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Abstract

In this reserach, we analyse the formation of dominance hierarchies from dif-

ferent viewpoints and various models of dominance hierarchy formation have

been proposed, one important class being winner-loser models and another be-

ing Swiss tournaments.

We start by understanding the structure of hierarchies emerging under the in-

fluence of winner and loser effects and two situations are considered: (i) when

each individual has the same, fixed (unchanged) aggression threshold, mean-

ing that all of them use the same rule when deciding whether to fight or retreat,

and (ii) when individuals select an aggression threshold comparing their own

and their opponent’s abilities, and fighting if and only if the situation is suffi-

ciently favourable to themselves. For both situations, we investigate if we can

achieve hierarchy linearity, and if so, when it is established. We are particu-

larly interested in the question of how many fights are necessary to establish a

dominance hierarchy.

To examine these questions we use existing and new statistical measures. Be-

sides understanding the structure and the temporal dynamic of the hierarchy

formation, we also analyse the effect of the information that each individual

has about the strength of their opponents on linearity.

For the second situation, where individuals choose different aggression thresh-

old, we find the appropriate level of aggression and examine the conditions

when an individual needs to be more aggressive and when not.

Lastly, we develop a model which allows only the individuals with the same

number of wins and losses to fight each other. We show that linear hierarchies

are always established. A formula for the total number of fights is derived, and

the effect of group size on the level of aggressiveness is analysed.
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Chapter 1

Introduction

Many animals spend their lives, or a part of their lives, living in groups that

occupy the same territory. There are a lot of factors why an individual would

choose to live in a group, such as mating, foraging benefits [88], etc., but

perhaps the most important one, is the anti-predator vigilance [87]. Living in

a group allows its members to divide the tasks; while some individuals watch

out for predators, the rest can search for food.

On the other hand, living in groups can have different costs. For example,

if the resources such as food, mating or territory are limited, individuals often

arrange themselves into a ranking system. Those with a higher rank can benefit

by a high success in reproduction and access to food resources. This arrange-

ment where everyone or almost everyone has a clear position in the group

is called a dominance hierarchy. Individuals often establish their position by

aggressive fights between themselves.

There are a lot of factors that influence dominance hierarchy formation,

two of those are winner and loser effects. Winner and loser effects occur when

previous victories lead to an increased probability of winning and previous

defeats lead to a decreased probability of winning respectively ([11], [61],

[62], [105]).

There is not a large body of theory to predict the position of an individual

13
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in a dominance hierarchy [90]. Most theoretical work is concerned with the

modelling of winner and loser effects (but see [21], [23] for alternative mod-

els). Landau ([75], [76]) showed that intrinsic factors such as age or size alone

cannot produce hierarchies similar to ones observed in nature, pointing to the

importance of extrinsic factors such as prior experience. Once factors such as

winner and loser effects were added to the model, hierarchies similar to those

found in nature were obtained. Landau ([75], [76]) considered the combined

effects of winner and loser effects on hierarchy formation. Others have seen

how winner and loser effects separately influence dominance hierarchy forma-

tion ([17], [42], [44], [58]). Dugatkin [42] and Dugatkin & Dugatkin [44]

developed a simulation framework which explored the properties of emerging

hierarchies in groups of four individuals under different assumptions about the

strength of winner and loser effects.

In this research, we analyse and model the formation of dominance hier-

archies, in particular the influence of winner and loser effects. Our aim is to

find answers to questions such as: Is it possible to find the time when the hi-

erarchy is established and when an individual dominates the others so that the

dominance relationship cannot be reversed? So far, in winner-loser models,

the temporal dynamic of the hierarchy formation has not been analysed. In

addition, we explore the conditions under which an individual should be more

aggressive and when it should retreat.

In this work, we combine game-theoretical concepts with the theory of dom-

inance hierarchies. For this reason in the first part of this chapter we introduce

such concepts and in the second part, we present the literature on dominance

hierarchies.

14



Introduction

1.1 Game Theory

Game theory is the study of the decision-making of individuals where an indi-

vidual’s choice might affect the outcomes of others. Its origin is in 1920s with

Borel [18] and von Neumann, although there are earlier examples with game

theoretical elements involved [36]. It was only in 1944 when von Neumann

and Morgenstern published the book Theory of Games and Economic Behavior

[123] that Game theory was established as a field in its own. In 1950s Game

theory was applied to different situations arising in politics, but it has seen an

interest from other disciplines as well such as psychology, biology and logic.

The basic key elements of a game theoretical model are the following:

Players: In a game we might have a finite or an infinite number of play-

ers who are decision-makers. Their decisions affect the outcome of the game.

Often the games in biology are characterized by two players for simplicity rea-

sons.

Strategies: During different stages of the game, a player has choices to make

and the possible choices in each stage are known as actions. A strategy of a

player is defined as the action that it chooses at every possible stage of the

game. If only one specific strategy is chosen to be played in different positions

of the game, this strategy is called a pure strategy. For a finite set {S1, S2, ..., Sn}

of pure strategies, we can define a mixed strategy as the probability vector p

= (p1, p2, ..., pn) where pi is the probability that the player will decide to play

strategy Si.

Payoffs: The “award” that a player gets when playing a game is known as the

payoff. When there are only two individuals interacting and each of them

has a finite set of pure strategies, the payoffs can be represented by a matrix

called the payoff matrix. Such games are called bimatrix games. Suppose that

{S1, S2, ...Sn} is the set of pure strategies of player 1 and {T1, T2, ..., Tm} is the

set of pure strategies for player 2. The payoffs for both payers are determined

15



Introduction

by the pair of matrices

A = (aij)i=1,...,n;j=1,...,m, B = (bij)i=1,...,m;j=1,...,n (1.1)

where aij and bji are the payoffs of player 1 and 2 respectively, after player 1

chooses strategy Si and its opponent is playing strategy Tj.

In the case of a symmetric game where both individuals have the same set

of strategies T1, T2, ..., Tm and the reward gained after using a certain strategy

depends only on the other strategies and not who is playing them, the game

can be described as an n × n matrix A = (aij)i,j=1,...,n where the value in the

ith row and jth column gives the payoff of the row player that uses strategy Ti

against the column player using strategy Tj. The classical Hawk-Dove game

described below is an example of a symmetric game.

1.1.1 Nash equilibria

In any game, each player tries to choose a strategy that offers the highest pay-

off. But how does one find the “best strategy” when its payoff depends on

what strategy its opponent is playing? The concept of Nash equilibrium [96]

is important to study the strategies used by different players. Before giving its

definition, it is useful to first give the definition of the best response.

Definition 1. A strategy S is a best response to strategy U if E[T ,U] ≤ E[S,U];

for all strategies T , where E[S,U] denotes the payoff to a player using S against

a player using U [29].

Now we give the definition of Nash equilibrium.

Definition 2. A Nash equilibrium [96], is a set of strategies, one for each player,

such that neither player can profitably alter their strategy (i.e. increase their

payoff) unilaterally [22].
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If we use the terminology of the best response, we say that a game is in

a Nash equilibrium if and only if all the individuals in the group are playing

the best response against their opponents’ strategies. Mathematically in a two-

player game, the strategy S is a Nash equilibrium if

E[S, S] ≥ E[T, S], ∀T 6= S (1.2)

When E[S, S] > E[T, S], ∀T 6= S, we say that strategy S is a strict Nash equilib-

rium.

1.2 Evolutionary game theory

In biology, game theory is used to model and analyse the conflict and coopera-

tion in different groups of animals [57]. In contrast to the game theory where

each player tries to be rational, Evolutionary game theory (EGT) is determined

by natural selection which drives different organisms towards the maximisa-

tion of reproductive success [57]. An important concept in EGT is that of the

evolutionarily stable strategy (ESS) introduced by Maynard Smith and Price

[84], but it was derived by MacArthur and Hamilton’s sex ratio work ([56],

[79]) that was based on Fisher’s principle and is closely related to the concept

of Nash equilibrum.

1.2.1 Evolutionarily stable strategies

In a biological sense the concept of Evolutionarily Stable Strategy (ESS) is

usually applied to evolutionary processes.

A strategy is an ESS if when adopted by a population (residents) cannot

be invaded by a small number of individuals playing any alternative (mutant)

strategy. Mathematically an ESS is defined as follows:

Assume that the majority of the population is playing strategy S and a small
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number of “mutants” (a fraction ε of the total population) adopt strategy T .

Then we can give the following definition.

Definition 3. The strategy S is evolutionarily stable against strategy T if

E[S, (1−ε)S+εT ] > E[T, (1−ε)S+εT ] for any sufficiently small value of ε > 0.

S is an evolutionarily stable strategy (ESS) if it is evolutionary stable against T

for every other strategy T 6= S ([24], [29]).

This implies that in a population involving randomly selected pairs of in-

dividuals playing two-player games, strategy S which can be a pure or mixed

strategy, is an ESS if either

E[S, S] > E[T, S] (1.3)

or

E[S, S] = E[T, S] and E[S, T ] > E[T, T ] (1.4)

∀T 6= S, where E[S, S] is the expected payoff of an individual playing strategy

S against an individual who is playing strategy S .

In a population involving randomly selected groups of N individuals playing

N -player games, strategy S is an ESS if either:

E[S;SN−1] > E[T ;SN−1] (1.5)

or

E[S;SN−1] = E[T ;SN−1] and E[S, SN−2, T ] > E[T, SN−2, T ] (1.6)

∀T 6= S, where E[S;Si, TN−1−i] is the expected payoff of an individual playing

strategy S against i individuals playing strategy S and N − i − 1 individuals

playing strategy T , respectively [24].

If condition (1.3) holds than the individuals (mutants) using strategy T ,

lose against a population of individuals that are using strategy S, thus they
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cannot invade the residents. If condition (1.4) holds than even if a mutant

individual does equally well as the resident when playing against a resident

individual, it cannot invade the population of residents. Thus a strategy S is

an ESS if either condition (1.3) or (1.4) holds. Furthermore we note that a

game can have more than one ESS simultaneously, or there might be occasions

where no ESS are present. When comparing with the Nash equilibria, an ESS

is always a Nash equilibria (from conditions (1.3) and (1.4)), but the reverse

is not always true. However a strict Nash equilibria is an ESS, because for a

strategy to be a strict Nash equilibria, condition (1.3) must hold.

1.2.2 The diagonal rule

The diagonal rule allows us to find the ESS in a n-strategy game. Assume that

the pure strategies are θ1, θ2,...,θn with the corresponding n× n payoff matrix.

Now suppose that in the payoff matrix, the ith diagonal payoff E[θi, θi] is the

largest payoff in the ith column. This yields E[θi, θi] > E[θj, θi], ∀j 6= i.

Let us denote by γ 6= θi a mixed strategy which can be written as a combination

of the pure strategies θi as follows

γ = p1θ1 + p2θ2 + ...+ pnθn (1.7)

where p1 + p2 + ...+ pn = 1 and each pi ≥ 0.

Next, because E[θj, θi] < E[θi, θi] we can write the following

E[γ, θi] = p1E[θ1, θi] + p2E[θ2, θi] + ...+ pnE[θn, θi]

< p1E[θi, θi] + p2E[θi, θi] + ...+ pnE[θi, θi]

= (p1 + p2 + ...+ pn)E[θi, θi]

= E[θi, θi]

(1.8)

Thus we have proved that E[γ, θi] < E[θi, θi] which yields the following
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theorem [91]:

Theorem 1.2.1. The Diagonal Rule: In a n-strategy game with pure strategies

θ1, θ2,..., θn, if E[θi, θi] > E[θj, θi], ∀j 6= i, then θi is a pure ESS.

1.2.3 The classical Hawk-Dove model

Here we give a classic example of an evolutionary game, that of the Hawk-Dove

game ([83], [84]) which is widely used to model situations where groups of

animals compete with each other to gain access to biological resources such as

food, territory, mating, etc. The game is described as follows:

Suppose that in a population, individuals fight with each other over a re-

ward V > 0. Each individual can choose to either be aggressive, play Hawk

(H) or non-aggressive, play Dove (D). When a Hawk meets a Hawk they

engage in an aggressive interaction until there is a winner and a loser. The

winner gets the reward V and the loser pays a cost of injury C (or gains re-

ward −C). Thus the expected reward when a Hawk meets another Hawk, is

E[H,H] =
1

2
(V − C). When a Hawk meets a Dove, the Hawk is aggressive

and the Dove always retreats from fighting. Thus the Hawk gets the reward

V , the Dove gets 0 and does not pay any cost as it does not engage in a fight.

Hence E[H,D] = V and E[D,H] = 0. When a Dove meets another Dove they

either share the reward V , or only one takes it and the other pays no cost, the

winner being selected at random. The overall payoff of Doves in this case is

E[D,D] =
V

2
. The following payoff matrix describes this game.




Hawk Dove

Hawk
V − C

2
V

Dove 0
V

2




From the payoff matrix, we notice that the Dove strategy cannot be a pure ESS
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as E[H,D] > E[D,D] and thus in a population of Doves a Hawk individual al-

ways invades. Let us find now the conditions when playing Hawk is a pure

ESS. For V > C (the reward of winning is bigger than the cost of losing) we

have E[H,H] > E[D,H]. In this case, because E[H,D] > E[D,D] and thus

playing Hawk is a pure ESS. We can show that playing Hawk is also a pure

ESS when V = C as E[H,D] > E[D,D]. Let us see now what happens for

V < C, i.e. when the reward of winning is smaller than the cost of losing so

that we have E[H,H] < E[D,H]. This means that in a population of residents

playing the Hawk strategy, it is best to play Dove. Thus we get a mixed ESS.

Denote by p = (p, 1 − p) the mixed strategy where an individual plays Hawk

with probability p ∈ [0, 1] and plays Dove otherwise. In order for this mixed

strategy to be an ESS, the payoff of an individual playing Hawk needs to be

equal to the payoff of an individual playing Dove, i.e.

p
V − C

2
+ (1− p)V = p · 0 + (1− p)

V

2
(1.9)

from which we get

p =
V

C
(1.10)

For p to be an ESS we need E[p,q] > E[q,q], for all q 6= p. We have

E[p,q] = q
1

2

V

C
(V − C) +

V

C
(1− q)V + q(0)

(
1−

V

C

)
+

(
1−

V

C

)
(1− q)

1

2
V,

(1.11)

E[q,q] = q2
1

2
(V − C) + q(1− q)V + q(1− q)(0) +

1

2
V (1− q)2. (1.12)

From (1.11) and (1.12) we obtain

E[p,q]− E[q,q] =
1

2
C

(
V

C
− q

)2

> 0 (1.13)

which yields the desired result. This means that a Hawk does better against a

Dove than a Dove does against another Dove. Thus we have a unique mixed
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ESS where the individuals play Hawk with probability
V

C
and Dove with prob-

ability 1−
V

C
.

1.3 Dominance hierarchies

In this section, we present the literature on dominance hierarchies.

Dominance hierarchies can be linear, so that animal A dominates all others, B

dominates all others except A, etc, or can be non-linear where the position of

individuals in the group is complex. For example we can have hierarchies in

groups of animals where two or more individuals have the same position or

when circular triads are present. A circular triad is a subgroup of 3 individuals

A, B and C where the relation A → B → C → A holds, (→ stands for “dom-

inates” ). This means that individual A dominates B, individual B dominates

C but individual C dominates A.

In this thesis, we are concerned with situations where whole groups form

from scratch, with individuals meeting each other for the first time, for exam-

ple in leks ([60], [71]). In such situations individuals will often enter into a

series of pairwise contests, in order to establish their position within the group.

In general, linear hierarchies are very stable; for example, when chickens were

taken from their group and reintroduced days later, they reoccupied the previ-

ous place that they had in the group [23]. Once the hierarchy is formed, the

off-springs usually take a place behind or ahead their parents and siblings.

Dominance hierarchies have been the subject of study by behavioral ecolo-

gists for a long time and at first sight it is surprising that an individual would

accept a subordinate rank within a hierarchy ([4], [41]). However, linear hier-

archies are found to be present e.g. in birds, mammals, ants, fish or crustaceans

([1], [10], [31], [55], [85], [92], [93], [106], [110]). When 15 colonies of

monogynous queenless ants [93] were put in plaster nets, 6 types of agonistic

interactions were observed that were consistent over a period of 2 weeks. The
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workers ants were then ordered according to these aggressive behavior.

Some animals are more aggressive than others and the level of aggressive-

ness depends upon many factors such as experience, the value of winning the

contest, resource holding potential (RHP ) (see e.g., [15], [16], [95], [114],

[115]). In our model RHP will simply mean the ability of an individual to win

an escalated contest [101], abstracted away from any particular causal effect.

In reality, there are a large number of elements that determine the RHP . Very

broadly, these elements can be divided into physical attributes, such as size,

age and physical strength (intrinsic factors) and psychological attributes, such

as prior experience (extrinsic factors).

In more detail, there are a lot of results demonstrating a strong correlation

between RHP and body size ([3], [20], [78]). For example it has been ob-

served that larger animals are more aggressive towards smaller ones and that

they have more chances of winning an encounter ([54], [69]). However, other

results show that such physical attributes are not the only important determi-

nant of RHP . For example [32] showed that 37.5% of a group of house crickets

won aggressive interactions, even though they had smaller body size. In [59],

bigger individuals lost 30% of the aggressive interactions.

Prior experience as well can have an important effect on the RHP of an

individual. For example if an individual has won more fights than it has lost in

the past, it may increase its potential to win in the future. In this research, we

assume that all individuals have identical physical abilities, so that the outcome

of an encounter is significantly determined by past experience (although our

results depend upon only a mechanical updating of RHP after a contest, so

it would allow for real physical as well as psychological changes, too). In

particular we consider so-called “winner and loser effects”, but there can be

other extrinsic factors such as the audience and bystander effects that influence

the level of aggression. The audience effect ([39], [52], [86]) occurs when an

individual changes its strategy as a result of being watched by others and the
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bystander effect occur when an individual changes the fighting behavior as a

result of watching the other individuals in the group.

There is a lot of experimental evidence ([8], [13], [77], [108]) showing

the presence of the loser effect in different groups of animals that lasts for

several days. On the other hand the winner effect is less common, with only

some species showing it. In stickleback fish Gasterosteus aculeatus it was ob-

served that the loser effect lasted for twice as long as the winner effect [8].

In copperhead snakes Agkistrodon contortrix it was observed that there was no

effect after a winning experience, while the effects of losing lasted for more

than one day; individuals that had previously lost did not engage in any fight

(they retreated), and lost when challenged, whereas those individuals that had

previously won, won six of the ten subsequent contests [108].

1.3.1 Dugatkin’s model of dominance hierarchy formation

Dugatkin [42] and Dugatkin & Dugatkin [44] developed a model to explore

the structure of dominance hierarchies under different strengths of winner and

loser effects (W ≥ 0 and L ∈ [0, 1]). The model consists of N individuals

who are characterised by their RHP and aggression threshold (θ). The RHP

value describes the ability of an individual to win an aggressive interaction (as

described in Section 1.3), whereas θ indicates whether an individual engages

in a fight in the first place. Further, it is assumed that the outcome of a fight

(i.e. win or loss) influences the RHP . While a win increases an individual’s

ability to win the next fight, a loss decreases it. Two models which differed

in the amount of information an individual has about its opponents’ fighting

abilities were analysed. The non-updated model assumes that no information

about the current ability is available [42], whereas the updated model assumes

that information (although with varying levels of accuracy) is accessible [44].

In the following we describe both models in detail.
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1.3.1.1 The non-updated model

All individuals possess the same RHP initially (denoted by RHPinitial) and at

each time step two individuals, x and y, are drawn at random to engage in an

aggressive interaction. Individual x decides to fight against individual y at time

t if

RHPx,t

RHPinitial

≥ θ (1.14)

holds, and it retreats otherwise, where RHPx,t describes the RHP of individual

x at time t, and θ is a fixed aggression threshold. In this model, individual x

has no information about the current RHP of individual y. Individual y is

considered similarly. Each pairwise interaction results in one of three possible

outcomes:

(1) both individuals decide to fight and x wins with probability

Px,y(t) =
RHPx,t

RHPx,t +RHPy,t

(1.15)

(and consequently y wins with probability Py,x(t) = 1− Px,y(t));

(2) one chooses to fight and the other retreats;

(3) both individuals retreat, which is known as a double kowtow.

The outcome of the contest is assumed to affect the RHP . If individual x wins

or individual y retreats then we obtain

RHPx,t+1 = (1 +W )RHPx,t. (1.16)

Similarly, if x loses or retreats then we have

RHPx,t+1 = (1− L)RHPx,t. (1.17)
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A similar dynamic holds for individual y. Consequently, the RHP of both indi-

viduals changes due to the outcome of their pairwise interactions, but in this

model individuals are only able to track the changes of their own RHP (this

may not be entirely realistic as we touch upon in Section 2.6).

Dugatkin [42] considered a group of four individuals and recorded the

number of wins of each individual over each of the others in a single realisation

of 1,000 interactions. He defined θ = 1 (meaning that individual x will fight

at time t if RHPx,t ≥ RHPinitial holds) and analysed winner and loser effects

of varying strengths (W = 0; 0.1; 0.2; 0.3; 0.4; 0.5 and L = 0; 0.1; 0.2; 0.3; 0.4; 0.5,

respectively).

The results obtained from this simulation are summarised in Table 1.1.

When only the winner effect was present each individual had a clear posi-

tion in the hierarchy; higher-ranked individuals were characterised by a larger

total number of wins, and also the ratios of their number of wins compared to

their number of losses (excluding double kowtows) against each lower ranked

individuals were high. This is true for all values of W . When only the loser

effect was present one individual always emerged as the dominant individual

and the position of the others was unclear as subordinate individuals started

retreating quickly, and so the interactions between them resulted in mutual

retreat. However, increasing the winner effect for a given value of the loser ef-

fect L increased the number of individuals with a clear position in the hierarchy

(nevertheless the hierarchy was not always linear). Dugatkin saw the influence

of the winner and loser effect in larger group sizes like when N = 6, 8, 12 and

concluded that the pattern was the same as for N = 4. The loser effect appears

to be stronger than the winner effect. For example in a group of 8 individuals,

all individuals have a clear rank in the hierarchy when only the winner effect

is present, but under a small value of the loser effect and a large value of the

winner effect, only the top two to four individuals have a clear position.
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W = 0 W = 0.1 W = 0.2 W = 0.3

L = 0

− 146 136 140
8 − 8 172
21 170 − 168
6 18 7 −

− 146 172 160
6 − 168 158
7 9 − 167
2 2 3 −

− 4 158 164
161 − 146 172
6 2 − 183
0 1 3 −

L =
0.1

− 0 0 0
171 − 171 163
0 0 −0
0 0 0 −

− 161 195 156
0 − 2 0
0 0 − 0
10 159 153 −

− 177 173 157
0 − 0 0
0 0 − 0
0 0 0 −

− 152 171 159
0 − 0 0
0 0 − 0
4 179 171 −

L =
0.2

− 156 168 174
0 − 3 3
0 0 −0
0 0 0 −

− 156 178 149
0 − 0 0
0 0 − 0
0 0 1 −

− 1 1 0
0 − 0 0

157 173 − 148
1 3 0 −

− 2 173 149
147 − 160 196
0 0 − 0
1 0 3 −

L =
0.3

− 0 3 1
181 − 172 154
0 0 −0
0 0 0 −

− 0 0 0
6 − 0 4
156 178 − 163
0 0 0 −

− 0 1 0
178 − 164 153
0 0 − 0
1 0 5 −

− 0 0 1
0 − 0 0

163 184 − 158
0 0 0 −

Table 1.1: The winner and the loser effects in a population of 4 individuals,

θ = 1, 1000 potential interactions. Entries in rows represents the number of

times that the row player has defeated the column player (Dugatkin [42]).

1.3.1.2 The updated model

Dugatkin & Dugatkin [44] relaxed the (probably unrealistic) assumption that

an individual has no knowledge of its opponent’s RHP . They assumed that

the opponent’s RHP can be estimated and the (error-prone) estimate is drawn

uniformly from the interval [(1 − η)RHPy,t; (1 + η)RHPy,t] where η describes

the accuracy of the estimate. The case η = 0 models the situation where each

individual has perfect knowledge of its opponent’s RHP [44]. The estima-

tion of individual y is denoted by RHP y,t and thus individual x decides to be

aggressive when

RHPx,t

RHP y,t

≥ θ (1.18)

holds and retreats otherwise. The probability that x wins remains

Px,y(t) =
RHPx,t

RHPx,t +RHPy,t

. (1.19)

The analysis of the updated model was done under combinations of η = 0; 0.25; 0.75,

θ = 0, 0.5, 1 and for the same values of winner and loser effects as in the non-

updated model where W = 0; 0.1; 0.2; 0.3; 0.4; 0.5 and L = 0; 0.1; 0.2; 0.3; 0.4; 0.5.
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Pairwise interactions affect RHP as described in equations (1.16) and (1.17).

In total we have 324 combinations of θ, W , L and η and for each of these

combinations the following was simulated:

(1) All individuals had RHPinitial = 10.

(2) All individuals had RHPinitial = 10, but two individuals always overes-

timate their opponent’s RHP by choosing the maximum of the interval

range and two individuals always underestimate their opponent’s RHP

by choosing the minimum of that range.

(3) RHPinitial = 10, 12, 14, 16 for the four individuals respectively.

(4) RHPinitial = 10, 12, 14, 16 for the four individuals respectively, but the two

individuals with the lowest RHP always overestimate their opponent’s

RHP and the two individuals with the highest RHP always underesti-

mate their opponent’s RHP .

(5) RHPinitial = 10, 12, 14, 16 for the four individuals respectively, but the two

individuals with the lowest RHP always underestimate their opponent’s

RHP and the two individuals with the highest RHP always overestimate

their opponent’s RHP .

For all the analysed cases, clear linear hierarchies were established (i.e.

the higher-ranked individuals won more contests in total than lower-ranked

individuals, and more direct contests against lower-placed individuals). Inter-

estingly, the three different values of η made no differences to the hierarchy,

and thus overestimation or underestimation of the opponent’s ability to win a

fight had no impact on the establishment of linear hierarchies, as long as some

ability to estimate this ability was possessed [44].
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1.3.2 A Measurement of linearity

Often the hierarchies found in nature are not perfectly linear (where each indi-

vidual has a clear rank in the group). Sometimes two or more individuals have

the same rank or circular triads might be present. It is of interest to measure

how far from linearity hierarchies are. Landau and Kendall ([68], [75]) have

both introduced an index of linearity denoted by L and K respectively where

both take a value between 0 and 1. A value of 1 indicates a perfect linear hier-

archy and a value of 0 represents a non linear hierarchy.

1.3.2.1 Landau’s index of linearity

Landau [75] developed a method that measures the linearity of a hierarchy.

This index is calculated as follows:

h =

(
12

N3 −N

) N∑

x=1

(
Vx −

N − 1

2

)2

(1.20)

where N is the group size and Vx is the number of individuals that are domi-

nated by individual x. It was agreed in [12] and [33] that values of h ≥ 0.9

correspond to ’strong’, nearly linear hierarchies. Equation (1.20) is used when

there are no individuals with tied rank numbers. However this index can also

be used when there are tied ranks by using an adaptation proposed by [97].

Here if two individuals x and y have the same rank, we increase both values Vx

and Vy by 1/2.

1.3.2.2 Kendall’s index of linearity

Another measurement of linearity is that developed by Kendall [68]. The

method of calculating this index is given by Appleby [6] and the steps are

as follows.
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A B C D E F G Row total (Ri)

A - 1 1 1 1 1 1 6
B 0 - 1 0.5 0.5 0 0 2
C 0 0 - 0.5 0.5 0 0.5 1.5
D 0 0.5 0.5 - 0 0.5 0.5 2
E 0 0.5 0.5 1 - 0 0.5 2.5
F 0 1 1 0.5 1 - 1 4.5
G 0 1 0.5 0.5 0.5 0 - 2.5

Table 1.2: Matrix of relationships between 7 individuals named A, B, C, D,

E, F and G where row individual dominant to column individual is indicated

by 1; column individual dominant to row individual is indicated by 0 and the

unknown relationships are indicated by 0.5.

(1) Construct a matrix of relationships, in which the row individual i domi-

nant to the column individual is indicated by 1 and the column individual

dominant to the row individual is indicated by 0. Unknown relationships

are indicated by 0.5.

(2) For each individual (i = 1, ..., N) calculate the row sum Ri which repre-

sents the number of individuals dominated by i (Table 1.2).

(3) Calculate d which is the number of circular triads (see Section 2.2.1) by

d =
N(N − 1)(2N − 1)

12
−

1

2

N∑

i=1

(Ri)
2. (1.21)

(4) The index of linearity K is calculated as follow:

K =





1− 24d
N3−N

: N odd

1− 24d
N3−4N

: N even

The value of K for odd values of N is the same as Landau’s h. In Kendall’s

original procedure it was assumed that no tied relationships were present.

However by indicating unknown relationships by 1/2, the above procedure

could be applied to hierarchies with unknown relationships. On the other

hand, if the number of unknown relationships is relatively large the value of
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K may be negative. Depending on the number of tied relationships K can

overestimate or underestimate the level of linearity. De Vries [38] proposed an

improved test of linearity that is not affected by the number of tied relation-

ships. The steps of the procedure are as follows.

(1) Construct the matrix of relationships where the row individual dominant

to the column individual is indicated by 1 and the column individual

dominant to the row individual is indicated by 0. Unknown relationships

are also indicated by 0.

(2) Construct 2u matrices where u is the number of unknown relationships.

Thus for a pair of individuals (A, B), if they have an unknown relation-

ship, in a new matrix the position (A, B) will be indicated by 1 and the

position (B, A) by 0 or the other way around. Because there are 2 possi-

bilities for each unknown relationship, the total number of matrices that

we construct is 2u.

