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ABSTRACT

In this paper, the optimal finite impulse response (OFIR) with
embedded unbiasedness (EU) filter is derived by minimiz-
ing the mean square error (MSE) subject to the unbiasedness
constraint for discrete time-invariant state-space models. Un-
like the OFIR filter, the OFIR-EU filter does not require the
initial conditions. In terms of accuracy, the OFIR-EU fil-
ter occupies an intermediate place between the UFIR and
OFIR filters. With a two-state harmonic model, we show
that the OFIR-UE filter has higher immunity against errors
in the noise statistics and better robustness against temporary
model uncertainties than the OFIR and Kalman filters.

1. INTRODUCTION

The finite impulse response (FIR) filter uses finite measure-
ments over the most recent time horizon of N discrete points.
Basically, the unbiasedness can be met in FIR filters using
two different strategies: 1) one may test an estimator by the
unbiasedness condition or 2) one may embed the unbiased-
ness constraint into the filter design. We therefore recognize
below the checked (tested) unbiasedness (CU) and the em-
bedded unbiasedness (EU). Accordingly, the FIR filter with
CU and EU are denoted as FIR-CU filter and FIR-EU filter
respectively.

In the last three decades, many different FIR estimators
were proposed with different types of unbiasedness. In [1], a
FIR-EU filter was proposed by Kwon, Kim and Han, where
the unbiasedness condition was considered as a constraint to
the optimization problem. Later, the FIR smoothers were
found in [2] for CU by employing the maximum likelihood
and in [3] for EU by minimizing the variance. For the real-
time state space model, the FIR-CU filter and smoother were
proposed by Shmaliy in [4,5] for polynomial systems. In [6],
a p-shift unbiased FIR filter (UFIR) was derived as a special
case of the OFIR filter. Here, the unbiasedness was checked a
posteriori and the solution thus belongs to CU. Soon after, the
UFIR filter [6] was extended to time-variant systems [7, 8].
For nonlinear models, an extended UFIR filter was proposed
in [9] and unified forms for FIR filtering and smoothing were
discussed in [10].

It has to be remarked now that all of the aforementioned
FIR estimators related to real-time state-space model belong
to the CU solutions. Still no optimal FIR estimator was ad-
dresses of the EU type. In this paper, we derive a new FIR
filter, called OFIR-EU filter, by minimizing the mean square
error (MSE) subject to the unbiasedness constraint. We also
investigate properties of the OFIR-EU filter in a comparison
with the OFIR and UFIR filters and KF.

2. STATE-SPACE MODEL AND PRELIMINARIES

Consider a linear discrete time-invariant model given with
the state-space equations

xk = Axk−1 +Bwk , (1)

yk = Cxk +Dvk , (2)

in which k is the discrete time index, xk ∈R
n is the state vec-

tor, and yk ∈ R
p is the measurement vector. Matrices A ∈

R
n×n, B∈R

n×u, C∈R
p×n and D∈R

p×v are time-invariant
and known. We suppose that the process noise wk ∈ R

u and
the measurement noise vk ∈ R

v are zero mean, E{wk} = 0
and E{vk} = 0, mutually uncorrelated and have arbitrary

distributions and known covariances Q(i, j) = E{wiw
T
j },

R(i, j) = E{viv
T
j } for all i and j, to mean that wk and vk

are not obligatorily white Gaussian.
The state-space model (1) and (2) can be represented in

the batch form on a discrete time interval [l,k] with recur-
sively computed forward-in-time solutions as

Xk,l = Ak−lxl +Bk−lWk,l , (3)

Yk,l = Ck−lxl +Hk−lWk,l +Dk−lVk,l , (4)

where l = k−N +1 is a start point of the averaging horizon.
The time-variant state vector Xk,l ∈R

Nn×1, observation vec-

tor Yk,l ∈ R
N p×1, process noise vector Wk,l ∈ R

Nu×1, and

observation noise vector Vk,l ∈ R
Nv×1 are specified as, re-

spectively,

Xk,l =
[
xT

k x
T
k−1 · · ·x

T
l

]T
, (5)

