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Abstract

Purpose

The visual evoked potential (VEP) provides a time series signal response to an external

visual stimulus at the location of the visual cortex. The major VEP signal components, peak

latency and amplitude, may be affected by disease processes. Additionally, the VEP con-

tains fine detailed and non-periodic structure, of presently unclear relevance to normal func-

tion, which may be quantified using the fractal dimension. The purpose of this study is to

provide a systematic investigation of the key parameters in the measurement of the fractal

dimension of VEPs, to develop an optimal analysis protocol for application.

Methods

VEP time series were mathematically transformed using delay time, τ, and embedding

dimension,m, parameters. The fractal dimension of the transformed data was obtained

from a scaling analysis based on straight line fits to the numbers of pairs of points with sepa-

ration less than r versus log(r) in the transformed space. Optimal τ,m, and scaling analysis

were obtained by comparing the consistency of results using different sampling frequen-

cies. The optimised method was then piloted on samples of normal and abnormal VEPs.

Results

Consistent fractal dimension estimates were obtained using τ = 4 ms, designating the fractal

dimension = D2 of the time series based on embedding dimensionm = 7 (for 3606 Hz and
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5000 Hz),m = 6 (for 1803 Hz) andm = 5 (for 1000Hz), and estimating D2 for each embed-

ding dimension as the steepest slope of the linear scaling region in the plot of log(C(r)) vs

log(r) provided the scaling region occurred within the middle third of the plot. Piloting

revealed that fractal dimensions were higher from the sampled abnormal than normal ach-

romatic VEPs in adults (p = 0.02). Variances of fractal dimension were higher from the

abnormal than normal chromatic VEPs in children (p = 0.01).

Conclusions

A useful analysis protocol to assess the fractal dimension of transformed VEPs has been

developed.

Introduction

Visual evoked potentials (VEPs) are electrophysiological signals in response to temporally

modulated stimuli recorded by electrodes located on scalp overlying the visual cortex. Such

VEPs mainly reflect functional integrity of the visual pathway processing stimuli in the central

visual field [1]. Visual evoked potentials may be used to indicate the health, normality and

maturity of the visual system [1–3].

The International Society of Clinical Electrophysiology and Vision (ISCEV) has defined

protocols for clinical assessment and the analysis of the VEP waveforms [1]. Transient VEPs

record visual processing following a stimulus change. A typical VEP signal has a waveform

appearance with peaks and troughs. The ISCEV protocol specifies the measurement of the

amplitudes of the peaks and troughs and their latency, i.e., the time since the stimulus change.

These measurements provide information about the speed and strength of processing arising

from the cortical generators of the VEP components [1].

More generally, the VEPs contain fine detailed and possibly non-periodic structure. The

importance of these aspects for normal visual processing is not yet clear. One method that has

been used recently to provide an understanding of non-periodic structures in VEPs is the mea-

surement of the fractal dimension of the time series [4–7]. Fractal dimensions may be used to

quantify the complexity of a pattern by characterising how detail in the pattern changes with

the scale in which it is measured. Fractal dimension measurements have been proven to be use-

ful for quantifying chaotic, or non-linear deterministic, dynamical systems. Fractal structures

may be identified in chaotic time series using Grassberger and Procaccia’s algorithm [8, 9]. The

fractal dimension provides an indication of the minimum number of first order differential

equations, equivalent to the minimum number of dynamical variables required to model the

behaviour of the dynamical system [8, 9]. In previous studies the VEP has been found to

behave as part of a nonlinear deterministic dynamical system characterized by fractal dimen-

sions [4–7]. In the framework of nonlinear dynamical analysis, the VEP is regarded as a time

series which images the electrophysiological activity of the visual system in the time domain

for a fixed window of time. The VEP time series as specified in the ISCEV protocol is an

ensemble average across multiple observations with the same stimulus. The averaging is neces-

sary to remove EEG activity that is not related to the stimulus change.

When applied to electrophysiological signals such as the EEG or VEP, the fractal dimension

quantifies the average relative complexity of patterns of communication between cortical neu-

rons. This complexity, represented by the number of dynamical variables, may be related to the

number of neuronal populations (source generators) [10, 11] or it may be related to structure
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in the electrophysiological activity of single neuronal populations [12]. It should be noted,

however, that the transient VEP, recorded according to the ISCEV protocol is averaged to min-

imise the input of noise. Consequently, the complexity of all brain dynamics are not being

investigated, but a subset of dynamics restricted to the visual system [13]. The fractal dimen-

sion measurement as applied in this study is not as a test for chaotic time series, but as a repro-

ducible and reliable measurement for characterizing VEPs that is complementary to amplitude

and latency measures.

Commercial VEP systems typically record transient VEPs using 1000 Hz sampling fre-

quency. While sampling frequency does not impact greatly on the evaluation of amplitude and

latency, the number of data points in the time series limits the accuracy of the estimate of the

fractal dimension using Grassberger and Procaccia’s algorithm [14, 15]. A higher number of

data points and higher sampling frequencies allow higher fractal dimensions to be estimated

with improved accuracy [14, 15]. Abnormal visual systems might have higher dimensions than

normal systems hence the use of sampling frequencies >1000 Hz might be useful. Higher sam-

pling frequencies may also facilitate the examination of finer detail in the VEP through other

measures such as detrended fluctuation analysis [16].

