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Abstract Previous studies of flexible flaps attached to the aft part of a cylinder
have demonstrated a favourable effect on the drag and lift force fluctuation. This
observation is thought to be linked to the excitation of travelling waves along the
flaps and as a consequence of that, periodic shedding of the von Kármán vortices
is altered in phase. A more general case of such interaction is studied herein for a
limited row of flaps in an oscillating flow; representative of the cylinder case since
the transversal flow in the wake-region shows oscillating character. This reference
case is chosen to qualify recently developed numerical methods for the simulation of
fluid-structure interaction in the context of the EU funded ‘PELskin’ project. The
simulation of the two-way coupled dynamics of the flexible elements is achieved
via a structure model for the flap motion, which was implemented and coupled to
two different fluid solvers via the immersed boundary method. The results show
the waving behaviour observed at the tips of the flexible elements in interaction
with the fluid flow and the formation of vortices in the gaps between the flaps.
In addition, formation of vortices upstream of the leading and downstream of the
trailing flap is seen, which interact with the formation of the shear-layer on top of
the row. This leads to a phase shift in the wave-type motion along the row that
resembles the observation in the cylinder case.
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Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2)
CNRS UMR 7340 - Aix Marseille Université
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1 Introduction

The wave behaviour of arrays of flexible structures (hairs, flaps, filaments) induced
by a cross flow is an active area of research interest for a range of disciplines, and
has been described in many studies[Finnigan and Mulhearn, 1978b; Nepf, 2012;
Nezu and Okamoto, 2010; Py et al, 2005, 2006]. This waving motion is most
commonly referred to as Honami in the case of terrestrial canopies and Monami
for aquatic canopies. Of particular interest to flow control, a wave-type motion
along rows of flexible structures has been observed in the wake of bluff bodies,
where such flexible structures are attached to the aft part. The hairs interact with
the unsteady wake flow and show the emergence of travelling wave-like motion
patterns [Favier et al, 2009]. Experimental studies of flow past cylinders with
attached hairs proved the potential for these structures to modify the shedding
cycle [Kunze and Bruecker, 2012]. The study showed a characteristic jump in the
shedding frequency at a critical Reynolds number of Rec ≈ 14,000 when comparing
to the classical behaviour of a plain cylinder wake flow. The analysis of the motions
of the hairy-flaps showed that for Re = Rec the amplitude of the flap motion is
considerably increased and a characteristic travelling wave-like motion pattern
could be observed along the row of flaps. As a consequence, the presence of the
hairy flaps alter the phase within the vortex shedding cycle such that the transverse
dislocation - i.e. the transverse distance from the centerline - of the shed vortices is
reduced [Kunze and Bruecker, 2012]. Accordingly, the vortices are not arranged in
a classical zig-zag pattern of the Kármán vortex-street, but rather they are shed in
a row along the centerline (y = 0). These observations provided the motivations for
the recent EU funded ‘PELskin’ project 1, wherein a small consortium of partners2

focussed on investigating the potential amelioration of aerodynamic performance
via a Porous and ELastic (PEL) coating. The objective being to elucidate the
potential for passive structures to reconfigure/adapt to the separated flow, thereby
directly changing the near-wall flow and the subsequent vortex shedding, which
can lead to reduced form drag by decreasing the intensity and the size of the
recirculation region.

A further investigation of the physical mechanisms involved in the fluid struc-
ture interaction within the rows of flaps requires a more general setup, so as to
enable a detailed analysis of the flap behaviour under clearly defined conditions.
This facilitates the parametric study of the interaction as a function of the eigen-
frequency, spacing and stiffness of the flaps. Such a case is proposed herein in form
of an oscillating channel flow, where a limited row of flexible flaps is implemented.
The selected configuration is simple enough to capture the essential characteristics
of the coupled problem, and may also be considered to be quasi two-dimensional.

