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Effects of Acute Ketamine Infusion on Visual
Working Memory: Event-Related Potentials
Ivan Koychev, John Francis William Deakin, Wael El-Deredy, and Corinna Haenschel
ABSTRACT
BACKGROUND: Working memory (WM) deficits are a core feature of schizophrenia. Electrophysiological studies
suggest that impaired early visual processing may contribute to impaired WM in the visual domain. Abnormal
N-methyl-D-aspartate (NMDA) receptor function has been implicated both in WM and in early visual processing
deficits in schizophrenia. We investigated whether ketamine, a noncompetitive NMDA antagonist, would replicate in
healthy volunteers the WM performance and early visual processing abnormalities we and others have reported in
patients with schizophrenia.
METHODS: Forty-four healthy volunteers were randomly assigned to receive intravenous ketamine or placebo.
During infusion, the effects of ketamine were recorded using standardized psychiatric scales. Visual evoked
potentials (P100 and P300 components) were recorded during performance of a delayed matching to sample task.
RESULTS: Ketamine induced mild psychosis-like symptoms and impaired WM performance. It also significantly
increased the P100 amplitude, while P300 amplitude decreased in a load-dependent manner. Amplitudes of P100
during retrieval correlated with cognitive performance only in the placebo group.
CONCLUSIONS: We confirmed previous studies showing that ketamine reproduces the impairment of WM
performance and smaller P300 amplitudes observed in schizophrenia. However, ketamine increased visual P100
amplitude in contrast to our observation of reduced P100 amplitudes in established schizophrenia. The effects of
ketamine on WM and P300 are likely to involve impaired NMDA function, as these receptors are implicated in
changes of synaptic strength underlying associative learning and memory. Increased P100 amplitude may reflect the
secondary disinhibition of cortical glutamate release that occurs after NMDA blockade.
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Cognitive deficits, such as working memory (WM) impairment,
are cardinal features of schizophrenia (1) that are present
before the onset of psychosis and are independent of illness
relapse (2–4). These deficits are more accurate predictors of
poor social and occupational function than psychotic symp-
toms (5–7). Much attention has been focused on developing
treatments to improve the executive functions of dorsolateral
prefrontal cortex, which control and coordinate the many
subprocesses necessary for WM (e.g., the ability to hold and
manipulate information online). However, more recent electro-
physiological evidence suggests that WM impairment in
schizophrenia may arise in part from abnormalities in very
early perceptual subprocesses.

Several studies report that patients with schizophrenia have
reduced amplitude of early visual evoked response potentials
(ERPs) as early as 100 ms after stimulus onset—the P100
potential (8–11). This may be a trait marker for vulnerability, as
it has been reported in unaffected first-degree relatives (12)
and high schizotypal individuals (13). Koychev et al. (13)
reported that P100 amplitude predicted performance during
a visual WM task in healthy control subjects but was reduced
in patients with early-onset schizophrenia. These P100 effects
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in patients were demonstrated to be independent of drug
dosage or symptom severity (8). Based on these and other
data, it has been suggested that cognitive deficits in schizo-
phrenia could involve abnormal sensory (i.e., bottom-up)
processing (9). An alternative view is that P100 reduction
reflects abnormal modulation by higher order areas. This view
is based on observations that P100 responses to more
complex tasks may depend on recurrent feedback from higher
cognitive areas (14,15). Direct evidence for prefrontal facilita-
tion of P100 was provided by a study that showed reduced
P100 to a bifield visual discrimination task in patients with
prefrontal cortex lesions (16) and after a reversible experimen-
tal lesion induced by transcranial magnetic stimulation (17).

Several studies have reported that patients with schizo-
phrenia have reduced amplitude of the P300 ERP component
(18–20). P300 potentials are typically evoked by infrequent
target stimuli that differ in quality or duration from more
frequent stimuli (21,22), but they are also elicited by WM tasks
during both encoding and retrieval (23,24). P300 has been
conceptualized as a neurophysiological correlate of WM
update in response to changes in the environment (25).
Patients with schizophrenia show a reduction in P300
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(20,26,27), which has been shown to correlate with the level of
cognitive impairment (28,29).