Yk,l =
[
yT

k yT
k−1 · · ·y

T
l

]T
, (6)

Wk,l =
[
wT

k wT
k−1 · · ·w

T
l

]T
, (7)

Vk,l =
[
vT

k vT
k−1 · · ·v

T
l

]T
. (8)

The expanded model matrix Ak−l ∈ R
Nn×n, process

noise matrix Bk−l ∈ R
Nn×Nu, observation matrix Ck−l ∈

R
N p×n, auxiliary matrix Hk−l ∈ R

N p×Nu, and measurement
noise matrix Dk−l ∈ R

N p×Nv are all time-invariant and de-
pendent on the horizon length of N points. Model (1) and (2)
suggests that these matrices can be written as, respectively

Ai =
[
(Ai)T (Ai−1)T · · ·AT I ]T , (9)

Bi =

⎡

⎢
⎢
⎢
⎢
⎣

B AB · · · Ai−1B AiB

0 B · · · Ai−2B Ai−1B
...

...
. . .

...
...

0 0 · · · B AB
0 0 · · · 0 B

⎤

⎥
⎥
⎥
⎥
⎦

, (10)
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Ci = C̄iAi , (11)

Hi = C̄iBi , (12)

Di = diag(DD · · ·D
︸ ︷︷ ︸

i+1

) , (13)

C̄i = diag(CC · · ·C
︸ ︷︷ ︸

i+1

) . (14)

Note that at the start horizon point we have an equation
xl = xl +Bwl which is satisfied uniquely with zero-valued
wl , provided that B is not zeroth. The initial state xl must
thus be known in advance or estimated optimally.

The FIR filter applied to N past neighboring measure-
ment points on a horizon [l,k] can be specified with

x̂k|k =KkYk,l , (15)

where x̂k|k is the estimate1, and Kk is the FIR filter gain de-
termined using a given cost criterion.

The estimate (15) is unbiased if the following unbiased-
ness condition is obeyed

E{xk}= E{x̂k|k} , (16)

in which xk can be specified as

xk =AN−1xl + B̄k−lWk,l (17)

if to combine (3) and (4). Here B̄k−l is the first vector row in
Bk−l . By substituting (15) and (17) into (16), replacing the
term Yk,l with (4), and providing the averaging, one arrives
at the unbiasedness constraint

AN−1 =KkCk−l (18)

which is also known as the deadbeat constraint. Provided
x̂k|k, the instantaneous estimation error ek can be defined as

ek = xk − x̂k|k . (19)

The problem can now be formulated as follows. Given
the models, (1) and (2), we would like to derive an OFIR-EU
filter minimizing the variance of the estimation error (19) by

KOEU
k = argmin

Kk

E{eke
T
k } (20)

subject to (18) .

3. OFIR-EU FILTER

In the derivation of the OFIR-EU filter, the following lemma
will be used.

Lemma 1 The trace optimization problem is given by

argmin
K

tr
[
(KF−G)H(KF−G)T

+(KL−M)P(KL−M)T +KSKT ] , (21)

subject to L{KU=Z}|θ

where H =HT > 0, P = PT > 0, S = ST > 0, trM is the
trace of M, θ denotes the constraint indication parameter

1
x̂k|k means the estimate at k via measurements from the past to k.

such that θ = 1 if the constraint exists and θ = 0 otherwise.
Here, F, G, H, L, M, P, S, U, and Z are constant matrices
of appropriate dimensions. The solution to (21) is

K=

[
Z
G
M

]T
⎡

⎣

θ
(
UT

Ξ
−1U

)−1
UT

Ξ
−1

HFT
Ξ

−1
Π

PLT
Ξ

−1
Π

⎤

⎦ , (22)

where Π= I−θU
(
UT

Ξ
−1U

)−1
UT

Ξ
−1 and

Ξ=

⎧

⎨

⎩

LPLT +S, if F=U, G= Z, and θ = 1

FHFT +S, if L=U, M= Z, and θ = 1

FHFT +LPLT +S, if θ = 0

.

