An Evaluation of
Software Process Modelling

in Practice

Keith Thomas Phalp BSc, PGCE, MSc

In part fulfilment of the degree of Doctor of Philosophy

Acknowledgements

Special thanks to Martin Shepperd for making, first software metrics, and then
process modelling appear to be interesting and worthwhile areas of study, for
believing in the worth of my ideas, for his understanding and sympathetic
supervision, for the many words of wisdom, and mostly for being a good friend.

Thanks to Darrel Ince for his enthusiasm for my work, his support and his useful
comments.

Thanks to Shar1 Lawrence Pfleeger, for her many efforts to turn my thesis from a
rambling piece of prose, into a piece of science.

Thanks to my colleagues at Bournemouth University, especially to Steve Webster
for his inspiration and enthusiasm for understanding software engineering, and to
Liguang Chen and Andy Farnell for intelligent comments - and for providing an
informed sounding board for my ideas. To David Knight and Orville Jones for
granting me the opportunity to embark on my research, and again to Orville Jones
for getting me into software engineering in the first place.

Thanks to all those at the collaborating establishment who participated 1n the study
of process. Notably Dave Symes for his vision, numerous ideas, help with
organization, and his general backing and support throughout the on-site work,
Herman Desmier for supporting the investigation of the launch process, the instance
model project mangers, and especially Howard Whalley, and Antony Spilman tfor
taking time not just to co-operate in the investigation but to make sure that I was
getting the information that I needed, and that 1t was as accurate as they could make
1t.

Thanks to Peter Henderson for his patience and understanding.

Thanks to Chris McManus, Joel Chapman and Stuart Nicholson for helping me to
keep my sanity, and to my parents for their continued support, sympathy and
understanding.

Finally thanks to Michelle, for getting me through the last lap of the write-up, and
for putting up with me.

Contents

1. Statement of the Problem........ccooiiiiie, 1
L1 Backgroundcoooviiiiiiiiii et 1
1.1.1 Difficulties with Software Development........................ 1

1.1.2 Panaceas and Process Models.........coooiiiiiiiiiiiiinin... 2

1.2 AiImS Of thi1S I1€SCarCheveiiiii i it 2
1.2.1 Process Modelling in Practicecoooiiiiiiiiiiiiiiiin... 3

1.2.2 Making Process Modelling More Effective 3

1.3 Scope of the ResearCh.......ccoireiiiiiii e, 4
1.3.1 Business Process Modelling............ccoooviiiiiiiiiiiia, 4

1.3.2 Business Process Re-engineering (BPR) ...l S

1.3.3 WOrKEloW ..o S

1.3.4 Software Process Modelling.............ooooiiiiiiiiil, 6

1.3.5 Process Support Tools and Environments e 6

1.4 Contextof the Study ..o e e, 7
1.4.1 The Collaborating Organizationc.ccoiviiiiiiinnn.... 7

1.4.1 The Process to be Investigatedcoooiiiiiiiiiiiiiiinn. .. 7
1.50verviewof the WorK ... e, 3
1.5.1 Exploratory Work.......coooiiiii i, 3

1.2 Later WOTK ..o et 9

RNV 000 00t | o 2 U 9
P B\ (5 ¢:110) (o3 ST (S 11
2.1 The promise of software process modelling............ccoceeeenie. 11
2.2 Influential Work ..o i, 12
2.2.1 Lifecycle Models ..o 12

2.2.2 Process Programmingc.ccooviiiiiiiiieiiiieiiieennnnnnn. 13

2.2.3 Integrated Project Support Environments.................... 15

2.3 Related WoOrK .ot 16
2.3.1 Process Support TOOISooiiiiiiiiii i, 16

2.3.2 Process Assessment and Capability Evaluation 18

2.3.3 Software Measurement (MetriCS)...coiviiiiniirinineenenennnnn 20

2.4 CUurment WOTK ..o et 22
2.4.1 Classification Schemes and the Meta-Process.............. .22
2.4.1.1 Classification Schemes......cccoovviiiiiiiiinnnn.. 22

2.4.1.2 Meta-Process. ...cooviiiiiiiiiii i 24

2.4.1.3 Categories and the Meta-Process 24

242 Importance of Humans......... ..., 24

2.4.3 Multi-Paradigm Approaches..........covviiiiiiiiiiiiinn... 26

2.4.4 Pragmatic Approaches.......oovviiiiiiiiiiiiiii e, 27

2.5 Problems, Issues and Concernscoooeiiiiiiiiiiiiiiiiiiinnn.n. 28
2.5.1 Current Issues 1n Process Modelling 28

2.5.2 Critique of the 'state of the art'coooiiiiiiiiiiinnnn.... 29

2.5.2.1 Positive Points / Progressoovvvviiiiiininnn.... 29

2.5.2) Negative Points / Concemnsccoovvvevvinennnn... . 30

2.5.3 Need for further work ...t 30

2.6 Work of a similar nature to that proposed by the research............. 31

3. Research Approachcceeeevieiiniiiiiiiiiii i, 33

3.1 ReSearch MethodS . ..vuueeeeriiiiiieeeeeeeeeeeieeeeeiianeeteeeeaecasenennnn. 33
3.1.1 Experiments and Quasi-Experimentsocoeeeen. 33
3.1.1.1 Reliability.coooviiee e 34
3.1.1.2. Validity..ovoiiii i, 35
3.1.1.3 Quasi-Experimentscoeveiiiiiiiiiiieennnnn. 35
Pre-Experimental Designs.................oooollL. 36
Quasi-Experiments.........ccoooiiiiiiiiinninnnnnnnnns 36

3.1.1.4 Appropriateness of Experiments for our
15170) ¢ . S P 37
3.0 SUIVEY Sttt it c et r e e anans 37
3.1.3 Case StudICS...ccceviiiiiiiiiiiiiiiiiiiiiciirrrer e aaaan, 37
3.1.3.1 Characteristics of the Case Study Method........ 38
3.1.3.1.1 Case Study Design....................... 38
3.1.3.1.2 Conducting the Case Study............. 39
3.1.3.1.3 Analysis of Case Study Evidence...... 40
3.1.3.2 Pilot Case Studiescooviiiiiiiiiiiiiinninn.... 41
3.1.3.3 Should Case Studies be Representative?.......... 41
3.1.3.4 A More Quantitative VIEWcocoiiiiiiiiennnnn... 42
3.1.3.5 Case Studies: Summary......ccccceveveiininnenen. 43
3.1.4 Field Study / Ethnographyccooiiiiiiviiiiiiinnn... 44
3.1.5 Industry as Laboratory ..o 44
3.1.6 Approach Taken by this ResearCh...........cc.ccooiinnie. 45
3.2Modelling Methods. ..o e 45
3.2.1 Comparison of Process Modelling Techniques.............. 45
3.2.1.1 Role Activity Diagrams.ccooiiiiiiiiitn. 46
3.2.1.2 CSP o e 48
3.2.1.3 Data Flow Diagrams.......ccccoceeiiiiiiiiiininnnnen. 49
IDEFO. .. e, 49

3.2.1.4 Summary: Features of the modelling

TeChNIQUES . o i it e 49
3.2.2 Our Choice of Notation(s) ...covviriiiiniiiiiiiiiiinennennn. 50
3.2.2.1 The GUIDE Framework...........ccooiviiiiai..... 50
3.2.2.2 Exploratory Workccoiiiiiiiiiiiiiiiiiaan.nn, 51
3.2.2.3 Later (Instance) Work.......coovviiiiiiiiiiininan... 52

4. The Exploratory Case Study......cooevveiiiniaiiiiiiiiiiiiiiiiiae, 54

4.1 Exploratory Case Study Planning ..., 54
4.2 Exploratory Case Study Design...........cccooiiiiiiiniiiiinniinnnnne.. 33
4.2.1 Sources of Information.......covviiiiiiireiirieieieenrnennnnns 55
4.2.2 Evaluation of ResUltS ..ottt ieieieeeeearannenn, 56
4.2.3 Verification and Validation...........ccoviiiiiiiiiiiiiiiinnnnn. 56
4.2.4 BenefitS. o e a. 56
4.2.5 Deliverables. .. oo o e 57
4.2.6 Questions for the Case Design......cccveviiiiiiiininnnnen. S7
4.3 Exploratory Case Study ConducCt............ooviiiviiiiiiiiiiiiinnne... 60
4.3.1 Modelling Strategy or Framework 60
4.3.2 Modelling Issues, Thoughts and Issue Resolutions 61
4.3.3 Mechanism for Using the Models...............coovveeenn.... 62
4.4 Evaluation of the Exploratory Case Study............cccooviiiinnane.... 63
3 3 BN) (oo T 1 S 63
4.4.1.1 The Process Models..............ccooiviiiiinn... 63
4.4.4.2 The Study in General..........cceviininininnnnnenn. 64
4.4, 2 Fallures. ... e 64
4.4.3 Cost benefits for future usage?ccoeeee.. e 64
4.4.4 Recommendations for future use............cccovvivvininnnn... 65
4.4.4.1 Cnitique of the exploratory case.................... 63
4.44.2 Lessons Learned............ccooviiiiiiiiiiiiiiiian, 65
4.5 Use of the Exploratory Case Study....cooeeviviivnviniiniinniininnnnn., 67
D. The Instance CasesS..cuiiiiriiiiiiiiiii i e, 69
5.1 Instance Case Study Planning...........cccoiiiiiiiiiiiiiiniinininn.n. 69
5.2 Instance Case Study Design. 70
5.2.1 Sources of Information..............oooiiiiiiiiiiiiii 70
5.2.1.1 For charactenizing project launch 70
J.2.1.2 For Judging Project Success.......oovevvvnnnn..... 70
S.2.2Evaluationof Results ... 71
5.2.3 Vernfication and Vahdatlon 71
3.2.4 Benefits. e, 71
S.2.53Deliverables. ... e 71
5.2.6 Questions for the Case Study Design............c.n.. 72
5.3 Instance Case Study ConducCt.......ccooiiiiiiiiiiiii i 76
5.3.1 Modelling Strategy or Framework 76
5.3.2 Modelling Issues, Thoughts and Issue Resolutons 77
5.3.2.1 Process Models as a Data Collection
J D11 012 70) ¢ . 77
5.3.2.1 DataCollection.........ccciiiiiiiiiiiiiieiininnn.n. 78
5.3.3 Mechanism for Using the Models...................cco.o..... 78
5.4 Evaluation of the Instance Case Studycoovviiiiiiiiiiiiiiinn.n. 79
5.4,] SUCCESSS iiiiiiitiii i i ittt i e ie e ieerraaaaaaaan 79
NI 3020 3F: 1 111 (1 S P 79
5.4.2.1 Comparison of Reference and Instance
MoOdElS. ..o e 79
5.4.2.2DataCollection.......c.ccoovviiiiiiiiiiiiiiiiinnnn. 79
S.4.2.3Data Validation............coiiiiiiiiiiiiiiiiinnnn.. 80
5.4.3 Cost benefits for future usage?oovviiiiiiiiiiiiiinennn.. 80
5.4.4 Recommendations for future use..........c.coovviiiiiennnnn... 80
ST X 3 QG o1 5 (¢ | | R 80
3.4.42 Lessons Learned..............ccooiiiiiiiiiiiiiinn... 31
5.5 Use of the Instance Case Study.........coooiiiiiiiiiiiiiiiiiiiieeeeenns. 82

6. Description of ReSultSc..ovviiiiiiiiiiiiiiiiiiiiiiii e, 83

0.1 MO RIS . oottt e et e eeesasasnsasussssessesosessssssensssssassnssnns 83
A S N R O 85
6.2.1. Exploratory Study Evidence: Questions and data
relating to those QUESHONS......oovuiiiiiiiiiiiiiiiiiiiiiieiaaennn. 83
6.2.1.1 Answering questions (Models and
| 19105 8% (oA) B 86
6.2.1.2 Results of the Study......ccvviiiiiiiiina. 86
6.2.2. Instance Study Evidence: Questions and data relating
1O thOSE QUESHIONS ..vuitii ittt i ieeeeeieeeenernnens 38
6.2.2.1 Data collected.....ccovveniiriniiiiiiiiianen, 89
0.2.2.2 ProjJeCtS oo e, 91
0.3 What's UnIQUe.....ciiiiiiiiiii ittt eees 98
6.3.1 Uniqueness of the Notation..........coovviiiiiiiiiinieennnn.. 99
7. Interpretation and Discussion of Findingscooiiiiiiiiaa... 100
7 G- N 1 -1 § 23 C 100
Hypotheses. oo e, 100

7.1.1 Process modelling using simple notations can increase
understanding of (provide 1nsights about) the launch phase

of the development proCess.ovvviiiiiiiiiiiiiiiiiiiiiiiiaeennn. 101
7.1.2 Process modelling using the TRADE notation can

provide 1nsights about the launch process which cannot be

gained using data flow diagrams or no process modelling. 102
7.1.3 Process modelling using TRADE can idenufy key

areas of projects that cannot be determined via DFDs or no

process modellIing. i 102
7.1.4 Effort spent of key launch activities will be a factor 1n
1) (0] 1510 AR 0 (¢ o1 S P 103
5 o1 T 103
7.1.5 The relative amount of effort deployed prior to
‘official’ project launch has an impact upon project success..... 103
7.1.6 A note on the use of hypotheses to structure our
21 0 1 4 L PP 104
7.2 Limitations of our WorkKoooiiiiiiiiii i, 104
7.2.1 The Study Site....ii e, 105
7.2.2 How Typical are the Software Projects...................... 105
7.2.2.1 Typical Projects at the Site.....ccoveiiennnnnl. 105
7.2.2.2 Typical Real-Time Software Projects 108
7.2.2.3 Software Projects in General...................... 111
7.2.3 How Generalizable are the Project Results? 111
7.2.3.1 A Summary of the Generalizability of our
Findings.......coooviiiiiiiiiin, e reerrereieeeeeeenaaaan. 111
FACT Li010] To%: 11 (o] 1 13 R 112
7.3.1 Implications for Process Improvement and Quality
INItIAIV S, oottt ittt tieeieie et eaiiieeerennnaesesacansecsecannnnns 112
7.3.1.1 Background and Discussion of TickIT
05 g1l 10z 11 (0) ¢ DU PPPPPS 114
7.3.2 Implications for Other Quality Assurance Initiatives....... 116
7.3.3 Implications for Process Modelling.......................... 116
7.4 Implications for future process modelling work 118
7.5 CONCIUSIONS ..o i e et 119
4= U2 (= 1 [P 121

v

APDPENAICES. ...ttt it et e 138

Appendix A: Models Produced During the Exploratory Study A
Appendix B: Models for the Five (Instance) Projects: V, W, X, Y
ANA Z ..o e B

1. Statement of the Problem

Chapter Synopsis

This chapter introduces the topic of software process modelling, and defines the
aims, scope and context of our research. We include an overview of our work and

pointers to more in depth discussion in later chapters.

1.1 Background
1.1.1 Difficulties with Software Development

Software development 1s notoriously troublesome. The fabled 'software crisis'
seems never to have really abated, and cost and schedule overruns, unsatisfactory
products, and even products which never become used are far from rare even
today. These ditficulties are made more apparent by the astonishing gains in
hardware over the same period; as Brooks states 'one must observe that the
anomaly 1s not that software progress is so slow, but that computer hardware
progress 1s so fast. No other technology since civilization began has seen six orders
of magnitude in performance-price gain in 30 years' [1]. Brooks believes that the
nature of software means that there will be 'no inventions that will do for software
productivity, rehabihity and simplicity what electronics, transistors, and large scale
integration did for computer hardware'.

This beliet that 1t 1s the intrinsic nature of software, and hence the intrinsic difficulty

of software development which 1s to blame for the failure of software projects 1s

shared by others. Kitchenham notes that: 'In other industries 1t is usual to produce
the same types of product over and over again. In the software industry it 1s usual

to produce new products using different methods and tools' [2]. This problem of
the 'one-off’ illustrates that software development 1s really an exercise in design,

with no real production process as such. Consequently the manufacturing

paradigm, which has been successfully applied to other engineering disciplines

does not map easily to software development |3, 4].

The development process is also a learning process, in that many of its participants
are actually learning both application domain and technical knowledge throughout
the development of the product [5-9]. This again, 1s quite rare, for in most other
engineering disciplines application domain knowledge 1s of a very high level,
before a project is started. Thus, managing the process of software development 1s
actually managing a communication and learning process where there 1s a high
proportion of design activity. Rodden et al. sum up the consequences of these

problems by stating [10]:

'‘Software development is complex and time consuming. [t involves a considerable
investment of people, resources and time. Severe problems exist in understanding
the activities involved in software development and in effective management of the
process’.

It 1s due to these difficulties with the process of developing software, and with
understanding and managing this process that software project failures are still so

common. Software projects which are over budget, over schedule or which
produce software which does not satisfy the customer are common-place!.

1.1.2 Panaceas and Process Models

Having presented some of the difficulties with software development, it is now
worth considering ways to alleviate these problems. One technique that has been
proposed is that of software process modelling. For now process modelling can be
thought of simply as a way of:

capturing (or understanding) and describing the software process, for
some purpose.

