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Abstract

Integrability is believed to underlie the AdS3/CFT2 correspondence with sixteen
supercharges. We elucidate the role of massless modes within this integrable frame-
work. Firstly, we find the dressing factors that enter the massless and mixed-mass
worldsheet S matrix. Secondly, we derive a set of all-loop Bethe Equations for the
closed strings, determine their symmetries and weak-coupling limit. Thirdly, we
investigate the underlying Yangian symmetry in the massless sector and show that
it fits into the general framework of Yangian integrability. In addition, we com-
pare our S matrix in the near-relativistic limit with recent perturbative worldsheet
calculations of Sundin and Wulff.
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1 Introduction
Over the last few years integrable methods have been extensively employed in the context
of the spectral problem of the AdS3/CFT2 correspondence, see for example [1–7]. Initial
progress did not include world-sheet massless modes [2, 3], for a review see [8].1. Subse-
quently, it was shown [11–14] that these can be included in a novel integrable all-loop
world-sheet S matrix, which was determined, up to dressing phases, for AdS3 × S3 × T 4

and AdS3 × S3 × S3 × S1 supported by R-R flux and mixed R-R/NS-NS flux. While
the dressing phases are not fixed by the symmetries of the theory, they satisfy crossing
equations which were also found.

This progress in exact results was accompanied by a large body of perturbative world-
sheet computations and a number of successful comparisons between the two was per-
formed in the massive sector, see for example [15–27]. 2 In addition, these comparisons
have also resulted in two unresolved issues. Firstly, the massless dispersion relation,
determined via a (super-)symmetry argument in [29], does not agree with a two-loop
perturbative computation [11, 12]. Secondly, the massive dressing factor obtained by
solving the crossing equations [30] was found to be slightly different from the one cal-
culated using perturbative world-sheet calculations [16, 17]. The first issue’s resolution
might come about by employing a more symmetric regularisation scheme, or a modi-
fied definition of asymptotic states. Given that the all-loop massless dispersion relation
follows from a supersymmetric shortening condition, this issue deserves to be better
understood. A possible explanation for the second issue was recently proposed in [31],
where it was argued that a proper incorporation of the wrapping corrections of massless
modes is likely to correct the perturbative world-sheet calculations in a way that would
make them consistent with crossing.

1For some early results on massless modes in the weak- and strong-coupling limits see [9] and [10],
respectively.

2Further papers on integrable AdS3/CFT2 holographic results include [28].
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Beside these issues, a more complete understanding of how the massless modes en-
ter the integrable construction was still lacking. While the S-matrix and the crossing
equations for processes involving massless modes had been found [11–14], the analytic
properties of massless modes, and their dressing factors remained to be determined. In
this paper we address these outstanding problems and find the minimal solutions to the
crossing equations, giving a detailed exposition of the results announced in [32]. On
general grounds dressing phases have an expansion in the coupling constant, with the
leading and next-to-leading orders on the string theory side conventionally referred to
as the Arutyunov-Frolov-Staudacher (AFS) [33] and Hernández-López (HL) [34] orders.
The minimal solution for the massless dressing factor is non-trivial only at HL order,
while the mixed-mass dressing factor minimal solution is non-trivial at AFS and HL or-
der. Our solutions have a very natural interpretation as coming from a “massless limit”
of the corresponding massive phases. By considering this limit for the non-perturbative
Beisert-Eden-Staudacher (BES) phase [35] we argue that no natural candidate for homo-
geneous solutions exists at higher orders, while a homogeneous AFS order term might be
natural. Further, we investigate the possibility of massless bound states in the spectrum.
We argue that such states are not allowed kinematically and confirm their absence by
an explicit analysis of the all-loop S matrix, including our dressing factors. It is worth
pointing out that the absence of massless bound states is also a well-known feature of
relativistic massless integrable models [36].

We then turn to the derivation of the Bethe equations for the complete closed string
spectrum from the S matrix. We impose periodicity and employ the nesting procedure
to find the Bethe equations. The structure of the Bethe equations depends on a choice
of grading for the underlying super-algebra. We write them in the two inequivalent
gradings, showing how these are related through a fermionic duality. We show that
these equations reduce to the Bethe equations for the massive modes [7] when no massless
excitations are present. We demonstrate that the spectrum has degeneracies that follow
from the global psu(1, 1|2)2 symmetry of the theory, as well as from translations along
the four directions of the torus. We determine the weak-coupling or spin-chain limit of
the Bethe equations and show these latter equations can also be obtained directly from
the weakly-coupled limit of the S matrix. Further we write down the Bethe equations
for the mixed NS-NS and R-R flux supported AdS3 × S3 × T 4 background, though in
this case solving the crossing equations remains an open problem.

Subsequently, We turn to the Berenstein-Maldacena-Nastase (BMN) limit [37] of
the S matrix. In this near-relativistic limit the massless excitations become either left-
or right- moving on the worldsheet and the massless S matrix degenerates into two
S matrices, depending on whether massless particles of same or different worldsheet
chiralities are scattered. For the scattering of same-chirality particles the S matrix is
difficult to interpret within a perturbative worldsheet framework. On the other hand the
S matrix for scattering particles of opposite worldsheet chiralities has a good perturbative
expansion. Both these features are entirely in agreement with the general results for
relativistic massless integrable theories [36,38] (see also [39]). We compare the expansion
of the mixed worldsheet chirality S matrix with the recent perturbative world-sheet
results [40]. For the most part we find exact agreement. When comparing certain terms
that depend on the dressing factors, some of the perturbative calculations suffer from
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infrared ambiguities making a comparison less well-defined.
Finally, we study the Yangian symmetry underlying the massless-massless S-matrix.

We find that the scattering problem in this sector is controlled by a Yangian algebra
of the same general type as the massive-massive one. We obtain the specific evaluation
representation and the corresponding crossing-symmetry conditions, consistent with the
traditional Hopf-algebra framework. We display the Yangian hypercharge generator, and
give the rules for its coproduct and charge-conjugation at the zeroth and the first Yangian
level. One advantage of small-rank algebras is that it becomes rather elementary to prove
a host of determinantal identities. The existence of such identities, and of the associated
Yangian central elements, is connected to general principles of integrability. It is however
often difficult to get a hold of them in higher-dimensional AdS/CFT situations. In this
respect, the massless sector of AdS3 in particular reveals itself as a favoured playground
for testing a variety of exact algebraic methods [7, 41, 42].

This paper is organised as follows. In Section 2 we investigate the analytic structure
of the massless modes and solve the crossing equations for the massless and mixed-mass
dressing factors. We discuss possible homogeneous solutions of the crossing equations as
well as the absence of massless bound states. In Section 3 we determine the Bethe equa-
tions for the closed string spectrum, show that these have the expected symmetries and
find their weak-coupling limit. We also comment on how the Bethe equations generalise
to the background supported by mixed NS-NS and R-R flux. In Section 4 we compare
the near-BMN limit of our S-matrix to the perturbative calculations of [40], while in
Section 5 we investigate the underlying Yangian symmetry in the massless mode sector.
Following the conclusion, we present a number of appendices where some of the more
technical results are contained. In Appendix A we give a short review of massless scat-
tering in relativistic integrable systems which we hope might furnish an easy access-point
to this classic material.

2 Solving crossing
Symmetries severely constrain the two-body worldsheet S matrix of strings on AdS3 ×
S3×T 4, determining it up to four independent dressing factors. Scattering of purely mas-
sive excitations involves σ•• and σ̃••, while massless-massless and mixed-mass scattering
involve σ◦◦ and σ◦•, σ•◦, respectively.3 The dressing factors satisfy crossing equations
which severely restrict their form. Solutions to the crossing equations for σ••, σ̃••, have
been found some time ago [30] and agree, modulo a small discrepancy discussed in the
introduction, with a number of direct calculations [16, 17]. In this section we solve the
crossing equations for the massless and mixed mass dressing phases σ◦◦ and σ◦•, σ•◦.

3The dressing factors σ◦• and σ•◦ are related by unitarity.
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Figure 1: The crossing transformation for massive variables in the x± planes. Note that,
following the conventions of [30], the path γ crosses the unit circle below the real line. The red
and blue zig-zag patterns depict the branch cuts of the massive dressing factors [30].

2.1 The crossing transformation
Let us start by describing the crossing transformation for massive and massless excita-
tions. Recall that massive excitations have a dispersion relation

E(p) =
√
m2 + 4h2 sin

(p
2
)2
, m = ±1. (2.1)

It is then useful to introduce Zhukovski variables x±

x±(p) = |m|+ E(p)
2h sin p

2
e±i

p
2 , (2.2)

so that4

E(p) = ih

2
(
x−p −

1
x−p
− x+

p + 1
x+
p

)
,

2i |m|
h

= x+
p + 1

x+
p

− x−p −
1
x−p
, eip =

x+
p

x−p
. (2.3)

Massless excitations have a dispersion relation of the form

E(p) = 2h
∣∣∣∣sin

p

2

∣∣∣∣ , (2.4)

which, just like the massive one, is 2π-periodic. The massless Zhukovski variables

x±p = e±
i
2p sgn

(
sin p2

)
(2.5)

can be thought of as the m→ 0 limit of equation (2.2), and have the same 2π-periodicity.
Finally, as can be seen from the shortening condition (2.3), massless variables satisfy

4In what follows, we will often indicate the arguments of functions as subscripts where convenient,
e.g. x±

p ≡ x±(p).
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x+
p x
−
p = 1 for any p, so that it is useful to define

xp ≡ x+
p = 1

x−p
for massless modes. (2.6)

Then their dispersion is simply E(p) = −ih(xp − 1/xp).
In analogy with relativistic massless particles that have Ep ∼ |p|, we may consider a

fundamental region for p to be −π 6 p < π and introduce a notion of left- and right-
movers on the world-sheet. Right-movers would then have 0 < p < π, and lie in the
upper-right quadrant of the x-plane, while left-movers with −π < p < 0 would lie in the
upper-left quadrant owing to the sgn(sin p/2) in equation (2.5), see also Fig. 2. However,
it is inconvenient to use a discontinuous map for the massless Zhukovski variables. Taking
advantage of the periodicity of (2.5), we therefore define the fundamental region to be

0 6 p < 2π. (2.7)

This somewhat obscures the parallel with the relativistic case, but has the advantage that
all the discontinuities of the kinematics lie at the boundary of the fundamental region.
Left-movers now have π < p < 2π and are still mapped to the upper-left quadrant in
Fig. 2. Note that all singularities of x(p) and hence of E(p) lie at the boundaries of our
fundamental region.

Under the crossing transformation, energy and momentum must change sign,

p→ p̄ = −p, E(p)→ E(p̄) = −E(p). (2.8)

In terms of the Zhukovski variables, crossing takes a similar form for massive and massless
modes

x±p → x±p̄ = 1
x±p
, xp → xp̄ = 1

xp
. (2.9)

However, the crossing transformation looks different in the two cases. The physical
region for massive modes is |x±p | > 1, with the imaginary part being positive for x+

p and
negative for x−p . Then the crossing transformation takes us inside the unit circle, see
Fig. 1. If the dressing factor has branch cuts, it is natural to define them on the circle,
where E(p) changes sign.

For massless modes, again we want to send p → −p through the branch cut of the
energy in the p-plane, see Fig. 2. In the x-plane, real momenta live on the upper-half
circle owing to the definition (2.6). Crossing takes us to the lower half-circle by crossing
the real line, where E(p) changes sign. Comparing Fig. 2 with Fig. 1 we can think of
the path γ1 as coming from the limit of γ for x+ in the massive case, when its endpoints
tend to the unit circle—which is what happens as we take m→ 0.

It is also convenient to introduce the massless rapidity

u = x+ 1
x

= 2 cos p2 , so that E(u) = h
√

4− u2. (2.10)

Clearly the physical region is −2 6 u 6 2. The energy has cuts for real u with |u| > 2,
cf. Fig. 3. The crossing transformation takes u to itself through the cuts.
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p

2π−2π p0−p0

γ1 γ2

x

1−1

x0

1
x0

γ1
γ2

Figure 2: The p- and x-planes for massless particles. The thick magenta line indicates the
domain of real physical momenta. The zig-zag patterns denote where the energy changes sign.
Given a point p0 or x0 in corresponding to the real momentum, we depict curves γ1, γ2 for the
crossing transformation. On the p-plane, these send p0 → −p0 and cross a cut of the energy.
On the x-plane, we have x0 → 1/x0 while crossing the real line with |x| > 1.

2.2 The crossing equations
The S matrix of AdS3×S3×T 4 strings contains four dressing factors. For massive modes,
σ•• and σ̃•• correspond to the scattering of particle of equal or opposite m, respectively.
Scattering of two massless modes gives σ◦◦, while mixed-mass scattering gives σ◦•. They
must obey the crossing equations

(
σ••pq

)2 (
σ̃••p̄q

)2
=
(
x−q
x+
q

)2 (x−p − x+
q )2

(x−p − x−q )(x+
p − x+

q )
1− 1

x−p x
+
q

1− 1
x+

p x
−
q

,

(
σ••p̄q

)2 (
σ̃••pq

)2
=
(
x−q
x+
q

)2
(

1− 1
x+

p x
+
q

)(
1− 1

x−p x
−
q

)

(
1− 1

x+
p x
−
q

)2
x−p − x+

q

x+
p − x−q

,

(
σ◦◦p̄q

)2 (
σ◦◦pq

)2
= F (wp − wq) f(xp, xq)2,

(
σ◦•p̄q

)2 (
σ◦•pq

)2
=
f(xp, x+

q )
f(xp, x−q ) ,

(
σ•◦p̄q

)2 (
σ•◦pq

)2
= x−2

q

f(x+
p , xq)

f(x−p , xq)
,

(2.11)

where
F (w) = w + i

w
, f(x, y) =

(
xy − 1
x− y

)
. (2.12)

These equations are supplemented by the constraints due to unitarity which requires5

σ◦◦pq σ
◦◦
qp = |σ◦◦pq | = 1, σ◦•pqσ

•◦
qp = 1, |σ◦•pq | = |σ•◦pq | = 1. (2.13)

Introducing6

σ = eiθ, (2.14)
5Braiding unitarity relates σ◦•

pq to the massive-massless phase σ•◦
qp = 1/σ◦•

pq [12]. In fact, owing to
that relation, we need only consider σ◦•

pq .
6The discussion below is written for any dressing factor σ and associated phase θ. It applies equally

to each of the four dressing factors σ••, σ̃••, σ◦• and σ◦◦.
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u

2−2
u0

γ1γ2

Figure 3: The u-plane for massless variable.

we will often write θ(x±, y±) ≡ θ(x+, x−, y+, y−) when no ambiguity can arise. For
physical rapidities the phases have an expansion [33,34,43]

θ(x±, y±) =
∑

r,s

cr,s(h)
(
qr(x±)qs(y±)− qr(y±)qs(x±)

)
, (2.15)

in terms of the local charges qr of the integrable system [44]. Above, the cr,s are h-
dependent coefficients and the local charges are given by

qr(x±) = i

r − 1

(
1

(x+)r−1 −
1

(x−)r−1

)
, q1(x±) = −i log x

+

x−
. (2.16)

In AdS3 backgrounds the momentum q1(x) ≡ p may enter the expansion (2.15) [16]. It
is convenient to express θ in terms of a simpler function χ

θ(x±, y±) = χ(x+, y+) + χ(x−, y−)− χ(x+, y−)− χ(x−, y+), (2.17)

in the case of massive scattering. For mixed-mass scattering one can use (2.6) to re-
duce the decomposition to two terms, while for massless scattering no decomposition is
necessary. The expansion for χ analogous to (2.15) takes the form

χ(x, y) = −
∑

r,s

cr,s(h)
(r − 1)(s− 1)xr−1ys−1 . (2.18)

At strong coupling the coefficients cr,s have the expansion

cr,s(h) =
∞∑

n=0
c(n)
r,s h

1−n. (2.19)

The n = 0, 1 terms are known as AFS [33] and HL [34] orders, respectively.

2.3 Finding σ◦◦

In this subsection we will find the all-loop expression for σ◦◦. The crossing equation for
σ◦◦ can be decomposed into two auxiliary problems

σ◦◦F (p̄, q)2σ◦◦F (p, q)2 = F (wp − wq), σ◦◦f (p̄, q)2σ◦◦f (p, q)2 = f(xp, xq)2, (2.20)

which we will solve separately.
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2.3.1 Finding the massless dressing factor σ◦◦F
The crossing equation for σ◦◦F involves an auxiliary rapidity w(p). While its dependence
on p is undetermined, we know that it arises from an su(2) invariance and that under
crossing we have [11,12]

w(p̄) = w(p) + i. (2.21)
Using this, and the fact that F (w) is of difference form in w, we can write down a familiar
minimal solution for σF of difference form [45]

σ◦◦F (p, q) = Ψ(wp − wq), Ψ(w) = i
Γ(1− i

2w)
Γ(1 + i

2w)
Γ(1

2 + i
2w)

Γ(1
2 − i

2w) . (2.22)

It is also straightforward to write homogeneous solutions to the σF crossing equation.
However, as we will argue in Section 4 no such solutions are compatible with perturbative
string theory computations of [40] and we are led to take w → ∞. This trivializes the
complete su(2)◦ S matrix. In particular the dressing factor σ◦◦F → 1, which is consistent
with crossing in this limit, since F (w) → 1. The massless dressing factor then reduces
to

σ◦◦ = σ◦◦f . (2.23)
In terms of θ◦◦ the crossing equation takes the form

θ◦◦(x̄, y) + θ◦◦(x, y) = − i2 log f(x, y)2. (2.24)

2.3.2 The Riemann-Hilbert problem for θ◦◦

It is useful to express the crossing equation for σ◦◦ in terms of u. For example (2.24)
takes the form

θ◦◦(ū, v) + θ◦◦(u, v) = − i2 log f(xu, xv)2. (2.25)

This equation is defined when |Reu| < 2, see Fig. 2, and involves the value of σf on
two sheets. If we analytically continue the point u to somewhere very close to the cut
of E(u) (and let’s say above it), the equation reads

θ◦◦(u+ i0, v) + θ◦◦(u− i0, v) = − i2 log f(xu, xv)2, Reu > 2. (2.26)

This is a Riemann-Hilbert problem that can be solved by the Sochocki-Plemelj the-
orem [46], see also e.g. [47]. The resulting solution is minimal in the sense that by
construction it only allows for the singularities necessary to solve (2.26), and needs to
be appropriately anti-symmetrised to account for unitarity (2.13). While it is useful
to characterize the solution in this way, it is more convenient to work directly in the
x-plane, and to make anti-symmetry more manifest from the beginning. To this end, it
is helpful to briefly recall some properties of the massive HL phase χHL.

