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Abstract

In this paper, we provide causal evidence that firms serve new mar-

kets which are geographically close to their prior export destinations

with a higher probability than standard gravity models predict. We

quantify the impact of this spatial pattern using a data set of Chi-

nese firms which had never exported to the EU, the United States, and

Canada before 2005. These countries imposed import quotas on textile

and apparel products until 2005 and experienced a subsequent increase

in imports of previously constrained Chinese firms. Controlling for firm-

destination specific effects and accounting for potential true state de-

pendence we show that the probability to export to a country increases

by about two percentage points for each prior export destination which

shares a common border with this country. We find little evidence for

other forms of proximity to previous export destinations like common

colonizer, language or income group.
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1 Introduction

Firm exports exhibit a geographical pattern. Not only do different firms serve

different numbers of countries but also the spatial distribution of those coun-

tries differs across firms. Standard gravity models predict that firms are more

likely to export to larger countries and to countries that are closer to the

country of origin of the firm. These standard gravity forces generate some

degree of unconditional spatial concentration of export destinations of firms.

Recently, the literature has highlighted that the observed spatial correlation

is larger than what the standard gravity model would predict. This fact has

been labeled ‘extended gravity’ (see Morales et al., 2011, and Albornoz et al.,

2012) or ‘spatial exporters’ (see Defever et al., 2011).

In this paper, we provide causal evidence for ‘extended gravity’ or ‘spatial

exporters’, i.e. time-varying firm-specific heterogeneity in export destination

choices shaped by firms’ previous export experience in spatially close coun-

tries. We take into account unobserved time-invariant heterogeneity at the

firm-country level. It may arise because firms can differ in their ability to

serve specific markets, e.g. due to differences in language skills of their sales

force. We also control for true state dependence at the firm-destination level

which captures market-specific sunk costs of exporting (see Das et al., 2007).

We show that the probability that a firm exports to a country increases by

about two percentage points for each additional prior export destination with

a common border with this country.

One reason for observing spatial exporter patterns may be the crucial need

for gathering local information from trading partners over time. Different local

information which has been acquired through previous export experience may

then lead to different trade networks across firms. Recently, Chaney (2014)

has developed a model describing trade patterns as an international network.

Firms tend to build on their network for finding new trading partners, similar

to social interactions between individuals (see Jackson and Rogers, 2007).1

1For instance, an exporting firm may gain access to a new export market via a multi-
national retailer which already serves a third country. As the network of subsidiaries of
wholesalers and of multinational firms expands spatially (see Basker, 2005 and Defever,
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When demand is uncertain but correlated across markets, firms may enter

new destinations gradually to learn about profits in proximate markets from

their previous export experience (see Albornoz et al., 2012; Nguyen, 2012).

Also, when firms have to adapt products to specific markets, adaptation costs

may be reduced if a firm already has entered markets which are relatively

similar (see Morales et al., 2011). As a consequence, when trade barriers fall,

firms expand their export destinations following a spatial pattern.

These channels highlight that one has to take into account two different

aspects of the firm’s problem: i) when to enter a new destination, and ii)

where to go. When destination choices of a firm are independent, the deci-

sion problem is simple: Every market entry decision can be analyzed on its

own. Hence, the two problems of when and where to export can be separated.2

However, if destination choices are not independent, these two decisions be-

come intrinsically related. Empirically, this leads to a dynamic discrete choice

problem. As explained by Morales et al. (2011), this problem is formulated

in a straight-forward way theoretically but quickly leads to an empirically de

facto unsolvable problem. The insolvability arises because one would have to

compute the expected profits for every possible combination of time paths of

entries into destinations to identify the firm’s profit-maximizing choice.3 Com-

2012), this mechanism also implies a spread of exports to contiguous countries. In addition
to geography, cultural closeness can generate a similar pattern through networks of ethni-
cally related firms. For instance, networks may reduce search costs as firms may learn about
potential suitable suppliers within their ethnic community (see for instance Rauch, 2001).

2For instance, Das et al. (2007) estimate the parameters of a firm’s dynamic problem of
when to start and stop exporting, irrespective of the specific export market choice.

3Therefore, Morales et al. (2011) do not solve this dynamic problem explicitly. Instead,
they use moment inequality estimators to obtain parameter bounds for their structural
empirical model. Their estimates based on firm-level export data for the Chilean chemicals
sector show that startup costs of accessing a new country are determined by a firm’s previous
export destinations. Note that this paper has changed its title and now circulates as Morales
et al. (2014). Albornoz et al. (2012) and Nguyen (2012) study the timing of entry only and
assume a hierarchy of countries in terms of profitability and a constant correlation of profits
across all export destinations. Together, these assumptions elude the question of where to
go. Antràs et al. (2014) propose another solution to deal with the interdependence of firm’s
entry decisions. Building on Jia (2008), Antràs et al. (2014) rely on complementarities in
the global sourcing decisions of firms to study extended gravity effects on the import side.
Lawless (2013) shows that entry decisions of firms are correlated with their export status
in previous geographically close export destinations. However, she does not control for true
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plementary to the structural empirical approach suggested by Morales et al.

(2011), we use reduced form regressions exploiting a quasi-natural experiment.

We present evidence for ‘spatial exporters’ relying on the removal of bind-

ing import quotas under the MultiFiber Arrangement/Agreement on Textiles

and Clothing (MFA/ATC) regime in 25 EU countries, the United States, and

Canada in 2005. This exogenous shock has generated a large entry of firms in

a set of potential new destinations (see Khandelwal et al., 2013). Our sample

consists of Chinese textile and apparel exporters which never exported to these

countries before 2005. We study these firms’ subsequent export destination

choices in other countries which were not directly affected by the lifting of

the MFA quotas. As the timing of the MFA quota removal was exogenous to

firms, it helps us to overcome the endogeneity problem due to the dynamic

nature of the firm’s export destination choice.

Our empirical strategy gauges the relative importance of the time-varying

cross-country correlation of a firm’s export destination choices. This correla-

tion may be a result of a firm’s export history in close markets. A previous

export destination is considered as close when it is geographically or culturally

close. Cultural closeness is measured by sharing a common language, sharing

a common colonizer, or having similar income levels. As we use reduced form

regressions we do not rely on a specific channel imposed by an underlying struc-

tural model. Rather, we establish the causal impact of a firm’s export history

on the probability to export to a specific country, irrespective of whether it

arises from the demand or supply side.

Our paper provides causal evidence of the spatial correlation of export

decisions at the firm level that has been put upfront by recent theoretical

developments on export dynamics (see Albornoz et al., 2012; Nguyen, 2012,

Morales et al., 2011, and Chaney, 2014). It could also contribute to explain

the pattern of zero bilateral trade flows observed empirically (see Evenett and

Venables, 2002). Understanding exporting firm behavior is also crucial from

a policy perspective. If across-country path dependence in firm destination

choices is important, it also has ramifications for trade liberalization poli-

state dependence nor firm-specific country fixed effects as we do.
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cies: if two countries liberalize trade with each other, their level of trade with

non-liberalizing nearby countries will be higher than standard gravity would

predict. This gives rise to externalities across countries.4 Therefore, our re-

search highlights another reason for potential efficiency increases from trade

liberalization through policy coordination between countries.