Process modelling promises benefits in a number of areas essential to software
engineering. Process models can play a role in the comprehension, design,
support, integration (of methods, tools and activities), evolution and reasoning
about process [12}. They can improve the development process itself, by
1dentitying effective process activities, and by increasing the co-ordination of those
process activities. Furthermore, by increasing the effectiveness of the process
activities, process modelling can help to improve the quality of software products

produced.

However, many authors have cautioned against searching for a panacea, a cure-all
for software development - the most well known argument being Brooks' statement
that there 1s 'No Silver Bullet' [1]. The software engineering community has
already suffered from too many past ‘panaceas’, and we must be careful not to
consider process modelling is this way. Rather than arguing that modelling alone 1s
the answer, many believe that one of the important roles that process modelling can
play is in providing an integrating framework for other initiatives like CASE, or
software measurement [13-18]. Indeed, 1t may even be argued that 1t 1s the lack of
such a framework which has been responsible for the failure of many past
initiatives. It 1s the potential of the technique, the contribution that process
modelling can make to understanding and improving the software process and
product, that makes it such a worthy candidate for research, and which explains the
interest which it has created within the software engineering community [19-29].
Process models may make the software process more visible, and understandable;
analysis of such models may aid the i1dentification of problems or process areas
which may be improved, and models can be used to facilitate communication about
the process, and experimenting with new process design. Finally, as we noted
above, process modelling may provide a way to integrate a number of apparently
disparate technologies, including CASE tools, and sottware measurement. (A fuller
description of the potential use of process models 1s given in the following

chapter).

1.2 Aims of this research

Process modelling 1s a potentially powerful technology, which has stimulated a
great deal of academic work over the past ten years. However, there 1s relatively

I Curtis notes a US Airforce survey which found that all major projects in one command were
late, and that these late projects were on average 75% over schedule [11].

little reported experience of the use of this technology within industry2. Thus, we
have the first aim of our work:

1) To investigate process modelling 1n practice.

However, we also wish to use our experiences of modelling to identify ways in
which we can aid the technology transter by making process modelling both
accessible and effective. Thus, our second aim 1s:

2) To make process modelling more eftective.

We now examine these 1deas in more detail 1n the following sections.

1.2.1 Process Modelling in Practice

This aim will be the focus of our first more exploratory study. Our objectives for
this study are to investigate the use of process modelling to aid understanding and
to provide insights about software development. Hence, we intend to use simple
process models to help us understand some aspect of software development at an
industrial site. It is important to note that we are not attempting to demonstrate
process improvement, but the utility of process modelling. Hence, the study 1s
concerned with getting process users to buy-in to the modelling, so that the model
can be used to improve their understanding of their processes. Therefore, we intend
to use process modelling to help to understand or solve an existing and genuine
process problem. Thus, our aims are to:

1) Investigate the types of modelling techniques available.
2) Investigate the implementation of a defined process at an industrial site.

3) Investigate whether a simple process modelling technique can highlight
problems with the implementation of the defined process.

We believe that the benefits of such work will include:

1) Process modelling will be perceived as a technique which can solve genuine
problems.
2) Evidence of the successes of such work will encourage others to carry out

process modelling work.

3) The experience gained from such work 1n industry will be valuable if we are
to provide guidance to other practitioners.

1.2.2 Making Process Modelling More Effective

In the course of our exploratory modelling we expect to uncover certain insights
about the process under scrutiny. By using this as an example process we hope to
investigate what further insights can be gained by using new modelling notations or
strategies. More specifically we hope to:

2 This lack of reported industrial experience was one of the main themes of the Third European
Workshop on Software Process Technology EWSPT'94

1) Enhance the process modelling techniques in order to make process
problems more visible (and to uncover further insights into the process

under scrutiny).

2) Test the new technique to see if it can distinguish the differences among
actual projects at the site.

In addition, we hope to be able to:

3) Show how process modelling can help us to identify good practice, or
effective process activities.

4) Investigate the use of process models for providing a framework for other
techniques, specifically software measurement.

1.3 Scope of the Research

Process modelling 1s being used 1n a variety of disciplines and for different
purposes. In order to make the scope of our work clear to the reader, we briefly
describe these related fields below, contrasting them with our own work.
However, for those who are familiar with such disciplines we need only
distinguish our work by noting that:

1) We are not using process modelling as part of an effort devoted to building
a process support environment or an integrated project support
environment.

2) We are not attempting to use process modelling as part of a business

process re-engineering initiative.

3) We are specifically interested in examination of the software development
process, not 1in business process modelling 1in general.

However, the part of the software development process which we are investigating
could be regarded as a business process - or part of the larger business process. In
addition, we believe that the techniques which we are using could equally well be
applied to the business process. The main distinction 1s that we are not re-
engineering, because we are specifically adopting a far more evolutionary approach
(see section 1.3.2).

1.3.1 Business Process Modelling

Process modelling is gaining increasing popularity within the business community,
as a way to describe and improve business processes. Indeed, much work which
was 1nitially aimed at describing and improving the software development process,
has been taken up by the business process improvement community [30-38]. For
example, both Praxis [35] (now part of Deloitte-Touche-Tohmatsu) and Co-
Ordination Systems [33] are using Role-Activity Diagrams as a business process
re-engineering technique and VSF are marketing their Business Improvement
Facility (BIF) - which 1s based on the VSF case tool - as a business modelling
solution [37-39]. The significant overlap between these disciplines (business
process modelling and software process modelling) has meant that initiatives like
[IOPT (Introduction of Process Technology scheme which was initially sponsored
by the DTI) have included many from both camps, and there are similar tools and
techniques being used 1n the quest to improve both business and software

processes. Indeed, both ICL and Cap-Gemini have tools - ProcessWise (ICL) and
Process Weaver (Cap-Gemini) - which appear to be marketed both at the software
process (as software engineering environments) and at the business process

communities [40-42].

The aim of our research is to investigate software process modelling, and not
business process improvement. This means that we examine processes that are
explicitly used to produce a software product, and which can be considered as vital
to software development. However, the impact of business process improvement is
significant, notably in providing a market for tools which were 1nitially developed
for supporting software development projects, and in helping to raise the wider
awareness of process modelling. Furthermore, there 1s no significant difference in
the notations used by software process modelling and business process modelling.
For this reason, it has been suggested that the business and software process
modelling communities should attempt to work more closely, and to learn from

each other [43].

1.3.2 Business Process Re-engineering (BPR)

BPR difters from other business improvement programmes, in that it is explicitly a
revolutionary rather than evolutionary approach. Mc-Hugh who was involved 1n
the evolution of the Deloitte-Touche-Tohmatsu / Praxis method STRIM (Strategic
Techniques tor Role and Interaction Modelling) has referred to it as a ‘quantum leap
approach’ [36]. Kawalek and White make a further distinction between: 'process
engineering - a continuous activity, and business process re-engineering - typically
a one off [40]. In addition, BPR 1s more concerned with designing new processes
than 1t 1s with examining existing ones. Hammer and Champy [44] state that in
order to succeed in re-engineering: 'Don’t focus on business processes’. They
further state the case by arguing that we should 'Ignore everything except process

redesign’.

BPR attempts to avoid focusing on what 1s considered implementation detail. For
example, Miers [45] warns that in the early stages of BPR ' When modelling the
existing business process the use of existing data and documents should be
specifically excluded from the model ...". This 1s to make 1t easier to break down
links with the existing process, when attempting design, or radical re-design of the
process. This is clearly in contrast to the evolutionary approach of business and
process modelling (and business and process improvement). Thus, while our own
study involves investigation of a business process it 1S not business process re-

engineering (BPR).

1.3.3 Workflow

The motivation for using workflow software is hinted at by a quotation from
Dwyer (director of strategic marketing at XSoft) who has stated: 'The reason cited
most often for installing workflow software is that people want to re-engineer a
business process' [46]. However, current workflow technology, 1s very much
orientated towards replacing documents and paper based systems and Dwyer notes
that users are "typically an organization which needs to handle a high number of
paper-based transactions each day, such as insurance companies or mortgage
lenders”. This suggests that workflow technology is most suited to providing
support where there 1s a high number of relatively well understood tasks, and
though 1t has been suggested that future workflow software might also be used in
the production of software there 1s little evidence that current workflow systems
have the sophistication to do this [46].

1.3.4 Software Process Modelling

We have suggested that there are many similarities between business process
modelling and software process modelling. However, there appear to be important
differences, not in the underlying rationale but in the way in which the technologies
have been used. On the whole, business process modelling has been used in a
revolutionary way, as suggested by BPR, which usually involves complete process
re-design or replacement. Though business process modelling may still involve an
investigation of the original process (though not always) the intention 1s usually to
change radically the way people work rather than to 'tweak' or improve the
process. Software process modelling appears to be seen as a more evolutionary
approach. This may be to do with the highly complex nature of software
development, or indeed the difficulty of designing and implementing a ‘'whole new
process’, but 1t 1s far more likely that the software process modeller is aiming at
process improvement rather than more radical process change. This difference in
approach also leads to ditferences in scale, in that the software process modelling
may be directed at improving part of a larger process (as in our work where we
examine part of the development process), rather than suggesting a re-organization
of the whole business or organization. -

1.3.5 Process Support Tools and Environments

Much work on software process modelling has been prompted by the desire to
build software project support environments. This work has been motivated by the
need to first understand the development process, and the way in which people
work, 1n order to be able to provide appropriate automated support. Such work 1is
being carnied out by a number of organizations, and there are already many existing
tools. However, the cost, and complexity of many of these tools makes them
inappropriate for many smaller developers.

Our research is not concerned with either building or using such environments, nor
1S 1t an attempt to simulate or automate the process. There are two main reasons for
this. First, the aims of the research do not require such elaborate tools. If we can
demonstrate the efficacy of process modelling without recourse to such complex
and expensive tools then this research will have been successful. Secondly this
research intends to investigate process modelling techniques in an industrial
environment. For the organization that has collaborated 1n this research (which 1s
one of the many smaller developers) the considerable investment 1t would 1ncur 1s
simply not feasible. In addition, the strategy adopted 1s to start with a low-cost
study and demonstrate the benefits of this work before attempting a more ambitious
study, and this strategy prohibits such heavy up-front investment.

This low-cost approach has been somewhat out of favour recently, however, there
are signs that this view is changing. For example, Ince predicts that 'notations used
for software process modelling will be no more sophisticated than the simpler
CASE notations that are currently used for requirements specifications, such as

dataflow diagrams' [34].

The need for reported experience of software process modelling in industrial
environments was one of the strongest workshop themes at the recent European
Workshop on Process Support Technology (EWSPT'94) [29]. It is the belief of
this research, that the low technology or low cost approach is a necessary way to
provide not only experience with but also evidence of process modelling successes.
The lessons learned from such ‘real' work will far outweigh its theoretical

limitations.

1.4 Context of the Study

This process modelling study was carried out in order to attempt to understand why
there were problems with an existing software development process, and to
discover what elements of that process had an impact on project success. Hence,
the study was not concerned with demonstrating process improvement, or with
radical process design or re-engineering. We were motivated to understand the

current process, and its problems, in order to evolve that process.

In the following section (1.5) we outline the work which was undertaken (which
will be further described in chapters Four to Six). However, we first describe in
greater detail the setting (site) for the study and the specific problem that the work

addresses.

1.4.1 The Collaborating Organization

Work was carried out at one site which manufactures products with high software
content and complexity, and where the distinctions between hardware and software
engineers are often blurred. There are about 50 full time software engineers, though
projects include input from other divisions at the site, notably from hardware,
marketing, and production.

The main business area of the organization which we investigated was the
engineering function, which encompassed both hardware and software design,
though the projects that we studied were those where the majority (or all) of the
work could be considered software development. However, owing to the nature of
the process area under study we also examined other business areas which affected
the process, notably marketing and the separate project support function. Projects at
the site varied in both size and complexity, but usually involved between six to ten
engineers. A project manager would be responsible for driving each project, but the
project team would typically involve personnel who reported to other line
managers. Often projects formed part of a larger (encompassing) project which
could mean the involvement of many more (for example, around thirty) people.

There were no set software analysis or design methods, and no standard CASE
tools employed at the site. The majority of coding was of a procedural nature (C
being used extensively), and design documents tended to retlect this. Similarly
engineers and managers alike, seemed happy with procedural notations, and tended
to think of the process either in terms of activities or products.

Textual procedures documents were of a number of forms, some were general to
the site, for example those detailing the development process, some were specific to
business functions (for example engineering procedures) and some were even more
localized (e.g. hardware or software design procedures). There was a genuine
attempt to have 'quality’ procedures and process, and the process quality manager
was recognized as an important (and senior) role.

1.4.1 The Process to be Investigated

The process which was chosen for investigation was termed product or project
'launch’. This 'launch phase’ of software development covered the stage from the
identification of a project or product need, through business and technical feasibility
stages to requirements. These requirements were intended to be sufficient for the

commencement of design work3. This area of process had a troubled history, with
three recent incarnations - or process designs. There was also an awareness that the

existing process was not adhered to as its designers had envisaged. Both users of
the process and designers of the process expressed dissatisfaction. Indeed, this

process area had historically proved overly time-consuming, difficult to control,
and a cause of much disagreement. Consequently a great deal of effort had been
expended on the current process design but there was still much dissatisfaction.

Though the process designers could not understand why the process was still
problematic, they knew that they were unable to completely distance themselves,
and that problems might not be the fault of process users. It became clear from our
discussions that the organization might benefit from an independent view - even if
only to confirm their suspicions that something was amiss.

1.5 Overview of the work

1.5.1 Exploratory Work

Our exploratory work had the following research aims.

1) To discover the realities of process modelling in industry.

How do you go about process modelling? What are the problems or
pittalls?

To use our experiences to provide lessons learned for the modelling
community and tor other actual or potential practitioners.

2) To 1investigate whether process modelling can aid process understanding.

We wanted to know 1f modelling could provide insight about the area of the
software development process being modelled, and 1f so what kinds of
insights we gained from different techniques.

For example, we wished to investigate the extent of process conformance at
the site. Was there a standard process, and how did users deviate from this
process? Could we use process modelling to highlight and to understand

this process deviaton’?

3) To show that simple (existing) diagramming techniques can be used for
process modelling.

Furthermore, we wanted to show that a single paradigm can be used to
produce process models which still provide useful and usable results.

4) To identity areas of potential process modelling improvement.

From the point ot view of our collaborators, the aim of the work was to use
process modelling to uncover and describe process problems. In order to do this
we undertook preliminary modelling utilizing data flow techniques to compare and
contrast the actual process (for projects) with the theoretical process (as depicted by

3 Note that this life-cycle view of where the process area fit was one which was consistent with

the procedures, rather than imposed by us, but it does help to reflect the activities and products
which were expected from this part of the process.

procedures and supporting documentation). This initial study yielded usetul results,
and we were able to discover and describe half a dozen key process problems, and

many minor discrepancies and inconsistencies.

1.5.2 Later Work
The research aims for our later work were as follows.

1) To devise and use new notations or techniques to provide further insights
into the launch process. Hence, to show how process modelling could be
made more effective.

For example, to further investigate the extent of process conformance by
examining differences among projects which should follow the same

standard process.

Another example which was of particular interest to the organization was to
use process modelling to try to identify key aspects of the launch process,
and their effects upon the projects.

2) To investgate the use of process models as a framework for data collection.

To show that we could combine process measures with our models so that
the process models can be used as a framework for data display.

Ot the above aims the organization's chief concern was in using this process
modelling study to try to ascertain the impact of launch process activities on project
success. In order to uncover the impact of process activities we needed to do more
than simply note that such an activity occurred. Rather we conjectured that the
amount of effort expended on an activity would be a factor in its impact on project
success. For example, we would expect that spending eight hours planning a
project might have a different impact to spending eight minutes. Ascertaining which
activities had this kind of impact would enable the organization to provide strong
process guidance about what was worth spending time on, and similarly what
corners could be cut. Consequently we decided to incorporate data collection into
our process modelling study, both to determine information about launch activities
and to examine project success. Rather than simply have activity based models with
associated data, we have developed a notation to show the etfort and duration of
each activity in pictorial form. Each activity 1s represented by a rectangle, scaled so
that its horizontal axis corresponds to its duration and 1its vertical axis to the average
effort over that duration. Hence, the area of the activity represents the total effort
expended. Activities are then shown against an overall project time-scale, so that
we can see the overall shape of the project. This TRADE (Time Resource Activity
Duration Effort) notation has allowed us to uncover information about which
activities have positive 1impacts upon project success. However, perhaps more
importantly this notation and study has allowed us to uncover the nature and extent
of deviation among projects at this site. Hence, we believe that we have satisfied
the above research aims.

