

City Research Online

City, University of London Institutional Repository

Citation: Krupić, D., Gračanin, A. & Corr, P. J. (2016). The evolution of the Behavioural Approach System (BAS): Cooperative and competitive resource acquisition strategies. Personality and Individual Differences, 94, pp. 223-227. doi: 10.1016/j.paid.2016.01.044

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: http://openaccess.city.ac.uk/15892/

Link to published version: http://dx.doi.org/10.1016/j.paid.2016.01.044

Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

City Research Online: <u>http://openaccess.city.ac.uk/</u><u>publications@city.ac.uk</u>

1	
2	The Evolution of the Behavioural Approach System (BAS):
3	Cooperative and Competitive Resource Acquisition Strategies
4	
5	Krupić, D.
6	Gračanin, A.
7	Corr, P. J.
8	

9 Abstract

10 The nature of approach motivation has not yet been adequately defined. Some authors view 11 it as a unidimensional construct, while others consider it to be multidimensional. Its 12 psychometric nature is explored in this study, which tests empirically the motivational 13 account of the Behavioural Approach System (BAS) within an evolutionary context. In a 14 sample of 394 participants, we administered the Assessment of Individual Motives 15 questionnaire (AIM-Q), the Reinforcement Sensitivity Theory Personality Questionnaire 16 (RST-PQ) and a short version of the Sensitivity to Punishment and Sensitivity to Reward 17 (SPSRQ-20). The results of set correlation analysis indicated that different BAS scales 18 relate to different motives, thus supporting the multidimensional perspective on approach 19 motivation. Specifically, Reward Interest relates to various types of motives that generally 20 reflect sensitivity to social rewards; Goal-Drive Persistence relates to social exchange; 21 Reward Reactivity to safety and commitment; while Impulsivity and Sensitivity to Reward 22 (SR) relate to competitive motives. These results are discussed within an evolutionary 23 framework for the multidimensionality of the BAS.

Keywords: reinforcement sensitivity theory, motivation, personality, evolution, set
 correlation analysis

26

27

29 The Evolution of the Behavioural Approach System (BAS): 30 Cooperative and Competitive Resource Acquisition Strategies 31 The Behavioural Approach System (BAS) is one of three major systems in the 32 neuropsychological theory of personality known as the reinforcement sensitivity theory 33 (RST), which includes two additional defensive systems: the Fight-Flight-Freeze System 34 (FFFS), responsible for the active avoidance of, and escape, from, aversive stimuli; and the 35 Behavioural Inhibition System (BIS), responsible for passive avoidance and the detection 36 and resolution of goal-conflict. It is assumed that the BAS represents a general domain 37 approach mechanism designed to solve the important evolutionary adaptive problem of 38 attaining critical resources, such as food, water, sex and social status (Berridge, 2004; 39 Berridge & Robinson, 2003; Kenrick & Shiota, 2008). In general terms, the BAS mediates 40 reactions to reward and non-punishment. Its outputs serve to motivate approach behaviours 41 towards biological reinforcers and to engage in activities that lead to consummatory 42 behaviour (Corr, 2008; Gray & McNaughton, 2000). Despite the popularity and long 43 history of this theory, the obvious evolutionary importance of the BAS has not yet been 44 explored empirically.

45 **1.1. Evolutionary explanations of individual differences**

Within evolutionary psychology, individual differences in personality and/or temperament are interpreted as variations in adaptive mechanisms that evolved to provide solutions to problems concerning reproduction and survival (Buss, 2008, 2009). Since environmental conditions were not equal for the entire human population, it may be assumed that some phenotypic variations were more adaptive in one environment than in another. Thus, there is no "gold standard" for a personality trait that could provide the best

52 possible fitness in every environment (Penke, 2010; Penke, Denissen, & Miller, 2007).

53 Therefore, it is reasonable to assume the existence of a variety of resource acquisition

strategies which could ensure flexible and adaptive behaviour in different environmentalconditions.

56 We can distinguish two main groups of resource acquisition strategies developed in 57 social species: competition (e.g., stealing, trickery, aggression) and cooperation (e.g., social 58 exchange, altruism) (Buss, 1999). Competitive strategies are mostly related to questions of 59 social hierarchy, status, or power, with individuals ranking higher on the social scale 60 having access to more resources whilst facing lower risks and required effort. In contrast, 61 cooperative strategies are seen as mutually beneficial (Scott-Phillips, Dickins, & West, 62 2011). On a proximal level, cooperation can be manifested as volunteering, social 63 exchange, reciprocal altruism, and so on (Buss, 1999; Tooby & Cosmides, 1988). We can 64 assume that cooperative behaviour is driven by the need for social approval, which is a very 65 powerful incentive (e.g., Izuma, Saito, & Sadato, 2010), and it serves the function of 66 attaining social status. In economics, this is known as the 'public good' benefit. As such, 67 helping others may be seen as an investment or even buying insurance for future events in 68 which one would seek help from the same individuals. Which of these two strategies would 69 be used, depends upon environmental conditions and individual differences.