The massless all-loop crossing equation for θ◦◦ has the same form as that of the
massive HL phase χHL

χHL(x̄, y) + χHL(x, y) = − i2 log f(x, y), (2.27)
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where now x, y are interpreted as massive variables. The massive HL phase has the
integral representation

χHL(x±, y+) =
( ∫
x −

∫

x

)
dz

4π
1

x± − zG−(z, y+),

χHL(x±, y−) =
( ∫
x −

∫

x

)
dz

4π
1

x± − zG+(z, y−),
(2.28)

valid in the physical region |x±| > 1, |y±| > 1, with

G±(z, y) = log (±i(y − z))− log
(
±i(y − 1

z
)
)
. (2.29)

This definition deviates slightly from the one known in the literature for the choice of the
branch-cuts of the logarithms in G±(z, y).7 In Appendix B we show that (2.28) defines
an anti-symmetric function. The expression in (2.28) has discontinuities across the unit
circle; defining χHL(x, y) in the crossed region |x| < 1 through analytic continuation,
one may check that it satisfies (2.27). Is is also worth mentioning that these expressions
can be integrated to an expression involving dilogarithms that has appeared in the AdS5
literature [48,49].

2.3.3 Deforming the contour for the HL phase

While the massive HL phase satisfies the same crossing equation as θ◦◦, the position of
its branch cuts differs from those of the massless kinematics. Massless dressing factors
should have branch cuts for real x, as illustrated in Fig. 2. Instead (2.28) has a branch-
cut on the half-circle, which is exactly where physical massless particles should live.
Thankfully, we can analytically extend the integral (2.28) by deforming its integration
contour, in such a way as to move the branch cut to the unit segment, as showin in
Fig. 4. What is more, as we show in Appendix D.2, the resulting function continues to
satisfy the crossing equation that follows from (2.27). Relegating the technical details to
Appendix D.1, after the contour shift we find

θHL(x±, y±) =
1+iε∫

−1+iε

dz

4πG−(z, y+)
(
g(z, x+)− g(z, x−)

)

−
1−iε∫

−1−iε

dz

4πG+(z, y−)
(
g(z, x+)− g(z, x−)

)

− i

2
(
G−( 1

x− , y
+)−G+( 1

x+ , y
−)
)
,

(2.30)

where8

g(z, x) ≡ ∂

∂z
G±(z, x) = 1

z − x −
1

z − 1
x

+ 1
z
. (2.31)

7Our choice here ensures that such branch-cuts do not intersect the upper-half disc (lower-half disk)
in the z-plane in the case of G+(z, y) (G−(z, y)). As we will see in the next subsection this choice
simplifies the analysis of crossing for χHL.

8The function g does not depend on the choice of sign ± that enters G±.
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x−

1/x−

1/y+

y+

=

x−

1/x−

1/y+

y+

Figure 4: Red dashed lines correspond to the branch cuts of the integrand, while red dots to
the poles. In this specific example we move the contour of integration (blue line) from the
upper semicircle to the real interval [−1,+1] and we pick up a pole.

When shifting the contour, we regulate with an ε-prescription to avoid collision with the
branch-cuts of the functions G± (see Fig. 4). The contributions appearing in the third
line of (2.30) do not involve integrals and come from poles that we pick when moving
the contours of integration, as depicted in Fig. 4. The representation (2.30) is valid for
Im x+ > 0, Im x− < 0 and similarly for y±, with no restrictions on the masses of the
excitations.

The phase in equation (2.30) has discontinuities on the real line, as we wanted.
As proven in Appendix D.2, we therefore have constructed an anti-symmetric function
that satisfies the crossing equation for σ◦◦ and is compatible with massless kinematics.
Furthermore, this functions still satisfies massive crossing (2.27) too, as long as the
crossing path is taken as in Fig. 1. Hence it can be employed in the massive, massless, or
mixed-mass cases. A similar result could have been found starting from the dilogarithm
expression of [48, 49]. As all these functions coincide in the region |x±| > 1, |y±| > 1,
they give rise to the same analytic extension once we move the branch cut to the real
line.

2.3.4 Expansion coefficients for θHL with arbitrary masses

It is often useful to represent the dressing factors as a sum over conserved charges, cf.
equation (2.15). Such a representation is valid in the physical region, which depends on
the particular kinematics of the excitations under consideration. Specifically, for massive
kinematics, the expansion is well-defined for |x|, |y| > 1, while for massless modes the
variable x or y lie on the upper-half-circle. In this latter case it is worth noting that the
expansion is in fact a Fourier series. In Appendix C we show that the cr,s coefficients for
θHL|mx=my=0 are the same as the HL coefficients [34], i.e.

cHL
r,s = 1− (−1)r+s

π

(r − 1)(s− 1)
(r − s)(r + s− 2) , for arbitrary masses. (2.32)

This means that, just as the expression (2.30) is valid for massive, massless and mixed-
mass kinematics, so is the double-series representation (2.15) with the coefficients as
in (2.32).
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2.3.5 Minimal solution of the massless crossing equation

The expression (2.30) is well defined in the massless kinematics, and as shown in Ap-
pendix D.2, 1

2θ
HL, satisfies the massless crossing equation (2.24) where the crossing path

is taken as in Fig. 2. Evaluating (2.30) in the massless kinematics (2.6) we conclude that
the minimal solution for θ◦◦ is

θ◦◦min(x, y) = 1
2θ

HL(x±, y±)
∣∣∣∣
mx=my=0

=
1+iε∫

−1+iε

dz

4πG−(z, y)
(

1
z − x −

1
z − 1

x

)

−
1−iε∫

−1−iε

dz

4πG+(z, 1
y
)
(

1
z − x −

1
z − 1

x

)

− i

4
(
G−(x, y)−G+( 1

x
, 1
y
)
)
.

(2.33)

In Appendix B we show that the above expression for θ◦◦min is anti-symmetric under x↔ y.
Therefore, up to possible CDD factors’, we have solved the crossing equation for θ◦◦.

2.4 Solution of homogeneous crossing
As is well known [50], solutions of crossing equations are only defined up to CDD factors,
i.e., solutions of the homogeneous crossing equation. There is a huge degeneracy of such
solutions in the massless case. Evaluating (2.16) on the massless kinematics, we find
qr+1(x) = i

r
(1/xr − xr). Therefore any finite linear combination of functions of the form

ϑ(hom)
r,s (x, y) = cr,s

(
qr(x)qs(y)− qr(y)qs(x)

)
, (2.34)

solves the homogeneous crossing equation. While it is very hard to exclude all such possi-
ble solutions, they do not appear to have any particular physical significance. Therefore,
we shall focus on a particular class of solution of homogeneous crossing that emerge as
massless limits of the massive kinematics.

Note that in the massless limit where x+ = 1/x−, the right-hand-side crossing equa-
tion for massive modes (2.11) becomes the same as the one of the massless crossing
equation (2.11).9 Therefore, one might wonder whether, in the massless limit, the phases
σ•• and σ̃•• might suggest a natural homogeneous solution, and whether such a solution
should be included in σ◦◦. Our minimal solution σ◦◦min was constructed out of the massless
limit of the HL-order term in the BES phase. Below we investigate the (leading) AFS
term and the higher order terms in the BES phase in the massless limit. As we will show,
in this limit the higher-order terms become trivial, while the AFS term will provide a
hint that a homogeneous term at this order might naturally be expected.

9Similarly in this limit the crossing equation satisfied by the BES phase (2.36) also reduces to the
massless crossing equation.
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2.4.1 The BES phase

An important ingredient of integrable holography is the non-perturbative BES phase [35]
which, can be written as a double contour integral over unit circles [51]

χBES(x, y) = −i
∮ dz

2πi

∮ dz′

2πi
1

x− z
1

x− z′ log
Γ
(
1 + ih(z + 1

z
− z′ − 1

z′ )
)

Γ
(
1− ih(z + 1

z
− z′ − 1

z′ )
) . (2.35)

The resulting phase satisfies the crossing equation

θBES(x±, y±) + θBES(x̄±, y±) = y−

y+
x− − y+

x− − y−
1− 1

x+y+

1− 1
x+y−

. (2.36)

The BES phase (2.35) can be expanded asymptotically using that [30]

i log Γ(1 + ix)
Γ(1− ix) = −x log x

2

e2 −
π

2 sign(Rex)− 2
∞∑

n=0

ζ(−2n− 1)
2n+ 1

(−1)n
x2n+1 , (2.37)

where the first term gives the AFS phase and the second one gives the HL one [52].

2.4.2 Sub-leading orders

We start by considering the terms arising from the series in (2.37), i.e., these beyond HL
order which can be written as

In(x1, x2) =
∮ dz1

2πi
1

z1 − x1

∮ dz2

2πi
1

z2 − x2

1
(z1 − z2)2n+1

1
(
1− 1

z1z2

)2n+1 . (2.38)

The above expression is ill-defined due to the poles at z1 = z2 and z1z2 = 1. We can
regularize this integral by giving a principal-value prescription in e.g. z1. In fact, to
preserve antisymmetry we should sum over the case where the principal value is in z1
and in z2.10 In this way, one recovers for any n the expressions of ref. [48].

In the massless case we have additional poles on the integration contour. Since |xi| =
1, the poles at zi = xi need to be regularized too. By applying the same prescription,
we now find that the integral in e.g. z1 vanishes as all poles for z1 are on the unit circle.
We conclude that the regularization of In(x1, x2) vanishes when |xi| = 1, and therefore
we do not expect the sub-leading pieces of the BES phase to play a role in the massless
kinematics.

2.4.3 HL order

In the previous sub-section, we discussed how θHL
m can be deformed to solve crossing

for σ◦◦. Recall that σ•• and σ̃•• differ from one another by a phase σ− [30]

σ− = σ••

σ̃••
. (2.39)

10Equivalently, we may think of taking the radii of the integration circles to be e.g. r1 = 1 and
r2 = 1 + ε with ε > 0 and small. Anti-symmetry then requires us to sum over this case and the one with
r1 ↔ r2.
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Further, σ− is non-trivial precisely at HL order and the corresponding χ− is

χ−(x, y) =
( ∫
x −

∫

x

)
dz

4π

(
H(z, y)
x− z −

H(z, x)
y − z

)
, (2.40)

where
H(z, x) = log (x− z)

(
1− 1

xz

)
. (2.41)

For massless kinematics, the crossing equation for σ− becomes homogeneous and so one
may wondered whether, in this limit, σ− gives rise to a natural non-trivial homogeneous
solution at the HL order. In Appendix E we show that by deforming the contour and
restricting to massless kinematics, σ− becomes trivial.

2.4.4 AFS order

At the leading order of the strong-coupling expansion (2.37) one recovers the AFS phase,
which can be concisely expressed as a series

χAFS(x, y) = −
∞∑

r=2

∞∑

s=r+1

cAFS
r,s

(r − 1)(s− 1)
1

xr−1ys−1 , cAFS
r,s = δs+1,r − δr+1,s, (2.42)

which is valid for arbitrary masses mx and my. Performing the sum we find

χAFS(x, y) = 1
x
− 1

y
+ (y + 1

y
− x− 1

x
) log

(
1− 1

xy

)
, (2.43)

In contrast to σ− and the sub-leading orders of the BES phase, the above expression for
the AFS phase does not vanish in the massless limit.11 Furthermore, it is straightforward
to check that for two massless excitations under crossing

0 =
[
θAFS(x, y) + θAFS(x̄, y)

]

mx=my=0
. (2.44)

In fact, as is clear from equation (2.43), taking the massless limit and performing the
crossing transformation are two commuting operations. Therefore, while the AFS phase
constructed as the m → 0 limit of the massive AFS phase is non-zero, it satisfies the
homogeneous crossing equation. This observation suggests that a homogeneous solution
at AFS order may be present in θ◦◦.

2.4.5 Solution of the massless crossing equation

On the basis of the above arguments, we propose the following solution for the massless
crossing equation

θ◦◦(x, y) =
[
θAFS(x, y) + 1

2θ
HL(x, y)

]

mx=my=0
, (2.45)

which differs from the minimal one by the addition of the AFS term that plays the role
of a CDD factor.

11We could have reached the same conclusion working in terms of the integral obtained from the
expansion of (2.37).
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2.5 Determining the mixed-mass dressing factor σ◦•

As we have discussed above, the deformation of the integration contour for the HL-order
phase can be carried out independently of the mass of the excitations. Further, the AFS-
order phase is also well behaved when the mass is varied. As a result, it is straightforward
to write down a solution for the mixed-mass crossing equation (2.11). By defining

θ◦•(x±, y) =
[
θAFS(x, y±) + 1

2θ
HL(x, y±)

]

mx=0,my=1
, (2.46)

in terms of (2.30, 2.43) we can check that the crossing equation is satisfied. More specif-
ically, the AFS part of the phase satisfies the crossing equation

[
θAFS(x±, y) + θAFS(x̄±, y)

]

mx=1,my=0
= i log y,

[
θAFS(x, y±) + θAFS(x̄, y±)

]

mx=0,my=1
= 0.

(2.47)

in the mixed-mass case, while the HL part satisfies
[
θHL(x±, y) + θHL(x̄±, y)

]

mx=1,my=0
= −i log f(x+, y)

f(x−, y) ,
[
θHL(x, y±) + θHL(x̄, y±)

]

mx=0,my=1
= −i log f(x, y+)

f(x, y−) ,
(2.48)

As for the solution of the homogeneous crossing equation, it is worth noticing that in
this case the massless limit of the crossing equation (2.36) does not give our mixed-mass
equation. Therefore, it appears that no natural candidate exists for a physically relevant
class of solutions to homogeneous crossing.

2.6 Absence of bound states
The massless S matrix is given explicitly in Appendix M of [12], supplemented by the
dressing factors we just constructed. We are interested in studying its poles, and dis-
cussing whether they may be interpreted as arising from bound states. Several entries
of the S matrix have a simple pole when

x−(p1) = x+(p2). (2.49)

This is the familiar bound-state condition for the scattering of massive particles with
m1m2 > 0, cf. [53]. In the massless kinematics (2.6), this reads

1
x(p1) = x(p2). (2.50)

It follows that the total energy and momentum of any putative bound state would be

E(p1) + E(p2) = −ih
(
x1 −

1
x1

+ x2 −
1
x2

)
= 0, ei(p1+p2) = (x1x2)2 = 1. (2.51)
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Hence such a bound state would have to be a singlet of the symmetry algebra. Further,
solving (2.50) in terms of momenta we find

e
i
2 (p1+p2) = 1. (2.52)

For pi in the physical strip (i.e., when Re pi ∈ [0, 2π)), the only solutions are Re p1 =
Re p2 = 0. Therefore, this putative bound state would have to be a singlet constructed
out of two particles with purely imaginary and opposite momenta, and is therefore un-
physical. As discussed in Appendix F, this structure is not modified by the dressing
factors.

The above conclusions can be further confirmed by considering the residues of the
psu(1|1)2

c.e.-invariant S matrix of [12] when the momenta satisfy equation (2.50). One
finds non-vanishing residues from four out of the six S-matrix elements, resulting in a
2×2 residue matrix, just like in the massive case. However, when imposing the massless
condition (2.6), the residue matrix has rank one, again indicating that only one mode
could be potentially propagating. This leads us to conclude that any putative bound-
state would have to be a singlet and hence unphysical.

Let us now consider the case of one massive and one massless particle. Since massive
particles have |x±| > 1 while massless ones have |x| = 1, it is easy to check that it is
impossible to construct a bound state satisfying (2.49) for a pair of particle with complex
and conjugate momenta. Interestingly, looking at the total energy and momentum, we
find

E1 + E2 = −ih2
(
x+

1 −
1
x+

1
− x−1 + 1

x−1
+ 2(x2 −

1
x2

)
)

= −ih2
(
x+

1 −
1
x+

1
+ x−1 −

1
x−1

)
,

ei(p1+p2) = x+
1
x−1

(x2)2 = x+
1 x
−
1 .

(2.53)
Therefore, such a two-particle configurations has the same dispersion relation as a single
particle in the “mirror” kinematics [54]. We conclude that there are no physical bound
states between massless and massive particles.

3 Bethe equations
In this section we write down the all-loop nested Bethe equations for the full worldsheet
theory, including the massless modes. They are found by imposing periodicity of the
wave-function on the worldsheet, and their solutions give quantisation conditions for
the momenta of the excitations. Our analysis will be restricted to states which carry
zero momentum and winding along the T 4. Given the complexity of the S-matrix we
need to appeal to the “nesting procedure” [55] to diagonalise it, which introduces new
auxiliary roots. In Sections 3.1 and 3.2, we write down the Bethe equations in bosonic
and fermionic gradings respectively, and discuss some of their properties and symmetries.
In Section 3.3 we comment on extra symmetries of the Bethe equations associated to the
presence of the massless modes, while in Section 3.4 we present the weak coupling limit
of the equations. In Section 3.5 we discuss the Bethe equations for the AdS3 × S3 × T 4

background supported by mixed NS-NS and R-R three-form flux.
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|Y L〉

|ηL1〉 |ηL2〉

|ZL〉

Q 1
L , Q 1

R

Q 1
L , Q 1

R

Q 2
L , Q 2

R

Q 2
L , Q 2

R

J ḃ
•ȧ

|ZR〉

|ηR
2〉 |ηR

1〉

|Y R〉

Figure 5: The Left and Right massive modules. We indicate explicitly only the lowering
supercharges, corresponding to the arrows pointing downwards. In each module the fermions
transform in a doublet of su(2)•.

3.1 Bethe equations in the bosonic grading
The derivation of the Bethe equations closely follows the one discussed in [7] for the
massive sector. Here we include also the massless excitations, and rather than giving the
details of the procedure, which can be found in [56], we outline the principal points of
the method.

We begin by choosing a maximal set of excitations above the BMN vacuum that
scatter diagonally with each other, which will make up the level I of the Bethe equations.
There are several possible sets of such excitations, corresponding to different choices of
gradings of the psu(1, 1|2)2 symmetry algebra. One possible choice, compatible with that
of [7], is

Y L, ZR, χ1, χ2,

The first two excitations are massive and belong to the representations shown in Fig. 5,
while the latter two are from the massless module depicted in Fig. 6. Note that we have
assumed that the su(2)◦ symmetry acting on the massless excitations trivially commutes
with the S matrix, as implied by the perturbative computations of [57, 40]. If this were
not true, only one of the massless fermions would appear at level I, and we would have an
additional auxiliary root corresponding to the action of the lowering operator of su(2)◦.
For completness, we have written down such a set of Bethe equations in Appendix G.3.

For each level-I excitation we introduce a set of momentum-carrying Bethe roots.
Since the two massless fermions carry exactly the same charges except for the su(2)◦
spin, we will only use a single type of root to describe both at the same time. The
Bethe roots and excitation numbers corresponding to each type of level-I excitation are
summarised in the table below.