One potentially useful clinical application for the fractal dimension would be to assist in the

differentiation of normal and abnormal visual systems. However, when computing the fractal

dimension, there are a number of parameters and decision rules that must be optimised as the

characteristics of the time series and the underlying dynamics of the system generating the

time series on which these parameters depend are not known a priori. If the fractal dimension

is to find application in the analysis of clinical signals, a consistent set of protocols for its mea-

surement must be devised. In previous work, the values of these parameters were optimised for

the analysis of transient VEPs recorded with a 1000 Hz sampling frequency from children and

adults with normal VEPs [5, 6, 17] but not for other sampling frequencies or for VEPs recorded

from people with abnormal visual systems. This provides the primary motivation in this paper

for the systematic investigation of the parameters in the measurement of the fractal dimension

of VEPs in an effort to develop an optimal analysis protocol for clinical application. Our crite-

ria for an optimal analysis protocol are that it yields fractal dimension estimates that are com-

parable with previous work and produces D2 estimates that are similar across different

sampling frequencies.

Materials and Methods

This study focuses on developing protocols for one fractal dimension measurement, the corre-

lation dimension (D2) which is estimated using Grassberger and Procaccia’s algorithm [8, 9],

for VEPs recorded using different commercially available sampling frequencies. This study was

conducted in two phases. In the first phase, in recognition of the sequential nature of the esti-

mation of D2 using the Grassberger and Procaccia algorithm, we developed the analysis proto-

col in stages such that later steps in the algorithm were only investigated after earlier steps were

optimised. In the second phase, we applied the optimised protocol to a sample of VEPs

recorded from adults and children, to investigate its ability to differentiate between VEPs

drawn from normal and abnormal visual systems. As such, in both phases 1 and 2, the fractal

dimension, D2, was the primary outcome variable that was analysed statistically. However, the

VEPs were described in terms of their standard ISCEV components: CI (first positive peak

component), CII (first trough component) and CIII (second positive peak component) laten-

cies and amplitudes. CI amplitude was calculated baseline-to-peak. CII amplitude was assessed

as the peak-to-peak amplitude CI to CII. CIII amplitude was assessed as the peak-to-peak

amplitude CII to CIII. Peak latency of each component was calculated as the time taken
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between stimulus onset and when the highest point in the peak, or lowest point in the trough.

Components were repeatable if the peaks and troughs identified had latencies that were within

10% of the longest latency for two successive recordings of the VEP to the same visual stimulus

[6].

In Phase 1, the key parameters investigated in the measurement of D2 are the delay time τ

and the embedding dimensionm. D2 is estimated from scaling behaviour at fixed values of τ

andm. Custom software was written using Matlab (The Mathworks, Inc., Massachusetts,

United States) to determine suitable values for these parameters. In Phase 2, the optimised

method was then piloted on samples of normal and abnormal VEPs. The persons carrying out

the analysis were unaware whether the VEPs they were analysing were drawn from normal or

abnormal visual systems.

The study protocol, including the consent procedure, was approved by human research

ethics committees (UNSW Australia Human Research Ethics Committee approval number:

09364 and SingHealth CIRB Secretariat Reference Approval Number: R1083/98/2013). All

participants were provided with study participant information and consent forms and were

given the opportunity to ask questions of the researchers to clarify any concerns. As the chil-

dren had varying levels of reading and writing ability, the information in the consent form

was conveyed to the children by the researchers either verbally or in written format. After

agreeing to participate in the study, the participants >18 years of age gave their written con-

sent and signed the consent forms. In the case of child participants, the guardian/parent of

each child gave their written consent and signed the consent forms after agreeing to allow

their child to participate in the study. The child participants provided their assent, verbally,

to the best of their ability to understand. The original signed copies of the informed consent

forms are stored by the investigators in a secure location in accordance with the human

research ethics committee documentation. The tenets of the Declaration of Helsinki were fol-

lowed throughout.

Visual evoked potential sample characteristics

Samples of VEPs were drawn randomly from a dataset which included VEPs recorded from

children and adults with normal and abnormal visual systems. Normal vision was defined as

having normal visual acuity (6/6 Snellen visual acuity or better), no congenital colour vision

deficiencies (Ishihara pseudoisochromatic colour vision screening test was used), normal stere-

opsis (<50 seconds of arc) and no sign of ocular abnormality (evaluated using direct ophthal-

moscopy). The abnormal VEPs were recorded in children and adults with known

abnormalities of visual pathway function including amblyopia, strabismus and central retinal

artery occlusion [18]. The diagnosis of normality or otherwise was confirmed by ocular and

visual system evaluation by registered optometrists and ophthalmologists.

The VEPs were recorded in response to stimuli that were either black-white or chromatic

(magenta-cyan) gratings of low spatial frequency—1 cycle per degree (cpd) in the children and

2 cpd in the adults—on gamma corrected and calibrated cathode ray tube monitors. All visual

stimuli were presented pattern onset-offset (on 100 ms and off 400 ms) at a 2 Hz temporal fre-

quency. The electrode montage employed was according to 2004 ISCEV standards [19] so

scalp electrodes were applied as follows; active electrode at Oz, reference electrode at Cz and

the ground electrode at Fz. Two VEPs were recorded in response to each stimulus condition.