1.6 Summary

We have noted that the continuing difficulties with software development have
meant that there 1s still a search for methods and techniques to help us understand,
manage or control the software process. Software process modelling is an approach
which offers much promise, but which has still received relatively little industrial

use. We have further described our research aims, which centre around the need to
investigate process modelling in practice, and have outlined the scope and intent of
this work. We have also described the background to our work. We have given a
description of the context (the site) and the process problem, and we have given an
outline of the work which has been carried out. The following chapter describes in

some detail the history and issues of software process modelling. We argue why
there is a need for work such as ours, and attempt to distinguish this work from

that of others.

Later chapters then describe our rationale and choice of research methods, the
exploratory and later studies, the results of our work, and finally our analysis,

findings and conclusions.

10

2. Literature Review

Chapter Synopsis

This chapter starts by considering the promise of software process modelling.
Following sections examine the significant events or ideas that led to current
thinking about process modelling, some related areas of work, the current state of
the art and the process modelling issues remaining to be resolved. Finally we set
our own work within this context, and show both the need for our work, and how

it differs from that of others.

2.1 The promise of software process modelling

We have suggested that process modelling has much potential in software
engineering. We now list some of the most important uses which have been
suggested for software process modelling.

1) Models should provide higher process visibility which will in turn lead to a
better understanding of development processes [47, 48], aid the monitoring
of progress, and allow managers to give better guidance to engineers [12,

49, 50].

2) Explicit descriptions of such processes should encourage better
communication about the process [50].

3) Through analyzing the model of our process we should be able to more
easily identify areas of weakness and possible improvements [49]

4) By providing a framework for software measurement, quantitative data
about either process or product may be gathered more efficiently {17, 18,
51-53].

d) Models should allow us to experiment with process [54]. This

experimentation could be done at a purely conceptual level, simply by using
the model to more clearly express 1deas and reason about the process. In
contrast automating the model will allow us to simulate a process, step
through the logic of that process, and experiment with the effects of process
change. Thus, models will support process evolution [48, 50].

6) We can use a model as a process template that can be instantiated for each
project [34, 55]. This template gives us the benefits of standardization while
still allowing process flexibility for individual projects [34, 56].

3) Models should facilitate process reuse [14, 57, 58]. This reuse may occur at
a number of levels: for example, instantiating the process for each project,
using the model to provide guidance on the recommended process, or using
the model as a repository of process knowledge.

9) A number of quality initiatives suggest the need for a defined process [59-

62]. Process m_ode‘ls can fqrm part (or all) of this definition, and can thus
give the organization tangible benefits (such as accreditation) as well as

11

those (often more long term) process benefits mentioned in the points
above.

2.2 Influential Work
2.2.1 Lifecycle Models

Early attempts at describing the software development process can be classified as
'phase’ or 'lifecycle’ models, in that they tended to attempt to split development
activity into chunks (phases) of different activity types. For example, requirements
elicitation, specification definition, design, coding, and so on are regarded as
distinct sequential tasks each being pertormed only when 1ts predecessor is
complete. Thus, the entire lifecycle can be decomposed into these discrete activity
areas. The earliest of these, the nine-phase model of software development, was
proposed by Bennington in 1956 [63] and is now better known as Royce's
waterfall model (1970) [64]. Such models remained popular for some time and are
still described 1n many current student texts [65, 66]. An advantage of studying
these models 1s that, despite their limitations, they still convey the various types of
software engineering activity to the uninitiated. In addition, the end of each phase
can be used as a rather crude milestone against which progress can be judged.
However, there are a number of problems with lifecycle models, and one of the
carly workshops questioned the ability of the phased or lifecycle models to describe
actual software development. We briefly mention three key problems with lifecycle

models:
1) Iteration

Such models do not adequately reflect iteration. In reality, requirements
activities do not end at the beginning of design, or even coding. Rather they
are changed, deleted, updated and appended. Similarly design, code,
documentation and test suites are changed as understanding of the problem
grows. Iteration is a problem of such consequence that the Third Software
Process Workshop addressed explicitly ‘Iteration in the Software Process’

[24].
2) Prototyping

The need for prototyping significantly altered the concept of software
lifecycle [67, 68]. For example, the assumption that development must
follow a rigid sequence from specification through design to coding was
challenged [69].

Boehm's 'Spiral model' incorporates both iteration and prototyping, by
cycling through the various development activities and pausing to assess
risk and change [70-73]. Though the spiral model provides only a large-
grain view, the rejection of the rigid phased approach and the inclusion of
prototyping depicts a significant change in software development 1s

organization.

3) Granularity

A further problem with lifecycle models is their large-grained view. If the
level of abstraction 1s rather high, what is suitable as an overview cannot
really represent the complex interactions occurring at a much lower level.
Hence, Madhavji claims that these models, though helpful, 'do not expose
myriad details that are critical in any large software development project.’

[74].

12

Owing to these problems the idea of modelling the development process with
lifecycle models has been largely rejected. However, much of the terminology that
introduced by the models (e.g. requirements phase, design phase and so on) still
remains.

2.2.2 Process Programming

Process programming, typified by the work of Osterweil [75, 76]4, regards the
development process as a set of activities (and their associated inputs and outputs)
that can be described by a procedural language, in the same way that a software
program describes the data and flows to be captured in the software.

This view has five significant implications.
1) There 1s a software process lifecycle.

Osterweill's analogy that 'software processes are software too' [75] is
perhaps best illustrated by his statement that 'the various software processes
should be viewed as having been created by process development
processes. One of the implications of such a statement 1s that software
processes have a development lifecycle in much the same way as software
products do. Rather than a normal product lifecycle, the process lifecycle 1s
more a description of how process models might evolve, serving as a guide
for introducing models or as a framework for planning such work. This
argument was made explicit by Kaiser [86] who states that the analogy was
originally suggested by Boehm and Belz [71]. A brnief description of the
phases of this lifecycle 1s as tollows:

Process Requirements: Deciding what we want to express
with the process model.

Process Design: Devising a means within the chosen
formalism for meeting the
requirements.

Process Construction: Writing the model or program within
some formalism.

Process Testing /Debugging: Testing the process correctness using

simulation, activity assistants [87]
and actual projects.

Process Evolution: Evolving from one process model to
another.

Process Re-Use: Reusing part or all of the process
model.

Although developing and evolving software process models according to
this kind of specific lifecycle have seen little work of late, the notion of a
method for constructing and evolving process models can be seen 1n current
work on the meta-process [88-90]. |

2) Modelling languages should be like programming languages.

Osterweil argues the need for both products and processes to be 'carefully
and rigourously specified in terms of a rigourously defined language'.
Thus, we see models of the development process that use programming-like
constructs and look very much like software programs [78, 91, 92]. The

4 Other examples of process programming work include [77-85]

13

advantage of such models is that they cope with the kind of low-level detail
which is not covered by lifecycle models. However, a weakness 1is the
conviction that 'all software activities must be viewed as being aimed at the
creation and/or alteration of software products’' [75]. Hence, other
supporting activities, which may be an important part of the development
process may be ignored by the resulting model. For example, Curtis
explains that communications tools, though they aid the development, will
not transform the artifact and would thus be 1gnored by the process

programming approach [8].

There is now increasing agreement that we cannot describe formally all
aspects of software development. We cannot model creative human
processes (see below). Thus, we must consider what parts of the
development process we should attempt to formalize [93]. However, the
need to make modelling languages accessible to users is the biggest
argument against program-like notations. Process programming notations,
are often highly mathematical [80] or program like [92] and their use
requires existing expertise or learning. Many of the uses of process models
involve domain experts or customers who are not software or mathematics
experts, validating the model, discussion about process, using the model to
communicate ideas, getting process buy-in, and so on. In these cases
formal notations may obscure information or hamper communication.

3) Human behaviour can be codified.

One of the problems with trying to codify human behaviour 1s that i1t
assumes that we completely understand that behaviour and that the code will
be able to describe all relevant aspects of it. This may be the case when
humans behave 1n a mechanistic way, for example, carrying out a series of
simple and well described tasks. However, much of human behaviour 1s
not like this. In particular learning does not follow such mechanistic paths.
Indeed, learning curves are far from linear, and the mapping between
mental models and logical or physical models not clearly understood.
Furthermore, it 1s extremely difficult to provide complete instructions to
enable humans to satisfactorily carry out complex tasks. Few people would
be able to drive a car safely by simply digesting a driving manual.
Additional human guidance, though often less rigourously stated, 1s
required.

Much of software development involves understanding and learning.
Henderson suggests that this may involve as much as 50% ot developers
time {43]. Therefore, it 1s unlikely that the software development process

can be completely codified.

4) The process may be automated.

Program-like models can be easily executed. Thus, process programs often

lead to executable models®. Such models could be used for simulation or
for automating part of the process. However, the process program or the
enactable notation increasingly forms only part of an approach to process
modelling. It 1s now far more common for process support tools to present
a graphical language to users, which may then map to some executable

notation (e.g. [33, 41, 96]).

5 Note that executable models, and automated process support had of course been considered
before the introduction of the process programming analogy [94, 95].

14

J) We can rigidly control the software process.

Degree of control has been a point of much debate 1n the process modelling
community. Some of the strongest arguments against attempting to use
process programs to control the process have been voiced by Lehman®.
Lehman feels that there is a temptation to have too much detail with process
programs, and that they may act like a 'straight-jacket’. His overall
prognosis 1S that process programs are powertul tor analysis, design and so
on, but that control depends upon people and context [98].

We have noted many arguments here about the appropriateness of process
programming, citing debates about:

1) Whether human activities can be formalized or codified.

2) What 1t 1s appropriate to formalize.
3) Whether we can rigidly control the software process.
4) Whether process programs are sufficiently usable as a modelling approach.

We believe that process programming 1s losing favour, because there is greater
agreement that people cannot be rigidly controlled, because we cannot completely
codity human behaviour and learning and because process programming notations
are not accessible or usable for many developers. However, despite much debate
about process programming, there has been little attempt to validate the claims (of
either proponents or opponents) by empirical study, or by observation of process
programming 1n industrial practice.

2.2.3 Integrated Project Support Environments

A great deal of process modelling work has been motivated by the wish to build
project support environments and the desire to automate the development process.
However, such work, particularly the earlier work on integrated project support
environments (IPSEs) [95, 100-111] has had limited success {112]. From a
modelling point of view, one of the problems with many of these early
environments was that the model of development or models on which they were
based were often questionable. Though some researchers attempted to understand
the process of development (for example ISTAR was based on an explicit
contractual model [113-115]), others were more concerned with providing a way to
bolt together tools, and they made little attempt to understand the way users actually
worked [110]. To compound this problem project support environments were often
based upon an implicit rather than an explicit model of the software process.

6 Lehman (like Balzer [97]) believes that there are fundamental differences between process
programs and application programs [98]. He concedes that the apparent advantage of a process
program is that a more formal description can be machine interpreted, and thus used as a control
mechanism. However, he considers that such a program is little more than "a series of calls for
specific actions”, and that 1t still needs human intervention and decision making. It is this human
intervention which is still not well understood. Lehman argues that "detailed process structure and
composition cannot be determined”, and that "process descriptions whether formal or informal, are
essentially imprecise and non-deterministic.” [99]. A further inherent problem which Lehman
considers is that whereas the application domain is generally continuous and infinite, computer
based process models are discrete and finite. Therefore program-based process models
actually limit 'the scope and power of what can be achieved'.

15

Humphrey states that 'To qualify as a process model, the process used by the tool
should be explicitly defined' [54]. Despite much research work [116], these
Integrated project support environments (IPSEs) never lived up to expectations [95,
109-111].

It 15, therefore, interesting to note that although we now hear very little about
integrated project support environments (IPSEs), many of the process support tools
now in vogue share language and notational features with these IPSEs, as well as
claiming similar benefits. For example, ICL's ProcessWise Integrator (PWI) relies
on the same modelling language (PML) developed as part of IPSE 2.5 [117].

2.3 Related Work
2.3.1 Process Support Tools

We have noted that much of the work on providing automated process support has
switched emphasis away from the concept of an integrated project support
environment (IPSE) towards that of providing process support technology. Despite
this, other researchers are still attempting to build software engineering
environments [86, 118-125]. This situation raises a number of questions:

1) How are current attempts at building Software Engineering Environments
different from those involving early IPSEs?

There now appears to be a much stronger focus on understanding and
supporting the way humans work, rather than simply producing a suite of
tools, and on making the model of the process explicit. For example,
Process Weaver places great emphasis on being process-centred. SPADE
[118, 126] explicitly separates the process model from the process engine
(which enacts that model), the process tools, the user interface, and the

environment itself, such that these elements can all be independent’. The
SPADE approach allows not only greater process model visibility but also
greater tlexibility about the modelling languages used and the intertaces
provided, according to needs of users.

2) How are process support tools different from environments?

One might expect that we could use the early IPSE intention of integrating
all aspects of development to distinguish environments from process
support tools (or suites of such process tools) which offer process support
for specific parts of the development process. For example, the ICL's
ProcessWise [128]) consists of a number of tools that tackle different
development tasks. However, the intention is clearly to have these tools in
some integrating framework, and this appears to be very similar to the IPSE
concept. In some cases, one might wonder whether there 1s much more than
a difference 1n terminology, in that what are termed process support tools
appear to offer similar capabilities to environments, and are often based on

the same earlier IPSE work (e.g. IPSE 2.5 [129] and ProcessWise [128]).

One clue to the shifting terminology is that much work has moved away
from a concentration on software development towards supporting business
process improvement and re-engineering {33, 37-39]. An example is the

7 Note that the question of how dependent the architecture is on the Process Modelling Language
is still very much an issue in the research community [127].

16

way VSF have shifted emphasis away from the meta-CASE aspect of their

tool towards selling business process modelling solution“s8 [37]. One might
consider this a re-badging of an established technology in order to make it

more palatable to another market sector (more of a change in emphasis and
marketing, than in underlying tools).

An advantage of this change in terminology 1s that 1t allows the process
support tools to be introduced to a software engineering community who,
remembering the failures of early software engineering environments, may
be reluctant to purchase another IPSE.

3) How does this fit with the software factory concept?

The ultimate in automating development 1s the idea of the software factory
[130]. Indeed, Longchamp considers the software factory to be the third

generation of the integrated project support environment [131]%, and
considerable effort has been devoted to producing automated support for the

factory conceptl0 [116, 134, 135]. It is interesting to note that as with the
IPSE work mentioned above, this third generation work has resulted in
tools that are now marketed under the process support technology banner
(e.g. Process Weaver).

There are currently a number of impressive process modelling tools available
(which may be variously labelled as process support tools, process technology
tools or as software engineering environments). There are clearly many similarities
among these tools; all are attempting to automate the process (business or software)
to a lesser or greater extent, and all rely on producing or enacting process models.
Rather than a clearly defined difference between these classes of tools, we view this
as a shift in emphasis, and thus we have chosen to consider them all under the

heading of process support.

These process support tools typically offer both flexible graphical interfaces!! and
process automation engines to provide enactable models. We take 1ssue not with the
capability of these tools but rather with their usage. Despite the tact that these tools
have enaction capabilities, many have reported that when tools are being used 1n
industry, they are only being used for the initial process modelling, and not to
provide process automation and enaction. For example, Gritfiths notes that people
are using ProcessWise to produce "soft wall charts” [140]. We believe that this

8 VSF have developed (in conjunction with N&P) a proprietary modelling method, Business
Improvement Facility (BIF), to be used with thetr tool.

9 Much disagreement has centred on the applicability of a factory or manufacturing paradigm to
the software process [3, 132]. Proponents of the factory concept argue that despite the fact that
there are significant differences between producing hardware and software the similarities outweigh
the differences, and that we can usefully apply the paradigm. [133].

10 Gillies notes that the term software factory "has becen adopted by the large European ESF
research program aimed at producing a state-of-the art software development environment

(SDE)...."

I1Typically the graphical language maps onto some executable notation to provide the enaction
capability. One problem with this approach is that it may limit cither the expressive power of the
graphical notation or lead to an inconsistent or incomplete mapping. An example of this is the
mapping between Role Activity diagrams (RADs) [35, 136], a graphical process description, and
Process Modelling Language (PML) [35, 137-139]. These are intended to give a high level and a
more detailed view of process, respectively and the RADs should map to PML. However, the
RADs contain specific mechanisms to describe parallelism, whereas the PML being constrained
by its need for compilation does not, and thus the mapping is incomplete.

17

indicates the inappropriateness of these tools for a large number of development
organizations. The fact that many are using such impressive tools simply to
understand or describe their processes rather than to automate them suggests that
such enaction capabilities are merely 'bells and whistles' which tool builders may
be keen to incorporate but which users either do not need or do not wish to use.
Indeed, this rejection of enaction, even when given the capability, suggests that a
more low-technology approach may be more approprate.

2.3.2 Process Assessment and Capability Evaluation

An 1mportant and related area of work 1s process maturity assessment and capability
evaluation. There are now a number of process assessment and evaluation
frameworks [59, 61, 141-146], but perhaps the most influential work in this area
has been that ot the Software Engineering Institute (at Carnegie Mellon) on
Software Process Maturity [147, 148] and the Capability Maturity Model [60,
149]. This model was derived from work at IBM [150] under the direction of
Humphrey, which attempted to apply Crosby's quality management grid [151] to
the software process. The Capability Maturity Model (CMM) gives five levels of
process maturity. It 1s intended to provide guidance for process improvement by
focusing on key practices and activities within the organization. Rather than
modelling the existing software process, the method involves bench-marking
against a defined list of acceptable or desirable criteria using a questionnaire. These
bench-marks have been obtained by surveys of best practices, tools and methods.