Left massive Right massive Massless
Level-I excitation Y L ZR χ1, χ2

Bethe root x± x̄± z±

Excitation number N2 N2̄ N0

Since scattering among these excitations is diagonal, it is trivial to write down an eigen-
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|χ1〉

|T 11〉 |T 21〉

|χ̃1〉

Q 1
L , Q 1

R

Q 2
L , Q 2

R

J ḃ
•ȧ

|χ2〉

|T 12〉 |T 22〉

|χ̃2〉
Q 1

L , Q 1
R

Q 2
L , Q 2

R

J b
◦a

Figure 6: The massless module. Dashed lines denote the action of su(2)◦ generators.

state of the S-matrix and the corresponding Bethe equations as long as no other excita-
tions are present.

When we include other excitations, non-diagonal processes arise. For these we use
the nesting procedure, see Appendix G, and introduce auxiliary Bethe roots, which
correspond to the action of the supercharges on the level-I excitations. Acting once on
a level-I state we generate level-II excitations, namely the massive fermions ηLa, ηRa of
Fig. 5 and the massless bosons T aα of Fig. 6. As suggested by these figures it is enough
to introduce two sets of auxiliary roots

QL1, QR1 QL2, QR2

Bethe root y1 y3
Excitation number N1 N3

Below we will discuss how two additional sets of auxiliary roots can be introduced, so
that each type of root corresponds to the action of one supercharge.

The massive momentum-carrying roots satisfy the equations
(
x+
k

x−k

)L
=

N2∏

j=1
j 6=k

ν−1
k νj

x+
k − x−j
x−k − x+

j

1− 1
x+

k
x−j

1− 1
x−

k
x+

j

(σ••kj)2
N1∏

j=1
ν

1
2
k

x−k − y1,j

x+
k − y1,j

N3∏

j=1
ν

1
2
k

x−k − y3,j

x+
k − y3,j

×
N2̄∏

j=1
νj

1− 1
x+

k
x̄+

j

1− 1
x−

k
x̄−j

1− 1
x+

k
x̄−j

1− 1
x−

k
x̄+

j

(σ̃••kj)2

×
N0∏

j=1
ν
−1/2
k νj

x+
k − z−j
x−k − z+

j




1− 1
x−

k
z−j

1− 1
x+

k
z+

j




1
2



1− 1
x+

k
z−j

1− 1
x−

k
z+

j




1
2

(σ•◦kj)2,

(3.1)
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and
(
x̄+
k

x̄−k

)L
=

N2̄∏

j=1
j 6=k

x̄−k − x̄+
j

x̄+
k − x̄−j

1− 1
x̄+

k
x̄−j

1− 1
x̄−

k
x̄+

j

(σ••kj)2
N1∏

j=1
ν

1
2
k

1− 1
x̄+

k
y1,j

1− 1
x̄−

k
y1,j

N3∏

j=1
ν

1
2
k

1− 1
x̄+

k
y3,j

1− 1
x̄−

k
y3,j

×
N2∏

j=1
ν−1
k

1− 1
x̄−

k
x−j

1− 1
x̄+

k
x+

j

1− 1
x̄+

k
x−j

1− 1
x̄−

k
x+

j

(σ̃••kj)2

×
N0∏

j=1
ν
−1/2
k




1− 1
x̄−

k
z−j

1− 1
x̄+

k
z+

j




3
2



1− 1
x̄+

k
z−j

1− 1
x̄−

k
z+

j




1
2

(σ•◦kj)2.

(3.2)

Above, the factors of νk are either equal to 1 or to eipk depending on whether the equations
are written in the spin-chain frame or the string frame.12 The massless momentum-
carrying roots satisfy the equation

(
z+
k

z−k

)L
=

N0∏

j=1
j 6=k

ν
−1/2
k ν

+1/2
j

z+
k − z−j
z−k − z+

j

(σ◦◦kj)2
N1∏

j=1
ν

1
2
k

z−k − y1,j

z+
k − y1,j

N3∏

j=1
ν

1
2
k

z−k − y3,j

z+
k − y3,j

×
N2∏

j=1
ν−1
k ν

1/2
j

z+
k − x−j
z−k − x+

j




1− 1
z+

k
x+

j

1− 1
z−

k
x−j




1
2



1− 1
z+

k
x−j

1− 1
z−

k
x+

j




1
2

(σ◦•kj)2

×
N2̄∏

j=1
ν

1/2
j




1− 1
z+

k
x̄+

j

1− 1
z−

k
x̄−j




3
2



1− 1
z+

k
x̄−j

1− 1
z−

k
x̄+

j




1
2

(σ◦•kj)2.

(3.3)

In addition, the auxiliary roots satisfy

1 =
N2∏

j=1

yI,k − x+
j

yI,k − x−j
ν
− 1

2
j

N2̄∏

j=1

1− 1
yI,kx̄

−
j

1− 1
yI,kx̄

+
j

ν
− 1

2
j

N0∏

j=1

yI,k − z+
j

yI,k − z−j
ν
− 1

2
j , (3.4)

where I = 1, 3. A physical solution further satisfies the level-matching condition

1 =
N2∏

j=1

x+
j

x−j

N2̄∏

j=1

x̄+
j

x̄−j

N0∏

j=1

z+
j

z−j
. (3.5)

The energy of a state is given by

D − J = N2 +N2̄ + ih
N2∑

k=1

( 1
x+
k

− 1
x−k

)
+ ih

N2̄∑

k=1

( 1
x̄+
k

− 1
x̄−k

)
+ ih

N0∑

k=1

( 1
z+
k

− 1
z−k

)
. (3.6)

We shall refer to the above Bethe equations as being in the bosonic grading.
12 The difference between the spin-chain and string frames is in the normalisation of the two-particle

states. The S matrix of [11,12] was written in the string frame, while the Bethe equations for the massive
sector of [7] were written in the spin-chain frame.
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Let us now consider some basic properties of these equations. In (3.1)– (3.4) we have
written the Bethe equations using two auxiliary roots. On the other hand, in [7] the
massive sector of the equations was written in terms of four auxiliary roots. To see how
the two expressions are related consider N1 roots of type 1. We can split these into two
groups of M1 and M1̄ roots, and introduce a new set of roots y1̄,k defined by

y1̄,k = 1
y1,k+M1

. (3.7)

We then find that the couplings between the roots of type 1 and the momentum carrying
roots of type 2 and 2̄ can be written as

N1∏

j=1

x−k − y1,j

x+
k − y1,j

=
(
x−k
x+
k

)M1̄ M1∏

j=1

x−k − y1,j

x+
k − y1,j

M1̄∏

j=1

1− 1
x−

k
y1̄,j

1− 1
x+

k
y1̄,j

,

N1∏

j=1

1− 1
x̄+

k
y1,j

1− 1
x̄+

k
y1,j

=
(
x̄−k
x̄+
k

)M1̄ M1∏

j=1

1− 1
x̄+

k
y1,j

1− 1
x̄−

k
y1,j

M1̄∏

j=1

x̄+
k − y1̄,j

x̄−k − y1̄,j
.

(3.8)

In the same way we can group the roots of type 3 into two groups of M3 and M3̄ roots,
respectively. In this way we obtain one set of auxiliary roots for each supercharge. If we
then go to the spin-chain frame and shift the length L by

L→ L−M1̄ −M3̄, (3.9)
and only consider the massive sector by setting K0 = 0 we exactly reproduce the Bethe
equations of [7].

A graphical representation of the Bethe equations is given in Fig. 7.

Frame independence. The frame factors νj describe the difference between the string
frame and spin-chain frame S matrices. The spectrum must be independent of the chosen
frame. Since each state in the spectrum corresponds to a (level-matched) solution of the
Bethe equations, the equations should have the same solutions in either frame. To check
this, let us collect the factors of ν coming from the various equations. For the auxiliary
root equation (3.4) we get a factor of the form

N2∏

j

ν
− 1

2
j

N2̄∏

j

ν
− 1

2
j

N0∏

j

ν
− 1

2
j (3.10)

which is equal to identity in the string frame once we impose level matching.
For the momentum carrying nodes we get, after again imposing level matching, that

the right hand side of each equation contains an overall phase

ν
−N2+ 1

2 (N1+N3−N0)
k (3.11)

This factor is trivial in the spin-chain frame. In the string frame it can be absorbed in
a change of the length L

L→ L−N2 + 1
2(N1 +N3 −N0). (3.12)

Hence the Bethe equations in the two frames are identical up to the interpretation of the
unphysical parameter L.
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Figure 7: The Bethe equations can be represented with two copies of the Dynkin diagram for
psu(1, 1|2) supplemented by one node for massless fermions. This can be done in two different
ways (left and right panel), corresponding to different choices of the superalgebra grading. We
use solid lines for Dynkin links, and dotted lines for the other interactions between auxiliary
nodes and momentum carrying ones. Blue and red wavy links are used for dressing phases of
the massive sector σ•• and σ̃•• respectively. Brown wavy links represent the dressing phase
σ◦•, while the green one represents σ◦◦. Note that we here indicate four types of auxiliary
roots. As explained in the main text we can get rid of two sets of auxiliary roots by changing
roots of type 1̄ and 3̄ to type 1 and 3 by the inverse of the transformation in (3.7). The map
between the two gradings will be discussed in Section 3.2.

Global psu(1, 1|2)2 symmetry. To understand how the global symmetry algebra
acts on a solution of the Bethe equations it is useful to work in the spin-chain frame by
setting νk = 1. Given a solution to the Bethe equations we can then construct a new
solution by adding an additional root of type 1, 2 or 3 with zero momentum, in other
words with yI,k and x±k sitting at infinity. This is a manifestation of the psu(1, 1|2)L
symmetry of the spectrum. Finding the psu(1, 1|2)R symmetry is a bit more subtle.
Firstly, we can add a root of type 2̄ at infinity which encodes the su(1, 1)R symmetry.
To also see the corresponding supersymmetries we need to add a root of type 1 or type 3
at y = 0. Doing this we see right away that the equation for the new auxiliary root
is satisfied provided the original solution satisfies the level matching condition (3.5).
Adding a root at y = 0 in the equations for the momentum-carrying roots we find that
we indeed get a new solution to the equations provided we at the same time shift the
length L by

L→ L− 1. (3.13)
Hence, the supersymmetries of the psu(1, 1|2)R algebra are dynamical and relate spin-
chain states of different lengths. In the string frame, where νk = eipk , adding a root at
infinity (or zero in the case of roots of type 1 and 3) is again a symmetry provided we
shift the length L in an appropriate way.

By expanding around a root at infinity we can read off the global charges of the
corresponding state expressed in terms of the excitation numbers. The psu(1, 1|2)L ×
psu(1, 1|2)R symmetry algebra has four Cartan elements: two su(1, 1) charges ∆L and
∆R and two angular momenta JL and JR. It is convenient to combine them into

∆ = ∆L + ∆R, J = JL + JR, S = ∆L −∆R, K = JL − JR. (3.14)
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We then find13

∆ = L+N2̄ + 1
2

(
N1 +N3 −N0

)
+ δD,

J = L−N2 + 1
2

(
N1 +N3 −N0

)
,

S = −N2̄ + 1
2

(
N1 +N3 −N0

)
,

K = −N2 + 1
2

(
N1 +N3 −N0

)
,

(3.15)

where

δD = +ih
N2∑

k=1

( 1
x+
k

− 1
x−k

)
+ ih

N2̄∑

k=1

( 1
x̄+
k

− 1
x̄−k

)
+ ih

N0∑

k=1

( 1
z+
k

− 1
z−k

)
(3.16)

is the anomalous dimension of the state.
There are also global symmetries corresponding to insertions of massless momentum

carrying roots. However, these are more complicated and will be further discussed below.

Global su(2)◦ symmetry. In the Bethe equations we have included a single type
of massless momentum-carrying root, N0. In the world-sheet theory there are two
psu(1|1)4

c.e. multiplets of massless excitations, which form a doublet under the su(2)◦
symmetry. In order to keep track of the su(2)◦ quantum numbers, we could have in-
troduced two different types of massless roots. However, the S matrix acts trivially on
the su(2)◦ indices14 the two types of massless excitations enter the Bethe equations in
an identical way. Note that this indicates that a solution to the Bethe ansatz equations
which includes N0 massless modes represents 2N0 degenerate states. It would be very
interesting to investigate these degeneracies further. For completeness, we present the
Bethe equations in the case of a non-trivial su(2)◦ symmetry in Appendix G.3

Further degeneracies. In addition to the symmetries described above, the spectrum
obtained from the Bethe equations (3.1)–(3.4) contains another big set of degeneracies.
To see this we note that, e.g., the roots of type 1 and type 3 enter the Bethe equations
in a completely symmetric way. Hence, for a given solution we can obtain a new solution
by removing a root of type 1 and inserting a new root of type 3 at the same position

N1 → N1 − 1, N3 → N3 + 1, y1,N1 → y3,N3+1. (3.17)

This situation is very similar to the psu(1, 1|2) sector of N = 4 SYM [58]. A part of
this degeneracy is explained by the su(2)• outer automorphism that acts on psu(1, 1|2)2.
However, that symmetry only explains the degeneracy of states that live in the same irre-
ducible su(2)• representation, but the Bethe equations show a degeneracy also between
different such representations. In [59] this degeneracy was explained by the existence
of an infinite set of bilocal operators that commute with the psu(1, 1|2) symmetry. It

13 To find these expressions it is useful to note that in the bosonic grading the Dynkin labels of the
psu(1, 1|2)L algebra correspond to the Cartan elements (∆L − JL, 2JL,∆L − JL), while for the algebra
psu(1, 1|2)R we have (JR −∆R, 2∆R, JR −∆R).

14In [11,12] a non-trivial su(2)◦ was included in the massless sector. However, in order to match with
perturbative results this part of the massless S matrix has to be trivial [57, 40].
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would be interesting to further study these operators in the AdS3 case and to see how
the degeneracies noted above manifests itself in the string theory spectrum.

3.2 Fermionic duality and Bethe equations in the fermionic
grading

The Bethe equations (3.1)–(3.4) are written in a particular grading of the psu(1, 1|2)2

algebra, where the simple positive roots correspond to the generators

QL
+−−, LL

+, QL
+−+, QR

−++, SR
+, QR

−+−. (3.18)

By performing a fermionic duality transformation on the nodes corresponding to auxiliary
roots we obtain equations in a different grading [60, 58, 7]. Here we consider the case
where the simple roots are all odd and correspond to

QL
−++, QL

++−, QL
+−+, QR

+−−, QR
+++, QR

−+−. (3.19)

Let us define the following polynomial of degree N2 +N2̄ +N0 − 1

P (ζ) =
N2∏

j=1
(ζ − x+

j )ν−
1
2

j

N2̄∏

j=1

(
ζ − 1

x̄−j

)
ν
− 1

2
j

N0∏

j=1
(ζ − z+

j )ν−
1
2

j

−
N2∏

j=1
(ζ − x−j )

N2̄∏

j=1

(
ζ − 1

x̄+
j

) N0∏

j=1
(ζ − z−j ).

(3.20)

Using equation (3.4) and the level-matching condition (3.5) we find that P (ζ) has N1 +1
roots

P (y1,j) = 0, P (0) = 0. (3.21)
The polynomial can therefore also be written as

P (ζ) = ζ
N1∏

j=1
(ζ − y1,j)

Ñ1∏

j=1
(ζ − ỹ1,j), (3.22)

where we have introduced the additional Ñ1 roots ỹ1,j. In order to match the degrees of
the polynomial we find

Ñ1 = N2 +N2̄ +N0 −N1 − 2. (3.23)
By evaluating the ratios

P (x+
k )

P (x−k ) ,
P (1/x̄−k )
P (1/x̄+

k ) ,
P (z+

k )
P (z−k ) , (3.24)

using the two different expressions for P (ζ) we obtain a set of relations that can be used
to rewrite the Bethe equations. The resulting equations for the momentum-carrying
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roots read
(
x+
k

x−k

)L̃
=

N2∏

j=1
j 6=k

ν−1
k νj

1− 1
x+

k
x−j

1− 1
x−

k
x+

j

(σ••kj)2
N2̄∏

j=1
νj

1− 1
x+

k
x̄−j

1− 1
x−

k
x̄+

j

(σ̃••kj)2

×
N0∏

j=1
ν
−1/2
k νj




1− 1
x−

k
z−j

1− 1
x+

k
z+

j




1
2



1− 1
x+

k
z−j

1− 1
x−

k
z+

j




1
2

(σ•◦kj)2

×
Ñ1∏

j=1
ν

1
2
k

x+
k − ỹ1,j

x−k − ỹ1,j

N3∏

j=1
ν

1
2
k

x−k − y3,j

x+
k − y3,j

,

(3.25)

(
x̄+
k

x̄−k

)L̃
=

N2̄∏

j=1
j 6=k

1− 1
x̄+

k
x̄−j

1− 1
x̄−

k
x̄+

j

(σ••kj)2
N2∏

j=1
ν−1
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1− 1
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k
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j
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ν
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1
2
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2
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1
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k
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1− 1
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j=1
ν

1
2
k

1− 1
x̄+
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1− 1
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(3.26)

(
z+
k

z−k

)L̃
=

N0∏

j=1
j 6=k

ν
−1/2
k ν

+1/2
j (σ◦◦kj)2

Ñ1∏

j=1
ν

1
2
k

z+
k − y1,j
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ν

1
2
k
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×
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j

1− 1
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k
x−j




1
2



1− 1
z+
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x−j

1− 1
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k
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1
2

(σ◦•kj)2

×
N2̄∏

j=1
ν

1/2
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1− 1
z+

k
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1− 1
z−
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1
2



1− 1
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k
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1− 1
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j




1
2

(σ◦•kj)2,

(3.27)

where the new length L̃ is given by

L̃ = L+N2̄ − 1. (3.28)

The new roots of type 1̃ satisfy

1 =
N2∏

j=1

ỹ1,k − x−j
ỹ1,k − x+

j

ν
+ 1

2
j

N2̄∏

j=1

1− 1
ỹ1,kx̄

+
j

1− 1
ỹ1,kx̄

−
j

ν
+ 1

2
j

N0∏

j=1

ỹ1,k − z−j
ỹ1,k − z+

j

ν
+ 1

2
j , (3.29)

while the equations for the roots of type 3 and 4 are unchanged. These equations can
be represented pictorially as in the right panel of Fig. 7.