Each VEP comprised one second sweep duration and the average of 30 sweeps. Each VEP was

recorded on one of three commercial medical visual electrophysiology systems at their maxi-

mum sampling frequencies: Medelec Synergy (Radiometer Pacific, Sydney, Australia; 1000 Hz)

and Espion (Diagnosys LLC, Lowell, Massachusetts; two systems, 3606 Hz and 5000 Hz).
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Application and optimisation of parameters for dimension estimation

The application of Grassberger and Procaccia’s algorithm to transient VEPs has been described

previously and is briefly reviewed here [5, 6]. In this method, the VEP is regarded as a time

series that is one observation of the dynamics of a deterministic system. For VEPs the deter-

ministic system would be a mathematical model for the average electrophysiological processing

of the visual system following a given stimulus change. If a system is deterministic, then any

activity that occurs at one point in time must be dependent on activity that occurred earlier in

the time series. The time evolution of the system that produces the VEP can be represented as a

path, or phase space trajectory, in an abstract mathematical space called phase space. Using the

time series for just one of the components (in this case the average observation that is the VEP)

of the system, it is possible to reconstruct a path that shares the same invariant properties (such

as dimension) as the full phase space trajectory. This process of reconstruction is called phase

space embedding. If the reconstructed phase space hasm dimensions, then each reconstructed

phase space coordinate Xi is anm component vector which is obtained from the time series y

(t1), y(t2),. . . by the prescription Xi = (y(ti), y(ti+τ), y(ti+2τ),. . ., y(ti+((m-1)τ) wherem and τ

are constant parameters, referred to as the embedding dimension, and the delay time, respec-

tively. The index i denotes ordering in time. Phase space trajectories of deterministic dynamical

systems usually evolve towards a particular set of coordinates called an attractor, although this

may be a transient attractor in the case of VEPs, and the dimension of the attractor is less than

that of the full phase space. Grassberger and Procaccia’s algorithm can be used to characterise

the phase space filling properties of the path. The dimension is obtained by covering the set

with boxes of a given size (r) and then computing the probability pi(r) (equivalent to the rela-

tive frequency in sufficiently large data sets) of having a point of the set in the ith box. The cor-

relation dimension (D2) for a set of points is formally defined as:

D
2
¼ lim

r!1

log
X

i
p2i ðrÞ

logr
ðEq 1Þ

where p2i ðrÞ is the probability of finding a pair of points in a box of size r. The limit r to zero is

not amenable to real world data and instead some scaling relations are used. Grassberger and

Procaccia [8, 9] found that for small values of r and for sufficiently large numbers of data

points, N, the probability of having a pair of points in a box of size r is the same as the probabil-

ity of having a pair of points with separation distance less than r. This latter probability is the

correlation sum described by the following formula:

CðrÞ ¼ lim
N!1

1

ðNðN � 1Þ

� �

:number of pairs of points with separation < r ðEq 2Þ

For small r, the correlation sum grows according to a scaling relation CðrÞ � rD2 . This scal-

ing relation is only valid if r is small and N is large and this needs to be borne in mind in appli-

cations. Rearranging the scaling relation and taking logarithms of both sides, shows that D2

may be approximated by log (C(r))/log(r), which is usually approximated as the slope of the

straight line scaling region in a plot of log(C(r)) vs log(r).

When used to estimate the correlation dimension of a time series, the time series is embed-

ded into a range of phase space dimensions,m. The dimension D2 is estimated for each embed-

ding dimension and plotted as a function ofm. If the function plateaus, then the value at which

it plateaus provides an estimate of the fractal dimension of the system, provided that the pla-

teau occurs before the threshold value limited by the number of data points.

Optimising Fractal Dimension Analysis of Visual Evoked Potentials
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It can be seen that a number of key decisions must be made. As sampling frequency is var-

ied, what are appropriate values for the delay time τ? From which range of embedding dimen-

sions should the fractal dimension, D2, be measured? How should the straight line scaling

region be identified in the plot of log(C(r)) vs log(r)? These questions are considered below.

Considerations in the selection of delay time, τ. If τ is too small, then y(ti+τ) is almost

the same as y(ti) and therefore a reconstructed attractor will lie nearly on a straight line with

D2 = 1. If τ is too large, the time series points may be too widely separated in time to be consid-

ered as components of a single phase space vector. In this case there may be no discernible struc-

ture in the reconstructed phase space trajectory [20]. Therefore τ should be selected so that the

reconstructed trajectory is not stretched out along the diagonal in the embedding space [21, 22].

For embedding dimensions less than four this can be seen in a simple visual plot of the trajectory

[5]. In previous studies, for VEP data recorded at 1000 Hz sampling frequency, τ of 4 or 6, equiv-

alent to 4 or 6 ms in the time domain, permitted the fractal dimension of VEPs in children and

adults to be estimated and distinguished from each other [5, 6, 17]. In this study delay times of

τ = 1, 3, 6, 9, 13, 16, 19, 22 and so on were trialled on VEPs recorded at sampling frequencies

>1000 Hz. Our guiding principle was to select the smallest values for τ that revealed structures

other than thin lines stretched out along the diagonal in the reconstructed phase space trajecto-

ries with very little change in structure for a range of increasing τ [21].

Considerations regarding the scaling analysis. The scaling region within the plot of log

(C(r)) vs log(r) does not always cover the entire plot. Recall that the scaling relation was depen-

dent on r being small and N being large however there is a minimum r, below which no pairs of

points would be in a box, and there is a maximum r, above which all pairs of points would be

in the box. Slopes should be calculated from a range of box sizes, r, between these extremes.

Henry et al. [21] suggested using the middle third of the data to estimate slope (see Fig 1). The

criterion of the middle third rule objectively avoids the smallest scales for which fluctuations

are great and the largest scales that are constrained by the finite number of data points in a dis-

crete time series. This is an objective measure but it may cross changes in slope, such as for

those plots of log(C(r)) vs log(r) which contain a “knee”, where the plot appears to bend in a

Fig 1. Twomethods of finding the scaling region in sample plots of log(C(r)) vs log(r) are illustrated: Above and below the
knee, and the Middle Third Rule. The numbers in blue, “1, 2”, indicate two consecutive running average slopes of 12 consecutive
data points.

doi:10.1371/journal.pone.0161565.g001

Optimising Fractal Dimension Analysis of Visual Evoked Potentials

PLOS ONE | DOI:10.1371/journal.pone.0161565 September 6, 2016 6 / 21



manner similar to a knee. Tsonis et al. [23] showed in a plot of slope as a function of log(r) that

very small scales tend to show large fluctuations in slope. Tsonis et al. [23] does not suggest

using the middle third to estimate D2 but agreed that D2 should be estimated from an interme-

diate region, and suggested using the widest plateau in the plot of slope as a function of log(r)

as it would be the most stable scaling region. Note that this will not typically occur for the

smallest and largest values of r.

