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Abbreviations 

 

EMT  Epithelial Mesenchymal Transition 

 

ECM  Extracellular Matrix 

 

HGF  Hepatocyte Growth Factor 

 

MAPK  Mitogen activated protein kinase  

 

MITF  Microphthalmia associated Transcription Factor 

 

MMP  Matrix-Metalloprotease 

 

RGP  Radial Growth Phase 

 

TGFb  Transforming Growth Factor beta 

 

VGP  Vertical Growth Phase 

 

W-RAMP Wnt-mediated receptor-actin-myosin polarity 
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Abstract 

Melanoma is a skin cancer notorious for its metastatic potential. As an initial 

step of the metastatic cascade melanoma cells part from the primary tumour 

and invade the surrounding tissue, which is crucial for their dissemination and 

the formation of distant secondary tumours. Over the last two decades our 

understanding of both, general and melanoma specific mechanisms of 

invasion has significantly improved, but to date no efficient therapeutic 

strategy tackling the invasive properties of melanoma cells has reached the 

clinic. In this review we assess the major contributions towards understanding 

of the molecular biology of melanoma cell invasion with a focus on melanoma 

specific traits. These traits are based on the neural crest origin of melanoma 

cells and explain their intrinsic invasive nature. A particular emphasis is given 

to lineage specific signalling mediated by TGFβ, and non-canonical and 

canonical WNT signalling, but also to the role of PDE5A and Rho-GTPases in 

modulating modes of melanoma cell invasion. We discuss existing caveats in 

the current understanding of the metastatic properties of melanoma cells, as 

well as the relevance of the ‘phenotype switch’ model and ‘co-operativity’ 

between different phenotypes in heterogeneous tumours. At the centre of 

these phenotypes is the lineage commitment factor MITF, one of the most 

crucial regulators of the balance between de-differentiation (neural-crest 

specific gene expression) and differentiation (melanocyte specific gene 

expression) that defines invasive and non-invasive melanoma cell phenotypes. 

Finally, we provide insight into the current evidence linking resistance to 

targeted therapies to invasive properties of melanoma cells. 
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Introduction 

Cutaneous melanoma accounts for only less than 5% of all common skin 

cancers, yet it causes the majority of skin cancer deaths [1]. One of the main 

reasons for the lethality of melanoma is its metastatic propensity, which is 

partly reflected in the aggressive invasion of melanoma cells into 

neighbouring tissue at a time when the primary tumour is still significantly 

small in size. The invasive behaviour of melanoma cells appears to be a 

remnant of their neural crest origin; a trait that distinguishes this cancer from 

the other non-melanoma epithelial derived skin cancers. Because of their 

invasive potential, melanoma cells have been extensively used to study 

general mechanisms of cancer cell invasion [2-5]. Moreover, the idea of 

targeting melanoma cell invasion as means of therapeutic intervention 

stimulated an era of intense research with the aim of discovering the main 

regulator(s) of melanoma invasiveness. 

During the last years the identification and specific targeting of genetic drivers 

of melanoma cell proliferation and survival -such as BRAF and other 

activators of the MAP-kinase pathway- along with the recent development and 

successes of immunotherapy has taken away the attention from ‘invasiveness’ 

as a crucial target for melanoma therapy. However, no therapy is unflawed, 

and patients who relapse with acquired resistance to BRAF and MEK 

inhibitors often present with melanomas that display a much more aggressive 

and invasive phenotype [6, 7]. Furthermore, not every patient responds to 

immunotherapy and again the phenotypes linked to innate resistance contain 

signatures linked to the invasive phenotype [8]. Hence, because invasive 

properties play important roles at every step of melanoma development, and 
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because an invasive phenotype appears to be linked to therapy resistance, 

there might still be a place for targeting invasive properties in melanoma. 

 

Melanoma cells, melanocytes and the neural crest 

Cutaneous melanoma is a cancer of transformed epidermal melanocytes, 

pigment cells that originate from the neural crest [9]. During development the 

expression of the Microphthalmia transcription factor (MITF) commits neural 

crest cells to the melanocyte lineage and marks melanoblasts in the dorso-

lateral neural crest migration pathway [10]. These melanoblasts are highly 

motile, migrate throughout the embryo and colonize the basal layer within the 

epidermis, where they eventually differentiate into mature melanocytes. Post-

migratory melanocytes are attached to the extracellular matrix (ECM) of the 

basement membrane of the epidermis and they exist in a homeostatic 

relationship with epidermal keratinocytes. Nevertheless, melanocytes still 

display a motile behaviour, although this is very much controlled by the 

neighbouring keratinocytes to which they closely adhere via cadherins, 

connexins and other adhesion receptors [11, 12]. However this control is lost 

in melanoma cells, allowing the migratory programme to be fully reactivated.  