Experiments were carried out in a flow channel of square cross-section where
fluid is driven by an oscillating piston along a row of 10 flexible flaps at a peak
Reynolds-number of approximately 120. The numerical framework is based on
the Immersed Boundary method coupled to a flow solver, to treat the moving
boundaries on a fixed Cartesian grid. Two fundamentally different fluid solvers
were used to compare their quality in comparison to the experimental data and

1 http://www.transport-research.info/project/pel-skin-novel-kind-surface-coatings-
aeronautics

2 Aix Marseille Université, City University London, Wolfdynamics SRL, Technische Univer-
sität Bergademie Freiberg, The University of Manchester

https://www.researchgate.net/publication/232003960_Passive_separation_control_using_a_self-adaptive_hairy_coating?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222301124_Measurement_of_wind-induced_motion_of_crop_canopies_from_digital_video_images?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
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https://www.researchgate.net/publication/234082422_Control_of_vortex_shedding_on_a_circular_cylinder_using_self-adaptive_hairy-flaps?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
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judge the proper choice for further investigations of such coupled problems. The
first is a finite difference code based on Navier-Stokes equations and the second one
is a code employing the lattice Boltzmann method. The dynamics of the flexible
elements is modelled using the Euler-Bernoulli equations, as it is done in Huang
et al [2007] and Favier et al [2015]. Conclusions to this work will be drawn in
section 6.

2 Experimental set-up and methods

Fig. 1 : Schematic view of the experimental working section.

The oscillating channel flow is generated in a long tube of squared cross-section
with diameter L = 6cm (cross-section 6 cm x 6 cm, or 3H x 3H, in terms of the
flap length H) which is filled with liquid and is connected at the upstream end
to a piston drive unit and at the downstream end to a basin. As working fluid
we use a mixture of water and glycerin to adjust the viscosity of the flow. This
allows us to vary the characteristic numbers of the flow such as the Reynolds- and
Wormersley-number across a wider range. The piston is able to run at maximum
flow amplitudes of 16 cm of bulk fluid at oscillations frequencies of 1 Hz. All parts
of the tube are made of transparent perspex to ensure optical access to the flow.
The following results were obtained with a glycerine-water mixture of volume-
ratio 80/20 resulting in a kinematic viscosity of ν = 100 × 10−6m2s−1 at room
temperature and a density of ρf = 1.2gcm−3.

In the centre of the tube is an insert, which contains a row of 10 flexible flaps
(d = 1 mm thick, length H = 2 cm, span B = 5 cm) that protrude into the flow.
The interspacing between the flaps is set to 1 cm as the reference case. The flaps
are made of silicone rubber (Elastosil RT 601, Wacker Chemie, Germany, Youngs
modulus E = 1.2 MPa, density ρs = 1.2g/cm3) so that they are easily deflected
by the flow. The flexural rigidity of the flaps k is calculated with k = E × I =
5 × 10−6 Nm2 (I is the second moment of area along the thin axis of the flap
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I = Bd3/12). The density of the flaps ρs is equal to the density of the fluid ρf so
that gravity is not contributing to the motion of the flaps in the experiments.

For characterization of the flap response, a step test was carried out in the liquid
environment. The flap was deflected to a certain extend and was then released while
recording the tip motion with a high-speed camera. The tip motion is shown in
Fig 2a). For comparison, the response curve in air is added, too. The latter shows
the natural frequency of the flap at fn = 15Hz while for the damped case in liquid
the damped frequency is fD = 3Hz, see Fig 2b). Therefore the damping coefficient

D of the flap in the liquid is calculated from the relation fD = fn
√

(1−D2) and
results to D = 0.98.
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Fig. 2 Step response of the flexible flap (a): motion in air (dashed line) and in the
liquid (solid line). (b): frequency response curve.

