMM systematic errors in the region 

in question can be assessed. As can be seen, the error evaluation from the GP model has 

appeared a very low number of errors (less than 0.011 µm). Thus, their flexible non-

parametric nature and computational simplicity offer this proposed GP approach as one 

with a high measurement precision and accuracy method. 
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Chapter 6 CMM calibration using a ball plate 

 

6.1 Introduction 

In order to verify the local kinematic error model and Gaussian Process model as these 

case studies by experiment-based investigation, the CMM verifications were conducted. 

The details of experimental programme are presented and explained in this chapter 

consisting of CMM calibration using a ball plate as an artefact, measurement procedure, 

error analysis, and conclusion. 

6.2 Preliminary Operations: 

CMM 

Specification of CMM (PMM-C 700) by Brown&Sharpe (Leitz): 

Range: X x Y x Z (1200 x 1000 x 700) mm; 

Accuracy: 0.6 µm + L/600; 

Uncertainty (k = 2) = √(0.52)2 + (1.4 ∗ 10−3 ∗ 𝑙)2  µm;  

l being indication length of the CMM in mm 

Software: Quindos 6; 

 

 Read entirely the operation instruction/operation manual of the CMM before 

beginning operation. 

 Check the due date of the CMM. If the CMM is over the due date, it must be 

recalibrated before use. 

 Clean the CMM by ethanol and wipe off with soft lint free cloth or appropriate 

wiper or chamois on moving part of CMM. 

 Before using the CMM, check that the CMM is operated correctly as described in 

the manufacturer’s operating instruction. 

 Open the main electrical switch, air power and switch on the electronics cabinet. 

 Setup the CMM probe for the measurement. 

 Stabilize the CMM about 1 hour before start measurement. 
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Figure 6.1 CMM (PMM-C700P) 
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6.3 Verification procedure 

Cleaning process

Start

Left to be stabilized

Distribution between 1 C. ?

Record temperature of ball plate 

(*)

Start the measurement

Finish measurement

Record temperature of ball plate 

(**)

N

N(* &**)

Different less than 1 C.

Measurement all 6 positions

Change position

N

End

Temp. of (£ & ££)

Different less than 1 C.

N
Distribution between 1 C. ?

Left to be stabilized

Record temperature of ball plate 

($), Temp. %RH, Pressure of 

Laboratory (£)

Record temperature of ball plate 

($$), Temp. %RH, Pressure of 

Laboratory (££)

N($ & $$)

Different less then 1 C.

Finish measurement

Analysis

 

Figure 6.2 Verification flow chart 
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6.4 Ball Plate 

 Clean the ball plate by ethanol and wipe off with soft lint free cloth or appropriate 

wiper or chamois in measuring faces. 

 Place the ball plate in CMM table and align ball plate parallel to X-axis of CMM 

within 50 µm for 620*620 mm ball plate. 

 Attach a digital thermometer to ball plate. 

 Stabilize the ball plate about 3 hours before start measurement. 

 

6.5 Locations of the ball plate  

All CMM measurements should be performed in the same working volume of the 

CMM. The centres of the spheres (of the ball plate) have to coincide with the same 

points in the CMM’s working space in all six plate positions. All spheres are measured 

with respect to the plate’s reference coordinate system in all six positions. 

 Measurement 1 (Location 0) is obtained in the basic ball plate position, where the X-

axis of the plate points in the direction of the CMM’s first cinematic axis, and the Z-

axis of the ball plate is placed horizontal at z = 0 as figure 6.3 

 

 

Figure 6.3 Location 0 of the ball plate (BP111) 

 

 Measurement 2 (Location 0) is obtained by placing the ball plate in horizontal at z = 

500 mm (BP112) with respect to the basic position (location 0). 
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 Measurement 3 & 4 (Location 1) is obtained by turning the ball plate in vertical, as 

figure 6.4 

 

 

Figure 6.4 Location 1 of the ball plate (BP211 and BP212) 

 

 Measurement 5 & 6 (Location 2) is obtained by also turning the ball plate in vertical, 

as figure 6.5 

 

 

Figure 6.5 Location 2 of the ball plate (BP311 and BP312) 
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6.6 Setting the probe qualification measurements 

Six probe offsets are also used in the evaluation shown in figure 6.6 and 6.7 

 Offsets 1 and 2 are used in location 0 measurements 

 Offsets 3 and 4 are used in location 1 measurements 

 Offsets 5 and 6 are used in location 2 measurements 

 

 

Figure 6.6 Six probe offsets 

 

 

Figure 6.7 Six probe directions 

 

6.7 Calibration of the CMM using a ball plate 

 Place the ball plate on the CMM table. Let the XY-axis of ball plate follow with 

XY-axis of CMM (Location 0), following figure 6.3 

1 

4 

5 

2 

6 

3 
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 Use CMM probe touch on top of ball number 1, 5 and 21. Adjust height of three 

balls until the difference are less than 100 µm shown in figure 6.8 

 

Figure 6.8 Ball numbers of the ball plate 

       

The origin of object coordinate system is the centre of ball number 1. 

 Align the ball plate to parallel with X-axis of CMM within 50 µm. 

 Clamp ball plate support. 

 Record X and Y positions of ball plate. 

 Wait until temperature room distribution of ball plate between ± 1 C 

 Record temperature of ball plate to worksheet. 

 Start ball plate measurement program. 

 Calibrate CMM probe with sphere ball. 

 Make manual coordinate system following the program. 

 Start automatic measurements  

 Program will measure forward following figure 6.9 
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Figure 6.9 forward measurement 

 

 Record the last temperature of ball plate to worksheet. Compare temperature with 

the first time. Measurement shall be rejected if temperature difference is more than ± 

1 C. 

 Change ball plate position following figure 6.4 and 6.5 

 Repeat 6.5.2 to 6.5.13 for other positions until finish. 

 

6.8 Error Analysis  

The geometric errors associated with a CMM are usually described by the 21 parametric 

errors which consist of: 

 Three translational error functions for each of the three axes 

 Three rotational error functions for each of the three axes 

 Three squareness errors 
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CMM Kinematic Errors

21 model parameters

1 positional errors x 3 axes:

δy (x, y, z) = δyx  δyy  δyz

   2 straightness errors x 3 axes

δx (x, y, z) = δxx δxy  δxz

δz (x, y, z) = δzx  δzy  δzz

  

3 rotational errors x 3 axes

Rx (x, y, z) = Rxx  Rxy  Rxz

Ry (x, y, z) = Ryx  Ryy  Ryz

Rz (x, y, z) = Rzx  Rzy  Rzz

3 squareness errors

Øxy  Øyz  Øzx

 

Figure 6.10 Details of the kinematic error components 
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6.9 Measurement Results 

Environment Start Finish 

Temperature (
o
C) 20 21 

Humidity (%RH) 52 52.5 

CMM accuracy: 0.6 µm + L/600; 

Table 6.1 Ball plate measurement: Location 0_BP111 

Ball No. 
X 

(mm) 

Y 

(mm) 

