

The University of Manchester Research

Belowground connections underlying aboveground food production: a framework for optimising ecological connections in the rhizosphere

DOI: 10.1111/1365-2745.12783

Document Version

Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

De Vries, F., & Wallenstein, M. D. (2017). Belowground connections underlying aboveground food production: a framework for optimising ecological connections in the rhizosphere. *Journal of Ecology*, *105*(4), 913-920. https://doi.org/10.1111/1365-2745.12783

Published in:

Journal of Ecology

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Journal of Ecology

Belowground connections underlying aboveground food production: a framework for optimising ecological connections in the rhizosphere

Journal:	Journal of Ecology
Manuscript ID	JEcol-2016-0776.R2
Manuscript Type:	Mini-review
Date Submitted by the Author:	08-Feb-2017
Complete List of Authors:	de Vries, Franciska; The University of Manchester, School of Earth and Environmental Sciences Wallenstein, Matthew; Colorado State University, Department of Ecosystem Science and Sustainability; Colorado State University, Natural Resource Ecology Laboratory
Key-words:	carbon, nitrogen, bacteria, fungi, soil fauna, roots, network, microbial community, bulk soil, stability
-	-

SCHOLARONE[™] Manuscripts

1	Belowground	connections u	inderlying	aboveground	d food production: <mark>a</mark>	
---	-------------	---------------	------------	-------------	-----------------------------------	--

- 2 framework for optimising ecological connections in the rhizosphere
- 3
- 4 Franciska T. de Vries^{1*} and Matthew D. Wallenstein^{2,3,4}
- 5 ¹School of Earth and Environmental Sciences, The University of Manchester, Oxford
- 6 Road, Manchester, M13 9PT, United Kingdom
- 7 ² Department of Ecosystem Science and Sustainability, Colorado State University, Fort
- 8 Collins, CO 80523
- ⁹ ³Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO
- 10 80523
- 11 ⁴Growcentia, Inc., Fort Collins, CO 80523
- 12 *Correspondence author: <u>franciska.devries@manchester.ac.uk</u>, +44 161 3068091
- 13
- 14 Running headline: Belowground connections for aboveground food production
- 15
- 16

17 Summary

- 18 1 Healthy soils that contain an active microbiome and food web are critical to
- 19 sustainably produce food for a growing global human population. Many studies have
- 20 focussed on the role of microbial species diversity and the presence of key functional
- 21 groups as important controls on the many functions that a sustainable food system
- 22 relies on.
- 23 3 Here, we synthesize recent ecological empirical evidence and theory to propose that
- the interactions between organisms in the soil food web are the critical determinant ofsoil function.
- 26 4 We propose the Rhizosphere Interactions for Sustainable Agriculture (RISA) Model, in
- 27 which crop roots recruit small, modular, highly connected soil rhizosphere networks
- 28 from large, static, relatively unconnected and diverse bulk soil networks. We argue that
- 29 conventional agricultural management disrupts the connections between rhizospere
- 30 and bulk soil networks.
- 31 *Synthesis* We identify future research directions for optimising ecological connections
- 32 between roots and rhizosphere microbial and faunal networks, and between
- 33 rhizosphere networks and bulk soil networks in agricultural production systems.
- 34 Knowledge on these connections can be applied in agricultural systems to sustainability
- 35 produce food for a growing global population.

36

- 37 Keywords: carbon, nitrogen, bacteria, fungi, microbial community, soil fauna, stability,
- 38 network, bulk soil, roots

39

40 Introduction

41 Healthy soils are critical to support food production as the human population grows 42 towards 9.7 billion and our planet warms (Paustian et al. 2016). But, what are the most 43 important characteristics of healthy soils that support sustainable agriculture? Most 44 definitions of soil health include not just physiochemical attributes like high organic 45 matter content, but also a rich biological component of microbes and soil fauna (Doran 46 & Zeiss 2000). Soils with active microbes and fauna in close interactions with plants 47 support efficient nutrient cycling, pathogen resistance and overall crop health (Bender, 48 Wagg & van der Heijden 2016). However, we lack a rigorous framework for directing 49 future research efforts towards quanitfying and optimising interactions between plants 50 and soil organisms to support healthy, productive crops while reducing our reliance on 51 agrochemicals. Here, we draw on recent ecological evidence and theory to develop a 52 conceptual framework that can support future research efforts to advance our 53 understanding of these interactions. Ultimately, an increased understanding of 54 interactions between plants and soil communities can accelerate new technological and 55 management innovations that harness belowground interactions to enhance 56 aboveground productivity. 57 When plants first started extending their roots into primordial soils, they encountered a 58 rich microbiome. Ever since, plants have co-evolved with soil microbes and fauna, and 59 traits that supported beneficial interactions with soil organisms likely incurred a fitness 60 advantage (Lambers et al. 2009). For example, plants that enable mycorrhizal 61 colonisation are able to enhance their nutrient acquisition. Plant root exudates also 62 support microbes that release enzymes to depolymerize organic matter and transform it 63 into plant-available forms through mineralisation. This long history of co-evolution 64 provides a roadmap for measuring and managing beneficial plant-microbe interactions 65 that are key components of healthy soils. Here, we suggest that rather than overall 66 microbial abundance or species diversity, the structure of the network of interactions 67 between plants and soil organisms and among soil organisms best predicts the 68 functionality of soil communities and provides a framework for assessing and managing 69 soil health. 70 Plants affect the structure and function of the soil microbiome and food webs directly

- through beneficial associations with mycorrhizal fungi and *Rhizobia*, and through
- 72 antagonistic associations with, for example, plant-parasitic nematodes. Indirect controls
- on soil communities are equally important and act primarily through the quantity and

74 quality of plant aboveground and belowground litter inputs (Orwin *et al.* 2010; De Vries 75 et al. 2012b; Baxendale et al. 2014). In the rhizosphere, plant N uptake is a dominant 76 control on bacterial and fungal community composition (Bell et al. 2015; Moreau et al. 77 2015; Giagnoni et al. 2016; Thion et al. 2016). In addition, rhizodeposits and root litter 78 have been shown to strongly influence the composition of soil microbial and faunal 79 communities and soil food webs (Scheunemann et al. 2015; Sauvadet et al. 2016), and 80 feed back to the performance of neighbouring plant species by altering soil N availability 81 (Meier, Keyserling & Bowman 2009). Root exudates have been hypothesised as an 82 important mechanism driving microbial community and soil food web composition and 83 activity (Bardgett, Mommer & De Vries 2014; De Vries & Caruso 2016), though this has 84 only been experimentally demonstrated for Arabadopsis (Shi et al. 2011; Badri et al. 85 2013). Finally, antimicrobial compounds isolated from crop plant root exudates can 86 affect the growth and activity of pathogenic soil bacteria (Liu et al. 2015; Fang et al. 87 2016). These mechanisms form a tight link between plants, microbes, and the soil food 88 web in the rhizosphere.

89 As a result of these interactions, the rhizosphere and bulk soil host contrasting microbial 90 and faunal communities. The rhizosphere is typically enriched in bacterial taxa that can 91 be classified as copiotrophic, such as Alphaproteobacteria, Betaproteobacteria, and 92 Bacteroidetes (Shi et al. 2015; Uksa et al. 2015), as well as in specialist decomposers and 93 plant-growth promoting bacteria, compared to the bulk soil (Hargreaves, Williams & 94 Hofmockel 2015; Chen et al. 2016). Soil animal communities generally have higher 95 biomass and abundance in the rhizosphere, and similar to bacterial communities, the 96 rhizosphere is enriched in species that are able to rapidly use root-derived C (Fujii, 97 Saitoh & Takeda 2014; Scharroba et al. 2016). Turner et al. (2013) found that the 98 rhizosphere communities of the major crop plants wheat, pea, and oat were clearly 99 differentiated despite some overlap. In particular, grain rhizospheres were enriched in 100 cellulolytic bacteria, while peas recruited more plant growth promoting bacteria. The 101 wheat rhizosphere was strongly enriched in the bacterial-feeding nematode 102 Acrobeloides, while the pea rhizosphere was highly enriched in fungi. Recent evidence 103 also shows that bacterial alpha-diversity tends to be lower in the rhizosphere 104 (Hargreaves, Williams & Hofmockel 2015; Chen et al. 2016). And while alpha diversity is 105 often proposed as an indicator of robust, healthy soil communities, there is little 106 experimental evidence to support this notion.

