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Abstract

Abstract

Two research areas are covered in this thesis: the formulationnofvel evolutionary
combinatorial optimisation algorithm for energy storage system (ESS) schedulohgveb-

based power systems analysis (WBPSA) using PHP programming. An increase in glectricit
demand usually calls for reinforcement of the network equipment to handiexhiwad and
network operators sometimes postpone or avoid this reinforcement by using E&#et
electrical energy when network usage is low and release it to be used gridhduring

periods of high demand. The ESS operation must be scheduled to be effective and there are
several scheduling methods that depend on energy generation data, flexiléusedariffs

or closed loop set-points. This thesis proposes a method that uses only higtmécasted
demand data which is also a requirement for other methods. The methodology fesranlat
electricity demand profile and ESS as a combination of the one-dimensional bin packing
problem and the subset sum problem andesihem heuristically with specific modifications

and transformations to obtain viable schedules. The schedules may then be optimised further
using genetic algorithm optimisation. Comparative analyses with otheitlahgerand case
studies using real-world data are used for verification. The algorithm is ghdveneffective

and has some advantages when compared to other existing algorithms; hence it can be used in
scenarios where other methods are not applicable. On the second topic the thesis explores
web-based power systems analysis platforms and shows that most use a web serigr primar
as an interface for exchanging requests and results between a front-end web bnalwvser
specialised back-end computation software written in a general prograrfanougage. A

web server runs programs written in scripting languages such as PHP, witheh rigost

popular web server programming language. Recent versions of web scripting larttaasges

the computational capabilities required for power systems analysis and can handle difie task
modelling networks and analysing them. This provides an opportunity fomeeti 2-tier
framework in which the web server also acts as the computation layer. The requirements fo
general power systems modelling are discussed and a methodology for realising web-based
simulation using PHP programming is developed. Some of the modelling functions are
handled natively in PHP and some require the use of extensions. The results show that using
PHP for simulations can result in simpler access to power systems analysis fuimctions
websites and web applications. The memory consumed by the PHP library developed is seen

to be low and the computation time for reasonably large networks is in the millisecond range.
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1 Introduction

1.1 Background

1.1.1 Background: Energy Storage System Scheduling for Peak shaving and load-
levelling

Recent forecasts suggest that the electricity demand of regions like tlaeeld«pected to

double by 2050 due to the uptake of new electrical loads such as electricsv@bitsg, heat

pumps which convert energy from the ground or air to heat, home electronics suhilas m
phones, robots and other forms of demand growth such as construction afsaddtildings

with high electricity demand [1] [2]. In other regions such as developing cesitkrere is

also demand growth as mobile phones and other electrical appliances become more ubiquitous
in electricity supply networks which are not as resilient as the netwarkdeveloped
countries. This growth in demand presents challenges to electricity networkooperaall

levels of the networks in these regions. Even without the growth in demand tharknetw
operators face challenges in maintaining the networks within financial and technical

constraints [3].

Electricity networks consist of three operational levels: Generatioansimission and
Distribution. The main parameter used to distinguish these different lsviis ioltage at

which the electric power is transmitted [3]. Electrical energyrgt fienerated by convergn

other forms of energy such as chemical, mechanical or heat energy to efduyriGienerator
operators at a medium voltage. Using transformers the voltage is increased or “stepped-up” to

a high voltage (HV) to minimise energy losses in transmissios dineé cables as the power is
transferred to consumers and load centres. The Transmission System Operator (TSO) is
responsible for maintaining the frequency of the electrical power witkfiimed! tolerance

limits by balancing the demand from the load centres and the supply from the generators using
a number of balancing services [4]. TSOs are also responsible for the electitwtyission
equipment at the HV level. Electrical equipment at load centres and consumer premises
usually do not operate at the HV level and therefore the electrical power ésl plhssugh a
different set of “step-down” transformers before entering the medium voltage (MV) and low

voltage (LV) networks of industrial, transport and residential end-users whinbwakas the
distribution network. Distribution Network Operators (DNO) have an obligadomaintain

the safety and reliability of LV and MV networks, connect new customers, and to exignd
upgrade existing networks to meet changing needs [5] and are therefore responsible for

keeping distribution lines and equipment operating within their maximum demarnmkgk
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demand)limits which is referred to as their “firm capacity” to avoid power cuts and system

blackouts.

To meet the demand growth generators may simply ramp up their output or irtbreiase
generation capacity, however when using conventional methods and fossil fuels this increase
in generation is directly associated with an increase in €d@issions. In the context of
environmental concerns in more developed countries and regions like Europe witlhdow ca

targets [1][6] the conventional approach will not be suitable.

The TSOs and DNOs also face challenges as a result of the continuous intreasand
exceeding installed firm capacity and network congestion as a result of custtamensding
electricity concurrently during peak periodsthe most relatable peak period being when
several customers are getting ready for work and school in the morningsiraing from

work in the evenings

The conventional approach to resolving these peak demand violations of netpatkyce
to reinforce the network by including more lines and transformers or replegirigment to
have higher tolerance ratings. In the worst cases as is prevalent in develmitges the
problem is resolved by simply taking some customers off the networknittemtly in an
exercise known as “load shedding or “rolling blackouts” [7][8]. The problem with
conventional reinforcement is that it can be costly in terms of financesogistics — the
operators will need to buy new equipment, dig up new tunnels for cables, etc. and this upgrade
may also lead to addition of underutilised capacity. In most cases the demmaasdes only
in terms of the peak and not in terms of the total energy demand, which meHKésuitt to
justify network reinforcement in economic terms [9]. Load shedding is the woatish as it
leads to widespread customer dissatisfaction and utility companies ndiinfultheir

obligations.

For these reasons cost-effective and efficient methods of resolving these nastebe
explored to make efficient use of existing generation and network capacityofQihe
solutions that is proposed by several reports and industry experts is the use obemaggy
systems in the operation of the electricity networks as a tool for reshdpmand [1], [2],
[9], [10]. Electrical energy storage systems (ESS) are devices or systemesotivart
electrical energy to a form that can be stored and then converted back to elengrgyl

when it is required [3].

ESS are currently in use for different applications as indicated in [11] inglpdwer quality
improvement, electricity supply reserve, backup power for protection devicekectrical

networks and also to support the increased penetration of renewable energy sourcesdconnect
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to the grid as distributed generation (DG). The uses of ESS that are teldtedproblem
regarding peak demands exceeding network capacity are peak demand reduction (or shaving),
load levelling and demand time shifting. These concepts are identifiable framdmaes;

peak demand reduction means reducing the magnitude of peak demand, load levelling refers
to flattening the demand profile to reduce the margins between peak and trough demands
thereby making the demand more predictable and improving the efficiency of generatbrs
demand time shifting means moving the time a certain magnitude of demand occurs to a

different time in a given period.

Energy Storage Systems may be used to shift loads to periods of lower demand and reduce the
peak demand by storing energy when the demand on the network is low and releasing the
stored energy for use when the demand is high. Customers may also use ESS to reduce thei
energy bills in markets with flexible tariffs and incentives such thettrecity is less
expensive during off-peak periods thereby providing benefits for the network opexatbrs

the customers.

One of the main challenges posed by the inclusion of ESS in an electrical system is the
violation of constraints inherent to the system. Charging the ESS may cause overdading
equipment and lines, thereby violating thermal constraints and power limits; diaghuiem

may cause over-voltage faults [12]. There are also limitations in storage capadtyhe

strong link between times of energy storage and availability of energy attiotiesr— also
referred to as thimter-temporalnature of storage [12] which simply means energy cannot be
used from ESS unless it was stored previously. Thus the full benefitsatihdte obtained

ESS may not be realized because their contribution will always be curtailed at certain points.

As a result of these challenges ESS operations have to be scheduled as part ofefwtivie N
Management (ANM) schemes to maximise the benefits that are obtainable. ANM oefers t
devices, systems and practices that operate pre-emptively to maintain netwtiks wi
accepted operating parameters [13]. ANM that includes devices with inter-tereffeca
remains an open problem [12] and to include ESS in a network or electrical systermeadyfecti

a plan must be developed in the form of an algorithm to select the optimal futuganglaard

discharging periods based on historic information or a forecast.

ANM is also enabledith the rise of the “smart grid” which may be described as the existing

grid with a communications layer to improve visibility of usage at all leveigviously
network operators could only collect information at their primary and secoedhsgations
from where electricity is distributed to customers [14]. With the use of snedersnthey can
collect real time information with increased granularity and that can irapforecasts,

planning and operations.
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The focus this research in the area of electrical network management and caieutrieity
utilisation is in the application of energy storage systems to achieve peakgshad load
levelling. To achieve these concepts and effectively operate the network Vifithis a
scheduling methodology must be applied. A novel scheduling methodology is devetdped a

presented in this thesis.

1.1.2 Background: Web-based Power Systems Analysisusing PHP

Engineers must follow logical steps to study a physical system; the firdsdteplefine the

model, which requires hypotheses and simplifications; the model is then formaliped int
equations, and finally, the equations have to be solved either in a closedrfotmrmerically

[15]. In the same manner the first stage of building an electrical netwothefareneration,
transmission and distribution of electricity is the planning and design stagepEration of

the electrical network must be established by representing the physicalohtukeinetwork

using conceptual and mathematical models. Evaluations and analyses must be made to
ascertain the future system performance, safety, reliability and scalability [16].

Using these mathematical models calculations may be performed to understand the manner in
which components of the network will interact with each other in tranaisthtsteady states

and the condition of the network if a fault should occur. The process of analysing t
operation of a physical model without assembling it is known as Simulation, whiclinedlef

as the representation of the behaviour or characteristics of one system througle thie us
another system, especially a computer program designed for the purpose [17].

These calculations and analyses may be done completely on paper using mathematical
principles however as the system size increases it becomes more difficodtirttain the
accuracy of solutions and they also take longer. Computers have been used for decades t
carry out these calculations using simulation and modelling software [18thagdhave
several advantages over humans in terms of speed, accuracy and the complexity of problems

they can be used to solve.

The simulation software deployment on computers has traditionally been in theoform
computer programs which are run on software installed on personal computers or on a local
network of interconnected computers. With the growth of information and communications
technology and the internet which connects computers in different geographical locations,
web-based simulation (WBS), analysis and remote control via a web browser interface such a
Microsoft Internet Explorer™, Google Chrome™, Mozilla Firefox™ is increasingly
becoming relevant [19][20]. There are several advantages to providing sofiverdhe

internet including ubiquitous access to applications, ease of maintenance and newnglicensi
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models for providing softwarasa-service (SaaS). A scenario where WBS is useful is in
collaboration among teams with members in different locations; models may beedanesss

the internet and modified real-time.

The traditional approach of deploying power systems simulation software usingpdeskt
applications is because of the features of the programming languages dsedltp them.

The programming languages used for building simulation software are pbwerieral
purpose languages such as C++ and Java and scientific programming languages such as
Matlab [15]. These programming languages were not designed to be used foigonesdi

pages and web sites and as a result cannot be used for web-based simulation withamt usi

interface.

The programming language used for developing the front end of websites whied ibyus
visitors of websites through web browsers is HyperText Markup Language (HTML). HTML

is used for creating static pagehich are documents that are sent to the users’ computers

from remotecomputers known as “web servers” when the web server internet address is
accessed from the web browser [ZHITML is suitable for information that doesn’t change,
however to create dynamic pages that are updated according to changing events ¢n the we
server other languages such as PHipertext Preprocesser (PHP) [22] and Active Server
Pages .NET (ASP.NET) [23] are used. These are programming languages ths¢date

write modular applications known as “scripts” which are not standalone programs but must be
interpreted by software residing on the web server. They are therefore known as web serv

scripting languages.

To perform simulation over the web the remote computers usually have the simulation
“engine” which carries out the calculations and analysis written in the general purpose
programming language such as Java or C++ and communication between the asimulati
engine and the web user is done via the web server running the web server darigtiage.

When a request is made by the user to access the remote model, the request is processed
through web server scripts and received in the simulation engine, and the results lameksent
through the web server scripts to the user. This creates a 3-tier architamtsisting of web

browser— web server simulation engine [24].

The 3-tier architecture is used for web-based power systems simulation and analysis
(WBPSA) because most of the simulation software packages are written in general
programming languages as the IEEE open source task force on power systems analysis
software [25] indicates, and also because earlier versions of web servingdaipguages

did not have the mathematical functions and features for performing the typdsutdtimmns
required for WBPSA.
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As web and internet usage for delivering software has grown recent versions of vagb ser
scripting languages have also evolved to have features for general purpose progrgg@mi

They also have more add-ons and packages created by third party developers that are being
used to extend the capabilities of the programming languages beyond their core flityctiona
This presents an opportunity to develop more complex applicationgb server scripting
languages and possibly reduce the need for a 3-tier architecture, which retprieeserver
resources and has several points of failure, to a 2-tier architectursticanst web browser

web server.

PHP is the most used web server scripting language [27], [28] and more resamtsvef the
language have tools that may be used for WBPSA such that it serves as theasireulgitie
without communicating with software written in a general purpose prograniamggage.
There are several advantages in using this approach including a slimmesctuchi fewer
points of failure and ease of deployment in existing websites.

PHP has never previously been used for developing power systems simulation and analysis
software and there are several challenges regarding the conversion of mathematicatanodel
software models that can run accurately and efficiently in PHP. There arehalkenges in
identifying and providing functionality which is not available in the PHP tamguage but

are requirements for power systems simulation and analysis. The structuré>bfRHibrary

for WBPSA, the programming methodology and rules guiding the interactions ofaintern
components representing principles for power systems studies must be defisetheSis
presents a novel methodology developing a software library for web-based power systems

analysis using PHP.

1.2 ThesisObjectives

Several methodologies and algorithms have been formulated and some are already in use for
scheduling ESS in Active Network Management schemes at the distribution lesethar
consumer level. The majority of these algorithms depend on generation prices, eimtaiser
of-use tariffs and energy prices. Such approaches, however, have failed to address the
limitation in the data available to the distribution network operator (PdiCzonsumer, and

the amount of influence they have over these parameters. Furthermore, some of these

approaches can also be computationally complex.

The data the DNO and consumer usually have full control over is limited to the demand
profile information (forecast or historic) and the ESS parameters. However, thaidat®n
of ESS schedules with only these data is technically challenging because nointimear

nature of demand and constraints on ESS. As a result the options availableefeatde
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scheduling algorithm which is applicable to any network or profile are closedséategpoint
control (SPC) which switches on storage at given demand set-points similar toastiat,
and heuristic methods. SPC is usually based on real-time control and thdoefeneot take
into account future events which may lead to suboptimal solutions globalig; atso

vulnerable to short-term spikes in demand.

This indicates a need to provide simple but efficient heuristic optionsDNOs and
consumers to schedule storage effectively using the data available to them. €hehefor

objective of this thesis on the topic of ESS for peak shaving and load-levelling is as follows:

i. Formulate a methodology or algorithm to generate optimal schedules for dispatching
ESS at distribution network or consumer level for peak shaving and loaddgvell
using only the demand profile and ESS parameters.

ii.  Verify the algorithm by comparative analysis with other algorithms and in case
studies with a focus on robustness, versatility, and adaptability to any netitlork w

these parameters provided.

On the subject of web-based Power Systems Analysis using PHP the key challenge is
identifying the concepts required for defining and modelling Electrical Systemshand t
availability of functions for these concepts in PHBecause most studies in the field of
WBPSA have only focused on 3-tier architectures there is a paucity in analgtitsaland
application libraries that can be deployed easily on a web server for PSAgeamsktof PHP

for this purpose has not been investigated.

Therefore on the research topic of Web based power systems analysis theesbigcting

thesis are as follows:

i. Identify the fundamental concepts required for general power systems analysis in any
programming language and the availability of core functions or third-pargries
for modelling these concepts in PHP

ii. Develop an application library for realizing general power systems analysia/e-
based 2-tier framework using PHP and benchmark its performance and accuracy using

standard networks as test cases

1.3 Outlineof the Thesis

In arranging the content it was of utmost importance to the author thabtiression of ideas
in both areas is recognisable and continuous to the reader. Therefore the avetalesof

the thesis takes the form of eight chapters; the first chapter iswttadiction which covers
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the background, objectives, outlines the structure, and the contribution ofotke The

remaining sections are structured as follows:

The second and third chapters are on the literature and methodologies of ESS scheduling in

previous works and the proposed algorithm;

o Chapter 2 presents a review of relevant literature and existing methodolog8$ in
scheduling highlighting their strengths, vulnerabilities and gaps in research. The
reviews will show the parameters required for optimisation in each methbd an

provide a synopsis of their approach, assumptions and results.

¢ In Chapter 3 the problem of ESS scheduling is defined clearly by way of equations
and illustrations as a combination of the bin-packing and subset sum problem for
finding the best placement for energy storage in a demand profile. The constraints
shown and a proposed novel methodology for scheduling is formulated using
heuristics such that several viable schedules are produced and then furthesedptimi
using Genetic Algorithm optimisation.

The fourth and fifth chapters are on the topic of Web-based Power Systems analysis;

e Chapter 4 reviews previous research literature in WBPSA, and softwasntburr
being used to deliver PSA on the web with emphasis on the programming languages
used and their software architecture. It also covers the fundamental concepts and
requirements for general power systems analysis focusing on power flow and short

circuit studies.

e Chapter 5 covers the development of the PHP library for power systems analysis
including the description of the functions for creating a model of a nletamd its
elements as PHP objects, and the functions for executing load flow and short circui

power systems studies.

The sixth and seventh chapters are for tests and results of the formuldiedotuagies in the

preceding chapters, and the final chapter presents the conclusions drawn from each topic.

e Chapter 6 presents the comparative analysis and case studies used to test and verify
the combinatorial optimisation method for ESS scheduling. Four cases ewill b
examined, in each case the base case of the demand profile is compared to the results
after the algorithm has been applied. The research data in this thessvis from

three main sources: previous publications, project consultation documents for
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installation of Energy storage systems in an existing network, and a demane profil
generator based on a model of historic energy consumption in a distribution network.

The results are discussed at the end of each study.

e Chapter 7 presents tests carried out to verify the accuracy of thed®tP systems
library and measure its performance. A number of standard test cases are used for t
studies to confirm the accuracy of the results of computations. The computaigon ti
and memory required by the library for each of the major operations in the powe
systems studies are also measured. The impact of the operations on the computing

resources is discussed.

e Chapter 8 presents the conclusions and further research recommendations starting
with the ESS scheduling algorithm. The potential impact on the smart rgtithe
author’s view on the future of storage are discussed. The conclusions from the
development of the PHP power systems analysis library are also presentealyhe lik
users of the library and the possibilities for further development in theobreeb-
based power systems analysis.

1.4 Contribution

The ESS scheduling algorithm for peak shaving and load-levelling will contitibbe@besting

knowledge and practices in the following ways:

i.  This study provides new insights in power systems algorithm design by extémeling
use of the bin-packing algorithm and subset sum algorithm to power systems studies.
The bin-packing algorithm is used in other industries, for example in logfstics
loading shipping containers, and in computing for optimising data storage on hard
drives. This is the first time an electricity demand profile is being viewedsas of
distinct containers and energy storage as a sum of smaller items to be packed or
removed from those containers. Any new development in these adapted algorithms

will also imply an improvement in the performance of the ESS scheduling algorithm.

ii.  Using this method Distribution Network Operators will have full controhefget of
parameters required to integrate ESS in a regulated or deregulated market scenarios
without compromising on effectiveness. This was not the case previously as more
parameters and assumptions are required for other methods. The DNO may now apply

this algorithm to generate schedules for Energy storage systems integpakieep
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networks operating within limits and maximise the utilisation of existingpeagmt to

postpone costly network reinforcement.

iii. At the consumer level, the algorithm may be applied to flatten demand, reduce
consumption during peak tariff periods and make savings in energy cost. By using this
method the demand profile at the consumer level will als@ hess variation and
cannot lead to new peak demands for the DNO to supply as a result aiglué-tise
tariffs.

The PHP power systems library makes important contributions to power systems simulation in

the following ways:

i. The library introduces slimmer architecture that requires fewer computational
resources and has fewer points of failure. 3-tier architectures rexuimeuting
environments to be configured for the simulation engine and for the web server.

This library uses only the web server environment.

ii. The library will allow websites that have been built using PHP to embedrpow
systems models for various purposes with significantly less difficufty.
example, a network model operating an experimental algorithm may be published
directly to a PHP website and actively operated by peer reviewers to view ho
conditions of the network are affected by changing parameters. This will represent
an improvement in results presentation as authors will no longer be confined to
presenting results as static tables and charts and tables. To achieve this in th
present form of WBPSA will require licensing fees for the commercial packages,
significant programming skills and more internet computing resources for the

simulation server.
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2 Electrical Energy Storage Systems Management and Scheduling:
Related work and Literature

2.1 Introduction

This section provides a background on Electrical Energy Storage Systems which eed refer

to as Energy Storage Systems (ESS) in the context of this thesis. The reVigrowide
information on the types of Energy storage systems, roles and functions of eneagg stor
systems and the current state of development. The current methods used to schedule the
charging and discharging of ESS will be reviewed and their strengths and weakvitbdses

assessed.

2.2 Electrical Energy Storage Systems Review — types, functions and roles

Electrical Energy storage systems (ESS) are devices or systems that convaraledeergy
to a form that can be stored and then converted back to electrical energy vehesyititied
[3]. Energy storage has been essential for providing reliable energy supplieanfories,
from stockpiles of coal and uranium to reservoirs of gas and water. Advianoasterial
science allow for storing higher energy densities in forms that are reabézgi.e. in a
manner that the energy may be used and replenished up to a certain amountc&nérgy
stored in several forms: thermal, chemical, gravitational mechanical, and iromiaghetic
fields before being converted to its end use as electricity or heat [6].

Electrical Energy storage systems may be classified according to varioustgsasuch as

their technology, energy form, energy capacity, power density, duration of use, fregfiency
use and functions. Figure 2.1 shows a classification of electrical energy storage systems
according to energy form as mechanical, electrochemical, thermal, chemicdeetnitat

[11]. This shows the different ways in which electrical energy may be storeddoatua

different time or location, and the various devices used in storing energy.

ESS capacity is defined in terms of the maximum amount of power that can be drawn from
them or used to charge them, known as the rated power. The energy capacity is defined i
terms of the amount of current that can be drawn from them over the peraodhadur in
Ampere-Hour unit (Ah) or the amount of power they can supply over the periocholiaim
Kilowatt-Hour unit (kWh).
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— Electrical Energy Storage Systems
Mechanical Electrochemical Electrical
Pumped hydro - PHS Secondary Batteries Double Layer Capacitor
Lead Acid/ NiCd/ NiMh/ Li/NaS — -DLC
] Flow Batteries Supetconducting
Compressed Air - CAES Redox flow/ Hybrid flow Magnetic Coil - SMES
Flywheel - FES Chemical
Hydrogen Sensible heat storage
Electrolyser / Fuel Cell /SNG Molten salt/ A- CAES

Figure 2.1. Electrical Energy storage systems classification by energy type

221 Rolesof Energy Storage Systems

The roles played by ESS are largely dependent on a number of factors indheddhgation

of use, frequency of use and the amount of energy they can store. The roles that at®/played
ESS may vary from the viewpoint of electricity network operators, consumerslectricity
generators. Figure 2.2 shows how the frequency and duration of use impacts tleatdiffer

roles.
Electricity Network Operator roles for energy storage are as follows [11]:
1. Time Shifting

When electricity is supplied to consumers there is usually a gap between the amoangyf en
used during the periods of highest demand known as the peak periods, for example when
people get ready for work and use their boilers around the same time, and the pdoweds of
demand known as off-peak periods, for example at night when users demand is low as most
consumers are asleep. The peak usually increases annually and as a result the installed
capacity of the distribution lines and other used to supply electricity tsuowmrs must be
reinforced. ESS allows electricity distribution network operators t@ staergy during off-

peak periods and then use the energy during the peak periods to bridge the demahid gap. T
shift in the time of use of energy that is stored is known as time shiftinigie&ff time

shifting results in peak demand reduction and leadHing, which is a “flattening” of

demand across time periods.
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2. Power Quality

Electricity utilities including transmission and distribution network afms have a mandate

to maintain supply power voltage and frequency within a set tolerance. They maintain pow
frequency within the tolerance by adjusting the output of generators or mpahgi settings

of equipment such as transformers, which control the ratio of voltages aidthef the
supplier and the consumer. ESS may be used to provide these functions by either charging or
discharging to increase the demand at the consumer side or reduce it from thentiefipei

supplier.
3. Network Congestion reduction to defer reinfor cement

Congestion on an electricity network occurs when many consumers demand electric power at
the same time through the same equipment. If the electricity demand instantaneously excee
a certain amount failure may occur. ESS may be used to postpone the reinforcement o
network equipment to prevent failure. Utility companies may install ESS at ajgieo
substations and along with time shifting strategies postpone reinforcement of the network.

4. lsolated grids

Some locations do not have direct access to supply lines from the wider ejegtictiand
must therefore operate as islanded networks. ESS may be used to increasettthigopenfe
renewable energy in such networks, for example in [29] ESS is used to inceease tbf
wind energy in the Shetlands, UK. ESS are also used to increase demand to maitpblyhe
of diesel generators on such islanded grids to provide stable electricity supply.

5. Emergency power supply for protection and control equipment

The set of equipment that provides protection for other equipment in eleaigtitprks need
a reliable power source. Batteries are used as an emergency power supply for the equipment in

case of a power outage.

30



Electrical Energy Storage Systems Management and Scheduling: Related avbiteeature

Duration

0,1s 1s 15s 1 min 15 min 1h 8h

1/ month

1/day
e

12/ da
./ / Primary

(

N Regulation

30/h / \\ =
; ! Power
30/ min \‘ Quallty T_//

4

y

5/sec \\_/’/

Number of uses

Figure 2.2. Roles of energy storage systems accor ding to frequency and duration of use

The ESS used by utilities are usually large scale and may take up a lot of space. tasesn

such as Pumped Hydro Storage (PHS) and Compressed Air Energy storage (CAES) the
geographical features of the installation location are used as an advantage aiPhdken
advantage of a mountainous terrain to pump water up to tanks on mountains during off-peak
periods and run it down through turbines along the slope of mountainsidentrate
electricity during peak periods. Compressed air may be stored in caverns and usega® r
turbines for electricity generation. In the case of large scale batteryyesterage they are
usually installed in interconnected arrays with each unit being about the sizehifping
container. Figure 2.3 shows a section of a 10MW AES Advancion energy storage array in
Ireland consisting of 53,000 batteries arranged in 136 nodes. The Kilroot array balances
supply and demand and support the All Island transmission grid via System Operator Northern
Ireland (SONI). The Advancion array also enhances power supply, enables more efficient
dispatch of existing generation assets, and increase the ability to tetegmawable power
sources [30].
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Safety First

Figure 2.3. Grid-scale battery storagearray in Kilroot, Ireland

ESS are also used by consumers for different functions including time shiftingy ener
independence and backup power supply. Recently there has been an increase in the
penetration of ESS in consumers’ homes and business premises as a result of incentives such

as the Feeih-Tariff [31] in the UK where small-scale renewable generation is subsidised, and

as a result encouraged the uptake of solar and wind generation in homes. The excgss energ
generated by these renewable sources is either exported or stored. Manufacturers and suppliers
have also moved to provide small-scale energy storage to consumers, devices such as the
Moixa Maslow™ [32] shown in Figure 2.4 are about the size of a boiler unit and can provide

up to 10kWh of storage connected behind the electricity meter and usually also to a solar
energy installation. Cost saving is also achieved by consumers taking advantiegéblef

time-of-use tariffs where energy prices are lower during off-peak periods
The roles of energy storage systems for consumers are as follows [11]:
1. Timeshifting and Cost-savings

Consumers may use energy storage to take advantage of time-of-use tariffsicénat pr
electricity differently for peak and off-peak periods. Consumers may store embegyit is
less expensive during the off-peak periods and use it during the peak pdraud v& more

expensive from the supplier.
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2. Emergency power supply

ESS may be used to provide backup power supply for equipment such as fire ispenéle
emergency lighting in the event of power failure. ESS are also useful in medical and
manufacturing industries for processes that require constant power supplyiohs refdth

weak power network infrastructure ESS may be used to provide electricity fanapgl

during short-term outages.
3. Mobility and mobile appliances

ESS are used in electric vehicles (EV) as sole power sources or in hybrigucatidins
alongside internal combustion engines. EV batteries are also expected to be usedyto suppl
power to households or back to the electricity grid in concepts known as viedideie

(V2H) and vehiclgo-grid (V2G). The most common and widespread application of ESS is in
mobile devices such as mobile phones, laptop computers and tablet computers. ESS provide
power to these devices and enable consumers to use them for long periods withedt a wir

connection to a power supply point.

- Lo

e ambe

Figure2.4. A Maslow Smart Energy Storage household unit

2.2.2 Classfication of Energy storage system technologies by functions

Based on the roles of energy storage described previously the main functions of ESS are:
i. Provision of uninterruptable power supply (UPS)

ii. Power quality management
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iii. Transmission and distribution grid support
iv. Load shifting
V. Bulk power management

The existing technologies for ESS are able to provide these functions differgmtlydihg on

their rated power, energy content and the nominal discharge time. Figure 2.5 shows the
different existing technologies and the functions they are usually used for acdordisge
factors. Most ESS are modular with the exception of Compressed Air Energy Stodage an
Pumped Hydro systems which are dependent on geographical factors, therefore a higher
capacity may be realized by combining several units. The main restrictions on\cémacit
modular units will be economic i.e. cost per kW or cost per kWh [11].

Using discharge time to categorize the technologies, they may be classifiedhorto

discharge time, medium discharge time and long discharge time.
1. Short dischargetime — secondsto minutes, ener gy-to-power ratiolessthan 1

These include Double-layer capacitors (DLC), superconducting magnetic energgestor
(SMES), and flywheel energy storage (FES). These have a capacity of less than liaVh for

system with a power of 1kW.

2. Medium discharge time — minutes to hours, energy-to-power ratio of between 1
and 10

These include FES, electrochemical ESS i.e. batteries including Lead-acid (LAYpLItn
(Li-ion) and Sodium Sulphur (NaS) batteries. Batteries have advantages in thivkWand

kwh — MWh range compared to other technologies including high energy density, fast
charging behaviour and long life. Their typical discharge times are up to Iskeara. A
system of rated power 1kW may have between 1kWh to 10kWh capacity.

3. Longdischargetime— daysto months, ener gy-to-power ratio of greater than 10
These include hydrogen gHand synthetic natural gas (SNG) systems.

It can be concluded that no single universal storage technology is superior to adtarthge
systems, and their suitability depends on the purpose. The focus of this thesisnein T
shifting applications at consumer level or distribution grid level, paatityuin peak demand
reduction and in load-levelling. Therefore the technologies that will babseiitvill be in the

medium discharge time category with an endmgpeower ratio of between 1 and 10. The
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current technologies that exist and are best suited for this purpose from Figare Bditery

energy storage systems and high energy super capacitors.

upPs T&D Grid Support
Power Quality | Load Shifting

Bulk Power Mgt

ow Batteries: Zn-Cl Zn-Air Zn-Br
VREB PSEBE New Chemisiries

T -

Advanced Lead-Acid Battery

Hours

High-Energy
Supercapacitors NaNiCl, Battery

Li-lon Battery
Lead-Acid Battery

High-Fower Flywheels

Discharge Time at Rated Power
Minutes

Seconds

High-Power Supercapacitors

1kW 10 kW 100 kW 1MW 10 MW 100 MW 1 GW
System Power Ratings, Module Size

Figure 2.5. Categories of Energy Storage System technologies according to discharge time and

system ratings

2.3 Peak shaving and L oad-levelling functions of ESS

As stated in the roles of ESS, time shifting is used by network opeeatdrsonsumers to
manage network operation and to reduce the cost of energy bills using energy. #{orang
the time-shifting operations to resolving problems surrounding network d¢mrgesd firm
capacity limits are Peak shaving and load levelling. The benefits of peak shadrigad
levelling include improved system reliabilityas the system will always operate within limits,

and also deferment of reinforcement when demand increases.