By changing the grading of the superalgebra we also change the definition of highest
weight states. Let |h.w.〉 be a highest weight state |h.w.〉 in the original (su(2) × sl(2))
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grading, and hence correspond to a solution of the Bethe equations (3.1)–(3.4) with no
roots at infinity. Using the fermionic duality transformation we can find the correspond-
ing solution in the dual equations (3.25)–(3.29). However, the state |h.w.〉 is not a highest
weight state in the fermionic grading. In this case the solution with no roots at infinity
instead correspond to the state QL

−++QR
+−− |h.w.〉, which is a descendent in the original

grading, but a primary in the fermionic one.
The global psu(1, 1|2)2 charges of a solution to the Bethe equations in the fermionic

grading are given by15

∆ = L̃+ 1
2
(
N2 +N2̄ − Ñ1 +N3

)
+ δ∆,

J = L̃− 1
2
(
N2 +N2̄ + Ñ1 −N3

)
,

S = + 1
2
(
N2 −N2̄ − Ñ1 +N3

)
,

K = − 1
2
(
N2 −N2̄ + Ñ1 −N3

)
.

(3.30)

Plugging back the expressions for L̃ and Ñ1 into these expressions and comparing the
charges in the bosonic grading from equation (3.15) we see that that they match up to
a shift

L→ L− 1, N1 → N1 + 2, (3.31)
which exactly corresponds to the application of the two supercharges discussed above.

Note that in the fermionic grading the degeneracy discussed above, where a root of
type 1 can be made into a root of type 3, instead takes the form of adding both a root
of type 1̃ and of type 3 at the same position.

3.3 Massless zero modes
As discussed above, descendants of a primary operator under the global psu(1, 1|2)2

symmetry can be constructed in the Bethe equations by adding additional Bethe roots
at infinity. A momentum carrying root of type 2 or 2̄ sitting at infinity corresponds to a
massive world-sheet excitation with zero momentum. The massless momentum carrying
roots of type 0 are constrained to live on the unit circle, and can therefore never sit at
infinity. For these roots a zero momentum excitation instead sits at z+ = z− = z

(±)
0 =

±1. As a shorthand we will denote either of those points by z0.
It is straightforward to check that if we insert an extra root of type 0 at z± = z0 in

the dualised Bethe equations of Section 3.2 we obtain a new solution. In the “fermionic”
grading the massless momentum carrying roots correspond to bosonic excitations on T 4,
and the symmetry may be naturally interpreted as giving rise to infinitesimal shifts along
the torus.

If we instead work in the “bosonic” grading, adding a massless root at z± = z0 does
not, in general, give a solution to the Bethe equations. At first sight this might seem

15 In the fermionic grading the Dynkin labels of psu(1, 1|2)L and psu(1, 1|2)R correspond to (JL −
∆L,∆L + JL,∆L − JL), and (∆R − JR,∆R + JR, JR −∆R), respectively.
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strange – after all the symmetries of the system should not depend on the choice of
grading. However, it is important to remember that equivalent solutions to the Bethe
equations in different gradings do not correspond to exactly the same operator but to
two operators in the same supermultiplet. To understand what happens with the root at
z± = z0 when we dualise back to the original grading we go back to the polynomial P (ζ)
defined in (3.20) and (3.21). Let us consider a particular solution to the Bethe equations
in the fermionic grading such that ỹ1 = z0 is not an auxiliary Bethe root of the solution.
To transform this solution to the bosonic grading we construct a polynomial P (ζ)

P (ζ) =
N2∏

j=1
(ζ − x+

j )ν−
1
2

j

N2̄∏

j=1

(
ζ − 1

x̄−j

)
ν
− 1

2
j

N0∏

j=1
(ζ − z+

j )ν−
1
2

j

−
N2∏

j=1
(ζ − x−j )

N2̄∏

j=1

(
ζ − 1

x̄+
j

) N0∏

j=1
(ζ − z−j ).

(3.32)

If we now add a root z±N0+1 = z0 we obtain a new polynomial P̂ (ζ) with a degree one
higher than that of P (ζ),

P̂ (ζ) = (ζ − z+
N0+1)

N2∏

j=1
(ζ − x+

j )ν−
1
2

j

N2̄∏

j=1

(
ζ − 1

x̄−j

)
ν
− 1

2
j

N0∏

j=1
(ζ − z+

j )ν−
1
2

j

− (ζ − z−N0+1)
N2∏

j=1
(ζ − x−j )

N2̄∏

j=1

(
ζ − 1

x̄+
j

) N0∏

j=1
(ζ − z−j )

= (ζ − z0)P (ζ).

(3.33)

This polynomial has a root at ζ = z0. Since we have assumed that there is no auxiliary
roots at this position in the fermionic grading this root has to be an auxiliary root in the
bosonic grading, and we will denote it by y1,N1+1 = z0. Hence, we expect that if we add
not only a massless root at z± = z0 but also an auxiliary root at y1 = z0 we will get a
symmetry of the bosonic Bethe equations. It is straightforward to check that his works
in the original equations. Consider, e.g., the equation for a momentum carrying root x±k
of type 2. The coupling of this root to the new massless root gives a factor of the form16

ν
− 1

2
k

x+
k − z0

x−k − z0
(3.34)

on the right hand side of (3.1). At the same time the extra root of type 1 at y1 = z0
gives a factor

ν
+ 1

2
k

x−k − z0

x+
k − z0

, (3.35)

which exactly cancels the contribution from the massless root. Similar cancelation occur
in all the other original Bethe equations. However, we also need to consider the equations

16Note that the massive–massless dressing phase is trivial when one of the excitations have vanishing
momentum.
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satisfied by the two new roots z±N0+1 and y1,N1+1. Here we run into a problem since both
of these equations contain factors of the form

z−N0+1 − y1,N1+1

z+
N0+1 − y1,N1+1

. (3.36)

When we plug in the values of the two roots this takes the indeterminate form 0/0.
Hence we need to be a bit careful. Let us therefore write out the equations for the two
roots and plug in the values z±N0+1 = y1,N1+1 = z0 everywhere except in the factor written
above. For the y1,N1+1 root we get (here we have assumed a physical state with vanishing
total momentum)

1 =
y1,N1+1 − z+

N0+1
y1,N1+1 − z−N0+1

N2∏

j=1

z0 − x+
j

z0 − x−j

N2̄∏

j=1

1− 1
z0x̄
−
j

1− 1
z0x̄

+
j

N0∏

j=1

z0 − z+
j

z0 − z−j
(3.37)

and for z±N0+1 we get

1 =
z−N0+1 − y1,N1+1

z+
N0+1 − y1,N1+1

N0∏

j=1

z0 − z−j
z0 − z+

j

N2∏

j=1

z0 − x−j
z0 − x+

j

N2̄∏

j=1

1− 1
z0x̄

+
j

1− 1
z0x̄
−
j

. (3.38)

Hence the two remaining Bethe equations are actually identical. We introduce the no-
tation17

eiΥ =
N0∏

j=1

z0 − z−j
z0 − z+

j

N2∏

j=1

z0 − x−j
z0 − x+

j

N2̄∏

j=1

1− 1
z0x̄

+
j

1− 1
z0x̄
−
j

. (3.39)

The full Bethe ansatz equation is then solved if we can find a limit such that

z±N0+1 → z0, y1,N1+1 → z0,
z+
N0+1 − y1,N1+1

z−N0+1 − y1,N1+1
→ eiΥ. (3.40)

This sort of limiting procedure is well-known in the Bethe ansatz literature, see for
example the exceptional states in AdS5 × S5 [61]. We can solve the equation by writing

z±N0+1 ≈ z0 ± iε tan Υ
2 , y1,N1+1 ≈ z0 − ε, ε→ 0. (3.41)

Hence, there is a symmetry in the Bethe equations in the bosonic grading, where we add
a massless momentum carrying root and a root of type 1. As discussed in the previous
section, a root of type 1 can be freely replaced by a root of type 3 at the same position.
This gives rise to a second massless zero mode. In the fermionic grading this solution
now has three additional roots, one massless, one of type 1̃ and one of type 3. Again we
need to take a particular limit to get a solution of the full equation

z±N0+1 ≈ z0 ± iε tan Υ
2 , ỹ1,Ñ1+1 ≈ z0 − ε, y3,N3+1 ≈ z0 − ε, ε→ 0. (3.42)

17For a physical configuration Υ is real.
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The two massless zero modes found above differ only in the su(2)• quantum numbers.
Since the massless momentum-carrying roots can carry two different su(2)◦ spins, we
thus have the four expected shift symmetries along T 4 corresponding to the addition
of massless zero-modes. We have interpreted them as being related to changes in the
position of the state along the torus.

3.4 The weak-coupling limit
Let us consider the weak coupling limit of the bosonic grading Bethe equations. The
weak coupling limit is defined by sending h→ 0 while keeping the momentum fixed. To
understand how the Bethe roots scale in this limit we remind the reader that the massive
momentum-carrying roots x± can be written in terms of the momentum as

x± =
1 +

√
1 + 4h2 sin2 p

2

2h sin p
2

e±
ip
2 , (3.43)

with an identical expression for x̄±. The massless momentum-carrying roots z±, on the
other hand, take the form

z± = e±
ip
2 sgn

(
sin p

2

)
. (3.44)

In the small h limit it is then useful to introduce, for the massive roots

x± ≈ u± i
2

h
, x̄± ≈ ū± i

2
h

, (3.45)

while the massless roots z± remain fixed, since equation (3.44) has no dependence on h.
For the auxiliary roots of type 1 and 3 we need to be a bit more careful. When we

send the coupling h to zero there are in general three possible behaviours for such a
root: the position of the roots goes to infinity, it goes to zero or it remains finite. That
the auxiliary roots split into such three cases can also be seen by looking directly at
the nesting procedure applied to the weak-coupling S matrix. We refer the reader to
Appendix G.2 for a discussion of this. We will therefore split the N1 auxiliary roots of
type 1 into three different groups of M1 +M1̄ +R1 roots depending on their scaling with
h.

y1,i ≈





v1,i

h
, i = 1, . . . ,M1,
h

v1̄,i−M1
, i = M1 + 1, . . . ,M1 +M1̄,

r1,i−M1−M1̄ , i = M1 +M1̄ + 1, . . . , N1 = M1 +M1̄ +R1,

(3.46)

and similarly for the roots of type 3.
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The weak coupling Bethe equations in the spin-chain frame then take the form

1 =
N2∏

j=1

v1,k − uj − i
2

v1,k − uj + i
2
, (3.47)

(
uk + i

2
uk − i

2

)̃L−N0+R1+R3

=
N2∏

j=1
j 6=k

uk − uj + i

uk − uj − i
M1∏

j=1

uk − v1,j − i
2

uk − v1,j + i
2

M3∏

j=1

uk − v3,j + i
2

uk − v3,j − i
2
, (3.48)

1 =
N2∏

j=1

v3,k − uj − i
2

v3,k − uj + i
2
, (3.49)

1 =
N2̄∏

j=1

v1̄,k − ūj + i
2

v1̄,k − ūj − i
2
, (3.50)

(
ūk + i

2
ūk − i

2

)̃L
=

N2∏

j=1
j 6=k

uk − uj − i
uk − uj + i

M1̄∏

j=1

ūk − v1̄,j + i
2

ūk − v1̄,j − i
2

M3̄∏

j=1

ūk − v3̄,j + i
2

ūk − v3̄,j − i
2
, (3.51)

1 =
N2̄∏

j=1

v3̄,k − ūj + i
2

v3̄,k − ūj − i
2
, (3.52)

(
z+
k

z−k

)̃L
=

N0∏

j=1
j 6=k

z+
k − z−j
z−k − z+

j

(σ◦◦kj)2 (3.53)

×
N2∏

j=1

x−j
x+
j

R1∏

j=1

z−k − r1,j

z+
k − r1,j

R3∏

j=1

z−k − r3,j

z+
k − r3,j

, (3.54)

1 =
N0∏

j=1

r1,k − z+
k

r1,k − z−k

N2∏

j=1

x−j
x+
j

, (3.55)

1 =
N0∏

j=1

r3,k − z+
k

r3,k − z−k

N2∏

j=1

x−j
x+
j

, (3.56)

where L̃ = L + M1̄ + M3̄. Above, we have imposed the zero-momentum condition. We
have also used the fact that at weak-coupling the massive dressing factors and σ•◦ are all
sub-leading.18 For N0 = 0 we obtain exactly the expected standard Bethe equations for
two decoupled psu(1, 1|2) spin-chains in the relevant gradings [3]. When we add some
massless excitations things get more interesting. Firstly we note that the length of left
and right massive spin chains is not the same unless N0 − R1 − R3 = 0. Hence, it is
natural to interpret the massless fermions as chiral states. The fundamental massless
fermion in this grading is charged only under the right copy of psu(1, 1|2). Furthermore,
the massless fermions feel a twist corresponding to the total momentum of the excitations
of type 2.

18In the weak-coupling limit the massive phases are O(h) [30]. Since the massless rapidities do not
depend on h, the AFS- and HL-order contributions to σ◦◦ will be O(h) and O(h0), respectively. As a
result, the HL-order massless dressing factor contributes to the weak-coupling Bethe equations. On the
other hand, using the expansion (3.45) for massive rapidities, one finds that the mixed-mass AFS- and
HL-order phases are O(h2) and O(h), respectively. Hence, in the weak-coupling limit, σ•◦ is sub-leading.
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From the above set of equations it is easier to understand the massless zero modes.
Let us for simplicity assume we have a solution involving only massive modes. If we now
try to add a single massless root z± we find that we need to satisfy the Bethe equation

(
z+

z−

)̃L
=

N2∏

j=1

x+
j

x−j
. (3.57)

Clearly z± = 1 is not a solution unless the roots of type 2 carry total momentum zero.
Even in that case, however, the spin-chain length felt by the roots of type 2 decreases by
one, since adding the root z increases N0. Hence the Bethe equation for roots of type 2
is no longer satisfied.19 If we, on the other hand, also add a root of type R1 or R3 we
can solve the equations for the new roots using a limiting procedure similar to what we
discussed above. In this case the length felt by roots of type 2 does not change, so this
is precisely the weak-coupling limit of the four U(1) symmetries discussed in Section 3.3.

3.5 Bethe equations for the mixed RR and NSNS background
Throughout this paper we focus on strings in an AdS3 × S3 × T 4 background supported
by pure R-R three-form flux. However, this background can be generalised to a one-
parameter family of backgrounds containing a mix of R-R and NS-NS flux, in such a way
that the worldsheet sigma model remains integrable [5, 62]. In the bosonic sigma model
the NS-NS flux gives rise to a Wess-Zumino-Witten (WZW) term whose integer level k
parametrises the amount of NS-NS flux. The mixed flux S matrix was constructed in
the massive sector in [19,21], and for the full model in [13].

The Bethe equations constructed above can be straightforwardly generalised to the
mixed flux case. In fact, we have normalised the S matrix in such a way that the equa-
tions (3.1–3.4) are valid for any value of the flux, provided the dressing phase is adjusted
in the appropriate manner. However, the conditions satisfied by spectral parameters
x±, x̄± and z± explicitly depend on the WZW level k, so we have to be a bit careful
when deriving the global charges corresponding to a solution of the Bethe equations are
slightly adjusted [62]. In the bosonic grading we find

∆ = L+N2̄ + 1
2

(
N1 +N3 −N0

)
+ δD,

J = L−N2 + 1
2

(
N1 +N3 −N0

)
,

S = −N2̄ + 1
2

(
N1 +N3 −N0

)
,

K = −N2 + 1
2

(
N1 +N3 −N0

)
− k

2πP,

(3.58)

where P is the total momentum of all momentum-carrying excitations. Note that K is
quantised, since the total momentum satisfy the level-matching constraint P ∈ 2πZ and
the WZW level k is integer-valued.

19The only exception seems to be when we only have zero-momentum roots of type 2. In this case we
have a descendant of the ground state in the left-moving sector and the state is short or semi-short.
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The anomalous dimension δD is now given by

δD = ih
N2∑

k=1

( 1
x+
k

− 1
x−k

)
+ih

N2̄∑

k=1

( 1
x̄+
k

− 1
x̄−k

)
+ih

N0∑

k=1

( 1
z+
k

− 1
z−k

)
+ k

2π
(
P2−P2̄+P0

)
, (3.59)

where P2, P2̄ and P0 denote the total momentum of each type of excitation,

eiP2 =
N2∏

k=1

x+
k

x−k
, eiP2̄ =

N2̄∏

k=1

x̄+
k

x̄−k
, eiP0 =

N0∏

k=1

z+
k

z−k
. (3.60)

With these adjustments the properties of the Bethe equations discussed earlier in this
section remain valid also in the mixed flux case.

4 Near-BMN expansion of S matrix
In this section we will consider our S matrix, including the phases, in the near-BMN
limit. While the expansion of the S matrix is straightforward, the scalar factors require
some additional care. In the next subsection, we collect some useful expressions for
them. In the next, we proceed to compare with the results found recently by Sundin and
Wulff [40].

4.1 BMN expansion of S matrix and dressing factors
To expand the all-loop S matrix in the near-BMN limit we rescale the momentum p to be
small, which for massive modes amounts to |x±p | to be large. In the massless kinematics
we should distinguish between two cases

p & 0 ⇒ xp ∼ +1, and p . 0 ⇒ xp ∼ −1. (4.1)

With our choice of the fundamental region 0 6 p < 2π, we can equivalently get the latter
case xp ∼ −1 by taking p to be close to and smaller than 2π. With this in mind, we
introduce the rescaled variables

p→ p/h, q → q/h (4.2)

and take the coupling h to be large. The dispersion relation for the massive excitations
then takes the form

ωp =
√

1 + p2 +O(1/h2), (4.3)
while for the massless excitations we have

ωp = |p|+O(1/h2). (4.4)

We see from this equation that we recover the relativistic massless dispersion relation. In
particular this means that, in this limit, there is a clear notion of right- and left-movers
on the worldsheet. Our non-relativistic S matrix is well-defined for any value of the
momenta p, q, and can in principle be expanded at any arbitrary point. In particular,
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nothing stops us from expanding it when both momenta have the same worldsheet-
chirality. An easy way to see that this regime is incompatible with perturbation theory
is to expand the massless crossing equation (2.11) for e.g. 0 < p < q. The right-hand-side
becomes

f(xp, xq)2 = (p− q)2

(p + q)2 +O(1/h2), for 0 < p < q. (4.5)

The first non-trivial order appears at O(h0), corresponding to where in perturbation
theory is the scattering is free! To satisfy the crossing equation at this order, the dressing
factor at O(h0) should have a non-trivial analytic structure, and indeed one can check
that this is the case. It is not surprising that this kinematics does not make sense from
the point of view of near-BMN perturbation theory. In the near-relativistic limit the both
particles would have the same speed and direction, which results in divergences signifying
that the scattering is ill-defined. Since here we want to compare with perturbation theory,
we will restrict to the case where the massless particles have opposite chirality, taking

xp ∼ +1, xq ∼ −1, i.e. q < 0 < p. (4.6)
The uniform light-cone gauge was not fixed in the same way in the perturbative

calculation of [40] as in the all-loop S matrix of [11, 12]. In order to write the exact S
matrix in a general a-gauge the S matrix should be multiplied by an additional overall
phase σ−agauge, where [63]

σgauge(p, q) = exp
(
i(pEq − qEp)

)
= 1 + i

h
(pωq − qωp) +O(1/h3), (4.7)

where Ep is the all-loop dispersion relation. If we assume that q < 0 < p we can simplify
this for various values of the masses

σ••gauge = 1 + i
h
(p
√

1 + q2 − q
√

1 + p2) +O(1/h3),

σ◦•gauge = 1− i
h
(pq + q

√
1 + p2) +O(1/h3),

σ◦◦gauge = 1− i
h
2pq) +O(1/h3).

