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Abstract—In most European settings, record linkage across
different institutions is based on encrypted personal identifiers –
such as names, birthdays, or places of birth – to protect privacy.
However, in practice up to 20% of the records may contain
errors in identifiers. Thus, exact record linkage on encrypted
identifiers usually results in the loss of large subsets of the
data. Such losses usually imply biased statistical estimates since
the causes of errors might be correlated with the variables of
interest in many applications. Over the past 10 years, the field
of Privacy Preserving Record Linkage (PPRL) has developed
different techniques to link data without revealing the identity of
the described entity. However, only few techniques are suitable
for applied research with large data bases that include millions
of records, which is typical for administrative or medical data
bases. Bloom filters were found to be one successful technique
for PPRL when large scale applications are concerned.

Yet, Bloom filters have been subject to cryptographic attacks.
Previous research has shown that the straight application of
Bloom filters has a non-zero re-identification risk. We present
new results on recently developed techniques defying all known
attacks on PPRL Bloom filters. The computationally inexpensive
algorithms modify personal identifiers by combining different
cryptographic techniques. The paper demonstrates these new
algorithms and demonstrates their performance concerning pre-
cision, recall, and re-identification risk on large data bases.

I. BACKGROUND

Linking information on the same micro-unit (persons, in-

stitutions, patents) across different data bases is an increas-

ingly important task for administrative and research purposes.

Applications can be found in census operations, the health

sector, national security, crime detection and prevention [1],

official statistics [2] and social science research [3]. However,

most applications of record linkage involve information on

natural persons. Under many jurisdictions (for example, most

European countries), no unique personal identification number

is available for Record Linkage. Therefore, Record Linkage

has to use unstable and error-prone identifiers such as names

or addresses.

Real-world identifiers may show error rates of more than

20% [4]. Examples of these errors include missing or addi-

tionally inserted letters, swapped letters, or completely missing

attribute values [5].

In most legal settings, names and other personal identifiers

have to be encrypted before data linkage across different data

sets provided by independent data holders is permitted. This

is especially true if potentially sensitive information (health

information, criminal records, financial debts) is concerned.

Encrypting unreliable identifiers with standard crypto-

graphic methods such as keyed HMACs (Hash Message

Authentication Code [6] i.e. SHA-256 or MD5) would result

in missing links. From a statistical point of view, unlinked

records result in a missing data problem [7]. If a true link is

missed, but the link is crucial for variables of interest, this

is referred to as differential linkage error [8], [9]. Hence,

a differential linkage error may result in biased estimates

of causal effects and population parameters [10], [11]. The

most straight-forward way to reduce differential linkage bias

is improving the linkage rate. This problem has given rise to

the field of privacy preserving record linkage (PPRL). Over the

last decade, an increasing number of publications proposing

novel PPRL methods have been published [12]. However, few

of the proposed techniques are suitable for large scale linkage

operations under the restrictions described above [13].

One method using Bloom filters [14] for error-tolerant

privacy preserving record linkage [15] has been applied in

several different research settings [16], [17],

Although the results on Bloom filter-based PPRL are

promising, security concerns remain. So far, four studies by

two research groups have been published on attacking PPRL

Bloom filters [13]:

The first study [18] attacked basic Bloom filters with a

constraint-satisfaction solver (CSS) to assign records to the

frequency count given by a voter registration list. Although

the technical details of the attack remain unclear it seems to

be a variant of what is now being described as a simple rank

swapping attack [19].

The second article [20] used composite Bloom filters with

the same CSS attack. The authors consider their attack as

hardly successful. However, both articles seem to show that

basic Bloom filter encodings can be aligned with frequency

distributions of unencoded identifiers. This way of attack is

impossible if unique encodings can be achieved, for example

by using salted encodings [21]. It should be noted, that the

CSS attack is based on the entire Bloom filter, therefore it

is no decoding, but an alignment. In contrast to that, [21],

[22] attempt the decoding (actual revealing of all identifiers

as clear text) by a cryptanalysis of individual bit patterns



within the Bloom filters. While [21] were successful with

basic Bloom filters, [22] demonstrated partial success with

composite Bloom filters. Details of these attacks will be given

in section II-A.

To prevent their own attack, [21] suggested the use of

different hash functions (random hashing), but this proposal

has not been tested so far. Testing this proposal and suggesting

two additional techniques for preventing attacks on Bloom

filters is subject of this paper.