107 Rather than species numbers, interactions between organisms appear to be crucial for

108 the functioning of soil communities. Networks of interactions can predict whole

109 ecosystem functioning (Kuiper *et al.* 2015) and drive multiple processes and ecosystem 110 services that underlie this functioning (Hines et al. 2015). Soil food webs with a more 111 prominent fungal energy channel (Box 1) are more resistant to, and continue to function 112 better under drought (De Vries *et al.* 2012a). In addition, the ratio between the bacterial 113 and fungal energy channel has been correlated to the rates of soil C and N cycling 114 processes (De Vries et al. 2013). The success of pathogen invasion in the rhizosphere 115 has been shown to depend on the network structure of resident bacterial communities 116 (Wei *et al.* 2015). Specifically, pathogen success was lower when resident networks had 117 low nestedness (or modularity, see Box 1) and high connectance, presumably through 118 more efficient consumption of resources. Other recent studies found that associations 119 between methane oxidising bacteria and other microbes were central in modulating 120 methane-oxidation (Ho et al. 2016), and that fungal co-occurrence network structure 121 was strongly associated with different stages of litter decomposition (Purahong et al. 122 2016). Thus, new ecological knowledge of the structure of interactive networks among 123 organisms and their environment might be used as an indicator of their functional 124 attributes.

125

126 Rhizosphere networks are recruited from bulk soil networks

127 In the rhizosphere, bacterial networks typically have more nodes, more hubs, and 128 stronger connections (see Box 1 for definitions) than those in bulk soil (Mendes et al. 129 2014; Shi et al. 2016). In a recent study, Shi et al. (2016) found that while bulk soil 130 bacterial communities contained more OTUs, rhizosphere networks of bacterial taxa 131 were larger and more connected. Moreover, rhizosphere networks grew larger and 132 gained more connections and hubs during plant growth, while networks in the bulk soil 133 remained relatively static. Similarly, rhizosphere decomposer soil food webs tend to be 134 dominated by the bacterial energy channel (Thakur & Eisenhauer 2015; Muller et al. 135 2016), which typically have lower diversity than fungal-dominated soil food webs (De 136 Vries et al. 2012a, 2013). These patterns likely occur because the high-resource 137 rhizosphere 'recruits' a subset of species from the bulk soil community. The selected 138 species then share niche space in the rhizosphere and as a result show strong positive 139 associations in networks (Mendes et al. 2014; Edwards et al. 2015). Importantly, the 140 presence of plant roots has been shown to be as important as land use and soil type for 141 shaping bacterial community composition (Edwards et al. 2015; Hargreaves, Williams & 142 Hofmockel 2015).

143 As a result of these different network structures, rhizosphere networks are likely to be 144 less stable under changing environmental conditions than bulk soil networks. 145 Rhizosphere microbial networks are characterised by overwhelmingly strong, positive 146 interactions, which have been shown to compromise network stability (Box 1). In 147 addition, bacterial-dominated rhizosphere soil food webs consist of strong interactions, 148 and a reduction of the fungal energy channel effectively reduces network 149 compartmentalisation, thereby reducing network stability (Box 1). These properties 150 allow rhizosphere networks to respond quickly to changes in resource availability, for 151 example as a result of plant growth stages or agricultural management. 152 In contrast to the rhizosphere, the bulk soil harbours a large, diverse network of 153 organisms with low abundances that consists of weak interactions. The majority of 154 these organisms are dormant or inactive and are thus highly resistant to environmental 155 stresses (Lennon & Jones 2011) and can persist in soil for long periods of time (Troxler 156 et al. 2012). This network of bulk soil organisms is mostly unaffected by the dynamic 157 processes that affect rhizosphere networks and remains relatively static during the 158 growing season (Shi et al. 2016), but would be highly stable under changing 159 environmental conditions because of its properties. We propose that this bulk soil 160 network provides the 'seed bank' from which rhizosphere networks are recruited, and 161 we argue that crops will be able to recruit a functioning rhizosphere network as long as 162 this seed bank is intact (Fig. 1). The composition and structure of the recruited 163 rhizosphere network depends on the traits, and in particular root traits, of the crop 164 grown, as well as on the abundance and composition of the bulk soil community. 165 However, we argue that conventional agricultural management reduces the ability of the 166 rhizosphere to recruit from the bulk soil.

167

168 Agricultural management affects network structure of, and connections between,

169 rhizosphere and bulk soil networks

- 170 Agricultural management directly affects both microbial network and soil food web
- 171 structure in the rhizosphere. It is well known that agricultural practices such as
- 172 fertilisation and tillage reduce the diversity of soil organisms (Tsiafouli *et al.* 2015) and
- 173 shift soil food webs towards being bacterial-dominated rather than fungal-dominated
- 174 (Beare *et al.* 1997; De Vries *et al.* 2006). Recent evidence also indicates that microbial
- 175 networks are affected by agricultural management. For example, in a field sampling
- 176 across China , chemical fertiliser application reduced the size, modularity, and number

Journal of Ecology: Confidential Review copy

177 of connections of bacterial networks compared to organic amendments (Ling et al. 178 2016). Similarly, in a field experiment, organic manure amendment increased the 179 modularity of arbuscular mycorrhizal fungal networks (Zhu et al. 2016). But 180 agricultural management also disproportionately reduces the biomass of groups of 181 organisms that form a connection between rhizosphere and bulk soil, and thus facilitate 182 rhizosphere recruitment. For example, fungal hyphae can form a connection between 183 rhizosphere and bulk soil microbial communities and food webs by transporting C and 184 facilitating bacterial movement (Fransson & Rosling 2014; Gahan & Schmalenberger 185 2015; Pausch et al. 2016). Similarly, soil fauna can form a connection between 186 rhizosphere and bulk soil networks. Earthworms incorporate and distribute organic 187 residues into different soil layers and facilitate microbial dispersal (Tao *et al.* 2009). 188 Both fungal and bacterial grazers can carry bacterial cells and fungal spores in their gut 189 and on their surface (Ingham 1999; Renker et al. 2005), and facilitate their movement 190 by migrating between soil layers (Lindberg & Bengtsson 2005). In addition, 191 conventional agricultural management can also reduce the movement of soil organisms 192 between rhizosphere and bulk soil by compacting and homogenising the soil (Tao et al. 193 2009; Warmink et al. 2011; Ebrahimi & Or 2014). Moreover, the composition and 194 persistence of the bulk soil 'seed bank' can be affected by agricultural amendments 195 seeping to deeper soil layers, such as fertiliser, pesticides, manure, and the antibiotics 196 within manure.

197

198 The Rhizosphere Interactions for Sustainable Agriculture (RISA) Model

199 Drawing on recent advances in understanding of the structure and functioning of 200 ecological networks, we introduce a new conceptual framework to guide future research 201 efforts as well as technological and management innovations that optimise the abilities 202 of soils to support sustainable crop production. Specifically, this framework aims to 203 optimise connections between roots and rhizosphere microbial and faunal networks, 204 and connections between rhizosphere networks and bulk soil networks. Based on the 205 emerging evidence reviewed above, we propose that agricultural bulk soils should 206 contain diverse organismal communities characterized by weak interactions, whereas 207 rhizosphere communities should be less diverse and characterized by a high degree of 208 nodes and strongly positive connections, both within organismal networks and between 209 these network and rhizosphere properties. Most importantly, connections between the 210 rhizosphere and bulk soils should be supported.

211 Most evidence that organismal network structure underlies soil functioning originates 212 from studies on soil food webs, in which feeding interactions between organisms have 213 empirically been quantified through decades of research (Bradford 2016). While the 214 nature of soil food web interactions are currently under debate (Ballhausen & de Boer 215 2016; Geisen 2016), existing food web models have successfully predicted C and N 216 fluxes in natural and agricultural systems (De Ruiter et al. 1993; Holtkamp et al. 2011). 217 In soil microbial networks, correlations between microbial taxa can result from a variety 218 of interaction types (Box 1). To model process rates from data on interactions within 219 microbial networks, and to predict functioning based on microbial network structure, 220 we need to first elucidate the exact nature of dynamic microbe-microbe interactions 221 (Gottstein *et al.* 2016). Therefore, an important challenge is to identify interaction types 222 between microbial groups or species and how these determine network structure. Here, 223 we can learn from gut microbiologists, who have successfully linked gene transcripts to 224 species-species interactions (Plichta et al. 2016). Several covarying transcripts were 225 down-regulated in interacting species pairs, indicating that the functional overlap 226 between species was reduced and that species activities were context specific. A 227 creative alternative to experimentally elucidating the nature of the millions possible 228 specific microbe-microbe interactions might be text-mining of existing literature (Lim et 229 al. 2016).