(4.8)

We also need to expand the dressing phases to one-loop order. Recall that the
massless and mixed-mass phases contained an AFS order and an HL term. We start by
expanding the AFS phase (cf. equation (2.43)) for general values of the masses

log σ2
AFS = i

2h

(
(mpp−mqq)2

qωp − pωq
+ (qωp − pωq) + 2(mqp−mpq)

)
+O(1/h3). (4.9)

We can easily take the masses to 1 or 0 in the above expression20

log(σ••AFS)2 = i

2h

(
(p− q)2

qωp − pωq
+ (qωp − pωq) + 2(p− q)

)
+O(1/h3),

log(σ•◦AFS)2 = i

2h

(
q

ωp + p + (qωp − pωq)− 2q
)

+O(1/h3),

log(σ◦◦AFS)2 = i

2h

(
qωp − pωq

)
+O(1/h3).

(4.10)

20This is true here due to the simple form of the AFS phase. In general, one can expect an order-of-
limits issue when taking h→∞ and m→ 0, cf. the next section.
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The one-loop terms get corrections from the HL part of the phases. For the purpose
of computing this expansion we can equivalently work in terms of the integral (2.33)
or the dilogarithm expression. Before proceeding, it is worth remarking an order-of-
limits issue. Here we want to first take the mass of one or both particles to vanish,
which imposes the x+

p x
−
p = 1, and only afterwards take the momenta to be small as well.

Proceeding in the opposite order would result in ambiguities akin to IR divergences when
sending m → 0, see also [57]. With this in mind, we find that the HL phase (2.30) in
the massless-massless kinematics is

θ◦◦HL = θHL(p, q)
∣∣∣∣
mp=mq=0

= − 1
8πh2 pq

(
1− log −pq

16h2

)
+O(1/h4), (4.11)

and in the massless-massive kinematics is

θ•◦HL = θHL(p, q)
∣∣∣∣
mp=1,mq=0

= 1
4πh2

p2q
p + ωp

log
[ −q
4h(p + ωp)

]
+O(1/h4). (4.12)

It may appear bizarre to have a perturbative expansion involving logarithms of the
coupling constant. However, here this simply follows from homogeneity requirements.
The massless Zhukovski variable xp is only a function of the momentum (2.5), and does
not involve any scale. Therefore, the only scale comes from introducing the coupling
in (4.2) and the expansion of the dressing factors in the massless kinematics will depend
on p/h.

There are many processes in the full S matrix, and we will not write them all down
here. For the scattering between the highest weight state in each representation we find,
at one loop

S |Y LY L〉 = +
(
1− γ1 + 1

2γ
2
1 − 2iθ••HL

)
|Y LY L〉 ,

S |Y LZR〉 = +
(
1− γ2 + 1

2γ
2
2 − 2iθ̃••HL

)
|ZRY L〉 ,

S |Y Lχa〉 = +
(
1− γ3 + 1

2γ
2
3 − 2iθ•◦HL

)
|χaY L〉 ,

S |ZRχa〉 = +
(
1− γ4 + 1

2γ
2
4 − 2iθ•◦HL

)
|χaZR〉 ,

S |χaχb〉 = −
(
1− γ5 + 1

2γ
2
5 − 2iθ◦◦HL

)
|χbχa〉 ,

(4.13)

where the last term on each line gives the contribution from the one-loop dressing phase,21

and
γ1 = − i

2h
p + q
p− q(pωq + qωp) +

i(a− 1
2)

h
(pωq − qωp) +O(1/h3),

γ2 = + i

2h(pωq + qωp) +
i(a− 1

2)
h

(pωq − qωp) +O(1/h3),

γ3 = + i

2h(p + q)(ωp − p) +
i(a− 1

2)
h

(pωq − qωp) +O(1/h3),

γ4 = − i

2h(p + q)(ωp − p) +
i(a− 1

2)
h

(pωq − qωp) +O(1/h3),

γ5 = +
i(a− 1

2)
h

(pωq − qωp) +O(1/h3).

(4.14)

21The one-loop expansions of the massive dressing factors can be found in [30].
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The expansion of the rational part of the all-loop S matrix in the gauge a = 1/2 exactly
agrees with all the perturbative results of [40].

4.2 Comparison with perturbative results
Sundin and Wulff have recently computed worldsheet S matrix for AdS3×S3×T 4 strings
at one loop, and obtained the imaginary part of the massless-massless scattering at two
loops [40]. It is straightforward to check that the matrix part of the S matrix, given by
ratios of S-matrix elements, coincides with the result found by symmetry arguments [11,
12]. In particular, we see, as anticipated above, that the su(2)◦ S matrix trivializes.
Recall that [11,12]

Ssu(2)(p, q) =
(

1− 1
1 + i(wp − wq)

)
1 + 1

1 + i(wp − wq)
Π. (4.15)

Up to one loop in perturbation theory, we find that the coefficient of the permutation
matrix Π vanishes and the S-matrix trivializes. Note also that this together with the
crossing equation (A.16) forces wp to be very singular at small momentum,22 something
with no clear interpretation in perturbation theory. Therefore we will set wp = ∞,
trivialising the su(2)◦ S matrix.

As for the dressing factors, it is straightforward to check that they perfectly fit the
prediction (4.13) at tree level. At one loop, the expressions found by Sundin and Wulff
are

θ◦◦SW(p, q) = − 1
8πh2 pq

(
1− log(−4pq)

)
+O(g−3), (4.16)

and
θ•◦SW(p, q) = − 1

4πh2
p2q

p + ωp

(
1− log −2q

ωp − p

)
+O(g−3). (4.17)

These should be compared to equations (4.11)–(4.12). It is clear that there are several
differences between the two sets of formulæ. Let us start from the massless phase. We
find that the discrepacy is

θ◦◦SW(p, q)− θ◦◦HL(p, q) = 1
8πh2 pq log 1

64h2 . (4.18)

The mismatch takes the form of a scale in the logarithm, and can be seen as arising from
the ambiguity in regularising an infra-red divergence [40]. Note also that this term is a
solution of the homogeneous crossing equation, and hence hard to rule out on symmetry
grounds. Similar ambiguities may justify the discrepancy in the mixed-mass phase. In
that case, it should also be noted that the dependence on the light-cone momentum
p± = ωp ± p in the logarithm is also different; in fact, using p+p− = 1 the powers of p+
appearing in θ•◦HL and θ•◦SW are different. Since this discrepancy occurs in a non-rational
term, it will in principle affect the crossing equations. However, the two expressions are
related by picking opposite conventions for the path of the crossing transformation.

22It is easy to see that wp should go at least like wp ∼ h4/p4 in the near-BMN limit.
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At two loops, Sundin and Wulff predict that, in the massless-massless sector, the
dressing factor should vanish for their particular choice of a-gauge. While as discussed
we also do not expect any novel contribution to the phase at this order, we would get a
sub-leading rational term from the expansion of the AFS phase at next-to-leading order.
On the one hand, one may argue that this discrepancy can be removed by picking a
different CDD factor,23 as it is anyway a solution of homogeneous crossing. On the other
hand, we know that at this order perturbation theory and symmetry arguments predict
a different dispersion relation, so that a mismatch is in a sense not unexpected. At
this stage it is not clear whether one should add a (somewhat artificial) CDD factor, or
whether the issue will be properly accounted for by better understanding the near-BMN
limit of massless modes.

It therefore appears that there are several ambiguities in giving an interpretation of
our results in the near-BMN limit: the presence of log h terms is mirrored in perturbation
theory by ambiguities related to IR divergences. This can also be seen as an order-of-
limits issue. One may take the massive-massive HL phase in the near-BMN limit, and
send one or both masses to zero [40], or send mp → 0 in (4.17). Then, even if qualitatively
one recovers these results, singularities of the form logm and 1/m emerge. It would be
very interesting to understand better how to remove these IR ambiguities and more
precisely relate perturbative calculations to a large-h expansion of the all-loop phase.

5 Yangian symmetry of the massless S-matrix
In this section we discuss the Yangian symmetry underlying the massless-sector S-matrix,
focusing on the massless-massless scattering. Large part of the structure which we will
uncover descends from the massive Yangian [7,64] in the natural limit. Nevertheless, the
limit itself is rather subtle, and we find it useful to confirm the algebraic construction
starting from scratch in the strict massless representation. Moreover, we find it benefi-
cial to reproduce the salient details for the convenience of the reader, which altogether
justifies the following separate treatment. We shall then refer to Appendix A for the
implementation in the S-matrix crossing-unitarity problem.

5.1 Yangian generators, evaluation representation and crossing
We shall work in this section with the following symmetry generators on the elementary
massless excitations, forming the centrally-extended algebra associated to su(1|1)L ⊕
su(1|1)R. The non-vanishing (anti-)commutation relations read

{QL,QL} = HL, {QR,QR} = HR, {QL,QR} = C, {QL,QR} = C. (5.1)
23One way to pick a different solution of the homogeneous crossing equation is to replace the AFS

phase with a term proportional to the “gauge” phase, θ◦◦
AFS → − 1

2θ
◦◦
gauge.
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The representation we consider is given by the following action:

QR := −
√
h sin p2

(
0 0
1 0

)
, QR := −

√
h sin p2

(
0 1
0 0

)
,

QL :=
√
h sin p2

(
0 0
1 0

)
, QL :=

√
h sin p2

(
0 1
0 0

)
,

(5.2)

with central-charge eigenvalues24

HL = HR = −C = −C̄ = h

∣∣∣∣sin
p

2

∣∣∣∣ . (5.3)

The coupling constant h is taken to be real and positive. The coproduct we equip the
generators with is given by

∆(HL) := HL ⊗ 1 + 1⊗HL, ∆(QL) := QL ⊗ e−i
p
4 + ei

p
4 ⊗QL,

∆(HR) := HR ⊗ 1 + 1⊗HR, ∆(QL) := QL ⊗ ei
p
4 + e−i

p
4 ⊗QL,

∆(C) := C⊗ e−i p
2 + ei

p
2 ⊗C, ∆(QR) := QR ⊗ e−i

p
4 + ei

p
4 ⊗QR,

∆(C) := C⊗ ei p
2 + e−i

p
2 ⊗C, ∆(QR) := QR ⊗ ei

p
4 + e−i

p
4 ⊗QR,

(5.4)

where p is the momentum, which is a central element in su(1|1)L ⊕ su(1|1)R with co-
product ∆(p) = p ⊗ 1 + 1 ⊗ p. We will use the notation p1 (p2) for the momentum in
the first (second) factor of the tensor product. The R-matrix (stripped-off of a scalar
factor) is obtained as a limit from the massive one as follows:

R |φ〉 ⊗ |φ〉 = + |φ〉 ⊗ |φ〉 ,

R |φ〉 ⊗ |ψ〉 = − csc p1 + p2

4 sin p1 − p2

4 |φ〉 ⊗ |ψ〉+ csc p1 + p2

4

√
sin p1

2 sin p2

2 |ψ〉 ⊗ |φ〉 ,

R |ψ〉 ⊗ |φ〉 = + csc p1 + p2

4 sin p1 − p2

4 |ψ〉 ⊗ |φ〉+ csc p1 + p2

4

√
sin p1

2 sin p2

2 |φ〉 ⊗ |ψ〉 ,
R |ψ〉 ⊗ |ψ〉 = − |ψ〉 ⊗ |ψ〉 , (5.5)

and it satisfies

∆op(a)R = R∆(a) ∀ a ∈ su(1|1)L ⊕ su(1|1)R, (5.6)
where ∆op = Π ◦∆, and Π is the graded permutation.

Crossing symmetry is implemented as follows. By imposing

µ(Σ⊗ 1)∆ = η ε (5.7)

where µ is the multiplication in the algebra, and η and ε are the unit and counit,25

respectively, one can check from (5.4) that the antipode on all the Lie superalgebra
generators is simply

Σ(J) = −J, (5.8)
24We shall concentrate on the left representation and on the positive-momentum worldsheet-movers

for this algebraic discussion, as it will be sufficient for the purposes of illustration.
25 The co-unit map ε takes values in C and gives 0 for the generators of su(1|1)L ⊕ su(1|1)R and 1

for the identity element of the algebra. The unit η is a map from C to the algebra that sends 1 to the
identity element of the algebra.
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from which one can verify the crossing relation

Σ(J(p)) = C−1 J(−p)str C (5.9)

with
C =

(
1 0
0 i

)
(5.10)

the charge-conjugation matrix,

Q
L

= QR, Q
L

= QR (5.11)

and str denoting supertransposition. Although the L and R charges form isomorphic
representations, (5.11) motivates us to still formally distinguish them from the point of
view of crossing.

Let us focus on the left-sector generators for the remainder of this section (the right
sector being effectively isomorphic to the left one). The R-matrix (5.5) is invariant under
the following Yangian level-one supercharges:

∆(Q(1)
L ) := Q(1)

L ⊗ e−i
p
4 + ei

p
4 ⊗Q(1)

L + ei
p
4 HL ⊗QL,

∆(Q(1)
L ) := Q(1)

L ⊗ ei
p
4 + e−i

p
4 ⊗Q(1)

L + QL ⊗ ei
p
4 HL, (5.12)

with the evaluation representation understood as

Q(1)
L = uL QL, Q(1)

L = uL QL, uL = h

2i e
i p
2 . (5.13)

Commuting these charges with the Lie superalgebra (level-zero) supercharges, we can
generate the level-one central charges, which are automatically symmetries of the R-
matrix. In this matrix representation, all these level-one charges will then be provided
by multiplying the level-zero ones by the evaluation parameter uL. On the other hand
the coproduct will be rather more complicated following equation (5.12).

If we supplement this algebra with the hypercharge-generator B = (−)F , F being
the fermion-number generator, we see that the entire symmetry algebra contains the
Yangian Y (gl(1|1)): in the so-called Drinfeld’s second realization [65], this reads

[B0, en] = −2en, [B0, fn] = 2fn, {em, fn} = km+n,

[Bm, hn] = [Bm, kn] = [km, kn] = [km, en] = [km, fn] = {em, en} = {fm, fn} = 0,
[Bm+1, en]− [Bm, en+1] + {Bm, en} = 0, [Bm+1, fn]− [Bm, fn+1]− {Bm, fn} = 0.

(5.14)
The following representation satisfies all the relations (5.14)

en = unL QL, fn = unL QL, kn = unL HL, Bn = unL (−)F . (5.15)

One can check that the R-matrix is also invariant under [41]

∆(B0) = B0 ⊗ 1 + 1⊗B0

∆(B1) = B1 ⊗ 1 + 1⊗B1 + 2 ei
p
4 QL ⊗ ei

p
4 QL. (5.16)
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By a simple map, it is possible to obtain a new level-one hypercharge generator,

b1 = B1 + 1
2QLQL −

1
2QLQL, (5.17)

with a more symmetric form for its coproduct [41]

∆(b1) := b1 ⊗ 1 + 1⊗ b1 + e−i
p
4 QL ⊗ e−i

p
4 QL + ei

p
4 QL ⊗ ei

p
4 QL, (5.18)

where
b1 = −ih2 cos p2 (−)F . (5.19)

Let us now show how crossing symmetry extends to the Yangian. It is straighforward
to show, by applying (5.7) this time with ε(J(1)) = 0, that

Σ(Q(1)
L ) = −Q(1)

L + HL QL, Σ(Q(1)
L ) = −Q(1)

L + HL QL. (5.20)

It is then an easy exercise to verify that, on the positive branch of the dispersion relation,
the following crossing relations hold also at level one:

Σ(Q(1)
L (p)) = C−1 Q(1)

L
(−p)strC, Σ(Q(1)

L (p)) = C−1 Q(1)
L

(−p)strC, (5.21)

where
Q(1)

L
= uL QR, Q(1)

L
= uL QR. (5.22)

In fact, since the relation (5.9) holds and the evaluation representation connects the level-
one generators with the level-zero in the very simple fashion (5.13), crossing symmetry
combined with (5.21) just amounts to the following relation:

uL(−p) = uL(p)−HL, (5.23)

which follows from equation (5.3). On the other hand, in order for the generators B0
and B1 to beconsistent with crossing symmetry one needs to choose

B0 = −B0, b1 = −b1 +HL. (5.24)

This then extends, simply by the homomorphism property, to the whole Yangian,
and it implies the crossing symmetry for the R-matrix:

(C−1 ⊗ 1)RR,L(−p1, p2)str1(C ⊗ 1)RL,L(p1, p2) = 1⊗ 1. (5.25)

5.2 Determinantal identites and Yangian centre
Finally, we would like to point out some curious features of the massless S-matrix, related
to determinants and the centre of the Yangian agebra.

Let us provide an explanation of how to adapt the RTT formulation of Yangians to
the present case. The massless R-matrix R, which we have shown to be invariant under
the Yangian Y , can be written as a matrix depending on two spectral parameters (p1, p2):

R = Rijkl(p1, p2)Eij ⊗ Ekl. (5.26)
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We further introduce a set of Yangian elements (generating functions) Tij(p) such that

Tij(p) ∈ Y, p ∈ C, (5.27)

and define
T (p) := Eij ⊗ Tij(p), (5.28)

where repeated indices are summed over. We will define the Yangian in the RTT presen-
tation to be the algebra generated by the elements Tij(p), subject to the RTT relations:

R12(p1, p2)T13(p1)T23(p2) = T23(p2)T13(p1)R12(p1, p2). (5.29)

The subscripts appearing in T and R in (5.29) indicate now the spaces the respective
tensor products acts upon, cf. (5.28) and (5.26). The Laurent coefficients T nij, obtained
by expanding Tij(p) around a suitable point p(0) (such that the expansion is well-defined),
namely

Tij(p) :=
∑

n

T nij

(
p− p(0)

)n
, (5.30)

are supposed to generate all the levels of the Yangian. In turn, the RTT relations should
reproduce, by the very same Laurent expansion, all the relations at each Yangian level,
and one expects to be able to recast them, after highly non-trivial manipulations, into
the relations of Drinfeld’s second realisation of the Yangian.