Changes in early visual processing in schizophrenia inevi-
tably implicate abnormal cortical glutamate function in their
pathogenesis. Indeed, the ability of noncompetitive N-methyl-
D-aspartate (NMDA) receptor antagonists such as phencycli-
dine and ketamine to mimic symptoms, cognitive impairments,
and electrophysiological changes of schizophrenia in healthy
volunteers (30–34) has been key to the development of the
NMDA-deficiency theory of schizophrenia (35–37). The impor-
tance of glutamate to cognition was demonstrated by pre-
clinical work showing that glutamate gated ion channels
(NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole pro-
pionic acid [AMPA] receptors) jointly modulate learning and
memory (38–40). Whereas AMPA has been suggested to be
involved in the feedforward visual information transfer, NMDA
receptor activity has been implicated in longer term changes in
excitability that underlie experience-dependent learning and
memory by modulating neurons that have already been
depolarized by sensory input. The modulatory role of NMDA
receptor activity has been investigated within visual (41,42)
and prefrontal (43,44) cortices to study visual perception and
WM, respectively. In addition, there is evidence that NMDA
antagonism enhances AMPA-mediated responses and dis-
rupts modulation of sensory cortex by top-down processes in
humans (45) and primates (46).

In summary, ketamine has been shown to disrupt both early
perceptual and WM processes in animals and human func-
tional magnetic resonance imaging (fMRI) studies. However,
there is surprisingly little known about the influence of ket-
amine on the neurophysiological changes measured with
ERPs in the context of WM processes. Studies so far have
focused on auditory oddball paradigms and reported reduc-
tions in P300 as well as a marker of automatic WM update,
mismatch negativity (47–50). Visual experiments have focused
exclusively on later ERP components, reporting an attenuation
of the P300 component (51–53).

In this study, we sought to address the gap in knowledge
relating to the effects of ketamine on early visual processing
and the impact these have on WM. We administered ketamine
in a double-blind, placebo-controlled randomized design to a
group of healthy volunteers and recorded continuous electro-
encephalograms (EEGs) while the volunteers performed a
visual WM task. We predicted that ketamine would reproduce
the early visual and higher cognitive WM deficits reported in
schizophrenia. We expected that this would be evident in
impaired cognitive performance as well as reduced P100 and
P300 ERP amplitudes after ketamine administration. We
reasoned that if the WM deficit associated with NMDA
dysfunction is due to a disruption of early sensory information,
this would be reflected in reduced P100 amplitude. In contrast,
if the effects are due to later memory processing, we expected
to see a change in the P300 amplitude.
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METHODS AND MATERIALS

Participants

This study was approved by North West 5 Research Ethics
Committee, Haydock Park, United Kingdom (Reference
2 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging ]]]
No. 10/H1010/3). Participants were recruited from a depart-
mental database of volunteers who had completed the
Schizotypal Personality Questionnaire (SPQ) (54). Individuals
scoring #42 [cutoff for high schizotypy based on a previous
study in the same population (55)] were invited to attend at the
Manchester Wellcome Trust Clinical Research Facility, where
they provided written consent for assessment and for testing.
The participants completed the SPQ again and went through a
medical and psychiatric history interview and physical exami-
nation (including electrocardiogram and body mass index
measurement). Participants were selected if they were 18 to
55 years old with no personal or family history of psychotic
mental illness and deemed to be healthy on physical assess-
ment with a body mass index between 18 and 30. Exclusion
criteria were SPQ score .42, pregnancy (positive urine dip-
stick), any concurrent medication aside from simple analgesia,
history of severe allergic reaction to drugs, severe physical or
mental illness, current alcohol or substance misuse or
dependence, positive urine dipstick for illicit drugs, smoking
more than five cigarettes per week, and consumption of more
than six caffeinated drinks per day or any caffeinated drink in
the 2 hours preceding the appointment. Included participants
completed the National Adult Reading Test (56) to determine
verbal IQ.