230 Once we know the functionalities of key nodes and network modules, we can identify 231 nodes and hubs associated with desirable functions such as nutrient mineralisation or 232 plant protection from disease. Taxa that often appear as nodes in structured 233 rhizosphere networks may be promising targets for inoculants, since the addition of just 234 a few species may lead to a structured network. There is a long history of inoculating 235 beneficial microbes either directly into soils or as seed coatings (Calvo, Nelson & 236 Kloepper 2014). Mycorrhizae are often inoculated on tree seedlings and crops to 237 improve establishment and nutrient uptake (du Jardin 2015). Rhizobia are inoculated on 238 legumes to ensure nodule formation (Catroux, Hartmann & Revellin 2001; du Jardin 239 2015). However, along with many other types of plant-growth promoting bacteria, 240 inoculants have had only limited success to date in field agriculture (Calvo, Nelson & 241 Kloepper 2014). There is little evidence that most inoculants are able to persist and 242 compete with other microbes in most soils (Verbruggen et al. 2013; Berruti, Lumini & 243 Bianciotto 2016), although one study found that the plant-growth promoting bacterium 244 Pseudomonas fluorescens persisted in the bulk soil for months after inoculation (Troxler 245 et al. 2012).

246 In addition to inoculation, mechanistic knowledge on links between plant traits and soil 247 organismal networks could enable another promising approach for promoting soil 248 organismal networks that deliver desirable functions (Kumar et al. 2016). While there is 249 accumulating evidence that plant traits, and in particular root traits, can predict soil 250 faunal and microbial community structure and functioning (De Vries *et al.* 2012b; 251 Grigulis et al. 2013; De Vries & Bardgett 2016; Legay et al. 2016), there is only limited 252 evidence that links plant traits to soil microbial networks. For example, it has been 253 shown that specific compounds in root exudates can promote the formation of bacterial 254 clusters (Thomas & Cebron 2016). In addition, in a mesocosm study with eucalyptus 255 seedlings, networks of ammonia-oxidising archaea were more connected and had more 256 modules in soil under elevated CO_2 than those under control conditions, presumably 257 through changes in belowground plant C inputs (Hu et al. 2016). As future research 258 further elucidates possible linkages between plant traits and microbial functions, plant 259 breeding and engineering could be directed to enhance these interactions. 260 Many research challenges need to be addressed before we can use the analysis of soil 261 networks to design management interventions that optimise connections between plant 262 roots and soil networks and between rhizosphere and bulk soil. However, the 263 effectiveness of many new agricultural management approaches for improving soil 264 health and agricultural sustainability (Tilman et al. 2002) can be explained by our 265 conceptual model. For example, it is well known that no-till or reduced tillage supports 266 active decomposer communities (Arshad et al. 1990; Ogle, Swan & Paustian 2012), but 267 they also promote linkages between rhizosphere and bulk soil networks by reducing soil 268 disturbance. Cover crops displace fallow periods with plants that fix N, increase C 269 inputs (Olson, Ebelhar & Lang 2010), and also likely enhance soil network structure. 270 Along with other forms of organic inputs such as manure and compost, cover crops may 271 support diverse bulk soils with weak interactions (Ling et al. 2016). Finally, crop 272 rotations that prevent the build-up of diseases have been shown to differ in their fungal 273 network structure from diseased soils under continuous monoculture, with rhizosphere 274 networks in healthy soils showing higher modularity and meta-modularity, and more 275 highly-connected generalists (Lu et al. 2013). However, it is important to acknowledge 276 that soil organismal networks and their connections with plants are likely to depend on 277 edaphic soil characteristics, such as soil texture and cation exchange capacity (Ma et al. 278 2016a; Ma et al. 2016b). The design of novel management approaches to promote 279 networks will have to take into account context-specificity and be tailored for different 280 crops, soil types, and climatic conditions.

281 Over the years, various indices have been proposed as indicators of healthy soils 282 including soil organic matter content (Reeves 1997), microbial diversity (Lehman et al. 283 2015), fungal:bacterial ratios (De Vries *et al.* 2006), enzyme activities (Bandick & Dick 284 1999), metabolic quotients (Anderson 2003), or soil respiration burst tests (Morrow et 285 al. 2016). These indices do not recognize the importance of interactions among these 286 components, but we expect many of these metrics to be correlated to the structure of 287 soil organismal networks, as has been shown already for certain soil food web 288 characteristics (De Vries et al. 2013). While much research is needed to establish links 289 between soil properties, plant traits, network structure and soil functioning, novel 290 understanding of ecological interactions within and between soil communities and 291 plants has tremendous potential to be applied in agricultural systems to sustainability 292 produce food for a growing global population.

293

Box 1. Networks and food webs – interaction types, configuration, and stability

295 Ecological networks are webs of connections between organisms. Connections in a 296 network can consist of a range different interaction types, from predator-prev 297 interactions to mutualisms, competition, and coexistence. Most studies of microbial 298 networks focus on bacteria and only include significant, positive interactions that might 299 consist of mutualisms, cooperation, or niche sharing. In contrast, classical soil food webs 300 only consist of feeding interactions, which can be positive (bottom-up) or negative (top-301 down) (but see Buchkowski (2016) and Hawlena & Zaguri (2016) for arguments for 302 including non-feeding interactions in soil food webs). However, networks can include 303 any functional group and type of interaction, and hybrids between microbial networks 304 and traditional soil food webs, including both positive and negative interactions, might 305 be more informative than separate networks.

306 Seminal work by May (1973) focussed on the number of organisms or species present in 307 a network and the number of connections between these. Counterintuitively, May found 308 that more diverse networks were less stable under perturbations than simpler 309 networks. However, these early networks were randomly created, and since then, 310 multiple studies have shown that the configuration and interaction types within 311 networks determine their stability. For example, networks that consist of many weak 312 links are more stable than those consisting of few strong links (Neutel, Heesterbeek & de 313 Ruiter 2002). Compartmentalisation, as well as the presence of weak connectors 314 between compartments, has also been shown to increase the stability of networks

Journal of Ecology: Confidential Review copy

315 (Moore et al. 2003; Rooney et al. 2006; Stouffer & Bascompte 2011). Finally, trophic 316 coherence and the presence of negative interactions, such as top-down controls, can 317 increase network stability (Johnson et al. 2014; Coyte, Schluter & Foster 2015). 318 We currently lack enough examples to determine whether there are general 319 configurations in microbial networks, how these networks are affected by changes in 320 agricultural management, and what the implications are for their stability and 321 functioning. In contrast, the effects of agricultural management on soil food webs and 322 their functioning are relatively clear. Traditionally, food webs have been divided into 323 clear energy channels, or compartments: the root energy channel, which is fuelled by 324 live roots through the activities of root-feeding nematodes and mycorrhizal fungi, and 325 two detritus-fuelled compartments: the fungal and the bacterial energy channel. While 326 these compartmentalisations are currently hotly debated and under revision 327 (Ballhausen & de Boer 2016; Geisen 2016, see Figure), agricultural intensification 328 reduces the biomass of the root and fungal energy channels, and thereby increases the 329 relative importance of the bacterial energy channel. Experimental and modelling studies 330 have shown that the fungal energy channel, which consists of slow growing organisms 331 and weak interactions, is more stable under disturbance than the bacterial energy 332 channel and continues to function better (Rooney *et al.* 2006; De Vries *et al.* 2012a). It is 333 assumed that the root energy channel and the fungal energy channel are controlled by 334 bottom-up interactions, while the bacterial energy channel is top-down controlled 335 (Moore et al. 2003). Organisms that feed on multiple functional groups, such as 336 predatory nematodes and mites, can connect these compartments, and thereby increase 337 food web stability by dampening fluctuations in their prey (Rooney *et al.* 2006).