The piston is controlled via a linear traverse (Moog Series) and performs a har-
monic motion. To ensure an undisturbed flow within the centre of the flow channel
from both sides we placed a honeycomb at the entrance and exit of the tube as
well as a smoothed transition insert from circular to squared cross-section. In the
absence of flaps in the first instance, velocity profiles in the centre of the mea-
surement chamber were measured with Particle Image Velocimetry. A high-speed
camera (Phantom V12.1-8 G-M, Vision Research) recorded the flow evolution from
the side while the centre plane was illuminated with a vertical light-sheet from be-
low with a continuous laser (Ray Power 2000, Dantec). In addition to the PIV
measurements, we used a special designed Schlieren setup with two larger lenses (f
= 400 mm) and illumination with a LED from the back in form of a point source
for recordings of flap motion and shear-layer evolution. A special preparation of
the flaps was required to achieve a good Schlieren image by means of differences in
the refractive index of working liquid. This was intentionally generated by coating
the flaps in the empty channel prior to the experiments with a thin water lining
(refracting index of water nw = 1.33). Then the channel was slowly filled with the
working liquid, which has a higher refractive index than water (nl = 1.45). When
starting the oscillating flow, the water layer along the flaps is shed from the flaps
along the shear-layers within the cavity between the flaps and in the shear layer
formed along the top of the flap row. This allows us to visualize the shear-layer in
a very illustrative way (see later discussion and Fig 7).
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3 Numerical method

The Immersed Boundary Method (IBM) is used to simulate the moving geometries
of the flaps immersed in the unsteady fluid flow. Following this approach, the
fluid equations are solved on a fixed Cartesian grid, which do not conform to the
body geometry, and the solid wall boundary conditions are satisfied on the body
surface by using appropriate volume forces [Peskin, 1972, 2002; Pinelli et al, 2010].
In the context of the EU PELskin project, the fluid is solved using two different
approaches, partly as a function of the project planning and partly for the purpose
of demonstrating the flexibility of the method.

3.1 Flow solver 1: Lattice Boltzmann

In the first instance, the lattice Boltzmann method is used to simulate the fluid
flow, which is based on microscopic models and mesoscopic kinetic equations; in
contrast to Navier-Stokes which is in terms of macro-scale variables. The Boltz-
mann equation for the distribution function f = f(x, e, t) is given as follows:

∂f

∂t
+ e · ∇xf + F · ∇ef = Ω12, (1)

where x are the spatial coordinates, e is the particle velocity and F accounts
any external force; in the present work this force is the body force fib applied to
the fluid. Clearly this last term is very important as it will be used to convey the
information between the fluid and the structure. The collision operator Ω12 is sim-
plified using the Bhatnagar, Gross, and Krook (BGK) approach [Bhatnagar et al,
1954], where it is assumed that local particle distributions relax to an equilibrium
state f (eq) in a single relaxation time τ :

Ω12 =
1

τ

(
f (eq) − f

)
. (2)

This equation is discretised and solved on the lattice, a Cartesian and uniform
mesh in our case. At each point on the lattice, each particle is assigned one of a
finite number of discrete velocity values. In our case we use the D2Q9 model, which
refers to two-dimensional and nine discrete velocities, referred to by subscript i.
The equilibrium function f (eq) (x, t) can be obtained by Taylor series expansion
of the Maxwell-Boltzmann equilibrium distribution [Qian et al, 1992].

Concerning the discrete force distribution needed to keep into account the body
force fib, here we use the formulation proposed by Guo et al [2002], as follows,
where c is the lattice speed, cs = 1/

√
3 is the speed of sound and ωi are the weight

coefficients, which take standard values. For further details the reader is referred
to Favier et al [2013].

Fi =
(

1− 1

2τ

)
ωi

[
ei − u

c2s
+

ei · u
c4s

ei

]
· fib (3)

https://www.researchgate.net/publication/202232973_A_Model_for_Collision_Processes_in_Gases_I_Small_Amplitude_Processes_in_Charged_and_Neutral_One-Component_Systems?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/202232973_A_Model_for_Collision_Processes_in_Gases_I_Small_Amplitude_Processes_in_Charged_and_Neutral_One-Component_Systems?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/202232905_Lattice_BGK_Models_for_the_Navier-Stokes_Equations?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222512003_Flow_patterns_around_heart_valves_A_numerical_method?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222897765_Immersed-boundary_methods_for_general_finite-difference_and_finite-volume_Navier-Stokes_solvers?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
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3.2 Flow solver 2: Navier Stokes