 

Dermal invasion, extravascular migration and EMT 

At the early stages of melanoma development, transformed melanocytes 

display uncontrolled proliferation within the epidermis (radial growth phase, 

RGP), giving rise to melanoma in situ [11]. While melanoma in situ is not 

invasive, RGP melanoma cells are highly susceptible to molecular changes 
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and microenvironment derived signals that can stimulate their invasive 

properties and induce the vascular growth phase (VGP). In this context, the 

interactions with keratinocytes play a major role, and as mentioned earlier 

loss of these interactions supports detachment and invasion [13]. Moreover, 

keratinocytes can contribute to dermal invasion of melanoma cells; they 

produce HGF, which can down-regulate E-cadherin [14], secrete matrix-

metalloproteinase 9 (MMP-9), which helps breaking down the basement 

membrane [15] and they can activate Notch signalling which induces invasion 

by up-regulation of miR-222/221 [16]. 

Invasion into dermal tissue allows intravasation and dissemination through the 

vascular route. However, melanoma also displays lymphatic invasion and 

angiotropism, which can bee seen as extravascular migration [17]. Lymphatic 

invasion has been detected in approximately 16-47% of invasive melanomas 

[18], and the occurrence of angiotropism has been reported in up to 70% of 

cases and is suggested as an independent prognostic marker predicting risk 

for metastasis [19, 20]. However, due to the lack of precise markers that could 

be used in routine analyses, so far no larger study has been conducted to 

assess the incidence of angiotropism [18]. Angiotropic melanoma cells 

migrate in a pericyte-like manner (pericytic mimicry) along extracellular 

surfaces of the vasculature without intravasating. Intriguingly, such behaviour 

is also observed during early neural crest cell/melanoblast migration. Little is 

known about the molecular players involved in extravascular migration, but 

angiotropic melanoma cells display a gene signature including neural 

precursor markers and regulators of migration such as CCL2, ICAM1, IL6, 

SERPINEB2 and PDGFR [21]. A similar gene signature is induced by TNFα, 
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which in fact can stimulate angiotropism in the context of UV induced 

inflammation [22]. This observation provides a logical and important link 

between inflammation and melanoma cell dissemination [20]. 

The different gene signature features of angiotropic melanoma cells also 

reveal a very important aspect of melanoma cell motility. As mentioned above, 

melanoma cells are not of epithelial origin but derived from highly motile 

neural-crest cells, which had undergone ‘Epithelial Mesenchymal Transition’ 

(EMT) while leaving the neural tube. As a consequence, and despite specific 

differentiation at their final destination, epidermal melanocytes still express 

several EMT markers such as vimentin, N-cadherin, ZEB2 and SLUG, a 

property which is thought to predispose them to metastasis once they 

transform [23, 24]. Thus, when melanoma cells become invasive, they do not 

undergo a ‘classical’ EMT comparable to what is seen in epithelial cancers; 

rather it appears that de-differentiation towards their neural crest origin is 

required for motility [25]. Importantly however, while the requirement for de-

differentiation is supported by many observations, what really defines the ‘de-

differentiated state’ is less clear, i.e. is the ‘neural crest’ (MITF negative) state 

required or is the ‘melanoblast’ (MITF positive) state sufficient? After all it is 

the melanoblast and not the neural crest cell that performs long distance 

migration in the embryo. No thorough comparable study has addressed this 

important question, but an answer would certainly help to identify the markers 

crucial for melanoma cell invasion without distraction by putative melanoma 

‘stem cell’ markers. 
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Specific drivers of melanoma cell motility and invasion  

General regulators of the actin cytoskeleton that play a role in cancer cell 

motility and invasion such as SRC and FAK are also relevant in melanoma 

and various studies have shown that inhibition of these kinases will reduce 

melanoma cell invasion [26-29]. However, while the broad-spectrum tyrosine 

kinase inhibitor dasatinib, which also inhibits SRC kinases is effective in 

melanoma cells in pre-clinical studies [30], a phase II trial revealed that dose 

limiting toxicity is a major obstacle [31], which dampened the enthusiasm for 

targeting such general regulators, and stimulated research into more specific 

features of melanoma cell motility.  

The chase for melanoma specific regulators of migration and invasion led to 

the identification of various factors and signalling events that control 

melanocyte lineage commitment and migration in early development. 