The aim of this study is to examine empirically, for the first time, which of these
two evolved resource acquisition strategies are related to individual differences in the BAS.
We expect the BAS to correlate with variation in both cooperative and competitive
strategies, as reflected in different motives that are expected to fuel the exertion of these
strategies.

75	The heterogeneity of the BAS may derive from the 'arms race' between predator
76	and prey. The 'Life-Dinner Principle' (Dawkins & Krebs, 1979) suggests that the
77	evolutionary selective pressure on the prey is much stronger than on the predator: if a
78	predator fails to kill its prey, it has lost its dinner, but if the prey fails to avoid/escape being
79	the predator's dinner, then it has lost its life. Although defensive behaviours, principally
80	freezing, fleeing and defensive attack, are themselves relatively complex (Eilam, 2005), it
81	is nonetheless true that the behaviour of the prey is intrinsically simpler than that of the
82	predator: all it has to do is avoid/escape, making it, quite literally, life-or-death behaviour
83	(Corr, 2008). In contrast, the predator has to develop counter-strategies to meet its BAS
84	aims, which entail a higher degree of cognitive and behavioural sophistication over the
85	prey's defensive behavioural repertoire. Another reason for the complexity of the BAS
86	comes from heterogeneity of appetitive goals (e.g., securing food and finding/keeping a
87	sexual mate), which demand a corresponding heterogeneity of BAS-related strategies
88	The putative multidimensional nature of the BAS is also grounded in the
89	neurobiology of personality, which recognises two approach related traits: impulsivity and
90	extraversion, that are related to different neurotransmitters. Impulsivity is associated with
91	dopamine, serotonin (Dalley, & Roiser, 2012), and testosterone (Montoya, Terburg, Bos, &
92	van Honk, 2012). Testosterone has been found important in attaining social status in
93	number of cross-species studies (e.g., Beaver & Amoss, 1982; Coe, Mendoza, & Levine,
94	1979; Elofsson, Mayer, Damsgård, & Winberg, 2000). In human studies, testosterone is
95	linked with domination (Sellers, Mehl, & Josephs, 2007), choice of risky carriers
96	(Sapienza, Zingales, & Maestripieri, 2009), aggression (Archer, 2006), and level of
97	reproductive effort (Alvergne, Jokela, Faurie, & Lummaa, 2010), which all correspond to

98	competitive motives. Thus, we may expect that the RST scales reflecting impulsivity (the
99	SR and RST-Impulsivity) should correlate with competitive motives.
100	Neurobiologically, nurturance/cooperativeness is based on oxytocin system
101	functions (e.g., Feldman, 2012; Yamasue et al., 2009). The second candidate for the
102	neurobiological underpinnings of nurturance/cooperation are endogenous opiates, which
103	are involved in the positive emotions that follow attainment or consumption of reward. This
104	is a key feature of Reward Reactivity, and is important in social affiliation, making opiates
105	likely candidates for a biological substrate of Extraversion and Social Closeness (Berridge,
106	2012; Depue & Morrone-Strupinsky, 2005). Thus, we may expect that the RST-PQ scales
107	designed closely to extraversion (Reward Interest, Goal-Drive Persistence, and Reward
108	Reactivity) should correlate more with the cooperative motives.
109	
110	2. Materials and Methods
111	2.1. Participants and procedure
112	A total of 394 (208 male and 186 female) participants ($M_{AGE} = 27.99$; SD = 9.70,
113	range from 16 to 54) completed three questionnaires online using LimeSurvey web
114	application. Only complete data were recorded. The Ethics Committee of Faculty of
115	Humanities and Social Sciences in Rijeka gave approval for the study
116	2.2. Measures
117	We administered two RST questionnaires: Reinforcement Sensitivity Theory
118	Personality Questionnaire (RST-PQ; Corr & Cooper, 2016), and the Sensitivity to
119	Punishment and Sensitivity to Reward Questionneirs 20 (SPSPO 20: Alvie & Planch
	Funishment and Sensitivity to Reward Questionnane-20 (SFSRQ-20, Aluja & Blanch,

121	Individual Motives (AIM-Q; Bernard, 2013) which provides a measure for cooperative and
122	competitive resource acquisition strategies and integrity motives.