Experiment Design and WM Task

Forty-four participants met inclusion criteria and were ran-
domly assigned to receive either placebo or ketamine in a
double-blind design. Participants were seated in front of a
monitor and familiarized themselves with the study task.
Infusion with either ketamine or placebo began after a 20-
minute EEG resting-state recording. Ketamine was adminis-
tered at a rate allowing stable plasma concentration of 100 ng/
mL (57). We used the Clements 250 infusion model, which was
shown to reliably predict ketamine plasma concentrations
(i.e., within 2 SD of the observed plasma concentration) (58).
To achieve the target plasma levels, the ketamine doses
delivered were 0.16 mg/kg 6 0.0028 (mean 6 SD) during the
first minute followed by approximately 0.39 mg/kg/hour (for
100 ng/mL target plasma concentration). The doses of
ketamine were chosen on the basis that they would induce both
subjective and cognitive subjective effects. Participants began
the EEG task 5 minutes after the start of infusion (Figure 1A).

WM Task

The experiment consisted of a delayed matching-to-sample
WM task with minor modifications from another experiment
(59) described in full elsewhere (13). Briefly, participants were
instructed to remember one, two, or three abstract forms
presented successively in the center of a black screen
(Figure 1B). After a delay period, a new or previously presented
form appeared on the screen, and the participants pressed a
button indicating if they did or did not recognize the form from
the sample (keyboard buttons “Y” or “N,” respectively). To our
knowledge, none of the participants had been exposed to a
similar WM task or been part of studies testing cognition.

Each run lasted 6 minutes and consisted of 30 trials, 10 of
each WM load intermixed pseudorandomly. Participants com-
pleted three blocks with a block made up of two runs (the runs
2016; ]:]]]–]]] www.sobp.org/BPCNNI
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Figure 1. Procedures. (A) Experimental flow.
All participants completed six runs, grouped into
three blocks. A block was made up of two runs
interrupted by a 2-minute resting trace. After
completion of the first block, participants rested
and the Clinician Administered Dissociative
Symptom Scale (CADSS) was scored. Following
the second block, the Brief Psychiatric Rating
Scale (BPRS) was administered during the rest.
(B) Working memory (WM) paradigm. In the
center of a black screen (0.6 3 0.6 visual angles),
36 nonnatural objects were presented. Partici-
pants were instructed to remember one, two, or
three subsequently presented images. Each trial
began with a screen saying “New trial,” after
which the encoding stimuli were presented for
400 ms each. The encoding images were sepa-
rated by an interstimulus interval of 600 ms,
during which a fixation cross appeared on the
screen. After a delay (maintenance) period of

6 seconds, a target probe appeared on the screen (presentation time 3 seconds), and the participants had to indicate whether it was part of the initial
sample set. The participants pressed “Y” if the target image was part of the encoding sequence and “N” if it was not. An interstimulus interval of 1 second
separated the trials.

Post 5 Min 
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2 WM 
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B. Working memory 
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were separated by a 2-minute resting trace). Blocks were
separated by 10-minute breaks. We completed the Clinician
Administered Dissociative Symptom Scale (CADSS) (60) dur-
ing the first break and the Brief Psychiatric Rating Scale
(BPRS) (61) during the second break. Physical observations
including blood pressure, pulse, and temperature were recor-
ded before testing commenced and after each block. On
completion of the final block, the infusion was stopped.
Participants were observed and their vital signs were recorded
for a minimum of 2 hours before being discharged.
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ERP Data Acquisition, Processing, and Analysis

Continuous EEG recording was obtained using the ActiveTwo
BioSemi electrode system (BioSemi, Amsterdam, Netherlands)
from 64 active scalp electrodes digitized at 512 Hz with an
open passband from DC to 150 Hz. A detailed description of
the BioSemi electrode referencing and grounding convention
can be found at http://www.biosemi.com/faq/cms&drl.htm.