The 1dea has been adopted for two main, though not entirely distinct, purposes:
1) Assessment of the capability of an organization.

This 1dea was particularly attractive to the US Department of Defence, who
wished to be able to assess the capability of contractors. Indeed, this was
one of the motivations for the work by the SEI. An assessment by the
Software Engineering Institute or an approved assessor leads the
organization to be categorized by maturity level. The least mature 1s level
one at which the process 1s said to be ad-hoc. The most mature 1s level five,
where the process can be changed dynamically as improvements and data

are fed back in.

LEVEL CHARACTERISTIC
5. Optimizing Improvement fed back in to process

4. Managed Measured Process (Quantitative)
3. Defined Process defined and institutionalized (Qualitative)

2. Repeatable Process dependent on individuals

1. Initial Ad hoc or chaotic process

2) To aid process improvement

Curtis describes each maturity level as 'a well defined evolutionary plateau
on the road to becoming an exceptional software organization' [152]. The
intention 1s that the model helps the organization to focus on appropriate
areas for improvement depending on the maturity of its current process.

18

Later versions [153] of the maturity model aid this approach by 1dentifying
key process areas and key practices for each level.

This idea has also been combined with other software engineering
initiatives, notably software metrics, by using maturity assessment in order
to determine appropriate actions. For example, the application of metrics 1n

industry (ami) handbook [154, 155] suggests using maturity to help
characterize an organization as the first step in a metrics programme. More

specifically, Pfleeger and McGowan use each maturity level to suggest sets
of metrics which are appropriate for the organization to collect [156], and in
further work at Contel, Pfleeger suggests using maturity [157] to aid in
CASE tool selection.

There have been a number of criticisms of the SEI approach. Some of these have
focused on what may be inherent problems with the method [158], whereas other
researchers mainly question its applicability to all types of software development

organization [159-162]12. We will briefly examine some of these criticisms.

1) The problem with using a bench-marking based on best practices 1s that it 1s
not clear that there were any excellent organizations on which to base the
higher maturity levels. Certainly there were no level 4 or 5. Therefore, these
top two levels are based only on inference [158].

2) Improvement 1s self-fulfilling, and no other independent evidence of
process improvement 1s given [158].

If the organization does comply with the practices suggested, then 1t will by
definition improve its process maturity score. (This 1s 1rrespective of
whether it produces a more successful product, for example). Furthermore,
there is no empirical evidence that the 'good practices’, are actually good

and effective.

3) The assessment focuses only on good practices, and has no focus on
eliminating bad practices. That 1s, it is only 'half the story' [153].

4) The ordinal maturity scale bands together the majority of developers even
though they may have quite different real capabilities. [162-164].

Studies to assess the current maturity level of organizations in Europe and
the United States suggest that over seventy percent are at level one [164].
Among this 'majority’ of software developers there are huge differences
[161] and yet because the scale is ordinal rather than interval there 1s no way
of distinguishing between those who are 'nearly level two', and those who
are 'nowhere near.

d) There is too much focus on a maturity level or score and not enough on
improving process [144, 163].

12 Thompson feels that the maturity model must be tailored in order to make it appropriate to
Information Systems (IS) developers, and that "...a number of key IS development activities are
not present in any levels of the model...". However, the problems he notes mainly focus on key
differences between defence orientated and information systems dcvelopers, specifically that :

a) IS organizations have a different internal culture.

b) IS developers have a different external environment

C) IS developers are involved 1n a different type of softwarc development project.
d) IS developers have a different development approach.

19

The concentration on doing the 'right things' to improve one maturity score
1S not necessarily the same as doing the 'best things' to improve the
process. Koch rejects the idea of an absolute ordinal maturity scale in
favour of 'improving software processes by self-reterential improvement
exercises'. He describes this as the 'Central Concept', behind
BOOTSTRAP (a European Software Capability Assessment Initiatve) and
notes the influence of the Japanese concept of 'Kaizen', which he compares
to the western paradigm of 'Radical Constructivism (the paradigm of the
self)'. In addition, the Capability Maturity Model provides no guidance on
which key practices should be implemented first for a given level, and no
concept of the relative cost benefits of those key practces.

Many of these criticisms, are being addressed by the SEI, and it would be wrong to
view the maturity model as static and monolithic. For example, the version 1.1
[153] emphasises key activity profiles rather than absolute scores [165]. However,
1t 1S important to realize that there is no empirical evidence for the success of the
CMM. We have no way of knowing that it is the effect of the CMM that makes a
difterence to the sottware developer. For example, the assessment practice involves
a significant amount of resource being devoted to examination of current processes.
It may be that 1t 1s the much needed examination of current process which yields
change and improvement and that the CMM 1s merely a vehicle for arguing for and
acquiring such resources.

Whether or not the impertections of CMM are significant, one cannot deny its huge
impact on the software community. This impact can be split into two categories: the
indirect or less tangible influence of the capability maturity model, and the process
improvement activity that it has generated.

1) Influence of the Capability Maturity Model

We found, in the organization with which we collaborated, that the SEI
work had been a key factor in the shift towards the realisation that process
1s important, and was one reason why we were able to persuade them of the
potential of process modelling.

2) Process Improvement Programmes

There has been much theoretical work on process modelling and process
improvement, but little use within an industrial context. Theretore, the fact
that many companies are actually using the SEI approach as part of a
process improvement initiative is a success that many process modelling
initiatives cannot claim. Furthermore, this success in getting organizations
to try using process technology is enhanced by the fact that a number of
authors have cited encouraging results using the SEI approach [166-169].

2.3.3 Software Measurement (Metrics)

We do not intend to discuss the merits of software measurement as a discipline in
its own right, rather we wish to examine briefly the work aimed at combining
process modelling with software measurement ideas. Some of the lessons learned
in software measurement work may be applied to process modelling. There appear
to be two main reasons for believing that software metrics and process modelling

are complementary disciplines:

1) Modelling can provide a framework for measurement, and specifically for
data collection.

20

A process model could include data collection points, thus providing
guidance about what to measure, when to measure, and how such
information will be used [16-18, 51-53, 170]. In addition, the increased
standardization of process models and descriptions (for example, by
providing templates for process users) may lead to easier process
assessment, reducing the variability that can affect prediction [34]. These
co-operative aspects of process modelling and software measurement are
echoed in Krasner's suggestion that ‘'measurement and analysis models’

should evolve 'with the process model [171].

2) Measurement can provide quantitative evidence of the worth of software
processes [51-33].

Ambriola believes that measures can actually 'change your view of the
process' 13 [173]. Our research endorses this view, and we believe that the
combination of measures and models can lead to insights not available by
modelling alone.

A significant approach 1s Basili and Rombach's Goal, Question, Metric (GQM)
paradigm {174, 175], which emphasises the need to begin measurement selection
by deciding on the goal of the measurement work. A hierarchy links the goal
through questions to appropriate metrics or measures. A simplified example of this
is given for a previous measurement project [176], which looked at code review

effectiveness.

Goal: To improve (active purpose) the etfectiveness of the code review process
(object) at Site X (environment) from the view point (perspective) of the software

€Nngineers.

Q1: How can we measure the effectiveness of the review process?

Q2: How can code reviews be compared?

Refined (Quantified) Goal
To reduce the number of errors in post review code.

Q1: Do we need to know about absolute errors or errors as a ratio?

M1: Possible effectiveness metric

Effectiveness = R / (R+T+C)

where:

Errors found in review
Errors found in testing
Errors found by customers

T I |
Q1%

We believe that the need to start by concentrating on goals can be usetully applied
to software process modelling methods!4 (see our example in the following

13 This is a view which was expressed at the experience session of EWSPT'94 (see [172])

21

chapter). Tate describes a case study which successfully used modelling for a
specific purpose (to examine and measure re-work in application development
using CASE), and which used a goal-based approach to selecting models and

metrics {18]. He states that:

The emphasis on goals is critical. There is not only an infinite spectrum of
software process models; there are also many different software metrics available’.

Another important aspect of Basili and Rombach's work 1s that they emphasize the
need to characterize the environment as a first stage in the measurement
programme. Process modelling and metrics can be combined, by using process
modelling for this first characterizing step [176]. The ami (application of metrics in
industry) method {[155] characterizes organizations according to the SEI
framework, while (as we noted in examining capability assessment) Pfleeger uses

maturity to decide which measures are appropriate for an organization to collect!?
[156, 180, 181].

Thus, combining process modelling and measurement 1deas enables us to:

1) Use the goals of our study to help determine appropriate strategies,
measures and models.

2) Provide an explicit and visible data collection framework.
3) Enhance the models of software development by providing a quantitative
dimension. |

2.4 Current Work

2.4.1 Classification Schemes and the Meta-Process

2.4.1.1 Classification Schemes

Numerous process modelling approaches have been proposed during the last ten
years or so, and a number of authors have attempted to devise classification
schemes for these approaches [74, 182, 183]. Their reasons for doing so include

the following themes.

1) To aid identification and evaluation of approaches.
2) To aid comparison of complementary approaches.
3) To aid discovery of parts of the software development process not

addressed by existing approaches.

These classification schemes themselves be classified:

14 The realisation that modelling goals are important has led many researchers to suggest that
process models should be 'goal’ based or goal oriented [177, 178]. However, there appears to be
increasing compromise between the goal based and activity bascd camps with the belief that we
need both goals (managers) and activitics (users), with some mapping of activities being linked to,

or hanging off goals.

15 Also see [179] which describes similar work.

22

1) By representation scheme

Many of the proposed classification schemes for process modelling
approaches have focused on the representation scheme [182]. However,
such schemes can themselves be quite complex. Madhavji needed no fewer
than 11 categories to classify the various process modelling notations
available [74]. Furthermore, this approach is unlikely to be very robust, in
that the inevitable 'new scheme' can easily render the categorisation

redundant.
2) By model perspective.

Curtis uses four modelling perspectives (functional, behavioural,
organizational and informational [184]) to classify process modelling
approaches. His paper also considers the extent to which different
representation schemes support these perspectives. Curtis takes the view
that specific representation schemes will be appropriate for a given purpose.
Thus, by first deciding our modelling purpose and viewpoint, we are much
more likely to pick an appropriate representation scheme. By showing how
these views are supported by difterent notations, this classification scheme
may be useful not only to academics but also to potential practitioners.

3) High-Level Objectives

Objectives for process modelling approaches fall into four broad categories,
corresponding to an increasing desire for process automation: analytical
models (mainly for understanding), enaction, simulation, and the desire to
build project support environments. One might consider these categories to
correspond to an increasing maturity within the subject. That 1s, we strive to
understand development, then produce some enactable models, experiment
with possible processes by running simulations, and finally manage to
provide higher levels of automated support. However, classitying
modelling approaches in this way shows that the attempts to automate the
process [107] and to produce environments often pre-date studies aimed at

better understanding [10].
What do we gain by categorizing the modelling approaches?

The 'perspective’ approach (see Curtis above [184]) maps notations to views,
helping us to pick an appropriate notation for a given view. For example, 1f we
know that we wish to focus on information, we can identify notations to support
this. However, the categorisation provides less guidance about how we might map
to the purpose of the modelling - something which Curtis considers necessary 1in
choosing appropriate notations. This need to consider purpose 1n order to choose
notation is one with which this research firmly agrees, and it is a theme which we

will develop later.

A less obvious use of categorization is to support tutorials or introductions to the
subject. Such frameworks typically encompass the majority of work to date and
provide the beginner with a coherent and organized summary of current work and
ideas!®. Unfortunately, the majority of classification schemes appear to provide
little other benefit apart from this educational use.

16 The above mentioned paper by Curtis et al [184] is an excellent example of this.

23

2.4.1.2 Meta-Process

Related to the work on classification schemes is the concept of the meta-process.
This term is used to imply that we are looking at a level of abstraction above that of
modelling the software development process. As a minimum we wish to have a
method for process modelling [185], and the meta-process concept is useful for
clanfying this need. In addition, the meta-process idea has been used to provide a
framework in which terminologies and classification schemes can be incorporated,
and which allows comparison of process modelling approaches, clarification of
1deas and so on [88-90, 186, 187]. However, the meta-process concept has been
extended to encompass all of process modelling, including developing and evolving
the model of the software production process, the support technology and the
model of the meta-process itself. To avoid an infinite level of abstraction, we now

need notations with reflexive capabilities!’ [188]. The meta-process concept seems
usetul 1n reinforcing two other concepts:

1) The need for a support process.
2) The need for evolution of the software process.

Despite this, we wonder whether this additional terminology really serves a useful
purpose outside the academic environment. We need methods for process
modelling, but 1t may be more appropriate to develop them fully before we decide
how to fit them 1nto categories. For example, the Cookbook approach to modelling
methods [32, 189, 190] may provide useful guidance to potential practitioners, and
yet 1t does so without having to consider meta-process. Our own experience is that
the term 'meta-process only serves to confuse, and those with whom we have
collaborated see quite readily the need for methods, for support, and for continuing
evolution of the process model without need for such terminology.

2.4.1.3 Categories and the Meta-Process

Though there are some benefits to work on categorizing approaches and the meta-
process, we wonder whether some of this categorizing 1s rather premature. There 1s
still precious little expenience of applying modelling approaches or modelling
methods to industrial settings, and one might, therefore, expect that empirical work
would be the priority. Furthermore, without such experience much categorizing
may be somewhat supertluous, in that we may be considering theoretical problems
which in reality never arise. For example, do we really need to have process
models which can be dynamically re-configured, or would such an action actually
only lead to greater loss of process control? We do not pretend to have the answers
to such questions. Rather we believe that once again there 1s a need for more
experiential work. Indeed, we believe that such work is vital 1n order to support the
more theoretical work (as described above) which has already been undertaken.

2.4.2 Importance of Humans

Despite its often highly technical nature many researchers of software development
have suggested that it 1s the sociological and management aspects, rather than the
intellectual rigour, which cause most problems [191]. There 1s now a body of work
that examines the way we develop software, by taking a more behavioural [8],
sociological [191], or ethnographic [10] view. This is motivated by the belief that
we still do not really understand the way people actually develop software [10], and

I'7 Otherwise, we would need meta-meta models, then meta-meta-meta models, and so on, ad
infinitum.

24

that we should be examining what people really do. However, until recently the
human element had been given little consideration. One possible reason for this is
that people tend to concentrate on those things that they know about, so that (not
surprisingly) software process models contain the kinds of descriptions that are
commonly found within software engineering. Consequently, functional
descriptions, programming languages, algebraic notations, and the like abound.
Likewise, models have tended to describe parts of the process that are already well-
understood, rather than the more subtle human interactions.

In the United States, the work of the recently disbanded software research unit
(Software Technology Program) of the Microelectronics and Computer Technology
Corporation (MCC) has taken what might be termed a field study approach to
attempting to understand the software process [9, 183, 192-194]. This has
concentrated on three levels, the individual, team behaviour and organizational
behaviour. Much of this work suggests that focus on the way individuals work
together has been neglected in the majority of previous process modelling work.
This 1s all the more surprising since 1t has been suggested that the quality of
individual programmers has greatest impact on project success [195]. Thus,
understanding what makes a good programmer, or a good project team may be of
great commercial value.

Curtis et al. propose a layered behavioural model [8] and suggest that development
must be treated in part as a learning communication and negotiation exercise. wWe
note two specific findings of this work:

1) The Super-designer

One 1in three projects investigated contained a particularly talented individual
who became a focus for the development effort. Often this person would act
as the main distributor of knowledge (product and application domain)
during the project. This person tended to be distinguished by his or her
ability to understand the application domain and what the project/product
was all about. For example, he or she might have a 'teel' for
telecommunications. Typically good communicators, these people often
internalize the progress of projects and take personal responsibility for

them!18 [196].
2) The importance of application domain knowledge.

The 'thin spread' of application domain knowledge is seen as a major
problem for software projects [7]. It is suggested that this domain

knowledge is cruciall® and that it is often what distinguishes good
engineers from bad, and yet there is often little organizational effort to

alleviate this problem?9,

18 This is a finding which we confirm from our own research. For one particularly difficuit project
that we investigated, which was a new direction for the organization, only one person really
seemed to understand what the project was about. Everyone interviewed noted his unique
contribution, and talked about the way he had 'driven the project alone'.