Some researchers have suggested measuring the slope above, below, or at a tangent along

the knee [24]. The importance of the presence or absence of a “knee” in relation to VEP data is

not known and is worth further investigation. One possible explanation for a knee is that the

data is noise on scales below the knee but is deterministic on scales above the knee. In this case

we would expect to measure D2 =m below the knee since noise is space filling, or approaching

m in the case of data- limited noise, and D2<m above the knee as deterministic structure is

expected to be non-space filling.

To estimate D2 for each embedding dimension,m, we first computed a running average

slope over 12 consecutive data points in the plot of log(C(r)) and log(r), and then made plots of

the running average slope as a function of log(r). Three strategies were then considered: (i) If a

knee was present in this plot, slope was estimated above the knee and below the knee separately

(see Fig 1) providing two values for D2 for a givenm based on the corresponding plateau values.

(ii) D2 for a givenm was estimated as the largest value within the widest plateau region. (iii) If

the widest plateau in the plot of running average slope as a function of log(r) occurred within

the middle third, D2 for a givenm was estimated as the largest value from the plateau within

the middle third.

To determine if the values of D2 obtained for each embedding dimension were indicative of

either deterministic structure or noise, we plotted D2 as a function of the embedding dimension

m. The characteristic feature of deterministic structure in this plot is that D2 limits to a ceiling

value less thanm. This shows up as a plateau in the plot of D2 versusm. To determine whether

D2 reached a ceiling value in this plot we measured a plateau index PI [5] defined as:

PI ¼ D
2
ðm�Þ � D

2
ðm� � 1Þ ðEq 3Þ

wherem� is the maximumm allowed by the data according to the Eckmann-Ruelle criteria

[14],

m� � ð2log
10
ðNÞÞ ðEq 4Þ

where N is the number of data points We took PI<0.3 as the indicator that D2 had reached a

ceiling value [5].

Our criterion for an optimal scaling method is that it results in an unambiguous measure of

slope for all VEPs and yields estimates of D2 that are comparable with previous work [5, 6]

Comparability of fractal dimension estimates for different sampling frequencies,

embedding dimension considerations. To check whether the parameters and rules yielded

by the above strategies are unaffected by sampling frequency, it is necessary to compare D2 for

VEPs identical in every way except for the sampling frequency using the optimised method. A

higher sampling frequency provides more data points, N, and hence a greater maximum

embedding dimension,m�, (see Eq 4), and a greater possible correlation dimension, D2 �m�.

The fractal dimension D2 was computed for VEP time series at their originally recorded sam-

pling frequency, and half that (achieved by extracting every second point from the original

time series): VEPs with 5000 Hz and 3606 Hz sampling frequencies were halved to 2500 Hz

and 1803 Hz respectively. From the Eckmann-Ruelle criteria, Eq 4, we estimate upper bounds,

Optimising Fractal Dimension Analysis of Visual Evoked Potentials
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m� = 7 for 3606 and 5000 Hz sampling frequencies,m� = 6 for 1803 and 2500 Hz sampling fre-

quencies andm� = 5 for 1000 Hz sampling frequencies for our calculations.

Statistical analysis

This study was carried out in two phases and the primary outcome measure of interest was D2

for each of the phases. The purpose of the first phase was to determine the protocol; family-

wise Type 1 error was controlled by using a Bonferroni-Sidak correction to adjust the α by the

total number of statistical analyses conducted, 3, to 0.017. In the second phase, in which the

protocol was piloted on samples of VEPs drawn from normal and abnormal visual systems, an

Analysis of Variance test with Bonferroni corrections of the post-hoc paired comparisons were

conducted, to control family-wise Type 1 error.

Results

Phase 1: Optimising the analysis protocol

Delay time, τ. Fig 2 shows typical plots of the reconstructed phase space trajectories for

different τ values. The plots shown are from a VEP of a child with abnormal vision due to

amblyopia (initials LS) recorded using a 3606 Hz sampling frequency in response to black and

white sine wave gratings. For τ� 16 data points (4.4 ms), the shape of the reconstructed trajec-

tory appears to be topologically stable (i.e. has geometric properties preserved despite deforma-

tions such as stretching) under rotation when viewed in Matlab, and not simply stretched

along the diagonal. Fig 2 and Table 1 show that while delay time in terms of number of data

points changes with sampling frequency, the shortest useful delay time for VEPs recorded at

3606 and 5000 Hz sampling frequency is about 4 ms.

The scaling analysis. In the log-log plots of C(r) versus r, a knee was present in 42 out of

47 cases. Two slopes were estimated, one below the knee and the other above the knee. The

proportion of slopes with PI<0.3 (see Eq 3) was significantly less for those estimated from

“above the knee” than “below the knee” (Chi square with Yates correction = 8.57, p = 0.003).