BESA version 5.2 (Brain Electrical Source Analysis, Gräfelf-
ing, Germany) was used to analyze data using an average
reference calculated over the scalp electrodes offline. Only
trials in which participants responded correctly to the WM task
were included in the analysis. Epoch trials were defined as
400-ms prestimulus to 1000-ms poststimulus with a baseline
of 2100 ms to 0 ms. For the encoding phase, we analyzed the
response to the last object to appear within the encoding
series (object 1 in load 1, object 2 in load 2, and object 3 in
load 3). For the retrieval phase, we analyzed the responses to
the target image. All electrode channels were subjected to
automatic artifact rejection to correct for blinks and saccades
(thresholds for exclusion of vertical and horizontal movements
were 6250 mV and 6150 mV, respectively). The continuous
data were then examined for outstanding blink artifacts,
which were removed manually. The trials that survived
artifact correction were filtered with a high-pass filter of
0.3 Hz (6 dB/octave) and a low-pass filter of 30 Hz (24 dB/
octave). The mean percentages of retained trials (6 SD) for
ketamine were 91.2% 6 6.7 (encoding) and 91.8% 6 10.1
Biological Psychiatry: Cognitive Neuroscienc
(retrieval) and for saline were 97.8% 6 2.7 (encoding) and
98.5% 6 1.7 (retrieval).

Evoked Response Potentials

P100. Averaged mean amplitude from five occipital electro-
des was used (PO8, O2, O1, PO7, Oz) to analyze P100. P100
was calculated by extracting the mean amplitude of the 20-ms
window centered on the mean P100 latency for each individual
participant. The latter was established by examining the global
field power and manually extracting the latency of the
increases in activity corresponding to P100 peak.

P300. Based on the grand average, we measured P300 in a
time window between 400 and 750 ms. We averaged the mean
amplitude of three central parietal electrodes (P1, Pz, P2) for
each WM load during encoding and retrieval.

Statistics

Repeated measures analysis of variance (ANOVA) with within-
subject factors of WM load (loads 1, 2, and 3) and a between-
subject factor of drug (ketamine and saline groups) was used
to analyze reaction time (RT), percentage correct responses
(accuracy), P100 amplitude, P100 latency, and P300 ampli-
tude. This was done for encoding and retrieval stimuli sepa-
rately. For the P300 models, we tested the hypothesis that
P100 modulates the subsequent P300 signal by running a
correlation between P100 and P300. We also ran a mixed-
model repeated measures ANOVA with a time-varying (WM
load) covariate (P100) including P100 as a covariate separa-
tely for encoding and retrieval. Significant drug 3 WM load
interactions were followed with linear post hoc analyses.
Pearson’s correlations were used to explore the relationship
between an individual’s overall cognitive performance (per-
centage correct responses on WM task across WM load) and
the average of their ERP amplitudes (P100 and P300) as well
as their clinical scores (CADSS and BPRS). The correlations
were performed separately for the ketamine and placebo
groups.
e and Neuroimaging ]]] 2016; ]:]]]–]]] www.sobp.org/BPCNNI 3
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Table 1. Participant Demographics

Ketamine Placebo

Mean SE Mean SE p Value

Age, Years 23.7 1.3 23.4 0.8 .87

Education, Years 15.2 0.7 15.9 0.33 .24

IQ (NART) 114.1 1.0 114.0 1.2 .6

SPQ 3.1 1.1 6.4 1.3 .99

NART, National Adult Reading Test; SPQ, Schizotypal Personality Questionnaire.

Biological
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RESULTS

Demographics and Questionnaire Data

The two groups did not differ statistically in terms of age,
IQ score, SPQ score, and years of education (Table 1).
The ketamine challenge resulted in significantly higher BPRS
and CADSS scores compared with the saline-treated
group (F1,42 5 9.026, p , .01 and F1,42 5 8.479, p , .01,
respectively) (Table 2).