A. Our contribution

Random hashing has been suggested by [21], but has not

been tested in an attack. We report on applying the crypt-

analysis method of [21] on random hashing and compare the

results of this attack on two new techniques (Balanced Bloom

Filters, BLIP/RAPPOR) suggested here for the first time for

PPRL. We simulate the performance of these techniques by

comparing them to the current standard practice of Bloom

filter-based PPRL in terms of linkage quality and privacy

metrics.

B. Outline of the paper

Section II explains the construction of Bloom filters [15]

and composite Bloom filters (CLKs [23]) based on the double

hashing scheme [24]. Then, the only known attack on bit

patterns within a Bloom filter [21] is described in section II-A.

The following section describes three methods to prevent

this attack. The performance of these techniques is studied

with regard to linkage quality in section II-D and with regard

to privacy metrics in section II-G. We conclude by summing

up the current recommendations for Bloom filter-based PPRL.

II. METHODS

Bloom filters storing one identifier as proposed by [15] have

been subject to cryptographic attacks [18], [21]. To reduce

the filter’s vulnerability to cryptographic attacks [23] have

proposed storing all identifiers in a single Bloom filter. These

are then called Cryptographic Long-term Keys (CLKs). To

build a CLK of all identifiers, each identifier is divided into

n-grams. For instance, the last name MILLER, is split into

bigrams and would thus yield a vector of n-grams contain-

ing _M,MI,IL,LL,LE,ER,R_. To store each n-gram in a

Bloom filter (that initially consists only of zeroes) with the

length l, the original CLKs used the double hashing scheme

[24], where k positions in the Bloom filter are set to a value

of one. The individual bit positions hi are then determined by

the sum of the integer representations of two different hash

functions f and g of the n-gram (the original implementation

used SHA-1 and MD5) which are mapped to the length of the

Bloom filter l:

hi = (f + i · g) mod l.

[21] have developed an attack on the resulting bit patterns

for this particular scheme exploiting the circumstance that the

amount of possible outcomes of the double hashing scheme

is very limited. This attack is described in more detail in the

following section.

A. Bit pattern attack details

To attack CLKs, [21] only use n = 2-grams (bigrams) with

additional attribute information appended (e.g. ’surname:ER’

and ’name:ER’ to differentiate between an ’ER’ as a part of a

surname or part of a first name). k = 20 hash functions were

used to map all bigrams to the Bloom filters with a length

of l = 1000, applying the double hashing scheme described

above. The resulting bit pattern of a single bigram is called

an atom, which is set to one for up to k bit positions.

Subsequently, a systematic search of all theoretically pos-

sible atom patterns is conducted. These patterns are limited,

because either some of these patterns are impossible to achieve

(as no bigram can be mapped) or they collide due to different

f - and g-values. The patterns are used to build a matrix D,

which contains the empirical relative frequencies of each atom

in the masked data set (the CLK data). A second matrix E

consists of the relative frequencies of the bigram combinations

over all identifiers from a non-encoded training data set, i.e.

unencrypted clear-text data.

The Jakobsen-algorithm [25] is then used to minimize the

distance between the matrices D and E. The frequency analy-

sis thus determines the correlation between known bigrams and

unknown atoms. The algorithm provides a vector containing

bigrams that are rearranged in the order of the atoms. In order

to determine the maximal similarity assigning the attributes,

a list of known names is then sorted in descending order of

frequencies, converted into bigrams, and compared using the

Dice-coefficient [26].

Finally, we compare the atoms found by the CLK (which

are related to a known bigram by the Jakobsen-algorithm [25])

with the personal attributes of a reference list. The assigned

value of personal attributes is considered as successfully

decoded, if this value matches the personal attribute value of

the plain text perfectly. Correspondingly, the decoding rate

is defined as the percentage of assigned attribute values that

precisely match.

B. Methods to prevent attacks

1) Random hashing: To replace the double hashing scheme

with random hashing, k random numbers are drawn for every

possible bigram. In comparison to double hashing with k = 20
hash functions approximately 1041 instead of 106 different

combinations are theoretically possible. Thus, we do not apply

hash functions, as a systematic search requires considerably

more computational power and time.

First, the universe of all possible n-grams is constructed

separately for each identifier. For each possible n-gram, k

random numbers between 1 and the length of the Bloom filter

l are drawn with replacements by using a single password as

a seed. For each n-gram, k random positions are then set to

one in the Bloom filter. This way, the hash functions are no

longer required and a pattern-based attack will be much more

difficult.