These slopes were visualised as the two widest plateaus within the plot of running average

slope vs log(r). The strategy of finding the scaling region above the knee and below the knee

did not work well as a large proportion of the VEPs did not result in PI�0.3 (Table 2). Further,

the magnitude of D2 was evaluated for a subset of VEPs analysed using τ = 16, k = 12 and

excluding those VEPs which resulted in missing data (i.e. PI>0.3 for one or both below or

above knee D2 estimates). Mean (SD) estimates of D2 from below the knee, and above the knee,

were 4.02 (0.83) and 2.70 (0.35), respectively and were significantly different (F1, 12 = 25.15,

p<0.0001). These findings are consistent with a previous study [25] on electrocardiograms

that found the D2 estimate below the knee is usually higher than the D2 estimate from above

the knee, although the significance of both was uncertain.

It was not possible to reliably estimate D2 from the largest value in the widest plateau region

in the plot of running average slope vs log(r) because it was difficult to define the extent of the

plateau, particularly its start and end points. Sometimes, more than one plateau in a plot had

the same width. Due to these ambiguities, the analysis could not continue to a D2 estimate.

When an additional criterion was added that the widest plateau fell within the middle third of

the plot [21], this resulted in reliable and unambiguous estimates with PI<0.3 (Table 2). This

method is a modification of the Middle Third Rule [21].

Comparability of D2 estimates by sampling frequency and embedding dimension. The

correlation dimension was estimated using the optimised parameters and strategies (τ = 4.4

ms, 64 boxes and the optimised scaling method) for VEPs recorded at 5000 Hz and 3606 Hz at

their original and halved sampling frequencies (2500 and 1803 Hz respectively) and compared.

Optimising Fractal Dimension Analysis of Visual Evoked Potentials
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Estimates of D2 at original and halved sampling frequency were highly correlated R = 0.99 (Fig

3). There were no significant differences in the estimates of D2 (F1, 9 = 0.00, p = 0.99, mean dif-

ference = 0.00). These results were found by estimating fractal dimension from D2 at m = 7 for

VEPs sampled at 3606 and 5000 Hz,m = 6 for 1803 Hz andm = 5 for 1000 Hz.

Fig 2. Reconstructed phase space trajectories of a VEP recorded with 3606 Hz sampling frequency
embedded in 3 dimensional phase space using different values of τ. From top left to bottom right, τ = 1, 3, 6, 9,
13, 16, 19, 22.

doi:10.1371/journal.pone.0161565.g002
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Phase 2: Piloting the optimised method

The VEPs analysed were from a group of adults with normal (n = 4) and abnormal (n = 8)

visual systems, recorded using the Medelec Synergy system with a 1000 Hz sampling frequency,

single band pass filtered (1–50 Hz), with the 50 Hz notch filter applied to exclude mains elec-

tricity noise. The abnormal visual systems in the adults were due to a variety of causes includ-

ing amblyopia, strabismus, pathological myopia and retinal vein occlusion. Visual evoked

potentials in response to black-white (100% luminance contrast) and isoluminant magenta-

cyan (42% chromatic contrast) gratings were analysed and compared between the normal and

abnormal visual systems. Grassberger and Procaccia’s algorithm was implemented using τ as

the closest approximation for 4.4 ms. The Shapiro-Wilk test [26] indicated the data were nor-

mally distributed. Analysis of variance was run with stimulus type (black-white or red-green)

and viewing condition (monocular or binocular) as within subjects factors, group (normal or

abnormal) as the between group factor and adjustment for multiple comparisons (Bonferroni

correction). Estimated marginal means for D2 were 2.79 (95%CI 2.62–2.95) for the control

group and 3.08 (95% CI 2.91–3.25) for the abnormal group and were found to be statistically

significantly different (p = 0.02).

For descriptive purposes, Fig 4 presents the group average binocular VEPs in response to

black-white 2 cpd sinusoidal gratings for the two adult groups. The standard ISCEV compo-

nent CI, CII and CIII amplitudes and latencies were determined. Mean (SD) of VEP compo-

nents are presented in Table 3.

Data comprising binocular VEPs in response to magenta-cyan isoluminant gratings

recorded from a group of children with normal (n = 5) and abnormal visual systems (n = 13),

with a 3606 Hz sampling frequency using a Diagnosys electrophysiology system, and no band

pass filter or notch filter to exclude mains noise, were analysed. Grassberger and Procaccia’s

algorithm was implemented using τ = 16, which corresponded to a delay time of 4.4 ms. All the

children with abnormal visual systems had amblyopia associated with either strabismus or

refractive error and were undergoing treatment. Although the Shapiro-Wilk test [26] indicated

the data were normally distributed, Levene’s test [27] indicated that the variances were

Table 1. Range of values for τ for VEPs recorded at >1000 Hz such that reconstructed phase space trajectories were not stretched along the diago-
nal such that fluctuations in the trajectory were evident.

Participant
initials

Normal (N) or
abnormal (AB) visual
system

Sampling
frequency (Hz)

Values of τ for which the structure of the phase space
trajectory was visible in 3 dimensional phase space, and for
which structure appeared morphologically similar

τ converted to ms (delay
time / sampling
frequency)

RI AB 3606 16–24 4.4–6.6

AA AB 3606 16–24 4.4–6.6

ET AB 3606 16–24 4.4–6.6

EP AB 3606 16–24 4.4–6.6

EP AB 3606 16–24 4.4–6.6

LS AB 3606 15–24 4.4–6.6

KL N 3606 16–24 4.4–6.7

MG N 3606 16–24 4.4–6.7

SH N 3606 16–24 4.4–6.7

TZ N 3606 16–24 4.4–4.8

DL N 3606 15–20 4.2–5.5

S1 AB 5000 22–40 4.4–8 .0

S1 AB 5000 20–30 4.0–6.0

Shaded cells indicate abnormal VEPs.

doi:10.1371/journal.pone.0161565.t001
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significantly different (Levene statstic1,15 = 7.76, p = 0.01), as illustrated in the boxplots in Fig

5. Hence the non-parametric independent samples median test was used to investigate between

group differences, for which no significant difference in the medians was found (p = 1.0). Fig 5

shows that the abnormal group had more extreme tails than the normal group for D2. Fig 6

shows the children’s VEPs, including those that had the extremely high or low D2. CI and CII

were not consistently repeatable. Therefore only the CIII component latencies could be reliably

estimated for all children, as CIII amplitude depended on the CII component being repeatable

(Table 3).