These related concepts are illustrated in Figure- Zigure 2.9 where the abscissa shows the
time periods and the ordinate shows the magnitude of electric power demand meaaured at
load point. The effects of peak shaving and load levelling are shown as either refiecing
demand from the original peak demand point (peak shaving) or increasing thedemestds

so they are closer to the peak demand and the margin is reduced (load-levelling) or performing

both actions simultaneously (peak shaving and load-levelling).
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ORIGINALPEAK DEMAND

Figure 2.6. Original Demand Profile with no peak shaving and load levelling has wide margin

between peak and trough demands

\ PEAK DEMAND AFTER PEAK SHAVING

Figure 2.7. Demand Profile after Peak shaving without load-levelling showing lower peak demand

ORIGINAL PEAK DEMAND

A

‘ : ' TROUGH DEMAND

>t

LOAD LEVELLING TO REDUCE DEMAND MARGIN AND VARIATION

Figure 2.8. Demand profile after load levelling without peak shaving showing smaller peak-

trough demand margin and lessvariation in demand
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ORIGINAL PEAK DEMAND
A NEW PEAK DEMAND

TROUGH DEMAND

I I L . L s D

PEAK SHAVING AND LOAD LEVELLING

Figure 2.9. Demand profile after load levelling with peak shaving showing smaller peak-trough

demand margin and lessvariation in demand

Peak shaving involves reducing the peak demand of a sub-network or a load point such as a
consumer residence as observed from a point upstream on the network[33]. In thstsimpl
form peak demand may be reduced by load-shedding. Load-shedding is an operation where
network operators take some customers off the network during periods of peak demand
leading to blackouts for those customers. This is the case in areas with weaker network

infrastructure such as parts of sub-Saharan Africa [8].

In more developed areas with high priority on security of supply other arrengeimcluding
Short Term Operating Reserve (STORpenerator companies are paid to come online to
support the network for a short time or larger consumers are paid to take off soaredde
momentarily; Demand Response schemes (BD&vices and consumers responding to higher
peak prices; and Direct Load control schemes (DL@gtwork operators turning off some
deferrable loads during peak periods. Energy Storage Systems may be used to shiflaleferr

loads to periods of lower demand and reduce the peak demand.

Load-levelling is the reduction of variation in demand over a given time period by
rescheduling loads to periods of lower demand or producing energy during those periods fo
storage and use during peak periods [33]. Load-levelling makes the demand profile more
predictable and can also have the effect of peak demand reduction. A flatter demdad profi
with peak reduced increases the available capacity in the network. It alse flogfficient

operation of generators.

The focus this research in the area of network congestion management anchecons
electricity utilisation is in the application of Energy Storage systenashieve peak shaving

and load levelling.
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24 Active Network Management and the need for Energy Storage System scheduling

One of the main challenges posed by the inclusion of ESS in an electrical system is the
violation of constraints inherent to the system because they may act as |gmige@tors

when charging or discharging. Charging the ESS may violate thermal constrainp®wer

limits of the electrical network, discharging them may cause over-eofeagts [12]. There

are also limitations in storage capacity, and the strong link between tinee®rgfy storage

and availability of energy at other timesalso referred to as thater-temporalnature of
storage [12], which simply means one cannot use energy that has not previously been stored.
Thus the full benefits that can be obtained ESS may not be realized because theitticontribu

will always be curtailed at certain points.

As a result of these challenges ESS is usually scheduled as part of Netwerk
Management (ANM) schemes to maximise the benefits that are obtainable. ANM oefers t
devices, systems and practices that operate pre-emptively to maintain netwtiks wi
accepted operating parameters [13]. The first generation of ANM schemes @nfgdna
monitor and control philosophy in which they used the measurement of network Eaisaaset
control signals for keeping parameters within limits. These operated in theodrsleveral
seconds to several tens of seconds. The second generation of ANM being developed go
beyond simple monitor and control methods and incorporate advanced forecasting and
scheduling [34].

Hence to include ESS in a network or electrical system effectively a schedolgerating it

must be generated by a scheduling algorithm to select the optimal future changing
discharging periods based on historic information or a forecast. The forewasissed to
operate the ESS so as to achieve set objectives such as peak shaving ane!llwapdgv
selecting periods which are expected to be off-peak periods and charging the ESS in those
periods thereby increasing demand and then using energy from the ESS rather thamgimport
energy from the electricity grid in the periods that are expected to be peak periods.

In general demand forecast aggregates for several customers are more accurat@analtit is
to accurately predict the demand for a single customer [14]. Forecasts may besaurcunaay
have errors as shown in Figure 2.10 such as error in peak time, error in peak magrdtude

error in peak duration.

Forecasts are generated using statistical methods such as linear regression antytioé qual
the schedule depends on the accuracy of the forecast. The forecasting methods and techniques
are out of the scope of this study and all the analysis is based a historical avéiatyical

record which is assumed to be the outcome of a forecast.
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No error in forecast Error in peak magnitude

P P

Error in peak time Error in peak duration

P P

Figure 2.10. Possible outcomes of electricity demand for ecasts

25 Review of Scheduling methods and algorithms

There are several methods currently in use for scheduling ESS operation inatlsgsiems

for Active network management. Some of the most frequently used methods may be
categorized into four categories according to their control schemes asilf8et@ntrol
methods, Optimal Power Flow methods, Dynamic Programming and Artificial Intelligence
methods, and Demand Response methods. These methods are reviewed in this section

including their general procedure, strengths, and weaknesses.

251 Set-point control

Set-point control (SPC) involves using a reference value of demand to generate adchedul
charge or discharge the ESS. When the demand falls below the reference the ESS is charged
and when it goes above the reference it is discharged, operating in a similar fashion to
thermostat or a closed loop control system as shown in Figure 2.11. The reference is based on
a scale of the peak or an average calculated from aggregated demand values. On some
occasions this average can be moved by a certain tolerance in response to difetsntrev

some scenarios the set-point is chosen using forecasts a day ahead, and in some cases multiple

setpoints are used [14].

SPC is the standard control technique used on LV networks for controlling E38] Rowe

et. al describe how SPC is used on an LV network with an aggregated demand p&8ile of
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smart meters. In FigureI2 a 20kWh device with a discharge rate (rated power) of 4kW per
half hour is added to the network. When the set-point is 12.5kW (i.e. the ESS charges when
demand is below this value and discharges when it is above this value) the debiects
reduce the demand to tlsetpoint for the entire duration of the data, resulting in demand
reduction of 20%. When theetpoint is 11.5kW the storage device runs out of energy before
the end of the cycle resulting in a 7% demand reduction. This example illustrateB haan

be effective when a corresétpoint is selected and when a wrong set-point is used the same
ESS capacity may not be as effective.

In [35] Papic uses SPC for a battery ESS at a TAB Mezica plant in Slovenia. TABaMee

a battery manufacturing company and decided to install a pilot device to shahease 6

ESS in load-levelling and peak demand reduction to avoid uprating a supply transfidrener
method used here consists of three parts; the first part forecasts consumgttominute
intervals. If the consumption is found to exceed a desired maximum referenc&3% B
supplies power to the network, otherwise the ESS is put in charging mode.efétence

power in this algorithm is set using the peak daily tariff for a reday. During the peak

daily tariff the reference value may be increased by 15%. A battery modelishstthe
voltage dependency of the battery on current and capacity is also used to check if the reference
is suitable after the forecast has been determined. If the reference caustisropérthe

BESS outside tolerable values the demand from the battery is reduced. The paper concluded
that based on the simulation results the reference value is significant forsuicsleaving of

peak loads, therefore a poor choice will also result in ineffective peak reduction.

Instantaneous System Demand

) 4
Demand Set Point Difference ESS ) Real-time Demand
> »| Charge/Discharge >

Controller

Demand Monitor

Figure 2.11. Simple Closed-loop system for set-point control in real-time ESS scheduling
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Set Point 1(S,1) - 12.5 kW

 Set Point 2 (S,2) - 11.5 kW

—Without Storage
—With Storage - SP1

- --With Storage - SPZ
Power Flow Storage - S, 1

-.-.Power Flow Storage - SPZ

0 10 20 30 40 Sb
Time (Half Hour Samples)

Figure 2.12. Set-point control example reducing demand over a 24 hour period using two

different set-points

SPC may also be used by the consumer to reduce electricity demand at the gricrégueh in
for incentives such as lower energy bills. In general most of the savingareéhatade by a
consumer in a peak tariff-driven regime are made from reduction of the peak derhand rat

than in using electricity when it is cheaper [35].

In [36] Purvinset. al describe the application of battery-based ESS in household demand
smoothening in electricity grids. Demand smoothening is another term for loadAig\aeilil

they’ve described it as a process by which the daily demand variations are reduced, achieved

by charging a battery during valley demand and discharging it during peak demand. The
study describes a time-dependent management model for a simple battery system, and a
demand-tracking model for a more complex battery system. Both models implement SPC

based on historic demand information.

The reference value for the SPC is calculated using the flowchart in Figure lictBtakes

as input the hourly demand profile of the household, the BESS efficiency and a calculation
step. The reference is first set using an average of demand throughout the day and then it i
increased by the step value until the ratio of the amount of energy beingeduippin the

ESS to the amount being consumed by the ESS for charging is equal to the BESS\efficien
After the reference is obtained it is used to determine if the batlety be charged or
discharged in both models. This process is used to obtain a schedule for operating the ESS at a
later time as part of an ANM scheme. The demand tracking model follows the instarstan
demand by further constraining the amount of charge or discharge according terbeceef

values, i.e. it does not charge or discharge to the maximum rated power but cletkado
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the system demand created by charging does not exceed the reference value and that the
demand as a result of discharging is above the reference value. This enablesvitd gr

more level profile around the reference value.

\ CALCULATE Paver

Egen =0
stor =0
i=1

Ref = Ref + Step

A

Egen = Egen+ p1 — Ref |

Estor = Ector + |p; — Ref|

Figure 2.13. Flowchart for calculating set-point reference value for demand smoothening

algorithm

SPC has an advantage of being the only real-time control option available to ESS bantrol t
does not have to depend on forecasts. It has an advantage of simplicity and ease obapplicati
to real time control at both the consumer level and the network operator level.

One of the disadvantages of this method is that it can be affected by short isplkesand
which will greatly alter references based on averages and therefore reduce tineepées.
For example a “TV-pickup” which happens in the UK daily after popular television series end

and consumers turn their kettles on around the same time [37]. SPC also somptratss

without any knowledge of the future when used in real time control, therefoagetoannot
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be freed up for other support functions on the network[14]. Set-point control alsesequ

real-time monitoring of the network, which is expensive [14].

Roweet. alin [38] formulate a method using aggregated forecasts and an iterative scheduling
algorithm. The method is based on operating a moving set-point which is detefonieadh
iteration of the optimisation, hence it is a dynamic programming tg@gbrbased on a moving
setpoint. The architecture as shown in Figure 2.14 combines both an off-line and on-line
model, in which set-points are selected based on forecasts and the storagesgstanol

online enforces limits during real-time operation.

| Off-line !
! |
; Aggregated Forecast i
! Data And |
i Error Bounds :
i
{ I | |On-line |
: ¥ LForecast : | :
|
I - I I
: Preprocessing ! : Storage !
|
I 1 > il - |
! Litter Splan| ' Control !
E y il System :
i | Scheduling Algorithm i ] i
I I I
|

Figure 2.14. Architecturefor off-line and on-line for scheduling based on aggregated for ecast

252 Dynamic Optimal Power Flow

In power systems studies a power flow problem is related to finding the amount af powe
flowing through equipment such as lines and transformers in an interconnected network and
the voltages at each node of the network. The theory of this problem aswluiti®ns is
covered in detail in chapter 4 of this thesis. In a practical power system athtpesi@re not
located at the same distance from load centres and their fuel costs asntiffeere is also
usually more generation capacity than the total demand and power losses in a network and i
an interconnected network there is a challenge of scheduling each power plant to minimise

fuel cost.

Optimal power flow (OPF) is used to optimise the power flow problem ofya krale power
system by setting limits within which the real and reactive power of generasyr vary so as

to meet a particular load demand with minimum fuel cost [3]. This me dy minimising
selected objective functions while maintaining an acceptable system performance. The
objective functions, ocost functionsmay present economic costs, system security or other

objectives. The functions are optimised using constrained parameter optimisetihods
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such as the Lagrange multiplier method with equality and inequality constraints imposed. |
terms of the economic dispatch of a thermal power plant the fuel cogiesfeaator may be
represented by a quadratic function of real power generation, which may be plattaetehs

cost curve. This cost curve is obtained by converting the ordinate of a heat-ratdirturve
Btu/h) to a financial unit per hour (£/h) as shown in Figure 2.15. The cost function must be

minimised and in so doing the operating power limits of the generator will be set.

Fuel Input Cost
Btu/h £/h

P (MW) P (MW)

Figure 2.15. Heat rate curve and fuel cost curve used for generator cost function in optimal power

flow problem

The problem is described mathematically as minimising the cost function (2.1):

fx@®),y(®),2(1) 21)

subject to the equality constraints in (2.2):

gilx(®),y(®),zt)) =0 i=12,..,k 2.2

and the equality constraints in (2.3):

u(x(),y(t),zt) <0 i=12,..,k (2.3

where x is a control variable, y is a fixed variable and z is a derivative variable

In OPF the control variableg)(are adjusted by the optimisation proceskse power output of
a generator for example; the fixed parametgrsch as thermal limits of lines define limits

and the derived variableg) @re functions of the control variables and fixed parameters.
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The concept of OPF is applied to ESS dispatch and scheduling in a number of research works.
The objective function when integrating ESS may represent an operatiogetivabjo reduce

power import at a point in a network where a sub-network is connected which ksayvit
connection point (GCP), to maximise export at a GCP from a generator innetsudrk, to

increase penetration of renewables or to minimise energy costs.

A Dynamic Optimal power flow (DOPF) method is developed in [12] for using sadi@g
maximise export and revenue. The same method is used in [29] for increasingetnatioan

of wind energy sources in the Shetlands UK and manage congestion in a distribuation gri
using ANM. This method extends the classical OPF formulation to cover multiple time
periods by adding a parameter for inter-temporal variables and performi@gRarseveral
times over a time period. Using DOPF the time horizon is broken up intghadlthe steps

and an OPF is performed at each time step to derive variables to controloopefattie
network.

In DOPF (2.1)- (2.3) will now include an inter-temporal variabte For integrating ESS the
inter-temporal variable may be the State of Charge (SOC) which is a fractibe tdtal

energy capacity currently used dependent on the previous charge and discharge amounts [12]
The change in the SOC of the ESS is derived as a result of the optimisatieaspand keeps

track of stored energy.

The ESS are modelled as generators that can inject positive or negative powée into t
network as shown in Figure 2.16, with the State-of-Charge as a discontinuous funatiuh rel
to the injections as follows, with;gs negative when charging and positive when discharging
in (2.4):

_at (€inPess i Pess 20
(2.4)

ASOC = —1 1
Egse aPESS ; Ppss <0

The discontinuity cannot be accommodated in a nonlinear programming solution and is
therefore removed by modelling the ESS as two separate generators for clanging

discharging so that the ESS power is given as (2.5):

charge discharge
Pess = Poss © + Pgss 0 (29)
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Charging Generator

Energy Store

rated charge
-Pess <Pgss” <0

SOC Constraint:
S0OC,,in<SOC < SOCax

Discharging Generator

S Fscharge P ated
0 <Pgss €,ut PESS

Figure 2.16. Two generator model of ESS

The State-of-Charge of the system at any given time is then expressed as tfealitthe
changes in SOC due to the charging and discharging generators from prigetiods as
(2.6):

At h I r
S0Ckss(§) = S0Cxss(0) — oo Z PRTO(¢) ~ e — Z PESE) o
ESS ESS Eout
The optimal change in SOC in (2.6) is achieved by deriving the amount of pAifé?* that
must be generated elsewhere in the network or imported from the GCP. If thedf twst

"9¢| will lead to

power is positive in the objective function then minimising the valqéﬁf
the optimal SOC. In this manner the charging and discharging of ESS may be esthedul

achieve the objectives set for the network.

An Active-Reactive Optimal Power flow is also formulated by Gabash and [1i1] which

uses wind forecasts and an electricity price model to determine the best peritisisatch
storage and maximise profit and reduce constraints on wind generation integratios. In thi
method the charging and discharging periods are pre-defined according to the petik and o
peak pricing of electricity as shown in Figure 2.17. During periqdand T; the demand, P

is below the wind power generateg, Rnd the excess wind power is stored using ESS. This
energy is released during the higher tariff perigdThe time-based objective function is set

to include the battery power, constrained by time periods for charging and dischaifggng
amount of power absorbed or injected by the BESS is determined by the amounwilhich
maximise profits and reduce costs of energy losses. A similar method is uptd] by
Gabash and Li with a two-stage framework shown in Figure 2.18 where the upper stage is
optimised using a Genetic Algorithm to determine the best period lengtlebdnging and
discharging by selecting different combinations of time exhaustively befangncpout the

OPF.
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Figure 2.17. Active-Reactive Optimal Power Flow using electricity prices and wind power

generation.
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Figure 2.18. Active-Reactive Optimal Power Flow with search algorithm to determine best

charging and discharging periodsin an ESS

OPF methods are usually detailed and have several decades of research to rely on but they
have a disadvantage of being computationally complex because of the addition of more
variables to an already complex non-linear problem. Optimal Power Flow badeatimatso

rely heavily on generation price information or other forecasts which asdweags available

or in the control of the distribution network operator or a customer.

25.3 Dynamic Programming and Artificial I ntelligence methods

Dynamic programming (DP) is a technique for efficiently implementing arse@ algorithm
by storing partial results [41]. A recursive algorithm is a methodsbiaes a problem by
calling a function several times but each time using a smaller value aguanmeat until the

problem can be solved directly. A simple example is finding the factorial mimber by
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gradually finding the factorial of smaller numbers. When a naive reeuiaiyorithm
computes the same sub-problems repeatedly the solutions may be stored in a lookup table to
improve the efficiency of successive solutions. They are effective in optimisation praiems
combinatorial objects that have an inherent left to right order among components, such as

incremental time-based scheduling [41].

Applied to ESS, Qiret. alin [42] use a quadratic fuel cost curve and recursively solve finite
space Markov decision processes for each sub-network under consideration with AC powe
flow equations as part of a Dynamic Programming model. The energy stored in a déwce at

i" bus is shown to be computed as a function of the model from the preceding time-step. If the
energy storage is co-located with a load, they first supply the load locdtlemnérgy storage

and more energy is then drawn from the grid if it is necessary to meetethend. In
particular, we model the dynamics of stored energy in the idealized s{oir@adesses) in

(2.7):

xi(t+1) = x;(t) + w(t) — d;(t) (2.7)

Wherex;(t) is the energy stored at tHebus at interval, u;(t) is the power drawn at the bus
andd;(t) is the demand at the bus.

Sioshansket. alin [43] assume knowledge of future energy prices and perform an optimal
dispatch based on this and then assign probability distribution for the avgilabifitorage
based for each successive periods in the DP. In [44] Netved use price based demand
response and DP to determine the best transition state from one time step to the aext
economic dispatch which is based on Quadratic programming. In [45] DP and Optinesl Pow
flow are combined to dispatch energy storage for load levelling and peak shaving at grid level.

Dynamic programming (DP) methods while being detailed and quite effectivendiirita
nonlinearity and stochastic operation also depend on a specific value function which is based
on generation data or cost data for each time step and are usually also computationally
complex. If the specific value function is not defined properly the resiillthave poor
quality.

Artificial intelligence (Al) is also being applied to ESS scheduling mostlyorecasting
demand before applying another method for scheduling. Artificial Neural Networks f
example are used to forecast household demand a day ahead in [46] based on the historic data

from three months prior to the day. Based on the forecast and solar energy photovoltai
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generation a schedule is generated for operating energy storage to tradménggnmarket

after local demands are satisfied in a manner similsetpoint control.

254 Demand Response and tariff-based Methods

Demand response(DR), or Demand Side Response (DSR), is defined as changes in electric
usage by demand-side resources from their normal consumption patterns in response to
changes in the price of electricity over time or to incentive payments designed tolowleice
electricity use at times of high wholesale market prices or when systkability is

jeopardized [47].

DR is one of the interesting features of future electricity networkstte@mart electricity
grid and is a popular topic in recent research work. The concept of a smart gsidnitiadly
the current electricity grid with 2-way communication infrastructure sli@hconsumers may
receive information from suppliers and supplier may receive consumption infamnmabre

efficiently.

When customers participate in DR there are three possible ways in which they ©ge cha

their use of electricity [48]:

i. Reduce energy consumption through demand curtailment strategies

ii. Moving energy consumption to a different time

iii. Using on-site standby generated energy to reduce their dependence on the grid

For the application of ESS in DR moving energy consumption to a different time @ption

that is used. Customers comfort may be limited by DR and therefore autgmatiuitoring

and control technologies are fundamental to making DR less of a hindranceotonengsj49]

These automation technologies include “smart” devices which can respond to changes in
electricity price and deferrable loads. These include electric vehicley (EWigerators,
dishwashers, washing machines, and energy storage devices. The effect of peak shaving and
load-levelling is achieved if the correct price signals are sent to themesglelring peak

periods to encourage them to cut off or reduce their electricity consumption.

The report by Strbaet. al.on demand response based management of distribution network
highlights the benefits of smart charging of EVs as compared to busigessal approach

[2]. Figure 2.19 shows the changes in demand profile for the case in a residential area driven
by the EV charging when people return home from work for both busasassial and smart

modes of operation. In the normal mode all EVs charge as soon as they are plugged in during

49



Electrical Energy Storage Systems Management and Scheduling: Related wotitegatdre

the evening hours and create a rise in the peak demand, but in the smart approach the charging

is spread out to the early morning hours when most customers are asleep.

TIEV charging A . [CIEV charging

—Total load / \ —Total load
/ \ = —Demand

| N =\

1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 123 4 5 6 7 B 9 10111213 14 1516 17 18 19 20 21 22 23 24

Demand (MW)
Demand (MW)

Time Time

Figure 2.19. Business-as-usual (left) and Smart (right) charging in a residential area (8,000

properties) driven by charging of 5,000 EVswhen people return from work

In [47], EVs and smart appliances are used at the consumer level to shape the demand on the
network by responding to price signals by prioritising the appliances according to eustom
preference. The ESS in this case are the EVs and the energy stored is used for mobility.

In some cases the stored energy is returned to the household or the sold od theag
Vehicleto-home (V2H) or Vehiclde-grid (V2G) setup. In [50] Zhao et. al. describe a peak
shaving strategy that charges an EV during off-peak periods and once a cedaof-citairge

is attained a V2H program discharges the electricity to the howigich is similar to a set-

point control method since that SOC is determined beforehand and not dynamic. They also
set constraints on the amount of demand that can be handled by the EV.

Heymans et. al. in [51] describe the application of second-use EV batteries in hdsigehol
energy storage and peak shaving. Their ESS scheduling approach combines demand
information and financial incentives to minimise the costs of energy using-gfiase

pricing. In some cases the peak demand increases or shifts to a new period, which highlights a

possible impact of naive scheduling based on only financial incentives.

The DR scheme in [Gkquires control of “wet appliances” to reduce congestion by scheduling
the time they use energy to coincide with low demand periods which customers may find

intrusive.

Demand response (DR) schemes based on Time of Use (ToU) pricing may lead to pea
demand reduction but are generally out of the control of the DistributionoNet@perator

and consumer. DR schemes depend on consumer behaviour in response to energy prices but
the DNO in most cases do not set the energy prices, the energy supplier does. The consumer

may also not respond to the prices in such a manner that it leads to peak demand reduction.
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3 Application of Combinatorial optimisation methods to Energy
Storage System Scheduling

31 I ntroduction

The scheduling of ESS operation in an electrical system is formulatbikigetction as an
optimisation problem of maximising the utilisation of assets within the opeedttonstraints
of a given electrical network or electrical system such as loading, theatsal, power, and

energy capacity to postpone infrastructure reinforcement and provide other benefits.

Firstly, the problem is modelled as a form of the bin packing problem anslibiset sum
problem. These are part of a class of problems knowrtoasbinatorial optimisation
problems, which are described as a set of problems that consist of finding an opjenal
from a finite set of objects where an exhaustive search is not feasildad.eannot feasibly
test all possible inputs to determine which input produces the optimal dnitpeasonable
time. In these problems the set of feasible solutions are discrete or can be redliseckte

and from which the best solution is found [41][52].

After the problem is defined clearly a methodology is presented for findingpimal
solution using simple heuristic methods for solving both problems with stighifications.
Heuristic methods apply a practicatule-of-thumb” approach to speed up searching through
solutions. The methodology is then extended by applying Genetic Algorithm (GA)

optimisation.

32 Problem Definition

The problem of operating a network within thermal and capacity constraints ESBgs
defined as a dynamic optimisation problem of selecting the best periods to charge and
discharge the ESS to keep an otherwise overloaded network within operatiitsalT his is

achieved by a peak shaving and/or load-levelling objective.

Transforming a continuous daily demand profile intaliscrete time steps with normalized
demandD; in thei" interval, the objective is to minimise the peak demand given, as (3.1)
within the time horizort,, ..., t,. The integeb will be 24 for an hourly resolution and 48 for

half hourly, etc. (3.2) is a peak shaving objective.

D, = max({Dl, ...,Db}) (3.1

F1 = min(D,) (3.2)
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The load-levelling is defined as the difference between the peak and trough dedmahd,
gives an indication of how “flat” the demand profile is. It is given in (3.3) and the objective to

minimise the variation in demand is given in (3.4).

D, = max({D,, .., Dp}) — min({D, ..., D}}) (3.3)
F, = min( D)) (3.4)

When combined with ESS utilisatidf) and F, are constrained by ESS total energy storage
capacityE, ESS rated power, efficiencyp, and network capacit§. If the amount of energy

stored or used during th8 interval isE; the constraints are as follows:
ESS Capacity Constraint

The amount of energy stored or released during a time pedepends on its operation at a
previous time interval i.e. it cannot discharge energy that was not storedugigwir store
energy beyond its available capacity, given in (3.5):

b
z Ej|<E (35)

i=1
where{—E < E; < 0or 0 < E; < E} for discharging and charging phases respectively
ESSrated power constraint

The demand met by the ESS discharge is constrained to its operating power, given in (3.6):

| &=

L<p (3.6)
i

~

for all i.
Network capacity constraint

Total energy demand in the network or system must not exceed the firm capaeityin
(3.7):

C= ) Dyt (37)

ESS charging must not violate the loading and thermal constraints of the neiveats

injecting energy at the GCP, given in (3.8):
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b
ZDiti + uE, <C (38)
i=1

Equations (3.5)- (3.8) define the constraints for the optimisation. The solution will be an
ordered set representing the ESS dispatch scheddy)&,, ..., E,} and the final demand
profile {D,, D,, ..., D, }. The State-of-Charge is resolved by running both cycles and merging

the results.

As a result of the initial discretization of the demand profile, the g&S3ation is also
implicitly discretized. However the ESS dispatch schedule allocation is not botine gyme

discretization criteria i.e. anf, may be represented Bs = {E;;, Ej3, ... }-

Essentially, the cardinality of the set representing ESS dispatch scheduladstricted to
the cardinality of the set representing the demand profile. For example an tesotlytion
with 24 possible charge or discharge points may have an infinite number of charge/discharge

amounts in 24 groups.

The search space for the solution is defined in the possible elements of the aliocation
set which is infinite without discretization. However various solutionkestist in the finite

set which is flexible.
A suitable solution will have the following characteristics:

i. The solution must globally and recursively target the points in the demdiild pro
where the most violations or highest peaks occur and solve those first and then
find the next point closest to a constraint violation

il ESS must not be charged at points that will create new peaks which were
operating within constraints previously

iii. Operation of the ESS should not increase the energy demand in the network as

efficient operation will involve a full charge and a full discharge

Some solutions will meet the set objectives more optimally than others and intesesa
global optimum cannot be guaranteed the search may be terminated when a sufficiently

suitable solution is found.

The method proposed for obtaining a solution is a multi-stage optimi$egioistic involving
first generating a set of different solutions which may be optimauboptimal and then
further optimising by combining the best characteristics from the set tovmmn the best

solution.
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3.3 Allocating ESS capacity from a sear ch space using a subset sum algorithm

As indicated in the problem definition, the ESS capacity may be defined as the aset of
various combinations which is essentially a form of the subset sum problem. Thiessubse
problem is a problem of finding a subset that adds up to a particular value fangemset
[53]. It is a form of the knapsack problem, and it arises in situations whauarditative
target should be reached such that its negative deviation (such as loss of migacaptiey,

etc.) must be minimised and a positive deviation is not allowed.

If the list contains a small number of integers, then an exhaustive search cad e solve
the problem. For larger sets or real numbers other techniques such as dynamic proggrammi
and backtracking algorithms may be applied to solve it exactly. It may be eegpeessa {0,1}

integer relation problem as follows:

Let K = {kq,ky, ks ...k, } be a finite set andn be a positive integer called the target.
Associated with eachk; € K is a positive integes(k;) called its size. Does there exist a

solution to (3.9)?

k

Z s(ki)x; =m (3.9

i=1

wherex; =0or x; =17?

In this methodology the search space for finding that target sum is createc fsemof
random numbers to be filtered using a subset sum algorithm as shown Figure 3.1. The search
space is bounded by a predefined number of elements to make up the solution of the subset
sum algorithm. Using this method the ESS capacity may be allocated in variousatonisi

of smaller units.

54



Application of Combinatorial optimisation methods to Energy Storage Systeeddmng

NUMBER OF INTEGERS (k)
MAXIMUM ALLOWED INTEGER

RANDOM
NUMBER
GENERATOR

DIFFERENT SUBSETS
— TOTALLING ESS CAPACITY

ESS
PARAMETERS

Figure 3.1. Allocation of ESS capacity from subset sum filter and random number generator

Backtracking method is applied to solve the SSP by searching for a solutiomaviarger set
of numbers with a binary coefficient indicating if a number exists in thatico.

Backtracking is a systematic way to iterate through all the possible confiqusrati a search
space. These configurations may represent all possible arrangements of objecisa{jpash
or all possible ways of building a collection of them (subsets) [41]. In thisacdseision tree

is used to generate all possible solutions.

A novel approach is applied to the original SSP by modifying it to includeleaance
variable. This is shown in the decision tree in Figure 3.2, where the augmentation threshol
represents the number of integers at which point the sum is made up by an adequate addition
of one or more integers to the set before the maximum cardikalgyreached. For any

x; = 0 before the augmentation threshold, which is the number of bits that defalesea
enough solution, the path is eliminated. When the bit tolerance level is reachieel at
augmentation threshold the difference between the target sum and the running $im,

added to the current set to obtain the solution.

From the binary tree in Figure 3.2 it can be seen that only the solutions along the &fesran
can be active in the solution. This is because the elements in the settedebsfore the

search algorithm begins and because of the second condition for continuation.
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Xa =/ V =0
Augmentation . ‘

Threshold

B
. = - %
X = 1 o .

Figure 3.2. Decision tree for subset sum generation with augmentation threshold

Due to the heuristic and randomized method of generating subset sums, a given maximum
number of blocks may yield different solutions. For example a 20kWh ESS may yield
different combinations as shown in Figure 3.3.