19 See also [6]

20This is again a problem encountered during the course of this research. Two possible solutions
to this problem are 1) training, and 2) improved communication of knowledge in projects. For one
of the projects we investigated, outside training in the application domain had been given to
engineers, though this was after project initiation. However, on successful project termination an
internal session about this domain was hosted, so that in future engineers on other similar projects

25

The need to consider the human factor is gaining credence, even with those outside
the behavioural camp. For example, the idea of process buy-in or process

ownership is one with which most authors agree?! [197]. Both Tully and Lehman
argue that people must feel that they own the process and that productivity gains
may be made as a consequence [54]. Indeed, the need to consider the importance of
people was one of the strongest themes at the recent European Workshop on
Software Process Technology [198]. However, despite this growing interest, the
kind of sociological studies described here still seem to fall outside the boundaries
of the majority of process modelling work. One reason for this may be that it is
very difficult to persuade organizations of their worth. It is perhaps much easier to
sell them a modelling method or a modelling tool, than the idea of 'looking at their
process. Nevertheless, this examination of what developers really do is clearly
very important, and again suggests a need for more observational, empirical or
Industrially-based process modelling research. Indeed, simple observational studies
may reveal many useful insights. For example, recent empirical work [199-201]
has found that many software engineers spent a large portion of their time waiting
for important project artifacts which they needed to further their own work.

2.4.3 Multi-Paradigm Approaches

The 1dea that models should have multiple viewpoints is not a new one, and the
approach can be seen 1n many systems analysis methods [202]. Multi-view models
allow us to separate out system complexity by distributing different aspects of the
system under study across a number of views. This effectively means that we can

have increased modelling capability without models becoming unreadable?2. This
concept has also been transferred to software process modelling [49, 171, 185,
207, 208], one argument being that multi-paradigm approaches represent a way to
deal with the problem of conflicting model requirements [184, 209].

A good example of this kind of work is the use of STATEMATE for software
process modelling [48, 50, 208-212]. This is a particularly interesting example in
that 1t uses an existing CASE tool [213] rather than a new modelling notation. In
this respect it can be considered as a pragmatic approach (see following section).
However, this approach of using existing notations is by no means the norm.
Despite the tact that most new multi-view approaches actually use the same basic
views provided by existing analysis methods (functional or procedural, state or
behavioural, data or informational, and occasionally organizational [184]), their
proponents still appear to be persuading potential users that the new method or tool
1S necessary for the process modeller [37, 38]. We echo the views of Harel who, in

would have a better intial understanding. Staff at the organization suggested two problems with
getting this kind of training. Firstly they had found it difficult to get someone who would pitch
the training sessions at an appropriate level. Secondly they considered that the relevance of many
points made in the training was only really clear if one had already struggled with such concepts to
some extent, i.e. had some project experience. An accidentally-discovered mechanism for
communication of domain knowledge was review meetings. One software project manager related
his experience of a product proposal review which owing to the lack of understanding of the
majority of its participants had become a learning session. He fcit that, as a result of this meeting,

they all had a much better idea of what was going on.

21 This was an important factor in the research which we have carried out.

22 Note that some consider that this shifts rather than solves the problem of complexity, and have
suggested the need for distortion oriented presentation techniques [203] (for example fish-eye views

[203-205] or perspective walls [206]).

26

arguing for more flexibility and cross-use of methods, states that ‘'one of the most
unfortunate trends has been in presenting a method as exclusive' [208].

The multi-paradigm approach clearly offers a way to describe the differing aspects
and viewpoints of the software process, which no single paradigm can achieve
without excessive notational complexity. Though separating out the views of
process should simplify models, such methods can still be quite complex and can
require significant tool support. In addition, the integration ot these multiple views,
In order to provide a coherent picture is far from trivial, and again specific tool
support may be required (e.g. STATEMATE [212]). Furthermore, for analysis
methods there is an implicit assumption that these multiple views are needed in
order to complete implementation. For process modelling this may not be the case,
and what views are needed should be dependent on the use to which the model 1s to
be put. For example, we may be interested only 1n a particular view of the process
(e.g. procedural) and thus to use other views may involve unnecessary resource.

2.4.4 Pragmatic Approaches

In contrast to complex multi-paradigm approaches, pragmatic approaches tend to
adopt a simple usable modelling technique that may not be able to describe all
aspects of the process. Tate describes a successful study where, rather than opt for
a complex dedicated process modelling approach, an existing CASE tool was
chosen for 1ts ease of use and familiarity [18]. Typically, pragmatic approaches use
tried and tested notations, such as structured analysis techniques [214, 2135],
offering an acceptable 'way in' to process modelling for the organization concerned
[216]. For example, Starke [217] states that some of the advantages ot adopting a
structured analysis-based approach are:

1) It is well known and already has agreed usage guidance and terminology.

2) It is a pragmatic approach. Users will find it easier to accept than multi-
paradigm approaches or highly mathematical approaches.

3) It allows generic models.
4) It is graphical (hence, readable and usable).
J) [t allows for any desired level of granulanty.

Starke's concern with the lack of work in applying modelling languages and
notations to 'real process modelling problems', appears to be the main motivation
for adopting such an approach. He notes that there is 'severely limited process
modelling experience’ [218] and contends that the need to model real industnal

processes is an urgent research 1ssue.

There appear to a number of ways in which approaches could be considered
pragmatc:

1) There are approaches that opt for a single paradigm [36].

2) There are approaches that (though they may have muitiple views) use tried
and tested (readable and usable) notations [208, 217]

3) There are approaches that opt for both a single paradigm and a known
usable notation [215].

27

Clearly there is some overlap in what can be considered a pragmatic approach. We
simply cannot say, for example, that a muliti-paradigm approach 1s not pragmatic,
or that a single view approach necessarily 1s. Pragmatism 1s more about the attitude
taken by the modeller and the accessibility of the technique. Though they may differ
1n the exact notation or modelling approach taken, the common theme in all of these
approaches is that they prefer to sacrifice some of the modelling capability in favour

of simplicity and usability?3, in an attempt to be more acceptable to potential
practitioners. Thus, pragmatic approaches appear to offer a way to address the
'urgent need’ for industrial experience.

2.5 Problems, Issues and Concerns
2.5.1 Current Issues in Process Modelling

Here is a brief list of some of the 1ssues which are still being debated by the process
modelling community. We have added to these descriptions of the issues some
discussion of the direction which we believe the modelling community may take.

1) Enaction: Do we need enactable models?

Enaction can help with getting the right information to users, and aiding
complex sequences of actions (as with the Unix 'make' facility). A number
of tools provide these enaction capabilities. However, as we have noted,
this capability 1s often neglected. Enaction is felt increasingly to be useful in
supporting co-ordination [140]. Certainly those support tools using
enaction often employ it to co-ordinate large sequences of well-understood
activities (e.g. Process Weaver [41]). Indeed, this seems to agree with
some of the lessons learned from the office automation community [10],
notably that repetitive tasks can be supported by tools but that attempting to
automate more creative human activities and interactions 1s less successtul.

There 1s some confusion about terminology, in that enaction has become
almost synonymous with automation, particularly in Europe. Thus, the
apparent debate about enaction may really be one about where we need
formality, and where we need automation.

2) Formality: Where 1s 1t needed?

There 1s increasing agreement that not all activities can be formally defined.
We appear no longer to be arguing about whether we need formal and
executable models (as proposed by process programming), but about where
formality 1s or 1s not appropriate {93].

3) Understanding versus Executability

[s it more important to have understandable notations or executable
notations?

In our view such questions cannot be answered out of context; the purpose
of the modelling, the environment, and the users all have a bearing on what

23 Some have voiced even stronger anti-notational views, for example Pyzdek [219] suggests that
the key to process improvement is 'keeping it simple', and rather than concentrating on what
notations to adopt he suggests that what ‘really counts' is genuine commitment to, and
involvement in the process improvement program.

28

the notational capabilities should be. However, any notation chosen will be

worthless if the users cannot understand and use it since 'people are
important' [198]. Hence, while attempting to take into account both factors,

we believe that a heavier weighting should usually be given to usability
when using process modelling technology.

2.5.2 Critique of the 'state of the art’

We now summarize some of the positive and negative aspects of the process
modelling work which we have discussed 1n this chapter.

2.5.2.1 Positive Points / Progress

1)

2)

3)

4)

J)

6)

7)

8)

9)

The work on process modelling has led to a better understanding of some
aspects of the software development process. The recognition of iteration as
being an unavoidable reality is a significant example of this.

Though there 1s no empirical evidence that process does have an effect on
quality, most organizations seem to accept that it does. The enthusiasm with
which process maturity has been adopted, 1s testament to this. Though this
1s worrying from a scientific point of view, 1t does mean that process
modelling 1s a technology that organizations may be willing to try.

The importance of the role of humans in the software process 1s beginning
to be recognized. For example, there 1s increasing realization that we need
to understand the way people work, rather than simply impose processes
upon them, and process ownership 1S now seen as an important
consideration.

There are now a mass of possible notations and descriptive methods for the
modeller to use. These include graphical notations offering visibility and
ease of understanding, and detailed notations which can in some cases be

executable.

There are already frameworks, classification schemes and agreed
terminology in place to enable researchers to compare process modelling

approaches theoretically.

There is increasing agreement that we cannot use a model to control the
process, and that the role of process modelling is to provide understanding,
guidance and process support.

Multi-paradigm approaches offer the capability to be able to model many
aspects of the development process, and to combine these views 1nto a

coherent framework.

There exist impressive process modelling tools, which offer graphical
interfaces and modelling languages, as well as process engines to execute

notations.

A number of researchers have successfully used process modelling (or
process maturity) 1n conjunction with other software engineering initiatives
(notably software metrics and CASE).

29

2.5.2) Negative Points / Concerns

1) There is still relatively little understanding of the way people develop
software, and yet there is little work on observing real software processes.

2) There 1s some empirical evidence that process modelling is a useful
industrial technique. However, we do not yet understand which techniques
are best or what aspects of models are most helpful for a given context.

3) There has been little attempt to focus on specific project or organizational
goals.

4) There has been little industrial use of the techniques, and even less reported
experience.

J) There 1s little to guide the potential modeller. There are no 'methods' that

aid selection of appropriate process modelling notations.

6) There appears to be far too much focus on automating the development
process. It 1s significant that the capabilities of the tools produced are often
under-utilized 1n practice. Users are reluctant to allow instantiated process
models to control their work.

7) Despite the fact that some have suggested a more pragmatic approach to
modelling, there are many organizations for whom the scale of many
existing techniques 1s inappropriate.

2.5.3 Need for further work

We once more draw attention to the high number of unresolved issues in software
process modelling, which 1s indicative of a subject in its infancy. Despite all of the
work on software process modelling we still don't really understand the
development process, and there 1s very little reported evidence of empirical

industrially based work.

We suggest that what many organizations actually need is a model which though it
may be impertect, 1s usable and useful. Furthermore, we suggest that sufficient
notations already exist, and that the real problem is that not enough work is being
done 1n applying process modelling to real world problems. This industnally-based
modelling work 1s particularly important if we are to gain much needed experience
in observing and modelling real world’ processes. Indeed, much of the theoretical
work which has been discussed 1n this chapter, can only be validated or justified by

future empirical study.

Finally we note the comments of Tamai who re-iterates Rodden's [10] call for
observing what people really do:

'Whatever approach may be taken, the observation and understanding of real
software processes should be the basis for constructing an appropriate process

model’. [220]

30

2.6 Work of a similar nature to that proposed by the
research

Those few who try process modelling in an industrial environment appear to be
taking a simple or pragmatic approach to modelling, using existing systems
analysis notations. For example, Tate [18] and Pengelly [215] adopt a data flow

based approach to process modellingZ* and McGowan and Bohner [197] use IDEF
diagrams. In distinguishing our work from these authors 1t 1s important to note that
this 1s a small grain distinction, and that our approach and rationale are very similar.
Indeed, there 1s an astonishing paucity in this area, and still very little empirical

work has been published?>. The majority of the process modelling community
seems to be more interested 1n devising ever more complex tools and classification
schemes, than in applying the technology to real problems. Thus, we have much 1n
sympathy with others who are attempting to put process modelling into practice.

Our exploratory work used an existing notation (data flow diagrams) for process
modelling. This 1nitial study, though not significantly different in the modelling
notation or strategy from the work cited above, does introduce guidelines for
choosing appropriate modelling notation. (We will consider differences in notation,
and why we chose our particular notations in our discussion of modelling methods
in chapter three). We have used process modelling to tocus on a specific problem
(similar to the work of Tate [18]) and the lessons learned from our work are similar
to those of McGowan and Bohner who also contrasted the theoretical and actual
development processes.

However, having used our initial study to demonstrate the utility of process
modelling to the collaborating organization, we then extended our work. Our later
work 1s distinct in a number of ways:

1) We have used our process model as a data collection framework.

We used the process modelling to discover the invariants 1n the process,
and then produced a mechanism to collect data based on these invanants.

2) We have combined the process model and the data collected such that the
model serves as a mechanism for displaying that data in an accessible way.

3) We have used our (combined) process model data to link process activities
with their impact on projects.

4) We have extended the data flow approach to develop a unique notation
which allows us to depict the process of five projects over time.

For example, rather than allow for iteration, sequencing etc., the notation
shows the true extent of iteration, by showing not how many times an
activity is revisited, but when, how much effort it took, and what was the

average distribution of effort during that time.

24 Interestingly both of these authors are also keen to emphasize the link between process
modelling and software measurement.

25 This was a strong concern at the recent European Workshop on Software Process Technology,

where it was felt that owing to this research deficit any reported experience was made much more
valid and valuable to the community as a whole [172].

31

S) Our modelling approach has allowed us to uncover unique findings about
the nature and extent of project variation at a TickIT accredited [59]

software developer.

The following chapter further describes our research approach, both in terms of the
research methods and modelling methods adopted.

32

3. Research Approach

Chapter Synopsis

This chapter considers the two main elements of our research approach. In section
one we examine the choice of research methods available, before noting how our
own work can best be described as case study research. In section two we examine
the choice of modelling notations available. Owing to the multitude of possible
notations we concentrate on large-grain differences. Therefore, we examine in detail
three very different kinds of approaches which we consider to be representative of
the state of the art. Finally we examine the reasons for the choice of notations which
we adopted for our own work.

3.1 Research Methods

Hammersly [221] notes that one of the problems in describing research methods
has been the 'widespread tendency to see research method in terms of contrasting
~approaches or paradigms involving different epistemological assumptions'. Thus,
for example, 1n the 1920s and 1930s the case study was often contrasted with
statistical work, in the way that qualitative and quantitative methods are still
compared. Hammersly argues that much of this categorization i1s artificial, for
example, that case studies and surveys are not really separate approaches, more a
shift 1n emphasis, to make the method more appropriate to given conditions.
Nevertheless, the widespread use of such terms as experiment, quasi experiment,
survey, case study and ethnography provides a useful framework for consideration
of research approaches. However, it appears that there 1s still some disagreement as
to exactly where the boundaries between methods lie. Thus, Smith {222] considers
case study analysis methods as a subset of quasi-experimental design, whereas Yin
[223] makes a clearer distinction and sees the case study as completely separate.
The following sections attempt to describe the core aspects of the various research
methods, and to note their applicability or appropriateness for our own study. We
start by describing experiments and quasi-experiments, including a briet discussion
of the concepts of reliability and validity, to which we will occasionally return 1n
discussing other approaches. We then describe surveys, case studies and
ethnography. Despite the fact that we identify where our own work differs form the
case study approach, we believe that this particular method still otters the greatest
potential as an appropriate framework for our kind of on-site study. Thus, our
discussion of the case study 1s the most lengthy of our 'methods’ sections. We
initially describe one view of case study research at length, and then go on to give
some conflicting descriptions of the case study. Finally we discuss the range of
work which has been banded under the heading of ethnography, concentrating
specifically on the recent attempts to use this approach to investigate the software

development process [191].
3.1.1 Experiments and Quasi-Experiments
In the pursuit of software engineering as a scientific discipline one method of

evaluation of new technologies and approaches would be by experiment. We will
examine the features of research methods that typify experiments and assess the

33

appropriateness and viability of these features for our own process modelling
research.

Hammersly [221] believes that the chief distinction between expeniments and other
research strategies is that 'the researcher creates the cases to be studied throughout
the manipulation of the research situation thereby controlling theoretical and at least
some relevant extraneous variables'. For example, a classical scientific experiment
1 designed such that independent variables are varied systematically, and objective

dependent variables are then measured.

Adelman [224] lists five 'basic components of most factorial experiments'. These
are:

1) Participants

2) Experimental conditions or independent varnables.
3) The tasks the participants perform.

4) Dependent vaniables.

Adelman states that 'Objective measures (e.g., decision quality),
observational measures (e.g. decision process quality) or subjective
measures (e.g., user confidence) can all be used as dependent vaniables.'

J) Procedures governing the implementation of the experiment.

For example, in order to be able to say that an improvement is due to some
factor we need to be able to control for 'plausible rival hypotheses'.

The two chief concerns of the experimental design (and indeed of most research
design) are to preserve reliability (replication) and validity. We will discuss these
issues here, though it should be noted that these are design issues which are
relevant to any research method, and to which we will return later.

3.1.1.1 Reliability

For an experiment to be reliable it should be able to be repeated such that 1t would
give the same results. The chief mechanism in ensuring experimental reliability 1s to
modify the experimental procedures until the same result 1s gained when the
procedures are applied to the same situation. In other words, the procedures are
modified until the experiment and the result are repeatable.