(23)

Proof : The proof can be obtained by modifying the re-
sults presented in [11, 12], which is omitted here due to the
strict of paper length.

3.1 OFIR-EU Filter Design

Using the trace operation, the optimization problem (20) can
be rewritten as

KOEU
k = argmin

Kk

E
{

tr
[
eke

T
k

]}

= argmin
Kk

E
{

tr
[(
xk − x̂k|k

)
(· · ·)T

]}

(24)

subject to (18), where (· · ·) denotes the term that is equal to
the relevant preceding term. By substituting xk with (17) and
x̂k|k with (15), the cost function becomes

KOEU
k = argmin

Kk

E
{

tr
[(
AN−1xl + B̄k−lWk,l

− KkYk,l

)
(· · ·)T

]}
. (25)

Using the trace operation, the optimization problem (20)
can be rewritten as

KOEU
k = argmin

Kk

E
{

tr
[
eke

T
k

]}

= argmin
Kk

E
{

tr
[(
xk − x̂k|k

)
(· · ·)T

]}

(26)

subject to (18), where (· · ·) denotes the term that is equal to
the relevant preceding term. By substituting xk with (17) and
x̂k|k with (15), the cost function becomes

KOEU
k = argmin

Kk

E
{

tr
[(
AN−1xl + B̄k−lWk,l

− KkYk,l

)
(· · ·)T

]}
. (27)

If to take into account constraint (18), provide the averaging,
and rearrange the terms, (27) can be transformed to

KOEU
k = argmin

Kk

E
{

tr
[(
B̄k−lWk,l

−Kk

(
Hk−lWk,l +Dk−lVk,l

))
(· · ·)T

]}

= argmin
Kk

E
{

tr
[((

KkHk−l − B̄k−l

)
Wk,l

+KkDk−lVk,l

)
(· · ·)T

]}

= argmin
Kk

tr
[(
KkHk−l − B̄k−l

)
Θw(· · ·)

T

+Kk∆vK
T
k

]
, (28)
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Table 1: The OFIR-EU Filtering Algorithm

Stage

Given: N ! n, l = k−N +1

Find: KOEUa
k by (32) and KOEUb

k by (33)

Compute: x̂k|k = (KOEUa
k +KOEUb

k )Yk,l

where the fact is invoked that the system noise vector Wk,l
and the measurement noise vector Vk,l are pairwise indepen-
dent. The auxiliary matrices are

Θw = E
{
Wk,lW

T
k,l

}
, (29)

∆v =Dk−lE
{
Vk,lV

T
k,l

}
DT

k−l . (30)

Referring to Lemma 1 with θ = 1, the solution to the
optimization problem (28) can be obtained by neglecting L,
M, and P and using the replacements: F ← Hk−l , G ←
B̄k−l , H←Θw, U←Ck−l , Z←AN−1, and S←∆v. We
thus have

KOEU
k =KOEUa

k +KOEUb
k , (31)

where

KOEUa
k =AN−1(CT

k−l∆
−1
w+vCk−l)

−1CT
k−l∆

−1
w+v , (32)

KOEUb
k = B̄k−lΘwH

T
k−l∆

−1
w+v(I−Ωk−l) , (33)

in which

Ωk−l =Ck−l(C
T
k−l∆

−1
w+vCk−l)

−1CT
k−l∆

−1
w+v , (34)

∆w+v =∆w +∆v , (35)

∆w =Hk−lΘwH
T
k−l . (36)

The OFIR-EU filter structure can now be summarized in
the following theorem.

Theorem 1 Given the discrete time-invariant state space
model (1) and (2) with zero mean mutually independent and
uncorrelated noise vectors wk and vk, the OFIR-EU filter
utilizing measurements from l to k is stated by

x̂k|k =
(

KOEUa
k +KOEUb

k

)

Yk,l , (37)

where Yk,l ∈ R
N p×1 is the measurement vector given by (6),

and KOEUa
k and KOEUb

k are given by (32) and (33) with Ck−l

and B̄k−l specified by (11) and (10), respectively.