Amongst them are canonical WNTs (e.g. WNT3), Transforming Growth Factor 

beta (TGFβ) or non-canonical WNTs (e.g. WNT5A). Importantly, these factors 

not only directly impact on invasive behaviour by regulating the actin cyto-

skeleton, but they also initiate cellular signalling that ultimately controls the 

expression levels and the function of the lineage commitment factor MITF [32]. 

 

The complex role of MITF in melanoma cell invasion  

MITF is thought to be one of the most crucial regulators of the balance 

between differentiation (melanocyte specific gene expression) and de-

differentiation (neural-crest specific gene expression). However, MITF’s role in 

invasion is by far not clear. 
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It is assumed that MITF while inducing differentiation is a suppressor of 

invasion, and this is based on three facts: Firstly, it is well established that 

gene expression profiling of melanoma cells confidently identifies a highly 

‘invasive phenotype’ characterised by extremely low MITF expression and 

consequently a signature of melanocyte de-differentiation linked to markers of 

neural crest, EMT and stemness [33]. The idea is that the phenotype linked to 

this signature possesses properties of neural crest cells, which explains the 

increased motility that these cells display. Secondly, and in line with the above, 

factors that reduce MITF expression, e.g. WNT5A, TGFβ or hypoxia [34-36] 

also increase the invasive potential of melanoma cells [37-39]. Importantly, 

genes like WNT5A, TGFbeta, their related signatures and a hypoxia signature 

are all included in the ‘invasive/MITF-low’ signature [33]. Last but not least 

and thirdly, the cell line 501mel -a cell line abundantly used in the field of 

‘MITF-research’- expresses extremely high levels of MITF (due to a MITF 

gene amplification and presence of mutated beta-catenin) and is poorly 

invasive. Moreover, MITF depletion from 501mel cells leads to increased 

invasion [40-42] and see Fig. 1A.  Similar results are found with the high-MITF 

expressing non-invasive melanoma cells lines WM3682 and WM3526 [43] or 

the high-MITF expressing mouse cell line B16 [34]. Likewise, increasing MITF 

expression in ‘invasive/MITF-low’ melanoma cells (WM1716, WM3314 or 

WM266-4) suppresses invasion [40, 43]. 

While all the above facts seem to settle the case for MITF being a suppressor 

of invasion, so far nobody has examined whether MITF is actually required for 

invasion in the ‘invasive/MITF-low’ cells. This could in fact be the case as not 

only neural crest cells are motile, but also melanoblasts, which do express 
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MITF [10]. Indeed, we found that depletion of MITF in low MITF-expressing 

highly invasive WM266-4 melanoma cells leads to a dramatic decrease in 

invasion (Fig. 1A). Thus, there might be a pro-invasive role for MITF after all. 

Indeed, MITF regulates the expression of a large set of genes that are linked 

to the GO terms ‘actin cytoskeleton’, ‘migration’ and ‘invasion’, and while in 

cell lines expressing high levels of MITF it suppresses the expression of these 

genes, in cell lines with low MITF expression levels, it actually induces them 

(Fig. 1B and unpublished data).  

A pro-invasive role for MITF is also supported by the fact that the receptor c-

MET that mediates Hepatocyte Growth Factor (HGF) stimulated melanoma 

cell invasion is a MITF target gene [44, 45], and that ectopic MITF 

overexpression increases 501mel cell invasion in response to HGF [45]. The 

‘melanoma predisposition’ mutant MITFE316K also enhances 501mel invasion 

[46]. Finally, in our hands many cell lines considered to belong to the MITF 

expressing (MITF-high) group display invasive behaviour in 3D extracellular 

matrix (ECM) systems.  

In summary, the role of MITF in invasion appears to be more complex than 

generally assumed, and ‘invasive’ signatures linked to low MITF expression 

as well as the fact that factors that induce invasion also down-regulate MITF 

are muddying the water. In an era of ‘omics’ profiling signatures are surely 

very helpful, but the case of MITF highlights that the relationship between 

‘signature’ and functional behaviour’ might not always be as simple as 

assumed. It seems to fully comprehend MITF’s role in invasion its expression 

and function has to be seen in context of each particular signalling network. 
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The Yin and Yang of non-canonical and canonical Wnt signalling 

One such signalling network is downstream of non-canonical WNT with 

WNT5A being a major player [47]. In the conjunction with ROR2, WNT5A 

binds to frizzled receptors and drives invasion through intracellular Ca2+ and 

protein kinase C (PKC) [38, 48] (Fig. 2). WNT5A can control directional 

movement by activating localised Ca2+-induced actin myosin contraction. 