Behavioral Results

Figure 2 shows the mean RTs and the percentage of correct
responses (accuracy) for both groups. With an increase in WM
load, accuracy decreased in both groups (F2,84 5 65.761,
p , .001; partial eta2 5 0.61), and there was no main effect of
drug. However, there was a significant drug 3 WM load
interaction (F2,84 5 3.548, p 5 .04; partial eta2 5 0.15). This
effect was due to performance under ketamine worsening
significantly more with increase in WM load compared with
placebo (Figure 2). There was also a significant negative
correlation between CADSS scores and mean accuracy
(r 5 2.578, p , .01) for the ketamine but not the placebo
group (r 5 2.065, p 5 .78). These results were significant against
a Bonferroni corrected critical value of 0.0125. RT increased with
WM load for both groups (F2,84 5 128.535, p , .001; partial
eta2 5 0.75), but this was not modified by ketamine.

ERP Results Encoding Phase

P100 Amplitude. The mean latency and SE of the P100
component in encoding was 123.0 ms 6 2.9 for the ketamine
group and 119.9 ms 6 3.0 for the placebo group. There was
no effect of drug on latency. However, P100 peaked signifi-
cantly earlier with greater WM loads (F2,84 5 10.97, p 5 .001).

The P100 amplitude was significantly greater under ket-
amine (F1,42 5 5.884, p 5 .02; partial eta2 5 0.12) compared
with the placebo group. P100 amplitude also increased with
WM load (F2,84 5 7.481, p 5 .001; partial eta2 5 0.15). This
was confirmed by a significant linear contrast (F2,84 5 15.81,
p , .01; partial eta2 5 0.27). There was no interaction of WM
load with drug. Ketamine and placebo P100 amplitude did not
correlate with either mean percentage correct responses or
psychiatric scale scores (BPRS and CADSS).

P300 Amplitude. There was no main effect of drug in the
P300 model (F(1,42) 5 20.261, p 5 .61). This was not
modulated by including P100 in a mixed-model repeated
measures ANOVA as a time-varying covariate. However,
there was a significant interaction between WM load and drug
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging ]]]
(F(2,84) 5 4.461, p 5 .01, partial eta2 5 0.10). This was due to a
linear decrease in P300 amplitude in the ketamine group but
not the placebo group (F(2,84) 5 4.461, p 5 .01, partial eta2 5

0.15). The main effect of WM load was significant (F2,84 5

4.873, p 5 .01; partial eta2 5 0.10) with a significant linear
decrease of P300 with WM load (F1,42 5 9.231, p , .001;
partial eta2 5 0.18).

The P300 amplitude correlated negatively with task accu-
racy across the three WM loads at trend for statistical
significance for the ketamine group (r 5 2.41, p 5 .06) but
not the placebo group. P300 amplitude did not correlate
significantly with either psychiatric scale or encoding P100
for either of the two groups.

ERP Results Retrieval Phase

P100 Amplitude. The P100 peaked at a latency of 116.4
ms 6 3.0 and 112.1 ms 6 3.0 for ketamine compared with
control, respectively, with no main effect of drug. There was
again a trend for the latency to be shorter with higher WM
loads (F2,84 5 2.69, p 5 .07). In the retrieval condition,
ketamine significantly increased P100 amplitude relative to
placebo (F1,42 5 5.620, p 5 .02; partial eta2 5 0.12). WM load
did not have a significant effect on P100 amplitude, nor did it
interact with drug.

P100 amplitude correlated positively with mean WM accu-
racy over all three loads in the placebo group only (r 5 .48,
p 5 .02). There was no significant correlation between BPRS
and CADSS and P100 amplitude for either ketamine or placebo.

P300 Amplitude. There was no main effect of drug in the
P300 amplitude model, and a mixed-model repeated meas-
ures ANOVA with a time-varying covariate confirmed that this
model was not modulated by P100. However, the interaction
between drug and WM load approached significance (F2,84 5

2.677, p 5 .08, partial eta2 5 0.06). This was due to a larger
P300 in the placebo group for WM loads 1 and 3 (Figure 3D).
WM load exerted a significant main effect (F2,84 5 15.310, p ,

.001, partial eta2 5 0.27), which was due to a decrease in P300
amplitude with WM load.