2222222222

(kWh)

(kWh)

Figure 3.3. Possible combinations of blocksfor a 20kWh ESS

The flowchart of the subset sum generator is shown in Figure 3.4. The algorithmethat th

flowchart follows is explained in the following steps:

1. Choose as inputs the ESS capackly,and a toleranceg, for the cardinality of the
solution setSi.e. the number of numbers in the set
Randomly generate a setlofntegers to choose a solution from. This set is nakhed

3. Initialise a running sumR, to keep track of the numbers being summed to find the

solution, and X a binary vector that has bits set to 1 if number is in rusmmngnd O if
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not in solution. Use variabla to indicate amount of numbers in solution andfor
numbers in running sum

Check if ESS capacitig is greater than the sum of numbers in randonkKsend if so
regenerate random set, if not sort random set in ascending order

Check if running sunR is less than or equal to ESS capadéityif equal, then binary
vector X corresponds to solution and end the algorithm. If less keep including sumber
from K until tolerance margin (g} is reached and then introduce a new nunalderadd

to R such that it makes up solution and ends algorithm.

If running sum exceeds ESS capacity or tolerance isn’t reached then return to step 2 and

generate new random set and restart running sum.
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E = ESS capacity
¢ = tolerance for
cardinality of solution S

|

Randomly generate

o SetKofkintegers [,
(e1.82,....8¢)

s

R = Running Sum, initialized to 0
r = number of integers in running sum
§ = Set of integers for solution
n = number of integers in solution
i = index
X, a k-bit binary vector
representing inclusion of
corresponding element in K

YES

E>eq+eg+ .. +g?

Sort K in ascending order

|

while (R= E)
fori= 1k

l

setxj=1
setR=R +¢g;
setr=r+1

R=Eand(n—¢)=r

YES

(R=Eandn =rorrs(n-g))

VES seta=E-R

5={Xa}

(R<Eand(n-r)<g)

S; set of energy blocks
that add up to energy
storage capacity

END

Figure 3.4. Flowchart for solution to subset sum problem for ESS ener gy distribution framework
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The pseudo-code for the algorithm is given as follows in listing 3.1

Listing 3.1. Pseudo-code for solution to Subset sum problem for ESS energy distribution

Let K = (ei,ez,..,ex), a set K of k integers representing blocks of

enerqgy, generated randomly

Let X = (Xi1,X3,..,%Xx), a k-bit binary vector representing the solution
initialized to (0,0,..,0) with each bit representing the inclusion of
the corresponding element in K

Let E be the ESS capacity such that E £ e; + e, + ... + e

Let S be a set that adds up to the target sum E

Let n be a number of integers chosen for a wvalid solution,

representing the cardinality of S

Let & be the tolerance for the minimum allowed cardinality of S

Let R be a running sum of consecutive integers initialized to O

Let r be the number of integers added up for the running sum

Let a be the augmentation integer or set used to correct a close

enough solution

Let i be an index variable

if (E > e + e, + .. + ey)
generate new random set K and restart algorithm
else
sort K in ascending order
while (R < E)
for each i from 1 to k

set x; =1

set R R + e

set r r + 1

if (R=FE and (n - p) £ r £ n )then
return S = X as the solution //subset found

else if (R =E andn < rorr < (n - ¢g)) then
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return false and restart algorithm // out of

range
else if (R < E and (n - r) < ¢) then
set a = E - R
return S = {X,a} as the solution // augmented
set
else if (R > E)
return false and restart algorithm // too
large

34 Scheduling ESS allocation in demand profile using the Bin Packing Problem and

solutions

The strategy adopted for scheduling the ESS allocations in the demand profile is tédiscre
the demand profile into a number of intervals with normalized values for demand as illustrated
in Figure 3.5 and then allocating the ESS units generated from the subset sum algohithm to t

discrete intervals.

A histogram is created out of the demand profile by fiishing a cycle into a set db
discrete consecutive time intervals of a given duratigfor example 1 hour intervals will
result in 24 discrete “bins” over 24 hours, 15-minute intervals will result in 96 bins). The
demand values in hourly resolutions are normalized in the time-step of one hour. Eherefor
shorter peaks will be accounted for if an average is used for normalizatioril g missed

if they occur in the same time step as a higher local peak and normalingtiertime-step is
done against maximum demand. A smaller resolution will increase accura@giicgmas the

original profile is continuous and the algorithm discretizes it.

D, fo. 10, fo. fo. fo. fo. {0, B8

Figure 3.5. Normalization and discretization of demand profileinto binsfor the bin-packing

algorithm
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To satisfy the conditions set for a suitable solution the unit allocatius$ not lead to the
current maximum demand being exceeded during charging, and during the discharge it must
globally target peaks. This describes the allocation problem as a form of the kimgpac

problem.

The bin-packing problem is a problem of packing a set of items into a numbarso$uch

that the total weight, volume or some other parameters does not exceed some mairaum v
[54], [55]. Bin packing problems have many industrial applications inclufiiigg up
shipping containers, loading trucks to a certain weight, storage of items in warehouses, storage
of data on disk drives and machine scheduling problems involving several machines
performing independent tasks. It is an appealing mathematical model, yet work on this

problem as an organized topic is only about 35 years old, and therefore fairly recent [56].

Bin-packing problems are usually solved heuristically. The main heuristic methods of
obtaining a solution are shown in Table 3.1 [55]. An efficient solution that involw&s fi

ordering items in order of size before placement is never sub-optimal by more than 22% [54].

Table 3.1. Heuristicsfor solving bin-packing problem

Heuristic Procedure
1 | Next Fit (NF) Place items in the current bin if it fits, if not close that bin and
a new bin
2 | First Fit FF) Place items in thlowest numbered bin it fits irlf there is no sucl

bin start a new bin

3 | Best Fit (BF) Place items in the bin that leaves thast capacity left over afte

placementlf there is no such bin start a new bin

4 | Worst Fit (WF) Place items in the bin that leaves thest capacity left over afte

placementlf there is no such bin start a new bin

The process of charging and discharging using a solution for the bin-packingnprizbl
described in the next sub-sections. As indicated earlier, the items to be paekbd ESS

energy blocks from the solution to the subset sum problem.

34.1 Charging ESSusing solution of demand profile bin packing problem

After binning the demand profile (Figure 3.5) and the generation of ESS energy btwuoks fr
the solution of the subset problem as items to be packed (Figurd=gjlire 3.4), the blocks
are packed using the worst-fit heuristic solution. The worst-fit heurssthosen because it

places items in the bin that leaves the most capacity left over after@at [55]. Therefore
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the WF will target the periods with the least demand as they will leave thespaxst over
after placement of ESS demand and prevent charge in periods of highest demand thereby

producing a load-levelling effect and demand time shifting (Figude 3.6

ITEMS (ESS BLOCKS)
E1 Ez E3 b Ek

WORST FIT
BIN PACKING

e
D. - | D O |D: D, J ISl

BINS (DEMAND PROFILE SECTIONS)

E;

.
>.[0.Jo. ] [o. Jo.

CHARGE SCHEDULE AFTER ESS BLOCKS PACKED

Figure 3.6. Charge scheduling of ESS units using bin-packing algorithm

The flowchart for charging the ESS using a bin-packing heuristic is given in Figuaad.7
the steps of the algorithm are as follows:

1. Set as inputs the binned demand profile as a set oBbifi€apacityV with their already
utilised capacity representing the demand in the time step, make an identicaBctpy C
represent charging profile.

2. Using solution of ESS capacity subset sum problem, a set of virtual enedg,bhs
items to be packed into the bins sort the items in ascending order of emaggitude
Make a seM to keep unused energy blocks
Sort bins CB in order of utilised capacity from lowest to highest and select emptiest bin
Place energy blocks in this bin until the next block cannot fit without exceedpagity
and then move to the next emptiest bin and fit this block until the energy llecksed
up

5. CB represents the new demand profile during the charging phase of the ESS and gives

the optimal charging periods and amounts for load levelling.
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i is an index variable

B = (b4, by,..., bp), a fixed number of bins; V= bin capacity;
utilized capacity (Cp1, Ch2;-.-,Chb) representing original demand
profile

CB = (cby, cby,..., cby), a fixed number of bins; utilized
capacity (Ccp1s Ceb2:-++sCebb) t0 be filled up with items, an
identical copy of the original demand profile representing the
charging profile

Let M be a set for items that cannot be placed

in any of the available bins

S = (eq,€2,...,€p) a set of n objects
representing blocks of energy from
subset sum stage with s; being amount
of energy and t; being the time step for
the bin it is placed in

v

Sort elements of S in
ascending order of energy

———— for1=1n

Sort elements of CB in ascending
order of utitlized capacity and
select emptiest cb;

NO place g;in M
sett; = null
YES
set chj = Si+chj
set ti = j
place e; in cb;

CB - bins representing new
demand profile with energy
storage charged

M set of unplaced items

Figure 3.7: Flowchart for charging ESS using bin-packing algorithm
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The pseudo-code for the charging cycle is given in Listing 3.2.

Listing 3.2. Algorithm for charging ESS using solution of Demand Profile Bin Packing

Problem

Let i be an index variable

Let S = (e;,ez,..,en), a set of n objects representing blocks of energy
with properties s; being the amount of energy and t; the charge time
step representing the bin it is placed into, to be packed as items

into a fixed number of bins

Let the size of each item be the amount of energy in the block

Let B = (by, by,.., by), a fixed number of bins with a fixed capacity V
and utilized capacity (Cp1i, Cp2,..,Cpp) representing the original demand

profile

Let CB = (cb;, cb,,.., cby), a fixed number of bins with a fixed
capacity V and utilized capacity (Cepis, Ceb2s-rCappb) tO be filled up
with items, an identical copy of the original demand profile

representing the charging profile

Let M be a set for items that cannot be placed in any of the

available bins

Sort elements of S in ascending order of size

for each i from 1 to n:

Sort elements of CB in ascending order of capacity utilized and

select emptiest

Let cbj be the selected emptiest bin
if (s; + Cepy £ V)

set Cuy = S; + Capj

set t; = 3

place e; in cb;y
else:

place e; in M

set t; = null
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3.4.2 Discharging ESS asbin packing problem

The most important aspect of this stage is the transformation of the odgmahd profile.

To formulate the discharge phase as a bin packing problem the original demfilirdgpes
through ahorizontal mirror transformationi.e., the highest demand becomes the lowest
demand and vice-versa. This is done to favour the highest demand time steps in the packing

algorithm that is used to distribute the energy blocks that have been charged.

The worst-fit heuristic algorithm is also applied to pack the chargedyersocks the
previously highest periods of demand which are now the lowest demand period as a result of
the inversion. Alternatively the best fit method may be used on the origisfde fio place

ESS units with negative values to create a discharge (Figyre 3.8
BINS (DEMAND PROFILE SECTIONS) _
N 4 8 2 A A A I - | — e
' | TRANSFORM
| FOR EACH Di
o.]o.]o.Jo.[o. oo Jo. B, [ et

INVERSE BINS (DEMAND PROFILE SECTIONSI
WORST FIT BIN PACKING

.ee — |ALGORITHM
CONSTRAINED

ITEMS (ESS BLOCKS) BY CHARGE SCHEDULE

DISCHARGE SCHEDULE AFTER ESS BLOCKS PACKED

B 22 A 2 A A

Figure 3.8. Discharge scheduling of ESS units using bin-packing algorithm and inversetransform

The flowchart for discharging the ESS using a solution of a bin-packing prablgiven in

Figure 3.9.
The steps in the algorithm for Figure 3.9 are as follows:

1. Set as inputs the binned demand profile as a set ofBiok capacityV with their
already utilised capacity representing the demand in the time step

2. Make a mirror transformation of the original profile by subtractindsetil capacity of
each bin from the total capacity, producing an inversion effect as the IfiNeesbin
will now be the most filled and vice versa. Label this inverse copy astb@&present
discharging profile.

3. Using solution of ESS capacity subset sum problem, a set of virtual eneodg,hs
items to be packed into the bins sort the items in ascending order of energiudegni

Make a seDM to keep unused energy blocks
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Sort bins DCB in order of utilised capacity from lowest to highest and saigutiest

bin

Using the solution of BPP for charging, CB, as a guide for amount of energy stored
already place energy blocks charged in earlier time steps in this bithentiext block
cannot fit without exceeding capacity then move to the next emptiest bie et this
process until the energy blocks are used up

DCB represents the new demand profile during the discharging phase of the ESS and
gives the optimal discharging periods and amounts for peak demand reduction.
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START

(i is an index variable

B = (by, ba,..., bp), a fixed number of bins; V = bin
capacity; utilized capacity (Cp1, Cp2;--+sCpb) representing
original demand profile

DCB = (dcby, dcba,..., dcby), a fixed number of bins;
utilized capacity (Cgch1s Cdeb2s---Cdebb) t0 be filled up

with items, a mirror transformed copy of the original
demand profile representing the discharging profile

DM be a set for items that cannot be placed
in any of the available bins

S =(eq,€2,...,€p) a set of n objects
representing blocks of energy from subset
sum stage with s; being amount of energy

and t; being the time step for the bin it is
placed in

Sort elements of S in
ascending order of energy

- for1=1:n

|

Sort elements of CB in ascending
order of utitlized capacity and select
emptiest dcbj

place e; in DM

t=jands; =V
- set dt; = null

set Cycbj = Si+Cqcbj

setdtf; =j
place e; in dcb;

DCB - bins representing
new demand profile with
energy storage discharged

DM set of unplaced items

END

Figure 3.9. Flowchart for discharging ESS using a solution to the bin-packing problem
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The pseudo-code for the discharging algorithm using the solution to the bin-ppobirgm

and an inverted profile is given in Listing 3.3

Listing 3.3. Pseudo-code for Algorithm for discharging ESS using solution of Demand

Profile Bin Packing Problem

Let i be an index variable

Let S = (e;,ez,..,en), a set of n objects representing blocks of energy
with properties s; being the amount of energy and t; the charge time
step representing the bin it has already been placed into and dt; the
discharge time step, to be packed as items into a fixed number of

bins

Let the size of each item be the amount of energy in the block

Let B = (by, by,.., by), a fixed number of bins with a fixed capacity V
and utilized capacity (Cpi, Cp2,..,Cpn) representing the original demand

profile

Let DCB = (dcb;, dcb,,.., dcby), a fixed number of bins with a fixed
capacity V and utilized capacity (Cgebis ©Cdeb2s--rCdebp) LO be filled up
with items, a mirror transformed copy of the original demand profile

representing the discharging profile

Let DM be a set for items that cannot be placed in any of the

available bins

Sort elements of S in ascending order of size

for ecach i from 1 to n:

Sort elements of DCB with time steps on or after t; in

ascending order of capacity utilized and select emptiest
Let dcb; be the selected emptiest bin
if t; is not null:

if (tl < j and s; + Cdcbj < V) :

set Cdcby = Si + Cdcbj

set dt; = j
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place e; in dcb;y
else:
place e; in DM

set dt; = null

3.4.3 Obtaining solution from merging Charge and Dischar ge schedules

The charge and discharge schedules are merged by superposition to obtain the final demand
profile and schedule of ESS operation (Figure 3.10). This now includes the contributien of t
ESS and a schedule for the ESS charge and discharge periods to inform an ANM scheme. The
process is illustrated graphically in Figure 3.11 and the flowchart is presented Figure 3.12.

a SCHEDULES

E3 El-(
E,

FINAL DEMAND PROFILE WITH ESS

B
o = NI

Figure 3.10. Charge and dischar ge schedules are mer ged to obtain final demand profile

ORIGNAL DEMAND PROFILE REFLECTION TRANSFORMED DEMAND PROFILE
&%’:L ESS ENERGY CONVERTED TO ENERGY "BINS" TRANSFORMATION CONVERTED TO ENERGY "BINS”
e ——{ > —— il

TIME PERIOD SORTED
ESS ENERGY BLOCKS
FOR DISCHARGE SCHEDULE

STAGE 1: - STAGE 2: STAGE 3:

ENERGY STORAGE - CHARGING ESS USING = g | DISCHARGING ESS USING

ALLOCATION —1 DEMAND PROFILE = INVERTED DEMAND PROFILE |

AS SUBSET SUM PROBLEM E= AS BIN PACKING PROBLEM AS BIN PACKING PROBLEM

ESS ENERGY BLOCKS TIME PERIOD SORTED

ESS ENERGY BLOCKS
FOR CHARGING SCHEDULE

OUTPUT DEMAND PROFILE
AND SCHEDULE FOR
ESS OPERATION

Figure 3.11. Process diagram for combinatorial optimisation algorithm
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The steps of the algorithm illustrated in the flowchart and the process diagram are as follows:

1.

Using as input the original demand profile which has been binned into a set ofdnds B

the solution to the subset sum problem for ESS capacity as energy bloclisentim-
packing solutions that give the time period (bin) each block was chargedsahdrdied

also noted.

Iterate all energy blocks, and for each block iterate through the bins. Ifydriec was
placed in the corresponding bin during the charge period add the capacity of the block to
the original utilised capacity. If the energy block was placed in the bin ddisngarge,
subtract it from the original utilised capacity.

After iteration set of bins with energy added or subtracted represents demaledigttof

ESS integration and indicates the schedule for charging and discharging the ESS.
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i is an index variable

B = (b4, ba,..., bp), a fixed number of bins; V = bin
capacity; utilized capacity (Cp1, Cp2:---sCpb) representing
original demand profile

S =(eq,€2,...,8) a set of n objects
representing blocks of energy from subset
sum stage with s; being amount of energy

and t; being the time step the energy is stored
and dt; the discharge time step in which the
energy in the block is used

Pack items of S into CB - a copy of original demand
profile representing bins in charge phase using Bin
Packing algorithm. Set t; as the time step for every

successfully placed block

|

Perform mirror transform of original profile to obtain
DCB - a demand profile representing bins in discharge
phase. Using Bin Packing algorithm pack items of S with
t; already set in a previous timestep into DCB. Set dt;
as the time step for every successfully placed block

-

for1=1:n

Sort elements of CB in ascending
order of utitlized capacity and select
emptiest bin

set ij = S;+ij

set ij = ij -

B - bins representing new
demand profile with energy
storage charged and discharged

S set of charge and discharge
schedules

Figure 3.12. Flowchart for complete process of scheduling ESS using subset sum and bin packing

algorithms
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The pseudo-code for the merge algorithm to produce the final solution schedule risishow
Listing 3.4.

Listing 3.4. Algorithm pseudo-code for merging charge and discharge schedules to

obtain final solution and schedule

Let i be an index variable

Let S = (e;,ez,..,en), a set of n objects representing blocks of energy
with properties s; being the amount of energy and t; the charge time
step in which the energy is stored and dt; the discharge time step in

which the energy in the block is used

Let the size of each item be the amount of energy in the block

Let B = (b;, by,.., by), a fixed number of bins with a fixed capacity V
and utilized capacity (Cpi, Cp2,..,Cpn) representing the original demand

profile

for each i from 1 to n:

if t; is not null:

set Cpy = Si + Chj

if dt; is not null:

set Cphi = Cpy — Si

return B, the new demand profile and S, the energy blocks with charge

and discharge schedules

3.5 Application of Genetic algorithm optimisation

A Genetic Algorithm (GA) is an evolutionary optimisation algorithm inspiredhieytheory of
natural selection from a population based on fitness for a purpose. It was firstyudeH.
Holland in 1975 [57]From biology a gene may be defined as a “unit of inheritance”, and it is
responsible the passage of hereditary traits from parents to offspring. Théhgeaesfixed
position in achromosomdn relation to other genes; chromosomes are thread like structures
located in the cells of plants and animals that contain instructions emefeaff the parts of

the organism [58]. In humans, for example, genetic diversity is responsible feresmsity

visible features such as hair colour and eye colour.
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Using natural selection organisms adapt to optimise their chances forasurvia given
environment, and random mutations occur in the organism’s genetic descriptions which are
passed to its offspring. If the mutations are helpful the offspring are meig ik survive
and reproduce, and if harmful the offspring won’t and the traits are eliminated from the
population [41].Therefore the individuals that emerge at the end arettdst find most

dominant, hence the term “survival of the fittest”.

The principle of GA is to maintain a population of possible solutions to a givaiepn.

These solutions represent chromosomes which are a string of individual clstiester

traits which represent genes. The chromosomes are evaluated and ranked against a fithess
function which represents the suitability of the solution to the problem; agimal example

could be resistance to a strain of flthe problem being the flu and the solution being how

resistant the organism is.

The fittest chromosomes (parents) in that population are selected for thgeneration and

are “mated” in a reproductive process known as crossover to produce a new population of
possibly fitter offspring. The genes that make up the chromosomes are also sulgjected
mutation according to a probability known as the mutation rate to possibly improviadss f

of a chromosome and prevent the best solution from being a local optimum. The cycle
continues until the termination criteria are met. As the population convergasldoeal
optimum the diversity in the population reduces, therefore it is importanndintain
population diversity to attain a global optimum and prevent premature convei§&hca

proper balancing between diversity and selective pressure is required to reach convergence

efficiently.

GA is useful for constrained optimisation problems and therefore has been used in
engineering, mathematics and biology applicatimrtduding image processing, information
retrieval, grammar induction, data-mining and natural language processing [59]. ltehas th
advantages of speed, versatility and is relatively easier to implemeit compared to

classical techniques [8].

GA is occasionally preferred to classical optimisation approaches becaase dfficiently
handle nonlinear and non-smooth optimisation problems [59] and can usually find a global
optimum from a set of solutions. GA differs from classical, derivative-baséuisation in

the following ways [60]:

i. The classical methods generate a single point at each iteration and the sefjuence o
points approaches an optimal solution while GAs generate a population of points

at each iteration and the best point in the population approaches a solution
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ii. Classical algorithms select the next point in the sequence by a deterministic
computation while GA selects the next population by computation using random

number generators
The algorithm for a simple genetic algorithm applies the following steps:

Generate an initial population from a separate function
Evaluate the fitness of each member of the population

Reproduce my crossover (mating) or mutation to generate new members

A w DR

Using natural selection eliminate the weakest members of the population to
incorporate new individual into population thereby producing a new generation
5. Repeat the process for a number of generations or until a suitable fititesion is

met and then terminate.

GA can be applied to the ESS scheduling method developed in this thesis because it can
produce various suitable solutions and it can be encoded in a form suitable for @ATéesil
solution demand profile represents a chromosome and the amount of demand in a given

interval represents a gene.

To apply it a fitness function is defined and a population of solutions is generated mnd the
optimised via GA.

3.5.1 Fitnessfunction definition and ranking by score

The score for each chromosome is obtained by evaluating the chromosome according to the
fitness function defined from the peak shaving and load-levellingndD, in (3.1) and (3.3)

The score is directly proportional to the amount of peak shaving (i.e. differemosehetew

peak and original peak) and inversely proportional to the difference betweeanukttbugh
demands. The fitness function in this paper is defined in (3.10).

1
score = (DP(Solution) - Dp(original)) + o (3.10
L

To constrain the solutions to only valid solutions the score is set to zero if the following

conditions occur:

i. If the schedule is evaluated to contain more discharge than charge caisity
assumed that the ESS is fully discharged at the start of the cycle so it must be

charged before discharge

ii. If the total charge or discharge exceeds the capacity of the ESS i.e. constraint in
(3.5) must be satisfied
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iii. If the ESS demand exceeds the rated power i.e. constraint in (3.6) must be

satisfied
This ensures that the schedules with these unrealistic scenarios are eliminatetheudiAg

The score function may also be modified to include other objectives for the schedule, for
example total energy cost minimisation may be included as an objective.
3.5.2 Populating a generation and evaluating fitness

As a result of the ESS allocation subset sum algorithm different sized ESS units from a

constrained random selection will produce various solutions with differing characteristics.

To create the population the allocation and scheduling algorithms are run for the number of
members required for the population. When the required population size is reached the
chromosomes are evaluated for fitness and ranked in descending order of score to obtain the

first generation (Figure B3).

GENE CROSSOVER FOR TWO HIGHEST SCORING SCHEDULES

RANK |
S(1) 5(2) 5(3) 5(4) KL --- 5(b)

SCORE
A

e et e p-1 p-1 p-1
v i Sp(l) Sp(Z) Sp(3)Sp(4) eee ...E
N

ELIMINATE TWO LOWEST SCORING SCHEDULES EACH TIME

Figure 3.13. Populating, scoring and ranking a generation for crossover and eimination

3.5.3 Crossover

Crossover is implemented by choosing a crossover point along the two fittest chromosomes
i.e. the schedules with the highest scores and creating offspring by splitting the schedules at
the crossover point and interchanging the resulting splits to create two new schedules as

shown in Figure 3.13.

7
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crossover
PARENT SCHEDULES point

Sl(l) 51(2) 51(3) 51(4) eee "'(score)

52(1) 52(2) 543) 554) b A S}C) S§C+ “‘ (score)
OFFSPRING SCHEDULES l

t | crossover
Sl(l) 51(2) 51(3) 51(4) see ooo S}b) (score)
52(1) 82(2) 82(3) 554 eoe Sl(c) Sl(c+1) (score)

Figure 3.14. Crossover operation to possibly produce fitter schedules from top scoring pair

If the crossover point is and the fittest schedul&s andS, are concatenations bfitems
according to (3.11) and (®).

I

S1= S11:c + S1ep (3.11)
S2 = S21:c + S2c (3.12)

Then the offspringd; andO, after crossover will be (3.13) and (3.14).

01 S11:c + Sacp (3.13)
07 = S21.c + So2cp (3.14)

354 Mutation

The chromosomes in the population are subject to mutation based on probability. The process

is independent and changes one of the genes in the chromosome randomly i.e. changes the

value of demand in a given period to a randomly selected value.

Each member of the population is evaluated in each generation with a chance of a random

demand mutation to unsettle the system and possibly produce an improved schedule (Figure

3.15.

s(1) 5(2) 5(3) S(4) X --- S0 (score)
}OO{ mutation

S(1) S(2) 5(3) S(4) R --- EIG) (score)

Figure 3.15. M utation operation to produce a possibly fitter schedule and seek global optima
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355 Sdection and Elimination

Selection of chromosomes i.e. the new schedules after crossover and mutation may be done by
a different methods such as Proportionate Roulette Wheel, Exponential ranking, Linear

Ranking, Tournament Selection etc. [59]

The most popular method of Tournament selection is used in this case due toctbecgffi
and ease of implementation [59]. After each crossover and mutation the fitheashof e
offspring or mutated chromosome is evaluated and placed back in the populatiba. If
chromosome is found to be fitter than the lowest ranked in the populatisrsetected for
further processing in the GA while the least fit is eliminated (Figure).3.13

356 Termination

The GA process is iterative and must have conditions for termination. The termination
conditions used in this case are:

i. Terminate after a given maximum number of generations

ii. Terminate if the top score does not change after a given number of generations

even if condition (i) is not met
The schedule with the highest score upon termination is chosen as the most optimal solution.

3.6 Summary

Using the methodology described a number of viable schedules for operating ES8kfor pe

shaving and load-levelling at distribution network level or consumer level.

The schedules are generated by first splitting the ESS into smaller energy baickdd up
to the total capacity using a subset sum algorithm and then placing the bloakg/ in a

transformed demand profile using a bin-packing algorithm.

The schedules are ready for dispatch after the subset sum and bin-packitignalgar may
be further optimised using Genetic Algorithm optimisation as described.

77



Web-based Power Systems Analysis: Related work and Literature

4 Web-based Power Systems Analysis: Related work and Literature

4.1 Introduction

To perform power systems analysis using software the basic mathematical modale tha
used in analysis by hand must be converted to software models using suitable representations.
The transition from the mathematical models required for power systems analgsis i
software models is covered in this section to show the concepts that are fundamental to pow

systems programming.

An electrical network (or power system) is made up of components which aeeaeiad by

their properties such as the amount of power they consume, produce or transféreand o
parameters such as their voltage levels or the electrical current that frassgh them. On
paper a diagram may be drawn to indicate the connections between these componeets to se
as a visual aid for carrying out calculations by hand. In software models they must be
represented as a dataset that can be analysed by the computer so as to recfeedeca

object model in its memory.

In using mathematical concepts, the computer program must also be equipped with tools to
perform operations for deriving conditions prevalent on the electrical network $iafigd in

the same way a human must understand a minimum level of mathematics to be able to
perform the studies required for analysing electrical networks. While a hoamarasily
recognise the concepts and apply the required methods, the computer program must follow a
series of pre-defined general steps in an algorithm to select the specific methedgplied.

The computer however has the advantage of speed and accuracy and it can also handle larger

networks and easily keep track of references.

As Power systems analysis (PSA) is a broad topic of discussion this thedzcuslion the

most used studies in PSA. The power flow study is the primary subject of PSAt [584

study of the steady-state conditions of a network to obtain unknown parameterssiediof a

known parameters of the network components. These parameters include the power, voltages,
and currents among others. The power flow study establishes the “normal” operation of the

network and from this study other studies such as fault studies and stahitiigs are
performed. The short-circuit fault is the most common fault that occurs in an caectri
network [18]. It occurs when current flows in a direction that it is not meant to flow in, usually

as a result of connections such as cables or transmission lines being bridgexttsysoigh as

tree branches and this fault may lead to equipment damage.
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The power flow and short-circuit fault studies are covered in this thresisthe fundamental
concepts leading up to the development of software models in general and then finally for use

in web-based PSA software using PHP.

The previous research work and existing software packages related to Web-based power
systems analysis (WBPSA) are reviewed to show the methods used, and the concepts that are

transferrable to a PHP-based methodology and those that will not be applicable.

4.2 Power systemsrepresentation fundamentals

A power system or electrical network is an interconnected network of elementsefo
generation, transmission, distribution and consumption of electrical energy. Tasmntsl
may be divided into four major parts: generation, transmission andrangwission,

distribution and loads [3].

Generators produce the electrical energy from other forms of energy such as kieatic
energy using devices. Transmission and distribution systems include Lines, which are
conductors that transfer electrical energy from point in space to another; Bugeslés)
which are common connection points for Lines and other electrical devices; Transformers,
which are devices that transfer power from one voltage level to anotherevidtag with
very high efficiency and make transmission of electrical power over long chstanossible.
Loads are the devices which consume electrical energy, such as lighting, heating and

transportation devices.

Figure 4.1 shows a graphical representation of a power system which consists of three buses, a
generator, a motor (e.g. a conveyor belt), a line, two transformers and a loadHeuse).

The network may be analysed using data provided on each of the elements and the amount of
power at each point of the network under normal operation or special conditionbemay

calculated.

For a system to be safe, reliable and economical many analyses must be performed to design
and operate it. For a simple system such as the one in Figure 4.1 it can be analysed by hand
using mathematical methods. As the system grows larger it becomes more relialdeiand e

to perform these studies on the condition of the network using computer proghaes. T
characteristics of such computer programs for power systems analysis are descriteed in t

next section.
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BENERATOR

BUS 1
20 kV

MOTOR

TRANSFORMER 1 TRANSFORMER 2

\LOAD |

Figure4.1. A simple 3-bus power system consisting of a generator, transformersand loads

4.3 General Power Systems Analysisand programming: requirements and languages

According to [15] for a programming language to be suitable for PSA, it muablbeto

perform the following computations:

i. Basic mathematical functions (e.g., exponential, logarithm and trigonometric

functions)
ii. Complex numbers

iii. Multi-dimensional arrays (e.g., element by element operations and slicing)

iv. Linear algebra
V. Sparse matrices
Vi. Eigenvalue analysis of non-symmetrical matrices

A function is a named block of code that performs a specific task, possibly aptn a set

of values given to it, or parameters, and possibly returning a single value [61]. These functions

listed above are required because of the mathematical operations and methodsr used f

modelling power systems.

The list shows the general requirements for most studies and not h#sef functions are

required for every single study however () (iii) are usually required. The specific
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requirements for power flow and short circuit studies will be shown in thistathay

reviewing the formulation of the mathematical models for these studies.

Programming languages may be categorised into Legacy system languages (e.g. FORTRAN,
C, C++) which can access machine functions in a manner closer to machine language;
Modern system languages (e.g. Java, C#, VB, VB.NET) which are more user-friendly and

human-readable; General purpose scripting languages (e.g. PHP, Python, JavaScript, Perl);

and Scientific-oriented scripting languages (e.g. MatLab and Octave) [15].