This occurs through RHOB and the Wnt-mediated receptor-actin-myosin 

polarity (W-RAMP) structure, which contains actin, myosin IIB and melanoma 

cell adhesion molecule (MCAM) [49, 50]. Furthermore, WNT5A induced Ca2+ 

signalling can stimulate calpain1-mediated cleavage of the actin cross-linker 

filamin-A [51]. Thus, WNT5A has a major impact on actin cytoskeleton 

dynamics. Moreover, a role for WNT5A in vesicular trafficking in melanoma 

cells is also seen in the CDC42 dependent release of exosomes, which 

amongst other proteins also contain MMP2 [52], suggesting that WNT5A also 

contributes to the remodelling of the ECM. 

In addition to its role in actin and ECM dynamics, WNT5A induces expression 

of vimentin and SNAIL and suppresses PAX3, a transcriptional regulator of 

MITF, and thereby reduces the expression of melanoma differentiation genes 

[35] (Fig. 2). The ’Yang’ to non-canonical Wnt signalling in melanoma is 

canonical Wnt signalling (Fig. 2), which is required for early melanocyte 

lineage commitment and differentiation by inducing beta-catenin mediated 

expression of MITF [53]. Beta-catenin mutations in melanoma are rare, and 

nuclear beta-catenin expression has been linked with good prognosis [54, 55]. 

Moreover, mutated/stabilised beta-catenin induces high MITF expression, and 

MITF blocks the pro-invasive activity of beta-catenin [40]. In line with this, 

Page 11 of 40 The FEBS Journal



12 

 

overexpression of a stabilised beta-catenin mutant in the melanocyte lineage 

of mice in which melanoma development is either driven by NRas or 

BrafV600E/Pten results in primary tumours with a low degree of invasiveness 

and high degree of pigmentation, an indicator of differentiation [56, 57]. 

Intriguingly, however the presence of stabilised beta-catenin in these mice 

dramatically increases metastatic burden and the observed metastatic 

tumours are highly pigmented [56, 57]. The exact mechanisms underlying this 

phenomenon are so far unknown, but it suggests that reduced ability to 

invade does not necessarily preclude metastatic potential. Possibly, high 

proliferative activity or prevention of anti-tumour immunity, which both have 

been linked to beta-catenin mutations in melanoma [58, 59] could also be a 

determinant for metastatic behaviour.  

BRN2 controls PDE5A, a suppressor of melanoma cell invasion  

An important suppressor of melanoma cell invasion is the cGMP-specific 

phosphodiesterase PDE5A, which removes the cGMP required for Ca2+ 

triggered actin-myosin contractility and invasion [60]. In line with such a 

suppressor role, a follow-up prospective cohort study linked the use of the 

PDE5 inhibitor sildenafil with an increased risk of melanoma, a correlation still 

under debate [61]. As PDE5A is a negative regulator of invasion, its 

transcriptional suppression, which is executed by BRN2 (Fig. 2), is correlated 

with increased invasion [60]. This reveals BRN2 as a positive regulator of 

invasion, which is in agreement with the observation that expression from the 

BRN2 promoter is increased in motile cells, when analysed in vivo by intravital 

imaging [62]. This study also assessed a potential relationship between the 

differentiation state (i.e. pigmentation) and BRN2 expression in motile cells, 
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again with the idea that motile cells are more de-differentiated, and possibly 

BRN2 could contribute to this phenotype. Indeed, pigmentation was greatly 

down-regulated in motile cells, however this was not significantly correlated 

with the increase in activity from the BRN2 reporter [62], suggesting that 

reduced pigmentation and increased BRN2 expression are two independent 

events linked to invasion.  

TGFββββ and the ‘invasive’ phenotype  

Pinner and co-workers also found that TGFβ signalling suppressed 

pigmentation and induced migration [62]. This observation is in line with the 

fact that ‘active TGFβ signalling’ is a key determinant of the ‘original’ 

invasive/MITF-low signature, described by Hoek and co-workers [33]. In 

agreement with a role in de-differentiation, TGFβ can maintain the melanocyte 

stem cell state by directly suppressing the expression of PAX3 (and hence 

MITF, see Fig. 2) in melanocytes [63]. TGFβ can also suppress MITF 

expression through GLI2 [64] or through CITED1 [65]. So far, these 

observations are all in agreement with a simple model in which TGFβ 

suppresses MITF expression and drives cells towards the de-differentiated 

and invasive phenotype. However, several findings suggest that this model is 

in fact not that simple and that possibly the de-differentiation (achieved 

through suppression of MITF) and the regulation of invasion are two 

independent activities downstream of TGFβ. For instance, we have shown 

that in melanoma cells TGFβ also suppresses PAX3 and consequently MITF 

[66], but we find that in many melanoma cell lines, despite efficiently down-

regulating MITF TGFβ does not increase invasion (unpublished data). 
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Furthermore, while manipulating GLI2 impacts on melanoma cell invasion, 