One then uses the fact that the R-matrix itself gives a representation of the element
T . This is because, by construction, the R-matrix satisfies the RTT relations, since they
reduce to the Yang-Baxter equation in this case. This means that we can define

T (p1) = Eij ⊗ Tij(p1) = (π1 ⊗ 1)R (5.31)

where R is the universal R-matrix26, and πi ≡ πpi
projects abstract algebra elements

into the representation characterised by the spectral parameter pi. Therefore, we obtain

Eij ⊗ π2

[
Tij(p1)

]
= (π1 ⊗ π2)R = R(p1, p2), (5.32)

which is the matrix we started with. This means that, knowing the R-matrix, we can
construct a representation of the Yangian generating functions, where one of the spec-
tral parameters is the generating parameter, while the other one is the representation
parameter. Notice that we could have of course repeated the discussion swapping the
role of p1 and p2 in the discussion, and interchanging the spaces we were projecting onto.
Straightforward comparison produces

Rijkl(p1, p2)Ekl = π2

[
Tij(p1)

]
. (5.33)

The elements T nij are supposed to generate the same Yangian we have described in the
previous subsection, this time in the so-called RTT presentation [67,68].

26We will assume its existence for the purposes of the arguments in this section, although a mathe-
matical proof of this statement is still lacking for AdS/CFT (see however the recent progress obtained
in [66] in the context of q-deformations of the AdS5 integrable system).
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We now calculate the following element of the Yangian27

Z(p1) = tr⊗ tr T (p1)⊗ T †(p1), T (p1) = Tij(p1)Eij, (5.34)

where the † involves super-transposition. T (p) is now a matrix with entries taking values
in Y . We can verify that, in the representation π2, this corresponds to

∣∣∣∣R1111(p1, p2) +R2211(p1, p2)
∣∣∣∣
2
E11 +

∣∣∣∣R2222(p1, p2) +R1122(p1, p2)
∣∣∣∣
2
E22, (5.35)

which is central (i.e., proportional to the identity matrix 1 = E11 + E22) by direct
calculation, since

R1111(p1, p2) +R2211(p1, p2) = −
(
R2222(p1, p2) +R1122(p1, p2)

)
. (5.36)

Moreover, we notice that a determinantal identity, which was introduced in [70], holds
here as well. If we focus on the submatrices formed by

Ω1 = {|φ〉 ⊗ |φ〉, |ψ〉 ⊗ |ψ〉}, and Ω2 = {|φ〉 ⊗ |ψ〉, |ψ〉 ⊗ |φ〉}, (5.37)

respectively, then the determinants

det 1 = det 2, (5.38)

where deti is the determinant of the sub-matrix of R scattering only states from set Ωi.
Specifically, by direct evaluation using (5.5) one has

det 1 = R1111R2222 = −1 = R1122R2211 −R2112(−R1221) = det 2 (5.39)

The nice outcome of these identities lies in the following observation. By the general
theory of Yangians, one has an expectation for conditions such as the equality of the two
determinants in (5.39) and the centrality of (5.35) to hold. However, in the case centrally-
extended superalgebras, checking these explicitly remains a highly non-trivial problem.
In the case of AdS5, for example, one needs to fully exploit the RTT formulation for the
fundamental magnon S-matrix [68]. On the other hand, as we have shown above, in the
case of small rank, we can quite easily demonstrate such relationships. This also gives
a straightforward demonstration of how the AdS3 massless sector can be accommodated
inside the familiar algebraic framework.

From the algebraic point of view, there is still a challenge in proving the full equiv-
alence of the RTT formulation of various Yangians appearing in AdS/CFT to the other
formulations in which they are originally case-by-case discovered. In the AdS3 case of
small-rank algebras, the fact that we can prove these identities is a strong encouragement
that one might be able to complete the circle and demonstrate the full equivalence with,
in this instance, Drinfeld’s second realisation. When combined with the recent results
of [42], this might shed light in particular on the complete algebraic structure govern-
ing the integrability of the massless sector, which seems to remain not only a profound
physical occurrence, but also a fascinating representation-theoretical problem.

27This discussion is partly inspired by [69], where bosonic gl-type algebras and central element of the
corresponding Yangians were studied.
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6 Conclusions
The AdS3/CFT2 dual pair with small N = (4, 4) superconformal symmetry is a piv-
otal example of the gauge/string correspondence. It features prominently in a range
of key problems including black hole entropy counting [71], instanton moduli space in-
variants [72], holography of two-dimensional super-QCD, and higher-spin theories. Its
relatively small amount of supersymmetry and large moduli space have made it a partic-
ularly rich model in which holography can be investigated while retaining some control in
the quantum regime. Recently, it has become apparent that a much stronger handle over
this duality can be achieved through the use of integrability. This opens the possibility
of computing generic unprotected quantities at all values of the coupling for the dual
pair in the planar limit. In turn, this is likely to have important consequences on the set
of problems closely linked with the AdS3/CFT2 duality.

An entirely novel feature of AdS3/CFT2 is the presence of massless modes. A
symmetry-based approach to incorporate these into the integrable framework was de-
veloped in [11–14]. However, a number of ingredients of the integrable construction
remained undetermined. The way to address these issues was sketched briefly in [32].
A more detailed explanation and derivation of those findings was given in the present
paper. In particular, we investigated the analytic structure of the massless modes and
found minimal solutions of the crossing equations for the massless and mixed-mass dress-
ing factors. We argued that the only natural candidate for a homogeneous solution to
the crossing equations comes at the AFS-order of the massless dressing factor. Equipped
with the complete S matrix we showed that, just as in the relativistic case, no massless
bound states exist.

We derived all-loop Bethe equations for the complete spectrum of closed strings on
AdS3 × S3 × T 4 and showed that it has the expected psu(1, 1|2)2 global symmetry as
well as the translation symmetries along the T 4 directions. Our results throughout this
paper focus on the zero-winding, zero-momentum sector of the torus and it would be
interesting to extend them to include non-trivial winding and momentum.

Subsequently, we investigated the weak-coupling limit of these equations where a
spin-chain description of the integrable system is expected to emerge [3, 9]. As will be
shown elsewhere [73], the weak-coupling limit of our Bethe equations does indeed lead
to a spin-chain of the type argued for in [9], with the massless modes being described by
gapless modes and the resulting degeneracy of the groundstates matching the protected
supergravity spectrum found in [74]. A possible origin for such a spin-chain on the
CFT2 side was proposed in [75] and the relation of those results to the present work,
particularly to the massless modes should be explored.

As part of our Bethe equations analysis, we briefly discussed the generalisation of
these to the mixed R-R and NS-NS flux background, building on the massive-sector
result [62] and related works [19,21,24,13]. Solving the mixed-flux crossing equations in
this setting remains an important open problem.

Given the recent results on the massless Lüscher terms [31], it is important to un-
derstand better the role of finite-size corrections to these Bethe equations. One may
hope that the construction of a thermodynamic Bethe ansatz [76,54,77] and a quantum
spectral curve [78] for AdS3/CFT2 will provide a better understanding of these issues.
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Recently, perturbative computations of the S matrix in the near-BMN limit were
performed in [40]. We compared our results with these calculations, and, for the most
part, found agreement. In the two cases where our results appear to differ from those
of [40], we proposed likely explanations for the origin of the discrepancies. As the inter-
ested processes involve IR divergences, it appears subtle to perform the comparison. At
one-loop, this can be seen as a dependence on worldsheet IR regulator, or as an order-of-
limits issue when expanding the all-loop results with vanishing mass and large coupling.
At two loops, discrepancies are perhaps even expected, given that it is known that per-
turbation theory and symmetry arguments predict different dispersion relations. While
some of these mismatches may be resolved by adding an ad-hoc CDD factor, it is likely
that they depend on subtleties of the massless near-BMN kinematics which are yet to
be fully understood and should be further investigated. For example, since the discrep-
ancies appear also in logarithmic terms, which in the massive case are cut-constructible,
it would be interesting to generalise the methods of [22,26] to include massless modes in
the asymptotic states.

We have also analysed the Yangian symmetry, which provides the algebraic mani-
festation of integrability in the massless sector. We were able to construct the Yangian
algebra in the so-called Drinfeld second realisation, and to provide the associated eval-
uation representation consistent with crossing-symmetry. Furthermore, we have studied
the hypercharge generator at all Yangian levels, and spelled out the rules for its co-
product and charge-conjugation. We finally went on to investigate certain determinantal
identities and related Yangian central elements, taking advantage of the relative simplic-
ity of the massless S-matrix entries. Such identities insert the algebraic problem into
the framework of the RTT formulation of Yangians, enriching the arena of integrable
techniques the massless sector of the AdS3 string is amenable to.

We expect that the results presented here will generalise to the AdS3× S3× S3× S1

background [79], whose symmetry is the large N = (4, 4) supersymmetry algebra [80].
This algebra and its zero-mass limit have played an important role in the higher-spin
limit of the gauge/string correspondence [81] and relating our results to these works is
an important open problem. Perhaps, together with [82], these results might also shed
light on the apparently enigmatic CFT2 dual.
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No data beyond those presented and cited in this work are needed to validate this
study.

A Massless scattering in relativistic integrable sys-
tems

In this section, we review the classic treatment of massless scattering in relativistic inte-
grable system, as it was mainly developed in [36,38] (see also [39]). This will include the
massive-to-massless limit, considerations of analyticity, a discussion of bound states (or,
rather, of the absence thereof) and the adaptation of the notions of crossing symmetry
and unitarity. We also include an algebraic digression on the connections with Hopf
algebras.

A.1 Massless limit and (no) bound-states
Let us start by recalling what happens in the relativistic case, when Zamolodchikov’s
massless scaling limit [36] is taken. One begins with a massive scattering, characterised
by a dispersion relation

E = m cosh θ, p = m sinh θ, E2 − p2 = m2, (A.1)

with θ ∈ (−∞,∞) a rapidity variable. Lorentz boosts correspond to constant shifts in
θ. We can plot the dispersion relation as in Fig. 8

The transformation θ → −θ can be achieved by a finite Lorentz boost (equal to −2θ),
hence the two arms of 8 are connected by admissible changes of relativistic frame.

Let us then consider the massless limit m → 0. As one may expect, the notion of
scattering in the massless case is not well-defined. Furthermore, many theorems related
to integrable scattering do not hold for massless particles. Nevertheless, the notion of
factorised S-matrix is still sensible and one can use it as a tool to write down Bethe-
ansatz equations, and derive a TBA system of equations for the finite-size spectrum
(see for instance [83,84]). In fact, massless integrable two-dimensional theories typically
retain a scale (hence, they are not scale-invariant, see (A.2) below) and describe the
renormalisation group flow between two conformal field theories (UV and IR fixed points
of the flow).

In the massless limit we write θ = θ0 + ξ, send m → 0 and θ0 → ±∞, while
simultaneously keeping the combination

me|θ0| = M (A.2)
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p

E

Figure 8: Relativistic dispersion relation (for m = 1 in appropriate units).

finite. The limit naturally splits into two branches (corresponding to the two branches
of the limiting dispersion relation E = |p|):
• + handed

E = Meξ+ , p = Meξ+ , E = p, ξ+ ∈ (−∞,∞) (A.3)

• − handed

E = Me−ξ− , p = −Me−ξ− , E = −p, ξ− ∈ (−∞,∞) (A.4)

At this point, + handed particles move from left to right on the line (p > 0) and −
handed particles move from right to left (p > 0), both at the speed of light. There
is no way to boost a frame to change the sign of either momenta. Equivalently, no
transformation ξ− = ξ−(ξ+) connects the two branches. One has two types of particles
in the massless limit, living on the two arms of Fig. 9. The rapidities ξ± can each be
extended to the whole complex plane, and the particle-to-antiparticle map for rapidities
is given by

ξ± → ξ± + iπ. (A.5)

We can also understand why scattering loses its physical meaning, at least if we try
and scatter two + handed particles (or two − handed ones). The particles have to move
collinearly at the speed of light, hence a scattering is hard to attain (or resolve, if the two
particles are at coincident points). Rather, the massless S-matrices of same handedness
survive the conformal limits, and characterise the CFTs at the extrema of the flow [85],
while the mixed scattering is affected by the scale M and should ultimately be sensitive
to the flow.

The analytic structure of the S-matrix is particularly subtle in the relativistic massless
case. Before taking any massless limit, one generically has the picture described in
Fig. 10, where, for equal masses of the scattering particles, the Mandelstam variable s
satisfies

s = 2m2[1 + cosh(θ1 − θ2)]. (A.6)
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Figure 9: Relativistic dispersion relation for m = 0.
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Wave function decays

at infinity

Simple poles – Bound states

Figure 10: Analytic structure of the massive relativistic S-matrix.

The two cuts are the s-channel (right) and t-channel (left), respectively. The visible
part of the complex plane (upper Riemann sheet) is called the physical region.

When m → 0 (and in the case of opposite handedness of the scattering particles),
the allowed region where the bound-state simple poles can reside shrinks to zero. This
is in accordance with the statement that no stable bound state of massless particles
exist. In the context of the analytic S-matrix, this is rephrased by saying that the two
branch-cuts (s- and t- channel) get into contact at the origin, eliminating the mass-gap
in the spectrum.

In terms of the rapidity-difference

ϑ ≡ θ1 − θ2, (A.7)

the physical region is mapped onto the strip Imϑ ∈ [0, π], and the bound-state poles
reside on the imaginary axis within the physical strip. When the massless limit is taken
in the case of same handedness, the analyticity structure in the ϑ-plane is only mildly
affected28 since the parameter m is already virtually factored out. However, the analysis

28In this limit, we will then understand for example

ϑlim = ξ+,1 − ξ+2. (A.8)
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ϑ

Figure 11: The ϑ-plane, with indicated the physical strip.

0

4m2

s

S1(s)

S2(s)

Figure 12: The two-sheeted structure after the branch-cut switch

of the bound-state poles (performed on the massless S-matrix) must be consistent with
the existence of no stable bound states (see Fig. 11). We are going to describe the
implications of this for crossing symmetry and unitarity in the next subsection.

A.2 Analyticity and the crossing-unitarity relation
The shrinking, which we have just described, of the line where stable bound-state poles
are allowed to reside, and the final merging of the s- and t-channel branch cuts, have an
effect on the crossing and unitarity relations which the S-matrix has to satisfy.

Closely following [83], let us first switch to a picture where the branch cut is in fact
running on the real line inside the region Re s ∈ [0, 4m2] (see Fig. 12). Let the value of
the S-matrix on the upper (lower) Riemann sheet be S1 (S2, respectively). We assume a
square-root type of branch cut for simplicity in this discussion.

This subdivision of sheets is not directly in one-to-one correspondence with the at-
tribute of a physical and not physical sheet. Instead, after switching the branch cuts, the
physical sheet is composed of the upper half-plane of the upper sheet and of the lower
half plane of the lower sheet. In other words, the physical values of the S-matrix are29

S(s) = S1(s) if Im s > 0, S(s) = S2(s) if Im s < 0. (A.9)

The unitarity and crossing relations respectively read

S1(s)S2(s) = 1 and S1(s) = S2(4m2 − s). (A.10)

29For simplicity, we restrict to a scalar S-matrix for the scope of this subsection.
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On the one hand, the first equation has the interpretation of an analytic continuation
through the cut [0, 4m2]. One is comparing the value of the function S(s) on the upper
sheet with the analytically-continued value at the same point s on the lower sheet. If
the starting point was in the physical region, the landing point is not.

On the other hand, the second equation involves an analytic continuation through
the cut, landing however on the point 4m2− s on the lower sheet (which means that one
is never leaving the physical sheet).

The situation is rather different in the massless limit (now thought of as a + handed
particle scattering against a − handed one30). The branch cut now shrinks to a single
point, and one is left with two separate meromorphic functions S1(s) and S2(s), whose
only way to communicate is via a single algebraic relation

S1(s) = S2(−s). (A.11)

This implies that, on each respective sheet, one has a combined crossing-unitarity rela-
tion:

Si(s)Si(−s) = 1 ∀ i = 1, 2. (A.12)

A.3 Connections with Hopf algebras
In this section we present some Hopf-algebra considerations on the crossing and unitarity
relations.

Let us recall that the universal R-matrix31 R of the Hopf algebraA, abstractly defined
to solve

∆op(J)R = R∆(J) ∀ J ∈ A, (A.13)
and assumed to be invertible, satisfies

R12R21 = 1⊗ 1 braiding unitarity, (A.14)

where
R21 = Rop = ΠR (A.15)

(Π being the graded permutation operator), and

(Σ⊗ 1)R = R−1 crossing symmetry, (A.16)

with Σ the Hopf-algebra antipode. Upon introducing a representation π, and assuming
the existence of a representation π̄ conjugate to it, such that

π
(
Σ(J)

)
= C π̄(J)strC−1 ∀ J ∈ A, (A.17)

30 When formulated in the rapidity plane, the ++ and −− S-matrices are virtually indistinguishable
from their massive counterparts, and therefore can be taken to formally satisfy the usual massive-type
relations in terms of the rapidities.

31We will assume its existence for the purposes of the arguments in this section, although a mathe-
matical proof of this statement is still lacking for AdS/CFT (see however the recent progress obtained
in [66] in the context of q-deformations of the AdS5 integrable system).
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(the apex str denoting supertransposition and C being the charge-conjugation matrix),
the crossing symmetry condition (A.16) reduces to the following matrix equation

(C ⊗ 1) [π̄1 ⊗ π2]Rstr1(C−1 ⊗ 1) = [π1 ⊗ π2]R−1, (A.18)

where str1 denotes supertransposition in the first factor of the tensor product.
Let us now combine the crossing and braiding-unitarity conditions together. First,

let us focus on a specific representation, namely, a massive relativistic bosonic particle.
In this representation the R-matrix becomes the S-matrix of the scattering problem, and
it depends only on the difference of the particle-rapidities,

[π1 ⊗ π2]R = S(ϑ) = S(ϑ)acbdEb
a ⊗ Ed

c , ϑ = θ1 − θ2, (A.19)

where Eb
a is the matrix which sends particle a into particle b. Straightforward manipu-

lations of(A.15) and (A.16) imply the condition

S(iπ − ϑ)acbd(1⊗ C)Ed
c ⊗ Ea

b (1⊗ C−1) = S(ϑ)acbdEb
a ⊗ Ed

c . (A.20)

We have used the fact that under crossing

θi → θi + iπ, i = 1, 2. (A.21)

At the Hopf algebra level, this is echoed by the relation

(1⊗ Σ)R21 = R, (A.22)

which can be obtained by applying the permutation operator to the crossing equation
and performing simple algebraic rearrangings. In order to match (A.22) to (A.20), it is
useful to notice that32

[π1 ⊗ π2]R21 = Π [π2 ⊗ π1]R. (A.23)
The requirement of braiding unitarity is something different from the unitarity dis-

cussed in the previous section, namely

S1(s)S2(s) = 1. (A.24)

The latter is sometimes dubbed physical unitarity, and it is connected to the property
of real analyticity of the S-matrix. In terms of the rapidity-difference, physical unitarity
can be phrased as

S(ϑ)S(−ϑ) = 1, (A.25)
where we have removed the sheet-indices 1, 2 from S(ϑ) since the S-matrix is now a
meromorphic function on the ϑ-plane. Conversely, the crossing condition (A.16) becomes
in this case in the rapidity-plane:

S(ϑ) (C ⊗ 1)S(iπ + ϑ)(C−1 ⊗ 1) = 1. (A.26)
32The operator Π is taken to permute abstract elements of A as well as the corresponding matrices

in specific representations.
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From the Hopf-algebra viewpoint, the condition of physical unitarity can be obtained
from the very same equation (A.15), by projecting it onto representations π1 ⊗ π2 and
applying the permutation operator Π. It may seem surprising that no new relations are
needed at the abstract level to obtain the independent relation (A.26). The subtelty is
that, when we apply the specific relativistic-particle representation π, we have to make a
statement regarding the region in the complex ϑ-plane we project our relation into, and
different choices end up encoding different physical relations.