2) Balanced Bloom Filters: Since many attacks are based

on the Hamming weight of a Bloom filter, data sets with

Hamming weight distribution closer to a uniform distribution
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Fig. 1. Privacy level ǫ dependent on the bit flipping probability f . Lower
values of ǫ denote a higher privacy level.

are more difficult to attack than data sets with non-uniform

distributions. Of course, data sets with constant Hamming

weights for all Bloom filters would be optimal in this regard.

Codes with constant Hamming weights are known as balanced

codes [27], [28].

Therefore, we suggest the use of Balanced Bloom filters with

constant Hamming weight for PPRL. Balanced Bloom filters

can be constructed by concatenating a Bloom filter with length

l with a negated copy of the same Bloom filter. The resulting

bit array of length 2 ∗ l has to be permuted. This approach

seems to prevent all attacks based on Hamming weights of

Bloom filters.1 It should be noted that the increased length

of Balanced Bloom filters and their constant hamming weight

increases computing time and – for some blocking methods –

the required memory.

3) Permanent Randomized Response CLKs (BLIP): To in-

crease the level of differential privacy [30], [31] and to cover

the CLKs in a way that it is impossible for deterministic

attacks to be carried out, we implemented the RAPPOR

technique [32], which was first proposed for Bloom filters in

[30] (as BLIP (for BLoom-and-flIP)). This allows us to use

randomized responses in order to flip the values of random bit

positions. The permanent randomized response satisfies ǫinf -

differential privacy [33] if

ǫinf = 2k ln

(

1− 1

2
f

1

2
f

)

where k is the number of hash functions and f is the

probability of switching one bit (see Figure 1).

To implement the randomized response with a Bloom filter

of the length l, each bit position Bi is treated with a random-

1If the Hamming weights of column of the resulting data set of Balanced
Bloom filters vary and all rows are identically permuted, a reversal of the
balancing might be possible by finding unique pairs of columns (this idea is
due to [29]). To make the success of this attack highly unlikely, a different
permutation based on an error-free identifier should be used.
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Fig. 2. F-Scores of BLIP CLKs dependent on bit-flipping probabilities f
and the number of hash functions k. f -values between 0.02 and 0.04 are
unproblematic, depending on the number of hash functions used. More hash
functions tolerate higher values of f .

ized response, which then provides us with the new bit value

B
′

i :

B
′

i =







1 with probability 1

2
f

0 with probability 1

2
f

Bi with probability 1− f

.

This way, the new parameter f is the chance of flipping a bit

at each bit position of the Bloom filter. To simulate the effect

of BLIP on CLKs, we tested f -values ranging from 0.01 to 0.2

using k different numbers of hash functions. Figure 2 shows

the F-Scores for several different PRR parameters we have

tested. For all following calculations, k = 20 hash functions

and a flipping-probability of f = 0.02 were applied. Note

that f = 0.02 does not guarantee a sufficient level of differ-

ential privacy (see Figure 1) [30]. Still, deterministic attacks

are countervailed, while the privacy levels are approximately

increased by a factor of two (since ǫ is nearly halved).

4) Balanced BLIP: For analysis, we also combined BLIP

with balanced codes by applying the balanced code first and

using the randomized response on the resulting balanced CLK

next. We used f = 0.02 as for the BLIP CLKs.

C. Data

The data set used to assess the quality measures of the

record linkage (see section II-F) was generated by indepen-

dently sampling surnames, names, and sex from a large ad-

ministrative data base. Dates of birth were sampled uniformly.

An error generator was used on a copy of the resulting data file

with n = 10.000 records, creating at least one error (swapping,



replacement, inserts, deletions) in approximately 20% of the

rows. The error-free and erroneous files were used to create

different alternative Bloom filters, which were finally linked

using Multibit trees (see section II-D).

For the bit pattern attack and the calculation of the privacy

metrics, we used a second data set. Training data including

n = 1.000.000 entries containing surnames, first names,

dates of birth, and birthplaces was created with an attribute

frequency distribution that was similar to a large administrative

data base. For privacy reasons, the attributes of the adminis-

trative data base were stored separately and contained only

the absolute frequencies. Approximately 680.000 different

first names, 400.000 different surnames, and 10.400 different

locations were sampled independently from the population

data base. The resulting sample therefore approximates the

population distribution closely. This close approximation is

necessary for the bit pattern attack, as the quality of the

training data is important for decoding. However, in a real-life

attack, the assumption of very similar frequency distributions

in both data sets is unlikely to hold.

