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Abstract

Malaria infection is a major problem in many countries. The use of the Insecticide-Treated Bed-
Nets (ITNs) has been shown to significantly reduce the number of malaria infections; however, the
effectiveness is often jeopardized by improper handling or human behavior such as inconsistent
usage. In this paper, we present a game-theoretical model for ITN usage in communities with ma-
laria infections. We show that it is in the individual’s self interest to use the ITNs as long as the
malaria is present in the community. Such an optimal ITN usage will significantly decrease the
malaria prevalence and under some conditions may even lead to complete eradication of the
disease.
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1. Introduction

Malaria is a vector born disease that can be transmitted to people throsghitmdites, prevalent in tropical
and subtropical regions of the world. The World Health Organisatiomaet that every year nearly one
million people die as a result of mek[1]. A lot of effort has been put into treatment and prevention strategies,
and an ambitious goal of organisations such as the World Heal#mi®atjon and the Bill and Melinda Gates
foundation is the complete elimination of malaria.

One of the key methods of malaria prevention is the usesetticideTreated BeeNets(ITNs) that kill and
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also repel mosquitogg]. [3] found that the use of ITNs can reduce malaria cases by 50% and death in children
by 20%. The use of ITNs was demonstrated to be veryeffesttive, see e.g4]-[6]. This is important given

both the scale of the problem (about 200 million people are at a very Kidfi]jisand the fact that ast of the

areas of high malaria prevalence are relatively poor. However, human behah@ssnconsistent usage due to

hot weather diminishes the effectiveness of the ITNs.

The impact of ITN usage on the spread of the malaria infection has been ratedi®d in a series of
mathematical models such [8$-[10]. In particular[10] developed an ODE model for the effects of ITN on the
malaria transmission dgmics and called for a better understanding of the impabtmwian behavior on the
usage.

Game theory is a well suited tool to study human behavior in a quiaetieay[11]. Starting by[12], game
theory has been long used in biolgdyd], and[14] used it to study vaccination decisions in situation where
individuals face a potentially costly preventive action (such asséoan ITN) that can reduce a risk of con
tracting the diseas&ame theory has been applied to vaccination against major public heedtts[ths]-[21]
and it is particularly useful because the outcome of the individual dectsiora¢cinate or to use an ITN)
depends on the decisions of other members of the population because #ievageination or TN usage
yields the disease prevalence in the commuaity.

In particular, game theoretical models can be used to understand whyyircasas disease eradicatican
be very hard14] even when the cost of preventive action is very[[B8l. There is often a great incentive to use
preventative measures when a disease is at high levels, but whehthiyelogv a certain level the incremental
benefit of taking the presentative action declines, and so individua¢s leéss incentive to use it. Thus pre
vention can sometimes (but notvalys) become ineffective before total eradication occurs. In this paper we
adapt a nogame theoretical model of ITN usa@e0] to study the impact of individual decisions on the
effectiveness of ITN usage.

2. The Model
2.1. Model of Malaria Transmission

We will use the basic model for the transmission dynamics of maideetion as presented [A0]. The host
population (humans) is divided into two compartments (susceptible arctionf®, which are denoted by
S, 1,,, respectively. A total host population is given Y, =S +1, . The vector population (mosquitoes) is
also divided into two compartments (susceptible and infectious) whiclemmated S, 1,, respectively. The
total vector population is given byN, =S, +1,. When a mosquito bites leuman, the susceptible human is
infected by an infected mosquito with probabilify, and a susceptible mosquito is infected by an infected
human with probability p,. Hosts die with natural mortality rates @i », and can also die because of
malaria with rate 8, . Hosts recover with ratey,, . Vectors can die with rate

14, () = s, + timp 1)

where g, is the natural mortality rate of hosts ang, b is the mortality rate due to ITN use in the
population. Here,Ee[O,:l] denotes the average ITN usage in the population. Each individual shitosgn
individual ITN usagebe {O:I} We assume that all individuals are born as susceptible (with recruitment rates
A, and A, respectively) and no infected individuals come from outsidleparameters and their values are
summarized imable 1.