The remainder of the paper is organized as follows: Section 2 describes the

data set and our identification strategy. Section 3 presents our baseline em-

pirical results. We start with a differences-in-differences (diff-in-diff) approach

which investigates the impact of the lifting of the MFA quotas on the proba-

bility of exporting to a country which is contiguous to a previously restricted

MFA country. We then investigate the impact of previous export experience

in close markets on a firm’s destination choice. Our regressor of interest in

the latter specification is potentially endogenous. We therefore present instru-

mental variable regressions where we use the lifting of the MFA quotas as an

instrument. Finally, we present dynamic panel specifications. These allow

us to control for our potentially endogenous regressor of interest as well as

the persistence and true state dependence in export destination choices. Sec-

tion 4 presents evidence at the firm-product-couple level. Section 5 presents

robustness checks. The last section concludes.

2 Data and identification

2.1 Sample and dependent variable

We use transaction level customs panel data on the universe of Chinese ex-

porters for the years 2000 to 2006. We only keep products which fall in the

4For instance, Defever and Ornelas (2014) show that the end of the MFA turned China
into a better export base for previously restricted products, encouraging entry in the industry
and increasing exports to all destinations. Borchert (2008) finds that the growth of Mexican
exports to Latin America was higher for products with a large reduction in the preferential
U.S. tariff under NAFTA. Similarly, Molina (2010) identifies a strong positive effect of RTAs
in promoting exports outside the bloc of liberalized countries. While it is difficult to explain
these findings with standard trade models, they can easily be rationalized in the presence
of firm-specific cross-country correlations in export destination choices.
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Harmonized System (HS) chapters of textile and clothing products, i.e. chap-

ters 50 to 63, as these are the products covered by the MFA regime. We

aggregate all transactions of a firm in a country in one year into one observa-

tion. The sample is restricted to continuous exporters, i.e. firms that export

at least to one country every year.5 Specifically, we investigate the export

destination choice between 150 non-MFA member countries of firms which did

not export in any of the MFA restricted countries during the years 2000 to

2004.6 Hence, our sample includes both firms that enter the MFA member

countries after 2004 as well as those which export to other countries between

2000 and 2006. Overall, our sample is composed of 1,295 continuous exporters

which never entered the MFA restricted countries before 2005.

Our dependent variable is the firm-specific vector of export status yit =

(yi1t, . . . , yijt, . . . , yiJ t) which indicates whether a firm i exports to a specific

destination j in year t. J is the number of non-MFA countries in our sample.

We present descriptive statistics for all variables in the online Appendix in

Table A.38.7 1.2 percent of our observed destination choices turn out to be

positive. Hence, serving a specific foreign market is a rare event.

2.2 Identification strategy

Under the MultiFiber Arrangement/Agreement on Textiles and Clothing

(MFA/ATC) regime, restrictions were upheld on many products even after

China acceded to the WTO on December 11th, 2001. On January 1st, 2005

the removal of import quotas led to the entry of a large number of firms in

the then 25 EU countries, the United States, and Canada.8 Figure 1 shows

5This allows us to abstract from selection into exporting at the firm-extensive margin.
See Das et al. (2007) for a structural model of selection into exporting.

6The previously restricted MFA countries are the 25 EU countries as of 2005, the United
States, and Canada. A comprehensive list of all non-MFA countries in our sample can be
found in the online Appendix in Table A.37.

7We use the years 2000 to 2005 to construct our lagged regressors of interest. Our final
data set then covers the years 2001 to 2006. As we include two lags in our dynamic panel
specifications, we are left with four years for our estimation. For reasons of comparability,
we use these four years for all our specifications.

8See Harrigan and Barrows (2009), Brambilla et al. (2010), Upward et al. (2011), and
Khandelwal et al. (2013).
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the average number of exporters into these markets across all restricted HS-6

products. While around 100 to 150 firms had been exporting a restricted MFA

product while the import restrictions were still upheld, this number jumped

to more than 300 in 2005.

One possible reason behind the large and rapid entry of firms into MFA

countries in 2005 can be seen in the fear that safeguard mechanisms could

potentially re-introduce quotas. Actually, the EU countries, the United States,

and Canada had product-specific safeguard mechanisms which were not phased

out until 2008. The possible use of these safeguard measures was likely and it

was unclear which products would be affected. This is corroborated by Figure

1 which shows that the average number of exporters across products did not

increase in 2006 so that there is no evidence of a gradual entry of firms into

the previously restricted MFA countries, at least on average. This can be

explained by the new and transitional license system for textile exports that

has been reintroduced in 2005 by the Chinese government. The intention was

to limit the growth of Chinese exports of MFA products for the years 2006

to 2008. Looking back, the restrictions imposed in 2005 were by and large

ineffective. However, the new restrictions had an impact on the growth of

Chinese textile exports for 2006 to 2008.9

The lifting of the MFA quotas in 2005 exogenously changed the potential

profitability of exporting to the previously restricted MFA countries. New

entrants could reap part of the quota rents which previously accrued to those

firms with an export license, leading to the increase in the number of firms

in the EU, the United States, and Canada. If firms are ‘spatial exporters’,

this change should have influenced the subsequent export destination choices

in non-MFA countries. The same firms which quickly entered the previously

9In June 2005, China and the EU agreed to re-impose quotas on some products. Despite
the implementation of a new license system China did not restrict the number of the licenses
nor the volume of exports. As a reaction, EU retailers ordered large amounts of Chinese
textile products before the quota implementation. Only two months after the signing of
this agreement import quotas were exhausted and 75 million items of textile and clothing
products were stuck in European ports (see Brambilla et al., 2010; Buckley, 2005, and
Wikipedia, 2013). In September 2005, the EU and China settled the issue to end what the
UK press called the “Bra Wars” (see e.g. White and Gow, 2005 and Wikipedia, 2013).
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for HS 6-digit products for which the quota fill rate was higher than 90 percent.

Figure 1: Average Number of Exporting Firms to one EU Country, the United
States or Canada per Restricted MFA 6-Digit Product

restricted MFA countries for the first time could then potentially learn about

other profitable export opportunities in countries which are geographically or

culturally related to the previously restricted MFA countries.

3 Specifications

We have now described our identification strategy in general terms. It is com-

patible with several complementary empirical specifications which rely on dif-

ferent assumptions about the data-generating process. Specifically, we will use

a differences-in-differences (diff-in-diff) strategy, (panel) instrumental variable

regressions and dynamic panel estimations. This multitude of specifications

provides robust evidence for spatial exporters. We will next discuss in turn

our specifications and the corresponding results.
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3.1 Differences-in-Differences

Viewing the removal of the quotas as a quasi-natural experiment, it seems

natural to start with a differences-in-differences (diff-in-diff) specification.

MFA restrictions were removed January 1st, 2005. This lifting opened

up new potential export markets but was not influenced by the decisions of

individual firms and thus exogenous at the firm level. Beginning from this

date, firms in our sample were able to enter the previously restricted MFA

countries for the first time. There they could potentially acquire information

about contiguous export markets. Therefore, firms should export more to

destinations which are contiguous to MFA countries after the removal of the

MFA restrictions. Hence, our treatment indicator Cj is defined at the country-

level.10 It is a dummy variable indicating whether a country j is contiguous

to an MFA-restricted country. This also renders our treatment exogenous to

the firm’s choices, as the set of MFA restricted countries is the same for all

firms. Similar to Morales et al. (2011), we assume a one year lag to quantify

‘spatial exporters’, reflecting the fact that the learning or product adaptation

processes of the firm take time. Hence, we define the year 2006 as our post-

treatment period. y2006t is the corresponding dummy variable for the year

2006. The treatment effect, δ, measures whether firms export more frequently

to countries that are contiguous to previously restricted MFA countries in 2006

and is captured by the interaction term of y2006t and Cj.