D. Linkage

The two data files described in Section II-C were encrypted

using the five methods mentioned in the previous section

(Standard CLK, CLK with random hashing, BLIP, Balanced

CLK, and Balanced BLIP). The resulting Bloom filters were

linked using Multibit trees [34]. Multibit trees were used to

construct “leaves”. This was achieved by finding those bit

positions, where approximately half of the records’ bits were

set to one and the other half of the records’ bits were set to

zero. This process was repeated until only a few records in

each leaf were left – we limited this to three.

Using the information of the match bits, a maximum

Tanimoto-similarity between all leaves of a Tree and a can-

didate Bloom filter could be estimated before we computed

similarity. Following this strategy allowed us to exclude a large

number of records from the search space. The threshold for

the lowest possible Tanimoto-similarity is user-defined. The

Tanimoto coefficient T is a similarity measure for bit vectors,

which is defined as

T (A,B) =
A ∧B

A ∨B

for two bit vectors A and B. A value of T = 1 represents

perfectly matching vectors. Lowering the admitted minimal

similarity threshold allows tolerating more errors between

two vectors, but it may lead to an increase in false positive

classifications (see II-F).

E. Implementation details

This paper analyses the decoding rate of the bit pattern

attack, different privacy measures, and the quality of record

linkage. Privacy measures were assessed using R 3.3.0, all

encoding variants were handled using an R-Package (PPRL)

developed by our research group. The attack was implemented

in Python 2.7 and C++. Linkage was done with R using a

Multibit-tree.

F. Linkage quality measures

To assess the linkage quality, the standard record linkage

criteria (precision, recall, and F-score) were used. Recall is

defined as the number of true positive matches divided by

the number of factual pairs, including pairs that were falsely

classified as non-matches (false negatives fn):

Recall =
tp

tp+ fn
.

The higher the recall, the better are record pairs found by

a given linkage procedure. Precision is defined as the number

of correctly classified pairs (true positive classifications tp)

divided by the number of all classified pairs (tp and false

positives fp):

Precision =
tp

tp+ fp
.

The higher the precision, the less likely is the false classifi-

cation of potential pairs as matches. Finally, F-score is defined

as the harmonic mean of recall and precision:

F-score =
2 · Recall · Precision

Recall + Precision
.

All measures range from zero to one.

G. Privacy Metrics

We evaluated various measures of privacy, calculated mutual

information (MI) and entropy as well as the probability of

suspicion (Ps) metrics [35]. Additional information, such as

entropy and the number of unique bit patterns, were also

included. In contrast to [36], we calculated mutual information

on logarithms base 2 instead of base 10, so the units of entropy

are bits. Encoded plain texts were used as the masked data

set. Our training data set was used as the global (reference,

in encoded form) data set. Both data sources are described in

section II-C.

1) Mutual information and relative information gain:

Mutual information (MI) was computed as

MI = (H(X) +H(Y ))−H(X,Y )

where H(X) is the entropy of the clear text variables and

H(Y ) is the entropy of the corresponding encrypted field (the

CLKs). These are calculated as

H(X) = −

n
∑

i=1

P (xi) logP (xi)

and

H(Y ) = −

m
∑

i=1

P (yj) logP (yj).

Furthermore, the entropy of the encrypted field (i.e. CLK

entropy) together with the file size of the masked data set nm

are used to calculate the mean entropy (ME) for each variation

of the encryption:

ME =
1

nm

H(Y ).
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For the calculation of the mutual information (MI), the joint

entropy was computed by

H(X,Y ) = −

n
∑

i=1

m
∑

j=1

P (xi, yj) logP (xi, yj).

Based on the mutual information criterion, the relative

information gain (RIG) was calculated by

RIG =
MI

H(X)
.

2) Probability of suspicion: To calculate the probability

of suspicion (Ps) [35], we had to classify the result of the

linkage of the encrypted global and masked data set first.

As no true pair shared the same IDs, true positive matches

could be classified easily: if the IDs of the positively classified

pairs matched, a true positive pair (TP) was identified. If the

pairs did not match, a false positive (FP) was recorded. The

difference between the true positives and the actual number of

pairs then represents the number of mismatched pairs (false

negatives, FN).

With the known number of true positives (TP) and the file

size of the masked data (nm), the probability of suspicion

was calculated for each record as

Ps =
1

TP
−

1

nm

(1− 1

nm

)
.

III. RESULTS

Figures 3, 4 and 5 show F-Scores, recall, and precision for

each variation of the encryption.