(3) For each of the 2u matrices, calculate the number of circular triads d.

(4) Calculate the number of circular triads d′ as the average of all d values.

(5) The index of linearity is defined as

K ′ = 1−
d′

max(d)
. (1.22)

De Vries also proposed a two-step randomisation test as an alternative one to

K ′ (see [38])

1.3.3 Reproductive skew

In this research we use the concept of reproductive skew to analyse how lim-

ited resources are divided between a group of individuals. The distribution of

reproduction varies among breeding individuals that share the same territory
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[66]. Reproduction skew measures the division of reproduction among group

members. In high-skew groups, only the individuals that have a high position

in the group obtain a large share of reproduction. In low-skew groups, repro-

duction is distributed more evenly among group members. A classical example

of high reproductive skew is that of eusocial insects where only the queen

(dominant individual) reproduces. In Liostenogaster flavolineata (hover wasps)

it is observed that only one female produces more offspring in the group, even

though there might be more females in the group able to mate and lay eggs

[112]. On the other hand in Mungos mungo (the banded mongoose) a low

reproductive skew has been found to be present. There are a lot of factors that

influence such variation in different groups of animals (see [19], [46], [47],

[48], [66]). Most of the theoretical work is based on the idea that the top-

ranked individual has control over reproduction but might share an amount of

that with lower-ranked individuals so that they do not leave the group ([45],

[120], [121], [122]).

However it is not clear the extent to which top-ranked individuals control re-

production. This leads to the idea of incomplete control models of skew, where

lower-ranked individuals can have an effect on the distribution of reproduc-

tion ([64], [65], [102]). Dominant individuals can allow the lower-ranked

individuals to have an influence on the distribution of reproduction because

sometimes producing more offspring can be costly for the dominant individual

when they can be produced by subordinate individuals at a lower cost.

But how is reproductive skew measured? There are more than 20 indices used

to find whether there is an even or uneven distribution of reproduction among

group members. The most used index is that by [67] denoted by S and is

calculated by equation (1.23)

S =
νNb +NN

Nb +NN

(1.23)
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where Nb is the number of individuals that are breeders, NN is the number of

individuals that are non breeders and ν measures the variation of reproductive

output among breeders. S takes values between 0 and 1 where a value of

S equal to 0 indicates that reproduction is equally distributed among group

members and a value of S equal to 1 indicates that reproduction is only by the

dominant individual.

Another popular index of skew is that by Kokko & Lindstrom [70] denoted by

λ and calculated by formula 1.24

E[pr] =
λ(1− λ)r−1

1− (1− λ)n
(1.24)

where E[pr] is the expected proportion of matings by males that are in rank

r. This index also takes a value between 0 and 1, where λ → 0 indicates no

reproduction skew and λ → 1 indicates a high-skew.

1.3.4 Tournament models of dominance hierarchy formation

Different groups of animals can be thought to follow different types of tour-

naments when they establish the dominance hierarchy. In the following we

explain some of the tournaments that we use in our research.

A tournament is a competition consisting of a series of contests and a large

number of individuals. In each contest two individuals are paired against each

other to fight over a reward. There are a number of tournaments that differ-

ent groups of animals follow to establish a dominance hierarchy such as the

knockout tournament, the round-robin (all-play-all) tournament and the Swiss

tournament. In the following we briefly describe these models.

In knockout tournaments, 2n individuals are paired together. In the first

round we get 2n−1 winners and 2n−1 losers. The losers are eliminated from the

competition, while the winners are repaired together. This process continues

until the last round where one single individual remains undefeated. This yield
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2n − 1 contests in total. Knockout tournaments are considered in detail in

[25] and [26]. This type of tournament is useful when there is a large group

of individuals and only the top-ranked one gets the payoff, otherwise when

intermediate rank individuals obtain a reward as well, this model might not be

useful.

In round-robin tournament (all-play-all) all possible pairings can occur and

the number of contests for a group of 2n individuals is 2n−1(2n − 1). Mesterton

Gibbons and Dugatkin [90] used a round-robin tournament to model domi-

nance hierarchy formation, in particular they were interested to see whether

the established hierarchy was linear or not. Furthermore they introduced the

concept of RHP into this model and analysed its influence on linearity. They

concluded that the level of linearity depends on the group size, RHP and

aggression threshold. A disadvantage of round robin tournaments is that for

larger group sizes there would be a large number of fights which leads to loss

of energy and injury [23]. Thus this model works better for smaller groups.

Another disadvantage of this tournament is that it forces those that do not

do well in early contests to fight until the end, when they could have been

eliminated earlier as they get nothing by fighting. Here is where the Swiss

tournament is useful, because it has less fights than the round-robin. In Swiss

tournaments for a group of size 2n there are 2n−1n contests in total, which is

intermediate between knockout tournaments and round-robin.

1.3.5 A Swiss tournament model by Broom and Cannings

1.3.5.1 Some preliminaries

A Swiss tournament is a tournament which originates with a chess competition

taking place in Zurich (hence the name) in 1895. In a group of 2n players,

those with the same score are paired together to compete. If they have differ-

ent scores, those with a score as close as possible are paired together. Broom
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& Cannings [23] have modelled the Swiss tournament as a Hawk-Dove type

games ([83], [84]); the winner gets an extra score and the loser stays on the

same score. The payoff matrix in this case is denoted by M and is given as

follows:

M =




1
2
(W + L− C) W

L 1
2
(W + L)


 (1.25)

where W is the reward for the winner, L is the reward for the loser and C is

the cost for losing. There is always a unique ESS when considering a single

interaction of this game. If p is the probability of being aggressive in the ESS

then the followings apply:

(1) p = 0 means that an individual plays Dove, which happens if W − L < 0.

The pay-off for this strategy is 1
2
(W + L).

(2) p = 1 means that an individual plays Hawk, which happens if W−L ≥ C.

The payoff for this strategy is then 1
2
(W + L− C).

(3) For 0 ≤ W − L < C we have p = W−L
C

and the payoff in this case is

1
2
(W + L)− 1

2C
(W − L)2.

In general the payoff will be 1
2
(W + L − p2C) where p = mid(0, W−L

C
, 1) is

the second largest value of 0, W−L
C

and 1. For the Hawk-Dove model in Swiss

tournaments case 1 never happens. Thus the payoff can be written as 1
2
(W +

L− 1
C
min(C, (W − L))2). We define

R(x, y) =
1

2

(
x+ y −

1

C
min(C, (x− y)

)2

(1.26)

for x ≥ y, which is the expected payoff at the ESS for W = x and L = y. Then

the following results are true.

Result 1. If x ≥ y then x ≥ R(x, y) ≥ y.
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2n

2n−1 winners

2n−2 2n−2

2n−1 losers

2n−2 2n−2

Figure 1.1: The division of individuals using a Swiss tournament

This means that the expected payoff prior to a contest is between the ex-

pected payoff of the winner and the payoff of the loser after the contest.

Result 2. If x ≥ y ≥ z and y − z ≥ C then R(x, y)−R(y, z) ≥ C.

This means that the reward for winning twice is x, for winning once and

losing once y, and for losing twice is z [23]. Then the reward for winning one

contest is at least C greater than the reward for winning no contests.

1.3.5.2 The Model

In a population of size 2n, each individual starts with the same score 0|0 (0

wins from 0 contests). At the end of the first round where these 2n players

are randomly paired together, we get 2n−1 individuals on a score 1|1 and 2n−1

individuals on a score 0|1. In the second round, the winners are paired together

and the losers together. At the end of this round we get 2n−2 individuals on

a score 0|2, 2n−1 individuals on a score 1|2 and 2n−2 on a score 2|2. Then

individuals on the same score are paired against each other. We get an almost

accurate ordering by using the Swiss tournament and the winner is established

in n rounds (if there are no draws). The total number of contests until we stop

is 2n−1n and after j rounds there are
(
j

i

)
2n−j players on i|j (i.e. i wins from j

contests), ∀i = 0, ..., j.

The reward for finishing on a score i|n is Vi such that V0 ≤ V1 ≤ ... ≤ Vn.

In Swiss tournaments the followings are defined:
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• Wij is the expected reward for an individual with a score of i|j (i wins

until round j). Thus Win = Vi, ∀i

• Mij is the payoff matrix for an individual with a score i|j playing in round

j + 1. The expected reward for winning is W(i+1)(j+1) and the expected

reward for losing is Wi(j+1) as (i+1)|(j+1) and i|(j+1) are the only two

possible states that an individual on a score i|j can be in subsequently.

Thus the matrix M will be:

Mij =




1
2
(W(i+1)(j+1) +Wi(j+1) − C) W(i+1)(j+1)

Wi(j+1)
1
2
(W(i+1)(j+1) +Wi(j+1))


 (1.27)

• Next, the probability of being aggressive in the ESS of Mij is defined by

pij and is given by

pij = mid(0,
W(i+1)(j+1) −Wi(j+1)

C
, 1) (1.28)

The expected reward Wij will then be

Wij =
1

2
(W(i+1)(j+1) +Wi(j+1) − p2ijC). (1.29)

Result 3. For i ≤ k ≤ j,Wij ≤ Wkj.

This means that the expected reward for an individual who has won k

contests is at least as large as an individual with less wins i, at the end of

round j.

From Result 3, we can write

pij = min

(
W(i+1)(j+1) −Wi(j+1)

C
, 1

)
(1.30)
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and

Wij = R(W(i+1)(j+1),Wi(j+1)) ∀i ≤ j ≤ N − 1. (1.31)

Note that there is a unique choice of pij for every position, which is the only

candidate ESS, but not necessarily an ESS [23]. The following results are

also true for Swiss tournaments (see [23] for proofs of these results).

Result 4. Wij ≤ W(i+1)(j+1) if i ≤ j ≤ N − 1.

This result means that the expected reward of an individual cannot decrease

after a win.

Result 5. Wij ≥ Wi(j+1) if i ≤ j ≤ N − 1.

This result means that the expected reward of an individual cannot increase

after a loss.

Result 6. If pi(j+1) = 1 then pij = 1. Equivalently if pij < 1 then pi(j+1) < 1.

This means that if an individual loses after playing any mixed strategy other

than pure Hawk, on the next round it cannot play pure Hawk. However, pij are

not necessarily monotonically decreasing with j for a given i.

1.3.6 Outline

This thesis is structured as follows.

In Chapter 2, we analyse the influence of winner and loser effects on domi-

nance hierarchy formation. Two cases are considered: (i) when individuals

do not know the strength of their opponents and (ii) when they can estimate

the strength of their opponents with varying levels of accuracy. For each case

the linearity of hierarchies is measured. We do this by analysing the average

number of wins for an individual where we use the index of linearity K and

by analysing the temporal change in the RHP where the concept of overlap is
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used. We then find the time (how many rounds) when the hierarchy is estab-

lished. For the non-updated model we find analytically the number of wins for

the second and third place in a group of four individuals when only the loser

effect is present. The probability of having a unique loser is also analysed.

In Chapter 3, we introduce game-theoretical elements in the form of strate-

gic factors to the winner and loser model developed in Chapter 2. For a general

strategy, we find its expected payoff and hence find the appropriate range of

strategies. We use two payoff functions: the first representing situations where

the resources are unlimited, and the other representing situations with limited

resources. Using both payoff functions we analyse the level of aggressiveness

for an individual and in particular we find that in the second case individuals

need to be more aggressive to obtain a higher share of the resources.

In Chapter 4, we develop a new model of dominance hierarchy formation,

based upon the Swiss tournament model by Broom & Cannings [23]. Analysis

of the model shows that linear dominance hierarchies are always established.

We find the number of rounds until the winner, the second place and the full

hierarchy is established and a formula for the total number of fights is derived.

Furthermore, we explore the effect of group size, reward and cost on the level

of aggressiveness and on the expected payoff.

In Chapter 5, we summarise our main findings, the contributions of this

study and give some directions of future research.
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Chapter 2

Modelling Dominance Hierarchies

Under Winner and Loser Effects

2.1 Introduction

For a long time, the question as to what stops a lower-ranked individual to

overturn its social rank, has been a big puzzle in biology. A Substantial amount

of work is carried out on this subject, but only the last couple of decades, the

focus has been on the winner and loser effects. These factors have an important

role on the level of aggressiveness for an individual and are found to be one of

the possible mechanisms of dominance hierarchy formation in different groups

of animals ([8], [13], [77], [108]). Therefore, in this chapter, we analyse in

more detail the influence of winner and loser effects on dominance hierarchy

formation.

Our starting point is the model developed by Dugatkin and Dugatkin &

Dugatkin ([42], [44]) (see Chapter 1 for the model description and results).

For each combination of the winner and loser effect, he analysed the number of

wins of each individual in the group. Although this model makes good predic-

tions about how different species arrange themselves into a ranking order, his

results are based on a single observation for each of the analysed cases. We are
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interested in looking at the distribution of the number of wins for each case, to

ascertain if different observations will always yield effectively the same results

(in most cases they do, but there are exceptions, as we see in Section 2.3). The

average is important as the logical representative of the distribution.

We start by extending the framework developed in ([42], [44]). For ease

of comparison, we will use the same model that Dugatkin has used with the

only difference being in the updated model where the errors are treated dif-

ferently (see Section 2.5). We start by analysing the average behaviour of the

original model (as opposed to considering a single realisation) by recording the

average number of wins of each individual over any other individual present

in the population on the basis of 10,000 simulations and consider appropriate

statistics to describe the properties of the emerging hierarchies. To this end

we evaluate the linearity of the hierarchy by adapting the index of linearity

introduced by Kendall [68], denoted by K (0 ≤ K ≤ 1). Values of K close to

one are indicative of linear hierarchies and values of K close to zero indicate

no linear hierarchy to be present. We calculate the index of linearity based on

the averaged number of wins for all considered parameter combinations and

this systematic investigation of the model from [42] reveals that a near linear

hierarchy is achieved for all the analysed cases.

Besides understanding the structure of the emerging hierarchy we are in-

terested in understanding the temporal dynamic of the hierarchy formation, in

particular we want to explore when (or after how many interactions) a hierar-

chy is established. This knowledge can be of importance for experimentalists

as it gives a guideline for the number of interactions that need to be observed.

To do so we firstly need to define when we consider a hierarchy as estab-

lished. This will be based upon pairwise comparisons, and we will use the term

“distinguishable” to indicate when two individuals can be thought to clearly oc-

cupy different positions in the hierarchy.

Additionally, we are interested in the role of information in the process
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of hierarchy formation. Based on [42] and [44], we consider the situations

where:

i. an individual has no information about the current RHP of its opponent,

ii. an individual is fully aware of the current RHP of its opponent and

iii. an individual can make a noisy estimate about the current RHP of its

opponent.

Next for each pair of individuals and different parameter combinations,

we calculate the time until both individuals are considered to be distinguish-

able regarding their rank in the hierarchy. We discuss our results in Sections

2.3-2.5. This chapter prepares the platform for developing game-theoretical

models, where levels of aggression (for example) are strategic factors, with

the best choice depending upon the natural parameters, including species or

habitat-specific features which affect how resources are divided (the reproduc-

tive skew).

Parts of this chapter are published in [73].

2.2 Methods

In the following we use the non-updated and updated (with different levels of

accuracy) model to explore the properties of the process of hierarchy forma-

tion; in particular we explore its temporal dynamics. To do so, for each model,

we firstly analyse the number of wins of each individual over all other individ-

uals present in the population after 1000 interactions (and therefore at a fixed

point in time) and secondly the temporal changes in the RHP of each individ-

ual over these 1000 interactions for the non-updated and updated model. We

note that in both analyses, the rank of an individual is calculated differently.

While in the first analysis the rank is determined by the total number of wins
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in the second analysis it is determined by the size of the RHP . However, the

two definitions are highly correlated as equations (1.16) and (1.17) guarantee

that a high number of wins corresponds to a high value of RHP . All results

presented in the following are based on averaging over 10,000 simulations and

we explore the same parameter constellations as in [42] to allow for a direct

comparison of the results. Therefore we mainly consider groups of size four

but we have additionally analysed the behaviour of larger groups and obtained

similar patterns. We occasionally comment on the results for larger group sizes

in later sections.

2.2.1 Analysis of the average number of wins

We start our analysis by determining the rank of all individuals at all times t.

Since we allow multiple contests between the individuals, it makes sense to ar-

range individuals according to their number of wins; the higher the number of

wins, the higher the position in the hierarchy (this was the case in the models

of [42] and [44] as well). If two individuals have the same number of wins, the

rank is assigned at random. We note that an alternative way of deciding the

ordering of the hierarchy would be by placing an individual above another if it

had won more of their pairwise contests (although this latter definition has the

significant disadvantage of sometimes not yielding an ordering). Theoretically

on some occasions, these two definitions can produce different orderings of a

given hierarchy, but in practice this is very rare, and so there is no practical

difference. Next we determine the matrix W = [wij]i,j=1,...,N which contains

the average number of wins of the individual with rank i over individual with

rank j under different strengths of the winner and loser effects, noting that

there is a one-to-one correspondence between individuals and ranks. The re-

sulting hierarchy is perfectly linear (K = 1) if all individuals have a different

number of wins, and have won (lost) all of their decisive contests against those
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lower (higher) in the hierarchy than them. To quantify the degree of linearity

we calculate in the next step the index of linearity [68] using the following

procedure.

(1) From the matrix of wins W we construct an index matrix F=(fij) where

(fij) is the fraction of decisive interactions between individuals i and j

(i.e. from those contests not involving a double kowtow) which were

won by individual i (so that fij + fji = 1). This matrix will be called the

matrix of fractions.

(2) For this matrix F calculate the row sum Ri for i = 1, ..., N .

(3) Calculate the index of linearity

K = 1−
d

dmax

, (2.1)

(see [6]), where

d =
1

12
N(N − 1)(2N − 1)−

1

2

N∑

i=1

(Ri)
2, dmax =

1

24
(N3 −N). (2.2)

The method used above is an adaptation of that developed by Kendall [68].

In that case the interaction between a pair of individuals was a single contest

with a unique top individual, so that exactly one of fij and fji was 1 and the

other was 0. The parameter d was the number of circular triads of matrix

F, where a circular triad is a subgroup of three individuals denoted by A, B

and C in a larger group which has the form A → B → C → A which means

that A dominates B, B dominates C but C dominates A. No circular triads

corresponds to a completely linear hierarchy.
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Below we show that the original definition of d as the number of circular

triads, in the case where there was a single contest between each pair of in-

dividuals, is a special case of our definition from (2.2). For the single contest

case, d is the total number of triples minus the total number of transitive triples

[9]. The number of transitive triples is
N∑
i=1

(
Ri

2

)
(see [9]), and so

d =

(
N

3

)
−

N∑

i=1

(
Ri

2

)

=
N(N − 1)(N − 2)

6
−

1

2

N∑

i=1

(Ri)
2 +

1

2

N∑

i=1

Ri

=
N(N − 1)(N − 2)

6
−

1

2

N∑

i=1

(Ri)
2 +

1

2

N(N − 1)

2

=
N(N − 1)(2N − 1)

12
−

1

2

N∑

i=1

(Ri)
2, (2.3)

which is the form for d that we apply in our model for more general values of

Ri (see also [38]). For the formula (2.1), dmax corresponds to the maximum

value that d can take. In general this is given by

dmax =
1

24
(N3 −N). (2.4)

For the case where fij was 0 or 1 [6], this was also the formula for odd values

of N , but for even values this is not achievable, and the maximum is

dmax =
1

24
(N3 − 4N). (2.5)

In our model we use dmax from (2.4) as this is achievable for fractional fij,

even though our group size is generally even (N = 4).
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2.2.2 Analysis of the temporal change in RHP

It is assumed that each aggressive interaction changes the RHP of the individ-

uals involved according to equations (1.16) and (1.17). In the following we

investigate the temporal dynamics of the hierarchy formation by analysing the

change in RHP for each individual over time. To do so we define the rank of an

individual at time t ∈ [1,∞] based on its RHP (higher-ranked individuals have

a higher RHP than lower-ranked individuals) and determine the probability

distribution of the RHP values of the first, second, . . . , N th rank based on the

10,000 simulations at each point in time. This allows us to ask how distinguish-

able individuals of different ranks are based on the ability to win an aggressive

interaction. The degree of distinguishability between two individuals at time

t is determined by the overlap νxy(t) (see the grey area in Figure 2.1) of the

density of the RHP values, denoted by fx(t) and fy(t) (note that this overlap

was termed OVL by Schmid & Schmidt [107]). We have 0 ≤ νxy(t) ≤ 1, ∀t and

Figure 2.1: Probability distributions functions of the RHP of two individuals

at time t. The shaded area describes the overlap between the two distributions.

the smaller νxy(t), the clearer the distinction between the ranks of the individ-

uals. If there is complete overlap then the individual with the higher rank is

effectively chosen at random. In the following we call two individuals x and y

distinguishable if νxy(t) < 0.1 holds. The overlapping area νxy(t) is determined
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using the Kolomogorov distance max
∀z

|Fx,t(z)−Fy,t(z)| between the distributions

Fx,t and Fy,t. Assuming that the Kolmogorov distance is realised at position z∗

we obtain

νxy(t) =

∫ ∞

z∗
fy,t(z)dz +

∫ z∗

−∞

fx,t(z)dz = 1 + (Fx,t(z
∗)− Fy,t(z

∗))

= 1−max
∀z

|Fx,t(z)− Fy,t(z)|.

In our model, the values of RHP are discrete rather than continuous, but

except for very early in the process (and with the single exception of the top

individual when only the loser effect is present, as we discuss later) the number

of possible discrete values becomes large and our discrete distribution can be

approximated by a continuous distribution. We use this procedure to determine

the overlap νxy for all combinations of individuals and every point in time. In

this way we are able to determine when νxy(t) falls below 0.1 for all x, y, and

consequently when all ranks become distinguishable. We note that it is possible

that νxy(t) can increase above 0.1 again (though this never in practice happens

except at the very early stages of certain cases). In the following we call the

(final) time when νxy(t) falls below 0.1, a domination event.

2.3 Results for the non-updated model

In the following we assume a group of four individuals which are initialised

with RHPinitial = 10 and an aggression threshold θ = 1, unless stated other-

wise. We explore the dynamics of hierarchy formation by analysing the aver-

age number of wins and the temporal change in the RHP . These dynamics

are analysed for various combinations of winner and loser effects where both

W and L take values from 0 up to 0.5. We show only W and L in the range

from 0 to 0.3 in intervals of increment 0.1, as the behaviour at other values

is consistent with the values shown, and 0.3 is a large value for a winner or a
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loser effect (see how large RHP becomes in Figure 2.11 leading to predictable

contest outcomes).

2.3.1 Analysis of the average number of wins

For different strengths of winner and loser effects we record the average num-

ber of wins of each individual after 1000 aggressive interactions. Table 2.1

shows the matrix of wins W = [wij]i,j=1,...,N for each set of parameters. Each

single entry wij indicates the number of wins of individual with rank i over

individual with rank j. Following our definition, it is clear that every individ-

W = 0 W = 0.1 W = 0.2 W = 0.3

L = 0

− 153.51 161.59 163.67
15.13 − 150.21 158.38
7.52 15.48 − 148.63
4.57 7.34 14.46 −

− 160.71 164.99 166.37
7.33 − 158.32 162.98
3.21 7.29 − 157.42
1.78 2.93 6.67 −

− 162.67 166.23 167.01
4.91 − 160.88 164.36
2.04 4.81 − 160.19
0.99 1.81 4.11 −

L = 0.1

− 166.12 166.91 166.79
0 − 1.55 1.69
0 0.06 − 0.51
0 0 0 −

− 161.81 167.47 168.01
4.27 − 104.83 105.28
0.06 0.09 − 0.61
0 0 0 −

− 162.58 167.61 168.12
3.69 − 147.53 148.61
0.32 0.74 − 8.01
0 0 0 −

− 163.48 167.51 168.38
2.76 − 152.81 153.92
0.28 0.81 − 30.78
0 0 0 −

L = 0.2

− 166.33 166.56 166.64
0 − 1.57 1.75
0 0.06 − 0.51
0 0 0 −

− 165.09 167.21 167.17
1.28 − 14.71 14.89
0.006 0.05 − 0.51
0 0 0 −

− 164.45 167.41 167.62
1.81 − 93.29 93.61
0.03 0.06 − 0.51
0 0 0 −

− 164.56 167.37 167.91
1.86 − 136.76 137.72
0.14 0.21 − 1.11
0 0 0 −

L = 0.3

− 164.05 166.62 166.81
0 − 1.54 1.74
0 0.06 − 0.51
0 0 0 −

− 165.79 166.91 167.09
0.35 − 2.68 2.91
0.01 0.06 − 0.51
0 0 0 −

− 165.28 167.31 167.36
1.02 − 32.81 33.01
0.02 0.05 − 0.52
0 0 0 −

− 165.29 167.71 167.46
0.94 − 78.09 78.11
0.02 0.05 − 0.37
0 0 0 −

Table 2.1: Matrices of wins W in the non-updated model for different strengths

of the winner and loser effect (W = 0; 0.1; 0.2; 0.3 and L = 0; 0.1; 0.2; 0.3),

N = 4, θ = 1 and t=1000.

ual has a clear rank in the hierarchy as the average number of wins for all

individuals in all cases are different. When only the loser effect is present, all

individuals in the group score except the individual that takes the last place.

This is because the first to lose a fight will retreat in all subsequent contests, as

its RHP is lower than RHPinitial and therefore equation (1.14) does not hold.

Increasing the loser effect in the absence of the winner effect does not make

any difference to the structure. When only the winner effect is present, all in-

dividuals in the group score and have a clear position in the hierarchy. When

increasing the winner effect in the absence of the loser effect, we notice that

higher ranked individuals win an increasing fraction of the individual contests.

In particular, each individual scores increasingly better against those individu-
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als that are lower in rank, and increasingly worse against those that are higher

in rank. In Figure 2.2 we plot the total average number of wins for each posi-

tion in the hierarchy for different combinations of W and L. To check how far
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Figure 2.2: The total average number of wins for positions 1, 2, 3 and 4 for

different combinations of W and L in the non-updated model as given in Table

2.1.

from linearity a hierarchy is we calculate the index of linearity K as described

in equation (2.1). The following example calculates K for when W = 0.1 and

L = 0. The corresponding matrix of wins for this case is

W =




− 153.51 161.59 163.67

15.13 − 150.21 158.38

7.52 15.48 − 148.63

4.57 7.34 14.46 −




(2.6)

Then the matrix of fractions F will be

F =




− 153.51
168.64

161.59
169.11

163.67
168.24

15.13
168.64

− 150.21
165.69

158.38
165.72

7.52
169.11

15.48
165.69

− 148.63
163.09

4.57
168.24

7.34
165.72

14.46
163.09

−




=




− 0.91 0.96 0.97

0.09 − 0.91 0.96

0.04 0.09 − 0.91

0.03 0.04 0.09 −




(2.7)
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From the matrix of fractions F, now we calculate the row sums Ri, i =

1, 2, 3, 4

Ri =




2.84

1.96

1.04

0.16




(2.8)

Next we calculate the average number of circular triads d by using equation

(2.2) as follows

d =
N(N − 1)(2N − 1)

12
−

1

2

N∑

i=1

(Ri)
2 = 7− 6.51 = 0.49.

Thus in this example there are on average 0.49 circular triads. To find K we

need to know the maximum number of circular triads (maximum value that d

can take) and this is found by

dmax =
1

24
(N3 −N) = 2.5.

Finally we can calculate the value of K for when W = 0.1 and L = 0 which

is K = 1 − d
dmax

= 0.804. This shows that in this case we obtain a near linear

hierarchy.

Figure 2.3 shows the values of the index of linearity K calculated by equa-

tion (2.1) for different values of W and L. We observe that K is close to 1

for all parameter combinations considered, indicating a near linear hierarchy

in almost all of the cases. Further, we see that, as expected, K increases with

W . When the loser effect is increased for a given positive value of W , each

individual except the first placed individual does worse than before. This has a

mild impact on K.

When both winner and loser effects are present, we observe two different
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outcomes.

i. Hierarchies with a clear first and second place, a bottom individual with

zero wins and the third place individual which does not differ much from

the fourth place individual.

ii. Hierarchies with a clear first place individual, but the second place indi-

vidual is not that different from the third placed one (see the case when

W=0.1 and L=0.3).

These outcomes depend on the values of winner and loser effects. If we si-

multaneously increase winner and loser effects, we get a slight increase in the

index of linearity (see Figure 2.3). These results also hold for larger group

sizes. Figure 2.4 describes the index of linearity K under the influence of the

loser effect only.
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Figure 2.3: Index of linearity for different values of W and L, calculated from

the (unrounded) values of the average number of wins from Table 2.1.

2.3.2 Analytical results for the loser effect only

In this section, we present some analytical results for dominance hierarchies

emerging under the influence of the loser effect. We consider only the loser

effect because (i) there is more documented evidence in different species that
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Figure 2.4: Change of index of linearity K when the group size is increased

from 4 to 9 under the influence of the loser effect only.

show the presence of this effect, and (ii) the precise value of the loser effect

does not have any influence on dominance hierarchy formation or the number

of wins for each individual.

In Section 2.3.1, we found that such hierarchies have a clear first place

individual with a large number of wins and a last place individual with zero

wins. The average number of wins of the second place does not differ much

from the average number of wins of the third place. Here, we are interested

to find analytically how many wins on average the second and the third place

individuals have.

Let us denote by A, B, C and D the four individuals in the group. At each

point in time, two random individuals are pitted against each other to engage

in an aggressive interaction. From the model we know that if an individual

loses a fight, it is going to retreat afterwards (as it does not meet the aggression

threshold θ). This means that the first individual to lose, will occupy the last
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place in the hierarchy.

We start by finding the total number of rounds where pairings between

unbeaten individuals (that have not lost any fight) happen. Without loss of

generality, we assume that in round 1, individual A wins against individual B.