Let 4, (b,E) be the force of infection for the focal susceptible Hdst] give the formula

B(B)N,(b) 1,(b)  A(b)I,(b)

= L P 2)
N.(B)  N.(B) T Ny(b)

where p, is the transmission probability per bite from infectious mosquitoesrtmhs, 3 (b) is the average

N, (b)

number of bites per mosquito per unit of time,——== is the average number of mosquitoes per host, and thus

N, (b)

I, (b
is the average number of bites a susceptible host gets per unit timénadiyd #L_) is the

N, (B)

2 (b.D)=py

B(b) EEE)

~—
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Table 1. Parameters, their description and value. The cost of malaria infection warties tountry an the used treatment,
see for examip [28]-[32]. Over the life of the ITN, the total cost of infections is more than theofdke ITN. Moreover,
ITNs are often subsidized, so the actual cost of ITN to the individuals isanind $1 per ITN26].

Description Value Reference
. . 1 1

H, Natural mortality for hosts n [70>< 365 B5c 36; [10] [24]
S, Diseased induced mortality in hosts in [0,4.1x 10* ] [24]

7 Hosts recovery rate 1/14 [24] [25]
H, Natural mortality rate for vectors [28 Y 2:[1] [10] [24]
A, Recruitment rate in hosts in [10°x,,10 4, | [8] [10]
A, Recruitment rate in vectors in [10° 4, ,25000 [9] [10]
Lo Minimal possible contact rate 0 [10]
B Maximal possible contact rate in [0.9,1 [10] [25]
M Net related vector mortality rate H, [10]

p, Prob. of vector to host transmission 1 [10]

p, Prob. of host to vector transmission 1 [10]
Cua Cost of malaria infection >$5 per case Seecaption
Ciny Cost of net usage <$10 per 3 5 years [26] [27]

b Individual ITN usage in {0,1

b Averagel TN usage in [0,1]

proportion of infectious mosquito€4.0] considers
ﬁ(b):ﬁmax_b(ﬂmax_ﬂmin) (3)

with g..,=0.1 and g =0 which yields $(0)=0.1 and (1)=0 (i.e. ITNs provide complete pro
tection).
Also, the average force of the infection is

b)= = 4
7n(B)= Pl 6) (4)

and thus

v Bb) =
b,b)=—=A1(b). 5
(05)= 514 6) ©
In the state when malaria reaches equilibrilirl] evaluates 4, (5) as a solution to
3[4 (B)] +by[ 4, (B)]+c, =0, (6)
where

8 = 41, (B) Ay (P(D) + 14, (B)) )
By =44, (6)Ah|—p2,3(6) + 241 (B)AhL - pip,f? (E)Av (4o +6,) (8)
G = (s (B)L) Ay (1) ©
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L=+, +6, (10)
RZ — ﬁz (5) . plpzAv:uh (11)
Hy (B) LA,

In [10] it is shown that there are potentially two stable steady states of infectiorif taedmalaria was
originally common, the stable states yields

RN Tl e SRS
WB)={ 2 T (12)
0; otherwise.

Figure 1 shows values of4, (t_)) for specific parameter values. Note thm;(B) eventually becomes 0
(quite abruptly as seen Ifigure 1(a)) as b increases. This is caused by the fact that for ladngethe disease
can be eradicated according to the model presen{édJin

2.2. Game-Theoretical Model

Let E(b, t_)) be the payoff for a focal individual using €1) or not using b=0) the ITN in a population
where the average use of ITNslse [01] . We shall find the ITN usage equilibrium usage lewel satisfying

E(1b)-E(0b)s 0if and onlyifb, <b . (13)

Such a usage level is stable, becausb i b,, then E(Lb)<E(0)b) and thusindividuals are better off
not using ITNs, and the average population usage level will thus go downdgutothie individuals acts
rationally). On the other hand, ib <b,, then E(l,E) > E(O,B) and thus individuals are better off if they use
the ITN and the population usage will thus go up. Here we assumwitiitatindividuals cannot accurately
assess the overall state of the population (in particular the prevalencalasfajninstantaneouslyhey can
change their behavior at a faster rate than the state of th#apop changes, in particular when the disease
prevalence is either very high or very low. This seems reaknrgihce individuals have a complete control
over whether they use an ITN and can adapt quickly (though how they lad¢péhd upon the information that
they have available, which we consider in the Discussion).

Following [14], we will evaluate

E(b,b)=—cb-7(b,b) (14)
T T T T T T T T
o ]
0.5 .
sk ]
0.4 .
41 _
= 03 7 S
~< = 3 n
0.2 N s .
0.1 . 1k 4
0 1 1 L L 0 1 1 1
0 0.2 0.4 5 0.6 0.8 1 0 0.2 0.4 3 0.6 0.8 1
(a) (b)

Figure 1. Values of /1(5) for different vector recruitment rates. (&), :103/1\,1, (b) A, :104/1\,1 . Values of the remaining
parameters areu, =1/28 .4, ., = t, Brw= 0.18 .= 0 1, =1/(55x 369 p,= 1p,= 1A, = 1y, §,= 44 10y, = /11
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where f(b,B) is the probability of the focal individual getting infected in a populatigth average ITN
usageb and c=cq/c,. is the relative cost of the ITN and the cost of getting infected by malaria.