Z 

(mm) 

1 0.00000 0.00000 0.00000 

2 133.00493 -0.00302 0.03770 

3 266.00861 -0.00185 0.05730 

4 399.01683 -0.00148 0.03915 

5 532.01957 0.00000 0.00000 

6 -0.02317 133.01549 0.03071 

7 132.98147 133.01424 0.04338 

8 265.98752     133.01439 0.03205     

9 398.99329 133.01453 0.02391 

10 531.99398     133.01734 0.00855 

11 -0.02928 266.02834 0.02127 

12 132.97423 266.02270 0.05500 

13 265.97911 266.02539     0.02536     

14 398.98417     266.02573     0.02331     

15 531.98564     266.02907     0.01283     

16 -0.05183     399.04046     0.02567     

17 132.95186   399.03848     0.04559     

18 265.95342     399.04214     0.02934     

19 398.95562     399.04332     0.03533     

20 531.95767     399.04371     0.02794     

21 -0.06035     532.04858     0.00000     

22 132.94312     532.04635     0.03618     

23 265.94425     532.04760     0.06559     

24 398.94494     532.05017     0.05904     

25 531.94582     532.05398     0.03377     

Environment control 

(20 ± 1) 
o
C 

(50 ± 10)
 
%RH 
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Measurement Results (Continued) 

Environment Start Finish 

Temperature (
o
C) 20 20.5 

Humidity (%RH) 52.5 52 

CMM accuracy: 0.6 µm + L/600; 

Table 6.2 Ball plate measurement: Location 0_BP112 

Ball No. 
X 

(mm) 

Y 

(mm) 

Z 

(mm) 

1 0.00000 0.00000 0.00000 

2 133.00353 -0.00348 0.02870 

3 266.00771 -0.00172 0.04371 

4 399.01293 -0.00116 0.03774 

5 532.01942 0.00000 0.00000 

6 -0.02445 133.01395 0.03657 

7 132.92887 133.01331 0.04224 

8 265.97764     133.01337 0.02305     

9 398.99020 133.01442 0.02788 

10 531.97664     133.01655 0.00977 

11 -0.03098 266.02284 0.02212 

12 132.97112 266.01894 0.05513 

13 265.97854 266.02447     0.02467     

14 398.98001     266.02546     0.02667     

15 531.97664     266.02965     0.02459     

16 -0.05432     399.03866     0.02449     

17 132.94288   399.03325     0.04416     

18 265.95445     399.04416     0.02839     

19 398.95007     399.04572     0.04481     

20 531.95000     399.04982     0.04225     

21 -0.06422     532.03225     0.00000     

22 132.94227     532.04616     0.03522     

23 265.94895     532.04358     0.06504     

24 398.93294     532.05574     0.06330     

25 531.94089     532.04392     0.04227     

 

Environment control 

(20 ± 1) 
o
C 

(50 ± 10)
 
%RH 
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Measurement Results (Continued) 

Environment Start Finish 

Temperature (
o
C) 21 21 

Humidity (%RH) 51 50 

CMM accuracy: 0.6 µm + L/600; 

Table 6.3 Ball plate measurement: Location 1 (Front) _BP211 

Ball No. 
X 

(mm) 

Y 

(mm) 

Z 

(mm) 

1 0.00000 0.00000 0.00000 

2 133.00450   -0.00224     0.02751   

3 266.00758 -0.00103     0.04234     

4 399.01493     -0.00103     0.03086     

5 532.01569   0.00000   0.00000     

6 -0.02435  133.01294    0.03243  

7 132.97987    133.01251   0.03571  

8 265.98533     133.01264     0.02297     

9 398.99030     133.01216     0.02288     

10 531.98894     133.01489     0.01761     

11 -0.03168     266.02445     0.02525     

12 132.97152     266.01955     0.05418     

13 265.97593     266.02213     0.02380     

14 398.98025     266.02178     0.02981     

15 531.97962     266.02472     0.03236     

16 -0.05538     399.03547     0.02824     

17 132.94817     399.03420     0.04412     

18 265.94920     399.03745     0.02943     

19 398.95087     399.03776     0.04393     

20 531.95108     399.03790     0.05231     

21 -0.06583     532.04230     0.00000     

22 132.93754     532.04058     0.03110     

23 265.93823     532.04147     0.06405     

24 398.93849     532.04315     0.06685     

25 531.93805     532.04654     0.05930     

 

Environment control 

(20 ± 1) 
o
C 

(50 ± 10) %RH 
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Measurement Results (Continued) 

Environment Start Finish 

Temperature (
o
C) 21 20.8 

Humidity (%RH) 51 50 

CMM accuracy: 0.6 µm + L/600; 

Table 6.4 Ball plate measurement: Location 1 (Back) _BP212 

Ball No. 
X 

(mm) 

Y 

(mm) 

Z 

(mm) 

1 0.00000 0.00000 0.00000 

2 133.00332     -0.00262     0.02750     

3 266.00628     -0.00114     0.04147     

4 399.01385     -0.00129     0.03008     

5 532.01562     0.00000 0.00000 

6 -0.02297     133.01361     0.03160     

7 132.98021     133.01262     0.03515     

8 265.98580     133.01218     0.02173     

9 398.99094     133.01182     0.02058     

10 531.99073     133.01421     0.01684     

11 -0.02919     266.02464     0.02517     

12 132.97326     266.01937     0.05283     

13 265.97775     266.02147     0.02198     

14 398.98231     266.02110     0.02700     

15 531.98251     266.02366     0.03089     

16 -0.05049     399.03545     0.02940     

17 132.95221     399.03372     0.04487     

18 265.95364     399.03660     0.02922     

19 398.95527     399.03695     0.04266     

20 531.95621     399.03676     0.05064     

21 -0.05942     532.04208     0.00000 

22 132.94344     532.03991         0.02976     

23 265.94452     532.04054     0.06062     

24 398.94473     532.04211     0.06237     

25 531.94474     532.04535     0.05485     

 

Environment control 

(20 ± 1) 
o
C 

(50 ± 10) %RH 
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Measurement Results (Continued) 

Environment Start Finish 

Temperature (
o
C) 21 21 

Humidity (%RH) 50 50 

CMM accuracy: 0.6 µm + L/600; 

Table 6.5 Ball plate measurement: Location 2 (Front) _BP311 

Ball No. 
X 

(mm) 

Y 

(mm) 

Z 

(mm) 

1 0.00000     0.00000     0.00000     

2 133.00448     -0.00265     0.02815     

3 266.00805     -0.00097     0.04188     

4 399.01653     -0.00094     0.03037     

5 532.01837     0.00000     0.00000     

6 -0.02181     133.01300     0.03285     

7 132.98223     133.01201     0.03562 

8 265.98810     133.01245     0.02152     

9 398.99394     133.01215     0.02129     

10 531.99358     133.01478     0.01651     

11 -0.02756     266.02430     0.02581     

12 132.97519     266.01879     0.05382     

13 265.97978     266.02151     0.02191     

14 398.98483     266.02164     0.02737     

15 531.98519     266.02462     0.02990     

16 -0.04861     399.03520     0.02871     

17 132.95440   399.03341     0.04382     

18 265.95549     399.03701     0.02727     

19 398.95748     399.03756     0.04114     

20 531.95841 399.03772     0.04774     

21 -0.05706     532.04199     0.00000 

22 132.94569     532.04008     0.03016     

23 265.94638     532.04127     0.05993     

24 398.94682     532.04296     0.06215     

25 531.94652 532.04650 0.05336 

 