We denote this relation by A → B. Thus individual B will retreat every time

that it is picked by another in the group to fight. From Figure 2.5, we find that

 

Third Round

Second Round

First Round � → �

� → �

� → � � → �

� → �

� → � � → �

� → �

� → � � → �

Figure 2.5: Rounds of fights between unbeaten individuals, where in each of

them, one individual is losing for the first time. There are six possible hierar-

chical structures represented by the six branches, e.g., the first one follows the

path A → B, A → C, A → D.

there are three rounds of fights between unbeaten individuals. In this figure we

have 6 branches (e.g., the first branch represents the sequence A → B, A → C,

A → D), where each of the branches represents a hierarchical structure with

a sequence of losses. In each round one individual is losing for the first time.

Because we assumed that in the first round A → B, in the following round we

can have either A → C, C → A or C → D and in the third round we can have

either, A → D, D → A, C → D, D → C, C → A or A → C.

Between these three rounds we can have pairings of unbeaten individuals with

individuals that have previously lost and hence are going to retreat. These

types of pairings contribute to the average number of wins that an individual

has over the others. So the next step is to find how often these happen.

In the following, we denote by xn the number of times that an unbeaten in-

dividual chooses a particular individual that has previously lost, until a new

pairing between unbeaten individuals happens. Then xn has a geometric (0)
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distribution which we denote by xn ∼ Geo(p), where p is the probability that

conditioned upon the next game involving the above contest or two unbeaten

individuals, it is the two unbeaten individuals that play.

From the first round, we have individual B as the only loser. Thus between

round one and round two, we can have these possible pairings: A → B,

C → B or D → B and assume that these combinations occur x1, x2 and x3

times respectively.

In other words, x1 for example, represents the number of wins of individual

A over individual B until one of the pairings A → C, C → A or C → D in round

two happens. Each of these pairings happens with a probability 1/4. Thus we

have x1 ∼ Geo (3/4). The same applies to x2 and x3 and so x2 ∼ Geo (3/4) and

x3 ∼ Geo (3/4).

Now we find the number of pairings between an unbeaten individual and

an individual that has previously lost between the second and the third round.

After the second round we have two losers. From the path A → B, A → C in

Figure 2.5, the two losers are B and C. Thus the possible pairings are: A → B,

A → C, D → B, D → C. We assume that these happen x4, x5, x6 and x7 times,

respectively. Again, for the same reasons as in round 1, they are geometrically

distributed with probability p = 1/2. Thus xn ∼ Geo (1/2) , ∀n = 4, 5, 6, 7.

From the second path in Figure 2.5 (A → B, C → A) we can have these

possible pairings: C → B, C → A, D → B, D → A, which again happen

x4, x5, x6 and x7 times respectively. They are geometrically distributed with

probability p = 1/2 (xn ∼ Geo (1/2) , ∀n = 4, 5, 6, 7).

From the third path in Figure 2.5 (A → B, C → D) we can have these possible

pairings: C → B, C → D, A → B, A → D, which again happen x4, x5, x6

and x7 times respectively. They are geometrically distributed with probability

p = 1/2 (xn ∼ Geo (1/2) , ∀n = 4, 5, 6, 7).

The analysis of the 6 branches in Figure 2.5, will assign a rank to each

individual in the hierarchy. These results are shown in Table 2.2. The orderings
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1stbranch 2ndbranch 3rdbranch

1st A:3 + x1 + x4 + x5+.. D:1+x3+x6+x7+.. C:2+x2+x4+x5+..

2nd D:x3 + x6 + x7 A:2 + x1 + x4 + x5 D:x3 + x6 + x7

3d C:x2 C:x2 A:1 + x1

4th B: 0 B: 0 B:0

4thbranch 5thbranch 6thbranch

1st D:1+x3+x6+x7+ .. C:2+x2+x4+x5+.. A:2+x1+x6+x7+..

2nd C:1 + x2 + x4 + x5 A:1 + x1 + x6 + x7 C:1 + x2 + x4 + x5

3d A:1 + x1 D:x3 D:x3

4th B: 0 B: 0 B:0

Table 2.2: The rank and the number of wins of each individual in Figure 2.5.

of individuals are the reverse of the order of their first loss. For example the

first individual to lose will occupy the last place, the second individual to lose

will occupy the third place and so on. The second and the third place in Table

2.2 represent the second and the third place by losses. This structure (based

on the number of losses) will be called the sequence hierarchy, which is a linear

one. The ranks that we are interested to work out are in order of the highest

number of wins. This hierarchy, based on the number of wins, will be called the

real hierarchy. For example, if x3 + x6 + x7 < x2, means that individual C has

more wins than individual D and thus it will occupy the second position and D

will occupy the third position in the real hierarchy. The combined number of

wins between the second and the third place in the sequence hierarchy is the

same as in the real hierarchy and by averaging over the all branches we find it

to be

6 + 4x1 + 4x2 + 4x3 + 3x4 + 3x5 + 3x6 + 3x7

6
. (2.9)

We know that the expected value of variable xn that is geometrically dis-

tributed, xn ∼ Geo(p), is E[xn] =
1

p
− 1. Then the expected average number of

wins between the second and the third place is

E[
6 + 4x1 + 4x2 + 4x3 + 3x4 + 3x5 + 3x6 + 3x7

6
]
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=
6 + 4

3

4
+ 4

3

4
+ 4

3

4
+ 3

1

2
+ 3

1

2
+ 3

1

2
+ 3

1

2
6

=
23

6
≈ 3.833. (2.10)

because E[x1] = E[x2] = E[x3] =
1
3
4

− 1 = 1
3

and E[x4] = E[x5] = E[x6] =

E[x7] =
1
1
2

− 1 = 1.

But how do we find the average number of wins for the second and the

third place respectively? To answer this question, for every branch in Figure

2.5, we analyse the case when the second place by losses is the third place by

wins and when the third place by losses is the second place by wins.

We denote by Yi and Zi the total number of wins for the second and third

place respectively in branch i, ∀i = 1, 2, 3, 4, 5, 6. We need to work out the

values of Zi and Yi and for every particular value of Zi, we need to find the

probability of Zi being less than Yi. In particular we need to calculate

∞∑

zi=0

ziP (Zi = zi and Zi ≤ Yi) +
∞∑

yi=0

yiP (Yi = yi and Zi > Yi). (2.11)

In the following we calculate the value of equation (2.11) for every branch in

Table 2.2.

Number of wins for the third position in the first branch

In the first branch we have Z1 = x2 and Y1 = x3+x6+x7. In this case equation

(2.11) becomes:

∞∑

z1=0

z1P (Z1 = z1 and Z1 ≤ Y1) +
∞∑

y1=0

y1P (Y1 = y1 and Z1 > Y1) (2.12)

In order to calculate equation (2.12), we separately calculate
∞∑

z1=0

z1P (Z1 = z1 and Z1 ≤ Y1) and
∞∑

y1=0

y1P (Y1 = y1 and Z1 > Y1) and add them
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together. We start by calculating the second summation. We have

∞∑

y1=0

y1P (Y1 = y1 and Z1 > Y1) =
∞∑

y1=0

y1P (Y1 = y1)P (Z1 > Y1). (2.13)

In order to calculate (2.13), we need to first calculate P[Y1=y1]

Y1 is given as the sum of three independent variables x3, x6, x7 that are all geo-

metrically distributed with probabilities 3/4, 1/2 and 1/2 respectively. We also

know that the sum of 2 independent geometrically distributed random vari-

ables that have the same probability p, is a negative binomial random variable

denoted by NB(r; p) where r is the number of random variables and p is the

probability that a new pairing with unbeaten individuals happens. Hence, we

find that Y = x6 + x7 has a negative binomial distribution with pdf

P [Y = y] =

(
1

2

)2(
1

2

)y

(y + 1) (2.14)

We can now calculate

P [Y1 = y1] =

y1∑

x3=0

P (X3 = x3)P (Y = y1 − x3)(y1 − x3 + 1)

=

y1∑

x3=0

(
3

4

)(
1

4

)x3
(
1

2

)2(
1

2

)y1−x3

(y1 − x3 + 1)

=

y1∑

x3=0

(
3

16

)(
1

4

)x3
(
1

2

)y1
(
1

2

)−x3

(y1 − x3 + 1)

=

y1∑

x3=0

(
3

16

)(
1

2

)x3
(
1

2

)y1

(y1 − x3 + 1)

=

y1∑

x3=0

(
3

16

)(
1

2

)x3
(
1

2

)y1
(
1

2

)y1
(
1

2

)−y1

(y1 − x3 + 1)

=

y1∑

x3=0

(
3

16

)(
1

4

)y1
(
1

2

)x3−y1

(y1 − x3 + 1)

=

y1∑

x3=0

(
3

16

)(
1

4

)y1

2y1−x3(y1 − x3 + 1)
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=

y1∑

k=0

(
3

16

)(
1

4

)y1

2k(k + 1) (2.15)

where k = y1 − x3.

In order to calculate (2.15) we need to first calculate the sum
y1∑
k=0

2k(k+1) and

then substitute into (2.15). Doing this we have

y1∑

k=0

2k(k + 1) =

y1∑

k=0

tk(k + 1)

=

y1∑

k=0

d

dt
(tk+1)

=
d

dt
(t) +

d

dt
(t2) + ...+

d

dt
(ty1) +

d

dt
(ty1+1)

=
d

dt
(t+ t2 + ...+ ty1 + ty1+1)

=
d

dt

[
1− ty1+1

1− t

]

=
1

(1− t2)

[
1− ty1+2 − (y1 + 2)ty1+1 + (y1 + 2)ty1+2

]

=
1

(1− t)2
[
1 + (y1 + 1)ty1+2 − (y1 + 2)ty1+1

]
(2.16)

where t = 2.

Evaluating (2.16) for t=2 we have

y1∑

k=0

2k(k + 1) = 1 + (y1 + 1)2y1+2 − (y1 + 2)2y1+1. (2.17)

Now we substitute (2.17) into (2.15) and obtain:

P [Y1 = y1] =

y1∑

k=0

(
3

16

)(
1

4

)y1

2k(k + 1)

=

(
3

16

)(
1

4

)y1 [
1 + (y1 + 1)2y1+2 − (y1 + 2)2y1+1

]

=

(
3

4

)
1

4

(
1

4

)y1 [
1 + (y1 + 1)2y1+2 − (y1 + 2)2y1+1

]

=

(
3

4

)(
1

4

)y1+1 [
1 + (y1 + 1)2y1+2 − (y1 + 2)2y1+1

]
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=

(
3

4

)(
1

4

)y1+1 [
1 + (y1 + 1)2y1+12− (y1 + 1 + 1)2y1+1

]

=

(
3

4

)(
1

4

)y1+1

+

(
3

2

)
(y1 + 1)

(
1

2

)y1+1

−
3

4
(y1 + 1)

(
1

2

)y1+1

−

(
3

4

(
1

2

)y1+1

=

(
3

4

)(
1

4

)y1+1

+

(
3

4

)
(y1 + 1)

(
1

2

)y1+1

−

(
3

4

)(
1

2

)y1+1

=

(
3

4

)(
1

4

)y1+1

+ y1

(
3

4

)(
1

2

)y1+1

.

Finally we can calculate:

∑
y1P [Y1 = y1 and Z1 > Y1]. (2.18)

We know that Z1 ∼ Geo (3/4) so we can write P (Z1 > Y1)=(1/4)y1+1
. Thus

equation (2.18) can be calculated as follows

∞∑

y1=0

y1P [Y1 = y1 and Z1 > Y1] =
∞∑

y1=0

y1P (Y1 = y1)P (Z1 > Y1)

=
∞∑

y1=0

y1

[(
3

4

)(
1

4

)y1+1

+ y1

(
3

4

)(
1

2

)y1+1
](

1

4

)y1+1

=
∞∑

y1=0

y1

[(
3

4

)(
1

4

)2y1+2

+ y1

(
3

4

)(
1

8

)y1+1
]

=
∞∑

y1=0

[
y1

(
3

4

)(
1

4

)2y1+2

+

(
3

4

)(
1

8

)y1+1

y21

]

=

(
3

4

) ∞∑

y1=0

y1

(
1

4

)2y1+2

+

(
3

4

) ∞∑

y1=0

(
1

8

)y1+1

y21

=
592

25725
. (2.19)

So far we have calculated the second sum in equation (2.12), and now we

calculate the first sum which is

∞∑

z1=0

z1P (Z1 = z1 and Z1 ≤ Y1). (2.20)
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First we need to evaluate P (Z1 = z1).

We have P (Z1 = z1) = (3/4) (1/4)z1 because Z1 ∼ Geo (3/4). Thus we have

P (Z1 = z1 and Z1 ≤ Y1) = P (Z1 = z1)
∞∑

y1=z1

P (Y1 = y1)

=

(
3

4

)(
1

4

)z1 ∞∑

y1=z1

(
3

4

)(
1

4

)y1+1

+ y1

(
3

4

)(
1

2

)y1+1

=

(
3

4

)(
1

4

)z1
(
3

4

) ∞∑

y1=z1

(
1

4

)y1+1

+

(
3

4

) ∞∑

y1=z1

y1

(
1

2

)y1+1

=

(
3

4

)(
1

4

)z1

[

(
3

4

)(
1

3

)(
1

4

)z1

+

(
3

4

)(
1

2

)z1

(z1 + 1)

=

(
3

4

)(
1

4

)(2z1+1)

+

(
9

16

)(
1

8

)z1

(z1 + 1). (2.21)

Substituting (2.21) into (2.20) we obtain

∞∑

z1=0

z1P (Z1 = z1 and Z1 ≤ Y1) =
∞∑

z1=0

z1

[(
3

4

)(
1

4

)2z1+1

+

(
9

16

)(
1

8

)z1

(z1 + 1)

]

=

(
3

4

) ∞∑

z1=0

z1

(
1

4

)2z1+1

+

(
9

16

) ∞∑

z1=0

z1(z1 + 1)

(
1

8

)z1

=

(
3

4

)
·

(
4

225

)
+

(
9

16

)
·

(
128

343

)

=
5743

25725
. (2.22)

Substituting (2.19) and (2.22) into (2.12) we obtain

∞∑

z1=0

z1P (Z1 = z1 and Z1 < Y1) +
∞∑

y1=0

y1P (Y1 = y1 and Z1 > Y1)

=
5743

25725
+

592

25725

=
181

735
≈ 0.2463.

This means that the average number of wins of the third place in the first

branch of the tree is 0.2463. We will repeat the same procedure for the other

five branches in order to find the average number of wins of the third place.
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Number of wins for the third position in the second branch

In the second branch the second place has Y2 = 2 + x1 + x4 + x5 wins. We

have that x1 has the same form as x3; they are both geometrically distributed

with the same probability p. Also x4 and x5 are of the same form as x6 and x7

respectively. Thus Y1 = x1+x4+x5 = x3+x6+x7. This means that the number

of wins of the second place is then 2 + Y1.

The third place has Z2 = x2 = Z1 wins, which is the same as in the first branch

of the tree.

Again, we are interested to calculate equation (2.11) which in this branch be-

comes

∞∑

z1=0

z1P (Z1 = z1 and Z1 ≤ Y1+2)+
∞∑

y1=0

(y1+2)P [Y1+2 = y1+2 and Z1 > Y1+2].

(2.23)

As in the first branch, we first calculate

∞∑

y1=0

(y1 + 2)P [Y1 + 2 = y1 + 2 and Z1 > Y1 + 2] (2.24)

and we have

∞∑

y1=0

(y1 + 2)P [Y1 + 2 = y1 + 2 and Z1 > Y1 + 2]

=
∞∑

y1=0

(y1 + 2)P [Y1 + 2 = y1 + 2]P [Z1 > Y1 + 2]

=
∞∑

y1=0

(y1 + 2)P (Y1 = y1)

(
1

4

)y1+3

=
∞∑

y1=0

(y1 + 2)

[(
3

4

)(
1

4

)y1+1

+ y1

(
3

4

)(
1

2

)y1+1
](

1

4

)y1+3

=
∞∑

y1=0

(y1 + 2)

[(
3

4

)(
1

4

)2y1+4

+

(
3

16

)(
1

8

)y1+1

y1

]
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=

(
3

4

) ∞∑

y1=0

(y1 + 2)

(
1

4

)2y1+4

+

(
3

64

) ∞∑

y1=0

y1(y1 + 2)

(
1

8

)y1+1

=
3

4
·

31

3600
+

3

64
·
23

343

=
247

25725

≈ 0.0096. (2.25)

Secondly we calculate the rest of equation (2.23) which is:

∞∑

z1=0

z1P (Z1 = z1 and Z1 ≤ Y1 + 2). (2.26)

In order to calculate (2.26) we find first P (Z1 = z1 and Z1 ≤ Y1 + 2). We have

P (Z1 = z1 and Z1 ≤ Y1 + 2)

= P (Z1 = z1)
∞∑

y1=z1−2

P (Y1 + 2 = y1 + 2)

= P (Z1 = z1)
∞∑

y1=z1−2

P (Y1 = y1)

=

(
3

4

)(
1

4

)z1 ∞∑

y1=z1−2

[(
3

4

)(
1

4

)y1+1

+

(
3

4

) ∞∑

y1=z1−2

y

(
1

2

)y1+1
]

=

(
3

4

)(
1

4

)z1
[(

3

4

)(
1

3

)(
1

4

)z1−2

+

(
3

4

)(
1

2

)z1−2

(z1 − 1)

]

=

(
3

4

)(
1

4

)2z1−1

+

(
9

4

)(
1

8

)z1

(z1 − 1). (2.27)

Now we substitute equation (2.27) into equation (2.26) and obtain

∞∑

z1=0

z1P (Z1 = z1 and Z1 ≤ Y1 + 2)

=
∞∑

z1=0

z1

[(
3

4

)(
1

4

)2z1−1

+

(
9

4

)(
1

8

)z1

(z1 − 1)

]

=

(
3

4

) ∞∑

z1=0

z1

(
1

4

)2z1−1

+

(
9

4

) ∞∑

z1=0

z1(z1 − 1)

(
1

8

)z1
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=

(
3

4

)
·

(
64

225

)
+

(
9

4

)
·

(
16

343

)

=
8188

25725

≈ 0.31829. (2.28)

Finally we substitute equation (2.24) and equation (2.28) into equation (2.23)

and we have

∞∑

z1=0

z1P (Z1 = z1 and Z1 ≤ Y1 + 2) +
∞∑

y1=0

(y1 + 2)P (Y1 + 2 = y1 + 2 and Z1 > Y1 + 2)

=
8188

25725
+

247

25725

=
241

735

≈ 0.32789.

Thus the average number of wins of the third place in the second branch of the

tree is 0.32789.

Number of wins for the third position in the third branch

As in the previous branches, in this branch as well we calculate the average

number of wins for the third place, which is found by equation (2.11). In the

third branch, the second place has Y3 = x3 + x6 + x7=Y1 wins, which is the

same as in the first branch. The third place has Z3 = 1 + x1 = 1 + Z1 wins,

because x1 and x2 are both geometrically distributed with probability p = 3/4.

Thus equation (2.11) in the third branch becomes:

∞∑

z1=0

(z1+1)P [Z1+1 = z1+1 and Z1+1 ≤ Y1]+
∞∑

y1=0

y1P [Y1 = y1 and Z1+1 > Y1]

(2.29)

where Z1=z1 and Y1 = x3 + x6 + x7.

Again we see the two sums in (2.29) separately and then add them together.
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We start by calculating

∞∑

y1=0

y1P [Y1 = y1 and Z1 + 1 > Y1] =
∞∑

y1=0

y1P (Y1 = y1)P (Z1 + 1 > Y1)

=
∞∑

y1=0

y1

[(
3

4

)(
1

4

)y1+1

+ y1

(
3

4

)(
1

2

)y1+1
](

1

4

)y1

=
∞∑

y1=0

y1

[(
3

4

)(
1

4

)2y1+1

+ y1

(
3

8

)(
1

8

)y1
]

=

(
3

4

) ∞∑

y1=0

y1

(
1

4

)2y1+1

+

(
3

8

) ∞∑

y1=0

y21

(
1

8

)y1

=
3

4
·

4

225
+

3

8
·
72

343

=
2368

25725

≈ 0.09205. (2.30)

Next we calculate

∞∑

z1=0

(z1 + 1)P [Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1]. (2.31)

First we work out the value of

P [Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1].

which is

P [Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1] = P (Z1 + 1 = z1 + 1)
∞∑

y1=z1+1

P (Y1 = y1)

= P (Z1 = z1)
∞∑

y1=z1+1

P (Y1 + y1)

=
3

4

(
1

4

)z1 ∞∑

y1=z1+1

[
3

4

(
1

4

)y1+1

+ y1
3

4

(
1

2

)y1+1
]

=
3

4

(
1

4

)z1
[
3

4

∞∑

y1=z1+1

(
1

4

)y1+1

+
3

4

∞∑

y1=z1+1

y1

(
1

2

)y1+1
]
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=
3

4

(
1

4

)z1

[
3

4
·
1

3

(
1

4

)z1+1

+
3

4

(
1

2

)z1+1

(z1 + 2)

=
3

4

(
1

2

)2z1+2

+
9

32

(
1

8

)z1

(z1 + 2). (2.32)

Now we substitute (2.32) into (2.31) and obtain

∞∑

z1=0

(z1 + 1)P (Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1]

=
∞∑

z1=0

(z1 + 1)

[
3

4

(
1

4

)2z1+2

+
9

32

(
1

8

)z1

(z1 + 2)

]

=
3

4

∞∑

z1=0

(z1 + 1)

(
1

4

)2z1+2

+
9

32

∞∑

z1=0

(z1 + 1)(z1 + 2)

(
1

8

)z1

=
3

4
·
16

225
+

9

32
·
1024

343

=
22972

25725

≈ 0.89298. (2.33)

Now that we have calculated (2.30) and (2.33) separately, we substitute them

in (2.29) and have

∞∑

z1=0

(z1 + 1)P [Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1] +
∞∑

y1=0

y1P [Y1 = y1 and Z1 + 1 > Y1]

=
22972

25725
+

2368

25725

=
724

735

≈ 0.985.

Thus the average number of wins of the third place in the third branch of the

tree is 0.985.

Number of wins for the third position in the fourth branch

In the fourth branch of the tree, the second place has Y4 = 1 + x2 + x4 + x5 =
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1 + Y1 wins, because x2 + x4 + x5 = x3 + x6 + x7 = Y1. The third place has

Z4 = 1 + x1 = 1 + Z1 wins.

Then, equation (2.11) that calculates the average number of wins of the third

place, in this branch becomes:

∞∑

z1=0

(z1 + 1)P [Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1 + 1]+

∞∑

y1=0

(y1 + 1)P [Y1 + 1 = y1 + 1 and Z1 + 1 > Y1 + 1]. (2.34)

Again as on the previous branches, we calculate the two sums in (2.34) sepa-

rately and add them together.

First let us evaluate the value of

∞∑

y1=0

(y1 + 1)P [Y1 + 1 = y1 + 1 and Z1 + 1 > Y1 + 1]; (2.35)

we have

∞∑

y1=0

(y1 + 1)P [Y1 + 1 = y1 + 1 and Z1 + 1 > Y1 + 1]

=
∞∑

y1=0

(y1 + 1)P (Y1 + 1 = y1 + 1)P (Z1 + 1 > Y1 + 1)

=
∞∑

y1=0

(y1 + 1)P (Y1 = y1)P (Z1 + 1 > Y1 + 1)·

∞∑

y1=0

(y1 + 1)

[
3

4

(
1

4

)y1+1

+ y1
3

4

(
1

2

)y1+1
](

1

4

)y1+1

=
∞∑

y1=0

(y1 + 1)

[
3

4

(
1

4

)2y1+2

+ y1
3

4

(
1

8

)y1+1
]

=
3

4

∞∑

y1=0

(y1 + 1)

(
1

4

)2y1+2

+
3

4

∞∑

y1=0

y1(y1 + 1)

(
1

8

)y1+1

=
3

4
·
16

225
+

3

4
·
16

343

=
2272

25725
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≈ 0.08832. (2.36)

Now we evaluate the second part of (2.34) which is

∞∑

z1=0

(z1 + 1)P [Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1 + 1]. (2.37)

In order to calculate (2.37) we first find the value of

P (Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1 + 1] (2.38)

and we have

P (Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1 + 1]

= P (Z1 = z1)
∞∑

y1=z1

P (Y1 = y1)

=
3

4

(
1

4

)2z1+1

+
9

16

(
1

8

)z1

(z1 + 1). (2.39)

Substituting (2.39) into (2.37) we obtain

∞∑

z1=0

(z1 + 1)P [Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1 + 1]

=
∞∑

z1=0

(z1 + 1)

[
3

4

(
1

4

)2z1+1

+
9

16

(
1

8

)z1

(z1 + 1)

]

=
3

4

∞∑

z1=0

(z1 + 1)

(
1

4

)2z1+1

+
9

16

∞∑

z1=0

(z1 + 1)2
(
1

8

)z1

=
3

4
·
64

225
+

9

16
·
576

343

=
29788

25725

≈ 1.15794. (2.40)
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Substituting (2.36) and (2.40) into (2.34) we obtain

∞∑

z1=0

(z1 + 1)P [Z1 + 1 = z1 + 1 and Z1 + 1 ≤ Y1 + 1]

+
∞∑

y1=0

(y1 + 1)P [Y1 + 1 = y1 + 1 and Z1 + 1 > Y1 + 1]

=
29788

25725
+

2272

25725

=
916

735

≈ 1.2463. (2.41)

Thus the average number of wins of the third place in the fourth branch of the

tree is 1.2463.

Number of wins for the third position in the fifth branch

In the fifth branch, the second place has Y5 = 1+x1+x6+x7 = 1+Y1 wins. The

third place here has Z5 = x3 = Z1 wins. Proceeding exactly as in the previous

branches, what we need to calculate is

∞∑

z1=0

z1P [Z1 = z1 and Z1 ≤ Y1+1]+
∞∑

y1=0

(y1+1)P [Y1+1 = y1+1 and Z1 > Y1+1].

(2.42)

Let us first start by calculation the second sum of (2.42) which is as follows:

∞∑

y1=0

(y1 + 1)P [Y1 + 1 = y1 + 1 and Z1 > Y1 + 1]

=
∞∑

y1=0

(y1 + 1)P (Y1 = y1)P (Z1 > Y1 + 1)

=
∞∑

y1=0

(y1 + 1)

[
3

4

(
1

4

)y1+1

+ y1
3

4

(
1

2

)y1+1
](

1

4

)y1+2

=
∞∑

y1=0

(y1 + 1)

[
3

4

(
1

4

)2y1+3

+ y1
3

16

(
1

8

)y1+1
]
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=
∞∑

y1=0

(y1 + 1)

(
1

4

)2y1+3

+
3

16

∞∑

y1=0

y1(y1 + 1)

(
1

8

)y1+1

=
3

4
·

4

225
+

3

16
·
16

343

=
568

25725

≈ 0.0221. (2.43)

The first sum of (2.42) is

∞∑

z1=0

z1P (Z1 = z1 and Z1 ≤ Y1 + 1). (2.44)

First we calculate

P (Z1 = z1 and Z1 ≤ Y1 + 1) = P (Z1 = z1)
∞∑

y1=z1−1

P (Y1 = y1)

=
3

4

(
1

4

)z1 ∞∑

y1=z1−1

[
3

4

(
1

4

)y1+1

+ y1
3

4

(
1

2

)y1+1
]

=
3

4

(
1

4

)z1
[
3

4

∞∑

y1=z1−1

(
1

4

)y1+1

+
3

4

∞∑

y1=z1−1

y1

(
1

2

)y1+1
]

=
3

4

(
1

4

)z1
[
3

4
·
1

3

(
1

4

)z1−1

+
3

4

(
1

2

)z1−1

z1

]

=
3

4

(
1

4

)2z1

+
9

8

(
1

8

)z1

z1. (2.45)

Substituting (2.45) into (2.44) we obtain

∞∑

z1=0

z1P (Z1 = z1 and Z1 ≤ Y1 + 1) =
∞∑

z1=0

z1

[
3

4

(
1

4

)2z1

+
9

8

(
1

8

)z1

z1

]

=
3

4

∞∑

z1=0

z1

(
1

4

)2z1

+
9

8

∞∑

z1=0

(z1)
2

(
1

8

)z1

=
3

4
·
16

225
+

9

8
·
72

343
. (2.46)
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Substituting (2.43) and (2.46) into (2.42) we obtain

∞∑

z1=0

z1P (X1 = z1 and Z1 ≤ Y1 + 1) +
∞∑

y1=0

(y1 + 1)P [Y1 + 1 = y1 + 1 and Z1 > Y1 + 1]

=
7447

25725
+

568

25725

=
229

735
(≈ 0.3116). (2.47)

Thus the average number of wins of the third place in the fifth branch of the

tree is equal to 0.3116.

Number of wins for the third position in the sixth branch

In the sixth branch, the second place has Y6 = 1 + x1 + x6 + x7 = 1 + Y1 wins.

The third place has Z6 = x3 = Z1 wins. We notice that the number of wins of

the second and third place in this branch is the same as the number of wins of

the second and the third place in the fifth branch. Thus the average number of

wins for the third place is

∞∑

z1=0

z1P (X1 = z1 and Z1 ≤ Y1 + 1) +
∞∑

y1=0

(y1 + 1)P [Y1 + 1 = y1 + 1 and Z1 > Y1 + 1]

=
229

735
(≈ 0.3116).

Having found the average number of wins for the third place in every branch of

Table 2.2, we can now calculate the average number of wins over all branches

and this is 181+241+724+916+229+229
735

· 1
6
=4

7
(≈ 0.5714).

Thus the average number of wins of the third place in a group of 4 individuals

equally able to win a fight in a situation when only the loser effect is present is

equal to 0.5714.