The main difference between scripting languages and system programming langubhges i

the scripting languages are interpreted by a runtime or a web-browser and ¢hexgtore

these platforms to run on a computer operating system while the system praggammi
languages are compiled and have all the requirements bundled together in the resulting

software package.

In terms of structure software based on traditional system programming languagalfg a
monolithic, stand-alone, self-contained software package. Software developed using a
scripting language usually consists of fractal applications or components that wohletdnet

provide functionalities [15].

The system programming languages also usually provide more computational functionality
than the scripting languages and so they are generally referred tor@Spowerful”. The
scripting languages may have their core functionality upgraded to enhance theilitsgpabi
using libraries. All programming languages have their strengths and weaknesdesanghic
determined by the purpose of the application. In this thesis the focus is on delivekingaPS

a web interface and the fithess of these languages for this purpose will lreddsesed on

how simply they can be deployed on the internet.

The development of a PSA package using either system programming languagesiiog script
languages requires planning and organisation. The diagram in Figure 4.2 shows the
architecture of a general power systems analysis software suite [15]earfidnttions or
modules that work together within the software. The arrows in geefishow the data flows

from one component to another or a call to another module to perform an action and
optionally return data to the caller. The diagram shows that the softwareyusakities the

following functions:

1. Data input functions: These are the programming functions that represent a power
system in the memory of a computer programgrAphics library or Geographical

Information System librarynay be used to generate tietwork diagranwith visual
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connections between components which are convertathtw dataor the network
data may be supplied directly in an acceptable text format. This inputsdathto a
parserwhich interprets the data and creates the model of the network in a format that

is usable by the computer program.

Initialization functions: These functions create the computer models of the network
elements by using the data provided for other analysis such as power flow and short
circuit studies. For power flow analysis the buses, lines, generators and loads must be

defined as a minimum requirement.

Analysis functions. Figure 4.2 showspower flow analysis static analysesand
dynamic analyse@n the blocks Different methods exist for any of these analyses
which focus on either a steady-state operation of a network or a timesupang

analysis of the network.

Output functions: All PSA packages must have a format for displaying results. It
may be in a visual format in the graphical network diagram or indadie plots.

They may also be exported in results files that can be opened in other applications

such as spread sheet software.

The implementation of these functions is dependent on the programmer’s preference. They
may be implemented in groceduralstyle or anobject-orientedstyle. Using the procedural
style a computer processes instructions sequentially line by line [26]. Thées style of most

of the legacy system programming languages such as FORTRAN. As programs become more

complex it becomes difficult to manage them using a procedural style; theypreatical
functionality limits, changes in logic must be repeated in every part of tggaon and it

becomes difficult to correct mistakes. Object-oriented programming (OOP) addiesses

issues by applying a modular approach to programming and grouping functions into concepts

known as classes which can be reused.

A class is the fundamental building block of OOP. A variable associated with dsdkasvn
as aproperty and a function associated with a class is known msthod An object is an
instance or occurrence of a class [61]. To use a car as an example 9, ahelee are many
types of cars but there is only one physical vehicular concept of mobility referredeneral

as a car. A “van object” is an instance of a car, and a “sedan object” is another instance of a

car; its weight and colour are isopertieswhile actions such as acceleration, braking and

steering are itmethods
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OOP introduces concepts suchiaBeritance— which bestows objects or subclasses of a
parent class with its methods and properéegapsulation- which prevents modifications to
members of a class from outside the class by making a class self-containgalyarmadphism

— which allows the same names for functions that play similar roles iratiffelasses, for
example a human head and a horse’s head have different shapes but essentially play the same

role and can both be referred as heads. In a PSA programming context “Power” in a

generator refers to an output while in a load it refers to an input.

Developing a modular framework for PSA is much easier using OOP as a resudt o
features and benefits it provides. Using OOP for PSA according to the systetactuohiin
Figure 4.2 will involve developing classes that implement the mathematical aiiopsti.e.
solvers that carry out the PSA according to fundamental principles and classes for
administration of the analysis such as reading input data, displaying results arginppana
settings for the software application.

The implementation of the PSA software may be done using any language thattheee
requirements outlined in this section. These PSA tools may be used on desktop and laptop
computers, and more recently on the internet. The focus of this thesis is on thehese of

tools on the internet via a web-browser interface.

83



Web-based Power Systems Analysis: Related work and Literature

Network Diagram

Graphic Library 1

&

Graphic Library 2

.

Graphic Library n

Settings

P
»  Input D: = a——
nput Data .
y /""”
Parser  [* =

-

'

Initialization of

Power Flow Devices

!

Power Flow Method 1

Power Flow Method 2

Initialization of

Remaining Devices

T T T aIs1
\“\ \\
GIS 2
Data Format 1
Data Format 2
GISn
Device 1
Device 2
Device 3

Device n — 1

Device n

Static i

Analysis 1 \

Static Dynamic

Analysis n Analysis 1

/
'.' Dynamic

Analysis n

i\

Output Format 1

\\
- ‘\\
N\

A

( _
Y

Graphic Tool 1

Output Format 2

Report Files

Graphic Tool 2

Output Format n

Figure 4.2. System Architecturefor a general purpose

Graphic Tool n

44 Web-based Power Systems Analysisusing a 3-tier framework

The World Wide Web (WWW, or simply Web) is an information space in which ehgsiof

interest, referred to as resources are identified by global identifidesl ¢#hiform Resource
Identifiers (URI) [62]. The Internet is a global system of interconnectegu@mnetworks

that interchange data by packet switching using the standardized Internet IPgtibeo
Packets are small bundles of data that are sent over lines of communication. Tdiwsb
computer users to locate and view multimedia-based documents over the internet. Previously
computer applications and software packages ran on computers that were not connected to one
another, but now the internet allows applications to communicate across sevenatersmia

the web by mixing computing and communications technologies [21].
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Computers connected to the Web are called clients and servers which intdrazakitother

by sending packets of data as requests and responses as shown in Figure 4.3 [&3ar€lient
the typical web user’s internet connected devices such as personal computers and mobile

phones which have web-accessing software such as web-browsers Microsoft Internet
Explorer™, Google Chrome™, Mozilla Firefox™. Servers are computers that store web
pages, documents, and software that respond to requests from the client with ceybs of
pages that are downloaded and displayed in the user’s web browser. The web server may also
respond to requests with data sets or perform an action on the server computeceifting

the request. This is referred to as the server providing a setrvice.

D RESPGF‘IEES
AR -~

, Internet j -

Clients

I:II / reavess”  Server

Figure4.3. World Wide Web (WWW or Web) interaction between Server and Client computers

Webbased simulation (WBS), analysis and remote control of systems via a web hisowser
increasingly becoming relevant and even necessary in some cases with the rise of cloud
computing, Softwara@sa-Service (SaaS) and smart grid technologies [64][65]. The
information and communications technology infrastructure that enable this sereintedr
architecture of software have evolved over time, and so have the programming larlyaiages
are used to develop these applications.

The context of web-based simulation in this thesis is the definition]imd5the use of
resources and technologies offered by the world-wide-web (WWW) for ititeraxith client

(web browser) and server (remote computer) modelling and simulation tools. Fortnm
definition excludes simulation packages that are downloaded from a server to a local computer
and executed independent of the web browser, emphasizing that a browser always has to play
an active role in the modelling or simulation process, either as a graphtedhde or,

additionally, as a container for the simulation numerical engine [5].
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Web servers typically run scripts written in ASP, ASP.NET, JSP, Perl, PHR2&tevhich

are designed primarily for text-based communication using Hypertext Transfecdsot
(HTTP) while simulation packages are built using more powerful languages s;HCas,

C#, Java, etc. [24], [66] because they have a wider range of tools to perform the mieshemat
analysis required and produce results in a relatively short amount of time. étomeve
recent versions of the web server languages have been upgraded to provide tool® for m
complex computation such as Object Oriented Programming [26]. The web programming
languages are interpreted by the web server software such as Apache or NginX web servers.

For the purpose of carrying out PSA via a web-browser (e.g. Internet ExplorerjaMozil
Firefox, Google Chrome etc.) a 3-tier framework is the most used setup as shown in Figure
4.4. One tier consists of the remote simulation server which runs softwargntidates a
model of the network and performs calculations, the second tier is the web Bat\ertdles
communication between the other tiers, and the third tier is the web browsepddbrof
parameters and displaying results.

The methodologies for WBPSA in previous research work usually adapt this patteihbe

seen in detail. Active Server Pages (ASP) and ASP.NET are used to process requests and
responses in [67]69] between the simulation server running C# programs and the web
browser. Java Server Pages (JSP) are used in [65] to connect a legacy simulatatioappl
based on Fortran to Java applets running in the web browser.

The same architecture is applied in commercial and open source software. NEPLAN]360 [70
is the leader in this category and provides a robust application via thatesface which has

all the key features of the desktop version along with an Application Progngnhmierface

for third party access. The legacy application runs on the simulation serdeis served
through a cloudtomputing interface to a Microsoft Silverlight™ plugin in the web browser

which allows interactivity. There is no indication that the actual simomlas done via a web
server script and therefore it also has 3-tier architecture. MATLAB ipey&ems solvers
such as MATPOWER [71] may also be accessed on the web by running them on an
application server with MATLAB installed and then using an intermediate sayifgthguage

such as ASP.NET to communicate with the web browser [72]. Another web-based cloud
application is InterPSS [73}hich is based on Google Drive ™ spread sheets for data input
andresults output, and a Google Apps™ script communicates with a Java based simulation

engine.

The 3-tier architecture is implemented for practical reasons. One reasantisetisimulation
software packages which are not ready for internet modelling use a web server edageint

The only requirement for web access will now be an upgrade of communication and data
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transfer protocols not the simulation methods. Another practical reason foB-tikee

architecture is that the programming languages used for building websitest as powerful

or as purposeful for computation as those used for building simulation software.

Some of the drawbacks of the 3-tier architecture in general are as follows:

There are multiple points at which failure can occur in the process. Théenulti
nature with different applications in different programming languages ihgndl
data and passing it on to the next tier allows for failure at any of these oints t
cause a breakdown in the system

Some of the legacy system programming languages are premium packages with
expensive licensing fees which makes them unsuitable for research, education and

smaller organisations

The server infrastructure requirements are higher for running the web ardver
application server for simulations. A slimmer framework with fewer tiers will

reduce the memory and space requirements.

Website developers will need to understand the programming languages used in
the simulation engine to some extent if the package does not provide simple
access protocols through a programming interface. This presents a steep learning

curve for the developers.

The drawbacks of some of the languages used for PSA in the simulation engineetier ar

documented in [15]. FORTRAN and C are not convenient for complex modular projects; Java

promotes a closed software model that should be avoided in education and research.

MATLAB is the most used language in education and research, along with languagas such

Mathematica, Octave and R. The drawbacks highlighted for these languages include being

designed to be very specific to mathematical tasks such as matrix computation istick stat

but can be inconvenient for simple data types like tuples, lists and hashes; &Ofem

difficult or impossible to implement; they usually are proprietary soft@arktherefore may

be expensive to use, with third-party interpreters being slow. Because oflthedmcks

[15] makes arguments for why scripting languages such as Python and PHP should be used for

research and education programming of power systems.

The methodology in this thesis will propose a 2-tier framework using PHP but defogeso

the implementation of the 3-tier frameworks in various open source and commerciatesoftwa

and in research work will be reviewed in the next sections.
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Figure 4.4. 3-tier architecture for Web-based Power Systems Analysis

45 Commercial and open sour ce softwar e for web-based PSA

The most common commercial and open source Power Systems Simulations software
packages are listed by Open Electrical in [66]. The IEEE Power System Anatysiputing,

and Economics working group also sponsors a Taskforce for Open Source Software for Power
Systems [25].

The packages in these detailed lists that explicitly have Web-based interface®dule that

can allow web access are InterPSS and NEPLAN 360 from BCP Switzerland.
SimPowerSyems from MathWorks extends MATLAB’s Simulink and MatPower, which

was developed by members of the Power Systems Engineering Research Centre of the Corne
University, is a set of MATLAB files with Power Systems analysis functions [74]T M¥B
programs can now be deployed as web applications [72] , hence it follows tifraivida and
SimPowerSystems solutions can also be deployed online and may be classified as a Web-
based solution. An overview of the web related characteristics of each efphesages is

covered in this section.

451 NEPLAN 360

NEPLAN 360 is a power system analysis tool that can be operated from inside a wels browse
and is licensed by Neplan AG. According to the NEPLAN 360 Website it is ritefdily
browser based power system analysis tool on the market and therefore offers adigadvaht

cloud computing [75].
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The calculation modules have the same characteristics as the ones in the desktopfversion
NEPLAN and it handles AC and DC networks in the same manner as the desktop versio
[75]. It also provides a similar Graphical User Interface (GUI) with -@nadrdrop
functionality for building electrical networks as shown in Figure 4.5. The 1uséli database

is based on MS-SQL or Oracle and built to handle large networks and alse auarger of

users.

The web browser access to the NEPLAN software which runs on a remote isevizer

Flash plugin or Microsoft Silverlight plugin that is downloaded to the web broveser
communicate with the server and display tools for interaction. Flash andi§ilvextend

the functionality available to web browsers so as to handle animations, video playback and
improved interactivity which are useful for GUI design of electrical ndta; However these
browser plugins are being deprecated and are not supported in some modern web browsers as

these functions are now available in the browsers as a standard.

NEPLAN 360 is also accessible through Web Services and allows integration wittaexte
GIS, SCADA or Smart Grid application. The software therefore can have the funtton
software service (SaS).

NEPLAN 360 implements the 3-tier architecture as the PSA computation is done by the
legacy application running on their online platform and then sent to the brosiag a web

server scripting language as a package downloaded through the Flash or Silverlight plugin.
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Figure 4.5.

NEPLAN 360 Graphical User Interface

89



Web-based Power Systems Analysis: Related work and Literature

452 InterPSS

InterPSS stands for Internet Technology Based Power Systems Simulator. It wiapetky
using Java, XML and the Eclipse IDE. The web-access is available in InterPSS 2.0 which is

completely cloud based [73].

The High Level Application diagram of the components is as shown in Figure3}.and it

shows how data input and results output are implemented at the browser level on client
devices such as personal computers and mobile devices. The web browser accesses the PSA
using a Google Drive spread sheet template and a set of common shared hilmstgdson

the InterPSS account. Users can copy to their Google Drive Accounts, open and edibin a We
browser. The simulation engine runs in on a cloud server and receives a simulation faquest v

a Google App Script (based on JavaScript) embedded in the spreadsheet, carries out the

processing and sends the result back to the spreadsheet where it can be stored.

It is a 3-tier System with a Java Program as the Simulation Engine, and the Googleipipp Sc
and Google Drive Spreadsheet as the data transport tier via a Google Web Sendie, and

web browser for user interaction via the spreadsheet.

The Cloud

InterPSS
Simulation

4 Engine
User Google Account <1 e —

Google Drive é

InterPS S Google Drive
User Spreadsheet

User input data
Simulation report h S Spreadsheet Template |
| InterPSS GUI Lib

UserLocal
machine

Figure 4.6. InterPSSHigh Level Architecture

453 MATLAB based Systems: SimPower Systems, MATPOWER and others

The Web implementation of SimPowerSystems, MatPower and other PSA tools written in
MATLAB is inferred from the capability of MATLAB files to be run froiveb Applications.

This is possible as MATLAB running on a server can be invoked as an Automation server
from any language that supports Component Object Model (COM), so Web applications
use languages such as ASP.NET[76], VBScript and JavaScript {@2tall MATLAB

functions.
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This is also a 3-tier methodology as shown in Figure 4.7 with the MATLAB agplicat
residing on a server being called from an intermediate language such as REIP.HET on

a web server or in the web browser[77].

The web server is in the IT infrastructure block in Figure 4.7 and allows commoinioat

data between the users and the application server via the Web. In the applicatornieser
resides the MATLAB production server that serves as the simulation engine antheloes
computations. A request broker formats and forwards the requests to the MATLAB
application which may also be compiled into different languages such as C++, Java or Python.

The program manager coordinates the operations in the application.

Application Servers IT Infrastructure
MATLAB Production Server Web Server
Request 4\ S .
Brokir Visualization
@
& ®
Program S Databases
Manager ‘\

...oorcreate -

Queving & Scaling
Security

Version Management

Figure4.7. MATLAB deployment for web applications using the compiler SDK

46 Web-based PSA in previousresearch work

There have been implementations of Web-based PSS in previous research work, perhaps not

as many as one would expect given the ubiquitous nature of Web-based systems recently.

Leou and Gaing in [67] use Active Server Pages (ASP), which is a web programming
language similar to PHP and a predecessor of ASP.NET, to call functions in modules
programmed in Visual Basic programming; therefore implementing a 3-tietteartcine as

previously described.
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In [65] S. Chen and F.Y. Lu describe a system based on a Model-View-Controller framework
(MVC) that uses a Java 2 Platform Enterprise Edition (J2EE) architecture toctomras

existing legacy system by using Java Server Pages (JSP) in the server, aphketaéb t
browser and Fortran based simulation routines as the Simulation engine in a 3#emulti-t
system with the web server acting as a gateway. This is shown in Figuvbete3it can be

seen that the web server acts as a data and command transport layer and all the PSA
computation functions are carried out in the legacy systems tier.
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Figure 4.8. Web-based Power systemsanalysis architecture from Chen and Lu

J. Yang, F. Lin and Y.Fu implement a .NET framework system for micro power system
design [68]. The application layer uses the C# based assemblies and Dynamic Link Libraries

(DLLs) for the simulations and ASP.NET for serving results to the web browser.

Shaogiong Tan et al also implement a Web-based simulator using a stack comprising
ASP.NET for the web server programming and C# language for the simulatioe en§s9].
They also indicate that C# is an evolution of C and C++, which is designed for building a wide

range of enterprise applications that run on the .NET Framework.

Hong Chen et al use Java programming for a SCADA system over Local Area Netwabrks a
Internet, with a Java Applet for a GUI [78]his system isn’t browser based and outside the

definition of Web-based simulation in this paper.

Milano in [71] develops a MATLAB and Octave-based PSA toolbox by leveraging on

Simulink tools and GUI and developing custom functions and algorithms for PSA. This will
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also be deployable on the web using the 3-tier framework adapted by MATLAB sslution

described earlier.

The closest methodology to the one proposed in this thesis is developed by Milang in [15]
which is a comprehensive PSA tool which performs analysis including Power Flow analysis
Short circuit fault studies and a number of other PSA studies. It was devakipgdPython
scripting language which is similar to PHP as they are both scripting langaage#, has
seen a recent rapid growth in use. Python was not originally designed to runwabthat it
now has libraries that allow a web access to python applications in a similar ramhde.
Although the PSA tool developed in [15] was not originally intended for welit gs@ also

be deployable on the web.

4.7 Power sysemsstudiestheory and fundamentals

The formulation of the studies that will be implemented in the WBPSAkastéd on PHP
proposed in this thesis. The two main studies that are carried out in PSA BmevireFlow
study and the Short Circuit study. The theory will be reviewed and the matta@neaticepts

required to perform these studies will be identified.

4.7.1 Power Flow Study

The Power flow study which is commonly referred to as Load flow forms an importaif pa
power systems analysis. It is used to determine the steady-state operation ofiarpeleet
system. It calculates the magnitude of voltage on each bus and the voltage angles hed also t
real and reactive power flowing through each of the lines and elemehts iretwork. Some
guantities are specified before the study and the others are determined asod ttesylbwer

flow study.

It essentially provides the “normal” operation of the network under the given conditions, and
to detect if any problems will arise so as to address them. The problems codddbfor
additional power generation, need for placing equipment to regulate voltage lemekdao
reinforce lines and equipment. It is necessary for planning, economic scheduling, aod cont

of an existing system as well as planning for its future expansion [3].

In solving a power flow problem the system is assumed to be operating under balanced
conditions i.e. a line with multiple conductors has equal load shared on each one anathe sam
voltage flowing through each conductor. A single-phase model is used i.e. the calculations ar

done considering only one of three possible phases since all the phases are balanced.

Four quantities are associated with each bus: the voltage magnitude |\Apsthenple 6 i.e.

the angular component of a complex number representation of the voltage, the realdpr acti
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power P and the reactive power Q i.e. the imaginary part of the complex number
representation of the power. The buses are classified according to théeguspecified at

the beginning of the study as follows [3]:

Slack bus/ Swing bus: This is used as a reference for the calculations and it makes up the
difference between scheduled loads and generated power. The voltage magnitudesend pha

angle are specified.

Load buses. At these buses the active and reactive powers are specified, while the voltage
magnitude and phase angle are unknown. They are also known as P-Q buses and power is

consumed at these buses.

Regulated buses: These are generator buses and power is injected into the network at these
buses. The real power and voltage magnitude are specified, while the phase cdinble
voltages and reactive power are to be determined.

Table 4.1 summarises the specified and calculated quantities of each type of bus

Table 4.1. Power flow study bus classification by quantities

Bus type Specified Calculated
Slack bus (or swing bus) [V|,6 P.Q
Load bus or P-Q bus P.Q VI, 8
Regulated bus or P-V bus PV Q.5

Power Flow Equation

Consider a typical bus (or node) of a power network as shown in Figure 4.9 with buss/oltag
denoted a¥ and line admittances (inverse of resistance) denotedas:hoff’s Current Law
(KCL) states that the sum of the current entering a bus must be equal tontlod surrent

leaving the bus.
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Yil |

Yin |

Yio

Figure 4.9. Typical bus of a power network

Applying KCL to the bus results in equations (4.1)

n n
Ii = Vi Zyij - Zyijvj
j=0 j=1

J #Fi

(4.1)

The real and reactive power at lius given in (4.2)

Pi +-]Ql = VII: (4.2)
Or
I = Pi +jQ;‘
L V:‘
Substituting for jlin (4.1) yields (4.4)

P;+jQ; . C
T - Vi Zyij - Z.y;]v (4-4)

j=0 =1

(4.3)

The relation in (4.4) is the mathematical formulation of the povear firoblem and results in

a system of algebraic non-linear equations which must be solved by iteeativéques [3]

There are several techniques that may be used to obtain the power flow saluttbe f
equations based on numerical analysis methods including the Gauss-Seidel (GS) method, the

Newton-Raphson (NR) method and the Fast-Decoupled power flow method.

The Newton-Raphson is chosen in this thesis because of its quadratic convergence and it i

therefore mathematically superior to the Gauss-Seidel method and is less pronegendever
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with ill-conditioned problems (i.e. systems that are sensitive to very small chrasgtig in
large consequences). The NR method is found to be more efficient and prfactieage

power systems because the number of iterations required is independent of the system size.
Bus Admittance Matrix

The bus admittance (or Ybus) matrix is one of the fundamental building blogkswer
system simulations as it describes the topology and admittances / impedances ofiaal elect

network.

Admittance is the inverse of impedance, which is the measure of the oppositioritiatta
presents to a current when a voltage is applied. For example if a voltage is &pphedend
of a transmission line the impedance of the line is a measure of the opposition the line presents
to the flow of the current through it. It is the complex ratio of voltageutoent in an AC

circuit.

Take a 2-bus network as shown in Figure 4.10. 2-bus network single line diagramngpplyi
KCL at each bus the current equations are given in {44),)

1 2

> -
—»>

Yio Y20

Figure 4.10. 2-bus network single line diagram

L =Viyio+ (V1 — Vo)ysz (4.5)

Or
L =Vi(io + Y12) — Vayi2 (4.6)
0 =Voy50 + (V2 — Vi)Y12 4.7)

Or
0 =Vo(y12 + ¥20) — Viv1z (4.8)
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where

1 1
YVij = == T (4.9)

Zjj rij"'jxij
Z = impedance; r = resistance; X = reactance

The Ybus matrix is constructed by introducing the self-admittances and the mutual

admittances in the network as follows:

Self-admittances (diagonal elements) at busk are the sum of all branch admittances
connected to the bus (including shunt admittances to earth) in (4.10)

n
Yig = z Yii (4.10)
i=1

Mutual admittances (off-diagonal elements) between busesandi are the negative sum of
branch admittances connected between bkisesli:

Yie = — Z Vki (4.11)
=T %k

From (4.10) and (4.11) the admittances for the 2-bus network are given in{(4412%)

Yii1 = Y10 + Y12 (4.12)
Yio= Y21 = —y12 (4.13)
Yo, = Yoo+ Y12 (4.14)

Substituting the admittances into the bus current equations yields{44.35)

11 = V1Y11 + V2Y12 (415)
0= V2Y22 + V1Y21 (416)
Applying the same principle to anbus system in Matrix form:

I Yii Y2 .o Y[
Iy Yoo Yo oo VnllWn

Ipus = YousVbus (4.18)
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wherelysis the vector of the injected bus currents from external sourcess

The current is positive when flowing towards the bus and negative if floaviray from the

bus. s is the vector of bus voltages measured from the reference ngdds Yhe bus
admittance matrix. The diagonal elements of thg Matrix are referred to as self-admittances
and the off-diagonal elements are mutual admittances. The inverse of the bus aglmittanc

matrix is known as the bus impedance matrix, ¢ Z
Newton-Raphson Power Flow

The Newton-RaphsonNR) method is based on the numerical analysis solution of
simultaneous non-linear algebraic equations, which is a successive approximation procedure
based on an initial estimate of the unknown and the use of Taylor’s series expansion [3]. It is

applied in PSA as described in this section with the formulation obtained from [3].

For the typical system shown in Figure 4.9 the current enterind"thesi (4.1) can be re-
written in terms of the admittance matrix in (4.88)4.19)

j=1
Expressing in polar form yields (4.20)
n
1i= ZlYUllvleQU—l— 6] (4.20)
j=1
The complex power at bus i is:
P —jQi = VI; (4.21)
Substituting for li from (20)
n
J=1
Separating real and imaginary parts:
n
P, = |Vi|z— 61-Z|Yl-j||v].| 26+ 6; (4.23)
j=1
n
Q[- = —Z|V1||V]||YU| Sin(BU— 5l+5j) (4.24)
j=1
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(4.23) and (24) are a set of non-linear algebraic equations in terms of independent variables,
voltage magnitude in per unit and phase angle in radians. Each load bus will have both
equations (4.23) and @) and each regulated bus will have only (4.24). Expanding them in a

Taylor’s series expansion for the k™ iteration and neglecting higher order terms yields (4.25):

) ®) ]
asz asz\ ap®) P
ass D A AR ]
: 9B 9p™ 1\ 9B¥ gp™ :
Ap¥ 06 7 35| \alv;] Aal/ 1 as®
= 4.25
2Q% 20¥  a® e e dlvgkjl (4.25)
N I (LS | I i A AR ||
4Q,," S P A |fo3|
*) ® ®) @ || :
0Q, - 90, 9@, 00,
[ \ast™ a5 3V, | v/ |

The Jacobian matrix gives the relationship between small changes in voltagezﬂﬁbl@nd

voltage magnitudA|Vi(")| with the small changes in real and reactive powél‘) andAQl.("”).
Elements of the Jacobian matrix are the partial derivatives 28) (d@nd (4.24) with respect to

A58 andA|v ). It is expressed in short form as (4.26)

[aol = [ 22llaw (4.20)

The diagonal and off-diagonal elements gdike given by (4.27) and (4.28)

S5 = DAY, IYy sin(@; — 6+ @21
J#i
—VillV || sin(6y— 6;+6;) j # i (4.28)

66

The same approach is used to obtain the diagonal and off-diagonal elemenisarfdld.

The power residuals are the difference between the scheduled and calculated values of power

and are given bxxPl.("") andAQi("") in (4.29) and (4.30).

APL(k) — Pi(SCh) _ Pl(k) (429)
2Q" = QFM — ¥ (4.30)

The new estimates for bus voltages are (4.32) and (4.33)

s = 509 1 A5 (4.31)
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AR ARV (4.32)
The algorithm for the power flow study using the Newton-Raphson method is outlined as

follows:

1. For the Load buses (where P and Q specified) use a flat voltage st|ézlﬁ°?.}e.= 1.0

and|8i(°)| = 0.0 and for voltage controlled buses (P,V specifiégﬁﬂ =0.0.

2. For Load busesPi(k) anin(k) are calculated from (4.23) and (4.24) aﬂp(k) and

AQi(k) are calculated from (4.29) and (4.30).

3. For voltage controlled buse?;(k) and APL.("")are calculated from (4.23) and Z9)

respectively.
4. The elements of the Jacobian matrix are calculated.

5. The linear simultaneous equation (4.26) is solved directly by optimally ordered

triangle factorization and Gaussian elimination.

6. The new voltage magnitudes and phase angles are computed from (4.3133nd (4.

7. The process is continued until the residual??(k) and AQL.(k) are less than the

specified accuracMPi(k)| <€ and|AQi(k’)| <e

Line Flows and losses

When the iterative solution for the voltages in each bus is obtained the nexs gtep i
computation of line flows and line losses. Figure 4.11 shows a simple 2-bus model with

current injected at both buseandj which are connected by a line.
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Vi Vi,
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IIO IjO
L Yio l Yijo

Figure 4.11. 2-bus network with current injection and line flows

The line current; at bus | and defined as positive in the directies | is given by (4.33) and

denotes the current flowing froimoj.

ij= L+ Lo =y (Vi= Vj) + vV (4.33)

And for the other direction— i the line current; is given by (4.34)

Ij' = _Il + IjO = yij (V} - Vl) + }’JOV] (4.34)
The complex power flowS; from bus i to bus j and Sji from bus j to i are given in (4.35) and
(4.36)

Sij = Vil (4.35)
Sji = VI, (4.36)
The power loss is the algebraic sum of (4.35) ar@bj4given in (4.37)

SL = SU + Sjl (437)

4.7.2 Fault study: Short Circuit Capacity and Systematic Fault Analysis

Fault studies are an important part of power systems analysis consisting of datgtimni
conditions of a network including bus voltages and line currents during various types of faults.
A short circuit may be described as an event which occurs when current flows through an
unintended path [3]. A common example is when a tree branch falls on an ovénegad |
bridging the conductors and forming a path for electric current to flowhay &re usually

associated with arc flashes, commonly known as “sparks”.

Faults are divided into three-phase balanced faults and unbalanced faults, and theachbalan
faults are divided into single lin®-ground fault, line-to-line fault and double lite-ground
fault. The information gained from the fault study is used to obtain tmgsadind settings for

protection equipment.
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The balanced three-phase fault is covered in this thesis to compute the bus voltages and
currents during the fault. The magnitude of the fault currents depend on the internal

impedance of the generators plus the impedance of the intervening circuit.
Balanced Three-phase fault

This type of fault occurs across all three phases and is the most sgeref fault to be
encountered, although it is infrequent. A fault represents a structural netharige
equivalent with that of an addition of impedance in the place where the fault occurs.

The short circuit capacity (SCC) is a common measure of the strengthusfand is defined
as the product of the rated bus voltage and the fault current. It is used fonicietp the
physical dimension of a bus bar.

If a fault occurs at busthe short circuit capacity is given by (4.38)

SCC = 3Vl (F) x 103 MVA (4.39)

where the linde-line voltage i9/;; is in kilovolts and the fault curref{(F) is in amperes.

The per-unit symmetrical three-phase fault current is given by (4.39)

Vi (0)
Xk py

L(F) = (4.39)

whereV, (0) is the per unit prefault bus voltage aXig, is the per unit reactance at the point
of the fault. System resistance is neglected and only inductive reactance is uses do gi

maximum fault current.