Specifically, our first empirical specification is therefore given by

yijt = δ(y2006t × Cj) + θij + θt + ǫijt, (1)

where yijt is a dummy variable indicating whether a firm i exported to country

j ∈ J in year t, where J is the set of non-MFA countries. We also introduce

θij, a firm-destination fixed effect, and θt, a year fixed effect.11 ǫijt is the error

term. Note that this regression is equivalent to a diff-in-diff specification as the

10We therefore use standard errors clustered at the country-level following the recommen-
dation for differences-in-differences estimates by Bertrand et al. (2004).

11See Section A of the online Appendix for evidence on firm-specific heterogeneity in
export destinations.
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year and firm-destination fixed effects control for the treatment period as well

as the treatment group dummies. We estimate specification (1) with ordinary

least squares which leads to a linear probability model.12

The firm-destination fixed effects capture all country-firm characteristics

that do not change over the considered time period. This includes time-

constant destination-specific variables generally known to influence bilateral

trade flows from the gravity literature such as market size, overall remote-

ness of a country (multilateral resistance terms), and trade costs. Crucially, it

also controls for time-constant firm-specific heterogeneity such as productiv-

ity, quality, labor costs, and assortative matching of workers. For example, a

firm might employ managers with specific language skills which influence the

firm’s export destination choice.13 θt captures the general time trend in the

empirical probability of exporting to a country.

We expect δ to be positive if firms are spatial exporters. δ is identified

by firms which start to export to a country in 2006 which is contiguous to

an MFA-restricted country. A positive effect can stem from two sources:

1.) The additional expected profit from learning about previously restricted

MFA countries. This makes a country j more attractive as a potential export

destination if it is contiguous to a previously MFA-restricted country. This is

independent of whether the firm has exported to an MFA-restricted country or

not. 2.) Firms which actually did export to an MFA-restricted country in 2005

for the first time and gained knowledge about potential business opportunities

in contiguous country j. We disentangle these two sources in our alternative

empirical specifications presented in Sections 3.2 to 3.4. Note that firms which

12As we are only interested in average effects and not in predictions for individual firms
and given the high number of fixed effects, we stick to the linear probability model, see
Winkelmann and Boes (2009). As we also control for lagged endogenous variables in later
specifications, we can extend our regression framework by using a linear dynamic panel
estimator in a straight-forward way, simplifying the interpretation and comparison of results
across our different specifications.

13In a strict sense, some gravity variables may change over time (such as market size and
the multilateral resistance terms). However, note that we only consider one post-treatment
year (2006). Hence, to bias our results gravity variables would have to be considerably
different in 2006 and at the same time this change would have to be correlated with our
regressor (y2006t × Cj).
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stop exporting to country j in 2006 decrease the estimate of δ (and may even

render the coefficient negative).

Table 1 reports estimates of the diff-in-diff specification as given in equation

(1). Specifications I to VI give the estimated treatment effects for exporting to

a contiguous MFA country one year after the lift of the quota restrictions for

different definitions of contiguity. A firm’s destination choice can be correlated

not only in markets which are geographically proximate to its previous export

destinations but also in markets which share some other form of closeness.

Specifically, we define contiguity according to whether the countries share a

common border, a common language, a common colonizer, a common income

group, or whether they are located on the same continent using data provided

by CEPII, see Mayer and Zignago (2011). Therefore, our concept of space is

general and can refer to geographic as well as cultural cross-country correlation

in export destination choices. Section L in the online Appendix gives a detailed

description of the construction of our contiguity variables.

In specification I, contiguity is defined according to whether countries share

a common border. The coefficient estimate of 0.003 implies an average increase

of 0.3 percentage points in the probability of choosing a new export destination

that is contiguous to a previously restricted MFA country in 2006. This effect

may sound small. We therefore compare this marginal effect to the observed

empirical probability of a firm exporting to a particular country in our sample

reported. We report these empirical probabilities in Table A.37 in the online

Appendix. For example, this implies about a 14 percent (0.003/0.022) increase

in the probability of a firm exporting to Russia in 2006, as Russia shares a

common border with Finland, an MFA country.14

Specifications II to V run separate regressions where we construct our con-

tiguity measure according to whether countries share the same language (spec-

14Note that we do not compare our estimates to the unconditional observed frequency
of exporting to a country (the mean of our dependent variable, 0.012). Such a comparison
would ignore the spatial correlation of exports due to standard gravity forces such as country
size and distance between origin and destination countries. Russia is the first country in
our list of most frequent export destinations which shares a common border with an MFA
country.
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Table 1: Diff-in-Diff

I II III IV V VI

y2006t × Cj defined according to. . .
common border 0.003*** 0.002***

(0.001) (0.001)
common language 0.000 0.000

(0.000) (0.000)
common colonizer -0.001 -0.000

(0.000) (0.000)
common income group -0.000 -0.000

(0.000) (0.000)
common continent 0.001*** 0.001**

(0.000) (0.000)

Observations 777,000 777,000 777,000 777,000 777,000 777,000
# of firms 1,295 1,295 1,295 1,295 1,295 1,295

Notes: The dependent variable is yijt which is a dummy variable indicating whether a firm i exported to country j in year t. All regressions
include firm-destination fixed effects, as well as year dummies (not reported). Standard errors are in parentheses. All regressions use
robust standard errors clustered at the country level to take into account that the regressor only varies at the country level following the
suggestion for differences-in-differences estimates by Bertrand et al. (2004). *, ** and *** denote significance at the 10%-, 5%- and 1%-level,
respectively.
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ification II), whether countries have common colonial ties (specification III),

whether countries are in the same income group (specification IV), or whether

countries are located on the same continent (specification V). Evidently, espe-

cially space in the geographic sense (common border and common continent)

plays a significant role in firms’ export location choice. We do not find evidence

for other definitions of contiguity, like common language, common colonizer

or common income group, as important determinants for spatial exporters.

In column VI, we include all different contiguity measures at the same

time to gauge the relative importance of the different measures. The marginal

effects are hardly affected by conditioning on all other contiguity measures.

Also significance stays by and large the same.

In the specification given in equation (1) we do not condition on whether

the firm has exported to a previously restricted MFA country. Hence, we

identify a combination of the effects 1.) and 2.) mentioned before. Whereas

1.) increases the profitability of a destination only due to the option value

of exporting to an MFA restricted country and therefore for all firms in our

sample without any action from the firm15, 2.) directly measures actually

occurred spatial exporting only for firms that did export to an MFA restricted

country first and afterwards to a contiguous one.

While Table 1 provides a first step towards evidence for spatial exporters,

we now turn to identify how a firm’s export destination choice is influenced by

its export history in contiguous markets. Hence we disentangle the additional

expected profit from learning about previously restricted MFA countries from

actual export experience by focusing on the second effect only.