In this work we also use an incompressible Navier-Stokes solver with a staggered
grid discretization [Harlow and Welch, 1965]. In this case, both convective and
diffusive fluxes are approximated by second-order central differences. The frac-
tional time-step method is used for the time-advancement [Chorin, 1968; Kim and
Moin, 1985], in the form of a second-order semi-implicit pressure correction proce-
dure [van Kan, 1986]. The alternating direction implicit method (ADI) is used for
the temporal discretization of the diffusive terms, allowing to transform three-
dimensional problem into three one-dimensional ones by an operator-splitting
technique, while retaining the formal order of the scheme. The code paralleliza-
tion relies upon the Message-Passing Interface (MPI) library and the domain-
decomposition technique.

The numerical strategy used to impose the desired zero velocity boundary
condition at the solid surface (which is a solid and rigid wing) is the following.
The predicted velocity u∗, if first obtained explicitly, without the presence of the
embedded boundary:

u∗ = un −∆t
[
Nl(un,un−1)− Gφn−1 +

1

Re
L(un)

]
, (4)

where un is the divergence-free velocity field at time-step n, ∆t is the time step, Nl
is the discrete non-linear operator, G and D are, respectively, the discrete gradient
and divergence operators, L is the discrete Laplacian, φ is a projection variable
(related to the pressure field). The operators include coefficients that are specific
to the time scheme used in this study, a three-steps low-storage Runge Kutta.

3.3 Immersed boundary method to couple flow solver to structure model

The presence of the solid geometry is imposed by using the IBM, via a process of
interpolation and spreading [Uhlmann, 2005]: u∗ is interpolated onto the embedded
geometry of the obstacle, Γ , which is discretized through a number of Lagrangian
marker points with coordinates Xk:

U∗(Xk, t
n) = I(u∗) (5)

At this stage, knowing the velocity U∗(Xk, t
n) at location of the Lagrangian mark-

ers, a distribution of singular forces that restore the desired velocity Ud(Xk, t
n)

on Γ is determined as:

F∗(Xk, t
n) =

Ud(Xk, t
n)−U∗(Xk, t

n)

∆t
. (6)

The singular surface force field given over Γ is then transformed by a spreading
operator S into a volume force-field defined on the Cartesian mesh points xi,j,k
surrounding Γ :

f∗(xi,j , t
n) = S

[
F∗(Xk, t

n)
]
. (7)

At this stage, in the case of the lattice Boltzmann method, the force f∗(xi,j , t
n)

is used directly as fib in eqn 3 and the algorithm is completed. For the Navier
Stokes solver, some final steps are required as follows. First, the predicted velocity

https://www.researchgate.net/publication/222298105_An_immersed_boundary_method_with_direct_forcing_for_the_simulation_of_particulate_flows?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222444482_Application_of_a_frational-step_method_to_incompressible_Navier-Stokes_equations?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222444482_Application_of_a_frational-step_method_to_incompressible_Navier-Stokes_equations?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/51992522_Numerical_Calculation_of_Time-Dependent_Viscous_Incompressible_Flow_of_Fluid_With_Free_Surface?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/243771948_A_Second-Order_Accurate_Pressure-Correction_Scheme_for_Viscous_Incompressible_Flow?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
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is re-calculated, using an implicit scheme for the viscous operator, adding the
forces that accounts for the presence of the solid body:

u∗ − un

∆t
= −Nl(un,un−1)− Gφn−1 +

1

Re
L(u∗,un) + f∗ (8)

Finally, the algorithm completes the time step with the usual solution of the
pressure Poisson equation and the consequent projection step:

Lφ =
1

∆t
Du∗ (9)

un+1 = u∗ −∆tGφn. (10)

The key elements of the present IBM are the transformations between the
Eulerian the Lagrangian meshes, which are carried out through the interpolation
and spreading operators, I and S. These two operators are built using a method
presented in Favier et al [2013]; Pinelli et al [2010], which ensures that the in-
terpolation and spreading are reciprocal operations, implying that the integral of
the force is the same when computed in the Lagrangian or Eulerian frames. Im-
portant properties of the algorithm are the preservation of the global accuracy of
the underlying differencing scheme, and the sharpness with which the interface is
resolved. For further details the reader is referred to Pinelli et al [2010] and Favier
et al [2013].