338

339 Acknowledgements

- 340 Franciska de Vries is supported by a BBSRC David Phillips Fellowship (BB/L02456X/1).
- 341 Matthew Wallenstein is supported by a grant from Colorado State University to the
- 342 Innovation Center for Sustainable Agriculture, and a CAREER grant from the National
- 343 Science Foundation. This material is based upon work supported by the U.S. Department
- 344 of Energy, Office of Science, Office of Terrestrial Ecosystem Science under Award
- 345 Number DE-SC0010568.

346

347

348 **References**

349	Anderson, T.H. (2003) Microbial eco-physiological indicators to asses soil quality.
350	Agriculture Ecosystems & Environment, 98, 285-293.
351	Arshad, M.A., Schnitzer, M., Angers, D.A. & Ripmeester, J.A. (1990) EFFECTS OF TILL VS
352	NO-TILL ON THE QUALITY OF SOIL ORGANIC-MATTER. Soil Biology &
353	Biochemistry, 22 , 595-599.
354	Badri, D.V., Chaparro, J.M., Zhang, R.F., Shen, Q.R. & Vivanco, J.M. (2013) Application of
355	Natural Blends of Phytochemicals Derived from the Root Exudates of
356	Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly
357	Modulate the Soil Microbiome. <i>Journal of Biological Chemistry</i> , 288 , 4502-4512.
358	Ballhausen, MB. & de Boer, W. (2016) The sapro-rhizosphere: Carbon flow from
359	saprotrophic fungi into fungus-feeding bacteria. Soil Biology and Biochemistry.
360	102 , 14-17.
361	Bandick, A.K. & Dick, R.P. (1999) Field management effects on soil enzyme activities. <i>Soil</i>
362	Biology & Biochemistry, 31 , 1471-1479.
363	Bardgett, R.D., Mommer, L. & De Vries, F.T. (2014) Going underground: root traits as
364	drivers of ecosystem processes. <i>Trends in Ecology & Evolution</i> , 29 , 692-699.
365	Baxendale, C., Orwin, K.H., Poly, F., Pommier, T. & Bardgett, R.D. (2014) Are plant-soil
366	feedback responses explained by plant traits? <i>New Phytologist</i> , 204 , 408-423.
367	Beare, M.H., Hu, S., Coleman, D.C. & Hendrix, P.F. (1997) Influences of mycelial fungi on
368	soil aggregation and organic matter storage in conventional and no-tillage soils.
369	Applied Soil Ecology, 5, 211-219.
370	Bell, C.W., Asao, S., Calderon, F., Wolk, B. & Wallenstein, M.D. (2015) Plant nitrogen
371	uptake drives rhizosphere bacterial community assembly during plant growth.
372	Soil Biology & Biochemistry, 85, 170-182.
373	Bender, S.F., Wagg, C. & van der Heijden, M.G.A. (2016) An Underground Revolution:
374	Biodiversity and Soil Ecological Engineering for Agricultural Sustainability.
375	Trends in Ecology & Evolution, 31 , 440-452.
376	Berruti, A., Lumini, E. & Bianciotto, V. (2016) AMF components from a microbial
377	inoculum fail to colonize roots and lack soil persistence in an arable maize field.
378	Symbiosis, 1-8.
379	Bradford, M.A. (2016) Re-visioning soil food webs. Soil Biology and Biochemistry, 102 , 1-
380	3.
381	Buchkowski, R.W. (2016) Top-down consumptive and trait-mediated control do affect
382	soil food webs: It's time for a new model. Soil Biology and Biochemistry, 102 , 29-
383	32.
384	Calvo, P., Nelson, L. & Kloepper, J.W. (2014) Agricultural uses of plant biostimulants.
385	Plant and Soil, 383, 3-41.
386	Catroux, G., Hartmann, A. & Revellin, C. (2001) Trends in rhizobial inoculant production
387	and use. <i>Plant and Soil,</i> 230, 21-30.
388	Chen, L., Brookes, P.C., Xu, J.M., Zhang, J.B., Zhang, C.Z., Zhou, X.Y. & Luo, Y. (2016)
389	Structural and functional differentiation of the root-associated bacterial
390	microbiomes of perennial ryegrass. Soil Biology & Biochemistry, 98, 1-10.
391	Coyte, K.Z., Schluter, J. & Foster, K.R. (2015) The ecology of the microbiome: Networks,
392	competition, and stability. <i>Science</i> , 350 , 663-666.
393	De Ruiter, P.C., Moore, J.C., Zwart, K.B., Bouwman, L.A., Hassink, J., Bloem, J., Devos, J.A.,
394	Marinissen, J.C.Y., Didden, W.A.M., Lebbink, G. & Brussaard, L. (1993) Simulation
395	of Nitrogen Mineralization in the Belowground Food Webs of 2 Winter-Wheat
396	Fields. Journal of Applied Ecology, 30 , 95-106.
397	De Vries, F.T. & Bardgett, R.D. (2016) Plant community controls on short-term
398	ecosystem nitrogen retention. New Phytologist, 210 , 861-874.