3.2 Fixed effects regression taking into account firm-

level history

Until now, we only focused on those countries which were contiguous to previ-

ously restricted MFA countries and neglected the impact of a firm’s previous

15Note that this effect is heterogeneous across firms as it depends on a firm’s export
history.
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export history. To capture spatial exporting which takes into account firm-

level history, we construct our contiguity measure, Nij,t−1, which measures the

number of countries which are contiguous to country j and to which firm i has

exported in t− 1 for each firm i and destination j. As the set of the previous

export destinations is firm-specific, so are the contiguity variables. Specifically,

Nij,t−1 = w′
jy

∗
i,t−1, where y∗

i,t−1 is the (N × 1) vector of the export indicators

for firm i in t−1 whose typical element yiℓ,t−1 is 1 if firm i exported to country

ℓ in year t − 1, and zero otherwise. To construct our explanatory variable,

Nij,t−1, we use a set of N = 177 countries, including the previously restricted

MFA countries. In our regression sample, however, we continue to investigate

the choice between J = 150 non-MFA countries as in the previous section. wj

is the jth row of W, a (N ×N ) contiguity matrix. The typical entry wℓm of

W is 1 if countries ℓ and m are contiguous, and zero otherwise. Note that for

this specification, we do not exploit the quasi-natural experiment of the lifting

of the MFA quota restrictions. We will use it again in Section 3.3.16

As with Cj, we measure Nij,t−1 by defining contiguity in terms of the coun-

tries sharing a common border, sharing a common language, sharing a common

colonizer, being in a common income group, or being located on the same con-

tinent. For example, Nij,t−1 = 2 measured in terms of common border means

that for firm i, country j shares a common border with two countries to which

firm i has exported in t− 1.

To take into account whether a firm actually has exported to a contiguous

country in the previous year, we run the following regression:

yijt = δI(Nij,t−1 > 0)ijt + θij + θt + ǫijt, (2)

16In principle, one could also think about using yMFA
i,t−1

to construct Nij,t−1, whose di-

mension is (N × 1) and whose typical element yMFA
iℓ,t−1

is 1 if firm i exported to country ℓ

in t − 1, and this country is an MFA country, and zero otherwise. By using y∗
i,t−1

instead

of yMFA
i,t−1

to construct Nij,t−1, we also count previous export destinations of a firm which
are not previously restricted MFA countries. We reran all our specifications using this al-
ternative regressor. Results hardly changed. Note, however, that focusing on yMFA

i,t−1
would

potentially bias our coefficient estimates as yMFA
i,t−1

sets all those elements of y∗
i,t−1

equal to
0 which identify positive non-MFA country export flows.
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where I is the indicator function taking value one if Nij,t−1 > 0. In this

regression, δ now quantifies the effect of actual experience in a previous export

destination on future export decisions in contiguous countries. We expect δ to

be positive if previous export experience from contiguous countries matters.

Note that in contrast to y2006t × Cj, I(Nij,t−1 > 0)ijt varies at the firm-level.

Table 2 gives the result for specification (2) and is organized in the same

way as Table 1. Column I shows that the probability of exporting to a country

increases by 1.4 percentage points if the firm previously exported to an export

destination with a common border. Is this effect large or small? We again

compare this marginal effect to the empirical probability of a firm exporting

to a particular country in our sample reported in Table A.37 in the online

Appendix. Given these empirical probabilities, this implies e.g. a 20 percent

increase in the probability of a firm exporting to Singapore when it has pre-

viously exported to Malaysia.17 This effect is larger than the effect identified

in Table 1 because we now focus on source 2.), i.e. the effect of actual export

experience in contiguous countries.

Again, the effect of sharing a common border is the largest and most signif-

icant effect. Also sharing a common language or colonial ties are significant,

albeit with smaller magnitudes. For example, the probability of exporting

to Australia increases by about 4 percent (0.002/0.054) if the firm has pre-

viously exported to Great Britain (or some other English-speaking country).

Similarly, the probability of exporting to India increases by about 11 percent

(0.002/0.019) if the firm has previously exported to Great Britain with which

it shares a common language. Column VI shows quantitatively very simi-

lar effects when conditioning on all different dimensions of spatial exporters

jointly.

Similarly, we can also estimate the impact of an increase in the number

of previous contiguous export destinations by omitting the indicator function

17Note that Japan and South Korea, our most frequent export destinations, do not have
a common border with any country (the Democratic People’s Republic of Korea is not
included in our data set). We therefore chose Singapore, the third most frequent export
destination. Malaysia shares a common border with Singapore.
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Table 2: Fixed Effects Regression Taking into Account Firm-Level History—Dummy

I II III IV V VI

I(Nij,t−1 > 0)ijt defined according to. . .
common border 0.014*** 0.014***

(0.003) (0.003)
common language 0.002*** 0.002***

(0.001) (0.001)
common colonizer 0.002** 0.001

(0.001) (0.001)
common income group 0.001 0.000

(0.001) (0.001)
common continent 0.001 -0.000

(0.001) (0.001)

Observations 777,000 777,000 777,000 777,000 777,000 777,000
# of firms 1,295 1,295 1,295 1,295 1,295 1,295

Notes: The dependent variable is yijt which is a dummy variable indicating whether a firm i exported to country j in year t. All regressions
include firm-destination fixed effects, as well as year dummies (not reported). Standard errors are in parentheses. All regressions use robust
standard errors clustered at the firm level to take into account the potential autocorrelation in the export destination choice at the firm level. *,
** and *** denote significance at the 10%-, 5%- and 1%-level, respectively.
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Table 3: Fixed Effects Regression Taking into Account Firm-Level History—N

I II III IV V VI

Nij,t−1 defined according to. . .
common border 0.012*** 0.010***

(0.003) (0.003)
common language 0.001** 0.000

(0.001) (0.000)
common colonizer 0.003*** 0.002*

(0.001) (0.001)
common income group 0.002** 0.001

(0.001) (0.001)
common continent 0.001* 0.000

(0.001) (0.001)

Observations 777,000 777,000 777,000 777,000 777,000 777,000
# of firms 1,295 1,295 1,295 1,295 1,295 1,295

Notes: The dependent variable is yijt which is a dummy variable indicating whether a firm i exported to country j in year t. All
regressions include firm-destination fixed effects, as well as year dummies (not reported). Standard errors are in parentheses. All
regressions use robust standard errors clustered at the firm level to take into account the potential autocorrelation in the export
destination choice at the firm level. *, ** and *** denote significance at the 10%-, 5%- and 1%-level, respectively.
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from equation (3), i.e.:

yijt = δNij,t−1 + θij + θt + ǫijt. (3)

Table 3 reports the estimates. Results are virtually unchanged, with sharing

a common border remaining the regressor with the largest point estimate.

The slight change in the specification implies that the probability of exporting

to a country that shares a common border with a previous export destination

increases by 1.2 percentage points if the firm actually exports to one additional

contiguous country in the previous year.

A problem of regressions (2) and (3) is that, contrary to regression (1), now

the regressor of interest is potentially endogenous: firms may anticipate that

they may learn from previous export destinations and potentially choose their

export destinations accordingly. We will therefore present (panel) instrumental

variable regressions in the next subsection.

3.3 Instrumental variable regressions

To account for the potential endogeneity of our regressor

I(Nij,t−1 > 0)ijt, we instrument it with the exogenous regressor of interest

from regression (1), y2006t × Cj, which is 1 for countries that are contiguous

to previously restricted MFA countries in 2006, and zero otherwise. The exo-

geneity of our instrument is again justified as it is a country-specific variable

and is not influenced by firm decisions. Still, it is relevant as the instrument

and the potential endogenous regressor are correlated by construction: Cj indi-

cates countries contiguous to (previously) MFA restricted countries and Nij,t−1

is positive if a firm exports to at least one country. As the MFA restricted

countries in sum make up a large share of the world market, it is very likely

that Nij,t−1 > 0 if Cj = 1. In addition, the diff-in-diff regression results clearly

show the relevance of the proposed instrument. For our estimation, we use the

two-stage least-squares within panel instrumental variables estimator which

includes firm-country fixed effects as in the previous specification.