The base current is given by

Sp x 103
Ip= ——— (4.40)
V3V,

WhereSj is the base MVA andlis the lineto-line base voltage in kilovolts, thus the fault

current in amperes is

Iy (F) = Iy (F)py I
_ Vk(0) Sp x 10° (4.41)
Xk V3V
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Substituting forl, (F) from (4.41) into (4.38) yields (4.42)

Vi (0)Sp V,
SCC = —— —= (4.42)
Xek Ve
If the base voltage is equal to the rated voltagd/j.es Vzthen
V. (0)S
scc = 05 (4.43)
KXkk

Assuming the pre fault bus voltage is 1.0 per unit then the short circuitityapa short
circuit MVA is (4.44)

scc = -2 (4.44)

Systematic Fault Analysis Using Bus Impedance Matrix

The bus impedance matrix or Zbus is the inverse of the admittance matrix and ulseng it
fault current and bus voltages during a fault may be calculated. Consider & mgbhwark
with n buses shown in Figure 4.12. A balanced three-phase fault is applieckahfmgh a

fault impedance £

Figure4.12. Typical busof a power system

The pre fault voltages are represented by the column vector in (4.45)
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Vi .(0)
Vius(0) = |Vk:(0)| (4.45)

Ly, (0]

As the short circuit currents are so much larger than steady state vallagethenay be
neglected. The bus load may be represented by constant impedance evaluated at the pre fau
bus voltage (4.46)

_ [V;(0)|?

iL s7 (4.46)

The changes in the network voltage caused by the fault with impedance Zfvaleofuto

those caused by the added volt&g€0) with all other sources short circuited. By zeroing all
voltage sources and representing all components and loads by their appropriate impedances
the Thevenin’s circuit (equivalent impendance circuit) is obtained with equivalent impedances

at each bus.

g
f

J L0

Figure 4.13. Typical busof a power system with Thevenin equivalent impedances

k
Vi = Vi(0)
z, llk(F)

The bus voltage changes caused by the fault circuit are represented by theaatonin
(4.47)

B4

AVpys = (4.47)

A

lav, |
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Bus voltages during the fault are obtained by superposition of the pre-voliagethe
changes in bus voltages

Vbus(F) = Vbus(O) + AVpys (4.48)

Using the node voltage equations derived in the power flow study for bus cufrd8s &nd
the mutual admittances (4.1Xjom the Thevenin’s circuit the current entering every bus is

zero except the faulted bus thus the nodal equation applied to Figure 4.13 is (4.49)

[ 0 1 [Y11 v Yo Yln”AVl]
T R N |
|—Ik(F)| = |Yk1 oo Vi o Y,m| AV, (4.49)
| 1, | ly, Y, v, llav, |
Or
Ipus(F) = YpusAVpuys (4.50)
Solving forAVy,s
AVius = Zpuslpus(F) (4.51)
Where
Zyus = Yous (4.52)
Bus voltage during the fault (4.47) becomes
Vous(F) = Vpus(0) + Zpyslpus (F) (4.53)
Since there is only one non-zero element in the matridstthequation becomes:
Vie(F) = Vie(0) = Zyye i (F) (4.54)
From the Thevenin circuit in Figureld:
Vie(F) = Z L (F) (4.55)
substituting folV, (F) in (4.54)
Vi (0)
I(F)= —— '
Kk (F) T + Z; (4.56)

Thus at a faulted busonly theZ,, element of the bus impedance matrix is needed. Writing

the equation for thigh bus according to the matrix equations and (4.54):
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Vi(F) = Vi(0) = Zy Iy (F) (4.57)
And bus voltage during fault after substituting fp€F) will be
Vi) = Vi(0) = Vie(0) (4.58)
' ! Zyi + Zs '
With the knowledge of bus voltages the bus currents in all the lines can be calculated:
Vi(F) — V.(F
Iij(F) — M (4.59)
Zl'j
Hence the steps for the three-phase balanced fault calculation are as follows:

1. Run power flow on network and obtain pre-fault bus voltages
Compute bus impedance matrix and obtain self-impedance at faulted node
Compute fault current using pre fault voltage, bus self-impedance and fault impedance
(4.56)
Compute fault voltages using fault current derived (4.57) as@)(4.
Compute

4.8 Mathematical Modeling Requirementsin PSA computing language

From the preceding formulation of the fundamental principles for the Pooversfudy and
the Short-Circuit study, to perform PSA in a computer programming languageltvérfg

mathematical operations will have to be native to the language or provided by a library.

1. Matrix Operations- for admittance and impedance matrix formation, manipulation

and solutions

2. Complex Number / Polar form conversionsfor real and reactive power and

complex notation of voltages and other quantities
3. Vector and Tuple operationsfor solutions of matrix operations
4. Trigonometric functions- sine, cosine etc.

5. lIteration functions- for non-linear programming iterations
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5 PHP application library for web-based power systems analysis

5.1 Introduction

This section describes the methodology implemented in building an applicatiary Itbr
Webbased Power Systems Simulation using PHP programming and provides a
documentation of its functions. The simulation engine performs a load flow analysis on a
given network using the Newton-Raphson method according to the procedure outliBed in

to obtain unknown bus voltage magnitudes and angles, and also the real and reactive power
magnitudes for a given network. It also computes the line flows by first complutag
currents and then the power flowing in each line as well as its directioae.library also
performs short-circuit fault studies to determine the short circuit currémtsng in a

network.

A review of the advantages and disadvantages of using PHP in general and for power system
analysis is presented before the system architecture to show the different compbttents
application and their interactions are outlined in this section. It will showe stncepts

which are not native to PHP but required for power systems analysis are implemented and
then break down the library into its modules and how they interact.

The methodology will be presented with more emphasis on application design and
architecture, flowcharts, and interaction of components rather than the PHP code used to
implement the concepts. Lines of code and programming will only be presented inssnippe

when relevant due to the extensive amount of code used for the entire library.

5.2 Advantages and Disadvantages of using a PHP simulation engine for Power
Systems Simulation

The merits and demerits of PHP are discussed widely on the internet in detakaifople

[79] reviews some of the design flaws of PHP as a programming language as compared to
other languages while [22] highlights its benefits in terms of flexibildayailability of
functions, etc. Some commentators also point out that some reputed organizations such as
Facebook™, Wikipedia™ and Harvard University use PHP [80] . As with any other
programming language, the purpose determines what counts as an advantage or disadvantage.
In relation to a web based simulation engine, some of the advantages and disadvantages of

using PHP for power systems analysis are as follows:

5.21 Advantagesof using PHP for a power systemssimulation library

Platform flexibility
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Because PHP can be used on multiple platforms including Windows and UNIX based systems
such as Linux, the operating system or computing system does not affect the devetdpment

the simulation tool [22].
Reduction in Server Resour ces required for some operationsand Reduced Pricing

Because the PHP simulation engine results in a thinner application, the servesipgoces
power and memory requirements are less, leading also to reduced expenditure on the server
and cloud computing resources. PHP was designed to be run on open source web servers and
platforms, which means any application developed using PHP is well suited for students,
schools and SMEs with budget limitations. Furthermore, power systems studiesnefit be

from having more free alternatives to the premium packages that dominataritet which

usually have limits on network size.
Suitability for Smart Networks

With the introduction and proliferation of smart networks [81] and devices that UREPTC
and HTTP communications for power systems applications [82][83], PHP which is a web
programming language and is designed for use over such networks may provide more

applications for consumer interaction with future electricity networks.
Database Support

One of the strongest points of PHP is its support for a wide range of dataBpsesing
database specific extensions, e.g. for a MySQL database or MSSQL, or using an abstraction
layer like its native PHP Data Objects (PDO), PHP can use data fromsvanatces [22]

The implication is that legacy data from existing systems can be connected to such
applications with a level of ease that is not available with other languages, duaditwit

modifying that data format.
I nter connectivity

PHP has support for talking to other services using protocols such as LDAP, IMAR, SN

NNTP, POP3, HTTP, COM (on Windows), etc. [22]. Raw network sockets can also be
opened to interact using any other protocol. PHP also has support for instanfiataa

objects and using them transparently as PHP objects [22]. This implies thafomdi

created using other languages can be extended to be used in the power systems analysis based
on the PHP platform. PHP can also execute shell commands, meaning that a fall back system

to a 3-tier system is also possible when the application requires additional functions.
Portability
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PHP can be compiled into C++ using the Hip-hop PHP compiler (HpHpC) [84], [85]. The
performance gains of C++ are combined with the rapid development paradigm of PHP using
this approach. Hifxop for PHP was developed by the creators of Facebook™ who originally

used PHP to develop the popular social networking site but required some of thexqector

and scalability features of C++ without converting their entire codebase. PHeopliVirtual
Machine (HHVM) is also available for use to scale PHP applications without cogthem,
working like a Justa-Time (JiT) compiler.

Results presentation

Using PHP allows simulation results to be published in a web-based, interactive manner on
the internet or a local network easier than other programs such as PoweréiabtaLAB.

PHP code can easily be embedded in Web Pages, making the integration processreasier f
results presentation. By using JavaScript, CSS and HTML tools, the otheratisaesults

may also be given aesthetic modifications unmatched by other platforms.
Simplicity and Learning curve

PHP was designed to be easy to learn and to allow beginners and less experienced
programmers to build dynamic websites and achieve complex tasks easily [22], [86]n8Y

PHP for power systems analysis, engineers with little programming experienpertam
analysis and computation without the assistance of third parties and exert fudl oartheir

work. Experienced programmers in other C-style languages in general also dmsl ito

learn.
Availability of Analytical Tools

PHP provides adequate tools for power systems analysis, such as matrix manipulation,
complex number analysis etc. The tools for Mathematical computation are provided both
natively and via Math extensions [87]. Although there are packages and languages that
provide more power and control to carry out functions required for the analysis of powe

systems, the OOP concepts available in PHP allow the creation of specific functions as

required.

5.2.2 Disadvantagesof PHP for power systemsanalyss

The disadvantages and challenges that are likely to be encountered when using PHP for power

systems analysis related to this work are as follows:

L anguage flaws
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The flaws of the PHP programming language itself are well documented [79], [86] with issues
such as consistency, loose variable types and declarations, programming styleverapetiti
obscure function names, scope, comparison operators, etc. Most of the flaws in the language
are as a result of the flaws in the original versions with updatesingtasome of them for
compatibility reasons. This may prove to be a pitfall when writing power systems dppficat

in PHP.

Availability of Programming toolsand Librariesfor Power Systems Analysis

Languages like C++ for Power systems analysis provide tools that make it easigornm pe
certain tasks, such as in C++ where native Templates can be used to declareetine Syst
admittance matrices [88This isn’t the case in PHP and an extension [87] has to be used for
matrix operations, or Matrix operations functions must be created by the developsanide
issues are expected for carrying out other forms of mathematical analysisiraydrequire
significant additional work writing functions specifically to perfothese or the use of third
party extensions. Furthermore, as no previous power simulation systems have been written in
PHP, there aren’t any reusable components apart from those developed in the simulator
described in this chapter. It means that any other engineers or researcheevevitb use

these or lose time re-developing operational components which are already available in
packages like MATLAB [74]. This will have to be weighed against the advantagewitles

in making a decision to use PHP.

Performance

Since PHP is interpreted and not compiled, PHP programs must be parsed, interpreted, and
executed each time each time they run and are therefore usually slower than compiled
languages [84]. However virtual machines such as HHVM [85] described previousstlas w

as fast web server applications such as NginX [89] mitigate this interpaetpcage inherent

performance issue significantly.

A lot of the disadvantages and advantages of PHP may be viewed from a more philosophical
standpoint, regarding the perceived quality or maturity of PHP as a prografamiugge, or

even if it is appropriate to refer to it as one rather than as a scripting language.

The PHP-based solution meets the requirements for a power systems simulation outlined in
[15]. It exploits the advantages presented and can produce valid, consistentoespétsable
with benchmarks from other recognised packages therefore it is a suitable carutidiage f

investigations.
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5.3 2-tier framework for web-based simulation using PHP

An approach which has not been used previously is to develop a slimmer 2-tiered structure for
the simulation application as illustrated in Figure 5.1. Instead of using the web server only as a
transport layer, a 2-tiered approach which has the simulation engirtenwiit a web
programming language and all or most of the processing carried out on the wehisserver

proposed.

Web servers typically run scripts written in ASP, ASP.NET, JSP, Perl, PHR2&tevhich

are designed primarily for text-based communication using Hypertext Transfecdsot
(HTTP) while simulation packages are built using more powerful languages s;HCas,

C#, Java, etc. [24], [66] because they have a wider range of tools to perform the niedhemat
analysis required and produce results in a relatively short amount of time. étomeve
recent versions of the web server languages have been upgraded to provide tool® for m
complex computation such as Object Oriented Programming [26].

PHP: Hypertext Pre-processor, popularly referred to in the recursive acronym PHRs [22]
the most used web server scripting language [90] but WBPSA is currently not being
implemented using it. There are several possible reasons for this includirepgbeof
interfacing existing simulation software using ASP.NET to VB and JSP to Javahand t

computational limitations of PHP as a programming language for modelling and simulation.

PHP has gradually transformed into a general purpose programming language [23% [26

web applications have become more complex and the language has been updated. Recent
versions of PHP include additional features to make it easier to build complex web
applications using PHP. Apart from the additional core features that make PHP moie capab

of general purpose programming, it also benefits from having several exteresid third

party libraries to further extend its mathematical and analytical capabilities.

The implication is that some of the power systems analysis computation that has besth handl
completely by the dedicated simulation tier may now be performed on the web server tie
resulting in a slimmer architecture which is easier to deploy initesband requires less

computational resource requirements.
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CLIENT SIDE SERVER SIDE
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«
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WEB BROWSER SIMULATION ENGINE

__ RUNNING ON WEB SERVER
0@0@c

Figureb5.1. 2-tier architecture for web-based power systems analysisusing PHP

The approach proposed in this methodology is a modular object-oriented framework in which
the major functions required for simulation exist in PHP files as sepa@dels and the
elements that make up an electrical network are defined as separate cldssastivatls and
properties.

The components interact with each other via a Controller class thatheatisquired models

upon request and creates objects in memory as the application is executed and then display
the results using a View class for presentation. Functions can be re-used or modified
independently of the entire program. Classes are PHP Objects that contain Mathiods,
functions) and Properties (descriptions of physical attributes) for eéctiheo system
components [26].

The block diagram in Figure 5.2 show the different modules used in the library, their

functions, and the interactions between the modules.
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metwork Data Classes \

- Data parsing, XML schema
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- Newton-Raphson Load flow
- Jacobian Matrix Formation
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/ Network Model Class \

Object representing
Network being analysed /
with all the relationships
between elements

/

Figure 5.2. Module functions and interactionsfor PHP WBPSA library

54 Extending thefunctionality of PHP to handle Power Systems Simulation concepts

The most important part of the methodology is how PHP will be extended to handle
operations that are not native to it. For power systems computations matrix, complex number
and vector operations are the most important to be considered. The PHP core cormaes with
library for general and basic mathematical operations [91]. It does not praNideafive

support for matrix operations, complex numbers and vectors.

To use such functions one can either install mathematical extensions [92] which wiliredlow
programmer call functions for matrix operations as though they were natRERp or the
programmer will have to include a PHP class file that contains methods to pengdrir,

vector and complex number operations and then refer to that class each time the dperation
required. The PHP group cumtey doesn’t provide an extension for complex number
operations, but have a repository for such classes using a PEAR extension. PEARostands f
PHP Extension and Application Repository and is a framework and distribution system for
reusable PHP components [93].
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54.1 Matrix operations

A matrix may be defined in PHP as arrays of arrays, representing rectanguieesriatrow

major order.

An array is defined in the PHP manual as an ordered map. A map is a type thiatesssoc

values to keys [94]. It is a programming concept available in most languages.

Defining a matrix as described limits the programmer to storage and attoledata in a
particular order as well as some other ordered data operations. To allovafiiid operations

such as arithmetic, vector multiplication and finding the determinant, the PEARN4dtix
package is used in developing this simulation engine. These packages are PHP classes wit

matrix operations, methods and properties.

Using this method is preferred to using the PHP Lapack extension [95] that provides some of
these functions for two reasons; Firstly, the Lapack extension serves a specific purpese onl
the matrix and linear algebraic operations, while the PEAR extension is installecaotc

used for several packages with different functions. Secondly, the classes use®HARe
extension are written purely in PHP and are only additional PHP files that are inghitbed

the application. They can therefore be modified to suit the application easily.
The matrix is instantiated as shown in Table 5.1.

Table5.1. Matrix Initialization in PHP using Math_Matrix class

Mathematical Operation PHP operation
[1 2 $matrixArray = array(array(1, 2), array(3, 4));
3 4

$matrix = new Math_Matrix ($matrixArray);

Now the smatrix variable is a Matrix Object [1,2; 3,4] and has all the properties and
methods of a matrix, rather than being just a multidimensional array which ondg stnd

retrieves the data in an ordered manner.

The limitation of the Math_Matrix class is that it can only accegtrremerical values. The
obvious problem with this in power systems analysis is that a bus admittanoeisnatade
up of complex number values. To solve this problem, the complex admittance matrix is

organized and manipulated using native PHP multidimensional arrays while otheesnatr

114



PHP application library for web-based power systems analysis

such as the Jacobian matrix, which consist purely of real values and require oftier mat

operations are formed using this matrix class.

54.2 Complex Number and Vector Operations

PHP doesn’t natively handle complex number operations such as conjugation, inversion and
determining angles which are required for power systems analysis. The PEAReg£om
number package [96] is used to enable this functionality. Some operations soditian of
linear algebraic equations involving Jacobian matrices require vector anahgsivector in

this case referring to a one-dimensional array of real and reactive power.

The matrix package for example solves linear equations using an iterative ereaticor
algorithm and requires as input the left hand side vector and a right hanchaiile To
enable this type of functionality the PEAR vector package [97] is used in¢tiwdology as

it allows the use of vector methods and properties on variables in the simulation engine.

Table5.2. Complex number and Vector definition in PHP

Mathematical Operation PHP operation

Complex numberl + 2i $complex_number = new Math_Complex(1,2);

Tuple (vector):(1,2,3,4,5) | $vector = new Math_Vector(1,2,3,4,5);

5.5 Electrical Network definition in PHP

The network data is defined using an XML format document which is parsed and mead int
memory by the PHP library. This is suitable because of the flexibilitgi®format compared

to the rigid, tabular structure of relational databases such as MySQL and Oracle. Flexibility in
the data structure is important as different elements may be present or absettsain
electrical networks and it will be more difficult to represent this in tabulaiogetd databases.

The network topology in some cases may be complex leading to complexity in a relational
structure. Elements may also have parameters that do not exist in other elbeweitse

having an elements table for example will be difficult to implement without flexibility.

The network is defined using different custom tags for the elements, the buses and lines
Loads and generators are defined based on the direction of power flow. The network shown in
Figure 5.3 is defined by the XML code in Listing 5.1.

Listing 5.1. Sample 3-bus Network Definition in XML
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<?xml version="1.0" encoding="UTF-8"?>

<PowerNetwork realPowerUnit="MW" reactivePowerUnit="MVAR"
apparentPowerUnit="MVA">

<NetworkBuses>
<Bus number="1" voltagePU="1.05" vAngle="0"></Bus>
<Bus number="2">
<Element p="4" flow="out" />
<Element g="2.5" flow="out" />
</Bus>
<Bus number="3" voltagePU="1.04">
<Element p="2.0" flow="in" />
</Bus>
</NetworkBuses>
<NetworkLines>
<Line from="1" to="2" zReal="0.02" zIm="0.04" />
<Line from="1" to="3" zReal="0.01" zIm="0.03" />

<Line from="2" to="3" zReal="0.0125" zIm="0.025" />

</NetworkLines>
</PowerNetwork>
1 2
0.02 +j0.04
:::: 400 MW
0.01 +j0.03 0.0125 +j0.025 —+=250 Mvar
Slack Bus 3
V1 =1.05<0 i
|V ]=1.04
200 MW

Figure 5.3. Sample 3-bus network to be defined in XML

The classes described in Table 5.3 have been developed to form an electrical netierk in

PHP application which is ready for any operation or computation such as power flowtor sho
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circuit analysis and using any chosen method. With the exception gatbbianMatrix
property in theNetwork element, these are the bare minimum required objects for any other

power system analysis that may be carried out. This structure means theseceaaskes

easily re-used in other PHP applications.

Table5.3. Electrical network definition in PHP power systemsanalysislibrary

g | Class Description | Methods Properties
n
1 | Network Class: | InitializeNetwork: sort buses an( Buses: array of bus objects i

Represents a
electrical network
with no elements
It is the main
dependency for al

other classes 4

Multidimensional array o
_ network _ _
instances of the line admittances
element class ar| addLine: add a line object to thi _ _ _
jacobianMatrix: Matrix

added to this clas
to build the

network.

lines in a particular order, set sla
bus, compute bus unknowns &
call method to form admittang

matrix for this network

addBus. add a bus object to th

network

Bus: returns a particular bus obje

in the network by number

BusReal Power,
BusReactivePower: returns the rea

and reactive power of a given bus

BusUnkowns: compute unknowr

parameters for given bus initialization
formAdmittanceMatrix: Forms the initialV: initial  voltage
network admittance matrix from th magnitude for iterations

lines and respective buses given

delPdelQMatrix: returns a vecto
of the change in power for th
involvin

linearized relationship

change in power, voltage magnitu

the network

Lines: array of line objects i

the network

admittanceM atrix:

object representing Jacobi

matrix from latest iteration

slackBus:

bus number; default is 1

integer of slack

voltageControlledBuses:
Array of voltage controlleqg

buses; filled during networ

default is 1.0 per unit;

initialD: intial voltage angle

for iterations, default is O;

solution: array for storing

power flow solution
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and angle and the Jacobian matrix

dPdQM _network: vector of
change in real and reacti

power

Bus Class: Object
representing F:
power bus, or 4
node in an
electrical network
with

all its

properties ang

methods

__construct:  set bus numbet
specified voltage magnitude PU a

angle both default to null

addElement: Adds an elemen
object to this bus and update t
properties of this bus according
the properties of that element obje

whether it is a generator or a load.

P: Bus real power;

Q: Bus reactive power
S: Bus apparent power;
Type: Slack, PQ or PV

Elements: Array of elementg

at this bus;

Unknowns. array of bus
filled

network initialization;

unknowns during

previousV, previousD,
previousQ:

variable to store previou

previousP,

values of voltage magnitud
angle and power durin

iterations

Line Object:
represents a lin
in an electrical

network

__congtruct: initialize the line, se
the numbers for connected bug
and value for line impedance re

and imaginary parts

From: number of first

connected bus

To: number of

connected bus

secon

I mpedance: complex

number object with

impedance value

Admittance:
with

complex
number admittanc

value

Label: string to label this
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line in from-to notation.

4 | Element Object: | __construct: initialize element an¢ S: a complex number obje
Object set its properties. The properti| representing the appare

representing 4 default to null so they may be § power. Computed from th

generic element i after initialisation. values of real and reactiy
the network. The powers given or declare
element may explicitly. Can be negative ¢
either be 3 positive depending on th
generator or othe flow property.

active element o _ _
Flow: String representing
a load. o .
direction of power flow in of
out of the network in relatio

to this element
P: Real power
Q: Reactive power

Name: user defined name fq

the element

5.6 System architecture of PHP library for power systems analysis

The system architecture for the library is shown in the block diagram in Figure 5.4 which
illustrates the dependencies and interrelationships of all components of dng iliba block
diagram. The dependencies for any study to be carried out are included in the program bef
the operations are run. After the network model is instantiated any powans\sttely may

be performed on it.
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Power Systems Analysis e.g. Power Flow study

Admittance Matrix Impedance Matrix Jacobian Matrix
Network Model

Line Object Bus Object Load Object ' Generator Object

Third Party Libraries

PHP core

Figure5.4. System Architecturefor PHP WBPSA library

5.7 Power flow solution in PHP using classical Newton-Raphson method

To perform power flow studies in the PHP library a number of classes are built to interact with
the network models described in the preceding sub-section. The Newton-Raphson method is
one of the popular and dependable methods for carrying out a power flow study and uses a
Jacobian matrix to obtain linearized relationships between parameters and theref@te gener
solution via iteration. Table 5.4 describes the classes and methods usedotm fibe
Newton-Raphson power flow in the PHP library.

The Classes described in Table 5.4 are used to perform a power flow using the-Newton
Raphson (NR) method on a valid PHP electrical network object. The modulausg of this
methodology means that any other solution may be used alongside the NR on the same
network and won’t require the entire application including the network definition classes to be

developed again.
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Table5.4. PHP Classes for Newton-Raphson power flow solution

Class Description

M ethods

Properties

JacobianMatrix:

the
the
the

Jacobian matrix fol

Contains
methods for
formation of

a given network

delPdelD, delPdelV,
delQdelD, delQdelV: These
methods form the su
matrices of the Jacobia

Matrix

FormMatrix: takes a powe
network object and runs th
methods for the Jacobig

on it
full

matrix as a matrix objec

sub-matrices an

returns a Jacobia

This object is stored in th

No properties declared as
elements can be accessed fr
matrix object returned on it

formation.

Network’s JacobianMatrix

variable.
IfNR (Load Flow | exec: this executes th({ maxlterations: maximum
Newton Raphson): | individual steps of the poweg number of Iterations, t
Computes a Newto| flow by forming the| prevent infinite iterations
Raphson powe| Jacobian Matrix, forming _

) e: variable for acceptabl

flow solution for a| the power change vector a o
, _ _ _ | convergence criteria
given network| using the Matrix Objec

according to the NF

algorithm.

linear equation solution t

obtain a step solution.

updateNetwork:  updates
the buses of the netwo
with the latest results frorn

an Iteration step

solve: lteration function tha
calls the exec function &
each step and checks t
tolerance of the solutio

before finally computing

step: current iteration step
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slack bus values when give
convergence criteria is m
or set number of step

exhausted

The PHP library Power flow solution using the Newton-Raphson followsatine flow chart
structure as a generic power flow using any other method described in [18]. The specific
flowchart for this PHP application and methodology is shown in Figure 5.5 and describes the

interaction between the classes.

This same structure can be incorporated into other power systems studies thatarpquer
flow analysis to be carried out as a step, such as optimal power flow computofull
process may also be broken into smaller processes because of the modular nature of the

application.

The flowchart shown in Figure 5.5 is separated into two parts; the@dirsshows the process

of creating a power network from the network data provided and is the basic remuifem

the simulation. This network resides in the PHP application and can be used fathany
analysis such as short circuit studies, reliability analysis, etc. The second tharflowchart

shows the process for the power flow carried out on the network, and can be replaced by

another process.
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Power  Network  Definition  and

Initiglization ~ to  produce  a m
representation of an Electrical Power
Network for any type of Analysis

Create an empty power
network object

new PowerNetwork ()

A4

Add buses, add lines, add
elements — using Math_Complex
and Math_Vector PHP Classes

v

Initialize Network and prepare it for any form of analysis by computing bus

unknowns and system admittance Matrix (using Multidimensional Array)
busUnknown=z () ; formAdmittanceMatrix()

Newton Raphson power flow solution {or
any other power systems analysis to be
performed on the network)

W
Form given network Jacobian matrix using Math Matrix
—> PHP class; Form [AP AQ] column matrix as a Math_Vector
object

W
Solve system of linear equations
involving Jacobian matrix and [AP AQ]
vector using Math_Matrix: solve to
obtain step solution

W
Update network buses
using step solution

v

Power mismatch
condition satisfied OR
maximum iterations
reached?

Update network buses with step
solution and compute slack bus
parameters

Send solution to browser
via HTTP

Figure5.5. Flowchart for Newton-Raphson Power Flow study in PHP WBPSA library
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5.8 Balanced Symmetrical 3-phase fault computation methodol ogy

The short circuit fault study implemented in this methodology is the balanced sycair@itr
phase fault which has the same current flowing through all phases. Table 5ibedette
classes and methods used to perform the fault study in the PHP library. The class depends

the output of the other classes i.e. the Power Flow class.

Table5.5. PHP Classesfor balanced 3-phase short circuit fault study

Class Description M ethods Properties

1 | shortCkt: Contains| Initialize: performs a powe| No properties declared as i
the methods for | flow study on the network t{ elements can be accessed fr
performing a shor| get base case conditions a matrix object returned on it
circuit study for| admittance matrix and alg formation.
balanced 3-phas| set faulted bus number

faults
formlmpedanceM atrix:

Takes the admittance matr
and forms an impedanc
matrix using the inverse ¢

the matrix.

faultCurrent: compute fault
currents using self-impedan
element of impedance matr

and initial voltages

faultVoltages: computes
fault voltages in all buse
using result offaultCurrent
and impedance matrix entrig
by looping through buse
with  values of mutua

impedances
shortCktCapacity:

Computes  short  circul
capacity of faulted bus i
MVA using base MVA anc
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per unit reactance at faulte

node

The flowchart in Figure 5.6 shows the process for performing the analysis. The entire
functionality of the power flow solution displayed in Figure 5.5 is collapsed intoglesi

block however the common functionality is displayed in the top of the flowchart. The
flowchart is more linear than the power flow study chart because the funatiov dequire

as much iteration and conditional statements. The only input is the faulted bus number, and
the calculations for the other parameters are based on the results fraatcttetions on this

bus and the output of the impedance matrix formation.
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Power Network Definition and

Initialization to produce a m
representation of an Electrical Power
Network for any type of Analysis

Create an empty power
network object

new PowerNetwork ()

V

Add buses, add lines, add
elements — using Math_Complex
and Math_Vector PHP Classes

v

Initialize Network and prepare it for any form of analysis by computing bus
unknowns and system admittance Matrix (using Multidimensional Array)
busUnknowns () ; formAdmittanceMatrix()

Balanced 3-phase fault short v

circuit Compute Power Flow
solution for Network using
IfNR

¥

Compute Impedance matrix using inverse of
admittanceMatrix; formlmpedanceMatrix()

W
/Selectfaulted node; faultBus /

v
Compute Fault current using
impedance Matrix entry and power
flow results; faultCurrent()

W
Compute Bus Voltages during fault
using fault current and mutual
impedance entries with faulted bus;
faultVoltage()

Y

Send solution to
browser via HTTP

Figure5.6. Balanced short circuit study in PHP flowchart
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6 Evolutionary combinatorial optimisation for Energy storage

scheduling: Case Studies, Results and Discussion

6.1 Introduction

This section presents the results obtained from testing the evolutionatyinatonial
optimisation algorithm on four case studies. Each case study will includes deidihe data
sources, the method of collection, and a background on the circumstances surrounding the
data to provide context. All data used for the tests is provided explicitlgidaty and for

readers who wish to reproduce the results or compare with other methods.

In all test cases the algorithm is off-line, meaning that it is assuntea/eoperfect foresight

of the future demand characteristics from a forecasting model.

The case studies aim to verify the feasibility of the algorithm aatuate it in the following

terms:

The impact of using the algorithm on a network demand profile previously withetgyen
storage to verify if it creates new problems or resolves peak demand and load levelling issues

A quantitative comparison of the performance of the algorithm by measuring ltiés res
against results obtained after other verified scheduling methods are dppledsame input
data to determine if results are within the same range and if there are any correlatiers bet
the results. This comparative analysis methodology is illustrated in Figure 6.1.

ECO algorithm ECO results
. Algori
Algorithm 1 — gorithm 1
results P
Quantitative
lnplfl.tl d(;:mand > > Comparison of
rofile data ;
£ Algorithm 2 Algorithm 2 results
results
Algorithm N

Algorithm N

results

Figure 6.1. Quantitative compar ative analysis methodology

The simulation setup is the same in each case; The algorithm is iempéshin JavaScript on
a web server using the NodeJS runtime [98] with results displayed in the comimand |

console and a web browser. The NodeJS JavaScript runtime is used because of the quick
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computation speed and non-blocking input-output (I/O) characteristics that allovs teddt
returned asynchronously for multiple calculations. This is ideal for heugdsficulations
which have different results that can be compared. Other languages such as Python, C++ or
MATLAB may also be used to implement the algorithm according to requirements. Each time
the algorithm is run a viable and usually different solution is obtained becausehefitistic
nature of the algorithm and the random selection of combinations for the subset s
Asynchronous returning of results means different algorithm result schedulbs samt as
output to other processes such as comparison processes while other viable sahetelag
generated. The program does not have to wait for all schedules to be generated bef
checking which has better peak reduction or load-levelling. The benefit ispaovement in

performance as generation and comparison processes can run concurrently.
6.2 Case Study: Riverside Community, Stirling, Scotland UK

6.2.1 Background

Riverside Community is located in Scotland UK, in the heart ofirgfidown town at latitude
51°10' N and longitude 3°45' W. The area is dominantly domestic sector withala sm

percentage of commercials [99][100].

