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ABSTRACT

This paper discusses two algorithms of extended unbiased
FIR (EFIR) filtering of nonlinear discrete-time state-space
models used in tracking and state estimation. The basic algo-
rithm employs the extended nonlinear state and observation
equations. The modified algorithm utilizes the nonlinear-to-
linear conversion of the observation equation which is pro-
vided using a batch EFIR filter having small memory. Un-
like the extended Kalman filter (EKF), both EFIR algorithms
ignore the noise statistics and demonstrate better robustness
against temporary model uncertainties. These algorithms
require an optimal horizon in order to minimize the mean
square error. Applications are given for robot indoor self-
localization utilizing radio frequency identification tags.

1. INTRODUCTION

Diverse problems in navigation, tracking, robotics, commu-
nications, etc. often require nonlinear state estimation. A
traditional tool here is the extended Kalman filter (EKF) [1]
having strong features such as high accuracy, fast computa-
tion, easy coding, and small memory. Among the recognized
flaws of EKF are the following: 1) its estimate can be biased
if noise is nonadditive, 2) it may diverge if nonlinearities and
noise are large [2], and 3) its accuracy can be low if noise co-
variances are not well specified or ill-conditioned and noise
is non white Gaussian, heavy-tailed, or Gaussian with out-
liers [3].

In line with the recursive Kalman approach, several other
approaches have also been developed during decades in or-
der to find a more robust solution [4–11, 14, 15]. The un-
scented Kalman filter (UKF) was proposed in [9] to trans-
fer the mean and variance through nonlinearities with higher
accuracy than in EKF when the model is strongly nonlin-
ear. A grid-based method which was worked out to approxi-
mate the posterior process distribution has resulted in the hid-
den Markov model (HMM) filters [10]. A sequential Monte
Carlo (SMC) method also known as a particle filter (PF) [11]
was developed for Bayesian models associated with Markov
chains [12]. A new filtering approach was developed in [13]
for nonlinear pairwise models. A review of these and other
nonlinear filters can be found in [14].

An efficient alternative to the recursive EKF is the itera-
tive extended finite impulse response (EFIR) filter [15]. Un-
like the EKF, UKF, and optimal FIR (OFIR) filters [16–18],
the EFIR filter totally ignores the noise statistics and initial
error statistics. Similarly to PFs, the EFIR filter exploits most
recent past measurements which number is required to be op-
timal Nopt. A scalar Nopt can be ascertained by using test
reference measurements or even via regular measurements

without a reference signal [19], thus in a way much simpler
than for the noise statistics. The EFIR filter belongs to a
regression-based family of Gauss’s least squares estimators
which often give accuracy that is superior to the best avail-
able EKF [14]. In what follows, we propose, develop, and
discuss two efficient iterative EFIR filtering algorithms.

2. NONLINEAR MODEL

Let us consider a process represented in state space with the
nonlinear state and observation equations, respectively,

xn = fn(xn−1,un,wn,en) , (1)

zn = hn(xn,vn) , (2)

in which xn ∈ RK is the state vector, un ∈ RL is the input
vector, and fn(·) and hn(·) are nonlinear time-varying func-
tions. All random components are zero mean white Gaussian
and uncorrelated. Namely, the process noise wn ∈ RP, the
input noise en ∈ RH , and the observation noise vn ∈ RM

have the properties: E{wn} = 0, E{en} = 0, E{vn} = 0,

and E{wie
T
j }= 0, E{wiv

T
j }= 0, and E{vie

T
j }= 0 for all i

and j. The noise covariances are depicted as Q=E{wnw
T
n },

L= E{ene
T
n }, and R= E{vnv

T
n }.

In order to estimate xn using methods of linear filtering,
(1) and (2) need to be expanded to the 1-order Taylor se-
ries [1]: fn(·) at n− 1 and hn(·) at n. We do it under the
following suppositions. Input un is slow enough and such
that the difference un −un−1 is insignificant. The initial val-
ues are known, to mean that the noise components at the start
point are zeros. Accordingly, the expanded nonlinear func-
tions attain the forms of

fn = Fnxn−1 + ūn +Wnwn +Enen +ξn , (3)

hn = Hnxn + z̄n +Tnv+n+ζn , (4)