We present the instrumental variable regressions that allow I(Nij,t−1 > 0)ijt
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to be endogenous in Table 4. Allowing for endogeneity does not lead to a qual-

itative change in our results (compare with Table 2). However, the size of the

effect of contiguity is approximately seven times larger. Again, sharing a com-

mon border has the largest effect (coefficient of 0.104) and only geographical

contiguity turns out to be statistically significant. Results also remain largely

unchanged when including all contiguity measures simultaneously (see column

VI in Table 4). The F -statistics for the excluded instruments in the first

stage regressions are also larger than 10 (with the exception of column III),

indicating that our instruments are relevant. Partial R2 measures admittedly

are very low. However, this is not too surprising given the generally very low

R2 of firm-level export destination choice models, see Albornoz et al. (2012),

as within-models remove the explanatory power of the firm-destination fixed

effects.18

Table 5 reproduces Table 3 but instruments Nij,t−1 with y2006t×Nj, which

counts the number of countries that are contiguous to previously restricted

MFA countries in 2006, and is zero otherwise.19 Comparing results shows that

the effects of geographical contiguity (common border and common continent)

are about seven times larger. Hence, our estimate in specification I implies

that the probability of exporting to a country that shares a common border

with a previous export destination increases by eight percentage points if the

firm actually exports to one additional contiguous country in 2005.20

One may wonder about the increase of the IV estimates in comparison with

the OLS estimates. If unobserved factors increase the probability that a firm

enters a particular country, they may as well increase the probability of ex-

18Full results of first stage regressions are available in Section B of the online Appendix.
19We use y2006t×Nj as this has the same type of country-level variation as our potentially

endogenous regressor, Nij,t−1. We could also again instrument by y2006t ×Cj , or even use
y2006t ×Nj in our diff-in-diff specification. These choices hardly matter for our results.

20We also experimented with the year 2004 and 2005 to construct our instrument, finding
similar but larger effects. When defining the treatment period to begin in 2004, the estimate
for common border is 0.311 for I(Nij,t−1 > 0)ijt and 0.268 for Nij,t−1. When we define
the treatment to begin in 2005, the estimates are 0.255 and 0.187, respectively. Hence,
defining the treatment earlier results in an upward bias as exporting to contiguous countries
is confounded by other factors. By using the lifting of the MFA restrictions, we likely
minimize these other effects.
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Table 4: Instrumental Variable Regressions—Dummy

I II III IV V VI

I(Nij,t−1 > 0)ijt defined according to. . .
common border 0.104*** 0.089**

(0.029) (0.045)
common language 0.004 0.005

(0.004) (0.012)
common colonizer -0.128 -0.008

(0.833) (0.768)
common income group 0.043 0.154

(0.280) (0.364)
common continent 0.009*** -0.001

(0.002) (0.033)

Observations 777,000 777,000 777,000 777,000 777,000 777,000
# of firms 1,295 1,295 1,295 1,295 1,295 1,295

First stage F -statistic 1,355 5,561 37.753 24.381 22,181 (⋄)
First stage partial R2 0.002 0.009 0.000 0.000 0.037 (⋄)

Notes: The dependent variable is yijt which is a dummy variable indicating whether a firm i exported to country j in year t. All regressions
include firm-destination fixed effects, as well as year dummies (not reported). We use the two-stage least-squares within panel instrumental
variables estimator where we instrument the endogenous regressor by y2006t × Cj . Standard errors are in parentheses. All regressions use
robust standard errors clustered at the firm level to take into account the potential autocorrelation in the export destination choice at the firm
level. *, ** and *** denote significance at the 10%-, 5%- and 1%-level, respectively. First stage F -statistic denotes the value of the F -statistic
of excluding the endogenous regressor from the first stage regression and first stage partial R2 reports the explanatory power of the instrument,
netting out exogenous regressors from the first stage regression. (⋄): The five first stage regressions and statistics for the five endogenous
variables for column VI are reported in the online Appendix in Table A.3.
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Table 5: Instrumental Variable Regressions—N

I II III IV V VI

Nij,t−1 defined according to. . .
common border 0.080*** 0.075***

(0.029) (0.028)
common language -0.000 0.002

(0.001) (0.002)
common colonizer -0.027 -0.016

(0.057) (0.100)
common income group -0.003 -0.004*

(0.002) (0.002)
common continent 0.005*** 0.003

(0.001) (0.003)

Observations 777,000 777,000 777,000 777,000 777,000 777,000
# of firms 1,295 1,295 1,295 1,295 1,295 1,295

First stage F -statistic 1,617 15,095 192.5 15,703 7,770 (⋄)
First stage partial R2 0.003 0.025 0.000 0.026 0.013 (⋄)

Notes: The dependent variable is yijt which is a dummy variable indicating whether a firm i exported to country j in year t.
All regressions include firm-destination fixed effects, as well as year dummies (not reported). We use the two-stage least-squares
within panel instrumental variables estimator where we instrument the endogenous regressor by y2006t ×Nj . Standard errors are in
parentheses. All regressions use robust standard errors clustered at the firm level to take into account the potential autocorrelation
in the export destination choice at the firm level. *, ** and *** denote significance at the 10%-, 5%- and 1%-level, respectively. First
stage F -statistic denotes the value of the F -statistic of excluding the endogenous regressor from the first stage regression and first
stage partial R2 reports the explanatory power of the instrument, netting out exogenous regressors from the first stage regression.
(⋄): The five first stage regressions and statistics for the five endogenous variables for column VI are reported in the online Appendix
in Table A.4.
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porting to a similar country in the future. Hence, these omitted factors would

lead to an upward bias of our OLS estimates. However, endogeneity may also

arise due to measurement error in the explanatory variable. As pointed out

in Morales et al. (2011) and Nguyen (2012), when deciding about the export

decision in t, the firm actually solves a dynamic optimization problem taking

into account the spatial correlation of profits across destinations. Our econo-

metric specification proxies this dynamic component by including our regressor

of interest, I (Nij,t−1 > 0)
ijt
, which tries to control for the firm’s state variable.

Obviously, this is only a very crude way to introduce dynamics into a static

regression framework. As is well known, measurement error leads to attenua-

tion bias, which may very well explain why our OLS estimates underestimate

the true effect (see e.g. Cameron and Trivedi, 2005, chapter 26.2).

Even though we rely on panel data for our regressions so far, we have,

until now, ignored the persistence and state dependence in the export status

of firms. We turn to this issue in the next section.

3.4 Dynamic panel results taking into account state de-

pendence

At least since Roberts and Tybout (1997) and Das et al. (2007) it is well known

that whether a firm has exported in the previous period is highly correlated

with its current export status. Evidence for this is provided at the firm level,

irrespective of the variation of export destinations within a firm across time.

Hence, it is based on persistence of the export status at the firm level, not

at the firm-destination level. In principle, it is possible that this persistence

is also evident at the firm-destination level. And indeed in our data set, the

correlation between our dependent variable and its one year lag is 0.75.

One can distinguish between two major sources of this observed persistence.

First, there may be some unobserved time-invariant firm-destination compo-

nent which determines whether a firm enters a specific destination. Second,

there can be true state dependence, i.e. the previous export history of a firm

in a specific country drives future export destination choices. In other words,
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export history in export destination choice matters.