whether the suppression of MITF downstream of TGFβ is actually required for 

invasion to occur has not been shown [64]. In addition, despite being able to 

suppress MITF expression, CITED1 displays significant co-expression with 

MITF [65], and while this predicts that only low CITED1 expression is linked to 

the ‘invasive’ signature, high expression of a CITED1 specific gene signature  

[65] as well as CITED1 itself [67] is correlated with poor prognosis. This might 

be due to the fact that apart from suppressing MITF, CITED1 is actively 

involved in TGFβ stimulated melanoma cell invasion by inducing the 

transcription of genes encoding important actin cytoskeleton regulators such 

as ARHGEF5 and MRIP, which regulate cortical actin myosin contraction [67]. 

Thus, while TGFβ induced signalling is clearly linked to invasion, whether the 

suppression of MITF and its target genes is required for its pro-invasive 

activities is so far unclear. 

 

The role of RHO GTPases in melanoma invasion  

Although there is broad evidence on the key role of RHO-ROCK signalling in 

melanoma cell invasion no activating mutations have been found in RHO in 

human melanoma. On the other hand, RAC activating mutations are present 

in 4-7% of human melanomas with the mutation P29S in RAC1 being the third 

most recurrent human melanoma mutation after BRAFV600E and NRASQ61L [68, 

69]. In vitro studies show that while the P29S mutation leads to RAC1 

GTPase hyperactivation and lamellipodia formation, it actually reduces RAC´s 

ability to form invadopodia and modify the extracellular matrix [70], 

questioning that the P29S mutation contributes to melanoma development 
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predominantly by acting on invasion. Studies in transgenic melanoma models 

have demonstrated that although active RAC cannot drive melanoma, it 

cooperates with oncogenic RAS to promote melanoma proliferation and 

invasion [71, 72]. In line with these reports the RAC-specific exchange factor 

PREX-1 is over-expressed in human melanoma and drives melanoma 

metastasis while another member of the family, PREX-2 is found mutated in 

human melanoma, increasing its enzymatic activity towards RAC1 to drive 

gene expression and the cell cycle by activation of the PI3K pathway [73-75]. 

Because melanoma cells are extremely motile and invasive cells, it is not 

surprising that they have been widely used to study the cell intrinsic 

mechanisms underlying cancer cell invasion. By analysing melanoma cells 

under conditions resembling the 3D ECM two major contributions to cellular 

invasion have been identified (Fig. 3). As such, cells can undergo cell-shape 

changes in order to adjust to the 3D-architecture of the tumour 

microenvironment and they can modulate the ECM through protease activities, 

such as matrix-metalloproteinases (MMPs) [2-5]. Considering these 

contributions, cells can invade in a mode that is regulated through integrin-

mediated adhesion and is limited by their MMP activity, or a mode that uses 

cell-shape changes and is less restricted by protease activities [2, 76]. The 

latter mode of invasion is represented by a round cell-shape that shows 

reduced substratum adhesion, and is associated with RHO dependent and 

phospho-MLC driven actin cortex contractions and formation of membrane 

blebs [3, 77] 

What makes melanoma cells so efficient in invasion is the plasticity that is 

observed between the two modes of invasion described above (Fig. 3), as this 
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allows the cells to perfectly adapt to the extracellular environment [4]. The 

switch between modes of invasion is regulated by the interplay of RHO 

GTPase exchange factors and GTPase activating proteins, whereby RHO 

activation leads to RAC inactivation and vice versa to control melanoma cell 

invasion plasticity [78]. Interestingly, while elongated cells use integrins and 

are absolutely dependent on MMPs to invade, also contractile cells express 

and secrete MMPs (MMP-13, MMP-9) and their invasion has been shown to 

be regulated by both enzymatic and non-enzymatic protease signalling [79]. 

Differential signalling through RHO or RAC has also been linked to the overall 

mode of melanoma invasion, whereby the plasticity in RHO and RAC driven 

modes of invasion would support single cell invasion. Single cell invasion is 

considered a characteristic feature of melanoma cells as their non-epithelial 

nature suggests a low degree of cell-cell adhesion, allowing cells to invade 

‘freely’ without contact to other cells. Single cell invasion can be observed in 

experimental settings in vitro and in vivo [27, 62, 78, 80]. Moreover, while it is 

difficult to draw conclusions from the non-dynamic situation found in human 

melanomas fixed for analysis, single cells can be seen even in histological 

sections of invasive melanoma (www.proteinatlas.org). 