123	The RST-PQ (Corr & Cooper, 2016) contains 65 items for measuring the BAS, the
124	Behavioural Inhibition System (BIS) and Fight/Flight/Freeze System (FFFS). The BAS
125	consists of four sub-scales. People that score high on Reward Interest scale (seven items)
126	are more likely to engage in anticipatory approach, exploration of new objects, places and
127	people (e.g., "I regularly try new activities just to see if I enjoy them"). Goal-Drive-
128	Persistence (seven items) measures the persistence in achieving the ultimate aim of
129	obtaining a reward (e.g., "I put in a big effort to accomplish important goals in my life").
130	Reward Reactivity (ten items) relates to the level of experiencing emotional reaction to
131	reward (i.e., 'pleasure') and provides the positive reinforcement for BAS behaviour (e.g.,
132	"Good news makes me feel over-joyed"). Finally, Impulsivity (eight items) refers to the
133	final stage of catching the biological reinforcer, where non-planning and fast reactions are
134	more appropriate (e.g., "I think I should 'stop and think' more instead of jumping into
135	things too quickly"). Using the criterion of Hu & Bentler (1999), the four-factor model of
136	the BAS in this study showed adequate goodness of fit indices ($\chi^2/df = 2.71$, <i>CFI</i> = .903;
137	RMSEA = .066). Internal reliability coefficients (Cronbach's Alpha) are 0.75 for Reward
138	Interest, 0.83 for Goal-Drive Persistence, 0.75 for Reward Reactivity, and 0.67 for
139	Impulsivity.
140	The SPSRQ-20 (Aluja & Blanch, 2011; Torrubia et al., 2001) measures Sensitivity
141	to Reward (SR; e.g., "Do you like being the centre of attention at a party or a social

142 meeting") and Sensitivity to Punishment (SP; e.g. "Are you often afraid of new or

unexpected situations?"); each scale containing 10 items. Reliability coefficients are 0.66
for SR and 0.82 for SP.

The Croatian translation of both questionnaires was validated earlier (Krupić,
Križanić, Ručević, Gračanin, & Corr, 2016). Data for the defensive BIS, FFFS, Defensive
fight (for the RST-PQ) and the SP (for the SPSRQ) were also collected, but as they are out
of scope of this study they were not analysed.

149 AIM-Q (Bernard, 2013) is a 60-item questionnaire that measures 15 human-specific 150 motives (Bernard, 2009, 2010) within the evolutionary theory of human motivation 151 (Bernard, Mills, Swenson, & Walsh, 2005). Each motive is represented by four items 152 answered on a seven point Likert-type scale. Bernard (2013) distinguishes three types of 153 motives: (a) motives facilitating individual integrity (Environmental Inquisitiveness, Threat 154 Avoidance, Illness Avoidance,); (b) motives facilitating competition for resources and 155 mates (Interpersonal Inquisitiveness, Aggression, Appearance, Mental, Physical, Wealth, 156 Sex); and (c) motives facilitating cooperation in order to gain resources (Commitment, Kin 157 Altruism, Social exchange, Legacy and Meaning). Full description of the questionnaire and 158 constructs can be found in Bernard and Lac (2014). Reliability coefficients are presented in 159 Table 1. Generally, all except Illness avoidance achieve reliability above .70.

160 2.3. Analytic plan

161 Relationships between the BAS scales and AIM-Q motives were analysed by set 162 correlation analysis (SCA), which provides the statistical control for a set of research 163 factors (in our case gender and age), when relating one set of variables (in our case the 164 BAS scales) to another (in our case 15 AIM-Q motives). In this way, confounding variables 165 are held under control, and the likelihood of Type I error is reduced, which promotes the

uniqueness of relationship between variables (Cohen, Cohen, Aiken, & West, 2003).
Statistical control of gender and age is important in determining the unique adaptive
account of the BAS, since they represent an important source of variation within the
evolutionary psychology. Additionally, we used Bonferroni correction in determining the
statistical significance in order to reduce further Type I error due to a larger number of
correlations tested.