Whereas the first persistence is captured in our specification by the firm-

destination fixed effect θij, we did not properly account for potential true

state dependence in our estimations so far. As has been demonstrated by

Nickell (1981), fixed effect estimators are biased in the presence of true state

dependence. How does this affect our estimates? In our setting, consider a firm

which exports to both Singapore and Malaysia in 2005 and 2006. Then, when

not including lags of the dependent variable, our regressor of interest explains

the firm’s exporting behavior in Malaysia by its previous export experience in

Singapore and vice versa.21 To control for this confounding factor, avoid the

Nickel bias, and account for the high persistence in our dependent variable,

we employ the system-GMM dynamic panel estimator by Blundell and Bond

(1998).22

Specifically, we estimate

yijt = φ1yij,t−1 + φ2yij,t−2 + δI(Nij,t−1 > 0)ijt + θij + θt + ǫijt. (4)

We include two lags of the dependent variable as Roberts and Tybout (1997)

show that typically two lags have a significant and decaying impact on the

export decision of a firm.23

Note that the dynamic panel estimator allows us to treat our contiguity

variable as predetermined. This is consistent with the fact that lagged val-

ues of our regressor of interest, I(Nij,t−1 > 0)ijt, cannot be changed by the

firm in the current period but future values may be adjusted by the firm, as

21Note that for firms which continuously export to both destinations in all years included
in the sample, this will be captured by the firm-destination fixed effects. However, firm-
destination fixed effects will not cover this persistence for intermittent exporters.

22We present results using the difference-GMM dynamic panel estimator from Arellano
and Bond (1991) as robustness checks in the online Appendix in Tables A.9 and A.10.
Results even more strongly support evidence for spatial exporters, and even the Sargan
model specification tests do not reject the validity of the instruments.

23While most applications of dynamic panel estimators only include one lag, Cameron
and Trivedi (2005) show that the dynamic setting can easily be extended to more lags. We
also experimented with including only one lag. However, these specifications were clearly
rejected by model specification tests such as the autocorrelation tests or Sargan test. Full
results are available in the online Appendix in Tables A.5 and A.6.
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stressed by the mechanisms in Morales et al. (2011), Albornoz et al. (2012),

and Nguyen (2012). The system-GMM dynamic panel estimator uses moment

conditions derived from Equation (4) in levels and in differences. These mo-

ment conditions imply different sets of instruments for the equation in levels

and in differences. For the level equation, we use the lagged differences of

our dependent variable as well as the differences of our regressor of interest.

For the differenced equation, we use the second and third lag of the level of

the dependent variable as well as the first and second lag of the level of our

regressor of interest (see Baltagi, 2008, chapter 8.5 and Cameron and Trivedi,

2009, chapter 9.4). Note that we restrict the maximum number of lags to two

to prevent a proliferation of instruments.24

Table 6 presents our dynamic panel estimates for specification (4), i.e. using

dummy variables to indicate contiguity between a destination and previous

export destinations. The table is organized in the same way as the previous

tables. We find true state dependence in all our specifications even at the

firm-destination level. Our result that sharing a common border is the largest

and most significant contiguity effect is corroborated by the dynamic panel

estimates. Sharing a common language, colonial ties or being in the same

income group are all significant but have smaller effects than common border.

Column VI presents results when we include all regressors at the same

time. Sharing a common border still has a similar impact on the probability

of exporting to a country compared to the specification in column I. The same

holds for sharing a common language or being in the same income group.

Interestingly, sharing a common colonizer has a significant and positive effect

in column III. This effect vanishes, however, in column VI. Being on the same

continent even turns out to have an albeit small but significantly negative

effect. Note, however, that a country which is located on the same continent

very likely also shares a common border or a common language with a previous

24In the online Appendix in Tables A.7 and A.8, we additionally use our instrument
from the instrumental variable regressions from Section 3.3, y2006t × Cj and y2006t ×Nj ,
respectively, as an external instrument. Using the additional instrument increases our point
estimates and, as expected, improves the performance of the model specification Sargan
test.
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export destination. In other words, there is a high correlation between our

different contiguity measures. We again compare our estimated marginal effect

to the empirical probability of a firm exporting to a particular country from

Table A.37 from the online Appendix. Given the empirical probabilities, this

implies e.g. a 33 percent (0.023/0.070) increase in the probability of a firm

exporting to Singapore when it has previously exported to Malaysia.

We use the Sargan test and a test for the first and second order autocorrela-

tion of the residuals to test our specifications. The bottom three lines of Table

6 report their p-values. While we find evidence for first order autocorrelation

in the residuals, we do not find evidence for second order autocorrelation, im-

plying that the moment conditions used for the dynamic panel estimator are

valid. We also report a Sargan overidentification test even though this test is

only valid under homoskedasticity. In most specifications also the Sargan test

does not reject our model specification. Only in specifications VI the Sargan

test rejects our internal instruments. Overall, results suggest a proper model

specification.

We again can use the number of contiguous export destinations as an al-

ternative regressor. Then, the dynamic panel specification is given by

yijt = φ1yij,t−1 + φ2yij,t−2 + δNij,t−1 + θij + θt + ǫijt. (5)

Table 7 shows that results are hardly affected. Again, we find strong evidence

for true state dependence, and again sharing a common border has the largest

impact on the destination choice. Specification tests for first and second order

autocorrelation again do not invalidate our regressions. However, the Sargan

test does reject the validity of our internal instruments in specifications IV-

VI. Note, however, that the test is only valid under homoskedasticity which is

violated in trade data (see Santos Silva and Tenreyro, 2006).
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Table 6: Dynamic Panel Estimates—Dummy

I II III IV V VI

I(Nij,t−1 > 0)ijt defined according to. . .
common border 0.024*** 0.023***

(0.004) (0.004)
common language 0.003*** 0.003***

(0.001) (0.001)
common colonizer 0.003*** 0.001

(0.001) (0.001)
common income group 0.003*** 0.002***

(0.001) (0.001)
common continent -0.001 -0.005***

(0.001) (0.001)
yij,t−1 0.344*** 0.344*** 0.343*** 0.343*** 0.344*** 0.347***

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
yij,t−2 0.077*** 0.078*** 0.076*** 0.078*** 0.076*** 0.074***

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

Observations 777,000 777,000 777,000 777,000 777,000 777,000
# of firms 1,295 1,295 1,295 1,295 1,295 1,295

AR(1) 0 0 0 0 0 0
AR(2) .821 .822 .889 .803 .929 .950
Sargan .383 .604 .170 .406 .061 .008

Notes: The dependent variable is yijt which is a dummy variable indicating whether a firm i exported to country j in year t. All regressions include
firm-destination fixed effects, as well as year dummies (not reported). Standard errors are in parentheses. All regressions use robust standard errors
and treat the lags of the dependent variable as well as the regressors of interest as predetermined. We use the two-step system GMM estimator from
Blundell and Bond (1998) and, due to the two-step estimation, we use the Windmeijer (2005) finite sample correction for the standard errors. *, **
and *** denote significance at the 10%-, 5%- and 1%-level, respectively. The values reported for AR(1) and AR(2) are the p-values for first and second
order autocorrelated disturbances in the first differences equations. The row for the Sargan reports the p-values for the null hypothesis of validity of
the overidentifying restrictions and can only be computed assuming homoskedasticity. To report this statistic, we re-estimate the model accordingly.
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Table 7: Dynamic Panel Estimates—N