P300 amplitude in the retrieval phase correlated negatively
with cognitive performance at trend in the ketamine group only
(r 5 2.39, p 5 .08) (Figure 4). P300 did not correlate with either
psychiatric rating scales or retrieval P100 for either of the two
groups.
DISCUSSION

In this study, we used ERPs to examine the effects of
intravenous ketamine challenge on visual WM in healthy
2016; ]:]]]–]]] www.sobp.org/BPCNNI
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Table 2. Effects of Ketamine on CADSS, BPRS, RT and Accuracy on WM Task, and P100 and P300 Amplitudea

Ketamine Placebo

Mean SE Mean SE Statistic Partial Eta2

Phenomenological Effects

CADSS 4.18 0.82 1.46 0.39 F1,42 5 9.026, p 5 .004 0.18

BPRS 19.9 0.44 18.46 0.23 F1,42 5 8.479, p 5 .006 0.17

Reaction Time (ms)

Level 1 RT 973.0 29.0 970.6 29.0

Level 2 RT 1116.5 33.3 1118.0 33.3

Level 3 RT 1194.2 38.4 1206.7 38.4

Load 3 DrugQ14 F2,84 5 0.145, p 5 .87 0.003

Across Levels 1094.6 31.7 1098.4 31.7 F1,42 5 0.007, p 5 .93 , 0.001

WM Task Accuracy (Percentage Correct)

Level 1 93.26 1.52 94.17 1.52

Level 2 87.53 2.00 91.06 2.00

Level 3 81.33 1.86 86.44 1.86

Load 3 Drug F2,84 5 3.548, p 5 .038 0.15

Across Levels 87.37 1.66 90.56 1.66 F1,42 5 1.833, p 5 .2 0.04

P100 Amplitude Encoding Stimulus (mV)

Level 1 4.13 0.45 2.61 0.45

Level 2 4.35 0.49 2.79 0.49

Level 3 4.81 0.50 3.07 0.50

Load 3 Drug F2,84 5 0.298, p 5 .74 0.02

Across Levels 4.43 0.47 2.82 0.47 F1,42 5 5.884, p 5 .02 0.12

P100 Amplitude Retrieval Stimulus (mV)

Level 1 3.81 0.49 2.32 0.49

Level 2 3.79 0.50 2.18 0.50

Level 3 4.09 0.52 2.23 0.52

Load 3 Drug F2,84 5 1.035, p 5 .36 0.01

Across Levels 3.90 0.49 2.24 0.49 F1,42 5 5.618, p 5 .02 0.12

P300 Amplitude Encoding Stimulus (mV)

Level 1 1.61 0.26 1.16 0.26

Level 2 1.18 0.30 1.74 0.30

Level 3 0.77 0.18 1.11 0.18

Load 3 Drug F2,84 5 4.461, p 5 .01 0.10

Across Levels 1.19 0.21 1.34 0.21 F1,42 5 .261, p 5 .61 , 0.01

P300 Amplitude Retrieval Stimulus (mV)

Level 1 1.43 0.31 2.18 0.31

Level 2 0.81 0.20 0.73 0.20

Level 3 1.10 0.33 1.67 0.33

Load 3 Drug F2,84 5 2.675, p 5 .08 0.06

Across Levels 1.11 0.25 1.53 0.25 F1,42 5 0.254, p 5 .25 0.03

BPRS, Brief Psychiatric Rating Scale; CADSS, Clinician Administered Dissociative Symptom Scale; RT, reaction time; WM, working memory.
aP100 and P300 amplitude encoding and retrieval presented separately.