We can now calculate the number of wins for the second place, because we

have the combined number of wins of the second and third place given in equa-

tion (2.10). Then, the average number of wins of the second placed individual
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is 23
6
− 4

7
=137

42
(≈ 3.2619).

2.3.2.1 Nonlinearity due to ties in the final positions

The number of wins in Table 2.1 are an average over 10,000 simulations, and

in fact the simulations do not always yield linear hierarchies. The fact that

in every case they sometimes do, is enough to demonstrate linearity on aver-

age. Nonlinearity in real dominance hierarchies can occur through a number

of bottom-ranked individuals having equivalent (lack of) status, and this can

also happen in our model. We now consider the probability of having a unique

last-placed individual when only the loser effect is in place (this is the simplest

case as we get the same structure for different values of the loser effect), and

observe the large probability of ties here. The set of all possible structures with

at least two individuals with zero wins will be denoted by A. When an indi-

vidual has lost a contest in this version of our model, it will always concede

any subsequent contest. Thus if our population enters the set A it can never

leave it, and the final dominance hierarchy will not have a unique last-placed

individual. We denote all final hierarchies not in A as the set B.

The first encounter will give us a winner denoted by W and a loser denoted

by L(0) where L(0) stands for a loser with 0 wins. This leads to a state of

the population SWL(0) (in our notation we list the individuals that have fought,

omitting any individual that has not engaged in a contest). Conditional on the

next fight not being between the two existing individuals, we have either:

1) A new individual fights the original loser and wins. This means that

SWL(0) 7→ SWWL(0) with a probability 2/5.

2) A new individual fights the original winner and loses. This means that

SWL(0) 7→ SWL(0)L(0), an element of the set A, with a probability 1/5.

3) A new individual fights the original winner and wins. This means that

SWL(0) 7→ SWL(+)L(0) with a probability 1/5, where L(+) denotes a loser that

has won a previous contest (the original winner).
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4) The next fight is between the two new individuals. This means that

SWL(0) 7→ SWWL(0)L(0), an element of A, with a probability 1/5.

Similar working from the states SWWL(0) and SWL(+)L(0) yields the transi-

tion diagram from Figure 2.6. Adding all the above probabilities for the four

cases, we obtain the final probability of ending up in state A, as opposed to B,

as 11/20. Thus the probability of finishing in a hierarchy with a unique last-

placed individual, in set B, is 9/20. Note that this does not necessarily mean

that in this case we have a linear hierarchy, because we might have a tie be-

tween the second and the third place (note that this is another way for linearity

on average not to translate to linearity in every simulation).

Figure 2.6: Transition probabilities between states for N = 4. A represents a

structure with two losers with zero wins, W is a winner that has not yet lost a

fight, L(+) is a previous winner that has now lost, L(0) is a loser with no wins

and B represent all final structures with only one loser with zero wins.

The case when N=5

Now we increase the group size from 4 to 5. We have the same possibilities as

when N = 4. Thus starting with SWL(0) and conditional upon the next fights

not being between the two existing individuals we have either:
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1) A new individual fights the original loser and wins. This means that

SWL(0) 7→ SWWL(0) with a probability 1/3.

2) A new individual fights the original winner and loses. This means that

SWL(0) 7→ SWL(0)L(0), an element of the set A, with a probability (3/9)(1/2) =

(1/6) , where 3/9 is the probability for a new individual to meet the previous

winner and 1/2 is the probability of winning.

3) A new individual fights the original winner and wins. This means that

SWL(0) 7→ SWL(+)L(0) with a probability 1/6.

4) The next fight is between the two new individuals. This means that

SWL(0) 7→ SWWL(0)L(0), an element of A, with a probability 1/3.

Similar working from the states SWWL(0) and SWL(+)L(0) yields the transition di-

agram from Figure 2.7. Adding all the above probabilities for the four cases, we

obtain the final probability of ending up in state A, as opposed to B, as 0.234.

Thus the probability of finishing in a hierarchy with a unique last-placed indi-

vidual, in set B, is 0.234. As expected, we notice that when the group size is
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Figure 2.7: Transition probabilities between states for N = 5. A represents a

structure with two losers with zero wins, W is a winner that has not yet lost a

fight, L(+) is a previous winner that has now lost, L(0) is a loser with no wins

and B represent all final structures with only one loser with zero wins.

increased, the probability of everyone scoring except for the last placed indi-

vidual, decreases.
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General group size N

In general from the state Sα,β,1, where α=number of winners W, β=number

of L(+)’s and 1 means that we have one loser with zero, L(0), we can go to 4

different possible states as shown in Figure 2.8. Thus for example if we start

 �     ,     ,  

  

                                                                           
      2                        

 

                                  
                                                                        �     , ,                                               � , ,                                                          � ,     ,    

 

                                                                            
                           2 2  

           
 

Figure 2.8: Possible states with the corresponding transition proba-

bilities, where R =
α(α− 1)

2
+ (N − α − β − 1)(α + β + 1) +

(N − α− β − 1)(N − α− β − 2)

2
.

from the state SWL(0) which is the result of the first contest between 2 random

individuals in a population of size N, in the next round of fights we can go to

state SWWL(0) , state SWL(+)L(0) and state A with the corresponding transition

probabilities given in Figure 2.8. In the first round of the pairwise interactions

we have α=1, β=0.
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2.3.3 Analysis of the temporal change in RHP

In this section we analyse the temporal dynamic of the change in overlap νxy(t),

x, y = 1, . . . , 4, x 6= y, t ≥ 1 of the probability distributions of the four ranks at

time t. For the sake of brevity we present the results for only one combination

of the winner and loser effect in three different situations: i. only the loser

effect is present in the population, ii. only the winner effect is present and iii.

both effects are present.

2.3.3.1 The loser effect only

Figure 2.9 shows the probability distributions of the four ranks at time t = 500

when W = 0, L = 0.1 and Figure 2.10 the corresponding areas of overlap

νxy(t), ∀ t ≤ 500. There is a clear first place individual if only the loser effect

is present (we reached the same conclusion when analysing the average num-

ber of wins). Further, the second and the fourth place are distinguishable as

ν24(t) decreases below the threshold point 0.1 (see Figure 2.10 and again the

same conclusion could be drawn on the basis of Table 2.1). However, Figure

2.9 shows clearly that the second to fourth place individuals all appear close

in RHP in comparison to the dominant first individual. The areas of overlaps

ν23(t) and ν34(t) are almost the same and the pairs corresponding to these over-

laps are not distinguishable. The RHP of the top individual stays unchanged,

equal to RHPinitial, meaning that the top individual has a distribution which

takes the value 10 with probability 1. Its RHP at time t = 500 over 10,000

simulations is shown by the vertical line x = log(10) (Figure 2.9).

Due to the discrete nature of the RHP , it is possible in the very early time

steps that the overlap ν can decrease below 0.1 and then increase above 0.1

again (as mentioned previously) several times, but this never happens later on

(in practice; theoretically this would be possible), and a dominance event is

defined as the time when two individuals became distinguishable in this way
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Figure 2.9: Probability distribution for the second, third, forth place individuals

for W = 0 and L = 0.1 at t = 500. The probability distribution for the first place

individual is represented by the vertical line (x = log(10)) because it’s RHP
stays unchanged.

for the last time. The obtained temporal dynamic in the change of the area of

overlap allows us to ask when (meaning after how many fights) the dominance

hierarchy is established, i.e. when the last domination event occurs.

We cannot calculate the overlap between the top individual and the other in-

dividuals in the same way, as the RHP of the top individual stays unchanged

at 10. In this case we say that the top individual will be distinguishable from

the second placed individual when the 90% quantile of the distribution of the

RHP of the second individual is less than 10 (i.e. we effectively consider the

probability of the second placed individual to be 10 as the overlap). The same

method will be used to distinguish the top individual from the third and the

fourth placed individuals. For the time of domination events of other pairs of

individuals, the overlap concept will be used. In the case considered the hierar-

chy is established quite early; 11 fights are needed for the first and the second

place to become distinguishable, which is the final domination event.

It should be noted that this overlap criterion is possibly a rather conservative

measure. It is based upon the comparison between randomly selected second
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Figure 2.10: Time course of the corresponding area of overlap νxy(t), x =
2, 3, 4, y = 3, 4 when W = 0 and L = 0.1. ν23(t) and ν34(t) overlap with each

other. The overlap between the top individual and the other individuals be-

comes close to 0 very quickly.

place and third place individuals, whereas in a real hierarchy there would be a

pair of individuals in the second and third places, for example. The values of

their RHP will not be independent, and are likely to be negatively correlated;

the better the second place does, the more likely the third place would do

worse. Increasing the loser effect does not make any change in domination

events as we obtain the same structure.

2.3.3.2 The winner effect only

Now we consider the situation where only the winner effect is present and

assume W = 0.1 and L = 0. We know from Table 2.1 that in this situation all

individuals have a clear position in the hierarchy and this result is confirmed by

Figures 2.11 and 2.12. It is clear that the area of overlap νxy(t) falls below 0.1

for all combinations of x and y and we are interested in when the domination

event occurs.

We note that at the start the RHP of the different individuals can only take

some discrete values causing the fluctuations of the area of overlap (see Figure
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Figure 2.11: Probability distribution for the 4 individuals in the non-updated

model when W = 0.3 and L = 0

2.12). Further, from Figure 2.12 we observe that the final domination event

occurs quite late. The last domination event occurs between the second and

the third place individuals, which finally become distinguishable at time point

t = 395. Hence roughly 400 fights are enough to specify the place of each

individual in the hierarchy. Increasing the winner effect in the absence of the

loser effect does greatly decrease the time needed to establish a hierarchy. The

times of domination event for different values of the winner effect are shown

in Table 2.3

2.3.3.3 Winner and Loser effects

In this analysis we assume that both the winner and loser effect are present

and possess the values W = 0.3 and L = 0.2. We know from the matrix of wins

given in Table 2.1 that the third place individual scores an average of approxi-

mately one win, whereas the last individual never wins (as it is the first one to

lose and retreats afterwards). Thus the third and the fourth place individuals

are expected to have almost identical RHP , confirmed by Figures 2.13 and

2.14. The overlapping probability distributions are concentrated around low

values. We further observe that the first place individual is clearly distinguish-
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Figure 2.12: Time course of the corresponding area of overlap νxy(t), x, y =
1, . . . , 4, x 6= y, when W = 0.1 and L = 0.

able from the others. Interestingly, the RHP of the second place individual

has a bi-modal distribution. This implies that sometimes (in most cases) the

second place individual is distinguishable from the third, and sometimes it is

not. This phenomenon is caused by the outcomes of the very early interactions:

through “bad luck” the second place individual can lose sufficiently many early

fights and its RHP fall below 10 (implying that it will never fight another con-

test again), or it can win sufficiently many early fights and its RHP will never

fall below 10. Whether an individual will be in a given part of the bi-modal

distribution is thus determined in the early contests.

Based on Figure 2.14 we conclude that the second and the fourth places

are distinguishable as ν24(t) < 0.1 from a very early time. The second and

the third place individuals appear to be clearly different based on the analysis

of the average number of wins, with the second place individual doing much

better, but the area of the overlap ν23(t) decreases only to 0.18 (at t = 45)

and then stays unchanged. This means that for 82% of hierarchies they are

clearly different and for 18% they are effectively the same. These values (18%

and 82%) correspond to the right and left area of the bi-modal distribution,

respectively. We note that this result contradicts the claim of repeatability for
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Figure 2.13: Probability distribution functions for the 4 individuals in the non-

updated model when W = 0.3 and L = 0.2 at t = 500.

the simulations from [42] as different individual simulations will yield very

different results. In general in this type of winner-loser model, this only occurs

when there is bimodality in one of the individuals; in all of our cases the second

individual out of four, though it is possible for very large winner effects for

this to happen for the third individual. In hierarchies with more individuals,

theoretically this could happen for any individual except the first or the last.

The last pair of individuals to become distinguishable is the first and the

second place, and this happens at t = 47 (the time of the final domination

event). Summarizing, when both the winner and loser effect are present, the

first place individual always becomes distinguishable. For W = 0.3 and L = 0.2

the second place individual has a bi-modal distribution. In general however,

if the ratio between the loser and the winner effect is sufficiently large then

the bi-modal shape disappears (individuals will eventually have RHP under

10), but as the ratio becomes smaller, a small upper area appears, which is of

increasing size the smaller the ratio. The times of all of the domination events

for different combinations of winner and loser effects are shown in Table 2.3.
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Figure 2.14: Area of overlap νxy over time when W = 0.3 and L = 0.2. ν13(t)
and ν14(t) become close to 0 very quickly, and so are close to the x-axis

2.4 Results for the updated model with perfect as-

sessment

We will now consider the hierarchy structures which emerge when each indi-

vidual is aware not only of its own RHP through time, but likewise that of its

opponent. This corresponds to η = 0 in [44]. All other features of the model

are the same as in the previous section.

2.4.1 Analysis of the average number of wins

We start by analysing the average number of wins in the updated model. Table

2.4 shows the matrices of wins for W,L = 0; 0.1; 0.2; 0.3. We observe that for

every combination of W and L linear hierarchies are established. The strength

of the winner and the loser effects do not have any significant influence on

the number of wins of the first, second and third place individuals; they only

affect the last place. This individual always scores zero when only the winner

effect is present, but generally scores something when the loser effect or both

effects are operating. This is the opposite behaviour that we get from the non-
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W = 0 W = 0.1 W = 0.2 W = 0.3

L = 0

T12 = 328
T13 = 15
T14 = 1
T23 = 395
T24 = 29
T34 = 373

T12 = 169
T13 = 8
T14 = 1
T23 = 204
T24 = 26
T34 = 196

T12 = 115
T13 = 4
T14 = 1
T23 = 153
T24 = 27
T34 = 136

L = 0.1

T12 = 11
T13 = 9
T14 = 1
T23 = ∞
T24 = 1
T34 = ∞

T12 = 74
T13 = 1
T14 = 1
T23 = ∞
T24 = 800
T34 = ∞

T12 = 82
T13 = 1
T14 = 1
T23 = 207
T24 = ∞
T34 = ∞

T12 = 67
T13 = 1
T14 = 1
T23 = 109
T24 = 1
T34 = ∞

L = 0.2

T12 = 11
T13 = 9
T14 = 1
T23 = ∞
T24 = 1
T34 = ∞

T12 = 28
T13 = 1
T14 = 1
T23 = ∞
T24 = 679
T34 = ∞

T12 = 39
T13 = 1
T14 = 1
T23 = ∞
T24 = ∞
T34 = ∞

T12 = 47
T13 = 1
T14 = 1
T23 = ∞
T24 = 1
T34 = ∞

L = 0.3

T12 = 11
T13 = 9
T14 = 1
T23 = ∞
T24 = 1
T34 = ∞

T12 = 19
T13 = 1
T14 = 1
T23 = ∞
T24 = 1
T34 = ∞

T12 = 32
T13 = 1
T14 = 1
T23 = ∞
T24 = 1
T34 = ∞

T12 = 30
T13 = 1
T14 = 1
T23 = ∞
T24 = 1
T34 = ∞

Table 2.3: The times of the domination events for the non-updated model with

θ = 1 and various values of W and L. Txy is the (final) time when νxy(t) falls

below 0.1.

updated model. In Figure 2.15 we plot the total average number of wins for

each position in the hierarchy for different combinations of W and L.

2.4.2 Analysis of the temporal change in RHP

Following the same process as in the non-updated model, in this section we

analyse the RHP values of all individuals. Firstly and in accordance with the

results obtained above, we observe that for all combinations of W and L, all

ranks in the hierarchy are distinguishable (see Figures 2.16, 2.17, 2.18, 2.19,

2.20 and 2.21). Additionally we calculate the final time when the dominance

hierarchy is established and find three different outcomes depending on W and

L values.
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W = 0 W = 0.1 W = 0.2 W = 0.3

L = 0
− 164.07 165.79 166.04

1.01 − 163.39 164.74
0.12 0.46 − 163.38
0 0 0 −

− 164.09 165.72 166.18
1.01 − 163.38 164.72
0.11 0.47 − 163.33
0 0 0 −

− 164.04 165.82 166.12
1.01 − 163.41 164.66
0.12 0.46 − 163.34
0 0 0 −

L = 0.1
− 163.38 164.76 166.10
0 − 163.21 165.84
0 0.48 − 164.15
0 0.11 0.99 −

− 163.85 165.33 166.48
0.10 − 163.60 165.26

0.0048 0.15 − 163.99
0.0004 0.01 0.19 −

− 163.92 165.35 166.58
0.26 − 163.59 165.28
0.01 0.16 − 163.77

0.0002 0.003 0.06 −

− 164.04 165.41 166.62
0.36 − 163.39 165.28
0.02 0.18 − 163.64

0.0001 0.001 0.03 −

L = 0.2
− 163.44 164.69 166.06
0 − 163.37 165.74
0 0.46 − 164.14
0 0.11 1 −

− 163.81 165.17 166.68
0.03 − 163.44 165.33
0.001 0.18 − 163.99
0.0001 0.02 0.35 −

− 163.84 165.20 166.58
0.1 − 163.65 165.30

0.005 0.15 − 163.96
0.0003 0.01 0.20 −

− 163.93 165.27 166.56
0.19 − 163.59 165.29
0.01 0.15 − 163.85

0.0004 0.004 0.10 −

L = 0.3
− 163.37 164.67 166.10
0 − 163.37 165.82
0 0.46 − 164.08
0 0.11 1.01 −

− 163.64 165.17 166.68
0.01 − 163.37 165.44

0.0002 0.21 − 163.98
0.0001 0.03 0.46 −

− 163.88 165.24 166.49
0.06 − 163.58 165.35
0.004 0.17 − 163.94
0.0003 0.01 0.27 −

− 163.89 165.23 166.58
0.08 − 163.58 165.32
0.004 0.15 − 163.89
0.003 0.01 0.0.23 −

Table 2.4: Matrices of wins W in the updated model for different strength of

the winner and loser effect (W = 0; 0.1; 0.2; 0.3 and L = 0; 0.1; 0.2; 0.3), N = 4,

θ = 1 and 1000 aggressive interactions.
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Figure 2.15: The total average number of wins for positions 1, 2, 3 and 4 for

W = 0, 0.1, 0.2, 0.3 and L = 0, 0.1, 0.2, 0.3 in the updated model as given in

Table 2.4. Note that all of the plots for these combinations are overlapping and

thus are represented by a single line.

When only the winner effect is present (Figure 2.16 and 2.17), on average

41 fights are necessary to establish a linear hierarchy. After this nothing new

happens to the hierarchy and the rank of the individuals. The last domination

event between a pair of individuals is that between the second and the third

place individuals. We note that the value of W does not have any effect on the

time to establish the hierarchy.

We obtained a similar pattern when only the loser effect is present (Figure

2.18 and 2.19). Irrespective of the value of L the structure is established at the

point t = 44 and the last pair to become distinguishable are the second and

third place individuals.
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Figure 2.16: Probability distribution functions of RHP for the 4 individuals in

the updated model: t = 500, only W is present (L = 0).

Lastly, when winner and loser effects are both present in the population

at varying strengths, hierarchies are established latest at time point t = 32

(Figures 2.20 and 2.21). Again, as in the two cases above, the last pair to

become distinguishable are the second and third place individuals.

Table 2.5 shows the times of the dominance events between all pair of in-

dividuals for various values of winner and loser effects. In general, the best

scenario for fast hierarchy formation is when both the winner and loser effects

are present in a group of individuals as the dominance hierarchy is established

earlier than when only one is present. The first pair to become distinguishable

is the first and the fourth place individuals, whereas the last pair is again that of

the second and the third place individuals. This is the case for all the possible

values of the winner and loser effects. In the following we consider the influ-

ence of the fighting threshold θ on the dynamics of hierarchy formation. So far

we considered θ = 1 and from equation (1.18) it is clear that a lower fighting

threshold θ means that the number of possible fights is increased. When de-

creasing θ to 0.8 the qualitative dynamic of the updated model is unchanged

but the time needed to establish a dominance hierarchy is increased. In par-

ticular for 0 < W ≤ 0.2 and 0 < L ≤ 0.2, the final domination events occur
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Figure 2.17: νxy over time when only W is present. ν14(t) becomes close to 0

very quickly, and so is close to the x-axis.

later than for the situation with θ = 1. Once we increase the values of the win-

ner and loser effects, however, we notice that the time of the final domination

events do not differ much from the previous case when θ = 1.

The results obtained for the updated model hold also for larger groups.

Table 2.6 shows the time of the domination event for each pair in a group of 8

individuals. As expected the hierarchy is established much later compared to a

group of four individuals.

2.5 Results for the updated model with assessment

error

In this section we relax the assumption that an individual has perfect knowl-

edge of the RHP of its opponent. As described in Section 2.1 we assume that

an individual assesses an opponent with a real RHP of RHPy,t as having a

value of (1 + ε)RHPy,t, where ε is normally distributed with mean 0 and stan-

dard deviation 0.2 (truncated above at 1 and below at -1). This type of error

is somewhat different to that used in [44], who used uniformly distributed

intervals, although the results do not hugely depend upon the distribution of
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Figure 2.18: Probability distribution functions of RHP for the 4 individuals in

the updated model: t = 500, only L is present.

error used. In the following we again consider 4 individuals with an aggression

threshold θ = 1 and analyse the RHP through time. We note that the analysis

of the number of wins leads to similar results as in Section 2.4.1 and for brevity

we exclude this.

When θ = 1 and ε is normally distributed with mean 0 and standard de-

viation 0.2, linear hierarchies are formed for all combinations of W and L.

Even though the individuals can make only an approximate estimation of their

opponent’s RHP with a normally distributed error ε, this does not have any

significant effect on the linearity of the hierarchy. The only impact that ε has

is on the time to hierarchy establishment. In this case the individuals need to

interact more with each other (compared with the case when ε=0) in order to

establish a linear hierarchy.

We can conclude that ε stabilizes linear hierarchies, meaning that only a

little information about your opponents strength is necessary in order to es-

tablish a linear hierarchy. Lowering the aggression threshold leads to a similar

dynamic as described in Section 2.4. We still obtain linear hierarchies for all

combinations of W and L, however the time until the hierarchy is established

is increased. Table 2.7 shows that for θ = 0.8 and imperfect information, lin-
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Figure 2.19: νxy over time when only L is present. ν14(t) coincides with the

x-axis after t = 1.

ear hierarchies are achieved on all the analysed cases. The time of domination

events depends on the values of the winner and loser effects, with an increase

in the size of either effect generally reducing the time to the domination events.

Comparing this with the results of the updated model with θ = 1 and perfect

assessment from Table 2.5, we can see that the hierarchy generally takes longer

to be established, but that the difference is not large. This is a cumulative effect

of making individuals more aggressive by reducing θ and reducing the accuracy

of their information; when we make one of these changes only, we find times

between those from the two extremes (we have omitted tables corresponding

to these cases).

Summarizing, in this section we showed that using the updated model with

different levels of accuracy, linear hierarchies are always achievable. When

individuals have perfect information about their opponent’s RHP , the linear

hierarchy is established earlier than when they overestimate or underestimate

their opponents. More interactions are necessary in the second case, but after

a certain point in time (depending on the values of the winner and the loser

effects) the hierarchy is stabilized. When we lowered the aggression threshold,

the linear hierarchies were established later than in the first two cases. We
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Figure 2.20: Probability distribution functions of RHP for the 4 individuals in

the updated model: t = 500, both W and L are present.

can conclude that the updated model with different levels of accuracy always

produces linear hierarchies. The time when these are established depends upon

the level of information that individuals have about others in the group, and

upon the value of the aggression threshold, where the higher the threshold and

the smaller the error, the shorter the time to hierarchy formation.

2.6 Discussion

In this chapter we explored how winner and loser effects influence domi-

nance hierarchy formation using a simulation based model developed first in

Dugatkin [42] and Dugatkin & Dugatkin [44]. We considered two main situ-

ations: the non-updated model, when an individual has no information about

the current resource holding potential (RHP ) of its opponent, and the updated

model, when an individual can estimate the RHP of its opponent with various

levels of accuracy. We built on the model of [42] and [44] by providing a more

complete analysis of the non-updated and updated model. All of our results

are based on 10,000 simulations rather than one single realisation. In partic-

ular we developed new statistical measures for the time when a dominance
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Figure 2.21: νxy through time when both W and L are present. ν13(t), ν14(t)
and ν24(t) become close to 0 very quickly, and so are close to the x-axis.

hierarchy is established.

These methods include a more detailed analysis of large numbers of in-

teractions and an extension of the classical idea of the index of linearity K

(developed by Kendall [68]) to this general number of interactions. An impor-

tant consideration was the time to establishment of the hierarchy, and we have

introduced a new measure to distinguish pairs of individuals, and to establish

when dominance has been achieved. We have then been able to find when

our hierarchy has been established for each of the different models that we

consider, and make comparisons between them.

The values of the index of linearity K are perhaps exaggerated as a measure

because high scores looks like they predict high linearity, when the reality can

be more complex. We have used fractions of interactions experienced by one

individual over the others where it has emerged as the winner, but this ratio

is not the only important aspect, the absolute values of the number of wins is

potentially important as well. For example the ratio 20/2 indicates more dis-

tinguishability between two individuals scoring 20 and 2 wins, than the ratio

2/0.2 for those with 2 and 0.2 wins. These low numbers can indicate an av-

eraging which can include hierarchies with indistinguishable final individuals,
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W = 0 W = 0.1 W = 0.2 W = 0.3

L = 0

T12 = 22
T13 = 1
T14 = 1
T23 = 40
T24 = 5
T34 = 16

T12 = 22
T13 = 1
T14 = 1
T23 = 41
T24 = 5
T34 = 17

T12 = 22
T13 = 1
T14 = 1
T23 = 41
T24 = 5
T34 = 16

L = 0.1

T12 = 16
T13 = 5
T14 = 1
T23 = 44
T24 = 1
T34 = 24

T12 = 11
T13 = 1
T14 = 1
T23 = 30
T24 = 1
T34 = 11

T12 = 11
T13 = 1
T14 = 1
T23 = 31
T24 = 1
T34 = 11

T12 = 11
T13 = 1
T14 = 1
T23 = 31
T24 = 1
T34 = 11

L = 0.2

T12 = 16
T13 = 5
T14 = 1
T23 = 40
T24 = 1
T34 = 22

T12 = 11
T13 = 1
T14 = 1
T23 = 32
T24 = 1
T34 = 11

T12 = 11
T13 = 1
T14 = 1
T23 = 29
T24 = 1
T34 = 11

T12 = 11
T13 = 1
T14 = 1
T23 = 30
T24 = 1
T34 = 11

L = 0.3

T12 = 16
T13 = 5
T14 = 1
T23 = 41
T24 = 1
T34 = 22

T12 = 11
T13 = 1
T14 = 1
T23 = 32
T24 = 1
T34 = 11

T12 = 11
T13 = 1
T14 = 1
T23 = 30
T24 = 1
T34 = 11

T12 = 11
T13 = 1
T14 = 1
T23 = 31
T24 = 1
T34 = 11

Table 2.5: The time of the domination events for the updated model with per-

fect estimation: θ = 1, various values of W and L. Txy is the (final) time when

νxy(t) falls below 0.1.

although even high numbers can be the result of bimodality in RHP . One pos-

sible (simplistic) solution is to add a baseline value of wins to all table entries

when calculating K, which necessarily will have a smaller effect, the larger the

number of decisive contests.

For the non-updated model we found different types of hierarchy formation

for each of the three main cases, although the values of the index of linearity

show that almost linear hierarchies are established. When only the winner

effect is present, each individual scores in the group, three of them with a

high number of wins, and all interactions lead to fights. It appears that this

structure is the simplest one and that it can be achieved quite early, however
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Individual 2 3 4 5 6 7 8

1 T12 =
782

T13 =
17

T14 = 5 T15 = 1 T16 = 1 T17 = 1 T18 = 1

2 T23 =
806

T24 =
29

T25 = 8 T26 = 3 T27 = 3 T28 = 3

3 T34 =
745

T35 =
48

T36 =
13

T37 = 6 T38 = 6

4 T45 =
635

T46 =
57

T47 =
10

T48 =
10

5 T56 =
522

T57 =
46

T58 =
18

6 T67 =
321

T68 =
34

7 T78 =
85

Table 2.6: The time of domination events between each pair of individuals in

the updated model with θ = 1 and perfect estimation: W = 0.1, L = 0 for a

group of size 8. Txy is the (final) time when νxy falls below 0.1.

our analysis of the RHP showed that up to 400 interactions are needed to

establish a linear hierarchy. When only the loser effect was present, the first

place individual scores a high number of wins, and all others a small number.

The analysis of the RHP through time showed that the overlap between the

second and the third place individuals is almost 0.4 which is much bigger than

the threshold 0.1 where we consider two individuals to be distinguishable. This

structure (with second and third positions indistinguishable) is established very

early compared with the case when only the winner effect is present, with only

11 possible interactions needed.