0 5 10 15 20

t
-0.05

0

0.05

∆
x
/L

Fig. 3 Motion of the hanging flexible flap under gravity (without fluid) without
bending term and with an initial angle of θo = 2o. (a): Initial position of the flexible
flap. (b): Time evolution of the tip position ∆x, with respect to the position in x
of its equilibrium position. Present solution: —, analytical solution: x.

3.4 Model of flexible flap

Coming back to equation 6 defined on each Lagrangian marker, the term Udn+1
(Xk)

denotes the velocity value at the location Xk we wish to obtain at time step com-
pletion. Those values are determined for each flap integrating in time the respective
Euler-Bernoulli equation in non-dimensional form:

dUdn+1

dt
=

∂

∂s
(T
∂Xk

∂s
)−KB

∂4Xk

∂s4
+Ri

g

g
− Fib (11)
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Fig. 4 : Womersley velocity profiles at inlet position at different instants
through one flow oscillation cycle (IBM: present work using Immersed Bound-
ary Method).

Here, T is the non-dimensional tension of the flap and KB is the non-dimensional
flexural rigidity k/KBref . The reference quantities used for non dimensionalising
the equations are: a reference tension Tref = ∆ρU2

0 , the reference bending rigidity
KBref = ∆ρU2

0L
2 and the reference Lagrangian forcing Fref = ∆ρ

Lερf
U2
0 . U0 is the

characteristic velocity of the fluid flow, ∆ρ is the difference in density per unit area
of filament cross section between the filament ρs and the fluid ρf . Gravity effects
are introduced via the Richardson number, Ri = gL/U2

0 , though in the following,
gravity effects are only included for the validation case of the flap model without
fluid. The closure of equation 11 is provided by the inextensibility condition that
reads:

∂Xk

∂s
· ∂Xk

∂s
= 1 (12)

This condition ensures that the flap length remains constant, and is satisfied using
the tension values, which effectively act as Lagrange multipliers. The boundary

conditions for the system (11-12) are X = X0, ∂2Xk

∂s2 = 0 for the fixed end, and

T = 0, ∂2Xk

∂s2 = 0 for the free end. The resulting set of equations are discretised
using a staggered arrangement and solved using a Newton method, by a direct
evaluation of the exact Jacobian matrix, which incorporates the given boundary
values. More details can be found in Favier et al [2013].

4 Validation of fluid structure interaction

The validation is first performed for the model of flexible flap alone (pure solid),
and subsequently the fluid solver is validated alone (pure fluid), by comparing with
the experiments . The flow unsteadiness allows one to identify and characterize
the time dependent dynamics of the oscillating flexible flaps.
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4.1 Flap model without fluid

To check the consistency of the structure model, the motion of a hanging flap
without ambient fluid and under a gravitational force is considered, as shown in
Figure 3a. The non-dimensional flexural rigidity is set to KB = 0, so that a flexible
flap (a pendulum) with an initial angle θo = 2o is examined. The time evolution
of the coordinate of the free extremity in the x-direction (∆x) is monitored by
setting the gravity to a value equivalent to Ri = 10. Figure 3b shows that the
time evolution of the free extremity position of the flap using the present model is
in good agreement with the analytical solution which can be obtained under the
small angles assumption [Favier et al, 2013].