Clearly where each run of the experiment constitutes a study of some length, we
cannot always afford the luxury of modifying procedures in this way betore
commencing the experiment 'for real. This suggests that the experimental
framework may not be appropriate to process modelling work such as ours.
However, one approach to this problem has been to attempt to 'prototype a process
experiment' [199]. This approach sets up an experiment and collects data from 1it,
but recognises that the experimental design can be changed as part of a longer on-

going experiment.

A further problem with the experimental framework in social situations is that we
do not ever have the 'same situation’, and thus 1t 1s difficult to justify claims about
the ability to replicate results elsewhere. Indeed, for process modelling in industrial
situations, many would claim that the conditions at their site are 'not like anywhere
else', and this is a significant factor in suggesting that the experimental framework

34

1S Inappropriate. However, we can still use formal experiments to test the effects of
methods or tools within an organization. In this case we can still use an experiment
if we are able to control over our variables. Pfleeger [225] gives an example of
testing a hypothesis that a new programming language will etfect the quality of
code. In this case we would design an experiment so that we looked at a number of
projects which used different languages, but where other variables, e.g. project
team experience, project difficulty, application domain, were the same.

3.1.1.2. Validity

Internal Validity is concerned with 'establishing a causal relationship’, that is
establishing that it is the independent variables and not some other factors (or
variables) that have caused the effects we have measured to our dependent
variables. These other factors are often considered as 'rival hypotheses', and their
are two main ways in which experimenters attempt to control for these 'rival
hypotheses'. The first solution 1s to design experiments such that the effect of the
rival hypothesis can be judged. There are two main objections to this approach. The
first 1s really a practical objection, in that we often have a large number of
independent variables, and thus inadequate resources to check all for rival
hypotheses. The second objection, 1s that we can never really know all plausible
rival hypotheses; there may always be alternative explanations (hence, we always
attempt to refute null hypotheses rather than confirm hypotheses). The second
solution is to attempt to eliminate the possibility of rival hypotheses being able to
affect the results, typically by randomizing. Thus, we might wish to choose
subjects at random, projects at random and so on. However, this may not always
be possible. For example, 1n our own work we wished to choose both successful
and unsuccesstul projects. This means that a quasi-experimental approach would be
needed, such that each threat to internal validity should be noted and ruled out in

turn.

Construct Validity 1s concerned with ensuring that the effect of a vanable 1s not
confounded with other experimental conditions. In other words we want to be sure
that the effect we are seeing 1s due to the varnable and not some other aspect of the
experiment. An example 1s that many people will feel better in a clinical tnal, even if
given a placebo. Thus, the effect is a combination of the psychological etfect of the
treatment and the physiological effect of the medication. In the medical example, we
have to compare the results of the trial against those of the placebo. For a process
modelling study it 1s quite possible that there are a number of threats to construct
validity. However, we can only eliminate these threats if we have some 1dea of
what they might be. In this case we can either attempt to minmize the influence of
the threats or to design the experiment such that we can assess their effects.

3.1.1.3 Quasi-Experiments

There are many forms ot study which can be considered as quasi-experimental.
Broadly these designs occur when an experimenter cannot control experimental
conditions as fully as for an experiment but still wishes to use the framework of an
experimental design for the data collection. For example, simple interrupted time
series designs use the group being tested by repeatedly testing their performance
before and after the introduction of the factor under scrutiny. Adelman [224]

examines three types of quasi-experimental design, namely:

1) Time series designs,
2) Multiple time series designs using a control group and
3) Non-equivalent control group designs.

335

In order to point out their advantages and disadvantages he [224] also discusses
three versions of the 'inferior' 'pre-experimental designs', as a comparison.

Pre-Experimental Designs

1)

2)

3)

The One-Shot Case Study (or the One Group Post-test Only Study).

This 1s where 'one unit is given the treatment..." [224]. There i1s no pre-
testing and there is no control group. Inferences are based upon 'general
expectations of what the performance (data) would have been' [224]. This
method threatens all four types of validity; (1) it has no control over internal
validity, (i1) it has no measurement and, therefore, it is impossible to gauge
the effect of extraneous factors, (ii1) it has no measurement of performance
variables, or comparison with another group; consequently it is impossible
to asses statistical conclusion validity', and (iv) there i1s no basis for
predicting the effect of the 'treatment’ on another group.

The One-Group Pre-test/Post-test design.

As above but with pre-testing. The main problem with this design is that 1t
'does not control for the etfect of other plausible hypotheses..' [224].

The Post-test Only Design with Non-equivalent groups.

Compares the post-test performance of the group under study (e.g. having
received some treatment) to another different group (e.g. who did not
receive the treatment). Unfortunately because the groups are non-equivalent
and there is no pre-testing there 1s no way of showing that they would not
have differed in the same way even if the treatment had not been applhied.

Quasi-Experiments

1)

2)

3)

Time-Series Designs.

Considered appropriate for 'use by as few as one group' [224]. 'The
'simple interrupted time series design' uses the group 1tself as a partial
control for alternative hypotheses by measuring the group's pertormance
repeatedly both before and after treatment intervention. It 1s considered a
weak design 'because of a number of threats to its internal validity' [224].

Examples of such threats are:

- that some event other than the treatment caused the change,
- changes in instrumentation (record keeping or administration),
- selection and changes in the composition of the group.

Multiple time series designs using a control group.

Adelman notes that the addition of a single control group does not remove
the threat to external validity.

Non-Equivalent Control Group Design

The Non-Equivalent Control Group Design 'adds a pre-test measure to both
groups in an effort to control for factors, other than the treatment..’ [224],
but uses 'only one pre-test and one post-test observation per group' [224],
hence, it is 'not as effective for controlling internal validity threats' [224].
The design controls for all but four threats to internal vahidity, namely:

36

(1) Selection/maturation bias: Members may change from one group to
another.

(1) Instrumentation, e.g. scaling problems.

(111) Statistical regression to the mean.

(1v) Local history.

All of the above threats are a 'function of selection bias' [224], and a result
of a lack of design randomization.

3.1.1.4 Appropriateness of Experiments for our work

Experiments are chiefly concerned with assessing the impact of some specific
variable or variables. Their main advantage is that they offer greater control for the
researcher. However, this is paid for both by a lack of flexibility and by the fact
that the experiment may render the situation artificial. For example, in examining
social situations the level of control required for an experiment may not be
representative of the situation being observed. Therefore, experiments are
inetfective where we wish to gather information about naturally occurring
phenomena or situations over which we have little control.

Though we have noted some concerns with experimental design for process
modelling our main reason for rejecting this approach is that we are not trying to
carry out this kind of quantitative assessment on process modelling. Our work is
chietly concerned with observing the realities of process modelling, and attempting
to show that a simple approach can be utilized by a typical software engineering
organization. We are not attempting to demonstrate process improvement, nor to
show that the introduction of the new technology has led to some marked increase
in productivity. Thus, we must look to other research methods for an appropriate

strategy.

3.1.2 Surveys

Surveys involve selecting a relatively large number of naturally occurring cases.
Surveys have traditionally been associated with more 'hands off’ studies (e.g.
postal surveys) than case studies which have usually involved far more work in the
field. For example, survey methods are often used to ascertain the views of some
representative sample of the general public. Whilst surveys typically involve more
detail about each case than experiments, they have also have less information on
each case than a case study. Hammersly [221] argues that the difference between
case studies and surveys 1s one of degree: 'We have a gradient or dimension here

not a dichotomy'.

Thus, choosing a survey selection strategy involves making a trade-offs between
the detail (and likely degree of accuracy) in each case against the number of cases.

3.1.3 Case studies

As we shall see from the following section there 1s no general consensus as to the
exact meaning or definition of a case study. Thus, in order to give a flavour of the
characteristics of case study we shall first draw mainly from one source, namely
Yin's description of case study research. [223]. Yin defines a case study as:

'...an empirical inquiry that:
- investigates a contemporary phenomenon within its real life context, when
- the boundaries between phenomena and context are not clearly evident ; and in

which |
- multiple sources of evidence are used.

37

However, though this definition would seem to fit pertectly with the investigation
of process modelling on-site, the meaning of the term has been further refined, not
least by Yin himself so that in order to qualify as a case study such work must also
be designed, organized and carried out in a more controlled manner (see section
3.1.3.1 below). We now briefly examine some of the advantages claimed for the
case study and summarize some of the important elements which contribute to the
case study method.

3.1.3.1 Characteristics of the Case Study Method

The major analytical difference between the case study and experimental framework
1s that whilst experiments sample over their state variables (e.g. an experiment
would examine a variety of projects) the case study samples from the state variables
(e.g. a case study would usually examine typical projects, though cases may also
be chosen precisely because they are atypical). Thus, the case study will typically
examine one or more cases in some depth. The case study 1s, therefore, often
useful in social settings and Yin suggests that it should be 'preferred in examining
contemporary events, but when the relevant behaviours cannot be manipulated'.
This fits well with the situation of examining software development where the
research 1s often far less important than the primary development goal of producing
software, and where the researcher often has very little control over events.

Another strength of the case study 1s 1ts flexibility. For example,
1) The case study can deal with a number of different sources ot evidence,

2) The case study can be used within or to subsume other studies (e.g. a
survey within a case study, or a case study which contains experiments).

3) The case study can also include 'and even be limited to qualitative evidence'
[223].

3.1.3.1.1 Case Study Design
Case studies can be characterized along two orthogonal axes, single or multiple

case, and holistic or embedded designs. However, irrespective of this the design ot
a case study design should always consider five categories or components. These

are:
1) The questions which the study hopes to address.
2) The propositions which the study hopes to investigate.

Yin notes that 'some studies may have a legitimate reason for not having
any propositions'. He calls these kind of studies explorations. He then

states:

'Even explorations, however, should still have some purpose. Instead of
propositions, the design for an exploratory study should state the purpose
as well as the criteria by which an exploration will be judged successful’

3) The units of analysis of the study - what the 'case’ is.

4) The logic which links the data back to the propositions.

5) The criteria for interpreting findings.

38

However, note that Yin says of case study findings 'there 1s no precise way
of setting the criteria for interpreting these type of findings.

According to Yin [223] all case studies should also have a defined protocol to
Increase the reliability of the design. He suggests that this protocol should include
the following four sections:

1) Overview

Includes the rationale for the selection of the site for the study, any
propositions or hypotheses to be investigated, any theoretical or policy
references and the purpose and setting of the study.

2) Field Procedures

Guidelines for coping in the field (most relevant where there are a number
of case study researchers. who may require some training). Field
procedures emphasize strategies for gaining access to the organization,
scheduling collection of data, coping with unanticipated change (e g. lack of

availability of staff) and the like?25.
3) Case Study Questions

These questions are intended to 'keep the research on track’, and often are
accompanied by a list of possible sources of information. Note that these
are questions for the interviewees, the case or multiple cases, but not
questions for the entire study. For example, though the case or cases may
be designed to answer some specific question or questions (case study
questions) the whole study may wish to answer some more general
question.

4) Guide for the Case Study Report
Note that again this is only intended as a guide. Y1n states that:

In fact case study plans can change as a result of the initial data collection,
and investigators are encouraged to consider these flexibilities - if used
properly - and without bias - to be an advantage of the case study strategy’

3.1.3.1.2 Conducting the Case Study

In conducting the case study itself there are said to be three ‘'overriding principles’
of data collection [223]. These are:

1) Having multiple sources of evidence.

Sources of evidence within a case study may be of a number of different
types, including documents, archival records, interviews, direct
observation, participant observation and physical artifacts. The key to the
multiple sources idea 1s that evidence should come trom two or more
sources but converge on the same set of facts or findings. For example, our
investigation of the software process will utilize procedures documents,
documents produced by the process (physical artifacts), and interviews 1n

26 NB For our research all of these things happened and were all decided by the single researcher
working on his own initiative. However, this 1s because this pcrson had control over the direction
of the research, and this is not usual for this kind of study.

39

order to investigate whether there is a problem with the perception of the
process. Similarly we will use e-mail (records), time-sheets and focused
interview in order to collect information about the effort spent on various

project activities.
2) Having a case study database.

The 1dea here is to have a collection of evidence that 1s separate from the
case study report. Typically this evidence consists of notes (on interviews
or analysis of documents) survey or other quantitative data and some
bibliography of documents (in our case it would also include the process
models produced at various stages of the study). This collection should be
retrievable so that in principle other investigators could examine the same
evidence, and assess the findings. Therefore, the classification scheme
adopted is felt to be unimportant, as long as it is accessible to an outside
investigator. However, the evidence need not be re-written in order to make
1t more presentable, and indeed if the notes and the like are readable it may
be preterable to leave them intact, as they were produced at the time.

Another 1nteresting form of evidence is 'narrative’. Here the investigator
has a much more open ended protocol and uses the narrative to document
the connection between pieces of evidence and issues in the case study.

It 1s worth noting that 'with case studies the distinction between a separate
database and the case study report has not become an institutionalized
practice’ [223], and that there 1s no consensus about what form the database
ot evidence should take. Furthermore, a problem with industrially-based
studies 1s that the evidence may be considered confidential. For example, in
our case the organization may not wish their competitors to know details of
their process, or the views and criticisms that its own employees have about
that process. This makes the presentation of evidence much more difficult in
that the 1nvestigator 1s forced to just ‘report' findings rather than being able
to ‘point’ to the evidence.

3) Having a chain of evidence.

The investigator aims to have explicit links between the questions asked, the
evidence and the conclusions.

3.1.3.1.3 Analysis of Case Study Evidence

Case studies usually adopt one of three common major analysis techniques?’:
pattern matching, explanation building or time series analysis, or one of three
'lesser techniques' analysis of embedded units, repeated observations or case
surveys. Though we do not intend to describe these techniques here, 1t 1s important
to note that these common techniques do not attempt to show that the findings that
they generate are statistically generalizable. Rather, in keeping with the case
approach they suggest theories, and it 1s these theories which may be generalizable.

However, examination of the use of these analysis techniques can be useful in
pointing out what is and what 1s not a case study. For example, Yin [223] in

describing embedded analysis notes that:

27 We note the more recent development of specific case study analysis techniques for software
engineering in the following section.

40

If the embedded unit is itself the main focus of attention (or is allowed to become
so) and if the larger case is only a mere contextual matter, the effort should not be
considered a case study, and some other research strategy should be used’.

For our own work this kind of advice is significant in that it suggests that case
study analysis techniques of our study of individual software projects (instances of
process) will be inappropriate if these projects are the focus of the case.

3.1.3.2 Pilot Case Studies

In order to refine their strategy the researchers may choose to do a pilot case study.
The choice of the pilot study site may be for any number of (often pragmatic)
reasons. For example, for this research access to an organization and data was
difficult, and approaching a site with which the author had some previous
collaboration increased the chance of the pilot (exploratory) study being able to take
place. The pilot study allows the researcher to refine the data collection strategy,
both in terms of what 1s to be collected, and what procedures will be used in order
to collect 1t. The pilot study 1s important in refining the objectives and strategy of
any subsequent work. Indeed, the pilot may be carried out 'prior to the final
articulation of the study's theoretical propositions' [223].

The pilot report 1s often mainly for the use of the investigators (or the collaborating
organization) and may be documented in a much less formal way (e.g. it may be 1n
the form of memoranda) than the main case study report.

3.1.3.3 Should Case Studies be Representative?

As with the argument over what constitutes the case study, there 1s also much
contention over whether case studies should or need to be representative. This
argument itself falls into two camps, those who believe that this irrelevance 1s
temporary, and those who believe that wrrelevance 1s absolute. The 1dea that
representativeness 1s only temporarily irrelevant has led to the partitioning which
regards case studies as either (1) approprate to exploratory work only or (1) being
made representative by the application of quantitative procedures. However, both
of these views hold with the fundamental requirement for representativeness.

A more radical viewpoint is that representativeness 1s ‘absolutely irrelevant’ [222].
One reason for adopting this argument 1s that the case study may be used for a
completely different kind of purpose to that which motivates a survey or
experimental study. For example, the case study may be a vehicle for description of
a phenomenon. A second (more theoretical) reason for regarding representativeness
as irrelevant is the rejection of representativeness as a basis for validity. Worsley

states [226]:

‘The general validity of the analysis does not depend on whether the case being
analyzed is representative of other cases of this kind, but rather on the plausibility

of the logic of the analysis’.

Mitchell offers strong support tor the view that representativeness is absolutely
irrelevant in case studies. Mitchell [227] describes a case study as:

‘examination of an event (or a series of related events) which the analyst believes
exhibits (or exhibit) the operation of some identified general theoretical principle’.

The argument for irrelevance 1s based on the belief that it is logical inference and
not statistical inference that leads us to be able to have analytic generalizability. For
example, Mitchell [227] notes that logical inference is independent of statistical

41

inference’ and that ’statistical analysis merely permits the inference that
characteristics within the sample may be expected within the population’.