172 **3. Results**

173 Descriptive statistics for AIM-Q and results of SCA are shown in Table 1, while zero 174 order correlation matrices between and within questionnaires are available in 175 Supplementary materials. All analyses were conducted using R version 3.2.2 (R 176 Development Core Team, 2013), using package psych version 1.5.8 (Revelle, 2015). 177 Using set correlation, all canonical variates in a data set were taken into account in 178 one index to provide an overall estimate of association. The overall relationship between personality traits and motives using Cohen's Set Correlation was $R^2 = .82$, which was 179 180 statistically significant F(6.75, 105) = 2294.39, p < 0.01. Weak to moderate relationships $(R^2 = .05 - .32)$ were found between discrete motives and personality traits. Further, 181 182 different patterns of partial correlations for AIM-Q motives, controlled for gender and age, 183 were shown among BAS scales. In general, the SR and Impulsivity were more related with 184 competitive, while Reward Interest, Goal-Drive Persistence and Reward Reactivity were 185 more related with cooperative motives, as expected. Reward interest was related with Kin Altruism, Meaning, Legacy, but also with Physical and Environmental Inquisitiveness, that 186 187 belongs to competitive and integrity motives, respectively. Goal-Drive Persistence was

188	related with Social exchange, while Reward Reactivity showed links with Commitment
189	from cooperative group of motives, and Threat avoidance from Integrity motives.
190	TABLE 1 –
191	4. Discussion
192	In order to provide an evolutionary account of the BAS, we examined the
193	relationships between inter-individual variation on different BAS scales and different types
194	of motives, including (a) motives facilitating individual integrity, (b) motives facilitating
195	competition for resources and mates, and (c) motives facilitating cooperation. Overall, the
196	BAS scales correlated with both resource acquisition strategies and, additionally, with the
197	integrity motives. More specifically, discrete motives are found to correlate with different
198	aspects of the BAS functioning. This suggests that different aspects of the BAS were
199	shaped throughout evolutionary history in order to confront specific adaptive problems. Put
200	it simply, while the AIM-Q detects what were the adaptive goals, the BAS explains how
201	these goals were obtained.
202	Weak to moderate relationships were found between discrete motives and
203	personality traits, which is reasonable since motives and personality traits are not
204	equivalent constructs. Motives are defined as a predisposition to behave in a directed
205	fashion, focusing on behavior solely, while personality traits are defined as a complex
206	constructs combining stable behavioral, cognitive and emotional characteristics (for details
207	see Bernard & Lac, 2014). Thus, low to moderate correlations between the BAS scales and
208	motives are expected.
209	Reward Interest correlated with the tendency of exploring the environment
210	(Environmental inquisitiveness), participating in competitions that signal gender-

211	appropriate physical ascendancy (Physical), caring for relatives (Kin Altruism), and with
212	reciprocation among non-kin (Legacy and Meaning). In general, individuals that score high
213	on Reward Interest scale show a tendency to act prosocially, or to contribute to society.
214	The next finding relates Goal-Drive Persistence with tendency to enter into
215	reciprocal, mutually beneficial exchanges of resources with non-kin (Social Exchange).
216	The cooperation is more of a long-term strategy (Barclay, 2013; Stevens, Cushman, &
217	Hauser, 2005). It takes time to build trust between people, and even then, it is not certain
218	whether it will be mutually beneficial. Therefore, it is not surprising that many studies
219	show that reward delay capacity is important in maintaining cooperative behaviour
220	(Brosnan, Salwiczek, & Bshary, 2010; Kortenkamp & Moore, 2006; Rosati, Stevens, Hare,
221	& Hauser, 2007), which is the core feature of Goal-Drive Persistence.
222	Individuals high on Reward Reactivity scales show tendency toward maintaining
223	one's safety (Threat Avoidance) and a greater capacity for developing tender, intimate,
224	supportive attachments with mates and offspring (Commitment). Reward Reactivity relates
225	to emotional reactions to the final attainment of a desired goal. It serves as "emotional fuel"
226	for the previous BAS processes (Corr & Cooper, 2016). Positive outcome followed by
227	positive emotional reaction serves as reinforcement of invested effort in attaining a desired
228	goal. According to our results, these processes have the importance in maintaining safety
229	and a relationship with others.
230	Compared to cooperation, competition as a resource acquisition strategy is a more
231	short-term strategy (Barclay, 2013; Stevens et al., 2005). RST-PQ Impulsivity relates with
232	motives such as achieving domination (Aggression), tendency of mocking others, being
233	sarcastic (Interpersonal Inquisitiveness), and searching for mates (Sex). In addition,