It is for this reason that the massless case will also be encoded in the same set of
algebraic relations (A.15) and (A.16). Upon projection onto the massless representa-
tions, the interpretation in terms of the complex ϑlim-plane will now be according to
the previous subsection’s arguments, and, in particular, one will recover (A.11) and the
mixed crossing-unitarity condition (A.12) directly from (A.16).

B Antisymmetry of θ◦◦min(x, y) and χHL
m

To verify directly that θ◦◦min(x, y) given in equation (2.33) is antisymmetric note that

−
1+iε∫

−1+iε

dz

4πg(z, x)G−(z, y) =
1+iε∫

−1+iε

dz

4πg(z, y)G−(z, x) (B.1)

−
1−iε∫

−1−iε

dz

4πg(z, 1
x
)G+(z, 1

y
) =

1−iε∫

−1−iε

dz

4πg(z, 1
y
)G+(z, 1

x
) (B.2)

−
1+iε∫

−1+iε

dz

4πg(z, 1
x
)G−(z, y)− i

2G−(x, y) =
1−iε∫

−1−iε

dz

4πg(z, y)G+(z, 1
x
)− i

2G+( 1
y
, 1
x
) (B.3)

−
1−iε∫

−1−iε

dz

4πg(z, x)G+(z, 1
y
) + i

2G+(x, y) =
1+iε∫

−1+iε

dz

4πg(z, 1
y
)G−(z, x) + i

2G−(y, x). (B.4)

The above identities hold for Im(x), Im(y) > 0 and can be used to show that

θ◦◦min(x, y) =
1+iε∫

−1+iε

dz

8π


 1
z − y −

1
z − 1

y


G−(z, x)

− 1
2π

1−iε∫

−1−iε

dz

8π


 1
z − y −

1
z − 1

y


G+(z, 1

x
)− i

8
(
G−(y, x)−G+( 1

y
, 1
x
)
)

= −θ◦◦min(y, x). (B.5)

An almost identical proof of anti-symmetry applies to the ‘deformed contour’ expression
for θHL

m given in equation (2.30).
Let us next show that χHL

m in equation (2.28) is also anti-symmetric. By changing
the integration variable z → 1

z
one can write χHL

m (x, y) as

χHL
m (x, y) = −

∫
x

dz

4πg(z, x)G±(z, y) =
∫

xdz
4πg(z, x)G±(z, y). (B.6)
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SinceG±(1, y) = G±(0, y) = 0, one can integrate by parts to show that for Im(x), Im(y) >
0 we have for example

∫
x

dz

4πg(z, x)G−(z, y) = −
∫
x

dz

4πg(z, y)G−(z, x), (B.7)

while for Im(x) > 0 and Im(y) < 0 we have
∫
x

dz

4πg(z, x)G+(z, y) = −
∫
x

dz

4πg(z, y)G−(z, x). (B.8)

As a result, the single-integral expression (B.6) for χHL
m (x, y) and hence also (2.28) is

anti-symmetric under x↔ y

χHL
m (x, y) = −χHL

m (y, x). (B.9)

C Charge expansion of the phases
In this appendix we collect the formulas needed to expand the phases in terms of the
charges qr. We first review some standard Fourier expansions and then use these to
determine the cr,s expansion coefficients.

C.1 Fourier expansions
We will use the following Fourier expansions, which are valid for y = eiπθ with θ ∈ [0, 1]

log(−i(y − z)) = log y − iπ

2 −
∞∑

n=1

1
n

(
z

y

)n
z ∈ [−1 + iε, 1 + iε] (C.1)

log(−i(y − 1
z
)) = − log z + iπ

2 −
∞∑

n=1

1
n

(zy)n z ∈ [−1 + iε, 1 + iε] (C.2)

log(i( 1
y
− z)) = − log y + iπ

2 −
∞∑

n=1

1
n

(zy)n z ∈ [−1− iε, 1− iε] (C.3)

log(i( 1
y
− 1

z
)) = − log z − iπ

2 −
∞∑

n=1

1
n

(
z

y

)n
z ∈ [−1− iε, 1− iε] (C.4)

We also note that for x = eiπφ with φ ∈ [0, 1] and z ∈ [−1, 1]

1
z − x −

1
z − 1/x =

∞∑

n=0
zn
(
xn+1 − x−n−1

)
(C.5)

It is also useful to recall certain Fourier series involving the Heaviside step function Θ(x)
which is 0 for x < 0 and 1 for x > 0

Θ(θ − φ)Θ(1− θ − φ) =
∞∑

m,n=1
a(1)
m,n sin(nπφ) sin(mπθ), (C.6)
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where

a(1)
m,n = 2

π2





(1− (−1)m) (−1)(m+n)/2(1−(−1)n)m+2n
m(n2−m2) m 6= n

1−(−1)n

n2 m = n
(C.7)

Similarly,
Θ(θ − φ)Θ(θ + φ− 1) =

∞∑

m,n=1
a(2)
m,n sin(nπφ) sin(mπθ), (C.8)

where

a(2)
m,n = 2

π2




−(1− (−1)n) (−1)(m+n)/2(1−(−1)m)n+2(−1)m+nm

n(n2−m2) m 6= n
1−(−1)n

n2 m = n
(C.9)

Next,
φ =

∞∑

m,n=1
a(3)
m,n sin(nπφ) sin(mπθ), (C.10)

where
a(3)
m,n = − 4

π2
(−1)n(1− (−1)m)

nm
. (C.11)

Similarly,
θ =

∞∑

m,n=1
a(4)
m,n sin(nπφ) sin(mπθ), (C.12)

where
a(4)
m,n = − 4

π2
(−1)m(1− (−1)n)

nm
. (C.13)

Finally,
1 =

∞∑

m,n=1
a(5)
m,n sin(nπφ) sin(mπθ), (C.14)

where
a(5)
m,n = 4

π2
(1− (−1)n)(1− (−1)m)

nm
. (C.15)

We also note
Θ(θ − φ) =

∞∑

m,n=1
a(6)
m,n sin(nπφ) sin(mπθ), (C.16)

where

a(6)
m,n = 4

π2





(−1)m(1−(−1)n)m2+(1−(−1)m)n2

mn(n2−m2) m 6= n
1−(−1)n

n2 m = n
(C.17)

C.2 Finding c◦◦r,s
In this appendix we present the details of the derivation that leads to equation (2.32).
To obtain the coefficients c◦◦r,s we insert the Fourier series (C.1)–(C.4) into equation (2.33)
and perform the integrals. We will find that the resulting expressions naively are not
anti-symmetric in x ↔ y. However, upon closer inspection, we show that the final
expansion is afterall anti-symmetric as expected from the general results in Appendix B.
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When performing the integrals in equation (2.33), for the majority of terms we can
take the limit ε → 0 before performing the integral. Only in the case of the integrands
proportional to log z, coming from the expansions (C.2) and (C.4) is there a potential
subtlety. Such terms contribute

1−iε∫

−1−iε

dz

2π

(
1

z − x −
1

z − 1
x

)
log z −

1+iε∫

−1+iε

dz

2π

(
1

z − x −
1

z − 1
x

)
log z

=
0−iε∫

−1−iε

dz

2π

(
1

z − x −
1

z − 1
x

)
log z −

0+iε∫

−1+iε

dz

2π

(
1

z − x −
1

z − 1
x

)
log z

→−
∫ 0

−1

dz

2π

(
1

z − x −
1

z − 1
x

)
2πi

=− i log x (C.18)

where we have used the fact that log z+ = log z− + 2πi. We also note that when x is on
the upper semi-circle ∫ 1

−1
dz

(
1

z − x −
1

z − 1/x

)
= πi. (C.19)

Combining these observations, one finds that the part of θ◦◦ expressed as integrals in
equation (2.33) can be written as33

−
1+iε∫

−1+iε

dz

2π

(
1

z − x −
1

z − 1
x

)
F−(z, y) +

1−iε∫

−1−iε

dz

2π

(
1

z − x −
1

z − 1
x

)
F+(z, 1

y
)

=− π − i log y − 2i log x− 1
π

∞∑

m,n=1

1− (−1)m+n

m(m+ n) (xn − x−n)(ym − y−m). (C.20)

As mentioned above, naively this expression is not antisymmetric in x ↔ y. To inves-
tigate this apparent discrepancy let us denote the double-infinite sum above by l(x, y).
Then we can write the above expression as

− π − i log y − 2i log x+ l(x, y) + l(y, x)
2 + l(x, y)− l(y, x)

2 , (C.21)

One can show that
l(x, y) + l(y, x)

2 = π + i log x+ i log y
2 , (C.22)

33The terms −π − i log y come from the log y and iπ terms in the expansions, while the log x term
comes from the integrals involving log z. The remaining terms come from the infinite sums.
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while the anti-symmetric part of l(x, y) gives

l(x, y)− l(y, x)
2 = −

1+iε∫

−1+iε

dz

4π

(
1

z − x −
1

z − 1
x

)
F (z, y)

= − 1
2π

∞∑

m,n=1

1− (−1)m+n

m(m+ n)
(
(xn − x−n)(ym − y−m)− (x↔ y)

)

= 1
2π

∞∑

m,n=1
(1− (−1)m+n) m− n

mn(m+ n)(xn − x−n)(ym − y−m). (C.23)

Soon we return to this expression, but next we turn to the non-integral part of the phase
given in equation (2.33)

i

2
(
F−(x, y)− F+( 1

x
, 1
y
)
)
. (C.24)

For x = eiπφ and y = eiπθ, on the upper semi-circle this expression reduces to34

π + i log x− πΘ(θ − φ), (C.25)

where Θ(x) is the Heaviside step function which is 0 for x < 0 and 1 for x > 0.
If we combine equation (C.25) with equations (C.21), (C.22) and (C.23) we find for

x = eiπφ and y = eiπθ

θ◦◦min(x, y) =− π − i log y − i log x+ π + i log x+ i log y
2 + π + i log x− πΘ(θ − φ)

+ 1
2π

∞∑

m,n=1
(1− (−1)m+n) m− n

mn(m+ n)(xn − x−n)(ym − y−m)

=π + i log x− i log y
2 − πΘ(θ − φ)

+ 1
2π

∞∑

m,n=1
(1− (−1)m+n) m− n

mn(m+ n)(xn − x−n)(ym − y−m) (C.26)

Next, note the following identity that can be verified using the expressions in Ap-
pendix (C.1)

1
2π

∞∑

m,n=1
(1− (−1)m+n) m2 + n2

mn(m2 − n2)(xn − x−n)(ym − y−m)

=− π

2 (θ − φ+ 1− 2Θ(θ − φ)) . (C.27)

34This identity holds at almost all points θ, φ ∈ [0, 1] at a finite number of points the two functions
differ by a finite amount. Since we will shortly be interested in the Fourier expansions of these such
differences will play no role.
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Inserting this into equation (C.26) we find35

θ◦◦min(x, y) =π + i log x− i log y
2 − πΘ(θ − φ)

+ 1
2π

∞∑

m,n=1
(1− (−1)m+n) m2 + n2

mn(m2 − n2)(xn − x−n)(ym − y−m)

− 1
π

∞∑

m,n=1
(1− (−1)m+n) 1

m2 − n2 (xn − x−n)(ym − y−m)

=π2 (1− φ+ θ)− πΘ(θ − φ)− π

2 (θ − φ+ 1− 2Θ(θ − φ))

− 1
π

∞∑

r,s=2

1− (−1)r+s
(r − s)(r + s− 2)

(
(xn − x−n)(ym − y−m)− (x↔ y)

)
.

(C.29)

The terms on the penultimate line above cancel giving the expansion (2.32). Note in
particular that the above expansion is anti-symmetric in x↔ y.

D Solutions of the crossing equations

D.1 Rewriting HL
Let us define

ϕHL(x, y) =
∫

xdz
4π g(z, x) G±(z, y),

=
∫
y

dz

4π g(z, x) G±(z, y),
(D.1)

which is obtained from (2.28) by redefining the integration variable z → 1/z in one of
the two integrals of the second line. The freedom to integrate in the upper or in the
lower semicircle is a consequence of the symmetry

G±(1/z, y) = −G±(z, y). (D.2)

In the massive case the total result is obtained by summing the four contributions

ΦHL(x±, y±) = ϕHL(x+, y+)− ϕHL(x−, y+)− ϕHL(x+, y−) + ϕHL(x−, y−). (D.3)

Before doing this sum we will actually move the contour of integration to the real interval
[−1,+1]. We will decide whether we want to start from the representation with the upper
or the lower semicircle, depending on the position of the branch cuts of the integrand
that we do not want to intersect when moving the contour. Let us look at the four
possible cases.

35We have also used for m 6= n

m− n
mn(m+ n) = m2 + n2

mn(m2 − n2) −
2

m2 − n2 . (C.28)
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• (x+, y+) We start from integrating on the upper semicircle, and when moving the
contour we do not pick any pole.

∫
y

dz

4π g(z, x+) G−(z, y+) =
1+iε∫

−1+iε

dz

4π g(z, x+) G−(z, y+). (D.4)

• (x−, y+) We start from integrating on the upper semicircle, and when moving the
contour we pick a pole at 1/x−.
∫
y

dz

4π g(z, x−) G−(z, y+) =
1+iε∫

−1+iε

dz

4π g(z, x−) G−(z, y+) + i

2G−( 1
x− , y

+). (D.5)

• (x+, y−) We start from integrating on the lower semicircle, and when moving the
contour we pick a pole at 1/x+.
∫

xdz
4π g(z, x+) G+(z, y−) =

1−iε∫

−1−iε

dz

4π g(z, x+) G+(z, y−)− i

2G+( 1
x+ , y

−). (D.6)

• (x−, y−) We start from integrating on the lower semicircle, and when moving the
contour we do not pick any pole.

∫
xdz

4π g(z, x−) G+(z, y−) =
1−iε∫

−1−iε

dz

4π g(z, x−) G+(z, y−). (D.7)

Summing up the four contributions as in (D.3) we obtain the result in (2.30).

D.2 Proof for the solution to the HL crossing equation
In this appendix we will show that the phase (2.30) satisfies the crossing equation that
follows from (2.27) by studying its analytic continuation to the crossed region. We will do
that without assuming whether the variables involved correspond to massive or massless
particles. Consider

ΦHL(x±, y±) =
1+iε∫

−1+iε

dz

4πG−(z, y+)
(
g(z, x+)− g(z, x−)

)

−
1−iε∫

−1−iε

dz

4πG+(z, y−)
(
g(z, x+)− g(z, x−)

)

− i

2
(
G−( 1

x− , y
+)−G+( 1

x+ , y
−)
)
,

(D.8)

which we want to identify with θHL in the physical region Im x+ > 0, Im x− < 0 (and
similarly for y±). First we note that it satisfies the “homogeneous crossing equation”

ΦHL( 1
x± , y

±) + ΦHL(x±, y±) = 0, (D.9)
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which is simply a consequence of the identities G±( 1
x
, y) + G±(x, y) = 0, and g(z, 1

x
) +

g(z, x) = 2
z
. The function jumps for x± or y± going through the real line. We therefore

study the analytic continuation in order to get a continuous θHL. The path is chosen
according to the prescription of [30], where massive parameters are continued by crossing
the lower semicircle from the outside to the inside. It is clear that this is equivalent to
saying that we continue the variable x+ across the long interval ]−∞,−1] ∪ [+1,+∞[,
and the variable x− across the short one [−1,+1].

The discontinuities come from the integrals appearing in the first line of (D.8). For
the purpose of this computation the two integrals

1±iε∫
−1±iε

can be considered together. We

study separately the cases of continuation of x+ and x−.

• x+

We are crossing the long interval from above. Take x+
0 ∈ R with |x+

0 | > 1. The
discontinuity is given by the function evaluated36 at x+

0 + iε minus that at x+
0 − iε




1+iε∫

−1+iε

dz

4πG−(z, y+)−
1−iε∫

−1−iε

dz

4πG+(z, y−)


(
g(z, x+

0 + iε)− g(z, x+
0 − iε)

)
.

(D.10)
We find a pole at z = 1/x+

0 with residue −1 and since we are integrating clockwise
we find that the discontinuity is

− i

2
(
G−(x+

0 , y
+)−G+(x+

0 , y
−)
)
. (D.11)

• x−
Now we are crossing the short interval from below. Take x−0 ∈ R with |x−0 | < 1.
The discontinuity is given by the function evaluated at x−0 −iε minus that at x−0 +iε

−



1+iε∫

−1+iε

dz

4πG−(z, y+)−
1−iε∫

−1−iε

dz

4πG+(z, y−)


(
g(z, x−0 − iε)− g(z, x−0 + iε)

)
.

(D.12)
We find a pole at z = x−0 with residue +1 and since we are integrating clockwise
we find that the discontinuity is

− i

2
(
G+(x−0 , y−)−G−(x−0 , y+)

)
. (D.13)

From the above calculation we conclude that in order to get a function continuous across
the real line we need to define it in the crossed region Im x+ < 0, Im x− > 0 as

ΦHL(x±, y±)− i

2
(
G−(x+

0 , y
+) +G+(x−0 , y−)−G+(x+

0 , y
−)−G−(x−0 , y+)

)
. (D.14)

36The ε that we are using here is different from the ε used to regulate the contours of integration.
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Checking the crossing equation amounts then to computing

θHL(x±, y±) + θHL( 1
x± , y

±) = ΦHL(x±, y±) + ΦHL( 1
x± , y

±)

− i

2
(
G−( 1

x+ , y
+) +G+( 1

x− , y
−)

−G+( 1
x+ , y

−)−G−( 1
x− , y

+)
)

= i

2
(
G−(x+, y+) +G+(x−, y−)

−G+(x+, y−)−G−(x−, y+)
)
.