When both winner and loser effects are present we obtained a structure

where the first place is always clear with an individual who has a high number

of wins, and the second place individual has quite a high average number of

wins, with a high number of wins on some simulations and on other simula-

tions the number of wins does not differ much from the number of wins of the

third placed individual; this corresponds with the RHP analysis where the sec-

ond place individual often has a bimodal distribution of the RHP . This means

that different individual simulations will yield different results, where some-
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W = 0 W = 0.1 W = 0.2 W = 0.3

L = 0

T12 = 122
T13 = 4
T14 = 1
T23 = 151
T24 = 22
T34 = 134

T12 = 68
T13 = 4
T14 = 1
T23 = 91
T24 = 13
T34 = 78

T12 = 41
T13 = 1
T14 = 1
T23 = 61
T24 = 9
T34 = 50

L = 0.1

T12 = 123
T13 = 18
T14 = 1
T23 = 137
T24 = 4
T34 = 110

T12 = 59
T13 = 1
T14 = 1
T23 = 78
T24 = 1
T34 = 59

T12 = 33
T13 = 1
T14 = 1
T23 = 51
T24 = 1
T34 = 38

T12 = 31
T13 = 1
T14 = 1
T23 = 52
T24 = 1
T34 = 37

L = 0.2

T12 = 67
T13 = 14
T14 = 1
T23 = 77
T24 = 4
T34 = 58

T12 = 43
T13 = 1
T14 = 1
T23 = 57
T24 = 1
T34 = 36

T12 = 25
T13 = 1
T14 = 1
T23 = 44
T24 = 1
T34 = 27

T12 = 25
T13 = 1
T14 = 1
T23 = 39
T24 = 1
T34 = 23

L = 0.3

T12 = 48
T13 = 9
T14 = 1
T23 = 58
T24 = 4
T34 = 40

T12 = 32
T13 = 1
T14 = 1
T23 = 49
T24 = 1
T34 = 27

T12 = 22
T13 = 1
T14 = 1
T23 = 39
T24 = 1
T34 = 20

T12 = 19
T13 = 1
T14 = 1
T23 = 35
T24 = 1
T34 = 17

Table 2.7: The time of domination events for the updated model with θ = 0.8
and imperfect estimation for various values of W and L. Txy is the (final) time

when νxy(t) falls below 0.1.
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Figure 2.22: The time of domination events between each pair of individuals

in the updated model with θ = 1 and perfect estimation: W = 0.1, L = 0 for a

group of size 8. Txy is the (final) time when νxy falls below 0.1.

times the second place individual will be distinguishable from the third and

sometimes not (this partially contradicted previous results from [42]); which

occurs is decided very early in the process.

The non-updated model has some limitations as in reality the individuals

could potentially approximate what the average “strength” of another individ-

ual would be at a certain time and then use this estimation when deciding

whether to fight or retreat. If only the winner effect is in operation, for exam-

ple, then an individual may be able to estimate the rate of increase of RHP of

an average opponent just by considering the time elapsed, as the RHP of all

will tend to increase. Thus the updated model, with varying levels of accuracy,

is more realistic.

For the updated model, with perfect information of the strength of the oth-

ers, we conclude that a linear hierarchy is always established. The values of

the winner and loser effects, and whether they are considered alone or both to

be present in the group, do not have any influence on linearity. When the RHP

was analysed we calculated that the linear hierarchy is established at the time

t = 41 when only the winner effect is present, at time t = 32 when only the

loser effect is present and at t = 44 when both the winner and the loser effect
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are present. If individuals do not have perfect information about the strength

of their opponents, this does not have any real influence on the linearity (as

was shown previously by [44]). The only effect that it has is on the time when

these linear hierarchies are established. More interactions are needed in this

case than when individuals have perfect information about the RHP of others.

The same results are achieved when the aggression threshold θ is lowered from

1 to 0.8, when the establishment of the dominance hierarchy occurs later than

when θ=1. Thus, as long as individuals know something about the strength

of their opponents, a dominance hierarchy is always likely to be established

in this model, and the precise model parameters have only a relatively small

effect.

Our model thus predicts that for real biological populations, provided that

animals can estimate the strength of their groupmates (and this estimation

does not have to be accurate), then an unambiguous dominance hierarchy can

be established in a relatively small number of interactions. Thus if contests

are not too costly, and the group stays together for a sufficiently long time, a

linear hierarchy will be formed. We predict some variation, so that when infor-

mation is more reliable, or when loser effects dominate, the time to hierarchy

formation will be the shortest. For the group as a whole a short hierarchy for-

mation phase is of course beneficial, as risk of injury and lost time and energy

are minimised [116]. If animals cannot estimate their groupmates’ strength

at all, then our model predicts far longer periods of hierarchy formation of-

ten with less clear-cut results. It seems unreasonable, however, to assume that

even after a number of contests animals can possess so little information. Thus

it seems likely that, as often observed in real populations, linear hierarchies

should form relatively quickly. Of course it should be noted that many real

populations are more complex, with group membership in a state of flux, or

coalitions between group-mates (e.g. close relatives) ([37],[111]), and so of-

ten our idealised conditions will not apply.
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In the model analysed in this chapter, no strategic elements are consid-

ered. This is in contrast to other models of dominance hierarchy formation,

such as that of Broom and Cannings [23], where individuals differed in their

level of aggressiveness, and evolutionarily stable strategies were found. In the

following chapter we introduce such game theoretical elements to our winner

and loser models, considering strategic choices of the aggression threshold, for

instance (in conjunction to varying rewards and costs for winning or losing dif-

ferent types of contests, we note that in the current model there is no benefit

to not fighting, and individuals retreat at a certain threshold due to a loss of

confidence).
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Chapter 3

A Game-Theoretical Winner and

Loser Model of Dominance

Hierarchy Formation

3.1 Introduction

In [42] and [44] (as well as [73]), each individual had the same fixed level of

aggression; they would retreat for the same excess of the number of wins over

the number of losses. In this chapter we introduce game-theoretical elements

in the form of aggressiveness level into this model. The motivation behind this

is that in real populations, individuals behave in a more complex way. They can

adopt different strategies when deciding whether to fight or retreat as opposed

to adopting the same fixed strategy. We assume that each individual can choose

its own strategy, independent of their opponent’s strategy. We are particularly

interested in determining the appropriate level of the aggression threshold and

exploring whether a unique strategy, or mixture of strategies, emerges in the

population considered. Our model set up allows us to answer questions such as,

under what circumstances should an individual fight more in order to establish

a higher rank in the hierarchy and when should it retreat? We use a framework
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similar to the Hawk-Dove model [83], where an individual can choose to either

fight or concede, with each individual making its choice simultaneously. When

two individuals choose to fight they engage in an aggressive interaction; the

winner will increase its RHP by a factor 1 + V1 and the loser will reduce its

RHP by a factor 1 − C1. When one individual fights and the other concedes,

the individual that chooses to fight increases its RHP by a factor 1+V2 and the

retreating individual has its RHP reduced by a factor 1−C2. In the case when

both individuals retreat, they have their RHP multiplied by 1−C2. Individuals

adopt their own strategies, meaning whether to fight and or to concede in an

aggressive interaction given their history of fights won and lost, from a range

of possible strategies. For each of these possible strategies we will determine

the resulting expected payoff and conclude whether the adopted strategy is

beneficial to the individual or not. We will analyse two cases: when each indi-

vidual adopts a strategy that enables them to fight in all interactions, and when

they adopt strategies that enables them to fight until a certain point in time

(based upon how many contests they have won or lost) and retreat afterwards.

We will determine the evolutionarily stable strategies (ESSs) for this fighting

game, calculate the possible stopping times of the game for different strategies,

and analyse the relationship between the stopping time and the difference be-

tween the number of wins and the number of losses for an individual. We find

that a unique strategy evolves, as opposed to a mixture of strategies. Thus in

any scenario there exists a unique ESS, and individuals should not switch be-

tween strategies. We find that the hierarchy forms quickly, after which there

are no mutually aggressive contests. As explained above, individuals fight for

more access to resources and we will investigate the effects of different payoff

functions on the ESSs within our model. In particular we compare payoffs

which depend upon the level of resource an individual receives to those which

depend upon the proportion of the overall resource that it receives. The latter

payoff function is particularly appropriate when resources are scarce. Once the
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dominance hierarchy is established it is easier for the group to divide resources

between them: the higher the position in the hierarchy the higher the payoff.

The division of resources has been analysed by different authors (see e.g., [28],

[66]). We will use the concept of reproductive skew ([27], [66], [103], [109],

[121]), which refers to the distribution of reproductive rights in a group of an-

imals. We will use the term more generally to refer to how limited resources

and hence payoffs (which are generally proportional to reproductive levels in

evolutionary games) are divided among our group. When the reproductive

skew is high the division of resources is uneven with the high ranking individ-

uals obtaining more resources than the lower ranking ones (for examples see

[40], [94], [104]). In contrast, if the reproductive skew is low the division of

resources is even and all ranks of individuals have similar resource levels (see

[30], [81]). Further, we will explore the interplay between all three game-

theoretical elements, Vi, Ci and strategies θ, and analyse whether there is a

general pattern for the ESS when the Vi and Ci are increased (or decreased).

Additionally, we develop a simulation framework to investigate the effect of

the group size on the level of aggression.

We note that Andersen et al. [5] developed an alternative optimization

based model to analyse the effect of group size on aggression level and showed

that the theoretical results obtained are supported by experimental data ob-

served in domesticated pigs; we discuss this in Section 3.6. Lastly we compare

our theoretical results with experimental evidence which is rather different for

different groups of animals such as birds, farmed animals or fish (see e.g.,[5],

[14],[50], [51], [72], [98], [113] [117]). Parts of this chapter are published

in [74].
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3.2 The model

We assume a large population of social individuals living together in groups.

At the beginning of the consideration, groups of size N are randomly formed,

so that all individuals are members of a group and we analyze a specific group

of N individuals. Each individual has an RHP value, which, as mentioned

in Chapter 1, is a measure of its ability to win an aggressive interaction (cf.

[42] and [44]) and which is altered by the outcome of each interaction. At the

beginning, as in the previous chapters, all individuals are assigned the same

initial RHP , denoted by RHPinitial. We assume that all individuals know their

own RHP , and that of any opponent. In each round t (t = 1, ..., T ), two

individuals are randomly chosen to engage in an aggressive interaction, while

the rest of individuals do not engage in any aggressive interactions. Through

time an individual’s RHP changes due to winning or losing (in reality it will be

mainly the extrinsic factors than change, but our model could cope with other

eventualities equally well); while a win increases the RHP , a loss decreases it

and each individual keeps track of the changes in their own RHP and that of

its opponents. More precisely, suppose that at time t the two individuals pitted

against each other are x and y. We denote by RHPx,t individual x’s RHP at

time t. Individual x can decide to be aggressive or retreat once it has been

chosen and this decision is based on the strategy θx ≥ 0 which is its aggression

threshold.

Individual x fights individual y at this time (plays Hawk) if

RHPx,t

RHPy,t

≥ θx (3.1)

holds, otherwise it will retreat (play Dove), where RHPy,t and θy are the indi-

vidual’s y RHP at time t and its aggression threshold respectively. The pairwise

interaction lead to one of the following outcomes:
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(1) Both individuals x and y decide to engage in an aggressive interaction

and the probability that x wins is given by

Px,y(t) =
RHPx,t

RHPx,t +RHPy,t

, (3.2)

and consequently individual y wins with a probability Py,x(t) = 1−Px,y(t).

(2) One individual engages in the aggressive interaction and the other re-

treats.

(3) Both individuals decide not to fight.

After a win the RHP increases and after a loss it decreases. More precisely,

if individual x wins and individual y loses then they increase and decrease

respectively their own RHP as follows:

RHPx,t+1 = (1 + V1)RHPx,t (3.3)

RHPy,t+1 = (1− C1)RHPy,t. (3.4)

If individual x wins and individual y retreats then they increase and decrease

respectively their own RHP as follows:

RHPx,t+1 = (1 + V2)RHPx,t (3.5)

RHPy,t+1 = (1− C2)RHPy,t. (3.6)

Equivalent changes to the RHP s apply if individual y wins.

If both individuals retreat (double kow-tow) then they decrease their RHP s

as follows:

RHPx,t+1 = (1− C2)RHPx,t, (3.7)

RHPy,t+1 = (1− C2)RHPy,t. (3.8)
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In this model V1, V2 are proportional increases in RHP and C1, C2 are propor-

tional decrease in RHP where V1, V2 ≥ 0 and C1, C2 ∈ [0, 1].

The aim of each member of the population is to maximise its payoff at

time T . In the following we assume that the payoff function is defined as the

natural logarithm of the RHP (which corresponds to the situation of unlimited

resources) but consider in Section 3.3.5 the effects of an alternative payoff

function (which corresponds to the situation of limited resources). Now there

are two main reasons for considering the natural logarithm of the RHP . Firstly,

while we want to keep to Dugatkin’s terminology as much as possible, the

multiplicative nature of how the RHP increases, means that RHP values can

become large very quickly. If we would assume the expected RHP as the

payoff, then even a minuscule chance of winning enough contests to be the

top individual would be worth almost any risk. Considering the logarithm

means that winning (losing) any contest increases (decreases) the payoff by

the same amount irrespective of the current RHP . Secondly, taking the natural

logarithm of the RHP guarantees that the payoffs increase in precisely the

same way as in evolutionary matrix games, and in particular the Hawk-Dove

game, which we use as an analogy in this chapter.

This model set-up allows us to track the changes in RHP of all N individ-

uals at the time points t = 1, . . . , T and therefore to evaluate which strategy θ

results in the highest payoff over time. In this context, the ESS [82] as defined

in Chapter 1, proves to be an important concept.

3.3 The two-individual model

For simplicity, in this section we consider groups of two individuals only. This

will allow us to find some analytical results which will give us general insights

into the dynamics of our model. We will then generalise to larger groups in

Section 3.4.
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3.3.1 Expected payoffs when players always fight (θx=θy =

0)

We assume that both individuals, denoted by x and y, possess the same RHPinitial

values. Further, individuals x and y play the strategies θx = θy = 0, meaning

that both individuals will fight until time T (cf. equation (3.1)). In this sec-

tion and throughout the chapter we assume V1 = V2 = V , C1 = C, C2 = 0.

V1 = V2 = V implies that winning a fight and having your opponent retreat

has the same effect on the RHP . Retreating is seen as a recognition of the

opponent’s superiority and therefore is treated similar to a loss. But contrary

to the model analysed in Chapters 1 and 2, here we do not assume that losing

a fight and retreating has the same effect on the RHP . This seems plausible as

it is similar to the Hawk-Dove model to which we refer, in the sense that the

loss of a fight is like an injury (whether a real injury or a psychological one).

Figure 3.1 illustrates the possible RHP values of individual x at times t = 1

and t = 2. For example, the expected payoff of individual x at t = 1, denoted

by E[ln(RHPx,1)] is equal to

E[ln(RHPx,1)] =
1

2
ln(RHPinitial(1 + V )) +

1

2
ln(RHPinitial(1− C)).

An individual either wins or loses a fight, and we denote a win (loss) in the kth

contest by jk = 1 (jk = 0). Thus at time t individual x has at wins and bt losses

which are given as follows:

at =
t∑

k=1

jk (3.9)

and

bt = t−

t∑

k=1

jk. (3.10)

The RHP for individual x, having won at contests and lost bt, will be denoted
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Figure 3.1: RHP of individual x and individual y at times t = 1 and t = 2
when they both start with the same RHPinitial and always fight (θx = θy = 0).

by Rat,bt and is given by (cf. equations (3.3) and (3.4))

Rat,bt = RHPinitial(1 + V )at(1−C)bt = RHPinitial(1 + V )
∑t

k=1 jk(1−C)t−
∑t

k=1 jk .

The probability of winning after at wins and bt losses at time t will be denoted

by Wat,bt , whereas the probability of losing will be denoted by Lat,bt = 1−Wat,bt .

From equation (3.2) we obtain

Wat,bt =
(1 + V )at(1− C)bt

(1 + V )at(1− C)bt + (1 + V )bt(1− C)at
.
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If we consider all combinations of wins and losses and consider ln(RHP ), then

the overall expected payoff is given by

E[ln(RHPx,T )] =
1∑

j1=0

1∑

j2=0

1∑

j3=0

....

1∑

jT=0

ln(RaT ,bT )
T∏

i=1

W ji
aT ,bT

L1−ji
aT ,bT

(3.11)

where aT and bT are given by equations (3.9) and (3.10).

3.3.2 Individuals with general strategies θx and θy

In this section we analyse the expected payoffs for individuals x and y when

they have potentially non-zero and different strategies θx and θy, respectively.

We start by deriving a general criterion for the number of losses necessary

so that an individual retreats. Suppose that at time t individual x has won at

contests against individual y and lost bt. Then it’s RHP will be RHPx,t = Rat,bt .

In contrast, individual y has won bt contests and lost at against individual x

resulting in a RHP of RHPy,t = Rbt,at . Thus from equations (3.3)-(3.6) we

obtain

Rat,bt = RHPinitial(1 + V )at(1− C)bt

and

Rbt,at = RHPinitial(1 + V )bt(1− C)at .

The next interaction between the individuals x and y will result in a fight if

equation (3.1) holds for both individuals. In other words, the following two

equations have to be satisfied simultaneously

RHPx,t

RHPy,t

=
Rat,bt

Rbt,at

= (1 + V )at−bt(1− C)bt−at =

(
1 + V

1− C

)at−bt

≥ θx (3.12)

and

RHPy,t

RHPx,t

=
Rbt,at

Rat,bt

= (1 + V )bt−at(1− C)at−bt =

(
1 + V

1− C

)bt−at

≥ θy. (3.13)
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Next, we take the logarithm of equations (3.12) and (3.13) on both sides and

obtain

(at − bt) ≥
ln(θx)

ln(1 + V )− ln(1− C)
(3.14)

and

(bt − at) ≥
ln(θy)

ln(1 + V )− ln(1− C)
. (3.15)

We define

dx =
− ln(θx)

ln(1 + V )− ln(1− C)
(3.16)

and

dy =
− ln(θy)

ln(1 + V )− ln(1− C)
(3.17)

where dx and dy are both positive numbers for any pair of individuals which do

not concede immediately. As equations (3.14) and (3.15) have to be fullfilled

simultaneously we obtain

− dx ≤ at − bt ≤ dy. (3.18)

This means that if the excess of the number of wins over the number of losses

is within [−dx, dy], individuals x and y will engage in a fight. If both individuals

start by fighting and the first condition to not hold is at− bt ≤ dy, then we have

a case where individual y decides to retreat and individual x to fight. After

retreating for the first time, an individual then retreats in every contest until

time T . Consequently, after y has retreated, individual x increases its RHP for

every contest. By contrast, if the first condition to not hold is −dx ≤ at − bt

then individual x decides to retreat and individual y increases its RHP for

every contest. The situation where both individuals retreat only occurs if this

happens at t = 1.
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We define the time when individual x retreats by

Ts(x) = min{t ≥ 1 : at − bt < −dx}. (3.19)

Ts(x) will be called the x-stopping time. The y-stopping time Ts(y) is defined

similarly. Clearly, in any contest exactly one of these values will be finite; the

time of the last contest where both individuals fight is given by the stopping

time Ts, where

Ts = min{Ts(x), Ts(y)}. (3.20)

Then the expected payoff E[ln(RHPx,T )] at time T is given by:

E[ln(RHPx,T )] =
1∑

j1=0

1∑

j2=0

....
1∑

jTs=0

ln[RaT ,bT (1 + V )(T−Ts)I1 ]
Ts∏

i=1

W ji
aT ,bT

L1−ji
at,bt

(3.21)

where

I1 =





0 if at − bt < dx

1 if at − bt > dy

and (1 + V )(T−Ts)I1 is the multiplicative increase in RHP that individual x gets

after the stopping time Ts. It follows from inequality (3.18) and the fact that

at − bt is an integer that all θ values within a certain interval result in the

same expected payoff (for fixed V and C). We denote those intervals of strategy

values by [θx,min, θx,sup) where θx,sup is the value of θx that corresponds to ⌊dx⌋

and θx,min the value of θx that corresponds to ⌈dx⌉. The intervals are closed at

the lower bound and open at the upper bound and θx,min < θx,sup. We set

k′
x = ⌊dx⌋ =

⌊
− ln(θx,sup)

ln(1 + V )− ln(1− C)

⌋
(3.22)

106



A Game-Theoretical Winner and Loser Model of Dominance Hierarchy Formation

and obtain

θx,sup =

(
1− C

1 + V

)k′x

.

Further, we set kx = ⌈dx⌉. The corresponding strategy value θx for kx is θx,min

and we have

kx = ⌈dx⌉ =

⌈
− ln(θx,min)

ln(1 + V )− ln(1− C)

⌉
(3.23)

which results in

θx,min =

(
1− C

1 + V

)kx

.

Similarly to the above, for given V and C there is a range of θ values that cor-

respond to a given k. Importantly, each strategy θ from that range results in the

same payoff. We note, however, that this range changes for different V and C.

For simplicity, we shall assume that individual x chooses the middle value from

[θx,min, θx,sup), and this strategy will be denoted by θx,rep as the representative

strategy of the [θx,min, θx,sup) range

θx,rep =

(
1− C

1 + V

)kx
(
2 + V − C

2(1− C)

)
. (3.24)

3.3.3 Stopping time Ts

The expected payoff E[ln(RHPx,T )] given by equation (3.21) depends on the

stopping time Ts. In this section we explore the properties of Ts as defined by

equation (3.20), in particular its distribution.

To do so we firstly determine the values of kx and ky for individuals x and

y with strategies θx and θy, respectively. The time when the random process

at− bt is equal to kx or ky represents the stopping time. For instance, individual

x would not engage in aggressive interactions when at − bt ≤ −kx and the

stopping time defined in equation (3.19) can be written alternatively as

Ts(x) = min{t ≥ 1 : at − bt ≤ −kx}. (3.25)
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But which values can the stopping time Ts(x) assume? The earliest possible

x-stopping time is T = kx, i.e. individual y has kx consecutive wins from the

start of the interaction. The next possible stopping time will be at kx+2, where

a single win by individual x within the first kx interactions has to be met by a

total of kx + 1 wins by y. In general the stopping times for individual x will be

given by kx+(2n)n≥0. Consequently, the stopping times for individual y will be

given by ky + (2n)n≥0. Thus Ts = min{Ts(x), Ts(y)} can assume the following

values

Ts=





1 : kx = ky = 1

min{kx, ky}+ (2n)n≥0 : kx + ky even

max{kx, ky}+ n+ even numbers in [min{kx, ky},max{kx, ky}] : kx + ky odd,

min{kx, ky}

odd

max{kx, ky}+ n+ odd numbers in [min{kx, ky},max{kx, ky}] : kx + ky odd,

min{kx, ky}

even

(3.26)

In summary, the stopping time defines the exact round when one individual

starts to retreat for different strategy combinations. It also gives the number of

possible interactions that need to be observed in order to distinguish between

a pair of individuals, so that in our model the second individual will always

concede to the first (for a different interpretation of this concept, see [73]).

Note that it is possible for our model to generate one experience, a winner

effect or a loser effect, without the other. For example for V > 0 and C = 0 we

have a case when only the winner effect is in place. Table A.1 and Table A.2

(see Appendix) show the expected payoffs for different strategic values when

V = 0.1 and C = 0. On the other hand when C > 0 and V = 0, illustrated by

Table A.3 and Table A.4 (see Appendix), we have a case where only the loser
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effect is operating.

In the next section we derive the distribution of Ts for the parameter con-

stellation V = C = 0.1 (both winner and loser effect are influencing the RHP ).

3.3.4 Example: V = C = 0.1

To illustrate the findings of the last sections we consider an example by assum-

ing the parameters V = 0.1, C = 0.1 and T = 20. In particular, we calculate

the expected payoffs E[ln(RHPx,20)] for different combinations of strategies

θx and θy, determine the unique ESS and derive the distribution of the stop-

ping time Ts. In this section and throughout the chapter we will assume that

RHPinitial = 10.

Firstly we determine the representative strategies to kx = 1, 2, 3, 4, 5, 6, 7, 8

by using equation (3.24). Note that there is a range of strategies θx that cor-

respond to the same value of kx and we take the middle one as described in

Section 3.3.2. We obtain the following mappings (the same values apply for

individual y as well.).

kx = 1 ⇒ θx,rep = 0.91, kx = 2 ⇒ θx,rep = 0.74, kx = 3 ⇒ θx,rep = 0.61,

kx = 4 ⇒ θx,rep = 0.50, kx = 5 ⇒ θx,rep = 0.41, kx = 6 ⇒ θx,rep = 0.33,

kx = 7 ⇒ θx,rep = 0.27, kx = 8 ⇒ θx,rep = 0.22.

For this set of strategies we then calculate the expected payoffs E[ln(RHPx,20)]

for individual x and E[ln(RHPy,20)] for individual y by using equation (3.21).

Table 3.1 represents the matrix of payoffs for different combinations of strate-

gies θx and θy. We plot these values in Figure 3.2.
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ky=1(θy=0.91) ky=2(θy=0.74) ky=3(θy=0.61) ky=4(θy=0.50) ky=5(θy=0.41) ky=6(θy=0.33) ky=7(θy=0.27) ky=8(θy=0.22)

kx=1(θx=0.91) 3.2000 2.8700 2.7300 2.6500 2.6000 2.5800 2.5600 2.5400

kx=2(θx=0.74) 3.4400 3.0600 2.8700 2.7600 2.7000 2.6600 2.6200 2.6000

kx=3(θx=0.61) 3.5000 3.1000 2.8900 2.7700 2.6900 2.6500 2.6100 2.6000

kx=4(θx=0.50) 3.5100 3.0800 2.8700 2.7400 2.6700 2.6200 2.5600 2.5600

kx=5(θx=0.41) 3.5000 3.0500 2.8400 2.700 2.6200 2.5700 2.5400 2.5200

kx=6(θx=0.33) 3.4600 3.0200 2.7900 2.6600 2.6000 2.5300 2.5000 2.4700

kx=7(θx=0.27) 3.4300 2.9900 2.7700 2.6200 2.5600 2.5000 2.4800 2.4500

kx=8(θx=0.22) 3.4200 2.9500 2.7300 2.6000 2.5100 2.4800 2.4400 2.4100

Table 3.1: The matrix of payoffs where each entry represent the expected pay-

off E[ln(RHPx,T )] at time T = 20 (calculated by equation (3.21)) for different

strategies θx and θy.
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Figure 3.2: The payoffs E[ln(RHPx,T )] at time T = 20 (calculated by equation

(3.21)) for different strategies θx and θy.

Now for each strategy we can find the best response, i.e. for each column of

Table 3.1 we find the highest payoff and use the “diagonal rule” (see Chapter

1) to find the ESS. We note that for a pure ESS, all our results satisfy ESS

condition (1.3); condition (1.4) is only achieved when mixtures are present,

which we do not get in our example. In this example we obtain θ = 0.61,

corresponding to k = 3, as the unique ESS. Note that there is a range of

strategies [θx,min, θx,sup) = [0.55, 0.67] that corresponds to k = 3. Thus any

strategy from this range results in the same expected payoff and is therefore

equivalent to our ESS. Lastly we derive the distribution of the stopping time

Ts. For example, when θx = 0.5 (corresponding to kx = 4) and θy = 0.7

(corresponding to ky = 2), Ts can only assume the values (ky + 2n)n≥0 because

kx + ky = 6 is an even number (see equation (3.26)). But how does this
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distribution change when kx and ky are varied? To explore this we assume that

individual x has a strategy θx corresponding to kx = 1, 2, 3 and his opponent

has strategies θy corresponding to ky ∈ [1, 8]. We choose the value 8 as an

upper bound for ky as an arbitrary large cut-off value which corresponds to

small values of θ, but we could have chosen any other high value. Figure 3.3

shows the distribution functions of the stopping time for various combinations

of kx and ky for V = C = 0.1.
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Figure 3.3: The distribution function of the stopping time for the case when

V = C = 0.1, ky = 1, 2, . . . , 8 and (a) kx = 1, (b) kx = 2, (c) kx = 3. Note that

parts of the distribution functions are overlaid by other distribution functions,

e.g. all lines in (a), include the segment with starting coordinate (1, 0) and

ending coordinate (1,
1

2
).

Figures 3.3 illustrates that a pair of individuals will fight longer for higher

values of kx and ky. In this example one of the individuals x and y has started

retreating before time T , for most of the possible cases. This means that observ-

ing 20 interactions would allow us to distinguish between the two individuals

almost with certainty. As we increase the values of kx and ky, the probability of
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retreating before T = 20 is decreased.

3.3.5 An alternative payoff function

Table 3.1 shows the expected payoff of individuals x and y after Tmax = 20

possible interactions using equation (3.21). In this section we explore how

limited resources are divided between the two individuals based on an alterna-

tive payoff function. We will use the concept of reproductive skew as discussed

in ([27], [66], [103], [109], [121]). In this case the expected payoff for indi-

vidual x after 20 interactions is given by function:

E[θx, θy] = E

[
ln(RHPx,20)

ln(RHPx,20) + ln(RHPy,20)

]
. (3.27)

Consequently the expected payoff for individual y is given by function

E[θy, θx] = E

[
ln(RHPy,20)

ln(RHPx,20) + ln(RHPy,20)

]
.

The results are given in Table 3.2 and Figure 3.4.

ky=1(θy=1) ky=2(θy)=0.7 ky=3(θy)=0.6 ky=4(θy=0.5) ky=5(θy=0.4) ky=6(θy=0.35) ky=7(θy=0.27) ky=8(θy=0.23)

kx=1(θx=1) 0.5000 0.4585 0.4417 0.4353 0.4344 0.4354 0.4360 0.4385

kx=2(θx)=0.7 0.5415 0.5000 0.4825 0.4777 0.4765 0.4777 0.4806 0.4825

kx=3(θx)=0.6 0.5583 0.5175 0.5000 0.4941 0.4928 0.4949 0.4973 0.4999

kx=4(θx=0.5) 0.5647 0.5223 0.5059 0.5000 0.4992 0.5013 0.5034 0.5066

kx=5(θx=0.4) 0.5656 0.5235 0.5072 0.5008 0.5000 0.5014 0.5046 0.5077

kx=6(θx=0.35) 0.5646 0.5223 0.5051 0.4987 0.4986 0.5000 0.5026 0.5054

kx=7(θx=0.27) 0.5640 0.5194 0.5027 0.4966 0.4954 0.4974 0.5000 0.5033

kx=8(θx=0.23) 0.5615 0.5175 0.5001 0.4934 0.4923 0.4946 0.4967 0.5000

Table 3.2: Division of resources for different values of k, when V = C = 0.1

From Table 3.2, we find that θ = 0.4 (corresponding to k = 5) is the ESS.