234 individuals high on SR are more willing to display intellectual and physical superiority 235 (Mental and Physical, respectively), material resources (Wealth), and to invest resources in 236 order to look well (Appearance). In general, a common feature of individuals that score 237 high on RST-PQ Impulsivity and the SR is a tendency to represent themselves as better 238 than others. However, it is important to emphasize the difference between SR and 239 Impulsivity (RST-PQ), which appeared in our results. While Impulsivity relates exclusively 240 to competitive motives, SR additionally correlates with integrity motives (Illness avoidance 241 and Threat avoidance) and negatively with Social Exchange. Furthermore, the Impulsivity 242 scale contains items that reflect tendencies of acting fast without thinking and not planning, 243 thus reflecting poor executive function (e.g. "I think I should 'stop and think' more instead 244 of jumping into things too quickly"). On the other hand, the SR contains items relating to 245 behavioural tendencies (e.g. "When you are in a group, do you try to make your opinions 246 the most intelligent or the funniest?"). The AIM-Q items are also designed to measure 247 motivational tendencies on a behavioural level (e.g. "I show off my understanding of 248 abstract or complex ideas so people will respect me"), which could result in common 249 method variance with the SR, and thus spuriously increases correlation coefficients. Hence, 250 we cannot discuss the relative importance of these two scales in competitiveness within this 251 study, since they obviously measure different aspects of impulsivity. 252 The rest of associations were not significant, although zero-order correlation matrix 253 in Supplementary materials might suggest the opposite. This discrepancy suggests that the

254 BAS scales correlate with some other motives as well, but these relations are confounded,

since the both – the BAS scales and the motives - are highly inter-correlated. Thus, the

256 discrepancy of the results represents the ability of SCA to detect confounding effects

between two sets of variables. This way, the SCA provides a unique relationship between
two variables, when many other variables are held under statistical control, and these
effects are very likely to replicate.

Most of the empirical work in the original version of the RST was based on animal studies, particularly rodents. Upon these experiments, the idea of the unidimensional BAS could seem very plausible. However, as we can see, different adaptive goals demand different strategies of the BAS. We believe that the BAS complexity arises from highly complex human environment in comparison to rodents' - which has not been taken into account in the original version of RST.

266 The findings of this study hold significance in understanding the differences that are 267 commonly observed between the various BAS scales (e.g. Jackson & Smillie, 2004; Krupić 268 & Corr, 2014; Smillie, Jackson, & Dalgleish, 2006). Understanding the conceptual 269 differences between the BAS scales could lead toward setting more precise hypotheses in 270 RST studies. However, much work is needed in order to produce a complete picture of the 271 evolutionary origins of the BAS. Further studies should focus on sex dimorphism and 272 relationships between different aspects of the BAS functioning and variables such as 273 relationship instability, sociosexuality, parental effort, etc., which are important for 274 understanding its adaptive functions.

The major limitation of this study concerns the usage of only one psychometric measure for competitive and cooperative motives, and the study design that does not allow for causal interpretation. Furthermore, we did not include the BIS and FFFS scales in our study, what might have influenced the results. Currently, the theory is not clear whether the approach and avoidance system function separately, or they have mutually inhibitory

effects, which is beyond the scope of this paper (*however, reanalysed data can be found in*Supplementary materials).

282	In conclusion, the results of this study show that impulsivity, as measured by RST-
283	PQ and SR from SPSRQ, relates to competitive, Goal-Drive Persistence and Reward
284	Reactivity relate to cooperative, while Reward Interest relates to both resource acquisition
285	strategies, which altogether represent a set of novel findings in RST research. Clearly, the
286	evolutionary perspective provides a coherent theoretical account of the multidimensionality
287	of approach motivation.
288	

References

291	Aluja, A., & Blanch, A. (2011). Neuropsychological Behavioral Inhibition System (BIS)
292	and Behavioral Approach System (BAS) assessment: A shortened Sensitivity to
293	Punishment and Sensitivity to Reward Questionnaire version (SPSRQ-20). Journal of
294	Personality Assessment, 93(6), 628-636. doi:10.1080/00223891.2011.608760
295	Alvergne, A., Jokela, M., Faurie, C., & Lummaa, V. (2010). Personality and testosterone in
296	men from a high-fertility population. Personality and Individual Differences, 49, 840-
297	844. doi:10.1016/j.paid.2010.07.006
298	Archer, J. (2006). Testosterone and human aggression: An evaluation of the challenge
299	hypothesis. Neuroscience and Biobehavioral Reviews, 30, 319–345.
300	doi:10.1016/j.neubiorev.2004.12.007
301	Barclay, P. (2013). Strategies for cooperation in biological markets, especially for humans.
302	Evolution and Human Behavior, 34, 164-175.
303	doi:10.1016/j.evolhumbehav.2013.02.002
304	Beaver, B., & Amoss jr, M. (1982). Aggressive behavior associated with naturally elevated
305	serum testosterone in mares. Applied Animal Ethology, 8, 425–428.
306	doi:10.1016/0304-3762(82)90055-4
307	Bernard, L. C. (2009). Consensual and behavioral validity of a measure of adaptive
308	individual differences dimensions in human motivation. Motivation and Emotion, 33,
309	303-319. doi:10.1007/s11031-009-9131-7