 labile carbon inputs in the soil food web. Soil Biology & Biochemistry, In Press. De Vries, F.T., Hoffland, E., van Fekeren, N., Brussaard, L. & Bloem, J. (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology & Biochemistry, SB, 2092-2103. De Vries, F.T., Liri, M., Bjørnlund, L., Bowker, M., Christensen, S., Setälä, H. & Bardgett, R.D. (2012a) Land use alters the resistance and resilience of soil food webs to drought. <i>Nature Climate Change</i>, 2, 276-280. De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A., Hobbs, P.J., Quirk, H., Shipley, B., Cornelissen, J.H.C., Kattge, J. & Bardgett, R.D. (2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. <i>Ecology Letters</i>, 15, 1230-1239. De Vries, F.T., Thébault, E., Liri, M., Birkhofer, K., Tstafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V. Christensen, S., de Ruiter, P.C., d'Hertefeld, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Bicology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated angular pore networks. Water <i>Resource</i>, 50, 7406-7429.	399	De Vries, F.T. & Caruso, T. (2016) Eating from the same plate? Revisiting the role of
 De Vries, F.T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology & Biochemistry, 38, 2092-2103. De Vries, F.T., Liiri, M., Bjørnlund, L., Bowker, M., Christensen, S., Setälä, H. & Bardgett, R.D. (2012a) Land use alters the resistance and resilience of soil food webs to drought. <i>Nature Climate Change</i>, 2, 276-280. De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A., Hobbs, P.J., Quirk, H., Shipley, B., Cornelissen, J.H.C., Kattge, J. & Bardgett, R.D. (2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. <i>Ecology Letters</i>, 15, 1230. De Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturea</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K. Bhatnag	400	labile carbon inputs in the soil food web. Soil Biology & Biochemistry, In Press.
 Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology & Biochemistry, 38, 2092-2103. De Vries, F.T., Liri, M., Bjørnlund, L., Bowker, M., Christensen, S., Setälä, H. & Bardgett, R.D. (2012a) Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2, 276-280. De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A., Hobbs, P.J., Quirk, H., Shipley, B., Cornelissen, J.H.C., Kattge, J. & Bardgett, R.D. (2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. <i>Ecology Letters</i>, 15, 1230-1239. De Vries, F.T., Thébault, E., Lirit, M., Birkhörer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientic Horticulture</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated angular pore networks. Water Resource, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of	401	De Vries, F.T., Hoffland, E., van Eekeren, N., Brussaard, L. & Bloem, J. (2006)
 Soil Biology & Biochemistry, 38, 2092-2103. De Vries, F.T., Liiri, M., Bjørnlund, L., Bowker, M., Christensen, S., Setälä, H. & Bardgett, R.D. (2012a) Land use alters the resistance and resilience of soil food webs to drought. <i>Nature Climate Change</i>, 2, 276-280. De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A., Hobbs, P.J., Quirk, H., Shipley, B., Cornelissen, J.H.C., Kattge, J. & Bardgett, R.D. (2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. <i>Ecology Letters</i>, 15, 1230-1239. De Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeld, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296-14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Sciences, 112, 1911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophidr Soil <i>Ecology</i>, 83, 109-115. Gahan, J. & Schmalenberger, A. (2014) Effects of rhizospheres on the community and Soil, 385, 255-272. <l< td=""><td>402</td><td>Fungal/bacterial ratios in grasslands with contrasting nitrogen management.</td></l<>	402	Fungal/bacterial ratios in grasslands with contrasting nitrogen management.
 De Vries, F.T., Lin^T, M., Bjørnlund, L., Bowker, M., Christensen, S., Setälä, H. & Bardgett, R.D. (2012a) Land use alters the resistance and resilience of soil food webs to drought. <i>Nature Climate Change</i>, 2, 276-280. De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A., Hobbs, P.J., Quirk, H., Shipley, B., Cornelissen, J.H.C., Kattge, J. & Bardgett, R.D. (2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. <i>Ecology Letters</i>, 15, 1230-1239. De Vries, F.T., Thébault, E., Liri, M., Birkhofter, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Beology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Mcdellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., J., Jui, J., Jui, K., Ju, S. & Yang, M. (2016) Tobaccor R	403	Soil Biology & Biochemistry, 38 , 2092-2103.
 R.D. (2012a) Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2, 276-280. De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A., Hobbs, P.J., Quirk, H., Shipley, B., Cornelissen, J.H.C., Kattge, J. & Bardgett, R.D. (2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. <i>Ecology Letters</i>, 15, 1230-1239. De Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Inotticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated ngular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rostated with Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling,	404	De Vries, F.T., Liiri, M., Bjørnlund, L., Bowker, M., Christensen, S., Setälä, H. & Bardgett,
 drought. Nature Climate Change, 2, 276-280. De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A., Hobbs, P.J., Quirk, H., Shipley, B., Cornelissen, J.H.C., Kattge, J. & Bardgett, R.D. (2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters, 15, 1230-1239. De Vries, F.T., Thébault, E., Liri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jargensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertfeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated angular pore networks. Water Resources Research, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: M	405	R.D. (2012a) Land use alters the resistance and resilience of soil food webs to
 De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A., Hobbs, P.J., Quirk, H., Shipley, B., Cornelissen, J.H.C., Kattge, J. & Bardgett, R.D. (2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. <i>Ecology Letters</i>, 15, 1230-1239. De Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, J., Luo, L, Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapesced foor Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapesced Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extrar	406	drought. Nature Climate Change. 2, 276-280.
 Hobbs, P.J., Quirk, H., Shipley, B., Cornelissen, J.H.C., Kattge, J. & Bardgett, R.D. (2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. <i>Ecology Letters</i>, 15, 1230-1239. De Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertfeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulture</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. <i>Wate Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacce Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. &	407	De Vries, F.T., Manning, P., Tallowin, J.R.B., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A.,
 (2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. <i>Ecology Letters</i>, 15, 1230-1239. De Vries, F.T., Thébault, E., Liri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Settälä, H., Sgardelis, S.P., Utesany, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycella and soil profile in Scots pine microcosms. <i>Plant and Soil</i>, 365, 255-272. Fuji, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 11	408	Hobbs, P.J., Ouirk, H., Shipley, B., Cornelissen, J.H.C., Kattge, J. & Bardgett, R.D.
 microbial communities. Ecology Letters, 15, 1230-1239. De Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Effects of rhizospheres on the community rangetus extraardical mycelia and soil profile in Scots pine microcosms. <i>Plant and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community invariegus extraardical mycelia and soil profile in Scots pine microcosms. <i>Plant and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda,	409	(2012b) Abiotic drivers and plant traits explain landscape-scale patterns in soil
 De Vries, F.T., Thébault, E., Liiri, M., Biřkhofer, K., Tsiafouli, M.A., Bjørnlund, L., Bracht Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J., A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, B911-B920. Fang, Y., Zhang, L., Jiao, Y., Luo, J., Ju, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassla	410	microbial communities. <i>Ecology Letters</i> , 15 , 1230-1239.
 Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hoppiae Soi gasulan select for a diverse and abundant hyphospheric bacterial c	411	De Vries, F.T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Biørnlund, L., Bracht
 J., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H., Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of</i> <i>Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant and Soil</i>, 385, 255-272. Fuji, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109-115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphosphe	412	Jørgensen, H., Brady, M.V., Christensen, S., de Ruiter, P.C., d'Hertefeldt, T., Frouz,
 Sgardelis, S.P., Uteseny, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D. (2013) Soil food web properties explain ecosystem services across European land use systems. <i>Proceedings of the National Academy of Sciences</i>, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of</i> <i>Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant and Sils</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109-115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>,	413	I., Hedlund, K., Hemerik, L., Hol, W.H.G., Hotes, S., Mortimer, S.R., Setälä, H.,
 (2013) Soil food web properties explain cosystem services across European land use systems. Proceedings of the National Academy of Sciences, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. Water Resources Research, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Sciol-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. Frontiers in Microbiology, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. Plant and Soil, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. Applied Soil Ecology, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Applied Soil Ecology, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 102, 22-25.	414	Sgardelis, S.P., Utesenv, K., van der Putten, W.H., Wolters, V. & Bardgett, R.D.
 land use systems. Proceedings of the National Academy of Sciences, 110, 14296- 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. Water Resources Research, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. Frontiers in Microbiology, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Sulluls variegitus extraradical mycelia and soil profile in Scots pine microcosms. Plant and Soil, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. Applied Soil Ecology, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Applied Soil Ecology, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri,	415	(2013) Soil food web properties explain ecosystem services across European
 14301. Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophtora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109-115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulforate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial com	416	land use systems. Proceedings of the National Academy of Sciences. 110 , 14296-
 Doran, J.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109-115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Sci Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling	417	14301.
 Component of soil quality. <i>Applied Soil Ecology</i>, 15, 3-11. du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. <i>Scientia Horticulturae</i>, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated angular pore networks. <i>Water Resources Research</i>, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.	418	Doran, I.W. & Zeiss, M.R. (2000) Soil health and sustainability: managing the biotic
 du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. Water Resources Research, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. Frontiers in Microbiology, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. Plant and Soil, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. Applied Soil Ecology, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Applied Soil Ecology, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. Applied Soil Ecology, 98, 30	419	component of soil quality. Applied Soil Ecology. 15. 3-11.
 regulation. Scientia Horticulturae, 196, 3-14. Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. Water Resources Research, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. Frontiers in Microbiology, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. Plant and Soil, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. Applied Soil Ecology, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Applied Soil Ecology, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. Applied Soil Ecology, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms	420	du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and
 Ebrahimi, A.N. & Or, D. (2014) Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. Water Resources Research, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. Frontiers in Microbiology, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. Plant and Soil, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. Applied Soil Ecology, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Applied Soil Ecology, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. Applied Soil Ecology, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. Journal of the Royal Society Interface	421	regulation. Scientia Horticulturae. 196. 3-14.
 Characteristics of motile bacterial cell motions in unsaturated angular pore networks. Water Resources Research, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. Frontiers in Microbiology, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. Plant and Soil, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. Applied Soil Ecology, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Applied Soil Ecology, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. Applied Soil Ecology, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. Journal of the Royal Society Interface, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C.,	422	Ebrahimi, A.N. & Or. D. (2014) Microbial dispersal in unsaturated porous media:
 networks. Water Resources Research, 50, 7406-7429. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. Frontiers in Microbiology, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. Plant and Soil, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. Applied Soil Ecology, 83, 109-115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Applied Soil Ecology, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. Applied Soil Ecology, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. <	423	Characteristics of motile bacterial cell motions in unsaturated angular pore
 Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of</i> <i>Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant</i> <i>and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of <i>Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	424	networks. <i>Water Resources Research</i> . 50 , 7406-7429.
 Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. <i>Proceedings of the National Academy of</i> <i>Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed Root Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant</i> <i>and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and s	425	Edwards, I., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S.,
 root-associated microbiomes of rice. <i>Proceedings of the National Academy of</i> <i>Sciences</i>, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant</i> <i>and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	426	Eisen, I.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the
 Sciences, 112, E911-E920. Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. Frontiers in Microbiology, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. Plant and Soil, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. Applied Soil Ecology, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Applied Soil Ecology, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biology and Biochemistry, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. Applied Soil Ecology, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013	427	root-associated microbiomes of rice. <i>Proceedings of the National Academy of</i>
 Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016) Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant</i> <i>and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109-115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	428	<i>Sciences</i> . 112 . E911-E920.
 Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant</i> <i>and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	429	Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S. & Yang, M. (2016)
 Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i>, 7. Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant</i> <i>and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	430	Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen
 Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant</i> <i>and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	431	Biocontrol: Mediated by Rapeseed Root Exudates. <i>Frontiers in Microbiology</i> . 7 .
 variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant</i> <i>and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	432	Fransson, P. & Rosling, A. (2014) Fungal and bacterial community responses to Suillus
 <i>and Soil</i>, 385, 255-272. Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	433	variegtus extraradical mycelia and soil profile in Scots pine microcosms. <i>Plant</i>
 Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109- 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	434	and Soil, 385, 255-272.
 composition of Collembola in a temperate forest. <i>Applied Soil Ecology</i>, 83, 109-115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	435	Fujii, S., Saitoh, S. & Takeda, H. (2014) Effects of rhizospheres on the community
 115. Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	436	composition of Collembola in a temperate forest. Applied Soil Ecology, 83, 109-
 Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	437	115.
 select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	438	Gahan, J. & Schmalenberger, A. (2015) Arbuscular mycorrhizal hyphae in grassland
 sulfonate desulfurization. <i>Applied Soil Ecology</i>, 89, 113-121. Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	439	select for a diverse and abundant hyphospheric bacterial community involved in
 Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	440	sulfonate desulfurization. <i>Applied Soil Ecology</i> , 89 , 113-121.
 functional versatility of soil protists. <i>Soil Biology and Biochemistry</i>, 102, 22-25. Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	441	Geisen, S. (2016) The bacterial-fungal energy channel concept challenged by enormous
 Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016) Availability of different nitrogen forms changes the microbial communities and enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	442	functional versatility of soil protists. <i>Soil Biology and Biochemistry</i> , 102 , 22-25.
 444 Availability of different nitrogen forms changes the microbial communities and 445 enzyme activities in the rhizosphere of maize lines with different nitrogen use 446 efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. 447 Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based 448 stoichiometric modelling from single organisms to microbial communities. 449 <i>Journal of the Royal Society Interface</i>, 13. 450 Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, 451 C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & 452 Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	443	Giagnoni, L., Pastorelli, R., Mocali, S., Arenella, M., Nannipieri, P. & Renella, G. (2016)
 enzyme activities in the rhizosphere of maize lines with different nitrogen use efficiency. <i>Applied Soil Ecology</i>, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	444	Availability of different nitrogen forms changes the microbial communities and
 efficiency. Applied Soil Ecology, 98, 30-38. Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	445	enzyme activities in the rhizosphere of maize lines with different nitrogen use
 Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	446	efficiency. Applied Soil Ecology, 98 , 30-38.
 stoichiometric modelling from single organisms to microbial communities. <i>Journal of the Royal Society Interface</i>, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	447	Gottstein, W., Olivier, B.G., Bruggeman, F.J. & Teusink, B. (2016) Constraint-based
 Journal of the Royal Society Interface, 13. Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	448	stoichiometric modelling from single organisms to microbial communities.
 Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	449	Journal of the Royal Society Interface, 13 .
 451 C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. & 452 Clément, JC. (2013) Relative contributions of plant traits and soil microbial 	450	Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi,
452 Clément, JC. (2013) Relative contributions of plant traits and soil microbial	451	C., Bardgett, R.D., Poly, F., Pommier, T., Schloter, M., Tappeiner, U., Bahn, M. &
	452	Clément, JC. (2013) Relative contributions of plant traits and soil microbial