Table 2. Comparison of strategies for finding the scaling region.

VEPs (participant initials, group, sampling frequency at which VEP
was recorded)

Strategy: Slope estimated from both below and above the knee in the plot
of log(C(r)) vs log(r)

Number of VEPs with
knees

Number of VEPs where
PI�0.3 based on D2

Number of VEPs where
PI>0.3 based on D2

Below
knee

Above
knee

Below
knee

Above
knee

KL (control), 3606 Hz 12 out of 12 9 8 3 4

SC (control), 3606 Hz 11 out of 15 9 6 2 5

EP (amblyope), 3606 Hz 3 out of 4 4 2 0 1

RI (amblyope), 3606 Hz 16 out of 16 15 7 1 9

SC (control), 3606 Hz 11 out of 15 9 6 2 5

VEPs Strategy: Modified middle third rule

DL (control), 3606 Hz 12 12 0

KL (control), 3606 Hz 12 11 1

RB (control), 3606 Hz 13 13 0

SC (control), 3606 Hz 15 15 0

TK (control), 3606 Hz 12 12 0

EK (control), 3606 Hz 13 13 0

LW (control), 3606 Hz 5 5 0

AA (amblyope), 3606 Hz 11 11 0

AA2 (amblyope), 3606 Hz 15 15 0

EP (amblyope), 3606 Hz 13 13 0

ET (amblyope), 3606 Hz 13 13 0

GG (amblyope), 3606 Hz 13 12 1

JW (amblyope), 3606 Hz 14 13 1

LM (amblyope), 3606 Hz 12 12 0

MT (amblyope), 3606 Hz 12 12 0

MG (amblyope), 3606 Hz 13 13 0

NB (amblyope), 3606 Hz 12 12 0

NM (amblyope), 3606 Hz 17 13 4

RC (amblyope), 3606 Hz 12 12 0

RI (amblyope), 3606 Hz 16 15 1

RF (amblyope), 3606 Hz 13 13 0

SB (amblyope), 3606 Hz 13 12 1

YD (amblyope), 3606 Hz 12 12 0

ZL (amblyope), 3606 Hz 13 13 0

S1 (amblyope), 5000 Hz 4 4 0

PI = Plateau Index. Shaded cells indicate abnormal VEPs.

doi:10.1371/journal.pone.0161565.t002
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Discussion

A central part of this study was to determine if useful protocols could be established for mea-

suring D2 from VEPs of different sampling frequencies. The results confirmed a useful protocol

could be established for all VEPs recorded at 1000, 3606 and 5000 Hz sampling frequencies.

The results suggest that useful estimates of D2 may be obtained using the protocol described in

this study.

The significance of the presence or absence of a “knee” remains unclear as knees were not

always present and it was not always possible to obtain a reliable estimate of D2 using the slope

above and below the knee. This suggests that trying to estimate D2 with reference to a knee is

an unreliable method of estimating D2. The presence of two scaling regions separated by a

knee, if they occurred, might reflect different physiological processes. In cases where they could

be reliably measured, the mean difference between the slopes of the scaling regions below and

above the knee was relatively large at 1.32, given that 0.5 is the difference between mature and

immature visual systems, [6]. The scaling below the knee was not equivalent tom however it

approachedm, which may be consistent with an interpretation of data-limited space filling

noise, for most of the VEPs. The scaling below the knee was more likely to demonstrate PI<0.3

(see Eq 3) than above the knee (see Table 2). The above suggests that trying to estimate D2 with

reference to a knee is an unreliable method of estimating D2. Other possible explanations for

the presence of a “knee” are either excessively high levels of correlation among nearby data

points in the time series or use of an excessively large τ such that there is loss of correlation

between components of points in phase space [24]. Excessively high or low levels of correlation

for a given τmight indicate an unusual physiology. However, as VEPs from both amblyopic

and normal visual systems were found to have knees while using a delay time of 4.4 ms, which

appears to be appropriate using other criteria, it does not appear to reflect abnormality of phys-

iology. Slope estimation from the widest plateau in the middle third is an alternative method

which does not depend on the presence of a “knee”.

Fig 3. Scatterplot ofD2 estimated from VEPs from full and halved sampling frequencies for the same
delay times of 4.4 ms.

doi:10.1371/journal.pone.0161565.g003
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Within the limitations outlined, VEPs recorded from different electrophysiology systems

using different sampling frequencies may yield comparable estimates of D2 provided the data

are analysed within the parameters as outlined in this paper. However it must be noted that

comparison of VEPs recorded from multiple set-ups or sites still requires care as it is likely that

differences between laboratories extend to more than just the selection of sampling frequency.

Fig 4. Adult binocular VEP responses to black and white pattern onset-offset grating stimuli. (a) Abnormal and (b)
Normal adult binocular VEP responses. The components CI, CII and CIII and stimulus onset and offset times are shown
for illustration purposes in (a). The group averaged responses are in bold. Individual responses, which were the average
of two recordings, are presented as the thinner lines.

doi:10.1371/journal.pone.0161565.g004

Table 3. Groupmean (SD) of VEP component amplitude and latency data.