As a part of a scheme by the Riverside community and Stirling council to become @ carbo
neutral community, i.e. a community with a net zero carbon footprint achieved byngeduc
their carbon emission by following a set of practices, the council commissioned arstudy
2006 - 2007 in collaboration with the University of Strathclyde relating to thgydemand

of the council. The objectives of the study include assessing the energy demandiand car
emission in Riverside community and to assess possible demand and carbon reduction

options.

This case study explores using a Battery energy storage system (BESS) to perform pea
demand reduction and load levelling on the aggregated electricity demand of the community
If the BESS is dispatched efficiently it will not reduce or increaseathount of energy used

by the community, but will be able to shift its own energy capacity acrosstegériod i.e.

the same amount energy will be used but at different times. The bendfis db tcarbon
emissions is that it reduces the need to use peaking generators to supply peals ltexis,

can be supplied with a base load generator when the daily demand is lower and levelled.

The objective of this case study is to test the impact of the Combinabptahisation
algorithm on the demand profile using different ESS energy block configurations and gocusin

on the Bin-Packing and Subset sum algorithm aspects (BP-SS).
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6.2.2 Test Data and Source

The data used for the case study was obtained from the project carribg that Stirling
Council and University of Strathclyde for Riverside community [99]. The demandidé s

was measured using a detailed survey conducted in the community and a modelling tool tha
takes into account the household stock, building stock, occupancy levels, and consumer
behaviour. It is based on probability models that predict the possibility of each hausehol
operate a certain amount of appliances on a certain time of the day doerifénd users, i.e.
occupancy types. The database was compiled with respect to the Nationat&tdisé for
electricity used in appliances in UK households, usage patterns, and a survegenitsesit

was found from a site survey that as at 2007 the community had 1,015 househlolds wit
different occupancy levels as shown in Table A.1 in the appendix.

The average peak daily demand for the entire community in winter obtained is 1,04€r kW

day between 19:00 and 20:00 and the maximum energy demand is 23,979 kWh per day. It is
assumed that the community is connected to the distribution grid at the grid compeatt

(GCP) substation via a radial network, i.e. the entire community is sewedoine feeder
before further distribution takes place to the households. The daily consumptiondehold
occupancy type is shown in Table A.2 in the appendix.

A 500 kW / 2000 kWh grid scale battery such as [101] with an efficiency of 0.7Zelaged

to be used for this study and is assumed to be connected and operated at the GCP. The ESS
rating and capacity represents approximately 50% of the daily peak demand and Iskghtly

than 10% of the daily energy demand to be shifted.

Before the algorithm was applied a pre-processing operation was carried scalé the
values of data such that it is compatible for use in the algorithm. Ther pe¥irst converted

to per unit on a 100 kW base so the peak becomes 10.19 per unit (pu) and hheenesaad

value is scaled to a maximum of 10pu. The peak battery power becomes 5 pu anditis capac
becomes 20 h pWAn energy block of 1 “unit” represents power of 1 pu charged or discharged

for a period of 1 hour therefore a 1 unit block is proportional 1 pu of demand or $oipfly

hour and equal to 1 h pu. This means a maximum of five 1h pu unit blocks mayée ipla

one hour without exceeding the rated power of the ESS. The efficiency is appliled t
energy blocks during the charge and discharge phases before they are placed ineeach tim

period on the demand profile.

Table A.3 shows the hourly demands after the scaling operation and this is plottedrin Fig

6.2. As a requirement of the combinatorial optimisation algorithm the originadicd profile
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shown in Figure 6.2 is used for the charging phase and the inverted demand profiteafter
mirror transform in Figure 6.3.

12.00
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Power Demand (PU)
o
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Time of Day (Hours)

Figure6.2. Original Riverside demand profile after conversion to PU and scaling
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~ & @ oo
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Time of Day (Hours)

Figure 6.3. Inverted Riverside demand profile after mirror transform for discharging

6.2.3 Resultsand Discussion

Three separate tests were carried out to establish the changes in resulfcinpee as the
number of ESS energy blocks generated from the subset sum algorithm changed. A new set
of blocks is generated from the subset sum generator as a result of the randber
generator. The Bin-packing algorithm was run on each set of generated bt 8mes

and the representative average results are presented. The Genetic Algorithsatptimias

not used in this case. The number of blocks used were 6 energy blocks in scé&ngridl

energy blocks in scenario Il (s.Il) and 20 energy blocks in scenario Il (svith each set
summing up to the total capacity of 20 h pu.
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After running the algorithm in the different configurations, the charging discharging
schedules of each configuration is shown in Figure -6.Bigure 6.6. The summary of
numerical results of all the scenarios is shown in Table 6.1 which indicates the amount of peak
reduction observed and the paaktrough margin which is an indicator of the amount of load
levelling. The plots of the final profiles of all scenarios compared to figsal profile are

shown in Figure 6.7.

Table 6.1. Results of Combinatorial Optimisation algorithm for scheduling ESS in Riverside

community
Scenario I: Scenario . Scenario lll:
Parameter 6 energy blocks 1L ENEY | 20 energy blocks
X blocks 9y

Original peak (pu) 10 at 1900 10 at 1900 10 at 1900
Final peak (pu) 8.51 (at 1800) 8.51 (at 1800) | 6.15 (at 1900)
Peak reduction amour 149 149 3.85
(pu)
Peak_ and trough demai 7 66 706 4.66
margin (pu)
Original number  of
distinct power demand 10 10 10
(nearest integer)
Final number of distinc
power demands (nearg 7 7 6
integer)
Energy block allocatior 1,1,14,1,1,1,2,3,3 1,1,1,1,1,1
(pu) 12,2555 3.3 (x20)

. . 6 (0000 — 0400, 10 (0000 - 0500| 12 (0000 - 0600,
Charging periods 1200) 0900— 1200) | 0900— 1200, 1500)
Discharging periods 5 (1800~ 2200) 5 (1800~ 2200) 230(8)700’ 1800

5.00

4.00

3.00 S e B :
200 j
0.00 B

! T T T T T T \ T T 1
100 | 0000+ 0100 | 0200 | 0300 | 0400 0500 ¢ 0500 0700 oaoo 0900 | 1000 | 1100 | 1200 ; 1300 | 1400 ' 1500 | 1600 | 1700 1800 | le
-2.00 - eeeetd oo e - - oo -t -4

(=]
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Time of Day (Hours)
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Figure 6.4. 6-block scenario ESS char ge and dischar ge schedule.
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Figure 6.5. 11-block scenario ESS charge and discharge schedule.
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Figure 6.6. 20-block scenario ESS charge and dischar ge schedule.
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Figure 6.7. Comparison of different scenarios of energy block numbers and normal operation on
algorithm completion.
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The results show that the amount of peak reduction and the number of peaksitenease
with the number of blocks. The final lowest demand also increases with the numbergyf en

blocks which indicates levelling of demand.

In s.11l for 83% of the day the average difference between the dersamaly about 2 pu; the
overall difference peak and trough demand is 4.66 pu which indicates a smoother ardl levelle
profile, and the new peak is 6.15 pu indicating a reduction of 3.85 pu. In s.I for 41% of the day
the average difference in demand is within 4 pu; the overall difference bepga&nand
trough demand is 7.66 pu. In s.1l for 62% of the entire period the average change in demand is
within 2 pu; the actual difference between peak and trough is 7.06 pu. Bathdsd.ll
resulted in a time-shift in the peak period and a reduction by 1.49 pu to 8.51 pu. In the original
profile for 50% of the time the average change in demand is approximatetyt@epactual
difference between peak and trough demand is approximately 9 pu. This indicates that t
scenarios provide a flatter, more predictable demand profile compared toginalgsrofile
without the battery. There are also fewer distinct power demands in all 3igsdiia7 and 6
compared to 10 in the original profile) which shows a reduction in the demand fluctuation.

In the 3 scenarios the energy blocks are all used during the charge and dischargéhimfcle;

is effective battery utilization. Leftover uncharged blocks reduce the amoudé¢nadnd
shifting that can be done. When there are leftover charged blocks after the dischage cycl
then the battery would have contributed as a load to the demand.

The subset sum algorithm is essential because of the limited number of chargefeischa
cycles for a given battery. When the number of blocks is higher the number of charge cycles
(6, 10 and 12 respectively) and discharge cycles (5, 5 and 7 respectively), shownear6Higur

— Figure 6.6, increases and this affects the usable lifespan of the battery. Also a stiation t
longer to obtain with more energy blocks as the algorithm will have rteorss ito pack. The
subset sum algorithm is therefore necessary for finding an optimal combination and number of
energy blocks for the best results in demand levelling and the lowest number & &hdrg
discharge cycles.

In all scenarios the amount of energy supplied from the GCP with or without ttieeyba
remains the same at 90 pu. The battery can shift its total energy capacity tr®@utemand

profile during the redistribution if the entire capacity is charged and discharged. Theénalgorit

is verified in this case because the energy transferred from the GldPsame remains the

same with or without the ESS. In summary, the peak demand was reduced 38 1§84and

the demand margin between peak and trough demand was reduced by up to 50.2% using the
500kW/2000kWh ESS with the combinatorial optimisation algorithm and without further

optimisation by genetic algorithm.
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6.3 Case Study and algorithm verification comparative analysis. Combinatorial
optimisation algorithm compared to set-point control in household demand

smoothening

6.3.1 Background

The demand smoothening and peak shaving algorithm (DS) was developed in [36] by Purvins
et. al for households to reduce their daily peak demands and variation usingr\a dradtgy
storage system (BESS). The analysis included case studies of a number of European countries

in different seasons and the most data was reported for the tests perforrbeshmark in

spring.

The method uses an average demand value as a reference point to generate a charge and
discharge matrix to inform the final schedule. Two models were developed $tuthe a
time-dependent model that used a fixed average set-point and a demand tracking model that
used a dynamic set-point that changed with the demand forecasted. The results of the demand
tracking (DT) method of the DS algorithm showed better performance than the time-
dependent model and therefore these results were selected for the comparative analysis to b

used for algorithm verification.

A case study and comparative analysis was carried out to verify the combinatorial
optimisation (CO) algorithm and measure its performance against a verif@ihag The
objective of this analysis is to observe the output of the algorithm when théngamis used
and find correlations which indicate that the algorithm is comparable, compeditide

feasible.

6.3.2 Test data and source

The demand profile used for the comparison is a representative average daily demand profile
for a household in Denmark in spring time obtained from the Residential Magittwi
Decrease Energy Use and Carbon Emissions in Europe (REMODECE) database [102]. The
demand profile and battery parameters were converted to per-unit (PU) values and scaled to
maximum of 10 pu for compatibility with the propoe® algorithm. The original and scaled

data is given in Table A.4 and the demand profile is plotted in Figure 6.8. Ghizeck

inverted demand profile for discharging is plotted in Figure 6.9.

A battery system of 0.2 pu rated power and 0.4 h pu energy capacity and an efbi@ndy
using a base of 0.895 kW is used in [36]. Scaling these values results in a ratedffper

and capacity of 4 h pu.
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Figure 6.8. Representative aver age demand profile for household in Denmark in spring
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Figure 6.9. Representative average demand profile for household in Denmark in spring after

horizontal mirror transform

6.3.3 Resultsand Discussion

The resulting demand profile obtained after running the CO (bin packing + sbagt
algorithm on the same input is shown in Figure 6.10. The CO algorithm perfbetted in

peak shaving than the DT method, both algorithms shaved the peak demand from 10 pu to
7.69 pu (23.1% reduction) and 8 pu (20% reduction) respectively. The CO algori#hm al
increased the capacity headroom by reducing ESS demand in the first charging period.

The ESS usage is also less intensive in the BP-SS method as there are 4 chaogisiguperi

2 discharging periods as compared to 8 and 4 in the DT method which represents 50% more
intensive use of the battery. The DT method performed better in load#dgvadlithe first
charging period, but they are almost identical in load-levelling forahmining periods. The

DT is susceptible to periodic surges in demand, for example a TV pickup as expeienced
the UK [37] which is a disadvantage. The CO algorithm cannot be affected by thisebiecaus
doesn’t depend on a fixed reference point based on an average. Furthermore, theCO method
provides more opportunities for optimisation by varying the number and sizeseofy

135



Evolutionary combinatorial optimisation for Energy storage scheduling: Cade§tResults and

Discussion

blocks but further optimisation of the DT method is based only on adjustingeference
average.

The aim of the case study to verify the algorithm using the result rangbsdraachieved as
it can be seen that the results are within range of verified remdtseven perform better
without further optimisation.

Power Demand (PU)
(23]

1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time of Day (Hours)

=@==No ESS  =ll=Demand Tracking Method BPA + SSA Method

Figure 6.10. Comparative analysis of combinatorial optimisation method and demand tracking
set-point

6.4 Case Study and compar ative analysis. Leighton Buzzard smart network storage
project

6.4.1 Background

The UK power networks (UKPN) is a distribution network operator @pisovering London,

the South East and East of England [5]. One of the problem areas with regards to network firm
capacity violation is Leighton Buzzard (LB), a town in Bedfordshire Englandedcat
51°54'59"N 0°39'42"W, and the UKPN elected to defer traditional network reinforcement
opting instead to use ESS to operate the network within limits and ensurgyssepply

among other benefits.

After consultations in July 2013 on possible future business models for grid-scalénESS,
October 2013 the design and planning considerations were released highlightingithe fut
plans for the network [7].

i.  This approach of using ESS and this site were selected as LB met criteria including:
ii.  High cost, complexity and time consumption of upgrade
iii. Upgrade would lead to addition of potentially unutilised over-capacity
iv.  Constraint driving upgrade may be relieved by a relatively small additioapafcity

headroom amount
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v. Upgrade could be deferred for 5+ years with no forecasted constraints requiring
upgrade

The Leighton Buzzard primary substation comprises two 33/11kV 38MVA transfofaters
by two 33kV overhead lines with a winter rating of 35.4MVA each. Redundancy isledov
to meet the P2/6 engineering requirement [103] for security of supply that satsmoutmum
proportion of demand that must be met following the loss of one or more circaitsitat In
this case only the “N-1" single failure situation is considered. Therefore to meet P2/6
requirements with the current firm capacity at 35.4MVA and an additional traxagfacity of
the site limited to 2MVA the allowable limit is 37.4MVA.

Figure 6.11[7] shows the single line diagram of the network with the conventional
reinforcement option and the alternate approach of using ESS and Figure 6.12 [7] shows the

base case where the firm and transfer capacity is exceeded.

The traditional reinforcement would require the installation of a third lirth @i38MVA
transformer to provide an additional 35.4MVA of firm capacity which isifgantly above
requirements. It is assumed that with battery energy storage systems @EBR)roved

power factor can be achieved via power electronics and thus the MVA requirements can be
translated to MW and MWh requirements for BESS.
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Figure 6.11. Single line diagram of Leighton Buzzard distribution network substation
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Figure 6.12. Leighton Buzzard capacity violations on two occasions

UKPN estimated that for the highest peak demand of about 40MW the BESS required is
6MW/10MWh system. For control UKPN indicated the possibility of implementing @alos
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loop algorithmic control similar to a heating thermostat allowing the sysiemaspond and

adjust to meet a set-point [7], which describes a fixed set-point control (SPC) scheme.

This case study implements the set-point scheme as described to investigameaict on the
demand profile and also investigates the impact of using the evolutionary gegetiihiad -

combinatorial optimisation (GACO) formulated with different block camfagions. The set-
point results are also evaluated using the fitness function for scoring thesGlés and then

the results of both schemes are analysed and compared.

6.4.2 Test data and source

The data used for the test were obtained from the design and planning cowsislerati
document from the UKPN [7]. Winter is the season with the most likelihood of &a&iohs
violation and the data provided is for a winter day where the network capa8fy4MW has

been exceeded with a peak demand of 39.66MW at 1900hrs and for eight other time periods.
The hourly demand data used as input is given in Table A.5 which also shows the values

converted to per unit on a base of 39.66MW.

Table 6.2 shows the evolutionary GACO parameters used for the case study indieding t

system description, ESS parameters and set-point control parameters.

The GACO was tested with different maximum energy block number constramtdocks
(10MWh split up into 7 different units) and 10 blocks (10MWh split into blockabafut
1MWh each). The variation was set to observe the impact of different enedyrlmbers

on the result evolution.

The implementation of theetpoint scteme attempts to charge the battery at its rated power
when it’s fully discharged and according to the remaining state of charge as the capacity fills

up. This is the closed loop method that operates like a thermostat.
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Table 6.2. Case Study Network and Computation Parameters
Parameter Value
Firm Capacity 35.4MW
Available transfer capacity 2MW
Peak demand value exceeding firm capaci] 39.6MW
BESS rated capacity 10MWh
BESS rated power 6MW
BESS roundtrip efficiency (assumed) 80%
Set-point control switch value 35.4MW i.e. network firm capacity
GACO maximum demand 39.6MW i.e. peak demand
GACO ESS unit number constraints 10 units of 0.1kwWh (GACO10) and

(GACO7)units of various capacity

GACO charging and discharging method | Worst Fit bin packing ascending order

items
GA population size 20
GA maximum number of generations 15000
Mutation rate 50% (with constraint to prevent weak

chromosomes from returning to populatior

6.4.3 Resultsand Discussion

The summary of results of the set-point control and the final evolved schedthletifigrent
ESS unit numbers from the GACO algorithm is shown in Table 6.3 and in Figure 6.13. The
results show that in all cases the GACO performs better overall than the-ldogest-point

control method- before and after the further GA optimisation.

The SPC has a fitness score of 0.55 while the GACO10 has an initial and evolved fitness score
of 3.13, and 3.22 respectively. The GACO7 has initial and final evolved score5o&12d8
3.15. The demand evolution is shown graphically in Figure 6.14 and Figure 6.15 as the shape
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changes over several generations. Figure 6.16 is a scatter plot showing hovk tienpeaad

reduces over several generations, and Figure 6.17 shows gradual the reduction of the demand

margin.

Table 6.3. Results Summary and Comparison

Base Case | SPC GACO7 GACO10
Peak demand (MW) 39.66 39.08 36.59 36.51
Trough demand (MW) | 21.30 22.20 23.51 23.82
Demand margin (MW) | 18.36 16.88 (-8.1%) | 13.08 (-28.8%) | 12.70 (-30.8%)
Peak demand reductiqd - 0.58 (1.5%) 3.07 (7.7%) 3.15 (7.9%)
(MW)
Score - 0.55 3.15 3.22
Initial ESS SOC - 0% 0% 0%
Final ESS SOC 100% 0% 0%
Energy consumed (MWh| 740.92 748.92 740.94 740.93
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The SPC also demands more power (Figure 6.18) and consumes more energy at the end of the
day because the battery SOC returns to 100% indicating inefficient operation, thdil

GACO methods discharge all the energy stored thereby resulting in proper demftindg

(Figure 6.19.

The set-point control method results in the least peak shaving of 0.58MW, and demand
margin of 18.36MW using the ESS specified but the capacity is inadequate. Insth2 fir
hours of the day the ESS is charged to full capacity and does not have any effiecpifile

for the next 9 hours while the demand is below the firm capacity of 35.4MW and thetefore
does not discharge. From the 12th hour however the demand exceeds the firm capacity by
0.04MW, it discharges for the next 2hours and charges for an hour when the demand drops
below the set-point. By the 18th hour the state of charge (SOC) drops to 7%efiez\ious
discharge hours and by the time the main peak of 39.66MW is reached it can onlydze shav
by 0.58MW. This highlights a clear issue of set-point control not targeting peakslyg kol

not considering future events; the capacity of the ESS is used up whemdag&al occur

before the global peak.

The GACO shows that evolutionary algorithm does improve the quality of a schedule
significantly. In both cases the final schedules after GA have been impiidvedsACO10
peak shave evolves from 3.05MW to 3.15MW while for the GACO?7 the values for amtal
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final are 2.78MW and 3.07MW respectively. The load levelling also improves as caprbe s
from the demand shape evolution (Figure 6.14 and Figure 6.15). For the GACO10 the demand
margin starts at 12.81MW and ends at 12.70MW, and for GACO? it starts at 13.48MW and
ends at 13.08MW (Figure 6.17).

The 10-unit ESS produces a population whose members are all exactly the same because the
packing algorithm will always produce the same result with the same itemguality of the

initial solution will tend to be better than solutions with fewer units as the gétgyprovides

more opportunities for the packing operation to derive a flatter profile. The trade-offtiseha

GA can only produce a different chromosome via mutation and until the mutation praduces

fitter chromosome it cannot benefit from improvement via crossover.

GACO10 also has more charging and discharging periods than the GACO7 and SPC schemes
(Figure 618). This active involvement of the ESS results in the improved smoothening of

demand as more targeting of peaks is done globally in the demand profile.
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Figure 6.16. Evolution of peak demand after GACO algorithm
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GACO7 starts with a more diverse population but it was observed tratatally starts with

a top score of 2.85 which is lower than the GACO10 initial top score of Bl diverse
population however allows the population to start crossover early on and combihed wit
mutation the evolution of the population occurs more frequently. After a certaintipitap

scoring chromosomes become exactly the same and it also depends on only mutation to
produce different solutions and more crossover opportunities.

In practice for the Leighton Buzzard SNS project the GACO schemes have shown better
results than the SPC. In the case of the SPC the peak demand is not resthivite wi
6MW/10MWh BESS and it will require a higher capacity to resolve the firm dsgpac
violation, even with the 2MW transfer capacity activated. The GACO schemes hdwve bot
brought down the peak demand to within firm capacity limits with the same ybatter
specification and without using the transfer capacity, thereby leaving a traag@city
headroom of 2MW at all times.

The GACO depends on accurate forecasts and at the distribution substation levelaingé dem
variation is not as much as at household level [38] hence this is feasible.
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Given the upward trend of the GACO schemes schedule quality, the GACO algcaithne
allowed to run continuously in practice with different configurations and @vilves an

improvement in the schedule it may be implemented.

6.5 Casestudy and compar ative analysis. Household demand scheduling with second-
use EV batteriesand tariff-driven demand response

6.5.1 Background

A case study is presented in which the representative residential electitdumption data

in southern Ontario, Canada is investigated for the effect of an ESS beirlpdnsiad
dispatched using the proposed algorithm. The case study features the base case and a number
of scenarios where an ESS is dispatched using the combinatorial optimisation algorijhm (CO

The model setup is based on the detailed economic analysis by Heymans et. al in [51] where
second use electric vehicle battery packs are used to provide load-shifting and demand
response capabilities in a household with a view to reduce the cost otitleatrd level the
demand profile. The algorithm in [51] is a demand response (DR) scheme based on variable
Time-of-Use pricing and using the ESS to shift energy to periods with lower guécgyg to

reduce the total daily cost of electricity.

A comparative analysis is carried out to compare the impact of the proposed coriddinat
optimisation algorithm (CO) against the results of DR scheme in Th&].DR method has a
primary objective of reducing energy costs and load-levelling while @alGorithm has the
objective of peak reduction and load-levelling. The purpose of comparisoimisestigate if

the CO algorithm may be used to meet the cost reduction objective based on -Usee-of
pricing as suggested in the introduction. The impact of both algorithms on other
characteristics of the household demand is also investigated.

6.5.2 Test data and source

The data used for the original research paper and this case study was obtaindtkfrom t
International Energy Association (IEA) Energy in Buildings and Communities progmais

based on a three-year average [51]. The demand profiles used are the repreagatatiee
household summer and winter daily demand profiles in a Canada household. The peofiles ar
based on hourly intervals therefore 24 individual data points are used as showreid. Babl

The ESS being used in the setup is a repurposed Chevrolet Volt EV battery whicto may

longer be used in an EV due to loss in capacity as a result of agingatétigoack energy is

147



Evolutionary combinatorial optimisation for Energy storage scheduling: Cade§tResults and
Discussion
16.5kWh and the available energy based on warranties and industry targets for lasgevity

assumed to be 80 per cent of its rated capacity after 8 years of service in a vehicle [51].

The charge/discharge cycle efficiency is also affected by the aging and reducesuheam
energy available to be used in the battery pack. Based on the datafreineethe
manufacturer’s website [104], the peak demand and power of the battery pack is calculated to
be 4kW. This is calculated from the specified full charge time of 4hours at &1@tbre
16.5kW h of energy. Table 6.5 shows the assumed capacity specifications of thee®#E88 us
the study. In the case study setup, the battery is assumed to be fully dischathed at

beginning of the cycle.

The CO algorithm requires all power and energy values to be scaled to a maXihQmer

unit (PU), using a base of the maximum demand. In this case the maximum household
demand is 1.74kW in both seasons however the maximum ESS demand is 4kW. Therefore all
units were converted to PU values on a base of 4kW and then scaled to a maximum of 10 pu.
On this scale, the peak battery power is 10 pu and the available capacity after a full charge and
discharge cycle is 21.25 pu (originally 8.44kWh). The peak base case demand in both seasons

becomes 4.35 pu. After the computation the results were scaled to the actual values.

The key parameters forming the basis of comparison in the base case versuslteri@in

and DR versus CO are shown in Table 6.4.

Table 6.4. Parametersfor comparison in case study

Case study Parameters compared — Basisfor comparison

Base case with no ESS ver<l® e Daily peak demand
e Load levelling/ “flattening” of demand

e Daily cost of energy

DR with ESS vsCO e Final peak demand and energy consumptio
e Load levelling

e Savings on cost of electricity

¢ Input parameters required for algorithm

e Amount of charging and discharging require
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Table 6.5. Battery Specificationsfor case study

Battery Specification Value

Rated capacity 16.5 kWh
Available capacity 80% - 13.2kW h
Estimated peak power 4 kKW

Charge efficiency 80%

Discharge efficiency 80%

Overall cycle efficiency 64%

For the purpose of the comparative analysis with the DR the same energyirmpfegsare
used. The prices are derived from Waterloo North Hydro tariffs which implertieee price
periods— low ($0.067 per kWh), medium ($0.104 per kWh) and high ($0.124 per kWh). All
prices given are in Canadian dollars. The daily tariff periods for summeriatat are shown

in Figure 6.20.
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Figure 6.20. Time of Use Tariffsfor Case study and comparative analysis

The algorithm was tested in three different scenarios for both summer atet.vach
scenario had a different number of energy blocks for the ESS to be packed into the demand
“bins”. A different viable solution with different characteristics may be obtaindu t¢ae the
algorithm is run as a result of the heuristic computation of the subset suthef&SS

capacity.
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Using integer values only for the energy block subset sum the maximum numilechas
available is 21. For the summer computations 15, 18 and 21 energy block combinaténs we

tested and for the winter computations 16, 19 and 21 block combinations were tested.

6.5.3 Resultsand discussion

Combinatorial Optimisation method compar ed to Base Case

The summary of the results are presented in Table 6.6, Table 6.7 and Figure 6.21 - Figure
6.22. For the case study against the base case, it can be seen that peak demand ia reduce
some of the cases with the best shaving being 0.37kW in the 21 block case for both seasons

and the highest increase being 0.38kW in the winter 16 block scenario.

The energy stored during the charge cycle is not always used up during the discharge cycle
and that leads to the increase in demand and energy consumption. It can be sesthéhat
number of blocks increases the amount of energy used in the discharge cycle alscsincrease
thereby improving the utilisation of the ESS. The best results in all parametetdaned in

the 21 block scenario. Although the amount of energy consumed by the household daily
increases by 1.67% in both cases the peak demand reduces by 22.29% (summer) and 21.26%
(winter) as the ESS is used to redistribute utilisation and move consumptiothle highest

time periods to the lower time periods.

The daily cost of energy also reduces by 5.14% (winter) and 0.14% (summer) as a result of the
ToU pricing and the time-shifting of demand to periods of lower consumption and lower
tariffs. Since the tariffs are set based on consumption, then load-levellingattisns the

tariff indirectly by moving demand to periods with lower energy prices. &higts also show

that the difference between the peak demand and trough demand reduces by 26.67% (summer)
and 35.56% (winter) after the algorithm has been used, which indicates a sigaifieanit

of levelling in the demand profile.

A general trend of improvement in peak reduction and cost saving can be observed as the
number of blocks increases. This is expected because the bin-packing algorithmdesdorovi
more opportunities to shift demand around the daily demand profile with smallebkizks

in the levelling operation. The peak increase in some cases is also due to the platement
larger block of energy in a time period which cannot otherwise be split upeirntduded into

other time periods to level the demand.

The results show that a reduction in peak demand, a flatter demand profile and savings in
energy cost may be attained in the base case when an ESS is dispatched using the

Combinatorial Optimisation algorithm.
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Figure 6.21. Summer Demand using Algorithm to dispatch ESSin different energy block
configurations
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Figure 6.22. Winter demand using algorithm to dispatch ESSin different energy block

configurations

Demand response results compared to Combinatorial Optimisation algorithm results

The DR algorithm is used to benchmark the performance of the CO algorithm veitie @y

cost saving objective as that is the primary objective of the DR scAahlke 6.6 and Table
6.7show that both methods result in a saving in the daily cost of energyRthesDited in
6.87% and 10.69% of savings (summer/winter) while the CO resulted in about 0.14% an
5.14% of savings (summer/winter) in energy cost in both seasons against thadeasest of
energy. The difference is approximately 5% less savings in the CO method conoptred t
DR method.

The better performance of the DR algorithm is expected since tlist msain objective
however the savings in daily energy cost comes at the expense of other demand
characteristics. The peak demand is increased in the DR method by 35.54% (summer) and
41.95% (winter) while it iseducedin the CO method (26.67% and 35.56%); the CO method
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also performs better in demand levelling as the DR method cuts off energy consumpti
totally in the periods of highest energy pricing, th& 1115" hour in summer (Figure B3)
and the ¥ — 10" hours in winter(Figure 6.24), and increases it in the cheaper periodsgreati

new peaks and more variation in demand.

This comparison highlights an issue with ToU-based demand response at a household level
with a cost saving objective and without significant constraints on demand. Theavvg}
benefits gained by the consumer taking advantage of the ToU tariff may lead toofsbevwmsr

for the distribution network operator (DNO). For instance if the same DR sdbarmed for

200 homes connected to the same feeder then the congestion period will nowdotwetr

price periods leading to the introduction of a new ToU tariff to decongest therkeflihe

same DR scheme applied to the new ToU tariff will lead to a new congestion perisd and

on. The accumulated higher peak demand will also require a reinforcement of tloeknetw
assets to handle the new peak.