Mitchell [227] further notes that there is a tendency, particularly with quantitative
studies to assume that the logical connection which has been postulated may be
assumed to exist in the population if it can be inferred (statistically) that it exists in
that population. In other words, statistical inference 1s being confused with logical
inference which is being assumed. The fact that logical and statistical inference are
separate brings us back to the argument about the irrelevance of representativeness.
The inference from case studies is logical or causal and not statistical (i.e. we
cannot extrapolate to a population), relying not on enumerative induction but on
analytic induction, and thus, whatever argument we use about the
representativeness of the case does not have any bearing. Furthermore, the
selection ot a case should not, theretore, depend on how ‘typical’ that case 1s but
rather upon the potential for explanation that the case provides.

An example of how it 1s the plausibility of the logical argument, rather than the
statistical inference which allows us to accept causality 1s provided by the following
example. It 1s reported that a study has shown a statistically significant reduction in
asthma suffering amongst condom users. At first sight it would appear that we have
only an association (perhaps some anomaly). We would be unlikely to accept that
there was a causal link based on this evidence. This illustrates the weakness of
inference alone. However, we now bring logic to bear and assert our reasoning.
Dust mites feed on (among other things) dried semen, and thus condom use, by
reducing a food source for the mites, leads to reduced asthma sutfering for the
user. It is the plausibility of this explanation which would then allow us to
generalize our argument. That is we are able to extrapolate to a larger population

because we believe in the explanation.

3.1.3.4 A More Quantitative View

A significant development in attempting to further define the role of case study 1in
software engineering is the DESMET [228] research and development project for
evaluating software engineering methods and tools. This project aims to produce
guidelines for methods to 'assess whether a method / tool appears to be better than
another method / tool'. The case study is thus specified as:

... a way of evaluating methods and tools as part of the normal software
development activities undertaken by an organization.’

Here we can see that the core of the case study ideal of evaluation within the social
setting remains, but that the definitions have moved towards evaluation. The more
exploratory or investigative case study is not the main focus of the DESMET case
study specification, and the method appears more aimed at quantitative assessment
than qualitative. Thus, a typical use of the framework would be to provide
quantitative evidence of process improvement as a result of the use a particular

method or tool.

There are two reasons why our own work does not completely fit this defimtion.

1) Our own work was more investigative than the above definitions allow. We
were not concerned with quantitatively demonstrating process
improvement. We were more concerned with investigating the kind of
insights (about part of the development process) that process modelling
could provide. However, we were also concerned that we should be
providing an example of the utility of simple process modelling.

42

2) The DESMET Case Study Design and Analysis (CSDA) module makes the
tfollowing assumptions:

‘the organization has at least well-defined standards for software
development and that adherence to those standards is monitored. In
addition, it is assumed that the organization is monitoring and planning
individual projects in quantitative terms’.

However, part of the reason for our study was to ascertain just how much
adherence to procedures there was within the organization. Indeed, our
work found that there was considerably more deviation among software
projects than we had initially suspected. Thus, we were unable to make the
above assumption.

Nevertheless the DESMET framework does provide clear guidelines for case study
design and analysis which are useful even if attempting more exploratory work. We
will both use and make reference to parts of this framework within our study.

3.1.3.5 Case Studies: Summary

Despite the clear disagreement over what exactly 1s a case study, some similarities
emerge. Case studies are clearly suited to the examination of phenomena which
either occur naturally or which need to be examined with a minimum of disruption
or interference. Case studies typically involve the detailed description of a few, or
sometimes a single case. They allow us to use a number of sources of evidence,
and to use other research methods within the case study. In addition, the case study
framework, for example as seen 1s DESMET, provides sound guidance as to the
kind of 1ssues which need to be considered in undertaking on-site or industrially

based work like ours.

However, we also note some of the dangers of a case study approach. Smith [222],
believes that these stem not from theoretical weakness but from the closeness of the

researcher to the phenomena. He notes the difficulty of retaining objectivity, and
the difficulty in convincing others of the acceptability of case study research.

This difficulty in convincing others of the worth of case study work 1s further
complicated by the confusion over the need for representativeness. For example,
Mitchell [227] suggests that we should select cases based on the potential for
explanation that the case provides rather than whether the cases are typical. Worsley
[226] also cautions against considering representativeness in the analysis of case
studies noting that it is the plausibility of the logic of the analysis which determines
its validity. That is, we must be careful to judge our hypotheses on their
plausibility, rather than relying on statistical inference, and furthermore, that 1t 1s
the plausibility of the logical induction (and argument) rather than the
representativeness of the case which allows us to extrapolate our arguments to the

larger population.

However, in practice we still wish our choice of projects to be representative, since
the plausibility of our argument for extrapolating results may itself be weakened 1t
this is not the case. For our own study we wish to select projects which are typical
of software development (at least within the site) in order to argue whether our
results are generalizable. For example, if we only examined projects of one
particular type (say small projects with the same project manager) then our (analytc
induction) that all projects will exhibit similar behaviour 1s clearly a less powertul
argument than if we have chosen a representative sample of typical projects. Hence,
we will choose cases (in our case projects) which provide sufficient matenal for

explanation, without sacrificing the representativeness of those cases.

43

Despite the problems with retaining objectivity and with convincing others of the
worth of case study work the case study method provides a tlexible and powerful
framework for the observation and description of those situations (such as software
development) which need to be studied with the minimum disruption. Hence, the
case study method appears to provide an appropriate vehicle for the design and
depiction of our research.

3.1.4 Field Study / Ethnography

Ethnography is usually referred to by social scientists as 'field studies'. The term
simply means any studies which take place at an actual work site. Ethnography
typically relies heavily on direct observational work, and does not, for example,
use questionnaires or interviews, as the feeling is that the questions reveal too much
of the prejudices and preconceptions of the interviewer or question setter. In
contrast observation reveals implicit social interactions (e.g. status governed
interactions) which are not revealed by questions, and which the subjects being
asked the questions may not always be aware of.

Central to ethnography 1s the rejection of the notion of having hypotheses or
propositions tor the purpose of the study. Indeed, 'one of the key elements of
ethnography is that there are no explicit terms of reference as these are seen as
inherently prejudicial to a study' [229]. Proponents of ethnography say that you
should simply 'get 1nto a culture and observe its practices without any objectives
apart from understanding the detail of the culture' [229].

However, within software engineering field studies this idea has been tailored by
Sommerville and others, 1n order to produce more focused studies which retlect the
need to understand the process. This focused ethnography has been used 1n both 1n
studying the software development process [191] and in studies of Computer
Supported Co-operative Working (CSCW) [10]. This has produced an approach
which 1s somewhere between standard ethnography and field study, in that 1t uses
some purpose to structure the investigation, but does not have a formal
experimental design or use case study analysis techniques.

This 'focused ethnography' approach appears to be particularly appropriate to
observational studies. However, it 1s less useful where we do have some general

proposition which we wish to investigate. In our study we wish to do more than
observe some facets of software development. For example, we will examine
whether simple process models can highlight process problems. Theretore, our
work benefits from the additional structure offered by case study methods (see our
use of case study design methods in Chapter Four and Chapter Five).

3.1.5 Industry as Laboratory

Potts [230] in examining the failure of research to influence industnal practice
suggests that the problem is the prevalence of the phased ‘research then transter
approach and he suggests a complementary approach called 'industry as
laboratory'. He argues that the 'industry as laboratory' approach leads to three

major changes:

1) 'Greater reliance on empirical definition of problems'. Potts considers that:
'Empirical observation of projects becomes a legitimate focus of research in

its own right'.

2) 'Emphasis on real cases'.

3) '‘Greater emphasis on contextual issues'.

This approach is said to have the following benefits:

1) ‘The definition of the problem to be solved comes more directly from a
detailed understanding of the application environment'.

2) ‘There 1s less emphasis on a separate technology transfer stage'.

3) 'As research progresses it becomes increasingly problem focused'.

We have much sympathy with the view that there is a need for more industrially-
based research. Indeed, our own work will have many similarities with Potts'
1ndustry as laboratory' approach. We will take into account the environment and
organizational needs in selecting an appropriate modelling notation. The problem
(area of process to be studied) came from the organization, the work is to be carried
out on-site 1n close co-operation with users, and the research will be progressed
taking 1nto account their needs.

3.1.6 Approach Taken by this Research

Our work will take place 1n a social situation, where we have little control over the
variables, and where we wish to be of minimum impact, but where there are a
number of sources of evidence. We believe that expennments and quasi-experiments
will not be appropriate approach since we have insufficient control over variables,
and we do not wish to impose artificial constraints.

Our work will examine a small number of cases in some depth, by selecting typical
projects (sampling from the state variable), and thus survey methods are

Inappropriate.

In structuring our study we need to use some research design framework 1n order
to be able to examine the utility of process modelling. We do not believe that
ethnography provides us with sufficient methods to be able to investigate the use of

process modelling.

All of the above point to case study research as the most appropriate method for
designing and describing our work. Furthermore, the use of the case study method
allows us to incorporate a number of sources of evidence into our work. The
following chapters thus describe our work in terms of two case study designs, an
exploratory case (Chapter Four), and later instance cases (Chapter Five). In order
to do this we have used the DESMET case study design and analysis module
extensively, both to help us to understand the issues, and the relevant questions,
and to structure our presentation for the reader.

3.2 Modelling Methods

3.2.1 Comparison of Process Modelling Techniques

There are many approaches to providing notations for process modelling. We noted
in the previous chapter that Madhavjt's 1991 classification of modelling notations
[74] needed 11 categories, and yet new notations are still being developed. Many of
the notations within categories have subtle vanations, yet often share a common
view of how processes can be described. For example, IDEFO diagrams, SADT
and data flow diagrams though they have differences, essentially all depict the

435

process in terms of activities, inputs and outputs. It would be impractical to
consider every conceivable modelling notation tor a study (indeed the list may be
growing too quickly). Hence, in order to choose a suitable process model we have
chosen to consider three more common flavours, and to consider how they fit the
modelling problem we wish to study. The three we will consider are RADs (Role
Activity Diagrams: representative of role based approaches), CSP (Communicating
Sequential Processes: representative of formal and mathematical approaches, and of
approaches focusing on communication) and DFDs (Data Flow Diagrams are an
activity and flow focused approach).(We will also give some consideration to
variants of the data flow approach, since this is the choice that we made for our
modelling). These approaches are very different in the way that they view process,
and 1n their emphasis on what 1t is about a process which we need to know. We
first give a brief description of each notation before considering their suitability for
our problem.

3.2.1.1 Role Activity Diagrams.

Role Activity Diagrams are a notation originally developed for software process
modelling (from IPSE 2.5 work [117]). In the UK they have been used and
promoted by both Praxis [36] and Co-Ordination Systems [33], and their ments
have been discussed at a number of tutorials and meetings on process modelling -
notably those supported by the IOPTClub [35]. A CASE tool for process modelling
RADitor [231] marketed by Co-Ordination systems uses Role Activity Diagrams as
its diagramming method, and a Role Activity Diagram front-end for ProcessWise
Workbench (PWB) [232] 1s also under development. Role Activity Diagrams or
RADs can be considered to be a state of the art single paradigm process modelling
approach, and 1s well known among the process modelling community (particularly

in the UK).

The central concept of Role Activity Diagrams is that of a role. A role describes a
sequence of steps or activities which can be acted out by a person or perhaps by a
group or department. These roles can be acted out in parallel and communicate
through interactions (see below). It is important to realize that a role 1s merely a
type. A single role can be acted by many people, and similarly a single person may
have many roles. For example, one person may have a project manager role and an
engineer role. Each role has a thread of activities (represented by square boxes)
within it. The role is read from top to bottom, activities being connected by state-
lines (the state between them). The intention is for the notation to be much more
akin to Finite State Machine [209, 233] or to Petri-net [234] approaches than it 1s to
flow charts, and some authors use a circle to label states in order to further

emphasize this distinction [45, 231].

46

These are equivalent descriptions

able to select goods
(to extend: able to choose)

Choice

able to select

goods
select goods

select goods

able to select goods

RAD:s consist of states and This loop is to show that we
events return to the same state (are

able) to select again.

They are not flow charts
[t 1s not a flow chart (goto).

There are two kinds of activities within a role, actions and interactions. In Role
Activity diagrams an action is a process step that the actor of the role carries out in
1solation. Thus, actions do not involve any interaction with another role. An action
changes the state of the role in which 1t occurs. Actions are represented by a shaded
(we have shown as black) square on the Role Activity Diagram. An interaction
between two roles infers that they have some shared behaviour, and 1s represented
by joining activities (left unshaded) within different roles by a horizontal line. An
Iinteraction changes the state of the roles which are involved 1n that interaction.

Role Activity Diagrams also have two constructs for showing alternative or parallel
paths within a role. Alternative paths are where the choice 1s dependent on some
(yes-no) condition. This construct 1s usually denoted by an inverted triangle.
However, often there are two or more independent actions which could be carried
out at the same time or 1n parallel. These parallel vertical threads are denoted by the
ordinary triangle symbol. There 1s no choice here, and thus no forcing down one
thread, instead it 1s actually assumed that all paths are taken.

47

TR NARRE

R e oE e

LR R

LU

-
& & i

X -_l..”.-_iilf.".ril.-
Nt e s ataTe

oW
L

L
B & & & 8

O R e e

L]
-
I_I.lll..-_l_l_l_l

.

LT T T T T O

L T O O N
. .-_i_.-_l.-_l.-_l.lrl-_iii w _-i.-_lllii_-__-__-li l.ll.-_l.._._!._—ii._-.l
-lilllinlliilli_—_l RO M W
i

&k a8 E 88

LU N L

-
...I....l..lf.l -

LI
AR R s

s s

L]
Lo
L]

W

NN W O N ML R W

L L
N N

-
N
L N AN W
.l.-_iiil.-.-.-..l

O) Gyl el as E A
O T .-..v.-lll”l.r.l“.l.-l.”.l."il
e

T T R A R R NN

RN O N N RN RN M N NN N
N RN A R R EE R R
R N O N R W W W N)
R N W N M W N RN W OW
& @ @ @ @ B B 8 & 8 8 8 8 @ B & 8
AN N TN R E R N N

& A8 8 0 & B8 & FEsaE
R R EE
o R e s B
LT

"ECE R N N R N N R N
& @ @ R R E a

L N O
& e L]

= . 8 @ L] i
- & .I.'I .f.‘.l I.l._l_.l.'_l

L O O O
U O O

LT

L O O O O

L O

om e o ow_a

L

e R a R R

O

L

-

& w8

& & @ @ & @

L]

- LI O O B
LI
LR R R R

larly

1cations.

101

lementat
ble to enhance

ng the

l

The

L]

[236].
in a stepper

1cation
d events.

1tS

lected
h

1S S€
Ing wit

8

-
‘*‘f‘*‘.“l“".‘“‘i --i -
L
& & @88 @8 a8 S & as
lil.t.l.-_it.-i - lliitll.fi. T
l.l.ll.'l_.l.l.l_l_l..l.l..'.l.ill
L B O I O A
EEE L

L]
L
L
L]

L]

L]
-

Ll
L]
L]

s
S I R N R RN

R
- -
BELE AL e e e

L]
& 8 @ & 8

in an organization

1{te

ol
e .I.I_ - - I.l .I_ll.l li.ll_l.i I.l_l.il_.i l.i.l.i.l.lll.li. l_l.l..-.-l.i.-_i..-..- -
FE W N N TR T E NN R
i B @ R R OB R B R R e s R
- lll_llil.l..l..!.l.i..l.ll.l..l..ll] i.l.lll.l..l.li. -.I
.I.I.l.lll_l_.lllli.iiil.'.l.l_-_i..-

& @ & &8 E
ii..il.'l..ﬁl....-..-__l

L]
L

L L B B N BN AR O O W

ly possible if there
. The stepper allows

ith
lemented

R R B R R E @R EE B E R R e SRS A RSB S S EE S EE e - -
LI - i.il!llli-_i.-.-.t_l.-llli_i 7 Wy

i & AR e e AR Eaa

U

-

- R e -

- e

I. l_
T E N N A NN
N N N N N R N O N

L LR L I N T T

IR EEE R N iliii._..llll.i.__-.l..__

L O R

& @ - o
II.'...I..I‘.'..

i
L
P Ill..il..i‘."l.- L
R O & E R @ E
.llilii.i.l.ll.l!i.'l.l.-..llli..l.i .i.i.- - &
I
L N N N R

- e .

O R N

- @ ® 88
e e s .-_I.__..r.f_-.t_i.-_ﬁi.-_._._ll

L I T O O
L L B O O O N
B @ & & & & & & & & F 8

!ili.l.-_.l.l_l_

O

& e
- l.-_.-_ I.'Ill

. 8 & L

T T e

-
li l...li.rll.llliilll.-lilll
R N

& @ @ W e

L N R N]

LN T R]

@ a8 F 8 & &8s R

L] L LN] LR

B B B &

L

- E e
L O O O -
e R 8 S L | i_.i.l_.i.i.i.li.l.ll.i..l.-
- e F R 8 O a0 R @ &
L L T O B I WO W
L L B R N EEE N O I O N R
L B B O O

LU R L T R B O
& @ % & F AR S PP E R R e E R F RS @ F R RS A E @ @

LI T e
LR L I N N R R N

s e s EE e @ E
B E R W &S AR A e EE

L L
SRR A E R
AL R R R R N

LI O O O O e

N
O]
B & e A E .
)

-
.l.l.l.!.i.fl._l.l_.l_.‘_l. .I.II_.II.'l.I.-..-_.l..I.I.I_.Ii.
& & & @ & B & & F & B 8 8 &

-

- e R E E

.