Group Stimulus CI amplitude
(μV)

CI latency
(ms)

CII amplitude
(μV)

CII latency
(ms)

CIII amplitude
(μV)

CIII latency
(ms)

Adult Control Black-white
gratings

0.28 (1.77) 87.75 (14.52) -1.42 (1.08) 117.00
(12.08)

2.67 (1.14) 193.50 (21.56)

Adult (Abnormal visual
system)

Black-white
gratings

1.38 (1.93) 76.00 (6.16) -6.10 (3.14) 123.00
(10.07)

11.56 (5.82) 193.50 (19.76)

Child Control Magenta-cyan
gratings

1.77 (5.88) 63.52 (14.88) -10.11 (8.62) 88.44 (25.74) 35.5 (8.23) 147.4 (6.9)

Child (Abnormal visual
system)

Magenta-cyan
gratings

175.38 (20.1)

The cells in grey indicate abnormal visual system data. Where components were not repeatable in latency for a group, mean (SD) are not reported for that

group and the cells are shaded dark grey.

doi:10.1371/journal.pone.0161565.t003
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For example, differences in the kinds of equipment used such as electrode type, levels of electri-

cal noise in the immediate surrounds and characteristics of the stimulus display may also

impact on the morphology of the VEP recorded. In recognition of this fact, ISCEV acknowl-

edges that VEP waveforms are expected to be similar across laboratories when recorded under

standard conditions but when seeking to differentiate between normal and abnormal, each lab-

oratory should establish its own set of normative values [1].

The protocols developed here appear to yield estimates of D2 for visual processing of stimuli

that are comparable to estimates found in previous research [6]; ranging between 2 and 3.25

for binocular VEPs in response to magenta-cyan stimuli in children and adults. Taking the

number of independent components composing a signal as the nearest integer above D2, this

suggests that there may be somewhere between two and four independent components in these

VEPs. This result also agrees with other analyses which measure the number of underlying

components using different methods. For example, Maier et al. [12] used principal components

analysis (PCA) on recordings between multiple scalp electrode sites to estimate the number of

dipole sources that are active in the visual electrophysiological response to visual stimulation.

They found that only two components are necessary to explain 95% of the power of the

responses of the 24 electrodes they used for any stimulus type, and attributed the remaining 5%

to noise. Almurshedi and Ismail [28] also determined that although PCA may yield five princi-

pal components (PCs), only the first two appeared to be strongly related to the signal. Zhang

and Hood [29] found three significant principal components. They determined that, of these,

the first (PC1) was likely to be a component derived purely from V1 of the brain, and that PC2

may be attributed to a small area of the visual cortex or derived from the extrastriate cortex, or

a combination of the striate and extrastriate cortex.

Two kinds of stimuli were used which evaluated different aspects of the visual system. The

black and white stimuli preferentially stimulated the magnocellular pathways whereas the

magenta-cyan stimuli preferentially stimulated the parvocellular pathways of the visual system.

In our sample of adults’ VEPs, D2 was found to be higher overall in the abnormal, than the nor-

mal visual systems. In contrast, the children with abnormal visual systems had VEPs in

Fig 5. D2 estimated using a delay time of 4.4 ms of VEPs in response to binocular magenta-cyan
stimulation in children with normal and abnormal visual systems.

doi:10.1371/journal.pone.0161565.g005

Optimising Fractal Dimension Analysis of Visual Evoked Potentials

PLOS ONE | DOI:10.1371/journal.pone.0161565 September 6, 2016 14 / 21



Optimising Fractal Dimension Analysis of Visual Evoked Potentials

PLOS ONE | DOI:10.1371/journal.pone.0161565 September 6, 2016 15 / 21



response to magenta-cyan stimuli which tended towards both higher and lower values of D2

than normal, but did not differ on average. For behavioural measures, values which tend

towards extremes may be indicative of abnormal populations even though average responses

are similar to normal populations e.g. to reflect the overactivity or underactivity or a system

[30, 31].

Divergence between the adult and child findings might also be due to differences in the

depth, type and severity of the visual system abnormality between the adults and the children.

Adult participants exhibited long standing visual pathologies which ranged from ocular (e.g.

vein occlusion) to cortical (e.g. amblyopia) and were resistant to different treatments. In con-

trast, the children in our study had only one type of abnormality (amblyopia) and were already

undergoing treatment so the severity and depth of the abnormality was related to their compli-

ance and response to ongoing treatment.

There is evidence that adaptations within the visual system in response to altered sensory

inputs may take considerable time to reach a measureable effect. For example, Codina et al.

[32] found cross-modal plasticity in individuals with longstanding deafness; they had high

visual function associated with the recruitment of parts of the auditory cortex for visual pro-

cessing. As dynamical variables may relate to the number of neuronal populations, the recruit-

ment of additional neuronal populations towards processing would be evident as increased D2

[10, 11]. Interestingly, Codina et al. [32] found that cross-modal plasticity was only observed in

adolescents from 13 years of age and adults, but not in children. Our data are consistent with

Codina et al.’s [32] findings as group average differences in D2 are evident in the adult, but not

the child, data.