The CO scheme with demand shaving and load levelling will therefore be moficibbte
both the consumer and the distribution system operator as there will be savings for the

consumer and an improvement in the demand characteristics for the DN
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Figure 6.23. Comparison of Demand Response scheme, 21 Block CO and Base casein Summer

152



Evolutionary combinatorial optimisation for Energy storage scheduling: &tasées, Results and
Discussion

Demand (kW)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time of Day (Hours)

—#-Base Case -#-Demand Response -8-21 block CO

Figure 6.24. Comparison of Demand Response scheme, 21 Block CO and Base casein Winter

Table 6.6.Summer characteristicsfor case study and comparative analysis

Demand
Base case 15block | 18 block 21 block Response
Peak -  Trough
margin (kW) 1.2 1.41 1.24 0.88 2.25
Peak demand (kW) | 1.66 1.93 1.69 1.29 2.25
Peak Difference(kW)| - +0.27 +0.03 -0.37 +0.59
Total  consumptior] 23.54
(kKWh) 21.44 24.64 23.04 21.84
Daily energy cost ($)| 1.95328 2.23488 2.05368 1.95048 1.81918
150.00%
100.00%
™15 block
50.00%
W 18 block
£121 block
0.00% NN : M l‘ ' N I DR scheme
-50.00% slllh‘
Peak shaving Demand Leve| Energy Consumption Cost saving

-100.00%

Figure 6.25. Relative summer characteristicsfor case study and compar ative analysis
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Table6.7. Winter characteristics for base case and test scenarios

Demand
Base case | 16 block 19 block | 21 block | Response

Peak — Trough margin

1.29 1.56 1.16 0.83 2.47
(kw)
Peak demand (kW) 1.74 2.12 1.7 1.37 2.47
Peak Difference fron

- +0.38 -0.04 -0.37 +0.73
base case peak (kW)
Total consumption (kWh)] 22.82 24.8 24.4 23.2 24.83

Daily energy cost ($) | 2.1437 2.22396 | 2.21196 | 2.03356 | 1.91454

150.00%

100.00%

50.00%
916 block

& o ef[IIITLL = 19 block

£121 block

0.00% - N

-50.00%

[ DR scheme
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-100.00%

-150.00%

Figure 6.26. Relative summer characteristicsfor case study and compar ative analysis

6.6 Summary

Four case studies and comparative analyses have been presented to test the operation of the

evolutionary combinatorial optimisation algorithm developed. The case studies were:

e A study on Riverside Community, Stirling Scotland which showed that the peak
demand and demand variation of a community of 1,015 households could be reduced
using the algorithm.

e A comparative analysis with another verified algorithm based on dynsehpoint
control was used to benchmark to performance and verify the accuracy of results

obtained.
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e An analysis of a network congestion management project was carried out by
dispatching the specified ESS in the project using the evolutionary combinatorial
optimisation algorithm and compared to results of using a closed loop set-point
control scheme. The test showed how the evolution of schedules visibly improved
results.

o A comparative analysis with a demand response scheme setup for energy cost savings
in a household showed that although the demand response scheme resulted in higher
savings the demand characteristics were greatly improved using the evolutionary

combinatorial optimisation algorithm which also resulted in savings.

In all cases the algorithm performed at least as well as expected and in atheesegas a

clear peak reduction and load levelling.
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7 Web-based Power Systems Simulation using PHP: Tests, Results

and Discussion

This chapter presents the results obtained from testing the web-based miemis gnalysis
(WBPSA) library developed using PHP. The tests use standard networks fromitbéelo$t
Electrical and Electronics Engineers and networks obtained from a power systems analysis
textbook [3] with verified results.

The test methodology is based on result comparison and the ability ofrérg tilb accurately
produce on the same results on the same set of inputs using the same power flow solution. The
library has a basic user interface for displaying results in a web branderetwork input is

made in extensible mark-up language (XML) in a text editor ratherithangraphical user
interface (GUI).

The objectives of the tests are as follows:

i. To determine if the results from the library are consistent with verified results

ii. To determine the resource usage and performance of the library in terms of
computation speed and memory usage

iii. To determine the impact of network size on the performance and any correlation

between small changes or large changes in size and performance.

These parameters were chosen to be observed because of the most likelysusé-itase
library which will involve using individual modules as part of a larger apfitia residing on
a server that receives multiple requests. In this kind of setup the costudfing the library

will be determined on the basis of these parameters.

The PHP application for these particular results was run on a shared rematervezbwith
the software specification shown in Table 7.1. There are several other configuration

parameters however these are the relevant parameters to this implementation.

Table 7.1. PHP server softwar e specification

ltem Value
1. | PHP Version 5.2.17
2. | Web Server Apache 2.0.64
3 | Operating system Linux

156



Web-based Power Systems Simulation using PHP: Tests, Results andibiscuss

7.1 Power flow study using Newton-Raphson method: Tests and Results

711 Testdata

The implementation of the methodology was tested by running a load flow analysis on
different sized networks obtained from [3] and comparing with the results givdre T
computation of the load flow and network modelling in [3] was done using MATLAB

programs.

The network sizes tested are 2-bus, 3-bus, 6-bus, 26-bus, and 30-bus networks. Tke networ
were chosen as specified to test smaller networks in succession and larger natworks i
succession and the difference in performance over a large change in network si&mnbetw

smaller and larger network sizes.

7.1.2 Resultsand Discussion

The solutions for 2-Bus, 3-Bus, 6-Bus, 26-Bus and 30-Bus networks obtained froamd3]
[67] were found to be consistent and accurate according to the results providedhahen t
Newton-Raphson load flow was performed on them.

Because of the modularity of the application each of the functions (such as forofation
admittance matrix, initialization of network, formation of Jacobian magtix) can be taken
and used separately as part of a different application, thus the parameterbsgevecon a

component/function basis.

The parameters observed also vary according to network size, network elements, convergence
criteria and limits imposed. In this case however the number of busesnetihark was used
as an indicator of increasing complexity. Table 7.2 shows the average script exgmgion

per iteration, and
Table 7.3 shows the amount of memory allocated to the different operations involved.

It is important to note that these script execution times and meraqujrements are not
related to the specifications of the end user’s computer and are not affected by the
performance of the end user’s computer. This means the time and memory requirements for

each process on the same server will be similar for all users. The solemamiifor using

the PHP power system application is access to the application server via a welr bralvse

the performance will depend fully on the server. The centralized system also tnaans
updates to the power systems simulation program are immediately accessibleseysalFor
example, electrical engineers on the field accessing the server through their devices to perform
some analysis will always have the latest version of the application andawdl a similar

experience of the process in terms of performance.
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Table 7.2: Average Script Execution Time Per iteration (over 5 requests, in seconds)

2-Bus 3-Bus 6-Bus 26-Bus 30-Bus

network (4 network (3 network (4 network* (3 network* (4

I terations) Iterations) Iterations) Iterations) Iterations)
Reading networ k 1.4529 x10° | 2.2199 x10° | 2.5980 x10° 5.000 x10° 5.0011 x10°
datainto
application using
XML
Formation of 0.1640 x10° | 0.3569 x10° | 1.5819 x10° | 14.0011 x10° 18.0020 x10°
admittance matrix
Formation of 0.2669 x10° | 0.3750 x10° | 2.1381x10° | 21.0021 x10° 27.0021 x10°
Jacobian matrix
For mation of 0.089883 x10' | 0.1449 x10° | 0.5762 x10° | 3.9999 x10° 5.0011 x10°
power mismatch 3
vector
Solution of setsof | 0.6709 x10° | 1.1210 x10° | 12.8656 xL0° | 570.0571 x10° | 930.0928 x10°
linear equationsto
obtain step
solution (time per
iteration)
Total including 7.29513x10° | 11.159 x10° | 67.9371 x10° | 1804.1799 40° | 3845.3848 %0°
other functions

* Includes generator reactive power control
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Figure7.1. Timing of power systemssimulation scriptsin millisecondson a logarithmic scalein
base 10
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Table 7.3: Server Memory allocation (in kB) — average for Jacobian matrix formation, power

mismatch vector and step solution

2-Bus network 3-Bus 6-Busnetwork | 26-Busnetwork* 30-Bus
(4 1terations) network (3 (4 1terations) (3 Iterations) networ k*
iterations)
Reading Network 36.1171 41.3047 59.4180 207.6796 204.1953
datainto
application using
XML
Formation of 2.8555 4.5898 13.5898 245.8593 357.6406
admittance matrix
Formation of 4.2148 5.9982 18.6299 472.2343 641.7265
Jacobian matrix
Formation of 1.2598 1.3164 1.9833 7.7578 8.8828
power mismatch
vector
Solution of sets of 1.1816 1.1497 1.42678 49531 5.4843
Linear Equations
to obtain step
solution (per
iteration)
Total including 226.3867 233.5703 266.3398 727.8984 854.7890
other functions

* Includes generator reactive power control
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Figure 7.2. Server Memory Allocation for functions (in kB)
Reading network data into application using XML

It was observed from the tests that as the network size increased the tiesdfog network

data into the PHP application did not increase significantly. The 2-bwenkes contained in
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an XML file only 0.468kB in size while the 30-bus network has a file size of 7.26kBhand
average execution time for this operation wasnk.dand 5.@ns respectively. This implies that
the XML parser built into PHP is efficient and handles larger files withalingcthe time for

the operation proportionately.
Formation of admittance matrix

In forming the admittance matrix there is more of a linear increase imibeaken for the
operation, as it goes from 0.164 for the 2-bus up to 18.06s for the 30-bus network. The
increase between the 2-bus and 6-bus in terms of size is similar to the 26-bubu® 30-
networks however the change is abousfor the former group andms for the larger group,
implying an increasing trend as the size increases. The scale of memory camsumpti
between the smaller and larger networks is also clearer in this case as they mees up
from 2.86kB for the 2-bus network to 357.64kB for the 30-bus network.

Formation of Jacobian matrix

This is the other major matrix operation in the process and it follows the tfead o
exponential type of increase between the smaller sized networks and &wgerks in terms

of execution time and memory consumption. Between the 2-bus and 6-bus networks the
timing starts from 0.2668s and goes to 2.13& however between the 26-bus and 30-bus
networks the jump is more significant at 2I@0and 27.0fhs respectively. This is also the

case for the memory consumption; the formation of the Jacobian matrix is thenermosty
intensive operation in the process as the 30-bus network consumes 641.73kBoo§,raech

it also represents the widest gap between metrics for the memory opeditiemaller
networks and the larger networks, with the 2-bus network consuming only 4.21kB. Hence
almost 500kB of additional memory is required for the operation, compared to 820k

next memory intensive operation and 4kB for the least intense.
Formation of power mismatch vector

The power mismatch vector formation appears to follow the same trend as reading the
network data between the smaller and larger networks in terms of memory caosuirept

the margin is not so wide at 7kB. The timing of the scripts however goes upysijgiaker
between sizes of networks when compared to the XML parsing operatibie XML
operation timing margin between 26 and 30-bus networks)&b@t in the case of the power

mismatch vector it is approximatelynk

Solution of sets of linear equations to obtain stejution (per iteration)
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The operation that takes the most time to complete is the solution to the sets pnédhe li
equations in all the sizes of the networks. In the case of the 30-bus netwkds ibkaost 1
second more per iteration, which is almost double the amount of time it takbe 28-bus
network. This difference adds up as the number of iterations required for the solution
increases. The memory requirement per iteration is surprisingly lower tt@hellprocesses
hence it is an efficient algorithm used in the Math_Matrix class feirgpthe set of linear

equations in terms of memory.
Total time including other functions

The total time of all operations in finding a solution is most influenced byollbdéa to the

sets of linear equations. This is further amplified in cases where reoaéah is required. In

the 30-bus network for instance out of the average total time of 3,84%1B@ operation
solving the linear equations takes up 3,7287The memory usage for all operations
however is not scaled as highly as would be expected between the lowanetizetks and

the higher ones. The 2-bus network (a 2 x 2 matrix) uses a total of 226.39kB as campared

854.79kB on the 30-bus network (a 30 x 30 matrix) which is not a relatively large difference.

The execution times shown serve as an indication of how much latency may be expected by
including these scripts in an application. The execution time is most relevamafdaime

online applications which will require quick results computation.

Based on the results, the time required for the same functions increases signiiieantien
the relatively smaller networks (2-bus, 3-bus and 6-bus) and the larger ree{@6+us, 30-
bus), such that it has to be represented on a logarithmic scale. The key areathig/liemp
is most visible is in the matrix operations and the vector operations which raesl acaut
using third party classes, so this is an area which must be optimised either bingetiveit
classes to improve performance or by comparison with other classes for sintléorfe. The
generator reactive power control on the larger networks also accounts for some of the
additional processing time. The relationship between the timing and size of tlueknatay
be derived by carrying out further investigations with more network sizegedetthe

extremes.

The memory usage is relevant in cases where an application is hosted on a cloud computing
platform which includes billing according to memory usage. It is also notieyvthat the
memory allocation is constant for every step even in separate requests. Irtiapplivhere
there are multiple requests made to the server for computation, both parameters will be

preferred to be low.
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From the results the smaller networks require the most memory for rebdimgtwork data
into memory. As the size of the networks increase, the higher memory requiremest com
from the matrix operations. The vector operations memory consumption remains gelativel

low and scales well between the network sizes.

The additional time and memory consumption from the matrix operations as the nesagork si
increases is not surprising as the matrix size does increase by up to a squarachvith
successive diension (2x2, 3x3, 4x4 ...). Rewriting the matrix operations class with this
performance improvement objective in mind or developing a PHP extension for specifically

for matrix operations are some possible ways to improve the performance.

The computation speed may be improved in a number of ways without changing theestructur
of the code or the server machine specifications. Among the options availableagagh

the web server application because factors such as the transfer rate, averageimegjuest t
requests handled per second and wait time for response, some of which affect the latency, vary
for different web servers including Apache [105] and NginX [@®$nounced “Engine Ex”).

A virtual machine such as Hip-Hop Virtual Machine HHVM [28, 29] also impso®PHP

performance significantly and is increasingly being used on web application servers.

One of the advantages of an open source solution such as PHP is that a lot of third par
applications exist to provide functionality or improvements that are not incindbe PHP

core.

Furthermore, PHP comes with shell execution functions [46, 47] which are the functdns us
to execute programs running on a separate simulation engine in a Zutiewiork. These
functions can be triggered as a fall-back mechanism or to provide functiocenpdex to be

derived in PHP, thereby taking advantage of its versatility.

7.2 Balanced Short Circuit Fault study

The results of the performance of the library in executing the 3-phadecshoit study are
presented in this section. The networks tested are 3-bus, 6-bus, 14-bus and 30-bus networks
with faults occurring at a single bus at a time. The metrics that were etsaclude the time

and memory consumed in the main functions of the fault computation which are as follows:

i. Formation of impedance matrix by admittance matrix inversion
il. Computation of faulted node fault current

iii. Computation of faulted node fault vaia

iv. Computation of fault voltages on other nodes

V. Computation of fault current in other nodes
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The accuracy of the results were verified from the results in the data s¢8fcdhe

performance results are shown in Table 7.Fable 7.5 and Figure 7.3 Figure 7.4. The

calculation method includes the initialisation functions and a power flowi@olhbwever

these are not added to the performance metrics shown.

Table 7.4. Average short circuit script execution times (in seconds)

3-Bus 6-Bus 14-Bus 30-Bus
Formation of Impedance | 5.9042 x10° | 30.3502 x10° | 170.0273 x10° | 250.1122 X10°
Matrix
Faulted node fault 0.1329 x10° | 0.1402 x10° 0.1493 x10° 0.1673 x10°
current
Faulted node fault 0.1835 x10° | 0.1902 x10° 0.1955 x10° 0.2023 x10°
voltage
Network fault currents 0.4111 x10° | 0.7541 x10° 2.3853 x10° 5.1821 x10°
Network fault voltages 0.4631 x10° | 0.8288 x10° 2.900 x10° 6.3901 x10°
Total including other 7.2399 x10° | 33.0615 x10° | 204.1634 x10° | 262.4112 x10°
functions
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Table 7.5. Average short circuit script memory consumption (in kilobytes)

% 30-Bus network

3-Bus 6-Bus 14-Bus 30-Bus
Formation of I mpedance
) 60.2123 83.4221 353.6926 556.893
Matrix
Faulted node fault current 1.2231 1.2023 1.4325 1.5732
Faulted node fault voltage 1.3229 1.4023 1.4772 1.5322

163



Web-based Power Systems Simulation using PHP: Tests, Results andibiscuss

Network fault currents 3.5523 5.8566 23.7578 80.8828
Network fault voltages 3.8567 6.8526 35.6281 105.0039
Total including other functions | 74.5673 102.7944 | 416.0482 746.6851
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Memory Consumed (kB)
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3-Bus network 6-Bus network 14-Bus network 30-Bus network
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- Formation of Impedance Matrix M Faulted node fault current = Faulted node fault voltage Il Network fault currents # Network fault voltages

Figure 7.4. Average short circuit script memory consumption

Formation of impedance matrix

This is the process of inverting the admittance matrix which has been developedtde
power flow solutionlt is time and memory intensive as expected and as seen in the matrix
processes of the power flow computation. As the size of the network increases sloedoes t
complexity of this process and therefore its impact on overall performance, hawekier

case it is not seen to be a squared increase between successive networks.KEhisas di
result of the inversion algorithm built into the matrix class. This m®takes up to 90% of

the time and memory for the short circuit operations and any optimisation of esmage

must consider this function first.
Faulted node fault current

This process is a simple addition and division of values obtained from the impeaizinice
and fault impedance and therefore it does not consume a lot of time or men®oaisd not
related to the size of the network when a single bus is considered, therefore isean Heat
between the 3-bus network (0.1329ms, 1.2231kB) and the 30-bus (0.1673ms, 1.5732) there is

only a small difference in the execution time and memory consumed.
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Faulted node fault voltage

Similar to the faulted node fault current, this is a simple linear calculatithe afoltage at the
faulted node which is obtained using values of the calculated fault current and lookimey up t
initial voltage result from the power flow solution. It can be seen thagxbeution time and
memory range is similar to the fault current calculation for aesingtle and it also does not
scale in square proportion like the network size. The difference between the &tdi@bus

networks execution time is only ~0.02ms.
Network fault currents

This function calculates the fault current through all the nodes in th@rketising the linear
calculations and it can be seen from the results that it follows a pattethef number of
nodes in the network and scales directly proportionally to the network size. This is because the
process follows a simple loop and performs the same calculation for each node of the network.

Network fault voltages

Similar to the network fault current the resource usage for this processdsydbroportional
to the size of the network. This is also performed in a loop for each node in theknetwor
Hence for am-bus network the timing and memory are abotimes the value for a single

node calculation, which is expected.

7.21 Summary

The total time of all operations in finding a solution is most influenced byolnéan to the

sets of linear equations. This is further amplified in cases where more iteagoregjuired.

In the 30-bus network for instance out of the average total time of 3,845.39ms the operation
solving the linear equations takes up 3,720.37ms. The memory usage for all operations
however is not scaled as highly as would be expected between the lowanetizetks and

the higher ones. The 2-bus network (a 2 x 2 matrix) uses a total of 226.39kB s exb o
854.79kB on the 30-bus network (a 30 x 30 matrix) which is not a relatively large difference.

The execution times shown serve as an indication of how much latency may be expected by
including these scripts in an application. The execution time is most relevamafdaime

online applications which will require quick results computation.

Based on the results, the time required for the same functions increases signifiebmtlen
the relatively smaller networks (2-bus, 3-bus and 6-bus) and the larger ree{®@6+us, 30-
bus), such that it has to be represented on a logarithmic scale. The key areathiaiemp

is most visible is in the matrix operations and the vector operations whidam@ied out
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using third party classes, so this is an area which must be optimised either bipngetiveit
classes to improve performance or by comparison with other classes for sintléorfa. The
generator reactive power control on the larger networks also accounts for some of the
additional processing time. The relationship between the timing and size of tlozknetay
be derived by carrying out further investigations with more network sizegedetthe

extremes.

Due to the linear nature of the operations carried out in the short ctuaytthe bulk of the
memory and time consumed is as a result of the impedance matrix formation. This was seen in
the power flow solution as well and it accounts for about-800% of the total time

consumption and ~80% of the memory consumption in the short circuit study.

The memory usage is relevant in cases where an application is hosted on a cloud computing
platform which includes billing according to memory usage. It is also nateythat the
memory allocation is constant for every step even in separate requests. Irtiappliwhere
there are multiple requests made to the server for computation, both parameters will be

preferred to be low.

From the results the smaller networks require the most memory for rehdimgtwork data
into memory. As the size of the networks increase, the higher memory requiremest com
from the matrix operations. The vector operations memory consumption remains kelativel

low and scales well between the network sizes.

The additional time and memory consumption from the matrix operations as the nesgork si
increases is not surprising as the matrix size does increase by up to a squarachvith
successive dimension (2x2, 3x3, 4x4 ...). Rewriting the matrix operations class with this
performance improvement objective in mind or developing a PHP extension for specifically

for matrix operations are some possible ways to improve the performance.

The computation speed may be improved in a number of ways without changing theestructur
of the code or the server machine specifications. Among the options availablargengh

the web server application because factors such as the transfer rate, averageimesjuest t
requests handled per second and wait time for response, some of which affect the latency, vary
for different web servers including Apache [105] and NginX [@®$nounced “Engine Ex”).

A virtual machine such as Hip-Hop Virtual Machine HHVM [28, 29] also impso?HP

performance significantly and is increasingly being used on web application servers.
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One of the advantages of an open source solution such as PHP is that a lot of tird par
applications exist to provide functionality or improvements that are not incindbe PHP

core.

Furthermore, PHP comes with shell execution functions [46, 47] which are the functidns use
to execute programs running on a separate simulation engine in a 3-tiewéndmThese
functions can be triggered as a fall-back mechanism or to provide functiocenpdex to be

derived in PHP, thereby taking advantage of its versatility.
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8 Conclusions and recommendationsfor futurework

8.1 Energy storage system scheduling for peak shaving and load-levelling

8.1.1 Summary of findings

This study set out to address the issues faced by electricity distributioarkeiperators
(DNO) and consumers in managing problems caused by growing peak electricity demand
using alternatives to network reinforcement which may be financiallylogistically

expensive. The problems that may arise include operational limit violatiorexisting

equipment, loss of power, and inability to guarantee security of supply at all time periods.

Several methods are being used to operate a network such that peak demand is shifted to
periods of lower demand allowing for more effective use of existing inficiste, and also to
reduce the margins between peak and trough demands thereby producing a levelled,
predictable profile. These functions were defined as peak demand reduction (or peak) sha

and load levelling. The thesis showed with illustrations how these concepts differ and how one
may sometimes produce the effect of the other. The thesis showed how energg storag
systems (ESS) are currently in use for these functions using active network management
(ANM) schemes which involves a set of practices that act pre-emptivddgetp a network
operating within limits. ANM usually relies on forecasts and the thesis shdweedole
forecasts can play in scheduling ESS for meeting set objectives in keatpenation. It also
showed that ESS need to be scheduled to derive the full benefits as energyothat ised

must have been stored during a previous time period, also known as the inter-te@jpoeal

of storage.

The different types of energy storage systems were reviewed and categorised acoording t
their functions which include backup power supply, power quality improvement, demsnd ti
shifting, energy cost saving and mobility in electric vehicles. These funatamgprovide
benefits at the electricity grid level or to a consumer. Some examples of scererBOESH

are used on the grid were highlighted as well as scenarios for consumdhesenergy
storage systems were classified according to the type of energy stored as mechanical,
electrochemical, chemical, thermal and electrical. Another form of ctz8ifn shown was
according to the duration and frequency of use which impacts the purpose for vehieES

can be applied. The types of storage applicable for different objectives acctrdihg
discharge time (short, medium and long) and energy to power ratio and for the purpose of
peak demand reduction and load levelling it was shown that battery energy stctagessy

are the most suitable at grid level and consumer level.
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The existing ESS scheduling methods reviewed were set-point control, dynanmalopti
power flow, dynamic programming, and demand response methods. The theory and operation
principles of each of the methods were described along with the advantages and disadvantages
of each set of methods. From the review it can be seen that the existing schedthiodsm

that exist have so far failed to address the impact of the amount of atifmnncontrolled by

and available to network operators and consumers. Most of the methods depend on generation
cost or flexible time-of-use tariffs in addition to a demand forecast 8 parameter
specifications. In a deregulated market where generation and distribution of &jeetwci
controlled by separate entities the DNO cannot control or sometimes acceemnenation

prices to form a basis for optimisation, this is the same for demand regubresees where

the DNO does not always control the flexible tariffs and cannot guarantee infigenci
consumer behaviour. Set-point control has advantages in versatility but is vulnerable
changes in future events and the best set-point may be difficult to determine.

In the formulation of the novel methodology to address these issues and pmrfonisation

based on only ESS parameters and a demand forecast the problem of ESS scheduling was
defined as a form of a bin-packing problem and the manner in which the ESS energy is
allocated was defined as a subset-problem. These are well-known combinatorial tptimisa
problems with heuristic solutions. The methodology based on the heuristic methods of solving
these problems and extended them to suit the purpose of ESS scheduling particularly. The
methodology modifies the subset-sum algorithm by adding a tolerance criterithe to
backtracking tree-search method of solving it. Using the solution of thetsulseproblem

as items to be packed the Ipscking problem was applied to a “binned” demand profile

which undergoes specific transformations in charging and discharging phases skowas

that different viable schedules may be produced using the methodology as a result of
generating the energy allocations randomly from a bounded search space. The diversity of
solutions allows for further optimisation that combines the best featfireach schedule to
produce an improved schedule. A genetic algorithm was developed for performing
evolutionary optimisation of a “population” of schedules based on a fitness function that

captures a peak shaving and load levelling objective.

To test the evolutionary combinatorial optimisation algorithm four case stuatids
comparative analyses were carried out. In the first case study a distributeorknét

Stirling, Scotland was evaluated and the peak demand was reduced by up to 38.5% and the
demand margin between peak and trough demand was reduced by 50.2% using only the

combinatorial optimisation algorithm without further evolutionary optimisation.
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To verify the algorithm a comparative analysis was done with a verified demanuhgrack
algorithm based on a dynamic set-point control scheme and it was seen thathhmatwial
optimisation (CO) algorithm produced results in a similar range with thertknracking
algorithm with the CO algorithm showing slightly better results. In peakirglhéer example

the CO algorithm reduced the peak by 23% while the demand tracking method redwyced i
20%. The battery usage in the CO method is also less intensive as the charging and
discharging periods were reduced by 50%.

The evolutionary algorithm was tested on a case study for a UK power netamdt
network storage project based in Leighton Buzzard, UK. The genetic algorithm comblinatoria
optimisation was compared to a closed loop set-pomintrol scheme. It was seen that results
produced by the combinatorial optimisation schemes (7.7% and 7.9% reduction) were better
than the set-point scheme (1.5% reduction in peak) and were further improved @val sev
generations of evolution. In terms of demand levelling g&gpoint scheme improved the
margin by 8.1% while the evolutionary combinatorial optimisation schemes iggibky up

to 30.8%.The evolutionary algorithm tests also inspected the evolutiodeskdifnumbers of
energy blocks to see if there was any difference in rates of change and seevashat
although there was improvement of the schedules based on a lower number of blocks (7
blocks) the higher number of blocks (10 blocks) still produced better results afteti@vol

but was more intensive on battery utilisation in charging and discharging. The aumglbas

that evolution could indeed be used for improving the schedules.

A comparative analysis was performed with a demand response scheme designed to maximise
savings in energy cost to investigate if the algorithm could produce godts iesal time-of-

use tariff system. It was found that the algorithm produced much better restétsns of
demand characteristics and although it did not result in as much savings as the demand
response scheme it still produced some cost savings as the demand flattenawlyindir

flattened the time-of-use tariffs.

8.1.2 Significance of findings
The following significant conclusions may be drawn from the findings:

i.  The most significant conclusion is that peak demand reduction and load levelling
optimisation may be performed effectively using only demand profile and ESS
parameter information the only information guaranteed to be available to network
operators and consumers. The results were seen to be competitive in comparison with
other methods without being computationally complex even though they are based on

heuristic methods.
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ii.  These findings enhance our understanding of ESS scheduling by showing that it may
be viewed in the form of the combinatorial optimisation problems as applied in this
thesis. The implication is that any heuristic or exact solutions developed for the
problems may be applied to ESS scheduling optimisation.

iii. These findings suggest a role for evolutionary algorithms to be used torfurthe
improve the results derived from any other exact or heuristic combinatorial

optimisation solutions applied to the form of the problem defined in this thesis.

The research extends our knowledge of energy storage systems and will prove particularly
valuable as configurable energy storage systems become more ubiquitous with the
development of smart electricity grids and future electricity netwotks.study suggests that

more methods such as this will be developed as the problems associated withetktoets
become more apparent with the increasing penetration of ESS in electrical syBigento

the difficulty of the problem and the non-linearity of demand the most likélyicos will be
heuristic and may be based on combinations of other methods when the problem is reduced to
a set of smaller problems.

As ESS becomes more prevalent in smart grid and residential use mopesseavili be
required to provide operational schedules for the ESS devices. This will possility @rea
competitive market where methods such as the one developed in this thesis will be provided to
end-users as premium remote services to improve the utilisation of their eesogyces by
third-party providers. A benefit of this possible scenario is that it magcatinore research

interest and investment in this area and expand the body of knowledge in the area.

8.1.3 Limitations of thisstudy and recommendationsfor futurework
A limitation of this study is that it focuses on off-line optimisatiore&S scheduling and can

therefore not respond to significant changes in real-time events and majorodeviatthe
forecast. This limitation exists in all other forecast-based methods wherdittngris
possible, with the exception of set-point control. Further research should focus onngxtendi

the method to include contingencies for unexpected changes in demand.

An issue that was also not addressed in this study is the optimisation of the péierengy
blocks to be used from the subset-sum algorithm or the boundary of the search bigace. T
will add a layer of complexity to the solution which may only be solved by repeated

experimentation and regression analysis to extrapolate a trend relating the number of blocks to
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the quality of the solution. It would be interesting to assess methods for thesatin of

that preliminary stage in the optimisation process.

8.2 Waeb-based power systems analysis using PHP

8.21 Summary of findings

The methodology for developing a PHP library for web-based power systems analysis and
simulation was presented in this thesis. Designing and planning networks foicigfectr
distribution requires a significant amount of calculations and for decades contyavterseen

used to carry out these calculations. Simulating the operation of the netwark aefigineers

and researchers clearly understand the operating conditions of a network withocialghysi
assembling it and therefore simulation software packages are a vital part of an engineer’s

toolbox.

The thesis showed that traditional deployment of simulation software has been tbeaggdy
on desktop personal computers or a local network of interconnected computers however wit
the growth of information and communications technology and ubiquitous interretsacc

simulation software are also being deployed on the internet as web-based simulation packages.

It has been shown in this thesis that most web-based simulation packages for powexr system
analysis implement a 3-tier architecture where a programming language whiabt is
compatible for the web but suitable for computation such as Matlab, C++ or isedias a
simulation engine which carries out the actual computations in a back-ena tiee. front-

end tier is the web browser such as Microsoft Internet explorer or Google chitoteisv

used for input and sending simulation requests and also viewing results. In the middle t
resides the web server running programs written in scripting languagessseelPand ASP

that passes information between the user on the web browser and the simulatiomehgine

back-end.

It was shown that this 3-tier methodology was used for a number of reasonsnigdhuli
inability of older versions of the web server programming languages to carttyedypes of
mathematical computations required for power systems analysis, and also because the
majority of the legacy simulation packages written in general purpose progrgiamguages

incompatible with web servers already existed and could be re-used.

The review of existing software packages for web-based power systems analysis (WBPSA)
including commercial, open-source, and research implementations described how systems
based on Matlab and Visual basic programming are deployed in the 3-tier anchitmot

how commercial packages such as NEPLAN deploy their web versions also usintiethe 3-

architecture. The shortcomings of this approach include the multiple pointtuoé fafailure
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could occur at the web server or the simulation engine or during data trarsfesses; the
licensing costs- most of the software used for simulation are premium packages which may
be expensive; and additional server infrastructure requirememt&mote computer must be

setup which is capable of running the simulation software.

The literature review section covered the fundamental principles of power systeras sudi
establish the mathematical and analytical requirements for performing powearftbwhort

circuit fault studies. These requirements include Matrix operations, vector opsratio
complex number analysis, trigonometric functions and linear programming tools. These
requirements are the same for every programming language that is to be used for powe
systems analysis and must be provided either natively or via third-party add-ons and
extensions. The internal architecture of power systems simulation software was covered t
describe the classes and functions that make up such a package including the data input
functions, network initialisation and representation functions, analysis anelr $ohctions,

and output functions. In doing so one of the objectives of the thesis to establish the
fundamental concepts required for general power systems analysis in any programming
language was achieved.