where Fn = ∂ fn

∂x

∣

∣

∣

x̂n−1

, Wn = ∂ fn

∂w

∣

∣

∣

x̂n−1

, En = ∂ fn

∂e

∣

∣

∣

x̂
−
n

, Tn =

∂hn

∂v

∣

∣

∣

x̂
−
n

, and Hn =
∂hn

∂x

∣

∣

∣

x̂
−
n

are Jacobian and

ūn = fn(x̂n−1,un,0,0)−Fnx̂n−1 ,

z̄n = hn(x̂
−

n )−Hnx̂
−

n

are known. Here, x̂n is the estimate1 and x̂−

n is the prior
estimate of xn. The residuals ξn and ζn are supposed to be
small if the model is sufficiently smooth.

1
x̂n|k means the estimate at n via measurement from the past to k. Below,

we use the following notations: x̂n ! x̂n|n and x̂
−

n ! x̂n|n−1.
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Table 1: Pseudo Code of the EKF Algorithm

Input: zn, un, x̂0, P0, R, Q, L

1: for n = 1 : M do

2: x̂−

n = fn(x̂n−1,un,0,0)

3: Update: Fn, En, Wn, Hn, Tn

4: P−

n = FnPn−1F
T
n +WnQWT

n +EnLE
T
n

5: Kn =P−

n H
T
n (HnP

−

n H
T
n +TnRTT

n )
−1

6: x̂n = x̂−

n +Kn[zn −hn(x̂
−

n ,0)]

7: Pn = (I−KnHn)P
−

n

8: and for

Output: x̂n

The 1-order expanded state-space model is thus

xn = Fnxn−1 + ūn + ẽn + w̃n +ξn , (5)

zn = Hnxn + z̄n + ṽn +ζn , (6)

where the zero mean noise vectors w̃n, ẽn, and ṽn have
the covariances Q̃n = FnQFT

n , L̃n = EnLE
T
n , and R̃n =

TnRTT
n . Provided (5) and (6), the EKF can be coded as

in Table 1, in which the initial state estimate x̂0 and covari-
ances P0, R, Q, and L are supposed to be known. The prior
estimation error P−

n and estimation error Pn are defined by

P−

n = E{(xn − x̂−

n )(xn − x̂−

n )
T} , (7)

Pn = E{(xn − x̂n)(xn − x̂n)
T} . (8)

The extended EFIR filtering algorithms are discussed next.

2.1 Extended unbiased FIR filtering

Unlike the recursive EKF, the iterative EFIR filter [15] uti-
lizes measurements zn available on an interval of N past
neighboring points from m = n−N +1 to n. The EFIR filter
totally ignores the covariances R, Q, L, and P0. Instead, it
requires an optimal horizon of Nopt points. There are at least
two ways to find a scalar Nopt: via the test measurements
implying a known model xn by minimizing the trace of Pn,

Nopt = argmin
N

{trP(N)} , (9)

or utilizing measurements with no reference [19].
The EFIR filtering estimate has the Kalman form

x̂l = x̂−

l +Kl [zl −hl(x̂
−

l )] , (10)

in which l ranges from m+K to n, where K is the number
of the states. For each time index n, the output is taken when
l = n. The bias correction gain

Kl =GlH
T
l (11)

is defined and updated iteratively via the generalized noise
power gain (GNPG)

Gl = [HT
l Hl +(FlGl−1F

T
l )

−1]−1 . (12)

Table 2: EFIR-1 Filtering Algorithm for (5) and (6)

Input: zn, yn, un, K, N

1: for n = N −1 : ∞ do

2: m = n−N +1, s = m+K −1

3: x̃s =

{

ys , if s < N −1
x̂s , if s " N −1

4: Gs = Fs . . .Fm+1(H
T
s,mHs,m)

−1FT
m+1 . . .F

T
s

Otherwise, set Gs = I

5: for l = m+K : n do

6: x̃−

l = fl(x̃l−1,ul ,0,0)

7 Update: Fl , Hl

8: Gl = [HT
l Hl +(FlGl−1F

T
l )

−1]−1

9: x̃l = x̃−

l +GlH
T
l [zl −hl(x̃

−

l ,0)]

10: and for

11: x̂n = x̃n

12: and for

Output: x̂n

To avoid singularities, iterative calculation of (10) starts at
m+K and all values at s = m+K −1 are computed in short
batch forms as [21]

x̂s = Fs . . .Fm+1Λs,mH
T
s,mYs,m , (13)