453	properties to mountain grassland ecosystem services. <i>Journal of Ecology,</i> 101,
454	47-57.
455	Hargreaves, S.K., Williams, R.J. & Hofmockel, K.S. (2015) Environmental Filtering of
456	Microbial Communities in Agricultural Soil Shifts with Crop Growth. PLoS ONE,
457	10 , e0134345.
458	Hawlena, D. & Zaguri, M. (2016) Fear and below-ground food-webs. <i>Soil Biology and</i>
459	Biochemistry. 102 . 26-28.
460	Hines, I., van der Putten, W.H., De Devn, G.B., Wagg, C., Voigt, W., Mulder, C., Weisser,
461	W.W., Engel, I., Melian, C., Scheu, S., Birkhofer, K., Ebeling, A., Scherber, C. &
462	Eisenhauer, N. (2015) Towards an Integration of Biodiversity-Ecosystem
463	Functioning and Food Web Theory to Evaluate Relationships between Multiple
464	Ecosystem Services Ecosystem Services: From Biodiversity to Society Pt 1 (eds G
465	Woodward & D.A. Bohan) nn 161-199 Elsevier Academic Press Inc. San Diego
466	Ho A Angel R Veraart A L Daebeler A Jia Z L Kim SY Kerckhof F M Boon N &
467	Rodelier PLF (2016) Riotic Interactions in Microhial Communities as
468	Modulators of Biogeochemical Processes: Methanotrophy as a Model System
460	Frontiers in Microhiology 7
470	Holtbamn B. van der Wal A. Kardol P. van der Putten W.H. de Ruiter P.C. & Dekker
470 1.71	S C (2011) Modelling C and N mineralisation in soil food webs during secondary
472	succession on av arable land. Soil Biology & Biochemistry 43 , 251-260
472	Hu HW Macdonald CA Trivedi D Anderson IC Zhong V Holmos B Bodrossy I
473	Wang LT Ho LT & Singh BK (2016) Effects of climate warming and elevated
474	CO2 on autotraphic nitrification and nitrification in dryland accountering Soil
475	Dielogy & Diechemistry 02 , 1, 15
470	Diology & Diochemischy, 92, 1-15. Ingham F.D. (1000) Nometodes, Soil Diology Drimer (eds A.L. Tugol & A.M.
477	Inglialli, E.K. (1999) Nellialoues. Soli biology Primer (eus A.J. Tuger & A.M.
470	Lewalluowskij. Johnson & Domínguoz Corrás V. Donotti I. & Muñoz M.A. (2014) Trophic schoronso
4/9	Joinison, S., Doininguez-Galcia, V., Donetu, L. & Munoz, M.A. (2014) Hopfine conference
400	111 17022 17029
401	III, 17925-17920. Kuinar II wan Altana C. da Buitar D.C. wan Carwon I.D.A. Janca I.H. & Maaii W.M.
402	(2015) Food web stability signals critical transitions in tomporate shallow lakes
405	(2013) Food-web stability signals cifical transitions in temperate shanow lakes.
404 105	Nuture communications, o .
405	Ruinal, V., Daweja, M., Singli, F.K. & Shukia, F. (2010) Recent Developments in Systems Piology and Motabolic Engineering of Plant Microbe Interactions. <i>Frontiers in</i>
400	Diology and Metabolic Engineering of Flant Microbe Interactions. Frontiers in
407	Fiuli Science, T. Lambara H. Maugal C. Jaillard P. & Hingingar D. (2000) Diant migraphy soil
400	Lambers, n., Mougel, C., Jamai u, D. & minsinger, P. (2009) Fiant-iniciode-son
409	niteractions in the finzosphere: an evolutionally perspective. Plant and Soli, 521 ,
490	03-113. Lagay N. Layaral S. Payandala C. Krainar II. Pahn M. Pinat M. N. Cantaral A.A.M.
491	Legay, N., Lavorel, S., Daxenuale, C., Kiamer, O., Dami, M., Dinet, MN., Calidi el, A.A.M.,
472	Dommion T. Schleter M. Clément I. C. & Pardgett D.D. (2016) Influence of plant
495	Folimitel, 1., Scholer, M., Clement, JC. & Dalugett, K.D. (2010) innuence of plant
494 405	traits, son microbial properties, and about parameters on microgen turnover of
495	grassianu ecosystems. Ecosphere, 7, e01446-n/a.
496	Lenman, R.M., Acosta-Martinez, V., Buyer, J.S., Cambardella, C.A., Collins, H.P., Ducey, T.F.,
497	Haivorson, J.J., Jin, V.L., Jonnson, J.M.F., Kremer, K.J., Lundgren, J.G., Manter, D.K.,
498	Maui, J.E., Siniti, J.L. & Stott, D.E. (2015) Soli biology for resilient, healthy soli.
499	Journal of Soli and Water Conservation, 70 , 12A-18A.
500	implications of dormonogy Nature Devices Microbials and evolutionary
201	Implications of dormancy. <i>Nature Reviews Microbiology</i> , 9 , 119-130.
502	LIII, N.M.N., LI, U.H., UND, N.K. & Nagarajan, N. (2016) @MINTER: automated text-mining
503	of inferoptial interactions. <i>Bioinformatics</i> , 32 , 2981-2987.
504	Linuberg, N. & Dengisson, J. (2005) Population responses of oridatio mites and
505	conemporans after drought. Applied Soll Ecology, 28 , 163-174.