4.2 Fluid simulation without flap

A fluid simulation without flap is then conducted in a computational domain
which is set to 22H × 3H (H is the height of flexible flap), in streamwise (x) and
vertical (y) direction respectively corresponding to the 2D case of the centerplane
in the experimental flow channel. Periodic boundary conditions are imposed in
x-direction, and no-slip conditions are applied on the upper and lower walls. The
flow is driven by an oscillating flow, by sinusoidally varying the pressure gradient
at a given flow frequency f = 1.0Hz as following:

∂p

∂x
= A sin(2πft) (13)

The present simulation follows a Womersley velocity profile, in the same way
as the analytical expression derived by Chandrasekaran et al [2005] for a squared
channel flow in the center-plane. Figure 4 indeed shows a good agreement between
simulation, experiment and the analytical solution of Chandrasekaran et al [2005]
at the inlet through one flow oscillation cycle. The Reynolds number of the present
simulation is Re = UmaxH/ν = 120, based on the characteristic streamwise veloc-
ity Umax and the flexible flap height H. The Womersley number defined with the
channel diameter L is α = L

√
2πf/ν = 15.

4.3 Fluid structure interaction

A two-way fluid structure interaction configuration is considered at the same di-
mensions and same boundary conditions as in section 4.2. The flexible flaps are
mounted on the bottom wall of the channel. Figure 1 shows the experimental
setup, where the same ratio 3.0 of channel height over flap length, the same flow
velocity profile and flow frequency, as the simulation case, are adopted. In the first
instance a refinement study was undertaken as shown in Figure 5. The metric L
refers to the number of Lagrangian markers along each flap, and it is obvious that
even for low resolutions the accuracy is good. A value of 35 Lagrangian points
per cilia is taken for subsequent computations. Also shown in Figure 5, is the L2
norm of the convergence, with respect to the prediction from the finest level of
refinement (L = 40). It is clear that the numerical method is of 2nd order accuracy
during these computations.

https://www.researchgate.net/publication/259841643_A_Lattice_Boltzmann-Immersed_Boundary_method_to_simulate_the_fluid_interaction_with_moving_and_slender_flexible_objects?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
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Fig. 5 Refinement study of coupled FSI solver (using LBM), showing tip
displacement (x coordinate) of flap in centre of array for increasing flap res-
olution. Also shown are zoom view (top right) and L2 convergence (red line
order 2, blue order 3)

Fig. 6 : Tip positions of flap in x-direction within three flow cycles. :
numerical results from LBM : : numerical results from N-S solver, ◦ ◦
: experiment. The letters Fi indicate the flexible flap number i.

Figure 6 provides a comparison of tip positions of flaps in x direction obtained
from both flow solvers, the experimental results are also plotted for comparison.
The initial observation is that both flow solvers return almost identical results for
this case, providing grounds for cross-validation of the two implementations. Minor
differences are likely to be due to differences in numerical settings, as well as the
impact of the significantly different nature of the two methodologies; for example
the LBM is effectively a compressible solver, while the current N-S method is
incompressible. The second observation is with respect to the experimental results,
and again, the agreement is strong. The main amplitude is well captured, although
a small ‘kick’ in the profile of the first flap (F1) is missed by both solvers. This
could be due to differences in the approximation of the structural parameters
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of the model, which slightly differ from experiments to numerics. Also, the 2D
approximation made in the numerical solvers may play a role on this phenomenon.
However, towards the more centrally located flaps, the agreement improves, with
finer detail of the tip motion at the oscillating extremities agreeing notably well
with the experimental data.

Further validation can be obtained from analysis of instantaneous flow velocity
vector (u, v) are as provided in Figure 7 (a-d) for the numerical results and Figure
7 (e-h) for the corresponding experimental results. Again the indication is for
an accurate prediction of tip location, and where streaklines are observable in
the experimental results, numerically predicted contours of velocity are in good
agreement also. The roll-up of shears layer can be seen due to the relative motion
of the forward mean flow and the backward motion of the flap tips and vice versa.
This will be investigated in more detail in the following section

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 7 Evolution of the flow over a half-period of the oscillation cycle. (a-d):
Contours of instantaneous flow velocity vectors (u, v) obtained by numerical
simulation; (e-h): Experimental snapshots of Schlieren images obtained at
the same instant as in the numerical simulation.
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5 Numerical results

We start by investigating and elucidating the principle flow mechanisms identified
in this case, and focus on two key aspects; the identified phase lag of the flaps,
and the cyclic generation of coherent structures.