- 310 Bernard, L. C. (2010). Motivation and personality: Relationships between putative motive
- dimensions and the five factor model of personality. *Psychological Reports*, 106, 613–
- 312 631. doi:10.2466/PR0.106.2.613-631
- 313 Bernard, L. C. (2013). Manual for the Assessment of Individual Motives–Questionnaire.
- 314 Unpublished manuscript, Loyola Marymount University, Los Angeles, CA.
- 315 Bernard, L. C., & Lac, A. (2014). The incremental validity of motive" traits of action:
- 316 Predicting behavior longitudinally. *Individual Differences Research*, *12*, 79-100.
- 317 Bernard, L. C., Mills, M., Swenson, L., & Walsh, R. P. (2005). An evolutionary theory of
- 318 human motivation. Genetic, Social, and General Psychology Monographs, 131, 129–
- 319 184. doi:10.3200/MONO.131.2.129-184
- 320 Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. *Physiology and*
- 321 *Behavior*, *81*, 179-209. doi:10.1016/j.physbeh.2004.02.004
- 322 Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic
- 323 computation of reward motivation. European Journal of Neuroscience, 35, 1124–
- 324 1143. doi:10.1111/j.1460-9568.2012.07990.x
- 325 Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26,
- 326 507-513. doi:10.1016/S0166-2236(03)00233-9
- 327 Brosnan, S. F., Salwiczek, L., & Bshary, R. (2010). The interplay of cognition and
- 328 cooperation. *Philosophical Transactions of the Royal Society B: Biological Sciences*,
- 329 365(1553), 2699-2710. doi:10.1098/rstb.2010.0154
- Buss, D. M. (1999). *Evolutionary psychology*. London: Allyn and Bacon.

331	Buss, D. M. (2008). Human nature and individual differences: Evolution of human
332	personality. In O. P. John, R. W. Robins, & L. A. Pervin (Eds.), Handbook of
333	personality theory and research (pp. 29-60) (3rd ed.). New York: Guilford Press.
334	Buss, D. M. (2009). How can evolutionary psychology successfully explain personality and
335	individual differences? Perspectives on Psychological Science, 4, 359-366.
336	doi:10.1111/j.1745-6924.2009.01138.x
337	Coe, C. L., Mendoza, S. P., & Levine, S. (1979). Social status constrains the stress
338	response in the squirrel monkey. Physiology and Behavior, 23, 633-638.
339	doi:10.1016/0031-9384(79)90151-3
340	Cohen, J., Cohen, P., Aiken, L. S., & West, S. G. (2003). Applied multiple
341	regression/correlation analysis for the behavioural sciences (3rd ed.). London:
342	Erlbaum.
343	Corr, P. J. (2008). Reinforcement sensitivity theory (RST): Introduction. In P. J. Corr (Ed.),
344	The reinforcement sensitivity theory and personality (pp. 155-187). Cambridge:
345	Cambridge University Press.
346	Corr, P. J., & Cooper, A. (2016). The Corr-Cooper Reinforcement Sensitivity Theory
347	Personality Questionnaire (RST-PQ): Development and validation. Psychological
348	Assessment, in press. doi.10.1037/pas0000273
349	Dalley, J. W., & Roiser, J. P. (2012). Dopamine, serotonin and impulsivity.

351	Dawkins, R., & Krebs, J. R. (1979). Arms races between and within species. Proceedings
352	of the Royal Society of London. Series B, Containing Papers of a Biological
353	Character. Royal Society (Great Britain), 205(1161), 489–511.
354	doi:10.1098/rspb.1979.0081
355	Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative
356	bonding: implications for conceptualizing a human trait of affiliation. The Behavioral
357	and Brain Sciences, 28, 313–350; discussion 350–395.
358	doi:10.1017/S0140525X05000063
359	Eilam, D. (2005). Die hard: A blend of freezing and fleeing as a dynamic defense -
360	Implications for the control of defensive behavior. Neuroscience and Biobehavioral

361 Reviews, 29, 1181-1191. doi:10.1016/j.neubiorev.2005.03.027

- 362 Elofsson, U. O., Mayer, I., Damsgård, B., & Winberg, S. (2000). Intermale competition in
- 363 sexually mature arctic charr: effects on brain monoamines, endocrine stress responses,
- 364 sex hormone levels, and behavior. General and Comparative Endocrinology, 118,
- 450-460. doi:10.1006/gcen.2000.7487 365
- 366 Feldman, R. (2012). Oxytocin and social affiliation in humans. Hormones and Behavior,

367 61, 380–391. doi:10.1016/j.yhbeh.2012.01.008

- 368 Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into
- 369 the functions of the septo-hippocampal system. New York: Oxford University Press.