506	Ling, N., Zhu, C., Xue, C., Chen, H., Duan, Y.H., Peng, C., Guo, S.W. & Shen, Q.R. (2016)
507	Insight into how organic amendments can shape the soil microbiome in long-
508	term field experiments as revealed by network analysis. Soil Biology &
509	Biochemistry, 99, 137-149.
510	Liu, Y.X., Li, X., Cai, K., Cai, L.T., Lu, N. & Shi, I.X. (2015) Identification of benzoic acid and
511	3-phenylpropanoic acid in tobacco root exudates and their role in the growth of
512	rhizosphere microorganisms Annlied Soil Ecology 93 78-87
512	Ma B Wang H 7 Dsouza M Lou I He Y Dai 7 M Brookes P C Xu I M & Gilbert I A
514	(2016a) Geographic natterns of co-occurrence network tonological features for
515	soil microbiota at continental scale in eastern China. Isme Journal 10 1891.
516	
510	1701. Ma I.C. Ibalywa A.M. Vang C.H. & Crowley, D.F. (2016b) Bactorial diversity and
517 F10	Ma, J.C., IDEKWE, A.M., Talig, C.H. & Crowley, D.E. (2010b) Dacterial diversity and
510	composition in major fresh produce growing soils affected by physiochemical
519	properties and geographic locations. Science of the Total Environment, 563 , 199-
520	209.
521	May, R.M. (1973) Stability and complexity in model ecosystems. Princeton University
522	Press, Princeton.
523	Meier, C.L., Keyserling, K. & Bowman, W.D. (2009) Fine root inputs to soil reduce growth
524	of a neighbouring plant via distinct mechanisms dependent on root carbon
525	chemistry. <i>Journal of Ecology</i> , 97 , 941-949.
526	Mendes, L.W., Kuramae, E.E., Navarrete, A.A., van Veen, J.A. & Tsai, S.M. (2014)
527	Taxonomical and functional microbial community selection in soybean
528	rhizosphere. <i>Isme Journal,</i> 8, 1577-1587.
529	Moore, J.C., McCann, K., Setala, H. & De Ruiter, P.C. (2003) Top-down is bottom-up: Does
530	predation in the rhizosphere regulate aboveground dynamics? <i>Ecology,</i> 84 , 846-
531	857.
532	Moreau, D., Pivato, B., Bru, D., Busset, H., Deau, F., Faivre, C., Matejicek, A., Strbik, F.,
533	Philippot, L. & Mougel, C. (2015) Plant traits related to nitrogen uptake influence
534	plant-microbe competition. <i>Ecology</i> , 96 , 2300-2310.
535	Morrow, J.G., Huggins, D.R., Carpenter-Boggs, L.A. & Reganold, J.P. (2016) Evaluating
536	Measures to Assess Soil Health in Long-Term Agroecosystem Trials. Soil Science
537	Society of America Journal, 80, 450-462.
538	Muller, K., Kramer, S., Haslwimmer, H., Marhan, S., Scheunemann, N., Butenschon, O.,
539	Scheu, S. & Kandeler, E. (2016) Carbon transfer from maize roots and litter into
540	bacteria and fungi depends on soil depth and time. Soil Biology & Biochemistry,
541	93, 79-89.
542	Neutel, A.M., Heesterbeek, J.A.P. & de Ruiter, P.C. (2002) Stability in real food webs:
543	Weak links in long loops. <i>Science</i> , 296 , 1120-1123.
544	Ogle, S.M., Swan, A. & Paustian, K. (2012) No-till management impacts on crop
545	productivity, carbon input and soil carbon sequestration. Agriculture Ecosystems
546	& Environment, 149 , 37-49.
547	Olson, K.R., Ebelhar, S.A. & Lang, I.M. (2010) Cover Crop Effects on Crop Yields and Soil
548	Organic Carbon Content, Soil Science, 175 , 89-98.
549	Orwin KH Buckland SM Johnson D Turner BL Smart S Oakley S & Bardgett RD
550	(2010) Linkages of plant traits to soil properties and the functioning of
551	temperate grassland <i>Journal of Ecology</i> 98 1074-1083
552	Pausch, L. Kramer, S., Scharroba, A. Scheunemann, N. Butenschoen, O. Kandeler, F.
553	Marhan S Riederer M Scheu S Kuzyakov V & Ruess L (2016) Small but
554	active - nool size does not matter for carbon incornoration in below-ground food
554	webs Functional Ecology 20 A70-A80
555	Paustian K Lahmann I Agle S Davy D Dahartson C.D. & Smith D (2016) Climata
550	ausuali, K., Lelillalli, J., Ogie, S., Keay, D., Kobertsoll, G.F. & Sillill, F. (2010) Ullilde
22/	Silial L Sulls. Muluie, JJL, 77-37. Dichta D.D. Lunckor A.S. Portalan M. Dottodal E. Courtian I. Varala E. Manishanh C.
220	FIICHTA, D.K., JUHCKEI, A.S., DEI LAIAH, M., KELLEUAH, E., GAULIEF, L., VAFEIA, E., MANICHANN, C., Equatoreux C. Levenez, E. Nieleen, T. Dere, J. Machada, A.M.D., de Europe
222	rouqueray, c., Levenez, r., Meisen, T., Dore, J., Machado, A.M.D., de Evgrafov,