Biological
Psychiatry:
CNNIWorking Memory and Ketamine: An EEG Study
volunteers. In line with previous literature (31,62), ketamine
caused phenomenological experiences similar to psychosis
and impaired WM performance. We found that ketamine was
associated with a significant augmentation of the early visual
evoked potential P100 and a significant load-dependent
decrease in P300 amplitude during encoding. During retrieval,
P100 was again significantly higher with ketamine, whereas
P300 reduction with WM load differed only at trend level
between the conditions. In addition, the amplitudes of P100
during retrieval correlated with cognitive performance in
the placebo group with the effect disrupted by ketamine.
Biological Psychiatry: Cognitive Neuroscienc
Also, P300 under ketamine correlated negatively at trend with
cognitive performance in both encoding and retrieval
conditions.
P100 Effect

P100 amplitude was greater under ketamine than under
placebo, which went against our prediction that the pattern
observed in schizophrenia (8,10–12,59,63) would be repli-
cated. There are several potential ways to interpret our
unexpected finding. A parsimonious explanation follows from
e and Neuroimaging ]]] 2016; ]:]]]–]]] www.sobp.org/BPCNNI 5
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Figure 2. Mean reaction times (A) and accuracy (B) (percentage correct answers) in response to working memory (WM) loads 1, 2, or 3 in the ketamine
(black line) and placebo groups (gray lines). There was no significant difference between the groups in terms of reaction times (A), although ketamine was
associated with a more significant decrease in WM performance with increase in WM load relative to placebo (B). Error bars represent SE.

Biological
Psychiatry:
CNNI Working Memory and Ketamine: An EEG Study
evidence that in visual cortex, NMDA receptors facilitate
modulatory feedback through lateral connections, while AMPA
underlies feedforward processes (46). Preclinical research has
shown that ketamine-induced NMDA blockade is associated
with disinhibition of glutamate release and consequent acti-
vation of AMPA receptors (64,65). Furthermore, one parsimo-
nious explanation is that NMDA hypofunction causes a
disruption in the excitatory (glutamate) and inhibitory
(gamma-aminobutyric acid) balance in the neural circuitry
(37,66). Blocking NMDA leads to gamma-aminobutyric
acidergic disinhibition and as a consequence to an increase
in bottom-up stimulation of AMPA receptors. The dual
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both encoding and retrieval stimuli (A, B), P300 amplitude for both encoding an
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glutamatergic effects of ketamine have been proposed as
the basis of the ketamine-induced disruption of feature
integration reported in humans (67) and animals (68). Similarly,
Self et al. (46) demonstrated in macaques that NMDA
antagonism (using NMDA antagonist 2-amino-5-phosphono-
valerate) disrupts recurrent but not feedforward processing
in V1. Therefore, the ketamine-induced P100 augmentation
shown here could be due to loss of lateral NMDA modu-
lation and a potentiation of feedforward, AMPA-mediated
processes. In line with this idea is the observation that under
ketamine participants report heightened perceptual experien-
ces (69).
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An alternative or perhaps complementary explanation is
based on evidence that P100 is under attentional (i.e., top-
down) control (70). Within the framework of predictive coding,
it has been suggested that ketamine impairs top-down
predictions but increases abnormal prediction error responses
by stimulating AMPA (64,71). Early positron emission tomog-
raphy metabolic mapping studies reported that ketamine
focally increased prefrontal cortex metabolism (glucose
uptake), probably by disinhibiting local glutamate release
(72–74). Furthermore, the functional impact of disinhibition
has also been shown to alter global connectivity and an
inability of the default mode network to disengage during
WM performance (75). This has been shown to be associated
with impaired WM performance (76). A noisier signal and
Biological Psychiatry: Cognitive Neuroscienc
disinhibition of long-range facilitatory projections to occipital
cortex from prefrontal cortex could thus account for the
increased P100 amplitude we observed.