Environment control 

(20 ± 1) 
o
C 

(50 ± 10) %RH 



102 
 

Measurement Results (Continued) 

Environment Start Finish 

Temperature (
o
C) 20.5 20.6 

Humidity (%RH) 50 50 

CMM accuracy: 0.6 µm + L/600; 

Table 6.6 Ball plate measurement: Location 2 (Back) _BP312 

Ball No. 
X 

(mm) 

Y 

(mm) 

Z 

(mm) 

1 0.00000     0.00000     0.00000     

2 133.00425     -0.00219     0.02836     

3 266.00808     -0.00100     0.04260     

4 399.01636     -0.00100     0.03161     

5 532.01916     0.00000     0.00000     

6 -0.02235     133.01381     0.03225     

7 132.98164     133.01282     0.03644 

8 265.98780     133.01268     0.02264     

9 398.99361     133.01215     0.02157     

10 531.99476     133.01447     0.01550     

11 -0.02891     266.02539     0.02556     

12 132.97395     266.02014     0.05380     

13 265.97895     266.02232     0.02218     

14 398.98426     266.02165     0.02644     

15 531.98576     266.02455     0.02779     

16 0.05007     399.03634     0.02800     

17 132.95296     399.03451     0.04350     

18 265.95479     399.03758     0.02696     

19 398.95694     399.03789     0.03903     

20 531.95869 399.03768     0.04437     

21 -0.05778     532.04306     0.00000     

22 132.94532     532.04074     0.02929     

23 265.94666     532.04154     0.05895     

24 398.94720     532.04298     0.05917     

25 531.94792     532.04644     0.04919 

 

Environment control 

(20 ± 1) 
o
C 

(50 ± 10) %RH 
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Measurement Results (Average) 

Environment Start Finish 

Temperature (
o
C) 20.6 20.8 

Humidity (%RH) 51.1 50.8 

CMM accuracy: 0.6 µm + L/600; 

Table 6.7 Ball plate measurement: All Locations (average) 

Ball No. 
Xave 

(mm) 

Yave 

(mm) 

Zave 

(mm) 

1 0.00000     0.00000     0.00000     

2 133.00425     -0.00219     0.02836     

3 266.00808     -0.00100     0.04260     

4 399.01636     -0.00100     0.03161     

5 532.01916     0.00000     0.00000     

6 -0.02235     133.01381     0.03225     

7 132.98164     133.01282     0.03644 

8 265.98780     133.01268     0.02264     

9 398.99361     133.01215     0.02157     

10 531.99476     133.01447     0.01550     

11 -0.02891     266.02539     0.02556     

12 132.97395     266.02014     0.05380     

13 265.97895     266.02232     0.02218     

14 398.98426     266.02165     0.02644     

15 531.98576     266.02455     0.02779     

16 0.05007     399.03634     0.02800     

17 132.95296     399.03451     0.04350     

18 265.95479     399.03758     0.02696     

19 398.95694     399.03789     0.03903     

20 531.95869 399.03768     0.04437     

21 -0.05778     532.04306     0.00000     

22 132.94532     532.04074     0.02929     

23 265.94666     532.04154     0.05895     

24 398.94720     532.04298     0.05917     

25 531.94792     532.04644     0.04919 

 

Environment control 

(20 ± 1) 
o
C 

(50 ± 10) %RH 
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6.10 Error Calculations 

CMM accuracy: 0.6 µm + L/600; 

Table 6.8 Error calculations between the real CMM experiment and a standard of a ball 

plate calibration. 

Ball No. 
Xave 

(mm) 

Yave 

(mm) 

Zave 

(mm) 

1 0.00000 0.00000 0.00000 

2 0.00127 0.00043 0.00534 

3 0.00265 0.00024 0.00841 

4 0.00391 0.00020 0.00830 

5 0.00620 0.00000 0.00000 

6 0.00003 0.00044 0.00064 

7 0.00708 0.00070 0.00549 

8 0.00133 0.00074 0.00744 

9 0.00433 0.00025 0.00796 

10 0.00362 0.00057 0.00123 

11 0.00012 0.00083 0.00080 

12 0.00155 0.00081 0.00393 

13 0.00336 0.00033 0.00734 

14 0.00447 0.00319 0.00804 

15 0.00535 0.00111 0.00684 

16 0.00319 0.00023 0.00075 

17 0.00077 0.00256 0.00404 

18 0.00386 0.00200 0.00753 

19 0.00462 0.00271 0.00035 

20 0.00599 0.00101 0.00216 

21 0.00018 0.00284 0.00000 

22 0.00209 0.00225 0.00595 

23 0.00454 0.00188 0.00913 

24 0.00378 0.00164 0.00150 

25 0.00664 0.00257 0.00321 
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The ball plate was measured in six orientations on Coordinate Measuring Machine 

(PMM-C700P). By average these six measurements systematic geometry errors of 

CMM were calculated. The comparisons between the measurements from the real 

physical CMM and the standard CMM measurement certificate are evaluated in Matlab 

programme as figure 6.11 

 

 

Figure 6.11 Shows the positioning errors of the ball plate measurement 

 

6.11 Conclusions 

In this research, the validation of the CMM measurement using a ball plate as an artefact 

is generated. The measurement positions of a ball are using CMM (PMM-C700P) with 

traditional calibration (from ball no. 1 to no. 25). The standard and unit under 

calibration had been stabilised in the ambient environment before calibration. The 

results of the errors calculation indicate a good performance for the CMM measurement 

due to the low density of errors (less than 0.01 µm). 
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Chapter 7 Data Comparisons 

 

7.1 Introduction 

Simulation results provide significant information for decisions and actions in many 

areas of physical experiments and investigation. The process of verification and 

validation can help to ensure that the simulated models are correct and reliable. In this 

chapter, the analysis of the simulations, local kinematic error model and a GP model are 

conducted on the validation through a real physical experiment by measuring a ball 

plate based on CMM in the real machine environment setup. 

 

7.2 Comparison results between a local kinematic errors model and a 

GP model 

The experimental data is validated by measurement and inspection of CMM using a ball 

plate as an artefact and, in addition, simulation approaches. All data obtained from the 

simulations and experimentation is presented through graphs to show the trends and to 

check the consistency of the results. 