To evaluate 7 (b,b ), we will use and adapt the model developeflLii. The probability of a host getting
infected is then given by the ratio of the rate of getting infected to thefriateving the susceptible state for any
reason. Thus,

_ A(b,b)
b,b - 15
7(bb) 7, (0.6)+ 4, (19)
3. Analysis
Given a relatively small value of;, and a relatively large value of, (5) we get from 15) and §)
A(b) u C B
~1- h_, f b)>0,
(08" B i) ) (16)
=9, if 2,(b) O,
z(Lb)=0. (17)

There will of course be values of, (b) just above 0 which are not small compared g, but for the
parameters in our model (séeble 1) this happens for a very narrow range of valuegfand so the above is
a good approximation.

It follows from (14) that

E(Lb)=-c-7(1b)=-c (18)
E(0,b)=0-7(0b), (19)
and thus, by6), (17),

0,b)-c if 4,(b)>0,
E(l,B)_E(O,B)zﬂ(oﬁ)_c={ﬁ( e A0)> (20)
—c, if 4,(b)=0.
Because by1(), 72'(0,6) ~1 for most b such that 4, (l:_)) >0, we get that
E(Lb)-E(0b)< 0, foralb e[ 0,] ifc=Cpy/Cyy > 1 (21)

and otherwise there is a uniqug satisfying the equilibrium conditiorL.8). The conditionc>1 is however
not realistic for real populations, and thus in practive will always get a uniquéy,. The plots of
E(l,b)— E(O,b) are shown irrigure 2.
Moreover, the uniqueb; is given exactly as a solution of
b - 4a,c,= 0 (22)

where a,,b, and ¢, are given by (#(9). As in[10], (22) happens for a critical valudR, given by

b8
R (L) (23)

whenever the term unde(. is nonnegative. The critical ITN usage is then given as a unidquéosoof a

fixed point problemb, = b, (b,) where

B ﬂmax _:uleR:
bc(b) = :Bmax _ﬁmin+QR:/umax

1, otherwise,

where Q=,/LA, /A, u,p,p, - The plots of b, (5) for different parameter values are showfrigure 3.

, if R is defined, (24)
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12 T T T T 12 T T T T
1 B 1 1
0.8 b 0.8 n
= =
S - - = L 4
= 0.6 3 0.6
| |
= 041 — = 04 n
= =
= oot - =02 -
or oF
—0.2 1 | | 1 —-0.2 | | 1 |
0 0.2 0.4 3 0.6 0.8 1 0 0.2 0.4 3 0.6 0.8 1

(a) (b)
Figure 2. Values of E(1,b)-E(0b) for different vector recruitment rates. (a), =10°x, , (b) A, =10"x, . Values of

the remaining parameters ar@, =128 fi, = 4, Brw= 0.1 o= Opt, = A 55 366p,= B, = A,= 10, 6,= &«
10* y, = Y14

4. Results

It follows from our analysis that it is in the individimbest interest to use the ITN as long as there is malaria
present in the population. For the parameter values used above, ngmely0, the optimal usage (from the
individual' s perspective) coincide with the average usage in the population that eratiealissase.

However, the model used shows particular sensitivity to the parameter Baly. This is unfortunate
because the effectiveness of the insecticide sprayed on the ITN deteriveat8s b years2], the net cannot
effectively provide protection for the whole 24 hours, and tlesquitoes may adapt their biting behavior in
area of high ITN coveragg33]. Consequently, the realistic value ¢, is positive and can be relatively
close to g, - As shown inFigure 4 when g, =0.075 (or even g ., =0.025 for larger valusof A,), the
malaria does not get eradicated. Still, the force of infectigr{b), decreases witth ; and the decrease is
significant. The quantityE(l,B)— E(O,t_)) is also always positive (close to 1), thus it is in the individual
interest to keep using the ITN. Consequently, the ITN usage does natatraithe disase, but helps to
significantly reduce its force.