370	Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure
371	analysis: Conventional criteria versus new alternatives. Structural equation modeling:
372	a multidisciplinary journal, 6, 1-55. doi:10.1080/10705519909540118
373	Izuma, K., Saito, D. N., & Sadato, N. (2010). Processing of the incentive for social
374	approval in the ventral striatum during charitable donation. Journal of Cognitive
375	Neuroscience, 22, 621-631. doi:10.1162/jocn.2009.21228
376	Jackson, C. J., & Smillie, L. D. (2004). Appetitive motivation predicts the majority of
377	personality and an ability measure: A comparison of BAS measures and a re-
378	evaluation of the importance of RST. Personality and Individual Differences, 36,
379	1627–1636. doi:10.1016/j.paid.2003.06.010
380	Kenrick, D. T., & Shiota, M. N. (2008). Approach and avoidance. In A. J. Elliot (Ed.),
381	Handbook of approach and avoidance motivation (pp. 273-288). New York:
382	Psychology Press.
383	Kortenkamp, K. V., & Moore, C. F. (2006). Time, uncertainty, and individual differences
384	in decisions to cooperate in resource dilemmas. Personality and Social Psychology
385	Bulletin, 32, 603-615. doi:10.1177/0146167205284006
386	Krupić, D., & Corr, P. J. (2014). Individual differences in emotion elicitation in university

- 387 examinations: A quasi-experimental study. *Personality and Individual Differences*, 71,
- 388 176-180. doi:10.1016/j.paid.2014.08.001
- 389 Krupić, D., Križanić, V., Ručević, S., Gračanin, A., & Corr, P. J. (2016). Five
- 390 reinforcement sensitivity theory (RST) of personality questionnaires: Comparison,
- 391 validity and generalization. *In submission*.

392	Montoya, E. R., Terburg, D., Bos, P. A., & van Honk, J. (2012). Testosterone, cortisol, and
393	serotonin as key regulators of social aggression: A review and theoretical perspective.
394	Motivation and Emotion, 36, 65–73. doi:10.1007/s11031-011-9264-3
395	Penke, L. (2010). Bridging the gap between modern evolutionary psychology and the study
396	of individual differences. In D. M. Buss, & P. H. Hawley (Eds.), The evolution of
397	personality and individual differences (pp. 243-279). New York: Oxford University
398	Press. doi:10.1093/acprof:oso/9780195372090.003.0009
399	Penke, L., Denissen, J. J. A., & Miller, G. F. (2007). The evolutionary genetics of
400	personality. European Journal of Personality, 21, 549-587. doi:10.1002/per.629
401	R Development Core Team. (2013). R: A language and environment for statistical
402	computing. R Foundation for Statistical Computing, Vienna, Austria. URL
403	http://www.R-project.org/. R Foundation for Statistical Computing, Vienna, Austria.
404	Revelle, W. (2015). psych: Procedures for Personality and Psychological Research,
405	Northwestern University, Evanston, Illinois, USA, http://CRAN.R-
406	project.org/package=psych
407	Rosati, A. G., Stevens, J. R., Hare, B., & Hauser, M. D. (2007). The evolutionary origins of
408	human patience: Temporal preferences in chimpanzees, bonobos, and human adults.

Current Biology, 17, 1663-1668. doi:10.1016/j.cub.2007.08.033

410 Sapienza, P., Zingales, L., & Maestripieri, D. (2009). Gender differences in financial risk
411 aversion and career choices are affected by testosterone. *Proceedings of the National*

412 Academy of Sciences of the United States of America, 106, 15268–15273.

413 doi:10.1073/pnas.0907352106

414	Scott-Phillips, T. C., Dickins, T. E., & West, S. A. (2011). Evolutionary theory and the					
415	ultimate-proximate distinction in the human behavioral sciences. Perspectives on					
416	Psychological Science, 6, 38-47. doi:10.1177/1745691610393528					
417	Sellers, J. G., Mehl, M. R., & Josephs, R. A. (2007). Hormones and personality:					
418	Testosterone as a marker of individual differences. Journal of Research in					
419	Personality, 41, 126–138. doi:10.1016/j.jrp.2006.02.004					
420	Smillie, L. D., Jackson, C. J., & Dalgleish, L. I. (2006). Conceptual distinctions among					
421	Carver and White's (1994) BAS scales: A reward-reactivity versus trait impulsivity					
422	perspective. Personality and Individual Differences, 40, 1039-1050.					
423	doi:10.1016/j.paid.2005.10.012					
424	Stevens, J. R., Cushman, F. A., & Hauser, M. D. (2005). Evolving the psychological					
425	mechanisms for cooperation. Annual Review of Ecology, Evolution, and Systematics,					
426	36, 499-518. doi:10.1146/annurev.ecolsys.36.113004.083814					
427	Tooby, J., & Cosmides, L. (1988). The evolution of war and its cognitive foundations.					
428	Institute for evolutionary studies technical report, 88(1), 1-15. Santa Barbara: Institute					
429	for Evolutionary Studies, University of California at Santa Barbara. Retrieved from					
430	http://www.cep.ucsb.edu/papers/EvolutionofWar.pdf					
431	Torrubia, R., Avila, C., Molto, J., & Caseras, X. (2001). The Sensitivity to Punishment and					
432	Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray's anxiety and					