 

 

Figure 7.1 The graphical trends of errors from the physical CMM measurements 
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Figure 7.2 The graphical trends of errors from the local kinematic errors model 

 

 

 

Figure 7.3 The graphical trends of errors from the GP model 
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Figure 7.4 A comparison of the graphical trends of errors 

 

These generated errors results show a significant performance in terms of errors 

evaluations of both the local kinematic error model and the GP method. From the 

evaluated errors results in figure 7.4, it is apparent that the error simulations from 

approaches, the local kinematic error model and the GP model, give actually similar 

results to the physical CMM measurements.  

 

We can compare the both models (the local kinematic error model and the GP model) 

and the CMM measurement results by calculating the percentage error. The formula is 

given by: 

 

|𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 − 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒|

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
 𝑥 100%  (7.1) 
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Table 7.1 The percentage error comparison between the local kinematic error model and 

the GP model based on the real physical CMM measurements 

Ball plate 

No. 

Percentage error 

Local kinematic 

error model 
GP model 

1 0.0422 % 0.0148 % 

2 0.0057 % 0.0058 % 

3 0.0302 % 0.0010 % 

4 0.0348 % 0.0012 % 

5 0.0527 % 0.0324 % 

6 0.0217 % 0.0218 % 

7 0.0161 % 0.0060 % 

8 0.0198 % 0.0015 % 

9 0.0552 % 0.0075 % 

 

 

Figure 7.5 A comparison of the percentage errors of the two approaches 

 

As can be seen from the data above, the comparative percentage errors between the 

local kinematic error model and the GP model, based on comparing to the real physical 
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CMM calibration, show that the GP model generated error evaluations that are much 

more similar to the real CMM measurements than to the local kinematic error model. 

The results of the percentage errors, through the ball plate location No. 1-9, illustrate 

that the GP model has the average percentage of the errors less than 0.034% in all 

positions of the ball while the local kinematic error model has the percentage errors 

more than 0.034% in some ball locations.  However, these differences are differentiated 

only to a low degree. Therefore, both of these methods still show good performances for 

simulated estimators.  

 

7.3 Conclusions 

From the numerical simulation results, estimates of the systematic errors can be 

determined by the local kinematic error model and the Gaussian Process model. The 

results obtained from the preliminary simulation analysis of both simulations presented 

above show that the evaluated errors give similar results to those from the real physical 

CMM measurements. The reliability of the local kinematic error model and GP model 

depend on the validity of the assumptions used in the underlying theory and on the 

accuracy of the mathematical simulations. By means of the evaluation of error 

compensations and the development of fast precision performance, therefore, the local 

kinematic error model and the GP model can be applicable with high precision and 

accuracy simulators for coordinate measurements. 

 

7.4 Discussions 

This study set out with the aim of assessing the kinematic errors of the CMM in the part 

of numerical simulations designing as a real physical CMM performance. For 

comparison purposes, the most interesting finding is that the error evaluations from the 

local kinematic error model, the GP model and the actual physical CMM measurements 

using a ball plate as an artefact are different at the low degree.  

  It can therefore be assumed that the GP model and the local kinematic error 

model generate the errors compensation similarly to the real physical CMM calibrations. 

In accordance with the percentage error results based on the physical CMM 

measurements, the GP model performs slightly better than the local kinematic error 

model. Nonetheless, both local kinematic error model and GP approach, based upon the 

real CMM performance, have the difference of percentage errors at the low level which 

can be assumed that they are essentially the same as the actual CMM measurement. 
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 The inconsistency may be due to the insufficient information when the simulated 

CMM sampling points are small, the GP approach suffers from this case meaning more 

uncertainty, but to a less degree. While the local kinematic error model is capable of 

performing with a small sample point due to concentrating only on the particular region. 

 In the simulations, we observed that the numerical simulation process of the GP 

model makes the mathematical calculations less-time consuming comparing to the local 

kinematic error model. The numerical simulation process, as shown in Chapter 4, the 

local kinematic error model has calculated under more complicated mathematical 

calculations than the GP approach e.g. Cheby-shev polynomial approach, Gauss-

Newton algorithm, QR factorisation approach, and Jacobian matrix etc. In contrast to 

the GP method, it has basically used a GPML toolbox as a demonstrated matlab code as 

well as providing a mean and covariance functions to train the simulated sampling data. 
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Chapter 8 Conclusions and recommendations for future work 

 

This thesis comprises four parts. The first part is divided into: “Introduction” (Chapter 

1), “Literature Review” (Chapter 2), and “CMM verification approach” (Chapter 3). The 

second part is divided into: “Simulation of CMM local, kinematic errors model” 

(Chapter 4) and “Simulation of Gaussian Process model” (Chapter 5), which evaluate 

the uncertainty and calculate the errors of the CMM measurements; the validation of the 

simulations, “CMM calibration using a ball plate” (Chapter 6), is also examined here. 

The third part – “Data analysis” (Chapter 7) – is focused on the comparative case study 

between the simulations and the experimentation. The final part – “Conclusions and 

recommendations for future work” (Chapter 8) – provides the conclusions of this study, 

including contributions and recommendations for future research. In this chapter, we 

draw distinctive conclusions of a comparative performance study, highlight the 

contributions to knowledge, and recommend work for future studies.  

 

8.1 Conclusions 

Within this thesis, there are two approaches: local, kinematic error simulation and a GP 

model to improve the precision and accuracy of coordinate measurements using 

numerical simulations has been investigated. In order to achieve the objectives of better 

characterisation and uncertainty evaluation, the simulation and experimental results are 

implemented, analysed, compared, and discussed in the previous chapters. The 

important conclusions can be summarized as below: 

 Prompted by the continuingly rising demand for measurement efficiency and 

accuracy in a rapid developing manufacturing industry, CMM and its related 

technologies has become a central research field. Among other approaches, the 

numerical simulation is a category of CMM tool that enables the planning of an 

optimal inspection path programme and the error analysis and uncertainty 

evaluation associated with the CMM measurement results. There are two 

approaches to numerical simulations: a local, kinematic error model and a GP 

model have been generated for a comprehensive integrated coordinate system in the 

existing solutions. 

 Kinematic errors, errors in the machine components due to imperfect manufacturing 

or alignment during assembly, have been derived. There are 21 sources of CMM 
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kinematic errors consisting of a positioning error (one positional deviation in the 

direction of motion along three axes), straightness errors (two linear deviations 

orthogonal to the direction of motion along three axes), rotational errors (three 

angular deviations: roll, pitch, yaw along three axes), and squareness errors (three 

squareness errors between pairs of axes). 

 A local, simplified kinematic error model has been enabled to improve the 

capability and CMM performance to simulate the measurement process and error 

compensation and uncertainty evaluation without the need to perform a large 

number of the measurement in a real physical CMM measurement. The numerical 

simulation procedures comprise a Gauss-Newton algorithm implemented for 

solving the linear least-square problem. QR factorisation can solve the problem of 

possible rank deficiency, while parametric error components can be generated 

based on the Cheby-shev polynomial and uncertainty is assessed by using a 

Jacobian matrix.   

 The proposed GP model for modelling and assessing the parametric errors is 

presented. A GP method provides a probability distribution over functions which 

help in assessing the kinematic errors in the measurements of a CMM. A covariance 

function is defined to incorporate more specific prior distributions of the model. 