Proof : The proof is provided by (24)-(36).

Note that the horizon length N for (37) should be chosen
such that the inverse in KOEU

k exists. In general, N can be
set as N ! n, where n is the number of the model states. Ta-
ble 1 summarizes the steps in the OFIR-EU estimation algo-
rithm, in which the noise statistics are assumed to be known
for measurements available from l to k. Given N, compute

KOEUa
k and KOEUb

k according to (32) and (33) respectively,
then the OFIR-EU estimate can be obtained at time index k
by (37).

10
1

N

(a)

10
2

(
)

J
k

t r

10
1

10
0

10
0

10
2

OFIR-EU

UFIR
OFIR

KF

Nopt=19

Optimal estimates
converge with N > Nopt

Figure 1: RMSEs
√

trJk in the estimates of the two-state
harmonic model: (a) as a function of N and (b) as a function
of p for Nopt = 19.

4. SIMULATIONS

In this section, we are going to test the OFIR-EU filter with a
two-state harmonic time-invariant state-space models in dif-
ferent noise environments. The main purpose is to show the
effect of the unbiasedness condition embedded into the UFIR
filter. The KF, UFIR and OFIR filters are employed as bench-
marks when necessary. Similar examples can also be found
in in [7, 8, 13].

The two-state harmonic model can be specified by B =
[1 1 ]T , C= [1 0 ], D= 1, and

A=

[

cosϕ sinϕ
−sinϕ cosϕ

]

with ϕ = π/32. Traditionally, we investigate the cases of a
completely known model and system uncertainties.

We generate a process at 400 subsequent points with the
initial states x10 = 1 and x20 = 0.1 and noise variances σ2

w = 1

and σ2
v = 10. The RMSEs

√
trJk computed as functions of

N are exhibited in Fig. 1. One can see that KF performs
best among all the filters, as the model used is accurate. One
the other hand, the MSE in the OFIR-EU and OFIR filters be-
come constant when N > Nopt. This is a quite useful property
of the OFIR-EU filter proposed. Specifically, it is not neces-
sary to choose an optimal horizon for the OFIR-EU filter, a
relative large horizon is always satisfied.

In order to show effect of the model uncertainties on the
estimation errors, we augment the system matrix A as

A=

[

cosϕ sinϕ +δ
−sinϕ +δ cosϕ

]

,

where we set δ = 0.4 if 160 " k " 180 and δ = 0 otherwise.
The process is generated with x10 = 1, x20 = 0.1, σ2

w = 0.1
and σ2

v = 100 at 400 subsequent points.
The instantaneous estimation errors produced by the KF

and OFIR-EU filter for p " 1 are shown in Fig. 2, where p is
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Figure 2: Instantaneous estimation errors caused by the tem-
porary model uncertainties for p " 1: (a) the first state and
(b) the second state.

a correction parameter with p2σw and σv/p2. It is seen that
both filters produce negligible errors in the interval of first
160 points. Beyond this interval, the performance of both
filters is deteriorated by the excursions when δk ̸= 0. Further,
one watches for transients which are limited with N points in
the OFIR-EU filter and last much longer in KF.

5. CONCLUSIONS

In this paper, the unbiasedness condition is embedded into
the OFIR filter to obtain a new FIR filter-OFIR-EU filter,
which can be considered as the optimal unbiased FIR fil-
ter. Unlike the OFIR filter, the OFIR-EU filter completely
ignores the initial conditions. In terms of accuracy, the OFIR-
EU filter is in between the UFIR and OFIR filters. Unlike in
the UFIR filter which minimizes MSE by Nopt, MSEs in the
OFIR-EU and OFIR filters diminish with N and these fil-
ters are thus full-horizon. Accordingly, the OFIR-EU filter
in general demonstrates better robustness against temporary
model uncertainties than KF.

Referring to the fact that optimal FIR filters are essen-
tially the full-horizon filters but their batch forms are com-
putationally inefficient, we now focus our attention on the
fast iterative form for OFIR-EU filter and plan to report the
results in near future.
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