Changing the encryption scheme from double hashing to

random hashing showed no change in any of the linkage qual-

ity measures. Introducing BLIP with a bit-flipping probability

of f = 0.02 slightly reduced the F-Score for the standard CLK

and the CLK with balanced codes. In addition, balancing the

CLKs displayed a marginal increase in linkage quality as a

result of improved recall measures.
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The BLIP results are in line with the results from adding

random bits to Bloom filters [13]. However, using bit flipping

changed both zeroes and ones with a probability of f
2

, while

random bits only added a limited number of ones. It has to be

noted that all BLIP CLKs show zero true positive matches

(consequently, the F-scores, precision, and recall measures

have a value of zero) when restricting the Multibit trees to

a Tanimoto-similarity of one. However, this is not surprising,

as a Tanimoto-similarity requires an exact match, which is

highly unlikely when flipping random bits of each record with

a probability of f = 0.02.

On the basis of the suggested Tanimoto-threshold of 0.85

[13], all proposed modifications yielded similar results as

the reference CLK (double hashing scheme, k = 20 hash

functions, l = 1000). Any of the methods tested here detected

90-95% of all true record pairs with F-scores between 0.947

to 0.969.



Table I presents the decoding rates for each variation using

the attack by [22], privacy metrics, entropy, and number of

unique bit patterns in the data.

The results show that the published attack fails when

introducing random hashing. The decoding rate dropped to

zero for all methods except for the reference double hashing

CLK. The attack is unsuccessful when the number of atoms

is too low (< 300) to deduce bigrams from the bit patterns.

All privacy metrics (Ps, RIG, MI) are constant for all

methods. This is due to the fact that all bit patterns are unique

in the CLK encrypted data. The linkage attack yielded no

feasible results, with a probability of suspicion (Ps) of zero.

Finally, the metrics were unable to predict the decoding rate

using the bit pattern attack.

IV. DISCUSSION

The findings reported demonstrate that it is possible to

achieve good results with Privacy Preserving Record Linkage

even under very strict privacy jurisdictions. Neither precision

nor recall suffer substantially when any of the proposed

techniques are applied.

Frequency attacks require very frequent combinations of

identifiers that are not observed in our sample of a hun-

dred thousand records. For most applications, this number

of records is not exceeded at all or least not within a block

formed by identifiers used for salting. Since the use of CLKs

alone produces unique patterns for each unique combination

of identifiers, in such settings frequency attacks are impossible

on entire bit patterns (CLKs). In such situations, the privacy

metrics suggested by the PPRL literature [35], such as MI or

Ps, are useless as they always result in constant values.

Currently, the only known attack remaining [21] is the

identification of bit patterns within a Bloom filter. Applying

the decoding algorithms described by Niedermeyer [21] and

modified by [22], yielded no successful decoding of bit

patterns for any of the newly suggested encoding methods

described here. Although random hashing by itself prevents

the Niedermeyer attack, a combination of random hashing

with balancing codes prohibits any attack based on Hamming

weights, including attacks that are – to date – unknown. BLIP

or RAPPOR, respectively, is intended to guarantee differential

privacy. However, the probability of bit flipping required for

conventional privacy levels is too high to be applied to CLKs

in order to successfully link records. Therefore, BLIP with

lower probabilities of bit flipping should be considered as a

variant of random bits as suggested by [15] and discussed

by [13]. BLIPs advantage is RRT masking of the bit by either

reporting 0 or 1, instead of randomly inserting 1s. BLIP should

make deterministic attacks on frequent sub-patterns harder and

increases the number of unique full bit patterns. By increasing

the number of unique patterns, any frequency attack requires

larger data bases or block sizes to be successful. Using a data

set with n = 100.000 records, we have demonstrated that

combining BLIP and balancing codes with random hashing

prevents all known attacks.

V. CONCLUSION

To sum up the current state of Bloom filter-based PPRL,

and considering the results reported here, we recommend:

1) The use of as any many [37] stable [38] identifiers as

available,

2) avoiding the use of padding [13],

3) limiting the length of identifiers [13],

4) using random hashing instead of double hashing,

5) using balanced and RRT Bloom filters,

6) using a stable identifier for salting [21],

7) linking Bloom filters using Multibit trees [39], [40].

Studying the impact of these modifications in real-world

settings is subject of ongoing research of our group. Further-

more, we are implementing all Bloom filter-based techniques

in an upcoming R-library.
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