Our goal here is to study the GP model reconstruction in terms of error 

compensation and uncertainty evaluation, which helps to assess the kinematic errors 

better than traditional methods.   

 In this thesis, both a theoretical approach in the case of simulations and experiments 

with a real CMM calibration study, enabling new approaches to improve 

performance for error and uncertainty evaluation, have been compared. As can be 

seen, the GP model can predict the distribution over function to perform the error 

assessment and uncertainty evaluation with fewer mathematical algorithms to 

calculate than the local, kinematic error model. However, both models show good 

results of the evaluation leading to confirmation of their effective performance 

regarding the quality of the inspection path. 

 

8.2 Contributions to knowledge 

A number of contributions to knowledge have been enabled in this work, which are 

summarized below: 
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 Mathematical model development for making effective choices regarding the 

local, kinematic error model and GP model is performed and formulated; this is 

verified by particular kinematic errors of the CMM measurements, presenting 

high accuracy and reliability of the error and uncertainty evaluation 

performance. 

 The improvement achieved by the proposed method over the traditional 

approaches between the simulated datasets and actual CMM data measurements 

has been demonstrated. 

 The numerical simulations with a well-designed strategy providing accurate 

estimates of the CMM kinematic errors using only a nominal CMM calibration 

with a ball plate have been validated and evaluated in both approaches. 

 The influences of kinematic errors affected through the measurement process of 

the CMM on the calibration have been investigated. 

   

8.3 Recommendations for future work 

An investigation within this thesis intends to provide a complete effective approach to 

improve the techniques for error and uncertainty of CMM measurement evaluation. To 

make the most effective use of the current research, there are still certain areas that have 

not been thoroughly investigated due to the limitations of time and available facilities. 

Therefore, the following suggestions for future improvements are made:  

 The uncertainty evaluation from the physical CMM measurements is needed in 

assessment and comparison to the simulations for a validation. 

 The uncertainty evaluation of the GP model is required. 

 More specific issues of the local, kinematic error model and the GP model for better 

completed challenging and accurate model, for instance, the three-dimensional and 

four-dimensional, can be further performed in the model in relation to the CMM 

kinematic errors evaluation. 

 Further measurement strategies and other different types of reference artefacts (e.g. 

hole plates, step gauge, etc.) will be additional areas for study, with particular 

consideration of numerical stability. Consideration of thermal errors model will also 

be interesting for investigation due to their importance. 

 An application of a spline function embedded with the model approach of kinematic 

errors evaluation can be further investigated for a better accurate performance of the 

model. 
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Appendix 1: 

Summary of Facilities in the Research 

 

Facilities Performance Specifications Calibration Equipment 

CMM 

Range: X x Y x Z (1200 x 1000 x 700) mm 

Uncertainty (k=2):  

√(0.52)2 + (1.4𝑥10−3𝑥 𝑙)2 µm 

l being indication length of the CMM in mm 

Accuracy: 0.6 µm + L/600 

Software: Quindos 6  

Mfr. : Brown & Sharpe 

Model : PMM-C700P 

S/N. : 161 

Ball plate 

Range: up to 620 x 620 mm 

Number of Spheres : 25 

Uncertainty (k = 2):  

√(0.26)2 + (1.9𝑥10−3𝑥 𝑙)2 µm 

l being length of the ball plate in mm 

Model : KOBA-check® 

Sphere Plate 

 

Digital 

Thermometer 
Uncertainty (k = 2) : 0.02 

o
C, 1.1 %RH 

Mfr. : AHLBORN 

Model : H06100193 

S/N : 2390-8 
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Appendix 2: 

Part of the Simulation: Local, kinematic error model 

% ---------------------------------------------------------------------

---- 
% R_BALLPLATE_1.M  Simulation of a ball plate calculation of kinematic 

error 
%                  model. 
% 
%                  Measurements with a number of probes. 
%                  Three plate positions, 6 probes. 
%                  Plate positions on a diagonal 
% 
% 
% v1A 2012-07-27  
% v1A 2009-07-27   ABF 
% Author A B Forbes, NPL, www.npl.co.uk. (c) Crown copyright. 
% ---------------------------------------------------------------------

---- 
clear all: 
clc; 

  
write_fig = 0; 

  
rand('seed',0); 
   format compact; 

    
% Assign ballplate.   
   Y = ballplate3; 

    
   nY = size(Y,1); 

    
% CMM dimensions in metres.   
   Xdim = [0 1; 0 1; 0 1]; 

    
   yx = Y(:,1); 
   yy = Y(:,2); 

    
   yyy = Y'; 
   yyy = yyy(:); %[x1 y1 z1 x2 y2 z2...]' 3nYx1 

    
% Ballplate locations in three positions. 
   X1 = [ yx yy    0.5*ones(nY,1)];  %z=0.5 
   X2p = [yx-0.5 zeros(nY,1) yy-0.5]*[1 -1 0; 1 1 0; 0 0 

sqrt(2)]/sqrt(2); 
   X2 = X2p+0.5; 
   X3p = [yx-0.5 zeros(nY,1) yy-0.5]*[1 1 0; -1 1 0; 0 0 

sqrt(2)]/sqrt(2); 
   X3 = X3p+0.5;  

    
% Order of polynomials; translation, rotation    
   nt = 2; 
   nr = 3; 

    
   a = zeros(9*(nt+nr),1); 
   na = length(a); 
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% Find transfromation parameters tt.    
   %[x01,R01,X1h]=lsptm(Y,Y); % 
   [x02,R02,X2h]=lsptm(X2,Y); 
   %[x03,R03,X3h]=lsptm(Y,Y); 
   %R0 = [R02;R01;R03]; 
   tt = [x02;zeros(3,1)];%;x02;zeros(3,1)];%x03;zeros(3,1)]; 
   nT = 1;    
   R0=R02; 

    
% Probe offsets.    
   PO = [ 0 0  0.05;  
          0 0 -0.05; 
          0.05 0 0;  
         -0.05 0 0;  
          0 0.05 0; 
          0 -0.05 0]; 

    
   nP = size(PO,1);    

       
   p = PO'; 
   p = p(:); 

    
% Total set of model parameters.    
   aa = [yyy;tt;a;p]; 
  %load aa1g;   
  %aa(3*nY+1:3*nY+6*nT)=tt; 
   naa = length(aa); 

  
% Index specifying measurement strategy.    
   IX = [(1:nY)' 1*ones(nY,1) 3*ones(nY,1); 
         (1:nY)' 1*ones(nY,1) 4*ones(nY,1); 
         (1:nY)' 1*ones(nY,1) 5*ones(nY,1); 
         (1:nY)' 1*ones(nY,1) 6*ones(nY,1)]; 
       % (1:nY)' 3*ones(nY,1) 3*ones(nY,1); 
       % (1:nY)' 3*ones(nY,1) 4*ones(nY,1); 
       % (1:nY)' 3*ones(nY,1) 5*ones(nY,1); 
       % (1:nY)' 3*ones(nY,1) 6*ones(nY,1)]; 

           
   mX = size(IX,1); 