What is often observed in melanoma biopsies, are groups of cells that have 

invaded the dermis (see Fig. 3), which could be the result of collective 

invasion. Collective invasion is typically detected in epithelial tumours, and 

occurs when cell-cell contacts are maintained and polarise migrating cells into 

a multicellular coordinated unit, which is driven by RAC mediated activities 

[81]. As mentioned above due to the non-epithelial nature of melanoma cells, 

instead of being the result of collective invasion, the observed invaded cell 
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clusters could also be the product of some individual cells that started to 

proliferate after an initial invasive phase. Nevertheless, collective invasion 

appears to occur when cells break through the epidermal basement 

membrane and start invading the dermis (see Fig. 3). 

 

Phenotype switching and co-operativity  

Regardless of whether single cell or collective activities are driving melanoma 

cell invasion, a question that is still left unanswered is whether melanoma 

cells have to change their phenotype in order to participate in invasion. Indeed, 

melanoma cells can undergo what is called ‘phenotype switching’, a process 

similar to ‘EMT’ that is observed with cells of epithelial origin [82]. In the 

concept of ‘phenotype switching’ MITF takes a central role as its abundant 

expression and the expression of many of its target genes (regulating cell 

cycle progression and pigmentation) is defining the so-called ‘proliferative 

phenotype’ [33]. The gene signature linked to the proliferative phenotype is 

void of genes that are linked to ‘invasion’ and ‘TGFβ’ and hence describes a 

non-invasive phenotype [33]. As mentioned earlier, the down-regulation of 

MITF is believed to initiate the ‘invasive phenotype’. In the ‘phenotype 

switching model’, cells switch between proliferative and invasive phenotypes 

throughout melanoma progression (Fig. 4), whereby the MITF-low/invasive 

phenotype performs invasion and dissemination, and cells switch back to the 

MITF-high/proliferative phenotype at the metastatic site in order to proliferate 

[82]. 

Intriguingly, using zebrafish transplantation assays we made the striking 

observation that under heterogeneous conditions melanoma cells differing in 
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their MITF expression levels (low and high) collaborated in their invasive 

behaviour, which allowed cells classified as non-invasive ‘proliferative 

phenotype’ to co-invade with cells of the ‘invasive phenotype’ [80]. This 

concept, which we termed ‘co-operative invasion’ (Fig. 4), has been observed 

in other settings where individual cancer cells cooperate to drive tumour 

progression [83-85] The cooperation between individual cancer cells in a 

primary tumour might explain the observed heterogeneity in secondary 

tumours with regard to the mitotic, invasive and metastatic competence of 

distinct cell populations. In the context of invasion, we found that the invasive 

cells provided the non-invasive cells with MMPs, thereby allowing the 

proliferative phenotype to prevail [80]. Performing such co-operative 

behaviour suggests that no further switch is required, and when cells of the 

proliferative phenotype arrive at the secondary site they can proliferate. 

Importantly, we observe that when cells cooperate during invasion, reciprocal 

interactions alter the overall invasive behaviour of a tumour, which suggests 

that the current definitions of melanoma cell lines as invasive and non-

invasive/proliferative are limited in the context of heterogeneity.  

As we are only able to observe ‘stills’ of melanoma progression when 

analysing histological sections, it is impossible to state whether a metastasis 

is the result of ‘phenotype switching’ or ‘co-operativity’. However, the fact that 

circulating melanoma clusters consisting of cells with high and low MITF 

expression have been isolated from patients [86], and the enormous 

phenotype heterogeneity that is observed in metastatic melanoma supports 

the idea that co-operativity occurs throughout melanoma progression. 
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Invasion and therapeutic approaches 

At present the only clinical option to prevent the appearance of metastatic 

disease if melanoma is diagnosed early, is surgical resection of the primary 

tumours and/or lymphatic nodes and adjuvant chemotherapy based on high 

dose interferon 2b, which has very little proven efficacy [87]. Despite the high 

metastatic potential of melanoma and the understanding of the molecular 

mechanisms governing melanoma cell invasion only a handful of clinical trials 

have attempted to target this step of the metastatic cascade. Indeed trials 

testing the multi-kinase inhibitor dasatinib failed due to excessive toxicity while 

the SRC specific inhibitor saracatinib provided no clinical responses [31, 88]. 