If fronto-occipital disinhibition does occur under ketamine,
a critical difference may be present between this state and
established schizophrenia. Using the same paradigm, we
recently showed reduced functional connectivity between
ventrolateral prefrontal cortex and extrastriate visual areas on
fMRI in patients with schizophrenia compared with control
subjects (77). One possibility is that ketamine models a state
of acute NMDA impairment in early psychosis in which frontal
disinhibition may occur. In contrast, in chronic psychosis,
frontal cortex function is inhibited, potentially as a result of
chronic glutamate dysfunction. In direct support of this view, a
e and Neuroimaging ]]] 2016; ]:]]]–]]] www.sobp.org/BPCNNI 7
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more recent fMRI study demonstrated that ketamine in healthy
volunteers induced a state of frontal hyperconnectivity. This
was similar to what the authors observed in the early, but not
chronic, stages of schizophrenia (78).

However, any decisive interpretation of the net effect of
ketamine is likely to be an oversimplification. It is not possible
to identify with confidence the net effect of ketamine on visual
cortical function on the basis of our finding. Using fMRI, we
have shown that ketamine causes complex temporal and
regional blood oxygen level–dependent changes, including
hypoactivation and hyperactivation with the prefrontal and
parietal cortices preferentially affected (79). This is in line with
EEG studies that have demonstrated increases in high-
frequency and decreases in low-frequency neural oscillations
in humans (80) and in mice (81). In addition, resting-state
positron emission tomography studies have demonstrated
that ketamine-induced increase in regional blood flow is
counterintuitively associated with reduced oxygen extraction
(82,83), possibly related to the direct vascular effect of ket-
amine (84).

Whatever the exact genesis of the P100 increase under
ketamine, the present study suggests that while acute ket-
amine challenge may recreate a facet of the core pathophysi-
ology in psychosis, it is unlikely to be capturing the changing
role of glutamate subsystems in the evolution of the illness.
Given the evidence for decreasing frontal glutamate levels with
age in patients with schizophrenia (85), further P100 studies
specifically targeting patients early in the disease are needed
to further test the hypothesis that ketamine recreates states
typical for the initial, but not chronic stages, of psychotic
illness [see also (78)].

P300

We found that ketamine was associated with a decrease in
P300 amplitude with WM load exertion. This finding is con-
sistent with previous studies in the auditory and visual
domains (47–53,86) although we observed a strong effect only
in the encoding phase with the retrieval significance reduced
to a trend. We also found a trend for correlation between P300
and cognitive performance under ketamine for both encoding
and retrieval conditions. A study using EEG space source
localization and fMRI showed that ketamine extinguished
primarily the parietal locus of the frontoparietal network
generating P300 (51). This is in agreement with other studies
showing that ketamine preferentially attenuates the parietally
generated P300b component, which is understood to be an
index of top-down allocation of attentional resources (26) and
WM update (24). We did not find evidence that P300 was
directly modulated by the earlier P100—this is based on the
lack of a significant covariate effect of P100 in the P300
analyses. These results argue that ketamine disrupts P300
through direct effects on the parietal cortex processes
rather than solely as a consequence of its action on the visual
cortex.

Limitations

An inherent limitation to nearly all ketamine experiment
designs is that the extent to which researchers are blinded
is limited by the obvious subjective effects of ketamine.
8 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging ]]]
We sought to remedy this by having separate study personnel
record and process the EEG data (A. Shepherd and
I. Koychev, respectively).

Conclusions

This is the first study to explore the effects of ketamine on
early visual processing in WM in healthy volunteers. We found
evidence of a dysfunctional increase in early visual P100
amplitude. This finding contrasts with reduced P100 ampli-
tudes reported in chronic schizophrenia as well as in individ-
uals with familial or personality trait vulnerability. This may
suggest that while acute ketamine captures some of the
phenomenological features of psychosis, it does not fully
replicate the neurochemical basis of cognitive deficits asso-
ciated with the chronic condition. Visual P100 studies in early
psychosis are required to test the hypothesis that hyper-
glutamatergic states similar to the ones caused by ketamine
occur only in the earliest disease stages. The study also
replicated cognitive deficits and P300 reduction with ketamine.
The current findings provide insight into the critical differences
between established psychotic illness and its best validated
pharmacological model.
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