    
% Approximate CMM measured coordinates.   
   X0 = [X2;X2;X2;X2];%X3;X3;X3;X3]; %corresponding to IX 

  
   wX = ones(mX,3); 
   [f0] = fgfbpkempp(aa,nY,nT,nP,X0,IX,wX,R0,Xdim,nt,nr); 
   X0 = X0-reshape(f0,3,mX)'; 
   sigma = 0.5e-6; 
   error=ones(mX,1)*[1e-5 0 0]; 
   Xa=X0+error+sigma*randn(mX,3); 

    
% Probe qualification. 
    y0 = [ 0.5 0.5 0.5 ]'; 

     
    nY0 = 1; 

     
    IX0 = [ ones(nP,1) (1:nP)' ]; 

     
    X0b = ones(nP,1)*y0'; 
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    wX0 = ones(nP,3); 

     
    aa0 = [y0;a;p]; 
     [fpc0, Jpc ] = fgfpqkempp(aa0,nY0,nP,X0b,IX0,wX0,Xdim,nt,nr); 

     
% Exact data for probe qualification.     
    X0b = X0b - reshape(fpc0,3,nP)'; 

     
    Xb=X0b+sigma*randn(nP,3); 

     
     tol = 1e-7; %% 
   normp = 1; %% 
   niter = 1; %% 

   
   while niter < 10 & normp > tol  %% 
   niter 
% Determine exact measurements.   

    
   [f,J] = fgfbpkempp(aa,nY,nT,nP,Xa,IX,wX,R0,Xdim,nt,nr); 
   normf=norm(f) 

   
   if niter==1 
       f1=f; 
   end 

    
    [ fpc, Jpc ] = fgfpqkempp(aa0,nY0,nP,Xb,IX0,wX0,Xdim,nt,nr); 
     normfpc=norm(fpc) 

      
      [mpc,npc] = size(Jpc); 

       
% Jacobian matrix for ballplate measurements and probe qualification.       
      Ja = [zeros(3*mX,3) J; ... 
           Jpc(:,1:3) zeros(mpc,3*nY+6*nT) Jpc(:,4:npc)]; 

      
    d=[f;fpc];   %% 

    
       pa = -lsqr(Ja,d);   

       
    aa = aa + pa(4:naa+3);  %% 
    aa0 = [y0;aa(3*nY+6*nT+1:naa)]; %% 

     
    normp = norm(pa)  %% 
    niter = niter + 1; %% 
    end      

  
  %save aa1 aa; 

   
  reshape(aa(1:3*nY),3,nY)' 
  reshape(aa(3*nY+1:3*nY+6*nT),3,2*nT)' 
  reshape(aa(3*nY+6*nT+1:naa-3*nP),nt+nr,9)' 
  reshape(aa(naa-3*nP+1:naa),3,nP)' 

   
% Constraint matrices.  

  
% All 18 functions zero at the origin and 
% dxy(1) = dxz(1) = dyz(1) = 0; 
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  Ca = zeros(21,na); 

   
  for k = 1:9 
      Ca(k,(k-1)*nt+1) = 1; 
      Ca(k+9,(k-1)*nr+9*nt+1) = 1; 
  end 
  c1 = cheb2(1,nt,0,1); 

   
  Ca(19,     (nt+1:2*nt)) = c1; 
  Ca(20,   (2*nt+1:3*nt)) = c1; 
  Ca(21,   (5*nt+1:6*nt)) = c1; 

  
    Ka = [zeros(21,3+3*nY+6*nT) Ca zeros(21,3*nP)]; 

     
    naa = size(Ja,2); 

     
% Constrain t1 to be zero.   
  Ct = zeros(6,naa); 
  Ct(1:6,3*nY+4:3*nY+9) = eye(6); 

    
   Ka = [Ka; Ct]; 

    
% Scale of Y. 

  
  Cy = zeros(1,naa); 
  Cy(1,4) = 1; 
  Cy(1,4+24) = -1; 

   
   Ka = [Ka; Cy]; 

    

   
% Constrain the centroid of p. 

  
  Cp = zeros(3,naa); 
  for h = 1:nP 
     Cp(:,naa-3*h+1:naa-3*h+3) = eye(3); 
  end 

     
  Ka = [Ka; Cp]; 

   
  [mK,nK] = size(Ka'); 

   
% Determine the orthogonal constraint matrix.   
  [Q,RKa]=qr(Ka'); 

   
  QK = Q(:,nK+1:mK); 

   
% Jacobian matrix for the constrained parameters.   
  Jred = Ja*QK; 

  
% Assign sigma for random noise (in metres)  
% 
% 0.5e-6 is 0.5 micron 
  % sigma = 0.5e-6;  

   
% Uncertainty matrix for fitted parameters. 
   K=36; %sum(diag(S)>1.5); 
  [U,S,V] = svds(Jred, K); 
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   Z1=V*inv(S)*inv(S)*V'; 
  Vaa = sigma*sigma*QK*Z1*QK'; 

   
   uaa = sqrt(diag(Vaa)); 

    
   VY = Vaa(4:3*nY+3,4:3*nY+3); 

    
   [VYzs,VYp] = xux2uzsp(Y,VY); 

    
   uyy = sqrt(diag(VYzs)); 

    
   Vap = Vaa(3*(nY+1)+6*nT+1:naa,3*(nY+1)+6*nT+1:naa); 

  
   uap = sqrt(diag(Vap)); 

    
% Uncertainties associated with CMM error at random locations. 

  
   Xr = 0.1+ 0.8*rand(200,3); 

   
  IXr = ones(200,1); 

   
  wXr = ones(200,3); 

   
   naaa=length(aa); 
  aa0 = aa(3*nY+6*nT+1:naaa); %% 

   
  [fer,Jer] = fgkempp(aa0,Xdim,nt,nr,Xr,IXr,wXr); 
   Ver = Jer*Vap*Jer'; 

   
   uer = sqrt(diag(Ver)); 

   
   [VEr,VEpr] = xux2uzsp(Xr,Ver); 

    
   uerzs = sqrt(diag(VEr)); 

   
   Uerzs =  reshape(uerzs,3,200)'; 

  
% Uncertainty calculations for accurate ball plate and probe vectors. 

  
  naa = size(Ja,2); 
  Kaa = zeros(3*(nY+nP),naa); 

   
  Kaa(1:3*nY,4:3+3*nY) = 10*eye(3*nY); 

   
  Kaa(3*nY+1:3*nY+3*nP,naa-3*nP+1:naa) = 10*eye(3*nP); 

   

   
  Jreda = [Ja;Kaa]*QK; 

   
  [U,S,V] = svds(Jreda, K); 
   Z1=V*inv(S)*inv(S)*V'; 
  Vaaa = QK*sigma*sigma*Z1*QK'; 

    
  uaaa = sqrt(diag(Vaaa)); 
  Vaap = Vaaa(3*(nY+1)+6*nT+1:naa,3*(nY+1)+6*nT+1:naa); 
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  [fer,Jer] = fgkempp(aa0,Xdim,nt,nr,Xr,IXr,wXr); 
  Ver = Jer*Vaap*Jer'; 

   
  uer = sqrt(diag(Ver)); 