A slimmer 2-tier methodology for WBPSA using PHP was proposed in gssthwhich isa

novel approach to web-deployment of power systems simulation software. PHP rdmaains t
most popular web server programing language and recent versions of the language have some
of the required capabilities for general power systems analysis outlindtk ititdrature

review. The advantages of this approach and of using PHP for WBPSA were covered and
some of the advantages include platform flexibility, reduced licensing costs, extensive
database support, suitability for smart networks and simplicity. The disadvaofagsing

PHP include the language flaws persistent from older versions, performance limitations and

inadequate availability of libraries for power systems analysis.

The PHP WBPSA library was implemented using the core functions for mathematical analysis
and third-party libraries for Matrix, vector and complex number analysis vathfications to
suit the limitations of the libraries. A power flow solver based on the Newaphgon

method was developed along with a balanced 3-phase short circuit fault solver.

The test carried out showed that the PHP library was accurate and efficiening power
flow problems and for short circuit fault studies thus achieving the second wbjtgtihe 2-
tier WBPSA framework. The tests used standard networks with verified resuitsegtigate
the accuracy of the results produced by the library and measure its performaaroesitoft
computation time and memory consumption as the network size increased. The library passed

the accuracy tests and the results produced were consistent.
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It was found that the operations execution time was in the millisecond range anentiogy
consumption is in kilobytes for most operations. This suggests that the Ibefficient and
the server resource requirements are low. The most tasking operations in temmes afdi
memory were the matrix operations whose requirements increased significahtlgnall
changes in network size such that they had to be represented on a logarithmithésase
expected as the number of elements in a matrix increases as a series of squaressa not a

arithmetic sequence.

The library developed is a lightweight simulation tool that can be embedded in PHRegvebsi

to provide power systems analysis functions.

8.2.2 Significance of findings

This is the first time that PHP has been used in a 2-tier framework fobassld power
systems analysis and simulation and the outcomes of this research has sevecal practi

applications outlined as follows:

i. The study makes a contribution to power systems simulation in general as PHP
websites for researchers and analysts may easily embed the library and call its
functions to provide interactive models of their work over the internet

ii.  The research provides a framework for the exploration of web-based power systems
simulation using other languages as newer languages are developed and grow in usage
across the web

iii.  The library may serve as a base for future web-based power systems analysa tool
build on and develop. The absence of licensing costs for PHP makes the library
suitable as a starting point for building cost-effective alternativeset@ammercial

packages currently available

Using PHP to build this library has created a new option for programpangr systems
simulators and in doing so creates a thinner application with fewer resource=mamis,

fewer points of possible failure, high compatibility and suitability febvapplications and
versatility. This is not to say PHP is the best solution for web-based ggatems analysis,

but that it is a suitable and available option.

The use of a new programming language and method to deliver solutions whiclteady alr
implemented in other programming languages and methods may not be associated with any
major benefits when viewed in terms of the final outcomes for the same problems. However,
the possible benefits to be derived reside in the smaller details involved in the process between

the problem and the solution.
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The new methodology provides another viable programming option for obtainingr pow
systems solutions which researchers and engineers will find useful in their iqpicand

the minor advantages derived and slight changes in the process can scale icardignid
result in major benefits and perhaps a paradigm shift in how power systems isimiglat

approached.

8.2.3 Limitations of thisstudy and recommendationsfor further work
The matrix operations were found to be the most demanding in terms of computation speed

and memory requirements; these operations were carried out using a third paryy Ror
limitation of this study is that the third party matrix libraryasvnot compared with other
libraries to establish if any other libraries scale more efficiemtlly network size. It will be

interesting to replace that module or modify it to observe the impact on #wmllov

performance of the library.

There is also a limitation on the number of functions provided by this librartharidck of a
graphical user interface (GUI) for a better user experience. It tiyrqenovides the most
frequently used studies which form the basis of other studies and a basic input and outpu
interface. Further development of the library should focus on including additiomaidns
for other power systems studies and a user friendly web interface using Jav&aSorovide

network input and result output functionality.

Finally one source of weakness in this study which may affect its practicatajmpliis that
the models using the functions provided by this library will have to b&ewiih PHP to fully
implement a 2-tier architecture. As many models for education and research are predjram
using Matlab, it will be interesting to develop a Matlab to PHP interpreterctivaterts
Matlab code to PHP which can conveniently use this library for web deployohahe

models in a 2-tier framework.
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Appendix A. Test data for evolutionary combinatorial
optimisation algorithm
Table A.1. Riverside household count by occupancy type

Type of household No. of households
Single adult 234

Single Pensioner Adult 159

Two adults 218

Two adults with children 156

Two pensioners 53

Two adults and at least 1 pensioner 92

Three adults 103

Total 1015

Table A.2. Winter daily electricity demand in Riverside community by household typein kW

Household Single Single Two Two adults | Two Two adults Three Total
Type Adult Pensione | Adults with Pensioners | with a | Adults (kW)
r Children Pensioner(s)

00:00 - 01:00 8.58 5.83 15.99 17.68 3.89 10.43 11.33 73.72
01:00 - 02:00 8.58 5.83 15.99 17.68 3.89 10.43 11.33 73.72
02:00 - 03:00 | 8.58 5.83 15.99 17.68 3.89 10.43 11.33 73.72
03:00 - 04:00 | 8.58 5.83 15.99 17.68 3.89 10.43 11.33 73.72
04:00 - 05:00 8.58 5.83 15.99 17.68 3.89 10.43 11.33 73.72
05:00 - 06:00 | 12.56 5.83 24.43 17.68 3.89 10.43 17.85 92.66
06:00 - 07:00 | 23.62 17.16 48.37 52.20 9.56 30.76 33.35 215.02
07:00 - 08:00 | 83.86 43.34 120.76 113.84 20.13 62.35 103.55 547.83
08:00 - 09:00 | 58.01 40.60 72.78 106.36 21.83 67.54 53.83 420.95
09:00 - 10:00 8.58 51.67 15.99 17.68 24.22 61.93 11.33 191.39
10:00-11:00 | 8.58 29.30 15.99 17.68 18.66 25.33 23.67 139.20
11:00 - 12:00 8.58 32.95 15.99 17.68 25.33 19.78 11.33 131.63
12:00 - 13:00 | 8.58 20.45 15.99 17.68 12.80 34.39 28.58 138.47
13:00 - 14:00 | 8.58 19.57 15.99 146.60 12.26 74.91 11.33 289.24
14:00 - 15:00 8.58 38.85 15.99 149.78 31.68 98.72 11.33 354.92
15:00 - 16:00 8.58 40.92 15.99 71.76 23.21 45.04 11.33 216.82
16:00 - 17:00 | 8.58 55.77 15.99 144.87 26.57 96.85 11.33 359.97
17:00-18:00 | 12.77 56.38 58.46 180.93 28.22 84.92 11.33 432.99
18:00 - 19:00 | 92.92 67.51 197.29 203.46 47.55 129.94 128.83 867.49
19:00 - 20:00 173.20 49.28 227.75 196.64 36.78 121.97 214.12 1019.74
20:00 - 21:00 127.49 61.47 187.42 186.91 41.57 95.40 156.74 857.01
21:00 - 22:00 | 140.48 55.66 218.42 145.83 45.18 77.79 169.49 852.85
22:00 - 23:00 | 113.84 29.68 175.24 145.40 11.84 66.47 128.26 670.73
23:00 - 24:00 | 85.78 29.68 130.08 139.31 11.84 66.39 94.37 557.46
Total 1036.07 775.22 1668.81 2160.68 472.57 1323.01 1288.60 8724.97
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Table A.3. Riverside demand data after conversion to PU and scaling

Time of Day Total Demand (kW) Scaled demand (PU)
0000 73.72 0.722929
0100 73.72 0.722929
0200 73.72 0.722929
0300 73.72 0.722929
0400 73.72 0.722929
0500 92.66 0.908663
0600 215.02 2.108577
0700 547.83 5.372252
0800 420.95 4.128013
0900 191.39 1.876851
1000 139.2 1.365054
1100 131.63 1.290819
1200 138.47 1.357895
1300 289.24 2.836409
1400 354.92 3.480495
1500 216.82 2.126228
1600 359.97 3.530017
1700 432.99 4.246082
1800 867.49 8.506972
1900 1019.74 10
2000 857.01 8.404201
2100 852.85 8.363406
2200 670.73 6.577461
2300 557.46 5.466688

Table A.4. Representative average demand in a household in Denmark in spring

Time of Day Demand (W) Demand PU Scaled demand (PU)
0000 340.1 0.38 3.8
0100 268.5 0.3 3
0200 250.6 0.28 2.8
0300 223.75 0.25 25
0400 223.75 0.25 25
0500 268.5 0.3 3
0600 331.15 0.37 3.7
0700 402.75 0.45 4.5
0800 438.55 0.49 4.9
0900 447.5 0.5 5
1000 456.45 0.51 51
1100 465.4 0.52 5.2
1200 456.45 0.51 51
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1300 447.5 0.5 5

1400 429.6 0.48 4.8
1500 456.45 0.51 51
1600 492.25 0.55 5.5
1700 733.9 0.82 8.2
1800 8% 1 10
1900 733.9 0.82 8.2
2000 698.1 0.78 7.8
2100 653.35 0.73 7.3
2200 617.55 0.69 6.9
2300 492.25 0.55 5.5

Table A.5. Leighton-Buzzard hourly demand used for testsin original and scaled PU values

Time of Day (Hours) Base (MW) Scaled (PU)
0000 21.3 5.370651
0100 24 6.051437
0200 23.7 5.975794
0300 23.25 5.86233
0400 23.403 5.900908
0500 22.2 5.597579
0600 22.35 5.635401
0700 25.06 6.318709
0800 28.82 7.266768
0900 30.93 7.79879
1000 33.94 8.557741
1100 35.44 8.935956
1200 35.59 8.973777
1300 35.59 8.973777
1400 34.99 8.822491
1500 36.05 9.089763
1600 36.2 9.127584
1700 37.55 9.467978
1800 39.21 9.886536
1900 39.66 10

2000 37.4 9.430156
2100 33.94 8.557741
2200 31.38 7.912254
2300 28.97 7.304589
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Table A.6. Household demand data for Canada household

Winter Summer
Time of Day Original Scaled Original (kW) Scaled
(Hours) (kW) (PU) (PU)
0000 0.52 1.3 0.53 1.325
0100 0.48 1.2 0.49 1.225
0200 0.47 1.175 0.47 1.175
0300 0.5 1.25 0.46 1.15
0400 0.45 1.125 0.49 1.225
0500 0.57 1.425 0.55 1.375
0600 0.74 1.85 0.63 1.575
0700 0.9 2.25 0.78 1.95
0800 0.87 2.175 0.75 1.875
0900 0.85 2.125 0.73 1.825
1000 1.12 2.8 0.91 2.275
1100 1.02 2.55 0.92 2.3
1200 0.96 24 0.88 2.2
1300 0.91 2.275 0.82 2.05
1400 0.93 2.325 0.76 1.9
1500 1.04 2.6 0.8 2
1600 1.11 2.775 0.94 2.35
1700 1.43 3.575 1.25 3.125
1800 1.74 4.35 1.66 4.15
1900 1.63 4.075 1.54 3.85
2000 1.55 3.875 1.61 4.025
2100 1.24 31 1.42 3.55
2200 0.96 2.4 1.19 2.975
2300 0.83 2.075 0.86 2.15

179



References

References

[1] M. Wilks, Poyry, and University of BathiDemand side respons€onflict between
supply and network driven optimisation. A report to DEC@9. November, pp.-1
104, 2010.

[2] G. Strbac, C. K. Gan, M. Aunedi, V. Stanojevic, P. Djapic, J. Dejvises, P. Mdlacar
A. Hawkes, D. Pudjianto, D. Openshaw, S. Burns, P. West, D. Brogden, A. Creighton,
and A. Claxton,‘Benefits of Advanced Smart Metering for Demand Response based
Control of Distribution Networks,no. April 2010, p. 49, 2010.

[3] H. SaadatPower System AnalysiSecond Edi. Milwaukee: McGraw Hill, 2004.

[4] National Grid, “Balancing Services. [Online]. Available
http://www2.nationalgrid.com/uk/services/balancing-services/. [AccessedApit0
2016].

[5] UK Power Networks;Our Networks, Your Power: An Introduction to UK Power
Networks?” 2012.

[6] Energy Research Partnershiffhe future role for energy storage in the WKMain
Reporty 2011.

[7] UK Power Networks;'Design and Planning considerations for large-scale distribution-
connected energy storage (SNS1.2)13.

[8] A. S. O. Ogunjuyighe, C. G. Monyei, and T. R. Ayodéierice based demand side
management: A persuasive smart energy management system for low/medium income
earners; Sustain. Cities Sogvol. 17, pp. 8694, 2015.

[9] J. Schofield, V. Stanojevic, M. Bilton, G. Strbac, and J. DragdtAgplication of
demand side response and energy storage to enhance the utilization of the existing
distribution network capacity,22nd Int. Conf. Exhib. Electr. Distrib. (CIRED 2013
no. 0852, pp. 0852852, 2013.

[10] Energy Research Partnershifghe future role for energy storage in the WKMain
Reporty 2011.

[11] International Electrotechnical Commissioifglectrical Energy Storage White paper,
2011.

[12] S. Gill, I. Kockar, and G. W. Ault;‘Dynamic Optimal Power Flow for Active
Distribution Networks; IEEE Trans. Power Sys2013.

180



References

[13] S. Merz,“Current Technologies Issues and Identification of Technical Opportunities
for Active network Management (ANM)BERR Emerg. Energy Technol. Program.
2008.

[14] M. Rowe, W. Holderbaum, and B. PottéControl methodologies: Peak reduction
algorithms for DNO owned storage devices on the Low Voltage netiv@ei,3 4th
IEEE/PES Innov. Smart Grid Technol. Eur. ISGT E2013 pp. 15, 2013.

[15] F. Milano,Power system modelling and scriptjrigirst. Ciudad Real, Spain: Springer,
2010.

[16] E. Z. Zhou,“Object-oriented programming, C++ and power system simulatiBEE
Trans. Power Systvol. 11, no. 1, pp. 26215, 1996.

[17] Dictionary.com, “Define Simulatiori; Dictionary.com [Online]. Available:

http://www.dictionary.com/browse/simulation. [Accessed: 20-Apr-2016].

[18] J. Arrillaga and C. P. Arnold;omputer Analysis of Power Systenihristchurch, New
Zealand: John Wiley & Sons, 1990.

[19] I Bojanova, J. Zhang, and J. Vo&€Joud Computing, IEEE IT Prof, vol. 15, no. 2 -
March / April, pp. 1214, 2010.

[20] Datamation,“SaaS Market Growing by Leaps and Bounds: Gaitndr,Business
Edge 2010. [Online]. Available:
http://www.datamation.com/entdev/article.php/3895101/SaaS-Market-Growing-by-
Leaps-and-Bounds-Gartner.htm.

[21] P.. Deitel and H. . Deitelnternet & World Wide Web: How to Prograrith ed. New
Jersey: Pearson Education, 2008.

[22] The PHP Group,;What is PHP?, PHP Official Website [Online]. Available:
http://www.php.net/manual/en/intro-whatis.php. [Accessed: 08-Oct-2015].

[23] Microsoft, “ASP.NET | The ASP.NET Site[Online]. Available: http://www.asp.net/.
[Accessed: 12-Apr-2016].

[24] J. Byrne, C. Heavey, and P. J. Byrm#& review of Web-based simulation and
supporting tools, Simul. Model. Pract. Theoryol. 18, no. 3, pp. 25276, Mar. 2010.

[25] IEEE Open Source Software Task Force and F. MilaiBEE Open Source

Software” [Online]. Available:

181



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

References

http://ewh.ieee.org/cmte/psace/CAMS _taskforce/software.htm. [Accessed: 10-Feb-
2013].

D. PowersPHP object-oriented solution8erkeley, CA, United States of America:
Apress, 2008.

W3Techs: Web Technology Survey$)sage Statistics and Market Share of PHP for
Websites, January 2014, 2014. [Online]. Available:
http://w3techs.com/technologies/details/pl-php/all/all.

W3Techs: Web Technology Surveyd)sage of server-side programming languages
for websites; Web Technology Surveys 2014. [Online]. Available:
http://w3techs.com/technologies/overview/programming_language/all.

M. J. Dolan, S. Gill, C. Foote, G. W. Ault, G. Bell, and M. Barna@iéodelling and
Delivery of an Active Network Management Scheme for the Northern Isles New
Energy Solutions Project(Paper 1381)n 22 nd International Conference on
Electricity Distribution 2013, no. 1381.

AES UK and Ireland{Kilroot Advancion Energy Storage Arréy{Online]. Available:
http://aesukireland.com/our-business/energy-storage/kilroot-energy-

storage/default.aspx. [Accessed: 14-Apr-2016].

Office for Gas and Electricity Markets (OFGEM)reed-in Tariff (FIT) schem®,
2016. [Online]. Available: https://www.ofgem.gov.uk/environmental-

programmes/feed-tarifit-scheme. [Accessed: 14-Apr-2016].

Moixa Technology Limited,“Maslow Smart Energy Storagje,2016. [Online].

Available: http://www.meetmaslow.com/.

H. Ibrahim, R. Beguenane, and A. Merab€lechnical and financial benefits of
electrical energy storage2012 IEEE Electr. Power Energy Conf. EPEC 204j2 86
91, 2012.

G. W. Ault, S. Gill, and I. Kockar;Using Dynamic Optimal Power Flow to Inform the
Design and Operation of Active Network Management Schemes PapeY it827 ,nd

International Conference on Electricity Distributj®013, no. 1327.

I. Papic, “Simulation Model for Discharging a Lead-Acid Battery Energy Storage
System for Load Leveling|EEE Trans. Energy Conversol. 21, no. 2, pp. 66815,
2006.

182



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

References

A. Purvins, I. T. Papaioannou, and L. Debarbetfi&spplication of battery-based
storage systems in household-demand smoothening in electricity-distributior¥ grids,
Energy Convers. Managvol. 65, pp. 272284, Jan. 2013.

British Broadcasting CorporatioffBritain From Above: Tea-time Britain, How the
National Grid responds to demahdBritish Broadcasting Corporation, United
Kingdom, 2010.

M. Rowe, T. Yunusov, S. Haben, C. Singleton, W. Holderbaum, and B. P#iter,
peak reduction scheduling algorithm for storage devices on the low voltage lpgtwor
IEEE Trans. Smart Gridsol. 5, no. 4, pp. 2112124, 2014.

A. Gabash and P. L¥Active-Reactive Optimal Power Flow in Distribution Networks
With Embedded Generation ahdEEE Trans. Power Systvol. 27, no. 4, pp. 2026
2035, 2012.

A. Gabash and P. LiFlexible optimal operation of battery storage systems for energy
supply networks, IEEE Trans. Power Systvol. 28, no. 3, pp. 2782797, 2013.

S. S. SkienaThe Algorithm Design Manuallst Editio., vol. 1, no. 11. London:
Springer, 2008.

T. Chu, J. Qin, and J. WeiDistributed Storage Operation in Distribution Network
with Stochastic Renewable Generatiom IEEE Power Engineering Society General

Meeting Conference & Expositio2014, pp. 15.

R. Sioshansi, S. H. Madaeni, and P. Denhd#ndynamic programming approach to
estimate the capacity value of energy storatieEE Trans. Power Systvol. 29, no. 1,
pp. 395403, 2014.

D. Neves and C. A. Silv&Optimal electricity dispatch on isolated mini-grids using a
demand response strategy for thermal storage backup with genetic alg@rithms,
Energy vol. 82, pp. 436445, 2015.

R. J. Kerestes, G. F. Reed, and A. R. Sparac¢iBopnomic analysis of grid level
energy storage for the application of load levelingEE Power Energy Soc. Gen.
Meet, pp. 19, 2012.

K. M. U. Ahmed, M. Ampatzis, S. M. leee, P. H. Nguyen, M. leee, W. L. Kling, and S.
M. leee,“Application of Time-series and Artificial Neural Network Models in Short

Term Load Forecasting for Scheduling of Storage Devi@xl 4.

183



[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

References

S. Shao, M. Pipattanasomporn, and S. Rahfflaemand response as a load shaping
tool in an intelligent grid with electric vehiclE3EEE Trans. Smart Gridsol. 2, no. 4,
pp. 624631, 2011.

P. Siano;'Demand response and smart grids - A sufv@gnew. Sustain. Energy Rev.
vol. 30, pp. 463478, 2014.

P. Siano;'Demand response and smart grids - A suiv@gnew. Sustain. Energy Rev.
vol. 30, pp. 461478, 2014.

L. Zhao and V. Aravinthar;Strategies of residential peak shaving with integration of
demand response and VZHisia-Pacific Power Energy Eng. Conf. APPEE®. i,
2013.

C. Heymans, S. B. Walker, S. B. Young, and M. Fowld&gconomic analysis of
second use electric vehicle batteries for residential energy storage and lofaiglével
Energy Policyvol. 71, pp. 2230, 2014.

S. Martello and P. Toth,Knapsack problems: algorithms and computer

implementationsChichester, West Sussex: John Wiley & Sons, 1990.

S. Martello and P. TotH;Subset-sum probleth,jn Knapsack problems: Algorithms
and computer interpretationdst Editio., Chichester, West Sussex: John Wiley &
Sons, 1990, pp. 16230.

E. W. Weisstein,“Bin-Packing Problerti, MathWorld--A Wolfram Web Resource
[Online]. Available: http://mathworld.wolfram.com/Bin-PackingProblem.html.
[Accessed: 034ar-2015].

S. Martello and P. Toth;Bin-Packing problent, in Knapsack problems: Algorithms
and computer implementation€hichester, New York: John Wiley & Sons, 1990, pp.
222-243.

J. Malkevitch, “Bin Packing and Machine SchedulihgAmerican Mathematida
Society Feature Columr{Online]. Available: http://www.ams.org/samplings/feature-

column/fcarc-packings3. [Accessed: Bzr-2015].

J. H. Holland Adaptation in Natural and Artificial Systems: Antriaductory analysis
with applications to biology, control, and artifidi intelligence. Oxford, England:
Michigan Press, 1975.

D. Kleinjan, “Genes and their expression: Genetics in Modern MedicineGenes

184



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

References

and Common Diseases: Genetics in Modern MedjcinéNright and N. Hastie, Eds.
Cambridge, UK: Cambridge University Press, pdl 3

A. Shukla, H. M. Pandey, and D. Mehrotr&Comparative Review of Selection
Techniques in Genetic Algoriththpp. 515519, 2015.

MathWorks,“Genetic Algorithri; MATLAB R2014a Online Manual;2014. [Online].
Available: http://uk.mathworks.com/discovery/genetic-
algorithm.html?s_tid=gn_loc_drop. [Accessed: 20-Apr-2016].

K. Tatroe, P. Macintyre, and R. LerdoARrogramming PHP3rd ed., no. August.
Sebastobopol, California:’Beilly, 2013.

W3 Consortium, “Architecture of the World Wide Web, Volume OnheWw3C
Recommendation 15 December 2004 2004. [Online]. Available:
https://www.w3.org/TR/webarch/. [Accessed: 09-Apr-2016].

Mozilla Developer Network;‘How the Web works, Mozilla Developer Network
2015. [Online]. Available: https://developer.mozilla.org/en-
US/Learn/Getting_started_with_the_web/How_the_Web_works. [Accessed: 09-Apr-
2016].

I. Bojanova and A. Samb&Analysis of Cloud Computing Delivery Architecture
Models;” 2011 IEEE Work. Int. Conf. Adv. Inf. Netw. Appl. &bolis, Singaporepp.
453-458, Mar. 2011.

S. Chen and F. LiWeb-based simulations of power systefmSpmput. Appl. Power,
IEEE, no. January, pp. 3540, 2002.

Open Electrical,“Power Systems Analysis Software2013. [Online]. Available:
http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Softwar
e.

R. Leou and Z. Gaing'A Web-based load flow simulation of power systémEEE
Power Eng. Soc. Summer Meet. Chicago, IL, Uga 15871591, 2002.

J. Yang, F. Lin, and Y. FuDevelopment of a Web-Based Software for Micro Power
System Desigfi,2010 Int. Conf. Electr. Control Eng. Wuhan, Chinp. 27482751,
Jun. 2010.

S. Tan and J. YandInternet-based platform for power system simulating and

planning? in 2011 Second International Conference on Mechanimriation and

185



References

Control Engineering, Inner Mongolia, Chin2011, pp. 22712274.

[70] BCP Busarello + Cott + Partners AGQJEPLAN 360 Overview’ [Online]. Available:
http://www.neplan.ch/html/e/e_PowerSystems_Properties_default_web.htm.
[Accessed: 034ar-2013].

[71] F. Milano,“An open source power system analysis toolbtEE Trans. Power Syst.
vol. 20, no. 3, pp. 1199206, 2005.

[72] MathWorks,“Call MATLAB functions from a Web Applicatioi,MATLAB R2014a
Online Manual; MATLAB COM Automation Server [Online]. Available:
http://mwww.mathworks.co.uk/help/matlab/matlab_external/call-matlab-functions-fr
a-web-application.html.

[73] InterPSS CommunityiinterPSS 2.0 Manual and Documentatid@nline]. Available:
https://sites.google.com/a/interpss.org/interpss/Home/interpss-2-0.

[74] R. Zimmerman, C. Murillo-Sanchez, and D. GAMATPOWER: A MATLAB Power
System Simulation Package Documentation2014. [Online]. Available:

http://www.pserc.cornell.edu//matpower/.

[75] Neplan AG and BCP SwitzerlandNEPLAN 360 Overview’ [Online]. Available:

http://www.neplan.ch/html/e/e_PowerSystems_Properties_default_web.htm.

[76] MathWorks,“How do | leverage the MATLAB Engine to deploy my MATLAB code
over the web for an ASP.NET application using MATLAB 7.3 (R2006KIATLAB
Central: MATLAB Answers 2012. [Online]. Available:
http://www.mathworks.com/matlabcentral/answers/99541-how-do-i-leverage-the-

matlab-enginge-deploymy-matlab-code-over-the-web-farr-aspnet-application.

[77] MathWorks, “MATLAB Compiler SDK;” 2014. [Online]. Available:
http://uk.mathworks.com/products/matlab-compiler-sdk/features.html. [Accessed: 09
Apr-2016].

[78] H. Chen, C. Caiiizares, and A. SingiWeb-based Computing for Power System
Applications? Proc. North Am. Power Symp. (NAPS), San Luis Obijs@alifornia,
1999.

[79] M. Alex, “PHP: a fractal of bad designi-uzzy Notepad2012. [Online]. Available:
http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/.

[80] E. McGrath,“12 ‘Must-Know" Advantages of PHP.Vandelay Web Development

186



[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

References

blog, 2012. [Online]. Available: http://www.vandelaydesign.com/advantages-of-php/.
[Accessed: 09-Oct-2015].

European Commission Directorate-General for Research; Sustainable Eystgys,

“European SmartGrids Technology PlatfériBrussels, 2006.

X. Lu, Z. Lu, and W. Wang;On Network Performance Evaluation toward the Smart
Grid: A Case Study of DNP3 over TCP/IR2011 IEEE Glob. Telecommun. Conf. -
GLOBECOM 2011, Houston, TX, USAp. 16, Dec. 2011.

R. Amiri and O. Elkeelany,’An embedded TCP/IP hard core for Smart Grid
information and communication networksRroc. 2012 44th Southeast. Symp. Syst.
Theory (SSST),Jacksonville, Florida, US#p. 185189, Mar. 2012.

H. Zhao, J. Evans, S. Tu, I. Proctor, M. Yang, X. Qi, M. Williams, Q. Gao, ®BniDt
A. Paroski, and S. MacVica¥The HipHop compiler for PHP Proc. ACM Int. Conf.
Object oriented Program. Syst. Lang. Appl. - OOPS12, Tucson, AZ, USAp. 575,
2012.

Facebook, “HipHop Virtual Machine for PHP, HipHop Virtual Machine
Specification [Online]. Available: https://github.com/facebook/hhvm/wiki.

A. Crane;‘Experiences of Using PHP in Large Websité# Unix and Open Systems
User Group [Online]. Available:
http://www.ukuug.org/events/linux2002/papers/html/php/index.html. [Accessed: 10-
Oct-2015].

The PHP Group;i‘Math:: PEAR Packages,PEAR Packages[Online]. Available:
http://pear.php.net/packages.php?catpid=15&catname=Math.  [Accessed: 10-Oct-
2015].

M. Zhou, High Performance Computing in Power and Energye®yst Distributed
Parallel Power System SimulatioBerlin: Springer, 2013.

Nginx Community;‘NginX.” [Online]. Available: http://wiki.nginx.org/Main.

L. Eshkevari, F. Dos Santos, J. R. Cordy, and G. Antofiale PHP applications
ready for Hack?,in Software Analysis, Evolution and Reengineering (ERY, 2015
IEEE 22nd International Conference, @915, pp. 6372.

The PHP Group,"PHP Manual - Mathematical Functions[Online]. Available:
http://us3.php.net/manual/en/math.installation.php.

187



References

[92] The PHP Group,PHP Manual: Mathematical ExtensichgOnline]. Available:
http://us3.php.net/manual/en/refs.math.php. [Accessed: 08-Oct-2015].

[93] The PHP Group;'PEAR: PHP Extension and Application RepositdrjOnline].
Available: http://pear.php.net/. [Accessed: 08-Oct-2015].

[94] The PHP Group;'PHP Manual: Arrays, The PHP Manual [Online]. Available:
http://us3.php.net/manual/en/language.types.array.php. [Accessedi-Q815].

[95] The PHP Group, “PHP Manual: Lapack Class. [Online]. Available:
http://us3.php.net/manual/en/class.lapack.php. [Accessed: 08-Oct-2015].

[96] J. M. Castagnetto;"PEAR: Math_CompleX, PEAR Packages2010. [Online].
Available: http://pear.php.net/package/Math_Complex/.

[97] J. M. Castagnett6PEAR: Math_Vecto?, PEAR Package<010. [Online]. Available:
http://pear.php.net/package/Math_Vector/docs/latest/li_Math_Vector.html.

[98] Joyent, “Node JS Official Documentatich, 2011. [Online]. Available:
http://nodejs.org. [Accessed: 02-Feb-2015].

[99] Energy Systems Research Unit University of Sthratclydigse Study: Riverside
Community, Stirling?; 2007. [Online]. Available:
http://www.esru.strath.ac.uk/EandE/Web_sites/06-
07/Carbon_neutral/case_study_folder/case study_.htm. [Accessed: 02-Feb-2015].

[100] Stirling Council, 2011 Census Stirling; Community Council Area Profiles: Riverside,
Stirling Council area and Scotlaiidtirling, Scotland, 2011.

[101] Ambri,“Ambri Liquid Metal Battery 2013 Progress Updat€ambridge, MA, 2013.

[102] Institute of Systems and Robotics University of CoimbResidential Monitoring to
Decrease Energy Use and Carbon Emissions in Edr@®88. [Online]. Available:
http://remodece.isr.uc.pt/. [Accessed: 10-Feb-2015].

[103] UK Power Networks, R. Cordwell, and M. Adolphtigngineering Design Standard
EDS 08-119:Guidance for the application of ena er p2/6 security of supplyt30,
2014.

[104] General Motors, “Chevrolet  Volt Battery.  [Online]. Available:
https://media.gm.com/content/dam/Media/microsites/product/volt/docs/battery_101.pd
f. [Accessed: 11-Feb-2016].

188



Refereres
[105] The Apache Software FoundatioApache - HTTP Server Projett[Online].
Available: http://httpd.apache.org/. [Accessed: 12-Oct-2015].

[106] The PHP Group!PHP - Shell Exet, PHP Official Website [Online]. Available:
http://php.net/manual/en/function.shell-exec.php. [Accessed: 20-Oct-2015].

[107] The PHP Group, “PHP - Exec’ [Online]. Available:
http://php.net/manual/en/function.exec.php. [Accessed: 08-Oct-2015].

189