In the same line early phase trials assessing drugs targeting invasion through 

integrin signalling or MMP activity inhibition were not successful against 

advanced melanoma [89, 90]. RAC inhibitors have been assessed in pre-

clinical studies but not yet in clinical trials [91]. On the other hand the central 

role played the RHO-ROCK signalling in invasion and metastasis has led to 

the development and characterization of ROCK inhibitors as a mean to block 

melanoma progression although it is yet to be defined whether the antitumor 

effect observed by ROCK inhibitors in mouse models of metastatic melanoma 

is uniquely due to its ability to inhibit contractile-dependent melanoma cell 

invasion or other biological processed regulated by ROCK such as intra- or 

extravasation, cell cycle progression and/or cell viability [79, 91-93]. 

 

Invasion and MAPK pathway targeting therapy  

In the last few years the crosstalk between the molecular mechanisms 

governing melanoma cell invasion and resistance to targeted therapies 
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against component of the MAP-kinase (MAPK) pathway has gained growing 

attention. In melanoma the BRAF proto-oncogene is mutated in around 44% 

of patients and BRAF and MEK inhibitors have been shown to produce 

profound but transient clinical responses [94, 95]. In the majority of cases 

patients relapse due to reactivation of the MAPK pathway but also by the 

induction of compensatory pathways such as the PI3K/AKT cascade to 

sustain melanoma growth [96]. Furthermore, as a direct consequence of 

BRAF inhibition, increased activity of ROCK1 is observed, which appears to 

be due to reduced expression of RND3 when the MAPK pathway is inhibited 

[97, 98]. Despite increased ROH/ROCK activity inhibitor treated cells display 

an elongated shape and display increased invasion, a phenomenon that is 

also observed when melanoma cells are treated with MEK inhibitors, where 

the increased invasion is dependent on integrins and MMPs [27, 99]. 

Moreover paradoxical activation of the MAPK pathway by BRAF inhibitors in 

NRAS mutant melanoma cells leads to increased invasion and metastatic 

potential, while BRAF mutant melanoma cells selected for their resistance to 

the BRAF inhibitor vemurafenib show increased invasion through reactivation 

of the MAPK pathway, again in a protease (and hence integrin) dependent 

mode of invasion [100]. It is therefore not surprising that the context of the 

increased invasion observed upon MAPK pathway, SRC kinase activation 

seems to play a key role. This observation has led to the proposal of 

combinatorial therapies based on both MAPK inhibitors and SRC inhibitors to 

tackle both invasion and growth [27, 99, 101]. Following this scientific 

rationale broad-spectrum panRAF inhibitors that also show activity against 

SRC are being tested [102]. Interestingly, there might even be a crosstalk 
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between actin cytoskeleton regulators and MAPK signalling with regard to 

melanoma cell survival as combination of ROCK inhibitors with either BRAF 

or MEK inhibitors enhances cell killing [98, 103].  

Among tumours progressing on MAPK inhibitors, approximately 50% show 

up-regulation of receptor tyrosine kinases such as AXL or EGFR, and 

concomitant reduced expression of the transcription factor MITF [7, 104, 105], 

which leads to resistant tumours with a de-differentiated, invasive phenotype 

[7]. Enormous effort is put into understanding the drivers of this particular 

phenotype, and the idea of targeting receptor tyrosine kinase signalling is 

currently considered as therapeutic option. However, there is a clear need to 

better understand the signalling that is downstream of these receptors and 

that is linked to the ‘invasive’ signature found in these resistant tumours. 

 

Concluding remarks 

Melanomas are highly metastatic skin tumours and metastatic disease is 

notoriously difficult to manage. As one of the first steps in the metastatic 

cascade, invasion has been the focus of intense research over the past 20 

years, and melanoma has often been used as a model for cancer cells with 

invasive capacities. The molecular mechanisms governing melanoma cell 

invasion have unveiled how plastic these cells are depending on changes in 

the microenvironment, and the neural crest origin of melanocytes seems to be 

at the bottom of the high capacity of melanoma cells to disseminate. While we 

have gained a good understanding of the molecular mechanisms by which 

melanoma cells invade, there are still important questions that remain 

unanswered.  
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It is generally believed that tackling invasion can prevent the development of 

lethal metastases, but a growing number of reports using pre-clinical models 

or describing the results of detailed gene expression analyses suggest a weak 

correlation between the phenotype of invasive cells and that of cells from 

metastatic sites. Mechanisms such as phenotype switching or co-operativity 

as metastatic strategy could explain these discrepancies, and therefore 

targeting these processes might be more appropriate, and we need to invest 

efforts into dissecting these mechanisms and identifying the key players.   

What should not be forgotten is that from a clinical point of view the suitability 

of “invasion” as the target for anti-metastatic oriented therapies, particularly 

for melanoma, is debateable. First, the plasticity of melanoma cells that 

enables them to adapt to new environments and to switch modes of invasion 

upon therapeutic intervention poses an intrinsic difficulty to stop invasion. 