However, in all of the above, we considered that malaria was transipétegen vectors and host during
every bite. If we relax this assumption and consiggyp, <1, then again malaria can be eradicated even for
larger values of g, as inFigure 4(c) andFigure 4(d).

5. Discussion

In this paper we have considered a gah@oretical model of ITN usagallowing individuals in the population
to decide whether (and how often) they use ITNs. We have shown that opéhaalior from the individuad
perspective leads to the decrease (or even eradication) of the diseaseoptimal outcome from the popu
lation perspective. In particular if it is not possible to eradicate the didwasmgh ITN usage, individuals use
ITNs all the time, which leads to the minimum possible level of malariealdication is possible, individuals
select a strategy which &pproximately at the level that leads to eradication. Moreover, the optimalidreha
does not depend on the exact cost of the ITN use (as long as the cost is baratlee tost of the disease). This
type of outcome is not always the casee for examlp [14].

We have seen that individual strategies lead to the eradication level effeatideendently of the cost in
our case, because individuals have a very high likelihood of getting infegthe disease whenever the disease
is present in the population, due to the high rate of infectiy), Which is much higher than the rate of natural
death, meaning that people become infeutitd probability almost equal to 1.

We have assumed that individuals are able to adjust their ITN usage stragegytifian changes in the
underlying state of the population, such as the prevalence of the diseasey® athtain the optimal level of
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Figure 3. Plots of bc(E) for different vector recruitment rates. (ay, :103,14V1, (b) A, :104/1\,1 . Values of the remaining
parameters arey, =1/28 4, = tt, Boa= 0.18 .= O, = A( 55 36pp = b,= A, = 10, 6,= 41710,~/ 1

T T T T T T T T
6F i
0.51 —
sk i
0.4 -
4_ -
= 03F . =
I\i] ~< 3 — 1
0.2} - L |
0.1 . 1k i
0 | 1 | | 0 | 1 | l
0 0.2 04 5 06 0.8 1 0 0.2 04 5 06 0.8 1
(a) (b)
T T T T 45 T T T T =
0351 —
4_ -
03r ] 3.5+ -
0251 - 3k i
= 02fF 4 = 25F i
= ~ L .
0.15 i
1.5k -
0.1+ -
1+ i
0.05 - 05k i
O 1 1 1 1 O 1 1 1 1
0 0.2 04 5 06 0.8 1 0 0.2 04 5 06 0.8 1
(c) (d)

Figure 4. Values of 1(5) for different vector recruitment rates and minimal contact rates. Ag)- 103,uvl,
Ban=0.075p, = 1p,= 1, (b) A, =104, B, =0.025p,= 1p,= ., (c) A, =10y, B, =0.075p,= 0.75,= 0.7,
(d) A, =10y, B, =0.025p,= 0.75,= 0.7. Values of the remaining parameters aug =1/28 u,,, = 4, Bpu= 0.1
t, =1/(55% 369 A, = 10y, 5,= 4.& 10y, = /11

858
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usage. It is clear that they are physically able to do this, because to @utamove an ITN takes a relatively
shorttime. However, they clearly need sufficient information about the stdke qgfopulation to make a rational
decision to change. Whatformation would they have on which to base their decision? It is ctearffigure 2
that except forb within a very narrow range the disease is either absent or effectively evémsrie this
information isobvious, and so any individual with the wrong strategy would quickly chingbus the popu
lation usage would quickly evolve to a level close to the critical level thdtave assumed.

We note that because of the high infection rate, a level of §agaiclose to the eradication level but still
below it could formally still lead to high levels of disease prevalences Tthindividuals had perfect infer
mation about the state of the population they could choosedtnategies to achieve the preciseel of the
equilibrium strategy, which would lead to some intermediate level oftiafedetween 0 and 1. It is our
assumption in this paper that they cannot do this precisely. In anyatasal variations within the real popu
lation parameters, wdéadi mean that the exact value of this critical level would be subject to dooteation.
The consequence is that the chosen strategy is sufficiently wodhe eradication level, that there is a good
chance of such eradication occurring, on the assomghat individuals play a fixed beatkt usage strategy.

In reality, it may be that the level of malaria will not have enougie tio tend to 0 before individuals in the
population notice the low level and give up the use of ITNs. Thus if theienbdeelis significantly different to
the equilibrium level from our analysis, individual behaviour will prevenbitnfibeing eliminated. Thus a more
complex dynamically coupled model of the evolution of ITN usage andrimdével may be needed to decide
the pecise behaviour at such intermediate levels of infection.
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