Gs = Fs . . .Fm+1Λs,mF
T
m+1 . . .F

T
s , (14)

where Λs,m = (HT
s,mHs,m)

−1 and

Ys,m =
[

yT
s . . . yT

m+1 y
T
m

]T
, (15)

Hs,m =

⎡

⎢

⎢

⎣

HsFs . . .Fm+1

...
Hm+1Fm+1

Hm

⎤

⎥

⎥

⎦

. (16)

Unlike the EKF relying on x̂0, the EFIR filter needs Nopt

known initial estimates or linear measurements united in a
vector yn. Since yn may be unavailable in nonlinear mod-
elling, the following options can be considered:

1) If yn is available, then compute x̂s via (13) using (15)
and (16) and set ys = x̂s.

2) If yn is unavailable, then either the output of EKF or
some other estimator (even rough) can be used as ys or set
yn = zn − z̄n. Otherwise, if all of the states are observable
by zn, a solution to zn = hn(xn,0) for xn can be employed
as yn [15].

3) If (2) is linear, then set yn = zn.
The iterative EFIR filter can be coded as Table 2.

Provided zn, yn, and un, it needs only N and K to start com-
puting and updating all the vectors and matrices. No noise
statistics are involved. In this code, two specifics can be
taken into account: 1) because the GNPG is almost unity on
an interval of K points, Gs in many cases can be substituted
with an identity matrix I and 2) the EFIR algorithm operates
in Nopt −1 times slower than EFK owing to iterations.
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Table 3: EFIR-2 Filtering Algorithm for (19) and (20)

Input: ȳn, un, K, N

1: for n = N −1 : ∞ do

2: m = n−N +1, s = m+K −1

3: x̃s =

{

ȳs , if s < N −1
x̂s , if s " N −1

4: Gs = Fs . . .Fm+1F
T
m+1 . . .F

T
s

Otherwise, set Gs = I

5: for l = m+K : n do

6: x̃−

l = fl(x̃l−1,ul ,0,0)

7 Update: Fl

8: Gl = [I+(FlGl−1F
T
l )

−1]−1

9: x̃l = x̃−

l +Gl(ȳl − x̃−

l )

10: and for

11: x̂n = x̃n

12: and for

Output: x̂n

2.2 Nonlinear-to-linear observation conversion

The batch estimate (13) offers another opportunity to provide
nonlinear EFIR filtering. Since noise reduction is insignifi-
cant on a minimum allowed horizon of N = K points, one
may consider the unbiased estimate

ȳn = Fn . . .Fv+1(H
T
n,vHn,v)

−1HT
n,vZn,v , (17)

where v = n−K +1 and

Zn,v =
[

(zn − z̄n)
T . . . (zn − z̄v)

T
]T

, (18)

as a linear measurement of xn and transform (5) and (6) for
negligible residuals to

x̄n = Fnxn−1 + ẽn + w̃n , (19)

ȳn = xn + v̄n , (20)

where x̄n = xn − ūn. As can be seen, ȳn has the same di-
mensions as xn, unlike the original measurement zn. The
covariance of v̄n is defined by

R̄n = E{(ȳn −xn)(ȳn −xn)
T} .

It thus follows that (17) serves in (20) as a convertor of
the nonlinear observation (6) to the linear one (20) with re-
strictions peculiar to extended nonlinear estimators. Below,
we test the EFIR-1 and EFIR-2 algorithms in a comparison
to the EKF by a robot localization problem.

3. APPLICATIONS

Consider a robot travelling in direction d with coordinates xn

and yn on an indoor floorspace (white curve in Fig. 1). The
robot measures distances to two radio frequency identifica-
tion (RFID) tags, A and B, and its trajectory is controlled by
the left and right wheels. The distance between the wheels

is b = 1 m and the incremental distances vehicle travels by
these wheels are dL and dR. The pose angle Φn is measured
with an imbedded fiber optic gyroscope (FOG) [20].