LR I R

I B O O

L R R R R E N R

& R EEE R
U O
- - L]
& 0 s .Il..l.li .il..li.ll_ll_i

C
]
CIR S]
& @ B8 ER
= A
& & @ % @ @ @ @ 8 &
&= @ @ s @B R a8
N S N e]

N TR N T e
e T

LN R N O NN N R RN N R RN RN N N N
C I O T O R L T

LD

W R E B E R R R A AR R R R AR SR E R

customer and cashier for a retail outlet, e.g. a

ler. This is on
for the customer to interact with.

ler

th the cash

IOU Wi

teract
d-on cash

ler

h other roles. However, RADs make

1cate wit

) of these commun

ion
Iness process community, particu

because they allow processes to be

implementat

imp

(

1S11

In re-engineering,

1011 1S 4

tricting 1mp
Thomas states

. Coulson

-design

| process re

1Ca4

IS the most powerful way of represent

ique
f empowerment of employees w

hn

1mp

language Enact [238]
ing t

’s CSP has been

10N

hrough the perm

ble events and allows the user to select the next event

After an event
and we are able to carry on

and experiment

b

rface)
ble events

]

1581

_-_i _-l.-_i.-_ & % B .l___.lj_l.l_lh_l._..i.-.l

‘Il
L

i
L]
L O U

@ A E
ili.i.-..li._-.l_l.-h
L .l_ll..i.l_‘.l_il.
E I T O O

& & & & @ & &
L B

L]
L]

se s e s ades

e S
.I"I'.l"l.-.‘.".'i‘ .li..ll. ‘..I‘ -
L O I I ..Il‘..l...ll-

CE O N T
R O T
-l E AR R A E E e E R R ERE R E R R R e R E e e
TR O O
U T O

L
L

e W
-
& -.i-t.lil.-..lilirl

L] - l-'i ‘l-

L

f the CSP by stepp

1SS1

igne
he mechan
ImiItLs o

Ililllllillli
Iill.illll.-_l_ll.%tl.-_
LEE R L E R R Y N
& R A A E 8 E e
e RS A E e

R N N NN
h.l.-_lilli ™ lI f.l.i

N N N N N R L

LN
e E
N L L]

R R O T

L R
L L |

N N O A MR W i
o s e I ML
—_u_._i.___.-_.._-__._.-..-_.-_-.-_I.-..-___.-_ll-i.ntinl.-lllillll_-i.t!-

L

L R

L] -
- i Ll l.ll.ll_i_.-.i..-_l.l.l.-_.lllll.l L]

- e L]
R) - ®
- e a8 .lil l.ii.il.il il.ii..-_-“iil_-_.-_lilbi.

@R E e

e R SRR R R R R

N N N L R I T e R L N

N N e N N N N N
t.r.-i.-itllllltiiii‘tﬁ.lil.rllli.-_l.-.-_...lﬁfi-_...lhl

L

L] -
ll.il.i.ll_l.l.lll..i.-_li

& 8RS R E R R s R R E R R R EEd S EEE B
i.-..-.-.-_lilliilii._-_._1iiiitiitt!ltilllti-.lilil
@ t_.-_-ll-_I.lliii|.l|li.|.-_l-_lllililt.-.liiltl.lltilhi .-l_-_..-_.._ e

ilnlinllliiliilliiiiiﬁn-_lil.i.-_lli.-.i.-_iil

L
Ll

“.. .‘.‘.‘.‘.‘I‘.‘.i-“ L

i EE E R E RS & @ @R AR R SRR

o

L] @S s &R E s A e

& e s R RS EE SR R RS

N R N L T T L R o S B

L

i @ R R B R R R @ R R @ BB R B @ A B

Ol R R E e E e e aEaE Ead B EE P R R a e A E R aE

L]
'i
&

-

L]

L]

L
-

e

#
' L]
oL

L]
L
L]

L

L]
LI
l-'ll"l- -
(]
L] i‘

L]
L3
L]
-

-
L

-

L]

. i R W L N
e o e R a e

L]

L
&

'Iil.l_

C

This diagram shows two roles

supermarket.

Having entered the customer may choose to select goods or leave. Once goods
have been selected the customer must make a payment before leaving.

However, a number of selections can be made before paying.

1S dn IN

On payment there i
IS an instance ofas

The main advantage of these diagrams are that they allow processes to be described
from an abstract point of view. They allow us to show the roles and responsibilities

of individuals and how they commun

no assumptions as to t
Hence, RADs are popular among the bus

those who are interested

f more rad

ity O

1bil

described without focusing on what are considered cons
details, like document passing mechanisms. Thus, the notat

the poss

ing tec

..the RAD diagramm
degrees of freedom or |

2551

3.2:1.2°CSP

1C O

lly executable Hoare

gina

he executable specificat

Il
to test the log

CSP is a programming language based on concurrency and commun
[237] using t

Though not o

usScrs

] perm

stepper shows al

the process and thus testing
dencies.

shown all perm

1S again
through
sequences and depen

her a command line or button-based inte

'

(using eit
the user
stepping

The main concept of CSP is a process. A process participates in a set of events
known as its alphabet. Processes can be defined by means of other processes (these
sub-processes are then similarly defined) or by the events 1n 1ts alphabet. Processes
run (or execute) in parallel and are co-ordinated by having shared events. An event
in CSP is instantaneous (an action which does not occupy any time), hence,
communication must be synchronous. CSP also has two choice operators used
within process descriptions; the most commonly used 1s simple choice, an

‘exclusive or', which is described by the operator °I".

The main advantage and flexibility of CSP comes from 1ts ability to describe
processes that can be executed in parallel (represented as parallel lines °ll’). When
two processes are executed in parallel and each have the same event in their
alphabets they are said to share an event. This shared event, must occur at the same
time, thus co-ordinating (synchronising) the two processes. The event can be
shared by two or more processes and for each process the event will occur
simultaneously; thus CSP supports broadcast communication. However, though
the communication ot events 1s synchronised there 1s no concept of data or data
transfer within CSP.

3.2.1.3 Data Flow Diagrams

Data flow diagrams are a commonly used diagramming technique. They form part
of a number of analysis methods, for example Yourdon [202], Schlaer and Mellor

[239].

The key concept of data flow diagrams is the process (usually represented by either
circles, bubbles, or rectangles). These processes can be decomposed hierarchically
into other data flow diagrams. Each process 1s connected to either other processes
or to stores (repositories of data). The connecting mechanism 1s the data flow arrow

(hence the name).

The original data flow diagram does not convey sequence among 1ts connected
activities, although extensions to the notation have been developed 1n order to co-
ordinate the 'firing' of processes [233]. Similarly some authors have also proposed
executable data flow diagrams [240].

The main advantages of data flow are its ease of use, its readability, and 1ts
hierarchical process structure, which allows us to put together elements of process
into one coherent whole.

IDEFO

IDEFQ also uses boxes and arrows to represent activities and flows. However, 1n
addition IDEFQ has two further elements, mechanisms and controls. Mechanisms
are those things which are used to perform the activity, normally people or
machines. Controls are information which influence how the activity is pertormed.
The IDEFO technique 1s more complex to use and understand than data tlow but
does give a more rigourous description of the process.

3 2 1.4 Summary: Features of the modelling Techni

Here we give a list of some of the features of these notations. Note that we have
also included a final column for our later (TRADE) notation. (The TRADE notation
is described in section 6.1).

49

" Feawres | RAD | DFD | IDEF0] CSP ITRADE

Co-ordination of activities

0
L0 1 0
ARCN T T A

Ease of Use

iiiiii
ii

Effort distribution

Executabili D

L.
Mechanisms | 0

Movement of Data '
1

110

"

l '

i
a

1
3

Responsibilit ' 1
Roles | 1

3.2.2 Our Choice of Notation(s)

The choice of notation cannot be made simply by looking at how many features
each notation has. Rather we must see how well the notation maps to our particular
problems and context. We now describe how the choice of notation was guided for

our particular study.
3.2.2.1 The GUIDE Framework

In order to help us choose modelling notations and strategy we have developed a
simple framework (GUIDE: Goal, Use, Investment, Deliverables, Environment
and experience) of things to consider for the modelling study. An example of this
checklist (for the exploratory study) 1s given below.

Goal: To understand (passive purpose) the launch process (object) at
the site - from the view point (perspective) of the actors 1n that
Process.

Use: Senior managers and other actors in the process (audience) will

use the models in order to enhance their understanding (use 1)
of the existing process, to aid discussion of it (use 2), and to
suggest and communicate (use 3) improvements. The model will
be used by a guide for enaction by people. There 1s no need for
an enactable model (enaction).

Investment: The 1nitial (exploratory) modelling study 1s allowed only ten
person days (effort). There will be no additional funding for a
specialized process modelling tool. Interviews with statt will be
limited to 1.5 to 2 hours each. There will be no additional time
for staff training.

Deliverables: Preliminary models of the documented and actual launch
processes (dl). Report (d2) on discrepancies between

documented and actual process. Presentation(d3) of key
findings.

50

Environment: Existing procedures focus on activities and products. The
engineers and managers are comfortable with procedural

notations.

The goal of the study was our main starting point. Having decided upon
understanding the launch process as the first goal (as above) we 1nitially considered
adapting the GQM paradigm [174] in order to aid the model notation selection. This
would then have a three stage hierarchy from goals through questions to notations,
1.e. GQN: Goals, Questions, Notations (see below).

Goal: To understand (passive purpose) the launch process (object)
at Site X (environment) from the view point (perspective) of the
actors 1n that process.

Q1: What are the acuvities in the process?
N1: Data flow diagrams
N2: MVP
N3: HFSP

Q2: Who is responsible for project initiation?
N4: Petri-nets
N35: Role activity diagrams

It should be apparent that certain notations could be attached to questions. For
example, question 1 can be linked to notations N1, N2 and N3, whereas question 2
1s much more likely to link to notations N4 and N3S.

However, though this method might lead to the notation which was finally adopted,
we believe that 1t does not suftficiently stress the importance of a number of factors.
Hence, though we have kept the goal as the major factor (and kept the structure of
the goal exactly as in GQM) we have further emphasized other factors. For
example, though the environment and perspective are noted in the goal definition,
the effect of the experience and priorities of users, and the way 1n which the models
will be used may be overlooked. In addition, the amount of investment to be made,
and the resources available for the study need to be taken into account. We now
consider these factors 1n greater detail, 1n relation to each study.

3.2.2.2 Exploratory Work

The intended audience for the models (use) was senior management and actors 1n
the launch process. It was important that both of these groups of people would be
able to understand and validate the models produced. In addition, the limited
amount of allocated staff time (investment) meant that we were not able to take time
to train people in the use of a notation. Hence, we needed our notation to be
extremely easy to use, and readable. We knew that we wanted to focus on both the
existing actual and theoretical processes (deliverables). It was clear that the existing
procedures (environment) used much terminology which would map well to an
activity and flow based notation, because there was a focus on activities producing

documentary products.

Both IDEFO and datatlow would have been suitable techniques. However, there
were few descriptions of process controls within the existing process
documentation. Hence, we would get little benefit from this added IDEFO feature.
In addition, we felt that the IDEFO notation was slightly harder to learn and
understand. Coulson-Thomas states that in order to use IDEFO:

51

‘Both the analysts expected to undertake the modelling and the individuals within
the business require significant training in the techniques for meaningful models to
be built and communicated’ [235].

The constraints on the amount of time we were able to spend with staff at the site
meant that training them in IDEF0 was not feasible. In addition, we did not at this
stage consider examining resource (part of the IDEFO mechanisms). So we chose
to adopt data flow diagrams as the modelling approach. An added bonus of this
choice was that we had access to a suitable CASE tool, some experience of using
the notation, and access to other data flow 'experts' who could be used to check
and validate our models. However, we note that this is a small distinction, and that
although there are differences between these two notations they adopt essentially
the same view of process.

Data tlow techmques have been criticised as process modelling notations for their
focus on process implementation detail, such as document passing [235]. Such
detail can make 1t difficult for modellers to break links with the previous process
when attempting to re-design. However, we were not interested in using process
modelling 1n such a revolutionary (re-engineering) way. Our primary concemn was
with existing process detail and how it differed between theoretical and actual
process. Hence, the choice was an appropriate one, and 1t did enable us to discover
discrepancies between the actual and theoretical processes.

3.2.2.3 Later (Instance) Work

Again we adopted a goal based approach to deciding upon our modelling notation.
For example, we started by having a goal of investigating the relationship between
process and project success. One of the key questions that this had led to was "how
do we characterize software project launches”. Thus, we decided that in examining
instances of process, 1t was necessary to be able to characterize or describe
pertinent aspects of projects, and judge the success of projects. This can again be
seen as a GQM style hierarchy from goal through questions, to the model or
measure characteristics that we needed (see below).

Goal To 1nvestigate the relationship between launch
process and project success at our collaborating site.

Question 1 How do we characterize or describe pertinent aspects
of projects?

Question 2 How do we judge the success of projects?

Model / Measure for Q1 Need to model activities and data in project launch.

Need to measure effort expended on activities.

Model / Measure for Q2 Success scores (see description in Chapter Five).

We did not have an existing modelling paradigm, which would allow us to satisfy
the requirements of our study. For our initial study we did not wish to focus on
resource, and thus standard data flow diagrams had been adequate. However, this
later work which did examine resource had a different more quantitative point of
view. In this work we wanted to specifically look at the effort expended by people.
In addition, rather than have this merely as an input to an activity (as in the IDEFQ
mechanism) we wanted the model to be able to show this dimension graphically.
Hence, the main interest for the study was on activities, and the pattern of resource
usage (human effort) among those actvities.

52

We will discuss the judging of project success in Chapter Five. However, the need
to collect and model both launch activities and effort expended on those activities
led us to develop the extended data flow notation TRADE. (This notation will be
described in Chapter Six - section 6.1 introduces the elements of the notation and
the project models produced are shown in section 6.2.2.2). An additional benefit of
extending the notation (DFD) which we had already used was that it allowed us to
present our models to managers with only a minute or two of explanation. (Once
again we had no time allocated for training). We will further examine our case
study design for this later work in Chapter Five, however, we show below our
GUIDE framework which again helped us to choose a suitable notation for the

study.

Goal: To 1nvestigate the relationship between launch process and
project success at our collaborating site.

Use: Project managers (audience) will use the models 1n order to
provide insights about their projects (use 1) and to identify
key project activities (use 2). The models and findings will
be also be used and to highlight, discuss and guide
successtul practices (use 3).

Investment: Access to five project managers. Maximum for interviews of
1.5 to 2 hours + tollow up of 30 min. to an hour. There will
be no additional time for staff training.

Deliverables: Depiction of the launch processes of the five projects to be
studied (d1). Analysis of results to attempt to discover key
process activities (d2). Mechanism to facilitate the data

collection (d3)

Environment: Engineers and project managers are comfortable with data
flow notation used by previous study.

3.3 Summary

We have presented the reasons for our choice of the case study as our research
method, and our choice of notation for our exploratory and later (instance) studies.
(We chose to name our later examination of projects instance studies, since these
concentrate on specific instances of the process). The following two chapters will
describe the planning, design, conduct, and use of these case studies. Specifically
Chapter Four examines the exploratory case study and Chapter Five the instance
case - which examined five software projects. In presenting these coming chapters
we have been guided in our framework by two main sources; the pilot study
framework presented by Glass [241], and the DESMET case study design and

analysis module [228].

33

4. The Exploratory Case Study

Chapter Synopsis

This chapter describes the planning, design, conduct, and use of the exploratory
case study. In addition, we include a brief critique of the work carried out.

4.1 Exploratory Case Study Planning

Rather than being purely an investigation of process modelling this work addresses
a specific process problem; notably the dissatisfaction with the current launch
process.

This can be decomposed 1nto two given sub-problems:

1) Lack of understanding of the launch process
2) Users deviating from the launch process

and 1nto related questions.
1) About the process

a) Is launch process a suitable candidate for study?

b) Do the users really know what the standard process 1s?
Is deviation by 1gnorance or by design?
Does 1t matter?

Initially we wanted to discover whether there was deviation from the
theoretical process (as was suspected by the process designers). Although
1deally we would wish to do this for a number of projects, and compare
projects, interviewing a number of people on each, the limited staff
availability did not allow this. We could have either interviewed a number of
people 1n one project, or across projects. We chose the latter of these so that
we could get a wider view of the process, for less effort. The plan was to
show from this generic view that there was deviation among projects, and
then (having shown this) to examine individual projects in the later work.

Therefore, our 1nitial exploratory study, concentrates upon looking across
projects and showing what people really do, and differentiating this from
the theoretical process (what the organ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>