I II III IV V VI

Nij,t−1 defined according to. . .
common border 0.023*** 0.013***

(0.004) (0.004)
common language 0.002*** -0.001**

(0.000) (0.000)
common colonizer 0.004*** 0.000

(0.001) (0.001)
common income group 0.006*** 0.005***

(0.000) (0.001)
common continent 0.004*** 0.002***

(0.000) (0.000)
yij,t−1 0.344*** 0.348*** 0.343*** 0.338*** 0.342*** 0.356***

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
yij,t−2 0.077*** 0.081*** 0.079*** 0.081*** 0.084*** 0.098***

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

Observations 777,000 777,000 777,000 777,000 777,000 777,000
# of firms 1,295 1,295 1,295 1,295 1,295 1,295

AR(1) 0 0 0 0 0 0
AR(2) .825 .673 .738 .582 .535 .212
Sargan .346 .057 .081 .010 .003 0

Notes: The dependent variable is yijt which is a dummy variable indicating whether a firm i exported to country j in year t. All
regressions include firm-destination fixed effects, as well as year dummies (not reported). Standard errors are in parentheses. All
regressions use robust standard errors and treat the lags of the dependent variable as well as the regressors of interest as predetermined.
We use the two-step system GMM estimator from Blundell and Bond (1998) and, due to the two-step estimation, we use the Windmeijer
(2005) finite sample correction for the standard errors. *, ** and *** denote significance at the 10%-, 5%- and 1%-level, respectively.
The values reported for AR(1) and AR(2) are the p-values for first and second order autocorrelated disturbances in the first differences
equations. The row for the Sargan reports the p-values for the null hypothesis of validity of the overidentifying restrictions and can only
be computed assuming homoskedasticity. To report this statistic, we re-estimate the model accordingly.
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4 Multi-product firms

Until now our analysis considered an export destination as contiguous if the

firm previously exported any product to a contiguous market. It is well known

that a substantial fraction of firms produce and export multiple products, and

that multi-product firms make up for the majority of sales in a given industry,

see Arkolakis and Muendler (2010) and Bernard et al. (2010). In our sample, 56

percent of firms export in more than one HS-6 product category. If there exists

within-firm correlation of export destination choices between products, then

a firm may enter a new export market with a product when it has previously

sold a different product in a contiguous market.

Both supply and demand side reasons may explain these economies of

scope. When costs for product adaptation are lower for other products within

a firm once they have been incurred for a specific market and product, the

additional cost of adapting the product for a similar market may be lower.

When a firm sells its products under a single brand to benefit from brand

loyalty of consumers, successful exports of one product provide information

about likely profitable exports across the whole product mix of a firm’s brand.

We modify our dynamic panel specification given in equation (4) as follows:

yijt = φ1yij,t−1 + φ2yij,t−2 + δ1I(N
sameproduct
ij,t−1 > 0)ijt

+δ2I(N
otherproducts
ij,t−1 > 0)ijt + θij + θt + ǫijt, (6)

where i now denotes a firm-product couple at the HS-6-digit product cate-

gory and no longer a single firm, and where N
sameproduct
ij,t−1 is the number of

contiguous destinations where the firm has exported the same product before

and N
otherproducts
ij,t−1 is the number of contiguous destinations where the firm has

previously exported products from other HS-6 categories. θij now captures

unobserved time-invariant firm-product-destination characteristics.

As we now focus on firm-product couples, we use all firm-product couples

which have never entered the previously restricted countries before 2005. In

our sample, there are 6,573 firm-product couples of 1,965 firms, implying that
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a firm exports about 3.3 products on average.25 In our previous regressions,

we kept only those firms that never exported any product into the previously

restricted MFA countries. As firms may have entered into the previously re-

stricted MFA countries only with a subset of their products, we now keep all

other firm-product couples where we do not observe exports into the previ-

ously restricted MFA countries before 2005. Hence, there are more firms in

our multi-product sample than in the previous regressions.26

We present results in Table 8. Overall we find hardly any evidence that ex-

porting to a country is more likely after a previous entry into contiguous export

destinations across products, the only exception being the common border co-

efficient in specifications I and VI. We find that the probability of choosing a

country increases by 1.8 percentage points when a firm previously has exported

the same HS-6 product to a contiguous country, and by 0.2 percentage points

if it has exported other HS-6 products. For the other contiguity measures, our

results indicate no (economically) significant effect of across product learning.

Interestingly, we find small significant negative effects for common colonizer

and common continent. This may hint at a potential for diversification in

a firm’s export portfolio by selling different products to different contiguous

countries when they share a colonial past or are located on the same continent.

Note that our results for the same HS-6 product are in line with the effects

found at the firm-level in Section 3.4.

The tests for autocorrelation in the disturbances in first differences indi-

cate a well-specified model. However, contrary to the firm-level regressions,

the Sargan test now rejects the validity of the overidentifying restrictions.

With nearly four million observations based on 6,573 firm-product couples,

the amount of heteroskedasticity is higher by construction as compared to the

firm-level regressions. This may explain the rejection of the overidentifying

restrictions by the Sargan test based on the assumption of homoskedasticity.

In the online Appendix, we also present results using the number of con-

25Descriptive statistics can be found in Table A.39 in the online Appendix.
26Imagine a firm which has exported panties to an MFA country in 2004 but not bras.

In our firm level regressions, this firm is dropped from the sample. However, in our multi-
product regressions we will keep the bra observations.
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Table 8: Multi-Product Firms: Dynamic Panel Estimates—Dummy

I II III IV V VI

I(Nij,t−1 > 0)ijt defined according to. . .

common border I(Nsameproduct
ij,t−1

> 0)ijt 0.018*** 0.018***

(0.002) (0.002)

I(Notherproducts
ij,t−1

> 0)ijt 0.002*** 0.004***

(0.001) (0.001)

common language I(Nsameproduct
ij,t−1

> 0)ijt 0.002*** 0.001***

(0.000) (0.000)

I(Notherproducts
ij,t−1

> 0)ijt -0.000** -0.000

(0.000) (0.000)

common colonizer I(Nsameproduct
ij,t−1

> 0)ijt 0.002*** 0.001**

(0.001) (0.001)

I(Notherproducts
ij,t−1

> 0)ijt -0.001** -0.001

(0.000) (0.000)

common income group I(Nsameproduct
ij,t−1

> 0)ijt 0.001*** 0.001*

(0.000) (0.000)

I(Notherproducts
ij,t−1

> 0)ijt -0.000 -0.000

(0.000) (0.000)

common continent I(Nsameproduct
ij,t−1

> 0)ijt -0.000 -0.003***

(0.000) (0.000)

I(Notherproducts
ij,t−1

> 0)ijt -0.003*** -0.003***

(0.000) (0.000)
yij,t−1 0.309*** 0.315*** 0.311*** 0.310*** 0.325*** 0.338***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
yij,t−2 0.076*** 0.081*** 0.076*** 0.077*** 0.093*** 0.106***

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Observations 3,943,800 3,943,800 3,943,800 3,943,800 3,943,800 3,943,800
# of firm-product couples 6,573 6,573 6,573 6,573 6,573 6,573
# of firms 1,965 1,965 1,965 1,965 1,965 1,965

AR(1) 0 0 0 0 0 0
AR(2) .693 .964 .657 .705 .219 .016
Sargan 0 0 0 0 0 0

Notes: The dependent variable is yijt which is a dummy variable indicating whether a firm-product couple i exported to country j in year t. All
regressions include firm-product-destination fixed effects, as well as year dummies (not reported). Standard errors are in parentheses. All regressions
use robust standard errors and treat the lags of the dependent variable as well as the regressors of interest as predetermined. We use the two-step
system GMM estimator from Blundell and Bond (1998) and, due to the two-step estimation, we use the Windmeijer (2005) finite sample correction
for the standard errors. *, ** and *** denote significance at the 10%-, 5%- and 1%-level, respectively. The values reported for AR(1) and AR(2) are
the p-values for first and second order autocorrelated disturbances in the first differences equations. The row for the Sargan reports the p-values for
the null hypothesis of validity of the overidentifying restrictions and can only be computed assuming homoskedasticity. To report this statistic, we
re-estimate the model accordingly.
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tiguous countries as regressor in Table A.11. Results remain similar. To sum

up, we hardly find evidence for across product learning of exporters. This

probably hints at only small economies of scope for multi-product firms when

entering new export markets with several products, at least across markets.