Comparing this result with the result obtained from Table 3.1, we notice that

they differ; when using this alternative payoff function we obtain k = 5 as

the ESS, while for the original payoff function used in Section 3.3.4 the ESS

is k = 3. This difference is related to the amount of available resources, in
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Figure 3.4: Division of resources for different values of k, when V = C = 0.1

particular whether they are plentiful or limited. We assume that for plentiful

resources, the absolute RHP is more important, but for scarce resources shared

between group-members, the relative RHP is the key element. If an individual

needs to maximize the RHP then it should fight less compared to the situation

where it needs to maximise the division of limited resources. In this latter case

the individual needs to be more aggressive so that it can win a greater share

than its opponent, since “hurting” its opponent leads directly to improving its

proportion in equation (3.27).

3.3.6 How the expected payoffs and the division of resources

change when varying V and C

In this section we will vary the values of V and fix the value of C (C = 0.1),

noting that different combinations of V and C correspond to different values of

k for any given value of θ. For each of these combinations we find the ESS (θ

and the corresponding k) when ln(RHP ) is considered as the payoff function

and when the alternative payoff function is used. The results are summarised

in Figures 3.5 and 3.6 where we plot the ratio V
C

with C = 0.1 on the x-axis

and the ESS on the y-axis (k value in Figure 3.5 and θ value in Figure 3.6).
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Figure 3.5: The evolutionarily stable strategy k for variable V and fixed C
(C = 0.1) for ln(RHP ) and alternative payoff function. When C = 0 the ESS
will be the highest possible value of k (C → 0 =⇒ k → ∞).
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Figure 3.6: The evolutionarily stable strategy θ for variable V and fixed C
(C = 0.1) for ln(RHP ) and alternative payoff function. When C = 0 the ESS
will be the highest possible value of k (C → 0 =⇒ k → ∞).

For the case when V = 0 and C > 0, we expect the ESS to be the strategy

where an individual retreats immediately. This is true when ln(RHP ) is con-

sidered as the payoff function. When the alternative payoff function is used we

obtain k = 1 (θ = 1) as the ESS (for C = 0.1). Thus in this case it is best to

fight initially to potentially reduce the RHP of the opponent, as this increases

the individual’s payoff function. On the other hand for C = 0 and V > 0, we

obtain k → ∞ as the ESS. This is the expected result as since there is no cost

for losing, it is best to fight until the end of the competition. When V ≤ 4 we

obtain lower values of θ as an ESS for the alternative payoff function than for

the payoff function given by ln(RHP ). This means that when resources are

scarce, individuals need to be more aggressive in order to get a high payoff.
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For sufficiently high V ratio, (e.g., for V > 4), we obtain the same value of θ

as an ESS for both payoff functions. The corresponding tables showing the

expected payoffs for different combinations of kx and ky when V and C vary

are given in Appendix A.

3.4 The N -individual model

In Section 3.3 we demonstrated how the expected payoff can be derived analyt-

ically for the situation of two interacting individuals. Generalisations of these

results to situations with more than two individuals, however, have proven to

be analytically intractable. To nevertheless gain insights into the behaviour of

larger groups we develop a simulation approach which determines the ESS

for N interacting individuals. We imagine a population of 10000N individu-

als, which at the start of the game is divided into 10000 groups of size N at

random. Members within each group interact as previously described, for a

total of 200 contests and record their payoff (this correspond to steps S1-S2.3).

The individuals then produce offspring proportional to their payoff to form

a new generation of 10000N individuals. This process is repeated for 10000

generations (this corresponds to step S3). The algorithm which generates our

approach is defined as follows.

S1.0 Initially, the N individuals can choose their strategies from the range

Θ = [θ1, θ2, . . . , θ10] = [0.1, 0.2, . . . , 1]

with probability p(θ = θk) =
1
10

, k = 1, . . . , 10.

Set i = 0.

S2.0 Set H = [0, 0, . . . , 0] (H has dimension 10) and j = 0.

S2.1 Each of the N individuals chooses a strategy θxl
, l = 1, . . . , N according
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to the probability function p(θ = θk).

S2.2 Repeat the following for Tmax = 200 times steps.

Randomly choose two individuals with their strategies θxl
and θxm

, l,m =

1, . . . , N out of the N individuals and update their RHP according to

equations (3.3-3.6).

S2.3 Update the vector H as follows

H(10θxl
) = H(10θxl

) + ln(RHPxl,200), l = 1, . . . , N.

Set j = j + 1. If j < 10, 000 go to S2.0 otherwise to S3.

S3.0 Update probability function p(θ = θk) as follows

p(θ = θk) =
H(10θk)

10∑
k=1

H(10θk)

.

Set i = i+1. If i < 10, 000 go to S2.0 otherwise the simulation is finished.

The outcome of this algorithm is the probability vector p(θ = θk) and in most

cases the probability mass will be concentrated in a single strategy θk which

represents the ESS. When this is not the case, the mean value of the strategies

at the end of the simulation (i.e. after 10000 generations) will be considered

as the ESS. In order to analyse the accuracy of the simulation algorithm we

consider the same parameter constellation as in Section 3.3.4, namely N = 2

and V = C = 0.1, and determine the ESS. We obtain p(θ = 0.6) = 1 and

conclude that θ = 0.6 is the ESS, which falls within the [0.55, 0.67] range; the

result that we obtained from equation (3.21). We considered other values of V

and C as well and in all situations analytical and simulation results coincided.

117



A Game-Theoretical Winner and Loser Model of Dominance Hierarchy Formation

3.4.1 Example: population size N = 4

Now we consider a group of N = 4 individuals and use the simulation algo-

rithm described above to determine the ESSs. We do this for different combi-

nations of V and C and the results are shown in Table 3.3 and Figure 3.7.

C=0.025 C=0.05 C=0.075 C=0.1 C=0.125 C=0.15

V =0.01 0.9400 0.9900 1.0000 1.0000 1.0000 1.0000

V =0.02 0.8800 0.9000 0.9200 0.9500 0.9700 0.9900

V =0.03 0.7000 0.8100 0.9000 0.9000 0.9200 0.9400

V =0.04 0.6000 0.8000 0.8000 0.8700 0.9000 0.9100

V =0.05 0.4900 0.7000 0.7900 0.8000 0.8000 0.9000

V =0.06 0.4000 0.6200 0.7000 0.7700 0.8000 0.8000

V =0.07 0.3700 0.6000 0.6900 0.7000 0.7600 0.8000

V =0.08 0.3000 0.5000 0.6000 0.6900 0.7000 0.7000

V =0.09 0.2900 0.5000 0.6000 0.6000 0.6500 0.6500

V =0.1 0.2600 0.4400 0.5100 0.6000 0.6000 0.6900

V =0.11 0.2100 0.4000 0.5000 0.5300 0.6000 0.6100

V =0.12 0.2000 0.4000 0.5000 0.5100 0.6000 0.6000

V =0.15 0.2000 0.3000 0.4000 0.5000 0.5000 0.5100

V =0.18 0.1400 0.2900 0.3000 0.4000 0.4300 0.4400

Table 3.3: The ESS value of θ for different combinations of V and C.

The ESS values show that when the value of C is increased for a fixed value

of V the value of θ is also increased. This means that the individuals fight less

as the cost of injury, for example, is increased. On the other hand, when V is

increased for a fixed C we notice that the value of θ is decreased, thus individ-

uals are fighting longer. If V = C then the value of the ESS decreases when

V and C are simultaneously increased by the same factor. This is supported

by the results of V = C = 0.05, V = C = 0.1 and V = C = 0.15 which have
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respective ESSs 0.6, 0.49 and 0.45.
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Figure 3.7: The ESS θ for N = 4 and different combinations of V and C.

Next, we analyse the level of aggressiveness in a population of 10 indi-

viduals for the same combination of V and C as in N = 4. The results are

plotted in Figure 3.8. From this figure, we notice that increasing the reward

(cost) for a fixed value of the cost (reward), increases (decreases) the level of

aggressiveness. This was the case for N = 4 as well, explained above.
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Figure 3.8: The ESS θ for N = 10 and different combinations of V and C.

We then, compare the ESSs for N = 2, N = 4 and N = 10. In Table 3.4

we show the values of the ESS for these three group sizes for some combina-
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tions of V and C. We conclude that as the group size is increased the values

of strategies θ are also increased. This implies less aggressiveness in larger

groups. Hence in larger group sizes it is best to fight less than it is in smaller

populations, because an individual will suffer a larger loss in RHP for fighting

longer and potentially losing against all individuals.

N=2 N=4 N=10

V=0.1, C=0.2 [0.53, 0.73] 0.9 1.01

V=0,1, C=0.1 [0.55, 0.67] 0.6 0.65

V=0.2, C=0.1 [0.32, 0.42] 0.5 0.5

V=0.3, C=0.1 [0.23, 0.33] 0.35 0.36

Table 3.4: The ESS values for different combinations of V and C for N = 2,

N = 4 and N = 10. For N = 2 there is a range of strategies θ that correspond to

the same critical value of the excess number of defeats k leading to concession.

This range is determined by (3.23).

3.5 Comparison of strategies

In the above sections we have derived how the ESS for different values of

C and V can be calculated. Now we explore whether the knowledge about

the ESS in a specific situation characterized by V and C allows us to infer

the ESS for a related situation with αV and αC (for sufficiently small α).

Similarly to the Hawk-Dove game, the ratio V/C might be the most important

aspect regarding the expected payoffs (if V < C the ESS of the Hawk-Dove

game is simply play Hawk with probability p = V/C), as opposed to specific

values of V and C. This means that if we know the ESS for small values of V

and C, we can also calculate the ESS for αV and αC. The following holds

dx =
− ln(θx)

ln(1 + V )− ln(1− C)
≈

− ln(θx)

V − (−C)
=

− ln(θx)

V + C
⇒ (3.28)

dx(V + C) = − ln(θx)
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If we multiply V and C by α we obtain

dx =
− ln(θ′x)

ln(1 + αV )− ln(1− αC)
≈

− ln(θ′x)

αV + αC
=

− ln(θ′x)

α(V + C)
⇒ (3.29)

αdx(V + C) = − ln(θ′x)

where θ′x is the strategy of individual x when V and C become αV and αC

respectively. Now from equations (3.28) and (3.29) we obtain

ln(θ′x) = α ln(θx) ⇒ θ′x = θαx . (3.30)

This means that if for a sequence of wins and losses individual x retreats follow-

ing strategy θx, it will retreat for the same sequence following strategy θ′x = θαx

when V and C are exchanged for αV and αC, respectively (assuming that

changing the value of V using α in this way does not affect the choice of kx).

Thus if only the ratio V/C matters for finding the ESS and θx is the ESS for

V and C, then θ′x will be the ESS for αV and αC. We illustrate this point

with an example. We assume the parameter constellation N = 2, V = 0.02,

C = 0.04 and α = 3/2 and use the simulation algorithm given in section 3.4 to

determine the ESS. We obtain θx = 0.91 (corresponding to kx = 2) as the ESS

for V = 0.02, C = 0.04 and θx = 0.87 (corresponding to kx = 2) for αV = 0.03

and αC = 0.06. When we use formula (3.30) and take θx = 0.91 as the ESS

baseline (V = 0.02, C = 0.04), we obtain θ′x = 0.91
3
2 = 0.868 as the new

ESS which is close to the 0.87 value that we get from the simulations. Thus

the results from these simulations support formula (3.30). We have also anal-

ysed different values of α = 2, 1/2, 1/5, 5 and we obtain ESS corresponding to

kx = 2 for all the cases. We can conclude that equation (3.30) gives a good

approximation for the ESS. This is always true when we have small values of

V and C, however there are some cases when it works less well, principally

where V or C is large (or we have an α which will lead to large V or C in the
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comparative model). We note that the larger V and C, and the bigger T , the

more unrealistic multiplying the RHP by a constant after every contest is. On

the other hand the smaller T , the more times there are when we cannot dis-

tinguish between a pair of individuals as neither of them has retreated. Thus a

realistic model should only contain relatively small V and C.

3.6 Discussion

In this chapter we have introduced game-theoretical elements to the winner-

loser model developed by Dugatkin ([42], [44], [73]). We considered a group

of individuals that are characterised by their RHP and a strategy θ that in-

dicates whether an individual would engage in an aggressive interaction or

retreat. All individuals were assumed to possess the same RHP initially. We

have developed a model that determines the expected payoff and ESS for dif-

ferent group sizes and payoffs, involving V and C, in such a population.

In the first part of this chapter, we derived analytical results for a group of

two individuals for the expected payoff and found the ESS, using ln(RHP ) as

the payoff function, which corresponds to situations with unlimited resources.

In order to calculate the expected payoff for individual x with strategy θx, we

first found the condition when this individual would retreat, represented by

k. The variable k describes the critical difference between the number of wins

and losses, below which individual x retreats. Given that a win increases the

value of RHP , the value of k corresponds to the difference in RHP and thus

only the individuals with a high RHP relative to their opponents risk engaging

in an agonistic interaction to obtain more access to the available resources.

We showed that there is a range of strategies θx that correspond to the same

value of k, meaning that they will give the same payoff. Furthermore different

combinations of V and C yield different ranges of θx for any given value of k.

We illustrated this analytical part with an example where we assumed V =
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C = 0.1. We found the expected payoff for different strategies θ ≥ 0. In this

case we obtained a pure ESS which was achieved for k = 3, corresponding to

the θ range [0.55, 0.67]. Any strategy from this range gives the same payoff and

is an ESS. We next varied V and C and saw the effect of this variation on the

expected payoff and the ESS. As expected, if V is increased for a fixed C the

individuals will fight more, corresponding to lower values of θ. On the other

hand, if C is increased for a fixed V , we get bigger values of θ as an ESS. This

means that individuals will fight less as C is increased.

We also used the idea of the reproductive skew ([27], [66], [103], [109],

[121]) to study how scarce resources are divided between a pair of individuals

by using an alternative payoff function given in equation (3.27). When com-

paring the results with the ones obtained for the original payoff function we

observe smaller values of θ as an ESS. This means that in this case individuals

need to be more aggressive in order to obtain a larger share of the available

resources.

Enquist and Leimar [49], developed a mathematical model to study the

evolution of fighting behavior. The model consists of a pair of individuals with

different fighting abilities which have only noisy information about this dif-

ference prior to an aggressive interaction, although they can gain some infor-

mation during the game by keeping track of the outcomes of the fights (wins

and losses). This gives them an idea of the probability of winning the next

contests. The individuals are fighting over a resource of value V and in each

round, there is a cost for both of them. Depending on the value of the costs

and reward, each individual fights until it meets a given threshold. Note that in

our model, we assume that the individuals start with the same fighting ability

(denoted RHP ) which then changes following the results of interactions, and

they have perfect knowledge of this ability at every point in time. The ESS for

an individual against the strategy of its opponent was calculated and similarly

to our result, they concluded that there is a unique, pure ESS that evolves as
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opposed to a mixture of strategies.

Whilst in our model, and in those of [42] and [44], linear hierarchies are

generally formed efficiently when (i) winner and loser effects are both present,

(ii) only the winner effect or (iii) only the loser effect is present, the three

models give clearly distinct predictions. With only the winner effect present

individuals in our model (for optimal strategy choice) and that of [42] will

continue fighting indefinitely, whereas in [44] individuals start fighting, but

eventually contests cease. With only the loser effect present, individuals would

give up immediately in our model (at least for the plentiful resources case

defined by payoff function (3.11)), would give up after the first loss in the

model of [42], and would fight for some longer period in the model of [44].

These differences in the results of the three models are rooted in the modelling

assumptions. In [42] there is no strategic choice and individuals do not know

their opponent’s RHP , in [44] there is no strategic choice but they do know

their opponent’s RHP and in our model there is strategic choice and their

opponent’s RHP is known. Thus [44] can be thought of as an intermediate

model between the other two. However, the predictions of our model are closer

to that of [42] than [44] and we would argue that these are more realistic.

Other authors have considered alternative game-theoretical models of dom-

inance hierarchy formation. A good recent survey, which raises some interest-

ing questions and suggestions for further modelling is [89]. We shall discuss

two such models. Van Doorn and co-workers [118] analysed the evolution

of dominance hierarchies by assuming that individuals are identical in ability

throughout the time of their interaction, and so while their strategic choices

depend upon past results, the actual probability of winning a contest depends

upon the strategic choices of individuals, rather than their actual abilities. This

is an example of what Maynard Smith [83] called an uncorrelated asymmetry

(as opposed to a correlated asymmetry, as in our model). They found several

evolutionary equilibria, one of them was the “dominance” equilibrium with the
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winner and loser effect where previous winners were more likely to take part

in aggressive interactions and previous losers less likely to be aggressive. They

also found a paradoxical equilibrium where the higher position was occupied

by the loser of an aggressive interaction rather than the winner. These results

are very similar to those from the owner-intruder game [83] where paradoxical

convention-based outcomes can occur. For example in Oecibus civitas spiders,

it has been observed that owners of the webs give up their webs to the intrud-

ers [83]. They then extended this model to larger group sizes [119], where

the individuals still had limited information about previous fights. The results

were the same as in the two-player model. The assumptions and outcomes are

thus rather different to our model.

Fawcett & Johnstone [53] developed a model to analyse the level of ag-

gression where each individual differed in strength, but where they had no

information about this difference. They predicted that the level of aggression

is related to the amount of information that an individual has about prior con-

tests. While the young individuals should be more aggressive as they are not

sure about their fighting ability, the older ones are not. They have knowledge

of prior experience and they retreat after a series of losses. Although the mech-

anisms differ, the actual way that the populations evolve is quite similar to

ours. In their model there are real differences between individuals, but the

individuals start with no knowledge and learn over time; in our model indi-

viduals have varying probabilities of being able to win a contest, which change

(perhaps due to psychological factors) over time. In each case, after a time it is

clear which individuals are the better ones, and the level of aggressive interac-

tions declines, as more individuals play the more passive strategy. We note that

in their model, the eventual division into mainly aggressive strong individuals

and mainly passive weak individuals is dependent upon an intermediate num-

ber of strong/ weak individuals, and that this divide would not happen for all

population divisions.
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In each of the strategic models discussed above ([53], [118] and [119], in

addition to ours) individuals face a potentially long sequence of contests where

they have two options at each step. Thus, in the same way as in games such as

the classical iterated prisoner’s dilemma [7], there is a vast array of potential

strategies. Each model reduces the dimensions of this strategy space in differ-

ent ways. In the models of [118], [119], individuals were constrained to have

a memory only of the latest interaction with an individual, and so could base

their play only on the results of this latest interaction (from the iterated pris-

oner’s dilemma “tit for tat” is such a strategy). Fawcett & Johnstone [53] allow

individuals to know their performance from all past contests, but allow them

only to condition play on the total number of contests encountered, together

with the number of wins in these contests. Our model behaves in a similar way

to that of [53], basing strategy on the RHP , which in turn depends directly

upon the number of won and lost contests of the participating individuals.

Similar results to those from our model concerning aggression levels have

been found in experimental settings. Kotrschal et al. [72] performed a feeding

experiment with greylag geese. Grained food was given in high, medium and

low density. The geese were fed twice daily and the level of aggression was

recorded. They found a low number of agonistic interactions in the high food

density setting and an increase in those aggressive interactions when the food

density was decreased. Nie et al. [99] conducted feeding experiments with

varying levels of predation with root voles. They considered four treatments

by combining different levels of predation and food supply (i.e. (no preda-

tion, food), (predation, food), (predation, no food), (no predation, no food)).

They observed higher levels of aggressiveness in the groups treated with un-

favourable conditions (predation, no food) compared to groups treated with

(no predation, food). When the groups were treated with (predation, food)

and (no predation, no food) the level of aggression observed was intermedi-

ate. These findings support our model’s predictions that if resources are scarce,
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then an individual needs to be more aggressive in order to obtain a larger share.

An important concept related to the expected payoff is that of the stopping

time. The stopping time is defined as the first time when one of the two indi-

viduals hits its stopping value of k. It gives a guideline for how many agonistic

interactions we need to observe in a pair of individuals before one retreats.

After hitting the stopping time an individual would then always retreat after-

wards. We showed in our example that twenty possible interactions is enough

for an individual to retreat in almost all cases. Note that if Tmax is relatively

larger than the stopping time, the continued increase of the winner’s RHP

after the stopping time is unrealistic. If, however, Tmax is smaller than the stop-

ping time, it is more difficult to distinguish between a pair of individuals in

terms of their ranks in the hierarchy.

Analytical results can be derived for a group of two individuals but for larger

group sizes those derivations become effectively intractable. To explore the

behaviour of larger group sizes, in particular to find the ESS, we developed in

the second part of the chapter a simulation approach. Analysing a group of

four individuals we found that the value of the ESS is increased when V is

increased (for a fixed C) and by contrast the value of the ESS is decreased

when C is increased (for a fixed V ). Comparing the values of ESS for a group

of two individuals with the ones obtained for a group of four individuals leads

to the conclusion that individuals should be less aggressive (i.e. fight less) in

larger groups.

While this result is commonly observed in behavioural experiments, there

are experimental settings leading to contradictory conclusions. For example,

Nicol et al. [98] conducted a feeding experiment with Isa brown hens. They

analysed the behaviour of the birds in groups of four different sizes (72, 168,

264 and 368). The birds were fed twice a day and the number of aggressive

pecking interactions were recorded. The results suggested a higher level of

aggression in the smallest group (72) compared to the larger groups (168, 264,
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368). Further, Anderson et al. [5] compared their model predictions (larger

group sizes result in lower aggression levels) with results from an experiment

with crossbred pigs. They considered three groups of 6, 12 and 24 pigs (which

had not interacted with each other previously) which were put into pens and

the space per individual was kept the same. There was one feeder per six pigs

and they were fed on ‘Format Start’ every morning. The aggressive interactions

in each group were then recorded. It was observed that the level of aggression

decreased with increasing group size. This result was also supported by further

experiments ([50], [51], [113] [117]). However, Bilvci et al. [14] observed

the aggressive behaviour in a feeding experiment with groups of 15, 30, 60 and

120 Hisex white hens and noticed higher level of aggression in larger groups

of birds than in the smaller ones.

Summarizing, we presented a game-theoretical model which determines

the evolutionarily stable aggression level in a populations of N individuals and

different payoff functions, involving V and C, within a winner-loser frame-

work. Within a group, we found that the population evolves to a unique

aggression threshold, indicating that relative to their strength, all individuals

adopt the same decision rule against whom to fight. Typically the hierarchy is

established quickly, with aggressive fights happening only in the early contests.

While higher values of C for losing an aggressive interaction (keeping the

value of V constant) lead to lower aggression levels in the population the

reverse is true for increasing the value V for winning an aggressive interac-

tion (keeping C constant): the higher the value of V the higher is the ag-

gression level in the population. Further, we predict lower aggression levels

in larger populations. Our results are largely supported by experimental evi-

dence so that we conclude that the introduction of game-theoretical elements

to Dugatkin’s winner-loser model, provides a further step towards a realistic

description of aggressive interactions.

It is clear from our model that winner-loser effects can produce linear hi-
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erarchies similar to the ones found in different groups of animals. However,

in nature, animals tend to fight opponents of the same strength [23]. In the

following chapter, we analyse the Swiss tournament that describes exactly such

scenarios.
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Chapter 4

An Alternative Swiss Tournament

Model of Dominance Hierarchy

Formation

4.1 Introduction

In Chapters 2 and 3, we analysed dominance hierarchies formed under the in-

fluence of the winner and the loser effect, where individuals of a population

are randomly paired together and fighting only when the conditions are favor-

able for both of them. As explained in Section 1.3.4, winner and loser effects

are one possible mechanism to understand how different groups of animals ar-

range themselves into a ranking order. There are other types of tournaments

that animals can follow in order to establish a dominance hierarchy. In this

chapter we present an alternative model of dominance hierarchy formation

where only individuals with the same strength fight each other. The model that

we consider is the Swiss tournament developed by Broom & Cannings [23] and

we refer to this model as the usual Swiss tournament. Initially, it is assumed

that each individual has the same ability to win a fight. At each round only

the individuals with the same number of wins fight each other. Although this
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is a very structured model, it can happen due to different features of the envi-

ronment, possibly spatial. For example [23] consider the example of carpenter

bees Xylocopa (Neoxylocopa) varipuncta, (see [2]), that live in an environment

where higher positions in altitude are preferred as opposed to the lower ones.

At first, bees might meet at an intermediate level (height) with the winners go-

ing up in height and the losers down. Thus at every level only the individuals

with the same success rate are aggregated together. There are two issues when

considering dominance hierarchies following this type of model. The first one

is that the dominance relation is not clear for all the pairs in the group, thus

we do not get a linear hierarchy if we follow the definition of linearity given in

Chapter 1. The second issue is related to the correlation between the outcome

of consecutive contests of an individual. While a win increases the probability

of winning the next fight (winner effect), a loss decreases it (loser effect). The

winner and the loser effect are not used in the Swiss tournament developed

by [23] as individuals with the same success rate fight each other and thus

the outcome of a fight is not affected by the sequence of wins and losses and

two justifications are given for this. The first one is that there is a long time

from one contest to the next and the individuals have a short memory and thus

they cannot use the prior experience. The next justification is that each indi-

vidual measures its strength by the position where it is at a specific moment

(the height on the hill for the bees) and that it is not important how it arrived

in that position.

One of the limitations of this tournament is that it can be used only for

population of size 2n. In this chapter, we generalise this model to be applied

in populations of size N by introducing the concept of “byes” . A number of

assumptions are the same as in the Swiss tournament developed by [23].

(1) We still consider populations where individuals have the same strength

initially.
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(2) The winners go one level up and the losers go one level down. If there

are unpaired individuals, they will get a bye and be classed as a winner.

As in [23] the prior experience is not taken into consideration as only the

individuals with the same number of wins and losses fight each other. Thus the

probability of winning is 0.5.

We prove that linear hierarchies are always established in Swiss tourna-

ments with byes and that we can distinguish between each pair of individuals.

As we mentioned above, this was an issue in the first model. Hence Swiss tour-

naments with byes are better designed for groups of individuals that want to

establish a linear hierarchy, where everyone has a clear position in the group.

The fact that we can distinguish between each pair of individuals means

that the Swiss tournament with byes has more fights and hence last longer

than the usual Swiss model where the hierarchy was established in n rounds.

In Section 4.2.1 and 4.2.2 we find how many round are needed for the winner

and the second place to be unique. In Section 4.2.3 we give an approximation

for the total number of rounds until the dominance hierarchy is established and

in Section 4.2.4 the formula for the total number of fights is derived. In Section

4.2.5 we find the expected reward for an individual that has won i contests out

of j and the probability of being aggressive (playing Hawk). We illustrate this

with an example. In Section 4.2.6 the effect of the group size and cost on

the level of aggressiveness is analysed and in Section 4.2.7 we analyse how

the probability of being aggressive changes when an individual with a score

i|j wins any consecutive round. In Section 4.2.8 we compare the properties

of Swiss tournaments with byes with winner and loser models. Another point

of interest is finding the total number of fights until the last round. This is

analysed in Section 4.2.4.
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4.2 Swiss tournaments with byes

In this section we extend further the usual Swiss tournament by analysing pop-

ulations of size N rather than 2n. We use the same principles as in the usual

Swiss tournament [23]. The only difference is in the fact that in the Swiss

tournament with byes in each round we might have individuals that are not

paired, due to the general group size N . In this case those individuals get a

‘bye’ and will end up in a winner’s group. As in [23], the Swiss tournament

with byes is modelled as a Hawk-Dove game, the matrix of payoffs is given by

Mij in Section 1.3.5.2 and the results 3, 4, 5 and 6 hold for this model as well.

Consider a population of size N and let us denote by Si,k the number of

individuals with a score i in round k. At the beginning, each individual starts

with 0 wins. Thus S00 = N . In each round, the individuals with the same score

are paired together to fight. The winner gets an extra win and the loser gets an

extra loss. Those individuals that are not being paired (due to having unique

scores or not being selected to fight from an odd-numbered group), get an

extra win. Assume that in round k we have Si,k individuals. We are interested

to analyse how the individuals are divided in each round. To do so we first

need to give the definition of an unbroken sequence as follows:

Definition 4. An unbroken sequence is one where Si,k > 0 and Sl,k > 0 ⇒ Sj,k >

0 ∀i < j < l.

In other words, by an unbroken sequence we mean an uninterrupted order-

ing of losses.

If each individual has a different score at round k we say that we reach

a unique sequence. The round where we get a unique sequence will be con-

sidered as the last round of the competition. Equation (4.1) below gives the
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number of individuals with a score i at round k + 1;

Si,k+1 = ⌊
Si,k

2
⌋+ ⌈

Si−1,k

2
⌉ (4.1)

where ⌊
Si,k

2
⌋ gives the number of individuals with i wins that lose in round k

and ⌈
Si−1,k

2
⌉ gives the number of individuals with i − 1 wins that win in round

k. Figure 4.1 gives the number of individuals and their corresponding scores

in rounds 1 and 2.

 

�00 (score 0|0)  

�002  (score 1|1) 

�0022  (score 2|0) 

�0022 +

�0022  (score 1|2) 

�002  (score 0|1) 

�0022  (score 0|3) 

Figure 4.1: The number of winners and losers in round 1 and 2. For example,

if we have S0,0 individuals at the beging with 0 wins and losses, we would have

⌈S0,0

2
⌉ individuals on the next round with one win and no losses, and ⌊S0,0

2
⌋

individuals with one loss and no wins.