   
  [VEar,VEap] = xux2uzsp(Xr,Ver); 

   
   uearzs = sqrt(diag(VEar)); 

  
   Uearzs =  reshape(uearzs,3,200)'; 
  

 

%% Error Calculations 

  
write_fig = 0; 

  
e1=reshape(f1,3,2*18)'; %initial error after 1st iteration 
e=reshape(f,3,2*18)';   %final error after 1st iteration 
e0=reshape(f0,3,2*18)'; %error before 1st iteration 
t=1:2*18; 

  
plot(t, e(:,1),'b',t,e1(:,1),'r'); %pause; 

  
plot(t, e(:,1),'b',t,e1(:,1)-1e-5,'r') 

  
%% prediction 
n = 3*nY+6*nT+9*(nt+nr)+3*nP; 
a  = aa(3*nY+6*nT+1:n); 
[fp1] = fgfbpkempp(aa,nY,nT,nP,X0,IX,wX,R0,Xdim,nt,nr); %X0 with probe 

er removed, not the raw X0 
%[fp2] = fkempp(a,Xdim,nt,nr,Xa,IX(:,3),wX); 
ep1=reshape(fp1,3,2*18)';    %ep1=e 
%ep2 = reshape(fp2,3,18)'; 
for i=1:3 
%plot(t, e0(:,i),'y',t, e1(:,i),'b',t,ep1(:,i),'g',t,ep2(:,i),'r') 
%plot(t, e1(:,i),'g',t,e(:,i),'b',t,ep1(:,i),'r'); 

  
plot(t, e1(:,i),'g',t,-ep1(:,i),'r'); 
axis auto 
%axis([0 200 0 2e-6]); 
disp('press Return to continue'); pause; 
end 

  
m=2000; 
t=1:9; 
Xp=X0-ep1*m; 
er=(Xa-X0); %simulated errors.  X0,Xa from bp*.m programs. X0:true; 

Xa:simulated measurements 
Xc=X0+m*er; 

  
figure, hold on 
box on 
plot(X0(t,1),X0(t,3),'*'); 
plot(Xc(t,1),Xc(t,3),'og'); 
plot(Xp(t,1),Xp(t,3),'+r'); 
axis([0.35 0.6 0.35 0.65]); 
hold; 
xlabel('X (m)'); 
ylabel('Z (m)'); 
title('X axis positioning error (magnified 2000 times)'); 
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%title('Z axis rotational errors (magnified 2000 times), Z=0.5m)'); 

  
pause; 
figure, hold on 
box on 
plot(X0(t,2),X0(t,3),'*'); 
plot(Xc(t,2),Xc(t,3),'og'); 
plot(Xp(t,2),Xp(t,3),'+r'); 
axis([0.4 0.6 0.35 0.65]); 
hold; 
xlabel('Y (m)'); 
ylabel('Z (m)'); 
title('Y axis straightness error (magnified 2000 times)'); 

  
pause; 
figure, hold on 
box on 
plot3(X0(t,1),X0(t,2),X0(t,3),'*b') 
plot3(Xc(t,1),Xc(t,2),Xc(t,3),'og') 
plot3(Xp(t,1),Xp(t,2),Xp(t,3),'+r') 
axis([0.35 0.6 0.35 0.65]); 
xlabel('X (m)'); 
ylabel('Y (m)'); 
zlabel('Z (m)'); 
title('Z axis yaw errors (magnified 2000 times)'); 
hold 
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Appendix 3: 

Part of the Simulation: Gaussian Process model 

 

clear all, close all ,clc 
write_fig = 0; 

  

  
%% T1 
n = 9; 

  
% a) Assign ballplate.  

  
  % Inputs 
   Y = ballplate2;   
   nY = size(Y,1); 

    
  % CMM dimensions in metres.   
   Xdim = [0 1; 0 1; 0 1]; 

    
   yx = Y(:,1); 
   yy = Y(:,2); 

    
   yyy = Y'; 
   yyy = yyy(:); 

    
  % Ballplate locations in three positions. 
   X1 = [ yx yy    0.5*ones(nY,1)]; 
   X2p = [yx-0.5 zeros(nY,1) yy-0.5]*[1 -1 0; 1 1 0; 0 0 

sqrt(2)]/sqrt(2); 
   X2 = X2p+0.5; 
   X3p = [yx-0.5 zeros(nY,1) yy-0.5]*[1 1 0; -1 1 0; 0 0 

sqrt(2)]/sqrt(2); 
   X3 = X3p+0.5; 

    
  % Plot Figure 1: 3x3 matrix   
   X = X1(:,1); 
   Y = X1(:,2); 

  
   figure, hold on 
   plot(X,Y,'o') 
   title('{\bf Figure 1: Training data X- and Y-coordinates in Location 

X1}')  
   xlabel ('X (mm)'), ylabel('Y (mm)') 
   axis ([0.35 0.65 0.35 0.65]) 
   pause(1) 

  

  
% b) Assign sigma for random noise (in m.)  
  % 1.0e-6 is 1 micron 

   
   sigma_n = 0.01; 
   format compact  
   randn('seed',0); 
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   ii = 2; 
   jj = 2; 
   kk = 2; 

   
  %noisex = 

[0.01*ii;0.01*ii;0.01*ii;0.01*jj;0.01*jj;0.01*jj;0.01*kk;0.01*kk;0.01*k

k] 
   noise = gpml_randn(sigma_n,nY,1); 

   
  % Calculate adding noise 
  for i = 1:9 
    xx(i) = (noise(i)*0.1*0.2)/max(noise); 
  end 
  adjnoise = xx'; 

  
% c) Assign y (y is the random errors; unit: mm) 
  y = adjnoise; 

   
  XT = X + adjnoise; 
  YT = Y + adjnoise; 
  x = [XT YT]; 

  
% d) Plot Figure 2: Y versus X including random errors 
  figure, hold on 
  plot(XT,YT,'o') 
  title('{\bf Figure 2: Plot of Y versus X including random errors}')  
  xlabel ('X (mm)'), ylabel('Y (mm)')  
  axis ([0.35 0.65 0.35 0.65]) 
  hold on 
  pause(1) 

   

   
  %% T2 

   
% e) Set the initialization steps 
  % Mean function 
    meanfunc={@meanZero}; 

  
  % Likelihood function 
    likfunc = @likGauss;  