Second, from a purely strategic point of view it has not yet been determined 

how important invading capacities are for the overall metastatic potential of 

melanoma cells. This is reflected for instance in the fact that beta-catenin 

mutations result in less invasion, yet a greater metastatic potential. Indeed, 

the metastatic cascade is a complex, multistep process that requires many 

other biological skills (such as adhesion to blood vessels, resistance to 

anoikis in the blood flow, proliferating activities). However, currently a major 

limitation to fully understand the relevance of invasive activities for the 

metastatic potential of melanoma cells is the fact that the majority of cell lines 

used in the melanoma community to study these processes are derived from 

lymph node or skin metastases, sites that do not necessarily reflect the lethal 

metastases of melanoma. Indeed, a thorough comparative study between 
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primary tumours and distant metastatic lesions is lacking due the scarcity of 

samples obtained from distant sites such as the brain, liver or lung. Even in 

the over 300 samples utilised in the TCGA study [106] only nine corresponded 

to distant organ metastases, the majority are from lymph node and skin 

metastases. Undertakings such as the 100,000 Genomes Project 

(www.genomicsengland.co.uk) aim to close this gap, which is urgently needed 

in order to enable us to target the properties that make melanoma cells so 

metastatic. Clearly, genes included in the ‘invasive’ signature are contributing 

to the ‘aggressiveness’ of melanoma as this situation is found in tumours 

resistant to current therapies, so identifying these players might also help to 

improve the current standard of care. 
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Figure Legends 

 

Figure 1. The effects of reducing MITF expression levels on melanoma 

cell invasion.  A. RNAi mediated reduction of MITF expression increases 

invasion of MITF-high 501mel cells and reduces invasion of MITF-low 

WM266-4 cells into 3D dermal collagen. Both cell lines express GFP and 

have been analysed using FluoroBlok inserts coated with collagen gels. B. 

Model indicating the opposite function of MITF in MITF-high and MITF-low 

cells. 

 

 

Figure 2. Signalling that activates melanoma cell motility and invasion.  

TGFβ stimulates the activation of SMAD2, which together with the co-factor 

CITED1 induces the expression of genes that regulate RHO/ROCK mediated 

contractility and invasion [67]. WNT5A can directly regulate the actin 

cytoskeleton and hence motility through calpain-mediated cleavage of filamin 

A (FLNA) [51], and regulate invasion through the induction of various genes 

downstream of PKC [48]. WNT5A also inhibits canonical WNT3A signalling, 

which otherwise suppresses invasion partly by inhibiting MT-MMP expression 

[40]. WNT5A also regulates vesicular trafficking and thus contributes to the 

release of MMP2 containing exosomes [52] as well as to the localisation of 

the W-RAMP structure to the edge of the cell [49, 50]. Downstream of 

TGFβ SMAD2 also suppresses PAX3, a transcriptional regulator of MITF 

[104], and CITED1 can also suppress MITF [65]. PAX3, and consequently 

MITF are also suppressed by WNT5A through the activation of STAT3 [35], 
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however BRN2 which is a positive regulator of invasion by suppressing the 

RHO inhibitor PDE5A [60] induces MITF expression [107]. 

 

Figure 3. Different modes of melanoma cell invasion. An illustration 

depicting various patterns of melanoma cell dermal invasion based on what 

can be seen in histological sections of melanoma lesions is shown. As these 

sections represent stills it is not clear whether the ‘nests’ of melanoma cells 

often seen in the dermis are the product of ‘collective’ invasion or of ‘single 

cell’ invasion followed by a proliferative phase. Clearly ‘single cell’ invasion 

can occur as such cells can be detected in melanoma specimens. Form 

experimental settings, we know that a more rounded shape of melanoma cells 

can be observed when cells possess high levels of RHO activity contracting 

cortical actin. In a dynamic process during invasion such cells can switch to a 

more elongated shape where high RHO activity is located at the rear of the 

cell, whereby invasion is driven by RAC activity at the front [4]. Elongated 

cells require MMP activity whilst invading by using integrins, whereas rounded 

cells can use membrane blebs for invasion, but this is aided by the presence 

of MMPs [79]. 

 

Figure 4. Phenotype switching and co-operativity.  Phenotype switching is 

thought to follow altered MITF expression in order to generate different 

phenotypes with only one phenotype being compatible with a particular stage 

of tumour progression [82]. During co-operative invasion, an initial switch 

creates an invasive cell, which then can co-operate with cells that have not 

undergone a switch to enable them to invade as well [80]. 
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