In Figures 4.2 and 4.3 we show how the individuals are divided in every

round for N = 3, 4

Lemma 4.2.1. If Si,k > 0 and Sl,k > 0 then Sj,k > 0 ∀i < j < l and ∀k. This

means that in each round we have an unbroken sequence.

Proof. As mentioned earlier S00 = N and Si,0 = 0 otherwise. Thus at the

beginning (round 0), we have an unbroken sequence of zeros.

Suppose that we have an unbroken sequence in round k so that Si,k > 0 for

m ≤ i ≤ M and Si,k = 0 for i < m or i > M .
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�00 = 3 

(score 0|0) 

1 win + 1 bye 

(score 1|1) 

1 win 

(score 2|2) 

1 bye 

(score 3|3) 

1 loss + 1 bye 

(score 1|2) 

1 win 

(score 2|3) 

1 loss 

(score 1|3) 

1 loss 

(score 0|1) 

Figure 4.2: The number of winners and losers in every round in a group of 3

individuals. For example at the begining we have 3 individuals on a score 0|0
(0 wins out of 0 rounds), in the first round we have 2 individuals on a score 1|1
( one gets this score after fighting and winning and the other gets to this score

by getting a bye as it was not paired with any oponent), and 1 individual on a

score 0|1.

From equation (4.1) we have that Si,k > 0 ⇒ Si+1,k+1 > 0. Similarly Sj,k+1 = 0

for j < m or j > M + 1. Sm,k+1 = 0 if and only if Sm,k = 1, but whether it is

or not, we have an unbroken sequence in round k + 1. Thus by induction the

sequence is always unbroken in every round.

Corollary 4.2.2. Note that as S00 > 0, from equation (4.1) we have M = k, ∀k .

Lemma 4.2.3. The Swiss tournament with byes produces linear hierarchies where

each individual has a unique profile. Thus if the hierarchy is established in ŨN

rounds, then S
i,ŨN

= 1 ∀i ∈ [ŨN −N + 1, ŨN ].

Proof. From Corollary 4.2.2 we have that Sk,k > 0 ∀k. If Sk,k > 1 then Sk+1,k+1 <

Sk,k and so eventually Sk1,k1 = 1, and moreover Sk,k = 1 ∀k > k1.

Next we consider the remaining N − 1 individuals. Eventually we will obtain a

unique high score where Sk2−1,k2 = 1 (from Lemma 4.2.1 we have Sk2−1,k2 > 0)

and this score cannot be reached by other individuals in the group. Similarly

we can consider the remaining N − 2 individuals and so on. We thus obtain

a unique sequence, where each individual ends the competition with a unique

score.
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�00 = 4 

(score 0|0) 

 

2 win 

(score 1|1) 

1 win 

(score 2|2) 

1 bye 

(score 3|3) 

1 bye 

(score 4|4) 

1 loss + 1 bye 

(score 1|2) 

1 win 

(score 2|3) 

1 bye 

(score 3|4) 

1 loss + 1 bye 

(score 1|3) 

1 win 

(score 2|4) 

1 loss 

(score(1|4) 

2 losses 

(score 0|1) 1 loss 

(score 0|2) 

Figure 4.3: The number of winners and losers in every round in a group of 4

individuals. For example at the begining we have 4 individuals on a score 0|0
(0 wins out of 0 rounds), in the first round we have 2 individuals on a score

1|1 ( they both get to this score by fighting and winning), and 2 individuals on

a score 0|1.

4.2.1 The exact number of rounds until a unique winner

In this section we find the number of rounds needed in order to have a unique

winner. The winner will be that individual that has not lost a fight. In the

first round of the tournament there are ⌈N
2
⌉ winners. In the following round

there are ⌈
⌈N

2
⌉

2
⌉ undefeated individuals and this continues until there is a single

winner which happens in round ⌈log2(N)⌉. Then the time t1 when the first

place is established is

t1 = ⌈
log(N)

log(2)
⌉ (4.2)

In Figure 4.4 we have plotted the time when the first place is established for

group size from 2 to 100. Clearly, the time of establishment of the first place

is either constant or increased by one. After the winner is decided (at round

t1), it will get a bye ( getting a bye is the same as winning) until the end of the

competition and no other individual can ever catch it.
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Figure 4.4: The time of establishment for the first place when N = 2, ..., 100

4.2.2 The exact number of rounds until a unique second

place

We are interested in finding the number of rounds until the second place is

decided. We consider populations of size 2n and N individuals

4.2.2.1 Populations of 2n individuals

Firstly, we need to find the number of individuals that are at the second place

at time t1 (when the winner is decided). In other words we need to find St1−1,t1.

Consider Pascal’s triangle in Figure 4.5. Row 2 contains two number 1’s.

Equation (4.3) (
n

k

)
=

n!

k! (n− k)!
(4.3)

gives the numbers in the triangle where n is the number of the row and k is

the element in that row. The sum of numbers in each row is equal to 2n. We

relate this triangle with the division of individuals at round t1, where t1 is the

round where we get a unique winner and is found by formula 4.2. For example

the sixth row gives how the individuals are split in a group of 25 individuals,
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Figure 4.5: Pascal’s triangle

when the winner is established. The second value of this row (which is 5)

gives the number of individuals that are in the second place at this moment.

In general for 2n individuals, we have n individuals at time t1 = n, because the

value of the second element is increased by one when we go from row i to row

i + 1, ∀i ≤ n. Thus St1−1,t1 = n. To find the time when the second place is

established, which we denote it by t2, we use the same procedure as we did for

the winner (see Section 4.2.1). Thus the time (round) when the second place

is unique is given by the following equation

t2 = n+ ⌈
log(n)

log(2)
⌉. (4.4)

where n is the time when the winner is established (in a group of size 2n) and

⌈ log(n)
log(2)

⌉ is the time when the winner is established in a group of n individuals.

4.2.2.2 Populations of N individuals

So far we found the round t1 where we have a unique winner in a group of N

individuals and also St1−1,t1 and t2 (the round when we have a unique second

place) in a group of 2n individuals. We are interested to find t2 for a group of

size N . First we need to find how many individuals are on the second place
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(St1−1,t1) when the winner becomes unique. If we denote the following

G(N) = ⌈
N

2
⌉ (4.5)

and

F (N) = ⌊
N

2
⌋ (4.6)

then, for the early rounds the N individuals will be divided as in Figure 4.6

G(G(G(N)))

G(G(N))

G(N) F (G(G(N))) +G[F (G(N)) +G(F (N))]

N F (G(N)) +G(F (N))

F (N) F [F (G(N)) +G(F (N))] +G(F (F (N)))

F (F (N))

F (F (F (N)))

Figure 4.6: How N individuals are split in rounds 1, 2 and 3.

From Figure 4.6 we can generalize and say that the number of individuals

at the second place, at time t1 is:

St1−1,t1 = FGt1−1 +G(FGt1−2 +G(FGt1−3 +G(FGt1−4 + ...+G(FG+GF )))...)

(4.7)

where e.g. FG2 = F (G(G(N))). Note that FGt1−1 = 1 as this represent a single

individual that has lost to the winner. Thus equation (4.7) becomes

St1−1,t1 = 1+G(FGt1−2+G(FGt1−3+G(FGt1−4+ ...+G(FG+GF )))...). (4.8)

From equation (4.2) we find that it takes ⌈
log(St1−1,t1 )

log(2)
⌉ rounds to have a unique

winner in a group of St1−1,t1 individuals. This means that the time when the
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second place is unique is given by t2 as follows

t2 = t1 + ⌈
log(St1−1,t1)

log(2)
⌉ = ⌈

log(N)

log(2)
⌉+ ⌈

log(St1−1,t1)

log(2)
⌉. (4.9)

Note that for populations of size 2n, equation (4.9) reduces to equation (4.4).

4.2.2.3 An approximation for the number of rounds until the second

place is unique in a group of N individuals

Above we derived a formula that gives the exact number of rounds until we

have a unique second place individual. Sometimes for large group sizes, it takes

a lot of steps to calculate t2. For this reason, here we give an approximation for

t2 which we denote it by t̃2 so that we can distinguish with t2. For 2n individuals

we found that there are n individuals at the second place and that t1 = n. This

means that for N individuals we have t1 = ⌈ log(N)
log(2)

⌉ andSt1−1,t1 = ⌈ log(N)
log(2)

⌉ . Thus

the time step when the second place is unique will be

t̃2 = ⌈
log(N)

log(2)
⌉+ ⌈

log(⌈ log(N)
log(2)

⌉)

log(2)
⌉. (4.10)

Most of the times t̃2 gives the right value for when the second place is unique

and occasionally it gives one less than the exact one.

We found analytically the round when the winner and the second place are

unique. For the other ranks in the group, it is not easy to find analytically

the time when they are unique. In Figure 4.7, we have plotted the time of

establishment for each rank in different group sizes.

4.2.3 The total number of rounds

In this section we find how many rounds are needed in total in order to have a

unique sequence (linear hierarchy). We know that the winner wins every con-

test until a unique sequence is established. This means that the total number
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N 2 3 4 5 6 7 8 9 10 ... 1000

ŨN 1 3 4 6 8 10 11 13 15 ... 1968

Table 4.1: Number of wins for the first place at the end of the tournament for

different group sizes.

of rounds until a linear hierarchy is established, is equal to the total number of

wins of the first place, which consists of real fights and byes.
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Figure 4.7: The time of establishment for ranks from 1 to 6.

Following the procedure given in Figure 4.1 we compute the number of

wins for N = 2, 3, ..., 1000. We denote the total number of wins for the first

place, until a unique sequence, in a group of N individuals by ŨN . Some of

the results are given in Table 4.1. In general we find that when we go from a

group of size N to N + 1 the number of wins for the first place is increased by

2 except for when N = 4, 8, 15, 24, 32,48, 62, 80, 101, 122, 147, 171, 202,

230, 267, 299, 339, 377, 418, 464, 509, 559, 611, 664, 719, 776, 836, 896,

960,... where the total number of wins is increased by one (a jump of one).

We plot the group sizes with a jump of one in Figure 4.8 where on x− axis we

have N = 2, ...., 1000 and on y− axis we have the times when a jump of one

happens.
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Figure 4.8: Group sizes where a jump of one happens in the number of wins of

the first place individual.

We find that the curve with equation

Cf = 1.047N0.4878 − 0.912 (4.11)

fits these data with R2 = 0.99. Then

UN = 2(N − 1)− 1.047N0.4878 + 0.912 (4.12)

gives an approximation for the number of wins for the first place in a popula-

tion of size N .

As the number of wins is an integer, we round the equation (4.12) to the

nearest integer. Then the number of wins ŨN for the first place is

ŨN = [UN ] = [2(N − 1)− 1.047N0.4878 + 0.912], (4.13)

where [.] stands for the nearest integer. For most values equation (4.13) gives

the exact result for the number of wins, but occasionally it overestimates it or

underestimates it by 1.
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4.2.4 The number of real fights

In this section we find the total number of real fights in the tournament.

If we denote by A = [a1, a2, ..., aŨN ] the number for fights in each round, where

aj corresponds to the number of fights at round j, then
∑ŨN

j=1 aj gives the total

number of fights. For example, for N = 4, 5, 6, 7, 8, 9, 10 we have the following:

N = 5 ⇒ A = [2, 2, 2, 2, 1, 1, 0] ⇒ The number of total fights is 10

N = 6 ⇒ A = [3, 2, 2, 2, 2, 2, 1, 1, 0] ⇒ The number of total fights is 15

N = 7 ⇒ A = [3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 0] ⇒ The number of total fights is 21

N = 8 ⇒ A = [4, 4, 4, 2, 3, 2, 3, 2, 2, 1, 1, 0] ⇒ The number of total fights is 28

N = 9 ⇒ A = [4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 0] ⇒ The number of total fights is 36

N = 10 ⇒ A = [5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 0] ⇒ The number of total

fights is 45

We notice that the total number of fights in a group of N individuals is equal

to N(N − 1)/2, which corresponds with the number of fights in a round-robin

tournament.

Now we prove analytically that the total number of fights in a group of N

individuals is equal to N(N − 1)/2.

For any particular group of individuals we are able to find their deficit with

the maximum (winner) and the number of fights. Assume that Si,k is the num-

ber of individuals at round k that have scored i wins (denoted by i|k) where

each individual has a deficit of (k−i) from the maximum. The number of fights

for this group is ⌊
Si,k

2
⌋. Then the total deficit below the maximum at round k

which we denote by dk will be

dk =
k∑

i=0

Si,k(k − i) (4.14)

Furthermore the total number of fights at round k will be denoted by fk and is
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equal to

fk =
k∑

i=0

⌊
Si,k

2
⌋ (4.15)

Theorem 4.2.4. The deficiency dk below the maximum at round k is equal to the

number of fights prior to this round and because the deficit in the last round is

d
ŨN

=
N(N − 1)

2

then the total number of fights is N(N−1)
2

, where ŨN and N are the index of the

last round and the group size respectively.

Proof. For the Si,k group where the number of fights is ⌊
Si,k

2
⌋, each individual

before the fight has a deficit of (k − i). Let us see what happens at the next

round (k + 1). We know that a bye or a win does not change the number of

losses, whereas a loss increases the number of losses by 1. Then on the next

round we have ⌊
Si,k

2
⌋ individuals on a score i|(k + 1) where each individual

has a deficit of k + 1 − i and the rest of individuals Si,k − ⌊
Si,k

2
⌋ have a score

(i+ 1)|(k+ 1) where each individual has a deficit of (k− i). The total deficit in

round k is dk given in equation (4.14) and the total deficit in round k + 1 will

be

dk+1 =
k∑

i=0

[⌊
Si,k

2
⌋(k + 1− i) + (Si,k − ⌊

Si,k

2
⌋)(k − i]

=
k∑

i=0

⌊
Si,k

2
⌋+

k∑

i=0

Si,k(k − i)

= fk + dk

(4.16)

Thus we have shown that

dk+1 = dk + fk (4.17)

which means that the new deficit in round k+1 is equal to the total sum of the

deficit and number of fights at round k.
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Let us show now that dk =
∑k

j=0 fj is equal to the total number of fights.

The deficit in round 0 is d0 = f0 = 0. Assume that equation (4.18) is true.

dk =
k∑

j=0

fj (4.18)

Then from equation (4.17) we have dk+1 = dk + fk ⇒ dk+1 =
∑k+1

j=0 fj.

Thus we proved that if equation (4.18) is true for k, then it is also true for k+1.

By induction equation (4.18) holds for every k and in particular it is true for

the last round ŨN where we have

d
ŨN

=

ŨN∑

j=0

fj =
N(N − 1)

2
(4.19)

But we know the deficit in the last round is

d
ŨN

=
N(N − 1)

2
. (4.20)

Thus the total number of fights in a group of N individuals is N(N−1)
2

.

In summary, in previous sections, we have analysed the model with respect

to the fighting structure. We have seen how long it takes until the winner and

the second place are established and we also found the total number of real

fights. In the following section we find the expected reward for an individual

after any win or loss.

4.2.5 The expected reward for an individual on a score i|j

In this section we find the expected reward for an individual that is on a score

i|j (having won i contests until round j). As in the Swiss tournament developed

by Broom & Cannings [23], the Swiss tournament with byes is modelled as a

Hawk-Dove model where individuals always interact with each other with the

winners getting an extra point and the losers staying on the same score. The
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only difference is on the rewards where the payoff matrix is as follows:

Mij =




1
2
(W(i+1)(j+1) +Wi(j+1) − C) W(i+1)(j+1)

Wi(j+1)
1
2
(W(i+1)(j+1) +Wi(j+1))


 (4.21)

where again, Wi,j is the expected reward for an individual with a score i|j,

W(i+1),(j+1) is the expected reward for an individual with a score i|j to win the

next contest, Wi,(j+1) is the expected reward if it loses and C is the cost that

the loser pays if the contest is Hawk-Hawk. If pij is the probability of playing

Hawk in the ESS (for an individual on a score i|j) then the followings apply.

(1) pij = 0 means that an individual plays Dove. This happens if W(i+1),(j+1)−

Wi,(j+1) < 0. The expected payoff for this strategy is 1
2
(W(i+1),(j+1) +

Wi,(j+1)).

(2) p = 1 means that an individual plays Hawk, which happens if W(i+1),(j+1)−

Wi,(j+1) ≥ C. The expected payoff for this strategy is then 1
2
(W(i+1),(j+1) +

Wi,(j+1) − C).

(3) For 0 ≤ W(i+1),(j+1) −Wi,(j+1) < C we have p =
W(i+1),(j+1)−Wi,(j+1)

C
and the

expected payoff in this case is 1
2
(W(i+1),(j+1) +Wi,(j+1))−

1
2C

(W(i+1),(j+1) −

Wi,(j+1))
2.

In [23] (2n individuals) the expected payoff is given by the following single

expression:

Wij =
1

2
(W(i+1)(j+1) +Wi(j+1) − p2ijC) (4.22)

In the Swiss tournament with byes, equation (4.22) becomes

Wij =
⌈
Si,j

2
⌉

Si,j

Wi+1,j+1 +
⌊
Si,j

2
⌋

Si,j

Wi,j+1 −
⌊
Si,j

2
⌋

Si,j

p2ijC. (4.23)
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where Si,j is the number of individuals on a score i|j, C is the cost and pij is the

probability of being aggressive when on score i|j. Thus
⌈
Si,j

2
⌉

Si,j
is the probability

that an individual will win or get a bye and
⌊
Si,j

2
⌋

Si,j
is the probability that it loses.

The probability pij is as follows:

pij = mid

(
0,

Wi+1,j+1 −Wi,j+1

C
, 1

)
. (4.24)

As in the Hawk-Dove model, pij = 0 does not occur, and so equation (4.24)

becomes

pij = min

(
Wi+1,j+1 −Wi,j+1

C
, 1

)
. (4.25)

We found that the total number of rounds until a linear hierarchy is established,

is equal to the total number of wins of the first place, which is given by ŨN ,

thus the reward for finishing on a score i|ŨN is Vi where V0 ≤ V1 ≤ ... ≤ V
ŨN

∀i.

Note then when Si,j = 0 (no individual is on a score i|j), the expected reward

Wij will be equal to the expected reward if there was to be one individual on

i|j. In this case as Si,j = 1 the individual will get a bye and end up on a score

(i + 1)|(j + 1). Thus in this case we have Wi,j = W(i+1),(j+1). In the matrix of

payoffs we put brackets around Wij when the corresponding Si,j = 0. We use

the same logic for the probability pij when Si,j = 0 as for when Si,j = 1.

4.2.5.1 A Numerical example

Consider a game with N = 4 individuals, cost C = 1 and rewards Vi = i for

i = 1, .., ŨN . For example the expected reward for an individual finishing on a

score 1|3 is. W1,3 = 1
2
2 + 1

2
1 − 1

2
1 = 1 where p1,3 = min

(
2−1
1
, 1
)
= 1. We find

the successive values of Wij and pij by using (4.23) and (4.25).

The results for Wi,j and pi,j are given in Tables 4.3 and 4.4.
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i|j 0 1 2 3 4

4 - - - - 1

3 - - - 1 1

2 - - 1 1 1

1 - 2 2 2 1

0 4 2 1 0 1

Table 4.2: The number of individuals on a score i|j (Si,j)

i|j 0 1 2 3 4

4 - - - - 4

3 - - - 4 3

2 - - 4 3 2

1 - 9
4

3
2

1 1

0 19
16

9
8

1 (1) 0

Table 4.3: Expected pay-offs to individuals on a score i|j (Wij)

i|j 0 1 2 3 4

4 - - - - -

3 - - - (1) -

2 - - (1) (1) -

1 - 1 1 1 -

0 1 1
2

(1) (1) -

Table 4.4: The probability of playing Hawk on a score i|j (pij)

4.2.6 The effect of group size and cost on the level of aggres-

sivenes

Another important concept is that of the weighted average of the probability

pij, which is a general measure of aggressiveness, and we will denote it by pN
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and calculate it as follows

pN =

∑ŨN

i,j=0⌊
Si,j

2
⌋pi,j

∑ŨN

i,j=0⌊
Si,j

2
⌋

. (4.26)

For the numerical example in section 4.2.5.1, we find he weighted average of

probability pij to be

pN = 0.9.

We are interested to see how the weighted probability pN changes when we

increase the cost C and the group size. Firstly we calculate pN for N = 4 and

C = 1, 2, ..., 100 and the results are plotted in Figure 4.9. We find that when the
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Figure 4.9: Weighted average of probability pij for N = 4, when C ranges from

1 to 100.

cost C is sufficiently large, the product CpN tends towards the value 1. Next,

we plot pN multiplied by the value of cost on the y-axis, and the value of the

cost on the x-axis. We do this for N = 5, 6, 7, 8, 9, 10, 48 and C = 1, 2, ..., 1000.

The results are plotted in Figure 4.10. From this figure we find that when the

cost is increased, the value of pN decreases. This means that for very large

values of cost, individuals are less aggressive. For each of the group sizes we

notice that the product CpN , converges to a value that we denote by lN
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Figure 4.10: Weighted average of probability pij *C when we increase the cost

from 1 to 1000 in different group sizes

For each group size we find the value of lN for when C = 1000. We plot

these results in Figure 4.11.

When the group size is increased, the value of lN also increases which im-

plies that pN also increases. This is related to the expected number of fights

that an individual has when it wins the first fight and when it loses the first

fight. For example when N = 4 (see Figure 4.3), the following sequences are

possible:

(1) An individual wins two fights in a row. We denote this sequence WW . In

this case, the total number of fights is equal to two.

(2) If an individual follows the sequence WLW (win-lose-win), it will finish

with a total of three fights.

(3) If an individual follows the sequence LWW (lose-win-win), it will finish

with a total of three fights.

(4) If the first two outcomes are LL (two loses in a row), it will finish with a

total of three fights.

(5) When it follows the sequence WLL or LWL, this individual will finish

with a total of four fights
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Thus, in general, an individual has more fights if it loses the first contest than

it has if it wins it. This is why the level of aggressiveness increases at round

1, as an individual does not benefit by ending up in a group of losers. As the

group size is increased, the difference between the first place and the last one,

increases.
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Figure 4.11: Weighted average of probability pij *C when we increase the cost

from 1 to 1000 in different group sizes

Note that in Figure 4.11 we have calculated lN for some other group sizes

as well. We find that the function

lN = 0.704(N + 1)0.4329 − 0.1765 (4.27)

fits the data in Figure 4.11 with R2 = 0.999. Finally, we can say that the

weighted average of probability pij is given by the following approximation:

pN =
1

C
(0.704(N + 1)0.4329 − 0.1765) (4.28)

For example for N = 2 we get pN =
1

C
which is exactly what we expect as

lN = 1.
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4.2.7 The effect of winning or losing a fight on the level of

aggressivenes

In this section we analyse the probability pij in more detail. Denote by P =

[pij]i,j=1,...,ŨN
the matrix of probabilities pij where pij represent the probability

of being aggressive if an individual has won i rounds until round j. If we

look at the leading diagonal, it gives us the probability of aggressiveness for

an individual when it wins all the fights. The next diagonal, parallel with

the leading one, gives us the probability of being aggressive for an individual

that starts with one loss and wins every round. Then the following parallel

diagonal gives us the probability of being aggressive for an individual that starts

with two losses and wins every other fight, and so on for the next diagonals.

Now, we analyse the behavior on each of these diagonals. For example for a

tournament with 5 rounds the matrix P is as follows

P =




p00 p01 p02 p03 p04 p05

− p11 p12 p13 p14 p15

− − p22 p23 p24 p25

− − − p33 p34 p35

− − − − p44 p45

− − − − − p55




(4.29)

The leading diagonal has j − i = 0. We will call this diagonal 0. The values in

this diagonal are: p00, p11, p22, p33, p44, p55

The next diagonal parallel with diagonal 0 has values: p01, p12, p23, p34, p45 where

the difference j − i = 1, we will call this diagonal 1. We repeat this for all di-

agonals parallel with the main one. We are interested only in those pij values

that have corresponding Si,j ≥ 2 as they represent the ‘real fights’.
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4.2.7.1 Example: N=20

In this example we consider a group of 20 individuals. We find the total number

of rounds given by ŨN as follows:

ŨN = [2(N − 1)− 1.047N0.4878 + 0.912] = 34 (4.30)

Thus it takes approximately 34 rounds (which coincide with the exact number

of rounds) for the hierarchy to be established. We calculate the values in matrix

P and the values on each diagonal corresponding to Si,j ≥ 2 are plotted in

Figure 4.12.
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Figure 4.12: Diagonal probabilities in P for N = 20. On the x-axis we have the

score i. The corresponding round for this score is i + ξ.

On the x-axis we have the score i and on y-axis the corresponding pij where

j = (i + ξ), and ξ correspond to the diagonal number. For example if we

consider diagonal 4, the first value correspond to i = 1. Then we can find

the round j as j = 1 + 4 = 5. This means that the first value in diagonal 4

is p1,5, the following one will be p2,6 and so on. We notice in Figure 4.12 that

the maximum for each diagonal is reached when there are only two individuals

fighting, and that is the final fight before the corresponding position is decided.

We are interested to see whether consecutive wins increase the probability of
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Diagonal (ξ) 0 1 2 3 4 5

No ind. in ξ+1, ξ+2, ξ+3, ξ+4 place 1, 4, 6, 6 1,4,5,6 1,4,5,5 1,4,5,4 1,4,4,4 1,3,4,4

Diagonal (ξ) 6 7 8 9 10 11

No ind. in ξ+1, ξ+2, ξ+3, ξ+4 place 1,3,3,4 1,3,3,3 1,3,3,3 1,3,3,2 1,3,2,2 1,2,2,2

Table 4.5: The number of individuals at the ξ+1, ξ+2, ξ+3, ξ+4 place in

diagonal ξ at the time when we have a unique winner. For example in diagonal

0 at the time when we have a unique winner kt1,t1 = 1 there are 4 individual

at the second place, 6 individuals at the third place and 6 individuals at the

fourth place.

being aggressive. In other words we want to check if p(i+1),(j+1) ≥ pi,j, as for

the original Swiss tournament [23]. While in most cases this is true, winning a

fight does not guarantee a higher level of aggressiveness. This can be seen on

diagonal 2 where p3,5 = 0.0032 and p4,6 = 0.003 and thus p4,6 < p3,5.

Another point of interest is to see how the level of aggressiveness changes from

one diagonal to the other. In order to do so we plot the maximum probability

(corresponding to the last fight) for each diagonal, in Figure 4.13. We know

that in each diagonal ξ, the position ξ + 1 is determined. For example the

winner is decided on diagonal 0, the second place is determined on diagonal 1,

and so on. From Figures 4.12 and 4.13, we see that the level of aggressiveness

is higher in diagonals 0, 1, 2, 3 and 4. In diagonal 5 there is a jump, the

pattern changes and there is less aggression. This is because the consequences

of winning and losing are less when we shift the diagonals. To understand

this better, for each diagonal ξ, we find the number of individuals that are at

position ξ+2 (one win less than the winner of that diagonal). These results are

given in Table 4.5 From diagonal 0 to diagonal 4 there are 4 individuals with

one win less than the winner, whereas at diagonal 5 there are 3 individuals

with one win less than the winner of this diagonal. Being in a group of 3 is

better than being in a group of 4, because in a group of 4, an individual needs

to win 2 fights to be at the top of the group, and in a group of 3 it needs to win

an average of
3

2
fights to be at the top. Thus a loss in diagonal 5 is not as costly

as a loss in the previous diagonals. This is the reason why the pattern changes,
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because it is affected by the cost of losing.

For the same reasons the pattern changes in diagonal 11, because here if an

individual loses, it would end up in a group of two individuals. In this case it

takes only one round to be the next best individual.

In general this means that the level of aggressiveness is higher when individuals

are fighting for a higher position in the group and lower when they are fighting

for the last positions in the hierarchy, as the reward is smaller.
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Figure 4.13: The maximum of each diagonal in matrix P when N = 20

4.2.7.2 Example: N=44

In this example we consider a group of N = 44 individuals. In Figure 4.14 we

plot the probabilities for each diagonal.
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Figure 4.14: Diagonal probabilities in P for N = 44. On x-axis we have the

score i. The corresponding round for this score is i + diagonal number.

Now we plot the maximum for each diagonal in Figure 4.15
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Figure 4.15: The maximum of each diagonal of matrix P for N = 44

From Figure 4.15 we see that the level of aggressiveness changes when

we go form one diagonal to the other, in particular there are five significant

changes. For the same reasons as in the previous example, these changes are

related with the number of individuals that are at positions ξ+2 and ξ+3 re-

spectively, at the time that the winner for each diagonal is established. These

numbers are given in Table 4.6. The first change in the level of aggressiveness

happens in diagonal 1, because here if an individual loses ends up in a group of
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Diagonal(ξ) 0 1 2 3 4 5

No ind. in ξ+1, ξ+2, ξ+3, ξ+4 place 1, 5, 10, 14 1,4,7,10 1,4,7,10 1,4,7,9 1,4,7,9 1,4,7,9

Diagonal (ξ) 6 7 8 9 10 11

No ind. in ξ+1, ξ+2, ξ+3, ξ+4 place 1,4,7,8 1,4,7,7 1,4,7,7 1,4,7,7 1,4,7,7 1,4,7,6

Diagonal (ξ) 12 13 14 15 16 17

No ind. in ξ+1, ξ+2, ξ+3, ξ+4 place 1,4,6,6 1,4,5,6 1,4,5,5 1,4,5,5 1,4,5,5 1,4,5,5

Diagonal (ξ) 18 19 20 21 22

No ind. in ξ+1, ξ+2, ξ+3, ξ+4 place 1,4,5,5 1,4,5,4 1,4,4,4 1,3,4,4 1,3,3,4

Diagonal (ξ) 23 24 25 26 27

No ind. in ξ+1, ξ+2, ξ+3, ξ+4 place 1,3,3,3 1,3,3,3 1,3,3,3 1,3,3,3 1,3,3,3

Diagonal (ξ) 28 29 30 31 32

No ind. in ξ+1, ξ+2, ξ+3, ξ+4 place 1,3,3,3 1,3,3,2 1,3,2,2 1,2,2,2 1,2,2,2

Table 4.6: The number of individuals at the ξ+1, ξ+2, ξ+3, ξ+4 place at the

moment that we have a unique winner for diagonal i and N=44. For example

in diagonal 0 at the time when we have a unique winner (kt1,t1 = 1), there

are 5 individual at the second place, 10 individuals at the third place and 14

individuals at the fourth place.

four individuals. Again being in a group of four individuals is better than being

in a group of five individuals (main diagonal). The next change in the level

of aggressiveness happens in diagonal 12, where for the first time we go from

having 7 individuals at the ξ+3 place to having 6 individuals. This means that

if an individual loses there can be 4 other individuals that can reach its score

when there are 7 individuals with one win less than this individual, and there

can be 3 individuals that can reach it if there are 6 individuals with one win less

than this individual. The next change in the level of aggressiveness happens

in diagonal 21, where we go from having 4 individuals at the ξ+2 place to 3

individuals. In diagonal 31 we have the first time that if an individual loses it

would end up in a group of two individuals.