(D.15)

which is consistent with the right-hand-side of equation (2.27). Since we did not need
to specify whether the starting point of x± is outside or on the unit circle (and similary
for y±), the proof is valid for the massive, the massless and the mixed mass cases.

E The massless limit of σ−

In this appendix we show that deforming the contour and imposing massless kinematics
on the dressing factor σ− in a manner analogous to Sections 2.3.3 and 2.3.5 trivializes
σ−. To see this note the following identities

∫
x

dz

4π
H(z, y)
x− z =

∫
xdz

4π
H(z, y)
z(xz − 1) (E.1)

∫

xdz
4π

H(z, y)
x− z =

∫
x

dz

4π
H(z, y)
z(xz − 1) . (E.2)

When deforming the integration contour to the interval [−1, 1] we want to avoid the
branch-cut of the logarithm in H(z, y) and to account for the poles located inside the
unit circle. Defining

h(z, x) = d

dz
H(z, x) = 1

z − 1
x

+ 1
z − x −

1
z
, (E.3)
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one can show that deforming the contour and imposing massless kinematics gives

χ−m(x+, y+) =
∫
x

dz

4π
(
H(z, x+)h(z, y+)−H(z, y+)h(z, x+)

)

=
1+iε∫

−1+iε

dz

4π
(
H(z, x+)h(z, y+)−H(z, y+)h(z, x+)

)

→
1+iε∫

−1+iε

dz

4π (H(z, x)h(z, y)−H(z, y)h(z, x)) , (E.4)

χ−m(x+, y−) =
∫
x

dz

4πH(z, x+)h(z, y−) +
∫

xdz
4πH(z, y−)h(z, x+)

=
1+iε∫

−1+iε

dz

4πH(z, x+)h(z, y−) + i
2H( 1

y− , x
+)

+
1−iε∫

−1−iε

dz

4πH(z, y−)h(z, x+) + i
2H( 1

x+ , y
−)

→
1+iε∫

−1+iε

dz

4πH(z, x)h(z, 1
y
) + i

2H(y, x)

+
1−iε∫

−1−iε

dz

4πH(z, 1
y
)h(z, x) + i

2H( 1
x
, 1
y
), (E.5)

with similar results for χ−m(x−, y+) and χ−m(x−, y−). Combining the expressions as in
equation (2.17) it is easy to show that all the terms cancel upon using the identity

H( 1
x
, 1
y
) = H(x, y), (E.6)

and so σ− → 1.

F Singularities of the massless dressing factors
We have seen that we do not expect any bound-states to appear in the massless kine-
matics by analysing the matrix part of the su(1|1)c.e. S matrix. Here we will check that
no singularities arise from the proposed dressing factors. Starting from the AFS order,
we have

θAFS(x, y) =
(
x+ 1

x
− y − 1

y

)
log (x− y)2

(1− xy)2 . (F.1)

Clearly all poles of the resulting dressing factor should come from logarithmic singulari-
ties of the phase. However, any singularities of the logarithmic yield θAFS ≈ 0 log 0 which
is regular.

As for the Hernandez-Lopez order, it is convenient to use the dilogarithm expression
of eqs. (3.4) and (3.9) in [48]. As usual, the dressing factor is given by products and
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ratios of the form exp(iχHL(x±p , x±q )). We introduce the short-hand notation

χ±±pq ≡ χHL(x±p , x±q ), (F.2)

and we have

2πχαβpq = +Li2
eiα

p1
4 + e−iβ

p2
4

eiα
p1
4 − eiβ p2

4
+ Li2

eiα
p1
4 − e−iβ p2

4

eiα
p1
4 + eiβ

p2
4

− Li2
eiα

p1
4 − e−iβ p2

4

eiα
p1
4 − eiβ p2

4
− Li2

eiα
p1
4 + e−iβ

p2
4

eiα
p1
4 + eiβ

p2
4
−
(
p1 ↔ p2

)
,

(F.3)

where α, β = ±1. Singularities may arise when the argument of Li2(z) approaches infin-
ity, at which point the function diverges as −1

2 log2(−z). Therefore potential singularities
come from

e
i
4 (αp1−βp2) = ±1, with 0 6 Re pi < 2π. (F.4)

Let us start with the case when the right-hand-side is −1. Then, looking at the real part
of the equation, we are requiring that the sum or difference of two numbers between 0
and π/2 equals π. This can only happen when both momenta lie at the boundary of
the physical region. When the right-hand-side is +1, instead, we find that it must be
p1 = ±p2 depending on α, β. The case p1 = −p2 corresponds to the singlet singularity
at x = 1/y described in Section 2.6, and it is easy to check that for generic values
of the momenta there is no singularity due to cancellations among the different terms
in (F.3). Finally, the case while p1 = p2 is a new configuration, which makes sense for
real momenta, and where the dressing phase must be regular and indeed vanish in an
appropriate branch due to antisymmetry.

G On the nesting procedure
In this appendix we collect some details of the derivation of the Bethe equation and
the nesting procedure. For brevity, we omit some of the basic steps, for which we refer
to [56]. In Appendix G.1 we focus on the nesting procedure when including massless
excitations. The nesting procedure at weak coupling is discussed in Appendix G.2. In
Appendix G.3, for completeness, we write the Bethe equations with a non-trivial su(2)◦
factor of the S matrix.

G.1 Nesting and the massless excitations
The nesting procedure for the massive sector was carried out in the spin-chain frame in [7].
Since here we use the string-frame S matrix of [14], we prefer to rederive the results in
the massive sector, which will now have some different frame-dependent factors. This
will make it simpler to compare to the calculations with massless excitations.

We choose to work in the bosonic grading of Section 3.1, so that a level-I vacuum with
only Left massive excitations is made up of Y L’s. In order to diagonalise the S-matrix
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involving also excitations created by the action of QL1, we start with the following ansatz
for the two-particle state

|Y22〉 = f2(y, p1) |ηL1
p1Y

L
p2〉+ f2(y, p2)SII,I

22 (y, p1) |Y L
p1η

L1
p2〉 . (G.1)

Above, the subscripts “2” are used to indicate that these level-I excitations correspond
to node “2”. An eigenstate |Ψ〉 of the S-matrix can be found by making the ansatz
|Ψ〉 = |Y22〉+Ap1p2 |Y22〉π and imposing the compatibility condition

S |Y22〉 = A22
p1p2 |Y22〉π . (G.2)

Here A22
p1p2 = 〈Y L

p2Y
L
p1| S |Y L

p1Y
L
p2〉 is the scattering element between two level-I excitations,

and |Y22〉π is obtained from |Y22〉 by permuting the momenta p1 and p2. The solution of
equation (G.2) is

f2(y, pj) =
g2(y)ηpj

h2(y)− x+
pj

, SII,I
22 (y, pj) =

(
x+
pj

x−pj

)1/2
h2(y)− x−pj

h2(y)− x+
pj

, (G.3)

for some undetermined functions g2, h2 of the auxiliary root y.
This procedure can also be applied to the case when the two-particle state is made

up of massless excitations. Now the level-I excitation37 is χ1 and the ansatz for the
two-particle state containing level-I and level-II excitations is

|Y00〉 = f0(y, p1) |T 11
p1 χ

1
p2〉 − f0(y, p2)SII,I

00 (y, p1) |χ1
p1T

11
p2 〉 , (G.4)

where the minus sign comes from moving the supercharge past the fermion χ1. Now the
compatibility condition is

S |Y00〉 = A00
p1p2 |Y00〉π , (G.5)

where A00
p1p2 = 〈χ1

p2χ
1
p1| S |χ1

p1χ
1
p2〉. The solution to this equation turns out to be essen-

tially the same as the previous one38

f0(y, pj) =
g0(y)ηpj

h0(y)− z+
pj

, SII,I
00 (y, pj) =

(
z+
pj

z−pj

)1/2
h0(y)− z−pj

h0(y)− z+
pj

, (G.6)

where z±p are spectral parameters for massless excitations. We have introduced functions
g0, h0 of y which are in principle different from g2 and h2.

We can relate the unconstrained functions g0, h0, g2, h2 by looking at a level-I vacuum
which contains at the same time massless and massive excitations. The ansatz for the
two-particle state and its permutation are now

|Y20〉 = f2(y, p1) |ηL1
p1χ

1
p2〉+ f0(y, p2)SII,I

20 (y, p1) |Y L
p1T

11
p2 〉 ,

|Y20〉π = f0(y, p2) |T 11
p2 Y

L
p1〉 − f2(y, p1)SII,I

02 (y, p2) |χ1
p2η

L1
p1〉 .

(G.7)

37We may choose χ1 or χ2, since the su(2)◦ part of the massless S-matrix was chosen to be trivial.
See [56] for the derivation without this assumption.

38This is a consequence of the basis we are using for massless excitations. In this basis the massless
module is isomorphic to (two copies of) the Left module in a different grading.
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The equation
S |Y20〉 = A20

p1p2 |Y20〉π , (G.8)
with A20

p1p2 = 〈χ1
p2Y

L
p1| S |Y L

p1χ
1
p2〉 is solved by identifying

h0(y) = h2(y) ≡ y, SII,I
20 (y, pj) = SII,I

00 (y, pj)
g0(y) = g2(y) = g(y), SII,I

02 (y, pj) = SII,I
22 (y, pj).

(G.9)

Above, g(y) is an arbitrary function of y which does not appear in the Bethe equations,
and we have used the freedom in parameterising h0 = h2 to define the auxiliary root y.

G.2 Nesting at weak coupling
It is interesting to note that at weak coupling the S-matrix in the mixed sector greatly
simplifies, and this has consequences on the nesting procedure. Let us start the discussion
from the level-I vacuum |Y LY L〉 and repeat the diagonalisation procedure for the S matrix
that we obtain when keeping only the leading order in the h ∼ 0 expansion. In this limit
it is useful to introduce u variables for massive excitations defined as

p = 2 arccot(2u). (G.10)

It is then easy to check that the results for the diagonalisation at weak coupling are
essentially the ones we obtain by taking the weak coupling limit of the all-loop results.
Because x±p ∼ O(1/h) for h → 0, we then need to rescale h2(y) → h2(y)/h, g2(y) →
g2(y)/h in equation (G.3). In particular, one obtains at weak coupling

SII,I
22 (y, uj) =

(
uj + i

2
uj − i

2

)1/2
h2(y)− uj + i

2
h2(y)− uj − i

2
, (G.11)

where the first factor is eip/2 expressed in terms of u.
On the other hand, the massless S matrix has no explicit h-dependence. Therefore, the

diagonalisation procedure works exactly as above, with no need to introduce u-variables
for massless excitations. Because ηp is proportional to

√
h for massless excitations, we

do need to rescale g0(y)→ g0(y)/
√
h in equation (G.6). Nevertheless, unlike h2(y), h0(y)

is not rescaled with powers of h.
Looking at the mixed level-I vacuum, one discovers that now the compatibility con-

dition (G.8) imposes weaker constraints. In particular, it is not necessary anymore to
identify the functions h0 and h2. The immediate consequence of this is that at weak
coupling one has distinct sets of auxiliary roots for massive and massless excitations,
as given in equation (3.46). Moreover, one finds that the scattering processes between
level-II and level-I excitations in the mixed-mass case do not depend on the auxiliary
variables39

SII,I
20 (y, pj) = eip2/2, SII,I

02 (y, uj) =
(
uj + i

2
uj − i

2

)−1/2

, (G.12)

39As before, these results may be obtained by doing a weak-coupling expansion of the all-loop results,
after the rescalings of hj , gj with powers of h explained previously and without using the identifications
of h0, h2 and g0, g2.
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and these factors of eip can be reabsorbed in the redefinition of the length L in the Bethe
equations, as in (3.48).

A simplification at weak coupling happens also in the LR massive sector. In that
case, we may consider the level-I vacuum |ZRZR〉 and study level-II excitations obtained
by acting on it with the lowering supercharge QL1, as in Section G.1. At all loops we find
a scattering element between level-II and level-I which depends on the function h2̄(y).
Demanding compatibility with the mixed vacuum |Y LZR〉 one finds that we should again
identify h2̄(y) = h2(y).

At weak coupling, instead, the scattering elements between level-II and level-I which
involve Right excitations are just factors of eip, and hence we do not even need to
introduce the function h2̄(y). Therefore, at weak coupling the auxiliary roots for QL1 do
not represent Right massive excitations. The situation is obviously reversed when we
look at the case of the lowering supercharge QR

1, whose auxiliary roots only represents
Right excitations an not Left ones. This shows that at weak coupling we cannot combine
anymore the auxiliary roots associated to QLa and QR

a supercharges, as done at all loops
in Section 3.1.

A way to obtain the result at weak coupling from the all-loop result of Section 3.1
is to allow auxiliary roots yJ,j to scale differently with powers of h: scalings as 1/h or h
would correspond to Left massive and Right massive excitations respectively, while no
scaling with h corresponds to massless excitations.

G.3 Nesting and the su(2)◦ root
In the main text we have assumed that the su(2)◦ factor of the S matrix is trivial,
as suggested by perturbation theory. To achieve this we have sent the function of the
momentum wp →∞. If we had not done that, scattering between the massless fermions
χ1 and χ2 would have non-trivial transmission and reflection contributions depending on
wp. Therefore only one of these excitations should be assigned to level I, and we would
need to use the nesting procedure also to diagonalise the action of the su(2)◦ lowering
operator. If we decide to put χ1 in level I and regard χ2 as a level-II excitation, then the
Bethe equations for massless excitations (3.3) would contain an additional factor on the
right-hand-side (

z+
k

z−k

)L
= · · ·

N4∏

j=1

wk − y4,j − i/2
wk − y4,j + i/2 , (G.13)

where the dots stand for the other factors in (3.3), which we do not repeat. Here y4,j
are new auxiliary roots, associated to the action of the su(2)◦ lowering operator. They
satisfy their own Bethe equations,

1 =
N4∏

j=1
j 6=k

y4,k − y4,j + i

y4,k − y4,j − i
N0∏

j=1

y4,k − wj − i/2
y4,k − wj + i/2 , (G.14)

which contain the interaction between level I and level II, as well as a level II self-
interaction. Notice further that the y4,j do not couple to the massive roots.
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AdS3 × S3 × S3 × S1 worldsheet S matrix”, J. Phys. A48, 415401 (2015),
arxiv:1506.00218.

[15] N. Rughoonauth, P. Sundin and L. Wulff, “Near BMN dynamics of the
AdS3 × S3 × S3 × S1 superstring”, JHEP 1207, 159 (2012), arxiv:1204.4742.
M. C. Abbott, “Comment on Strings in AdS3 × S3 × S3 × S1 at One Loop”,
JHEP 1302, 102 (2013), arxiv:1211.5587.

[16] M. Beccaria, F. Levkovich-Maslyuk, G. Macorini and A. A. Tseytlin, “Quantum
corrections to spinning superstrings in AdS3 × S3 ×M4: determining the dressing
phase”, JHEP 1304, 006 (2013), arxiv:1211.6090.

64

http://dx.doi.org/10.1088/1126-6708/2008/07/033
http://arxiv.org/abs/0804.3267
http://dx.doi.org/10.1007/JHEP03(2010)058
http://arxiv.org/abs/0912.1723
http://dx.doi.org/10.1007/JHEP08(2011)029
http://arxiv.org/abs/1106.2558
http://dx.doi.org/10.1007/JHEP10(2012)109
http://arxiv.org/abs/1207.5531
http://dx.doi.org/10.1007/JHEP11(2012)133, 10.1007/JHEP04(2013)003
http://arxiv.org/abs/1209.4049
http://dx.doi.org/10.1007/JHEP04(2013)113
http://arxiv.org/abs/1211.5119
http://dx.doi.org/10.1007/JHEP08(2013)043
http://arxiv.org/abs/1303.5995
http://dx.doi.org/10.1088/1751-8113/48/2/023001
http://arxiv.org/abs/1406.2971
http://dx.doi.org/10.1007/JHEP03(2013)109
http://arxiv.org/abs/1211.1952
http://dx.doi.org/10.1007/JHEP04(2014)179
http://arxiv.org/abs/1312.3268
http://dx.doi.org/10.1016/j.nuclphysb.2015.02.022
http://arxiv.org/abs/1412.6380
http://dx.doi.org/10.1103/PhysRevLett.113.131601
http://arxiv.org/abs/1403.4543
http://dx.doi.org/10.1007/JHEP10(2014)066
http://arxiv.org/abs/1406.0453
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.019
http://arxiv.org/abs/1410.0866
http://dx.doi.org/10.1088/1751-8113/48/41/415401
http://arxiv.org/abs/1506.00218
http://dx.doi.org/10.1007/JHEP07(2012)159
http://arxiv.org/abs/1204.4742
http://dx.doi.org/10.1007/JHEP02(2013)102
http://arxiv.org/abs/1211.5587
http://dx.doi.org/10.1007/JHEP04(2013)006
http://arxiv.org/abs/1211.6090


[17] M. Beccaria and G. Macorini, “Quantum corrections to short folded superstring in
AdS3 × S3 ×M4”, JHEP 1303, 040 (2013), arxiv:1212.5672.

[18] P. Sundin and L. Wulff, “Worldsheet scattering in AdS3/CFT2”, JHEP 1307, 007 (2013),
arxiv:1302.5349. P. Sundin and L. Wulff, “The low energy limit of the
AdS3 × S3 ×M4 spinning string”, JHEP 1310, 111 (2013), arxiv:1306.6918.

[19] B. Hoare and A. A. Tseytlin, “On string theory on AdS3 × S3 × T 4 with mixed 3-form
flux: tree-level S-matrix”, Nucl. Phys. B873, 682 (2013), arxiv:1303.1037.

[20] L. Bianchi, V. Forini and B. Hoare, “Two-dimensional S-matrices from unitarity cuts”,
JHEP 1307, 088 (2013), arxiv:1304.1798.

[21] B. Hoare and A. Tseytlin, “Massive S-matrix of AdS3 × S3 × T 4 superstring theory with
mixed 3-form flux”, Nucl. Phys. B873, 395 (2013), arxiv:1304.4099.

[22] O. T. Engelund, R. W. McKeown and R. Roiban, “Generalized unitarity and the
worldsheet S matrix in AdSn × Sn ×M10−2n”, JHEP 1308, 023 (2013),
arxiv:1304.4281.

[23] M. C. Abbott, “The AdS3 × S3 × S3 × S1 Hernández-López Phases: a Semiclassical
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