  
  % Covariance function 
    covfunc=@covSEiso; % choosing SE covfunc 

  
  % Inference function 
    hyp.cov = [0;0];  
    hyp.mean = [];  
    hyp.lik = log(0.1); % If we do not have the optimal parameter 

values,  
                        % we employ the minimise function based on CG 

method 

  
    hyp = minimize(hyp, @gp, -500, @infExact, meanfunc, covfunc, 

likfunc, x, y); 
                        % to get the optimal parameters 

  
% f) Estimate the whole domain: z (unit: mm) 
    z1= 0.4:0.01:0.6; z1 = z1'; 
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    z2= 0.4:0.01:0.6; z2 = z2'; 
    z = zeros(441,2); 
    for i=1:1:21; 
        for j=1:1:21; 
            z((i-1)*21+j,1)=z1(j); 
            z((i-1)*21+j,2)=z2(i); 
        end 
    end 

  
% Plot Figure 3: X-,Y-,Z-coordinates with zero mean regression 
[m s2] = gp(hyp, @infExact, meanfunc, covfunc, likfunc, x, y, z); 
                                                    % m is the 

estimation 
                                                    % s2 is the 

variance 
z_temp0=reshape(m,21,21); 
i=0.4:0.01:0.6; j=0.4:0.01:0.6; 
figure; 
mesh(j,i,z_temp0) 
title('{\bf Figure 3: Training data X- and Y-coordinates (Mean Zero)}')  
xlabel ('x (mm)'), ylabel('y (m)'), zlabel('Errors (mm)') 
pause(1) 

  
%% T3 

  
meanfunc = {@meanMylinear_2D}; 
likfunc = @likGauss; 
covfunc = {@covSEiso}; 
hyp.cov = [-2.013712762984104;-4.082864313671445];  
hyp.mean = [-0.179669833204103;0.778362671986138;-0.863234577981942];  
hyp.lik = -4.485943839204587; 

  
hyp = minimize(hyp, @gp, -500, @infExact, meanfunc, covfunc, likfunc, 

x, y); 
                               % -500 can be changed to -5000 if 

necessary 
                               % get the optimal parameters 

  
% Plot Figure 4: X-,Y-,Z-coordinates with nonzero mean                                
[m s2] = gp(hyp, @infExact, meanfunc, covfunc, likfunc, x, y, z); 
z_tempmx = reshape(m,21,21); 
i = 0.4:0.01:0.6; j = 0.4:0.01:0.6; 
figure; 
mesh(j,i,z_tempmx) 
title('{\bf Figure 4: Training data X- and Y-coordinates (Mean 

Linear)}')  
xlabel ('x (mm)'), ylabel('y (m)'), zlabel('Errors (mm)') 
pause(1) 

  
%% T4 
% Error Calculation 

  
errors = abs(z_temp0 - z_tempmx); 

  
figure; 
mesh(j,i,errors) 
title('{\bf Figure 5: Errors}')  
xlabel ('X (mm)'), ylabel('Y (mm)'), zlabel('Errors (mm)') 
pause(1) 
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Appendix 4: 

Part of the Simulation: Error Comparisons 

 

% Comparison between the local kinematic error model, GP model, and 
% Experiment 

  
%Experiment from CMM measurement using a ball plate:unit m. 

  
Xe = [0.000006922632   0.379402548 
      0.000005095517   0.388789432 
      0.000003309287   0.389297331 
      0.000001580293   0.490356429 
      0.000001049189   0.500484984 
      0.000006911419   0.501178156 
      0.000005093238   0.597454154 
      0.000003327074   0.595485484 
      0.000001586738   0.604187517]; 

  
% Local kinematic error model: unit m. 

  
Xl = [0.0000040021350965496   0.398473436911506 
      0.0000047010216799123   0.398778665263544 
      0.0000053977379546273   0.399299664074415 
      0.0000039863552288421   0.500039501421911 
      0.0000046958953204060   0.500958638571635 
      0.0000054092190130473   0.500164320182017 
      0.0000039814982232220   0.600002286960399 
      0.0000047004785837555   0.600433343017248 
      0.0000054110551496922   0.600309271707133]; 

  
% GP model: unit m. 

  
Xg = [0.000005900052321235   0.389402464616161 
      0.000004695421843564   0.398789432126833 
      0.000003380998511044   0.399297331201631 
      0.000001666197099004   0.500356429388448 
      0.000003292403033542   0.500652635669063 
      0.000005400359572624   0.500215671160708 
      0.000004680076346875   0.599736103814207 
      0.000003220329300165   0.601802440235066 
      0.000002106791591668   0.599357015828094]; 

  
figure, hold on 
box on 
plot(Xe(:,2),Xe(:,1),'r*','linewidth',2); 
xlabel('X (m)'); 
ylabel('Z (m)'); 
title('Errors from the CMM measurements : 

(unit:m)','fontweight','bold','fontsize',11'); 
axis([0.35 0.65 0.0000005 0.000008]); 
pause(1) 

  
figure 
plot(Xl(:,2),Xl(:,1),'og','linewidth',2); 
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box on 
xlabel('X (m)'); 
ylabel('Z (m)'); 
title('Errors from local kinematic model : 

(unit:m)','fontweight','bold','fontsize',11'); 
axis([0.35 0.65 0.0000005 0.000008]); 
pause(1) 

  
figure 
plot(Xg(:,2),Xg(:,1),'+b','linewidth',2); 
box on 
xlabel('X (m)'); 
ylabel('Z (m)'); 
title('Errors from GP model : 

(unit:m)','fontweight','bold','fontsize',11'); 
axis([0.35 0.65 0.0000005 0.000008]); 
pause(1) 

  
figure, hold on 
box on 
plot(Xe(:,2),Xe(:,1),'m*','linewidth',2); 
plot(Xl(:,2),Xl(:,1),'og','linewidth',2); 
plot(Xg(:,2),Xg(:,1),'+b','linewidth',2); 
axis([0.35 0.65 0.0000005 0.000008]); 
xlabel('X (m)'); 
ylabel('Z (m)'); 
title('A comparison of errors : 

(unit:m)','fontweight','bold','fontsize',11); 
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Appendix 5: 

 

Data from the Certification of the CMM calibration using a ball plate 

Ball No. 
X Y Z 

(mm) (mm) (mm) 

1 0.00000 0.00000 0.00000 

2 133.00290 -0.00227 0.02431 

3 266.00507 -0.00105 0.03647 

4 399.01133 -0.00135 0.02500 

5 532.01177 0.00000 0.00000 

6 -0.02315 133.01424 0.03210 

7 132.97946 133.01362 0.03260 

8 265.98404 133.01369 0.01655 

9 398.98772 133.01312 0.01506 

10 531.98615 133.01594 0.01290 

11 -0.02972 266.02582 0.02500 

12 132.97166 266.02073 0.05020 

13 265.97498 266.02321 0.01598 

14 398.97817 266.02608 0.01873 

15 531.97721 266.02716 0.01955 

16 -0.03190 399.03716 0.02817 

17 132.94964 399.03716 0.04030 

18 265.94964 399.03716 0.02091 

19 398.94976 399.03716 0.04080 

20 531.94935 399.03959 0.04205 

21 -0.06060 532.04455 0.00000 

22 132.94081 532.04455 0.02600 

23 265.94029 532.04455 0.05323 

24 398.93874 532.04455 0.06065 

25 531.93735 532.04455 0.04558 

 