4.2.8 Swiss tournaments with byes vs. winner-loser models

In this section we compare Swiss tournaments with byes with winner and loser

models. In both models we consider a population of size N . In winner-loser

models each individual has a score RHP (resource holding potential). At each

point in time two individuals are chosen at random to fight each other. Indi-
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vidual x will fight individual y if RHPx/RHPy ≥ θ where RHPx and RHPy

are the resource holding potential of individuals x and y respectively. θ is the

aggression threshold that indicates whether an individual fights or not. Thus in

winner-loser models we randomly pair individuals against each other, so there

will be extra fights that will not feature in the Swiss tournament. In winner-

loser models we have a fixed group interacting together. Thus the Swiss tour-

nament is better designed for larger population size where individuals react

locally and locality is influenced by the success of an individual.

The probability of winning in the Swiss tournament with byes is equal to 1/2

and the winner is decided at random. In winner and loser model this proba-

bility is equal to RHPx/(RHPx +RHPy). If we consider the Swiss tournament

in terms of the RHP , the probability of winning will be still 1/2 as only the

individuals with the same score (RHP ) will fight each other. Hence we are in

the same world in terms of probability of winning.

Linearity: Both Swiss tournaments with byes and winner-loser models produce

linear hierarchies. In the updated winner-loser model the time when the hier-

archy is established depends on whether the winner effect is considered alone,

the loser effect is considered alone or both the winner and loser effect are

present. We have considered mostly groups of four individuals as it is time-

consuming to calculate after how many rounds the hierarchy is established in

larger groups. On the other hand, the Swiss tournament produces linear hier-

archies in less rounds than the winner-loser model. For example, in a group

of 4 individuals, only 4 rounds are needed to establish a linear hierarchy. In

winner and loser models (with θ = 1, W,L = 0, 0.1, 0.2, 0.3) the linearity is

established after 41 rounds when only the winner effect is present, after 44

rounds when only the loser effect is present and after 32 rounds when both the

winner and the loser effects were present. In all three cases the last pair to be

distinguishable is the second and the third place.

The Swiss tournament with byes is similar to the winner-loser model when
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only the loser effect is present, where not fighting (retreating) is considered as

winning. The loser effect is found to be present in a variety of species where it

lasts longer than the winner effect. This might be due to the fact that after a

loss, an individual would think that has less chances of winning an aggressive

interaction.

Strategies: Now we compare the ESS in the winner-loser model with strate-

gic factors, with the weighted probability in the Swiss tournament with byes.

Figure 4.16 show the level of aggressiveness in the winner loser model for a

group of two individuals. When the cost is increased the values of θ are also

increased which means that individuals are less aggressive. Also in the Swiss

tournament, when the cost is increased the values of the weighted probabil-

ity are decreased which means that individuals are less aggressive (see Figure

4.9). Thus the effect of the cost on the level of aggressiveness is the same in

both models.
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Figure 4.16: The evolutionarily stable strategy θ for different combinations

of reward and cost for ln(RHP ). When C = 0 the ESS will be the highest

possible value of k (C → 0 =⇒ k → ∞ )
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4.3 Discussion

In this chapter we have introduced an alternative Swiss tournament model of

dominance hierarchy formation, following a Hawk-Dove type of model. Our

starting point of interest was the model developed by Broom & Cannings [23],

where 2n individuals were pitted against each other. This model can be applied

to groups of individuals that are meeting for the first time with no dominance

relationships established between pairs of individuals. In order to establish the

dominance hierarchy, individuals need to participate in a series of aggressive

interactions with each other. Their position in the hierarchy (and their reward)

is based upon the number of conflicts won and lost by an individual. In [23]

only individuals with the same sequence of wins and losses fight each other.

As a result, the hierarchies established were not linear, there were pairs of

individuals that we cannot distinguish in ranks. This was one of the limitations

of the usual Swiss tournament, the other one was that only populations of size

2n were considered. We extended this model to overcome these limitations, by

considering a group of N individuals and introducing the concept of byes. For

example if there is an unpaired individual (N odd), it will get a bye on the next

round which is considered the same as winning. We call the new model the

Swiss tournament with byes. At each round individuals with the same number

of wins and losses are paired together. In the Swiss tournament with byes

the sequence of wins and losses is not important. This means that a pair of

individuals can fight each other more than once.

We showed that our model produces linear hierarchies all the time, because

if a group of individuals has the same number of wins and losses, they will

fight until this number is different. The individual with the highest number of

wins will occupy the highest position in the group. Our model predicts that

the winner will be that individual that has not lost a single fight while in the

winner-loser model the winner does not necessary wins all the fights. We found
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the point in time when the winner is established and see that after this point,

the winner will get a bye until the end, because no other individual can ever

catch it. We did the same for the second place and showed that for the rest of

the ranks it is not easy to find analytically the time when they are established.

We also showed that the ranks are established in numerical ordering; the first

to be decided is the winner, the second is the second place and so on until the

last place individual. The last fight will be between bottom-ranked individuals.

Because the first place has won all the contests, means that the total number

of rounds coincides with the total number of wins for the first place individual.

We derived a formula which gives a good approximation of the total number

of rounds.

We continued our research and found the expected reward for an individual

on a score i|j (having won i contests until round j). There are examples from

real populations where the division of resources is uneven, where only the top-

ranked individuals have more access to the limited resources. The numerical

example in Section 4.2.5.1 illustrates such scenarios.

Our model predicts that the level of aggressiveness is higher in individuals

that are fighting for the top positions than it is in individuals fighting for the

lower positions in the hierarchy. Those that are fighting for the lower positions

are less aggressive as the reward is small for them. This model also predicts

that the level of aggressiveness is higher when there are only two individuals

left fighting for the higher rank. The winner then cannot be reached by any

other individual as it will get a bye until the end of the competition. The level

of aggressiveness for an individual x depends on the number of individuals

that are one win less than this individual. If this number is large, the level of

aggressiveness for x will be high and if it is small the level of aggressiveness

will be low. The reason is that the larger the number of individuals with one

win less than x, the larger the group that x would end up if it loses. Being

in a smaller group is better than being in a larger one; we have less fights in

161



An Alternative Swiss Tournament Model of Dominance Hierarchy Formation

smaller groups. Group size affect the level of aggression at the beginning as

well, the larger the group size, the larger p0,0 is. Thus individuals need to be

more aggressive at the beginning. Other factors such as rewards and costs,

influence the level of aggression as well. We see that as the cost is increased,

the level of aggression decreases.

An important feature is that of the weighted average of the probability pi,j

(being aggressive when on a score i|j). Using this model set up we found that

as the group size is increased, the average probability is also increased.

If we compare the Swiss tournament with byes with the usual Swiss tour-

nament, it is easy to prove that Results 1 - 6 in [23], hold in our model as well.

Another important result is that while on most cases winning a fight, increases

the level of aggression, this is not always true. We found that when N = 4

we have p4,6 < p3,5. Furthermore, we found analytically that for a group of N

individuals, N(N − 1)/2 gives the total number of real fights.

Lastly, we compared Swiss tournaments with byes with the winner and loser

models. They are both models that produce linear hierarchies, but Swiss tour-

nament is better designed for larger populations where the linear hierarchy is

quickly decided. This is not the case in winner and loser models where two

random individuals are repeatedly paired against each other.

In summary, this model produces linear hierarchies if a group of individu-

als stays together for a long time, and it will be of future interest to test our

predictions.

162



Chapter 5

Conclusions and future work

In this research study, we have explored the formation of dominance hierar-

chies. In particular, we were interested in analysing the relationship between

key parameters, for example, reward size, population structure, prior experi-

ence and the level of aggressiveness in the population. We were concerned

with situations where groups of individuals are meeting for the first time with

no prior dominance relationships between pairs of individuals.

We have focused on the influence of the winner and loser effects on the for-

mation of dominance hierarchies and aimed to understand different types of

hierarchies that are commonly found in nature. These effects have been docu-

mented in different groups of animals which influence the level of aggressive-

ness and the chances of winning an escalated contest. They are independent of

each other, we can have only the winner effect operating, only the loser effect

or both to be present in a group of individuals. For decades, experimentalists

have analysed the linearity of hierarchies in different species. A linear hierar-

chy is one where each individual has a clear rank in the group. In this study,

we developed a new statistical measure describing the time until the hierar-

chy is established. This information is important for the experimentalists, as

it provides a guideline of how many interactions need to be observed between

individuals, until a dominance hierarchy is established. To our best knowledge

163



Conclusions and future work

no such measure has been found so far concerning winner and loser models.

We demonstrated that the level of linearity depends on whether the winner

and loser effect are operating alone or both are present, as well as the level of

information that each individual has about the strength of their groupmates.

Our model, which is based on similar work of Dugatkin, predicts that if we

find the winner effect only to be present in real populations, then the hierar-

chy should be linear. If the hierarchy is quickly decided, like often happens in

nature, then it is likely that individuals can estimate the strength of their op-

ponents. We showed that the more reliable the information that one has about

its opponents’ ability to win a fight, the quicker the linear hierarchy is estab-

lished. Secondly, if we analyse the aggression in different groups of animals

and find the loser effect only to be present, then we predict linear hierarchies

if individuals could estimate (at least with some degree of accuracy) their op-

ponents’ strength, and less distinct hierarchies if they can not estimate their

opponents strength at all. Thirdly, when both the winner and loser effect are

found to be present, our model predicts linear hierarchies when individuals

only possess a small amount of information about the other individuals in the

group. Additionally, hierarchies with a clear winner, clear last place individual,

but where the other positions may or may not be distinguishable, are estab-

lished when they do not have any information about each other’s ability to

win a fight. Whether these intermediate positions are distinguishable or not is

decided early in the fights.

As linear hierarchies are often observed in different groups of animals, we

conclude from our research that one of the possible mechanisms to produce

such hierarchies is the presence of winner and loser effects and that individuals

are likely to posses some information about the strength of their groupmates.

This model helps us to make predictions about how hierarchies can be formed

under the influence of winner and loser effects, as well as the time when these

hierarchies are established.

164



Conclusions and future work

It will be of future interest to test our predictions in different groups of

animals. There is evidence of the winner and loser effect in different species,

but no observations have been carried out regarding the type of hierarchies

that those species form, and how long they take to be established.

We went on to address questions such as when should individuals be more

aggressive and what is the best strategy to play? To answer these questions

we introduced game -theoretical elements in the form of strategic factors to

the above winner-loser model. We found that in a group of individuals, the

population evolves to a unique aggression threshold as opposed to a mixture of

strategies. This means that, within any group, they all adopt the same decision

rule against whom to fight. This model predicts the time of establishment

of the dominance hierarchy to be small and that aggressive interactions only

happen at the beginning. Applied to real world situations, this points to the

crucial importance of the first few fights for hierarchy formation. Later fights

only determine the position of the lower-ranked individuals. The effect of the

group size is also analysed, and our model predicts lower aggression threshold

levels in larger populations. This result is supported by different experimental

evidences ([50], [51], [113] [117]). Another point of interest was to analyse

how aggressive individuals are when the resources are limited, and our model

predict that they should be more aggressive than when they are plentiful in

order to obtain a larger share.

This model is presented in its simplest form as other factors, such as for

example coalitions between individuals or migration, are not considered to be

present. These effects are worth exploring in the future. In this research, we

assume that the level of aggressiveness is determined by the winner and loser

effect only, but there are other documented factors such as the audience ef-

fect and the bystander effect (see Chapter 1) as described in [43]. Although

bystander effects are found to be present in different groups of animals such

as fighting fish [100], chickens ([34], [35]) and rainbow trout [63], there is
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not a lot of empirical work regarding their influence on dominance hierarchy

formation.

We note that these effects can only exist in groups larger than two individuals

when they do not have a lot of information about the abilities of their oppo-

nents. We can develop the non-updated model as described in Chapter 1, so

that it includes these factors. For example, we can include the audience effect,

where individuals adjust their behaviour as a result of being watched by other

individuals, by increasing or decreasing the value of the aggression threshold

θ by a factor of ε1 ≥ 0 depending on the type of audience. If an individual

increases (decreases) the value of θ, it means that it would be less (more) ag-

gressive. In Siamese fighting fish [80], it was observed that males increase the

level of aggressiveness in front of a female audience and decrease it in front of

a male audience.

When the bystander effect is present, an individual X would vary its level

of aggression according to what it observes in the group. We can include this

effect by increasing or decreasing the value of RHPinitial by a factor of ε2 ≥ 0.

For example if X observes the fight between individuals Y and Z at time t

where individual Y wins and Z loses, then X would increase the RHPinitial

when fighting Y and decrease it when fighting Z. This affects the aggressive

behaviour of individual X which would be less aggressive against Y and more

aggressive against Z.

This model set up would allow us to see whether a linear hierarchy could be es-

tablished and if it is possible for a lower ranked individual to overturn its rank.

When bystanders effects are present we would expect linear hierarchies to be

established as this is similar to the updated model with imperfect information

where linear hierarchies are always established.

In the last part of this work we give an alternative dominance hierarchy for-

mation model based on the Swiss tournament as described by Broom & Can-

nings in [23]. This is a very structured model and the authors do not claim that
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in real populations animals will follow such model, but as animals often choose

to fight opponents of the same strength and try to establish the dominance hi-

erarchy quickly, this type of tournament might be a reasonable approximation.

This model produces hierarchies in a relatively small number of rounds, but

they are never linear and are applied to groups of 2n individuals. To overcome

these issues, we introduced the concept of byes for the unpaired individuals.

The most important result of this part is that we find the exact number of fights

until the hierarchy is established to be N(N − 1)/2. The hierarchies following

this model take longer than the usual Swiss tournament to establish, but are

better designed than the winner and loser model, especially for large group

sizes. Our model predicts that in real biological situations, if individuals are

fighting with each other for a long period of time, linear hierarchies are always

achieved. This model also predicts that if the group size is increased the level

of aggressiveness is also increased. Another result derived from this model is

that if an individual wins a number of fights in a row, does not guaranties an

increase on aggressiveness. This model is potentially useful for human com-

petitions, for example in chess tournaments, but whether animals behave like

this, it still needs to be established through experimental research.
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Appendix A

Expected payoffs for different V

and C

In this section we give the expected payoffs for different combinations of kx

and ky as described in Chapter 3 where both the ln(RHP ) and the alternative

payoff function are considered as payoffs.

k=1(θy=1) k=2(θy)=0.9 k=3(θy)=0.8 k=4(θy=0.7) k=5(θy=0.65) k=6(θy=0.6) k=25(θy=0.1)

k=1(θx=1) 3.2560 2.8414 2.8414 2.7754 2.7392 2.7131 2.6645

k=2(θx)=0.9 3.5456 3.2550 3.1092 3.0271 2.9705 2.9417 2.8767

k=3(θx)=0.8 3.6699 3.4022 3.2517 3.1682 3.1168 3.0786 3.0138

k=4(θx=0.7) 3.7360 3.4843 3.3432 3.2572 3.1991 3.1643 3.0995

k=5(θx=0.65) 3.7721 3.5409 3.3946 3.3123 3.2588 3.2175 3.1514

k=6(θx=0.6) 3.7983 3.5697 3.4328 3.3471 3.2939 3.2570 3.1855

k=25(θx=0.1) 3.8469 3.6347 3.4976 3.4119 3.3600 3.3259 3.2551

Table A.1: Expected payoffs for different values of k when V = 0.1, C = 0

k=1(θy=1) k=2(θy)=0.9 k=3(θy)=0.8 k=4(θy=0.7) k=5(θy=0.65) k=6(θy=0.6) k=25(θy=0.1)

k=1(θx=1) 0.500 0.4555 0.4364 0.4262 0.4207 0.4167 0.4092

k=2(θx)=0.9 0.5445 0.500 0.4775 0.4649 0.4562 0.4518 0.4418

k=3(θx)=0.8 0.5636 0.5225 0.4994 0.4866 0.4787 0.4728 0.4629

k=4(θx=0.7) 0.5738 0.5351 0.5134 0.500 0.4913 0.4860 0.4760

k=5(θx=0.65) 0.5793 0.5438 0.5213 0.5087 0.500 0.4941 0.4840

k=6(θx=0.6) 0.5833 0.5482 0.5272 0.5140 0.5059 0.500 0.4892

k=25(θx=0.1) 0.5908 0.5582 0.5371 0.5240 0.5160 0.5108 0.5000

Table A.2: Division of resources for different values of k when V = 0.1, C = 0
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Expected payoffs for different V and C

k=0(θy=1.2) k=1(θy)=1 k=2(θy)=0.9 k=3(θy=0.8) k=4(θy=0.7) k=5(θy=0.6) k=22(θy=0.1)

k=0(θx=1.2) 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

k=1(θx)=1 2.3026 2.2500 2.2122 2.1559 2.1156 2.0843 2.0052

k=2(θx)=0.9 2.3026 2.2099 2.1723 2.0648 2.0038 1.9601 1.8634

k=3(θx=0.8) 2.3026 2.1452 2.0539 1.9020 1.8218 1.7661 1.6553

k=4(θx=0.7) 2.3026 2.0961 1.9798 1.8064 1.7194 1.6621 1.5486

k=5(θx=0.6) 2.3026 2.0508 1.9208 1.7315 1.6421 1.5854 1.4706

k=22(θx=0.1) 2.3026 1.8927 1.7268 1.5113 1.4190 1.3606 1.2500

Table A.3: Expected payoffs for different values of k when V = 0, C = 0.1

k=0(θy=1.2) k=1(θy)=1 k=2(θy)=0.9 k=3(θy=0.8) k=4(θy=0.7) k=5(θy=0.6) k=22(θy=0.1)

k=0(θx=1.2) 0.500 0.500 0.500 0.500 0.500 0.500 0.500

k=1(θx)=1 0.500 0.500 0.5004 0.5019 0.5038 0.5068 0.5293

k=2(θx)=0.9 0.500 0.4996 0.500 0.5020 0.5049 0.5084 0.5362

k=3(θx=0.8) 0.500 0.4981 0.4980 0.500 0.5035 0.5081 0.5395

k=4(θx=0.7) 0.500 0.4962 0.4951 0.4965 0.500 0.5048 0.5364

k=5(θx=0.6) 0.500 0.4932 0.4916 0.4919 0.4952 0.500 0.5317

k=22(θx=0.1) 0.500 0.4707 0.4638 0.4605 0.4636 0.4683 0.5000

Table A.4: Division of resources for different values of k when V = 0, C = 0.1

k=0(θy=1.2) k=1(θy)=0.9 k=2(θy)=0.7 k=3(θy=0.5) k=4(θy=0.4) k=5(θy=0.3) k=9(θy=0.1)

k=0(θx=1.2) 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

k=1(θx)=0.9 5.9490 4.0724 3.5544 3.3444 3.2392 3.2011 3.1203

k=2(θx)=0.7 5.9490 4.4956 3.9443 3.6854 3.5594 3.4934 3.4014

k=3(θx=0.5) 5.9490 4.6207 4.0597 3.7925 3.6494 3.5800 3.4715

k=4(θx=0.4) 5.9490 4.6521 4.0743 3.8035 3.6629 3.5895 3.4778

k=5(θx=0.3) 5.9490 4.6299 4.0573 3.7795 3.6393 3.5616 3.4574

k=9(θx=0.1) 5.9490 4.5454 3.9244 3.6488 3.5102 3.4255 3.3109

Table A.5: Expected payoffs for different values of k when V = 0.2, C = 0.1

k=0(θy=1.2) k=1(θy)=0.9 k=2(θy)=0.7 k=3(θy=0.5) k=4(θy=0.4) k=5(θy=0.3) k=9(θy=0.1)

k=0(θx=1.2) 0.500 0.2790 0.2790 0.2790 0.2790 0.2790 0.2790

k=1(θx)=0.9 0.7210 0.500 0.4430 0.4233 0.4161 0.4161 0.4227

k=2(θx)=0.7 0.7210 0.5570 0.500 0.4781 0.4712 0.4701 0.4805

k=3(θx=0.5) 0.7210 0.5767 0.5219 0.500 0.4923 0.4916 0.5012

k=4(θx=0.4) 0.7210 0.5839 0.5288 0.5077 0.500 0.4991 0.5084

k=5(θx=0.3) 0.7210 0.5834 0.5299 0.5084 0.5009 0.500 0.5104

k=9(θx=0.1) 0.7210 0.5773 0.5195 0.4988 0.4916 0.4896 0.5000

Table A.6: Division of resources for different values of k when V = 0.2, C = 0.1
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Expected payoffs for different V and C

k=0(θy=1.2) k=1(θy=1) k=2(θy=0.70) k=3(θy=0.50) k=4(θy=0.30) k=5(θy=0.25) k=8(θy=0.10)

k=0(θx=1.2) 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

k=1(θx=1) 4.2088 3.1454 2.8027 2.6514 2.5755 2.5237 2.4678

k=2(θx=0.70) 4.2088 3.2896 2.8714 2.6631 2.5416 2.4852 2.4037

k=3(θx=0.50) 4.2088 3.2705 2.8019 2.565 2.4378 2.3715 2.2812

k=4(θx=0.30) 4.2088 3.2019 2.7000 2.4429 2.3217 2.2399 2.1442

k=5(θx=0.25) 4.2088 3.1383 2.5824 2.3190 2.1796 2.1203 2.0265

k=8(θx=0.10) 4.2088 2.9289 2.2914 2.0099 1.8699 1.8030 1.7182

Table A.7: Expected payoffs for different values of k when V = 0.1, C = 0.2

k=0(θy=1.2) k=1(θy=1) k=2(θy=0.70) k=3(θy=0.50) k=4(θy=0.30) k=5(θy=0.25) k=8(θy=0.10)

k=0(θx=1.2) 0.5000 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536

k=1(θx=1) 0.6464 0.5000 0.4630 0.4554 0.4600 0.4679 0.5091

k=2(θx)=0.70 0.6464 0.5370 0.5000 0.4938 0.5006 0.5171 0.5786

k=3(θx=0.50) 0.6464 0.5446 0.5062 0.5000 0.5092 0.5268 0.5936

k=4(θx=0.30) 0.6464 0.5400 0.4994 0.4905 0.5000 0.5177 0.5860

k=5(θx=0.25) 0.6464 0.5321 0.4829 0.4732 0.4823 0.5000 0.5684

k=8(θx=0.10) 0.6464 0.4909 0.4214 0.4064 0.4140 0.4316 0.5000

Table A.8: Division of resources for different values of k when V = 0.1, C = 0.2

k=0(θy=1.2) k=1(θy=0.85) k=2(θy=0.59) k=3(θy=0.41) k=4(θy=0.28) k=5(θy=0.19) k=6(θy=0.13)

k=0(θx=1.2) 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

k=1(θx=0.85) 7.5500 4.8750 4.1779 3.9227 3.8359 3.7927 3.7710

k=2(θx=0.59) 7.5500 5.4765 4.7500 4.4620 4.3284 4.2858 4.2275

k=3(θx=0.41) 7.5500 5.6512 4.9101 4.9000 4.4783 4.4089 4.3710

k=4(θx=0.28) 7.5500 5.6705 4.9720 4.6375 4.5023 4.4298 4.4038

k=5(θx=0.19) 7.5500 5.6573 4.9114 4.6229 4.4937 4.4200 4.3725

k=6(θx=0.13) 7.5500 5.6304 4.9107 4.5955 4.4477 4.3944 4.3500

Table A.9: Expected payoffs for different values of k when V = 0.3, C = 0.1

k=0(θy=1.2) k=1(θy=0.85) k=2(θy=0.59) k=3(θy=0.41) k=4(θy=0.28) k=5(θy=0.19) k=6(θy=0.13)

k=0(θx=1.2) 0.5000 0.2337 0.2337 0.2337 0.2337 0.2337 0.2337

k=1(θx=0.85) 0.7663 0.5000 0.4342 0.4131 0.4089 0.4088 0.4104

k=2(θx=0.59) 0.7663 0.5658 0.5000 0.4783 0.4711 0.4727 0.4714

k=3(θx=0.41) 0.7663 0.5869 0.5217 0.5000 0.4936 0.4926 0.4940

k=4(θx=0.28) 0.7663 0.5911 0.5289 0.5064 0.5000 0.4986 0.5016

k=5(θx=0.19) 0.7663 0.5912 0.5273 0.5074 0.5014 0.5000 0.5007

k=6(θx=0.13) 0.7663 0.5896 0.5286 0.5060 0.4984 0.4993 0.5000

Table A.10: Division of resources for different values of k when V = 0.3, C =
0.1
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[14] B Bilčık and LJ Keeling. Relationship between feather pecking and

ground pecking in laying hens and the effect of group size. Applied

Animal Behaviour Science, 68(1):55–66, 2000.

[15] D Blanchard, RJ Rodgers, CA Hendrie, and K Hori. Taming of wild rats

(Rattus rattus) by 5ht1a agonists buspirone and gepirone. Pharmacology

Biochemistry and Behavior, 31(2):269–278, 1988.

[16] RJ Blanchard and DC Blanchard. Aggressive behavior in the rat. Behav-

ioral Biology, 21(2):197–224, 1977.

[17] E Bonabeau, G Theraulaz, and JL Deneubourg. Dominance orders in

animal societies: the self-organization hypothesis revisited. Bulletin of

Mathematical Biology, 61(4):727–757, 1999.

172



Bibliography
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[51] I Estévez, RC Newberry, and LA De Reyna. Broiler chickens: a tolerant

social system. Etologia, 5:19–29, 1997.

[52] CS Evans and P Marler. Food calling and audience effects in male chick-

ens, gallus gallus: their relationships to food availability, courtship and

social facilitation. Animal Behaviour, 47(5):1159–1170, 1994.

[53] TW Fawcett and RA Johnstone. Learning your own strength: winner

and loser effects should change with age and experience. Proceedings of

the Royal Society of London B: Biological Sciences, page rspb20092088,

2010.

[54] DF Frey and RJ Miller. The establishment of dominance relationships

in the blue gourami, trichogaster trichopter us (pallas). Behaviour,

42(1):8–60, 1972.

[55] C Goessmann, C Hemelrijk, and R Huber. The formation and mainte-

nance of crayfish hierarchies: behavioral and self-structuring properties.

Behavioral Ecology and Sociobiology, 48(6):418–428, 2000.

176



Bibliography

[56] WD Hamilton. Extraordinary sex ratios. Science, 156(3774):477–488,

1967.

[57] P Hammerstein and R Selten. Game theory and evolutionary biology.

Handbook of Game Theory with Economic Applications, 2:929–993, 1994.

[58] CK Hemelrijk. Towards the integration of social dominance and spatial

structure. Animal Behaviour, 59(5):1035–1048, 2000.

[59] HA Hofmann and K Schildberger. Assessment of strength and willing-

ness to fight during aggressive encounters in crickets. Animal Behaviour,

62(2):337–348, 2001.

[60] J Hoglund and RV Alatalo. Leks. Princeton University Press, Princeton,

1995.

[61] Y Hsu, RL Earley, and LL Wolf. Modulation of aggressive behaviour

by fighting experience: mechanisms and contest outcomes. Biological

Reviews, 81(1):33–74, 2006.

[62] Y Hsu, IH Lee, and CK Lu. Prior contest information: mechanisms un-

derlying winner and loser effects. Behavioral Ecology and Sociobiology,

63(9):1247–1257, 2009.

[63] JI Johnsson and A Akerman. Watch and learn: preview of the fighting

ability of opponents alters contest behaviour in rainbow trout. Animal

Behaviour, 56(3):771–776, 1998.

[64] RA Johnstone and MA Cant. Reproductive skew and indiscriminate in-

fanticide. Animal Behaviour, 57(1):243–249, 1999.

[65] RA Johnstone and MA Cant. Reproductive skew and the threat of evic-

tion: a new perspective. Proceedings of the Royal Society of London B:

Biological Sciences, 266(1416):275–279, 1999.

177



Bibliography

[66] L Keller and HK Reeve. Partitioning of reproduction in animal societies.

Trends in Ecology & Evolution, 9(3):98–102, 1994.

[67] L Keller and EL Vargo. Reproductive structure and reproductive roles in

colonies of eusocial insects. 1993.

[68] MG Kendall. Rank correlation methods. Griffin, London, 1962.

[69] B Knights. Agonistic behaviour and growth in the european eel, An-

guilla anguilla l., in relation to warm-water aquaculture. Journal of Fish

Biology, 31(2):265–276, 1987.

[70] H Kokko and J Lindstrom. Measuring the mating skew. The American

Naturalist, 149(4):794–799, 1997.

[71] H Kokko, J Lindström, RV Alatalo, and PT Rintamäki. Queuing for ter-
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