560	M.C.R., Hansen, T., Jorgensen, T., Bork, P., Guarner, F., Pedersen, O., Sommer,
561	M.O.A., Ehrlich, S.D., Sicheritz-Ponten, T., Brunak, S., Nielsen, H.B. &
562	Metagenomics Human Intestinal, T. (2016) Transcriptional interactions suggest
563	niche segregation among microorganisms in the human gut. <i>Nature</i>
564	Microbiology. 1.
565	Purahong, W., Kruger, D., Buscot, F. & Wubet, T. (2016) Correlations between the
566	composition of modular fungal communities and litter decomposition-associated
567	ecosystem functions <i>Fungal Fealoav</i> 22 106-114
568	Reeves DW (1997) The role of soil organic matter in maintaining soil quality in
500	continuous cronning suctome. Soil & Tillage Decearch 42 121 167
509	Donker C. Otto D. Schneider V. Zimdere P. Maraun M. & Ducast F. (2005) Orihetid
570 F71	Reliker, C., Otto, F., Schneider, K., Zhiludi S, D., Maraduli, M. & Duscol, F. (2005) Offidatu
5/1	mites as potential vectors for son microrungi: Study of mite-associated rungar
572	species. <i>Microbial Ecology</i> , 50 , 518-528.
5/3	Rooney, N., McLann, K., Gellner, G. & Moore, J.C. (2006) Structural asymmetry and the
574	stability of diverse food webs. <i>Nature</i> , 442 , 265-269.
575	Sauvadet, M., Chauvat, M., Cluzeau, D., Maron, P.A., Villenave, C. & Bertrand, I. (2016) The
576	dynamics of soil micro-food web structure and functions vary according to litter
577	quality. <i>Soil Biology & Biochemistry,</i> 95, 262-274.
578	Scharroba, A., Kramer, S., Kandeler, E. & Ruess, L. (2016) Spatial and temporal variation
579	of resource allocation in an arable soil drives community structure and biomass
580	of nematodes and their role in the micro-food web. <i>Pedobiologia</i> , 59 , 111-120.
581	Scheunemann, N., Maraun, M., Scheu, S. & Butenschoen, O. (2015) The role of shoot
582	residues vs. crop species for soil arthropod diversity and abundance of arable
583	systems. Soil Biology & Biochemistry, 81, 81-88.
584	Shi, S., Nuccio, E., Herman, D.J., Rijkers, R., Estera, K., Li, J., da Rocha, U.N., He, Z., Pett-
585	Ridge, J., Brodie, E.L., Zhou, J. & Firestone, M. (2015) Successional Trajectories of
586	Rhizosphere Bacterial Communities over Consecutive Seasons. <i>mBio</i> , 6 .
587	Shi, S., Nuccio, E.E., Shi, Z.J., He, Z., Zhou, J. & Firestone, M.K. (2016) The interconnected
588	rhizosphere: High network complexity dominates rhizosphere assemblages.
589	Ecology Letters, 19 , 926-936.
590	Shi, S.J., Richardson, A.E., O'Callaghan, M., DeAngelis, K.M., Jones, E.E., Stewart, A.,
591	Firestone, M.K. & Condron, L.M. (2011) Effects of selected root exudate
592	components on soil bacterial communities. FEMS Microbiology Ecology, 77, 600-
593	610.
594	Stouffer, D.B. & Bascompte, I. (2011) Compartmentalization increases food-web
595	persistence. Proceedings of the National Academy of Sciences. 108 , 3648-3652.
596	Tao I Chen XY Liu MO Hu F Griffiths B & Li HX (2009) Farthworms change the
597	abundance and community structure of nematodes and protozoa in a maize
598	residue amended rice-wheat rotation agro-ecosystem Soil Biology &
500	Riochamistry A1 808-004
600	Theleur M.D. & Eisenhauer, N. (2015) Dent community composition determines the
600	attempth of top down control in a soil food web motif. <i>Cointific Departs</i>
601	This CE Drivel LD Complian T Do Vice ET Device the DD & Dresser LL (2016)
602	Inion, C.E., Poirei, J.D., Cornuller, T., De Vries, F.T., Bardgett, K.D. & Prosser, J.I. (2016)
603	Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial
604	ammonia oxidiser abundance. <i>FEMS Microbiology Ecology</i> , 92 .
605	Thomas, F. & Cebron, A. (2016) Short-Term Rhizosphere Effect on Available Carbon
606	Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-
607	Contaminated Industrial Soil. <i>Frontiers in Microbiology</i> , 7.
608	Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. & Polasky, S. (2002) Agricultural
609	sustainability and intensive production practices. <i>Nature</i> , 418 , 671-677.
610	Troxler, J., Svercel, M., Natsch, A., Zala, M., Keel, C., Moenne-Loccoz, Y. & Defago, G. (2012)
611	Persistence of a biocontrol Pseudomonas inoculant as high populations of
612	culturable and non-culturable cells in 200-cm-deep soil profiles. Soil Biology &
613	Biochemistry, 44, 122-129.

614	Tsiafouli, M.A., Thébault, E., Sgardelis, S.P., de Ruiter, P.C., van der Putten, W.H.,
615	Birkhofer, K., Hemerik, L., de Vries, F.T., Bardgett, R.D., Brady, M.V., Bjornlund, L.,
616	Jørgensen, H.B., Christensen, S., Hertefeldt, T.D., Hotes, S., Gera Hol, W.H., Frouz,
617	J., Liiri, M., Mortimer, S.R., Setälä, H., Tzanopoulos, J., Uteseny, K., Pižl, V., Stary, J.,
618	Wolters, V. & Hedlund, K. (2015) Intensive agriculture reduces soil biodiversity
619	across Europe. Global Change Biology, 21, 973-985.
620	Turner, T.R., Ramakrishnan, K., Walshaw, J., Heavens, D., Alston, M., Swarbreck, D.,
621	Osbourn, A., Grant, A. & Poole, P.S. (2013) Comparative metatranscriptomics
622	reveals kingdom level changes in the rhizosphere microbiome of plants. Isme
623	Journal, 7, 2248-2258.
624	Uksa, M., Schloter, M., Endesfelder, D., Kublik, S., Engel, M., Kautz, T., Kopke, U. & Fischer,
625	D. (2015) Prokaryotes in Subsoil-Evidence for a Strong Spatial Separation of
626	Different Phyla by Analysing Co-occurrence Networks. Frontiers in Microbiology,
627	6.
628	Verbruggen, E., van der Heijden, M.G.A., Rillig, M.C. & Kiers, E.T. (2013) Mycorrhizal
629	fungal establishment in agricultural soils: factors determining inoculation
630	success. New Phytologist, 197 , 1104-1109.
631	Warmink, J.A., Nazir, R., Corten, B. & van Elsas, J.D. (2011) Hitchhikers on the fungal
632	highway: The helper effect for bacterial migration via fungal hyphae. Soil Biology
633	& Biochemistry, 43, 760-765.
634	Wei, Z., Yang, T.J., Friman, V.P., Xu, Y.C., Shen, Q.R. & Jousset, A. (2015) Trophic network
635	architecture of root-associated bacterial communities determines pathogen
636	invasion and plant health. Nature Communications, 6.
637	Zhu, C., Ling, N., Guo, J., Wang, M., Guo, S. & Shen, Q. (2016) Impacts of Fertilization
638	Regimes on Arbuscular Mycorrhizal Fungal (AMF) Community Composition
639	Were Correlated with Organic Matter Composition in Maize Rhizosphere Soil.
640	Frontiers in Microbiology, 7, 1840.
641	

642

643 Figure captions

644 <u>Figure in Box</u>

645 An example of a network (left) and a soil food web (right). A network consists of nodes 646 (circles) that are connected by edges (lines) through weak and strong, positive and 647 negative interactions; here, strong connections have a heavier line weight than weak 648 connections, positive interactions are grey and negative interactions are black. Modules 649 are indicated by different colours, and connectors between modules are in red. Soil food 650 webs are traditionally represented by three compartments, as indicated by arrow 651 colours. The fungal and bacterial energy channels (yellow and orange arrows 652 respectively) are fuelled by aboveground litter, root litter, and root exudates (grey 653 ellipse); the root energy channel (purple arrows) is fuelled by live roots. However, 654 recent evidence suggests that bacteria can feed on fungal hyphae, and protozoa are part 655 of both the fungal and the bacterial energy channel (as indicated by grey dashed 656 arrows), thus increasing the number of connections within the soil food web and 657 challenging the concept of distinct energy channels.

658

659 <u>Figure 1</u>

660 Rhizosphere networks consist of relatively few but highly abundant and connected 661 species that are recruited from the much more diverse but weakly connected bulk soil 662 network. Connections between rhizosphere and bulk soil networks (indicated by red 663 dotted lines) are crucial for the recruitment of functional rhizosphere networks. 664 Understanding and manipulating network structure of both rhizosphere and bulk soil 665 networks in agricultural soils, and the connections between them, is a promising avenue for optimising healthy soils and the benefits they provide for sustainable food 666 667 production.

Figure in Box. # + An example of a network (left) and a soil food web (right). A network consists of nodes (circles) that are connected by edges (lines) through weak and strong, positive and negative interactions; here, strong connections have a heavier line weight than weak connections, positive interactions are grey and negative interactions are black. Modules are indicated by different colours, and connectors between modules are in red. Soil food webs are traditionally represented by three compartments, as indicated by arrow colours. The fungal and bacterial energy channels (yellow and orange arrows respectively) are fuelled by aboveground litter, root litter, and root exudates (grey ellipse); the root energy channel (purple arrows) is fuelled by live roots. However, recent evidence suggests that bacteria can feed on fungal hyphae, and protozoa are part of both the fungal and the bacterial energy channel (as indicated by grey dashed arrows), thus increasing the number of connections within the soil food web and challenging the concept of distinct energy channels.!! +

144x82mm (300 x 300 DPI)

Figure 1. # + Rhizosphere networks consist of relatively few but highly abundant and connected species that are recruited from the much more diverse but weakly connected bulk soil network. Connections between rhizosphere and bulk soil networks (indicated by red dotted lines) are crucial for the recruitment of functional rhizosphere networks. Understanding and manipulating network structure of both rhizosphere and bulk soil networks in agricultural soils, and the connections between them, is a promising avenue for optimising healthy soils and the benefits they provide for sustainable food production. # +

258x310mm (300 x 300 DPI)