The magnitude of D2 may be reflected in ISCEV morphology, however our results can only

be suggestive rather than conclusive due to the small numbers in the high and low D2 groups in

both the adult and child samples. Viewing Fig 6 and Table 3, it appears that for the children

with abnormal systems and higher D2, CIII amplitude appeared low compared to the children

with normal visual systems, and CI and CII were not consistently repeatable. In the children

with abnormal visual systems and lower D2, the main difference from normal seemed to be the

lack of a repeatable CI and CII. The CII component of the magenta-cyan VEP is typically less

prominent in the immature visual system [33–35] hence their lack of repeatability in some of

the abnormal VEPs might indicate changes in the development of the parvocellular pathways

in those children. Studies suggest that CII may be more strongly related to the colour process-

ing of the parvocellular system, whereas CIII is more related to the non-colour processing func-

tions [34, 36]. The lack of repeatability in CI and CII components may indicate abnormalities

in these aspects of cortical processing. The relationship between D2 and the magnitude of

ISCEV VEP components requires further investigation.

This study has some limitations. As was discussed earlier, the ISCEV protocol for recording

VEPs requires averaging to remove noise. Therefore some dynamics of brain processing are

excluded by design. Overall brain function may impact on cortical processing of the visual sig-

nal, for example through attentional or feedback processes which may be reflected in EEG

Fig 6. Children’s VEPs in response to magenta-cyan pattern-onset offset grating stimuli analysed using the optimised
protocol. (a) shows the children’s VEPs drawn from children with normal visual systems. (b) shows the abnormal VEPs, with
the average of the three lowestD2 VEPs in bold blue, the average of the three highest D2 VEPs in bold red, and the remainder
of VEPs in bold black. Individual VEPs, which were the average of two recordings, are presented in grey. To illustrate the
morphology of abnormal VEPs which tended towards the extremes of low and high D2 more clearly, the three abnormal VEPs
with the lowest and highest D2 are shown in (c) and (d) respectively. The group averaged responses are in bold. Individual
responses, which were the average of two recordings, are presented as the thinner lines.

doi:10.1371/journal.pone.0161565.g006
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microstates [37]. Future research could look further into those aspects, however the present

study has made a start by evaluating the averaged VEP.

While normal and abnormal VEP data was included to pilot the optimised protocol, it was

stated in the introduction that a potential application would be to characterise normal and

abnormal VEPs and ideally, D2 might even serve as an objective indicator of abnormality.

Although the optimised protocol yielded unambiguous measures of D2 that were comparable

to previous measures of D2 of the VEP and consistent with PCA estimates of numbers of com-

ponents involved, indicating that the optimised protocol functioned as desired, there was a lack

of clearly significant average differences between normal and abnormal VEP D2 measures in

the children’s sample. This may be for a number of reasons. As discussed earlier, they might

have already been recovering function. Additionally, the visual stimuli used in the present

study preferentially stimulated chromatic parvocellular visual pathways that may have been

relatively unaffected by the condition for the sample. Perhaps the use of different stimuli that

evaluate other types of cortical processing such as achromatic parvocelullar function[38],

might yield larger differences in processing which might then be reflected by greater differences

in D2. As Sloper[39] noted, although amblyopia can be manifest as losses in parvocellular and

magnocellular function, it is not a single uniform condition so the patterns of abnormalities

will vary according to the types of abnormal visual experiences and the time periods in which

they were experienced.

Summary of Key Findings

To estimate the fractal dimension of transient visual evoked potentials for averaged recordings

of one second duration and 2 Hz temporal frequency, the following optimised analysis protocol

should be used when applying Grassberger and Procaccia’s algorithm:

1. Use a delay time, τ, which corresponds to 4 ms.

2. Use 64 bins of box sizes, r.

3. The embedding dimensions,m, for which D2 should be estimated for each VEP, includes 1,

2, 3. . .m� wherem� is limited by the number of data points according to Eckman and

Ruelle’s criterion (2log10(N)) [14]. Therefore,m
� = 7 for 3606 and 5000 Hz sampling fre-

quencies,m� = 6 for 1803 and 2500 Hz sampling frequencies andm� = 5 for 1000 Hz sam-

pling frequency.

4. The scaling analysis strategy should be based on Henry et al.’s [21] and Tsonis’ [23] criteria

and not consider the knee. For eachm, running average slopes of 12 consecutive data points

along the plot of log(C(r)) vs log(r) should be used to generate a plot of running average slope

vs log(r) (Note log(r) is selected for its ordering value indicating the starting point on the plot

of log(C(r)) vs log(r) from which the running average slope was calculated, rather than for its

numerical value. In Fig 7, the running average slopes are plotted as functions of their ordered

calculation). The widest plateau in that plot should be identified. If the widest plateau falls

within the middle third of the plot (indicated as the red crosses in Fig 7), then the highest

value for slope in the plateau within the middle third is the estimate of D2 for thatm.

5. Next, plot D2 as a function ofm (see bottom right panel in Fig 7). If D2 plateaus as it

approachesm�, using the criterion that PI<0.3 [5], then D2 atm
� may be used as an esti-

mate of the fractal dimension of the underlying system which produced that VEP.

6. Piloting the optimised method indicated D2 has the potential to increase understanding of

visual processing in normal and abnormal visual systems.
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Conclusions

In conclusion, VEPs recorded from different electrophysiological recording systems using dif-

ferent sampling frequencies may yield comparable estimates of D2 provided the data is ana-

lysed within the protocols outlined in this paper. This will assist in the comparison of D2

measures between electrophysiology systems which employ different sampling frequencies,

which enhances its applicability as a complementary objective measure of visual system

electrophysiological activity as imaged using the VEP. Interpreting the nearest integer above

D2 as the minimum number of independent components comprising the signal, is broadly con-

sistent with the results of principal component analysis. The development of a robust protocol

for measuring D2, as undertaken here is an important step towards using D2 measurements

clinically.
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