5 Robustness checks

We now discuss several effects that could influence our results and which

are unrelated to the cross-country correlation in export destination choices

of firms. Detailed regression results pertaining to these robustness checks can

be found in the online Appendix. Unless otherwise noted, all robustness checks

use specification VI from Table 7 as a starting point.

Lagged export values : In addition to learning from its previous export

experience, a firm may also exhibit increasing returns to scale via a learning

by doing mechanism in textile and apparel production. Since the MFA quotas

represent an artificial quantity restriction, removing it should result in a large

increase in the volume of export sales. As our regressor of interest is correlated

with a firm’s export volume by construction and this might bias our results, we

include the lagged export value as an additional control variable. Contiguity

between export destinations still has a significant positive impact on a firm’s

exporting decision even when controlling for the lagged export value.

Competitors’ success : Krautheim (2012) theoretically investigates the im-

portance of spillover effects from competing firms on exporting fixed costs.

The number of exporting firms of the same product or the number of export

markets already entered by close competitors may influence a firm’s ability

to export to a specific destination. Wen (2004) shows that Chinese firms

producing in the same industry tend to cluster geographically across Chinese

regions. We therefore use the sum of the number of previously entered contigu-

ous export destinations over all competitors in the same Chinese prefecture,

N−ij,p,t−1, to control for these spillover effects. We can construct this control

variable using again all of our different contiguity measures. Controlling for

spillover effects from close competitors hardly affects our results.
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Trading agents: The raw data contains a number of trading agents (“in-

termediary firms”) which mediate trade for other firms but do not directly

engage in production. Including these firms could cause problems as their

behavior is probably different from that of manufacturing firms. To exclude

the possibility that our results are driven by these trading agent business net-

works, we exclude trading firms which are identified by certain keywords in

their names. Ahn et al. (2011) use the Chinese characters for “importer”,

“exporter”, and “trading” to identify “intermediary firms”. By contrast, we

follow Upward et al. (2011) and use a more comprehensive list of keywords

which are typically used by various kinds of trading agents in China. These

trading companies represent about four percent of our observations. Dropping

trading agents does not change our conclusions.

State-owned firms: Khandelwal et al. (2013) argue that state-owned firms

seem to have been more likely to obtain a license before the MFA quota restric-

tions were lifted. This makes them potentially different from privately-owned

firms. We therefore exclude state-owned firms. Again, our results hold up.

Foreign-owned firms: We exclude all foreign-owned firms and processing

trade as the destination choice of firms could be influenced by the foreign

headquarters’ location or by the location of other foreign direct investments

realized by the parent company. While qualitative results are similar, our

results lose some of their significance. This may well be due to the large drop

in the number of firms and observations to about a tenth of the full sample.

Processing trade: Our data allow us to distinguish between processing and

ordinary exports. The former refers to exports that are assembled in an export

processing zone and use a high share of imported intermediate inputs. Note

that foreign owned firms often engage in processing exports but not necessarily

so. Processing exports may be special with respect to the export location

choice because they could be influenced by a third foreign party. In addition,

processing trade firms may have less liberty in their export destination choice.

Excluding processing trade export transactions leads again to a substantial

drop in the number of observations to around a fifth of the original sample.

Our results are again qualitatively similar but lose some of their significance.
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Excluding Russia: As Russia shares a common border with both China and

MFA-restricted countries, our identification for the diff-in-diff could mainly

stem from Russia. Indeed, our coefficient on common border reduces in size

but remains positive and significant.

Country-specific time trends: We include country-specific time trends in all

the regressions presented in Sections 3 and 4. The diff-in-diff and instrumental

variable specifications are not robust to country-specific time trends and hint

at high multicollinearity between the country-specific time trends and our re-

gressors of interest. The fixed effects and dynamic panel estimates, however,

retain their significance and are similar in magnitude compared to the regres-

sions without time trends. When using continent-specific time trends, also the

diff-in-diff and instrumental variable specifications lead to a significant and

similar effect of sharing a common border.

Different effect of previous entry in contiguous MFA-restricted versus non-

MFA-restricted countries: We follow up on footnote 16 and introduce NMFA
ij,t−1 ,

the number of contiguous previous export destinations which are MFA coun-

tries, and NnonMFA
ij,t−1 , the number of contiguous previous export destinations

which are not MFA countries, instead of our default regressor Nij,t−1, the total

number of contiguous previous export destinations, in our regressions from

Section 3.2. Note that Nij,t−1 = NMFA
ij,t−1 +NnonMFA

ij,t−1 . We find that evidence for

spatial exporters in our sample comes predominantly from entering in previ-

ously restricted MFA countries if we define our regressor as sharing a common

border, consistent with our identification and sample selection strategy.

Full sample: As in principle the dynamic panel regressions take account

of the previous export experience of a firm by the lagged dependent variable,

we re-estimate our model by including also those firms which entered in MFA-

restricted countries between 2000 and 2004, i.e. those which did have an export

license. Estimated coefficients remain similar. However, the model specifica-

tion tests clearly reject all regressions. This hints at the endogeneity bias

introduced by not restricting the sample to firms who have never exported to

MFA-restricted countries between 2000 and 2004.
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6 Conclusion

How do firms choose new export destinations? While there are many factors

that are important for this decision, one empirical regularity stands out: Firms

tend to choose new export markets that are geographically close to their prior

export destinations more often than standard gravity models would predict.

We quantify this spatial pattern using Chinese customs data and the quasi-

natural experiment of the end of the import quota restrictions on Chinese

textile exports which creates an exogenous set of potential new destinations

(25 EU countries, the US, and Canada). We use the sample of firms which

had never exported to the 27 previously restricted MFA countries before 2005.

These firms allow us to identify the effect of previous export history in con-

tiguous countries on the probability of exporting to one of the 150 countries

which were not covered by the MFA import restrictions. This enables us to

quantify the importance of ‘extended gravity’ or ‘spatial exporters’, i.e. the

time-varying firm-specific heterogeneity in export destination choices shaped

by firms’ previous export experience in spatially close countries. Our regres-

sions control for unobserved time-invariant heterogeneity at the firm-country

level as well as true state dependence.

Our baseline results show that the probability to export to a country in-

creases by about two percentage points for each prior export destination with

a common border with this country. For example, this implies a 33 percent

increase in the probability of a firm exporting to Singapore, one of the top ex-

port destinations in our data set of non-MFA countries, when it has previously

exported to Malaysia, a country which shares a border with Singapore.
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