The robot extended state-space model is given by (5)
and (6) in which xn = [xn yn Φn ]

T , un = [dLn dRn ]
T , wn =

[wxn wyn wΦn ]
T , en = [eLn eRn ]

T , Tn = I, Wn = Fn,

Fn =

⎡

⎣

1 0 −dn sin(Φ̂n−1 +
1
2
φn)

0 1 dn cos(Φ̂n−1 +
1
2
φn)

0 0 1

⎤

⎦ , (21)

En =
1

2b

[

becn +dnesn becn −dnesn

besn −dnecn besn +dnecn

−2 2

]

, (22)

Hn =

⎡

⎢

⎣

x̂−n −x1

u1n

ŷ−n −y1

u1n
0

x̂−n −x2

u2n

ŷ−n −y2

u2n
0

0 0 1

⎤

⎥

⎦
, (23)

where

u1n =
√

(y1 − ŷ−n )2 +(x1 − x̂−n )2 + c2
1 ,

u2n =
√

(y2 − ŷ−n )2 +(x2 − x̂−n )2 + c2
2 ,

dn =
1

2
(dRn +dLn) ,

φn
∼=

1

b
(dRn −dLn) ,

ecn = cos
(

Φ̂−

n + φn

2

)

, and esn = sin
(

Φ̂−

n + φn

2

)

.

We allow all the covariance matrices be diagonal and
set the standard deviations σx = σy = σL = σR = 1 mm,
σΦ = 0.5◦, σv1 = σv2 = 5 sm, and σv3 = 2◦. The reader range
is supposed to be r = 6 m. We place a tag A at (0,6) m and
tag B at (0,0) m and let dL = 0.12 mm and dR = 0.24 mm.
Simulation is provided at 5000 points with time interval T for
Gs = I. In Fig. 1, direct measurements of xn and yn are un-
available. We therefore solve the inverse problem in (6) for
x1 = x2 = y2 = 0 and y1 = 6 m, go to “linear” measurements
x̃n and ỹn, united it in a measurement vector yn = [ x̃n ỹn ]

T ,
and depict in Fig. 1 as “actual measurement”. The “con-
verted measurement” is provided by (17). The optimal hori-
zon Nopt = 84 was found for a reference test measurement.

Typical instantaneous errors produced by the EKF and
EFIR-1 and EFIR-2 filters are sketched in Fig. 2. To be
closer to a practical situation, in this simulation we consider
the worst case of not fully known noise statistics by intro-
ducing a correction coefficient p to the covariance matrices
as p2R, Q/p2, and L/p2. As can be seen in Fig. 2 (p = 3),
the correction coefficient p strongly affects the EKF estimate,
whereas the EFIR estimate is p-invariant. Next, we compute
the MSE for each filter by the root square of the trace of the
estimation error matrix (8), excluded the third state having an
angular measure. The MSEs computed over 30 subsequent
Monte Carlo runs are shown in Fig. 2. Observing this figure,
one infers that the EKF(p = 1) and EFIR-1 and EFIR-2 fil-
ters produce similar errors. In contrast, errors in the noise
covariances lead to larger errors in both EKF(p = 3) and
EKF(p = 5) and do not affect the EFIR filters. Moreover,
excursions in MSEs indicate that EKF with p > 1 is addicted
to divergence and that this addiction grows with p. Note that
even a stronger addiction to divergence of EKF was shown
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in [22] for p < 1. On the other hand, it was revealed that the
EFIR filter becomes more addicted to divergence close to the
left border in Fig. 1.

4. CONCLUSIONS

The EFIR filtering algorithms proposed, developed in part,
and discussed in this paper have the following useful proper-
ties. Unlike the EKF filter, both the EFIR-1 and FIR-2 algo-
rithms are insensitive to the imprecisely defined noise statis-
tics. Practically, this means that it is only within a narrow
region around the ideal conditions that the EKF has better ac-
curacy than EFIR. Otherwise, errors in the EKF grow rapidly
and result in the divergence, whereas the EFIR filter ignoring
noise statistics remains at the same error level. Of practical
importance also is that the only tuning scalar value Nopt re-
quired by the EFIR filter can easily be specialized via test
measurements or even using regular measurements with no
reference, thus in a way much easier than for the noise statis-
tics. Besides, the determination of Nopt implies much smaller
cost, especially if the process is time-varying. A payment for
these advantages of EFIR filtering is an Nopt−1 times longer
operation required to complete iterations.

Referring to such useful properties, we now consider
other applications for the algorithms proposed and develop
their fast forms utilizing recursions.
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