- 433 impulsivity dimensions. *Personality and Individual Differences*, *31*, 837–862.
- 434 doi:10.1016/S0191-8869(00)00183-5
- 435 Yamasue, H., Abe, O., Suga, M., Yamada, H., Rogers, M. A., Aoki, S., Nobumasa, K., &
- 436 Kasai, K. (2008). Sex-linked neuroanatomical basis of human altruistic
- 437 cooperativeness. *Cerebral Cortex*, *18*, 2331–2340. doi:10.1093/cercor/bhm254

440 Table 1. Descriptive statistics and results of set correlations analysis between AIM-Q

- 441 motives and approach dimensions of SPSRQ-20 and RST-PQ controlled for gender and
- 442 age

	Motives facilitating individual integrity			Motives facilitating cooperation					
	THA	ILA	EIQ	COM	KIN	SOC	LEG	MEA	
Gender	.01	03	.24**	.09	07	.05	.12	.11	
Age	.06	.05	.01	04	09	.06	.05	.05	
Reward Interest	08	11	.44**	02	.22**	.15	.32**	.32**	
Goal-Drive Persistence	.07	.02	.07	.02	04	.23**	03	08	
Reward Reactivity	.26**	.14	00	.18**	.02	.14	.04	06	
Impulsivity	04	.02	.07	.08	.12	07	.06	.03	
Sensitivity to reward	19**	.17**	11	13	10	23**	09	00	
М	15.49	12.29	17.96	18.11	16.03	20.25	12.36	11.98	
SD	4.217	3.738	4.025	4.987	4.033	2.621	4.966	5.822	
α	.73	.58	.87	.91	.75	.72	.87	.93	
R	.29	.23	.56	.26	.28	.44	.38	.29	
R^2	.086	.053	.318	.067	.079	.197	.143	.084	
F (7, 386)	5.20**	3.09**	25.71**	3.98**	4.74**	13.51**	9.19**	5.05**	

443 * p < 0.05; ** p < 0.01; α – Cronbach alpha; R – multiple correlation coefficient; R^2 – multiple

444 determination coefficient; THA – Threat Avoidance; ILA – Illness Avoidance; EIQ -

- 445 Environmental Inquisitiveness; COM Commitment; KIN Kin Altruism; SOC Social;
- 446 Exchange; LEG Legacy; MEA Meaning; positive correlation for Gender indicates
- 447 higher score for males.

Table 1. (continued) Descriptive statistics and results of set correlations analysis between AIM-Q motives and approach dimensions of SPSRQ-20 and RST-PQ controlled for

450 *gender and age*

	Motives facilitating competition for resources and mates							
	AGG	INI	SEX	APP	WEA	MEN	PHY	
Gender	01	08	27**	.18**	11	.02	17**	
Age	07	11	.06	.04	00	07	.02	
Reward Interest	01	07	.00	.04	10	01	.25**	
Goal Drive Persistence	05	08	14	03	.01	.10	.06	
Reward Reactivity	11	.03	02	04	.05	.01	04	
Impulsivity	.21**	.22**	.17**	.06	.12	.01	11	
Sensitivity to reward	.32**	.24**	.19**	.37**	.4 1 ^{**}	.49**	.36**	
М	6.84	10.53	8.60	6.64	6.75	10.63	10.97	
SD	3.357	5.161	4.218	3.446	3.554	4.552	5.257	
α	.80	.91	.85	.80	.84	.83	.89	
R	.43	.42	.43	.38	.49	.53	.51	
R^2	.183	.176	.186	.148	.239	.283	.262	
F (7, 386)	12.37**	11.74**	12.60**	9.57**	17.29**	21.75**	19.58**	

451 ** p < 0.01; α – Cronbach alpha; R – multiple correlation coefficient; R^2 – multiple

⁴⁵² *determination coefficient;* AGG – Aggression; INI - Interpersonal Inquisitiveness; SEX

^{453 –} Sex; APP – Appearance; WEA – Wealth; MN – Mental; PH – Physical; positive

⁴⁵⁴ correlation for Gender indicates higher score for males.