5.1 Phase lag

Forced by the driving motion of the fluid, the flaps individually move at the same
frequency as the flow. However, there is a clear phase lag between adjacent flaps
as seen in the normalized flap tip position, see Figure 8. The displacements of
each flap tip levels off differently in time and they reach different maximum and
minimum values of ∆x/H. ∆t1 and ∆t2 are defined as the time differences between
two successive time instants when the flap tip reaches the position of its fixed
extremity in x-direction (∆x = 0). Due to the phase lag of flap response, which is
different depending on the flap location on x-direction, the values of ∆t1 and ∆t2
are different for each flap.
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Fig. 8 : Superimposed normalized tip deflections ∆x of flexible flaps for (a)
F1-F5; (b) F6-F10.

This phase lag between adjacent elements has already been observed in several
research works on waving motions of flexible plants, and plays an important role in
the emergence of the coherent waving motion of plants. It is known as Honami in
the case of resonant waving of wheat stalks for instance [Finnigan and Mulhearn,
1978a], or Monami in the case of aquatic waving plants [Nezu and Okamoto,
2010]. Despite numerous literature work associated with Honami/Monami, little
qualitative information [Finnigan and Mulhearn, 1978a] and no quantitative data
are available regarding the phase lag of these structures. On the other hand, a
similar wave-type motion pattern was observed in the case of flexible flaps attached
to the aft part of cylinder and it was found that this motion pattern plays an
important role in the modification of the wake [Kunze and Bruecker, 2012]. More
recent work focussing on an infinite array of flaps demonstrated that a Reynolds
dependence of the phase lag was associated with the size of the recirculating flow
between successive flaps, but the study was limited to infinite periodic arrays of
flaps [O’Connor et al, 2016]. Therefore the present results in the oscillating channel
flow can make a significant contribution to the understanding of this phenomenon.

https://www.researchgate.net/publication/234082422_Control_of_vortex_shedding_on_a_circular_cylinder_using_self-adaptive_hairy-flaps?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/227049748_Modeling_waving_crops_in_a_wind_tunnel?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/227049748_Modeling_waving_crops_in_a_wind_tunnel?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/227049748_Modeling_waving_crops_in_a_wind_tunnel?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/238176431_Turbulence_structure_and_coherent_motion_in_vegetated_open-channel_flows?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/238176431_Turbulence_structure_and_coherent_motion_in_vegetated_open-channel_flows?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==


Title Suppressed Due to Excessive Length 13

5.2 Detection of coherent eddies

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Fig. 9 : Instantaneous flow velocity vectors (u, v) represented by arrows
through one flow oscillation cycle. The channel dimension is normalized by
the flap height H. The colormaps correspond to the values of contours of
streamwise velocity u.

To investigate the flap dynamics and the phase lag evolution between adjacent
flaps, snapshots of instantaneous velocity field (u, v) through one flow cycle (T =
1.0s) are provided in Figure 9. Results reveal that flap 1 begins to deflect from
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its vertical position at t = 0.26 s in Figure 9 (a), and finally recovers this initial
position at t = 1.26 s in Figure 9 (j).

Just afterward the start of the cycle, at t = 0.5 s of Figure 9 (b), the bulk
flow velocity becomes positive (left to right) and a vortex is formed at the right
side of flap layer, as shown at x ≈ 14.25 in Figure 9 (c). Although initially small
this vortex quickly grows, as shown in Figures 9 (d-e). Consequently a region of
negative streamwise velocity is formed near the lower wall downstream of the flaps,
and very quickly induces a large deflection of the flexible flaps near to the right
side of the array. The largest deflection is experienced by flap 10, while deflections
are reduced progressively towards the channel centre, i.e. for flaps 9 to 6.

During the same period, the impinging cross flow induces a large deflection of
flap 1, which is initially notably greater than flaps 2-5. As the flow evolves this
deflection is transmitted through flaps 2 and 3, as shown in Figure 9 (c-d). This
wave-like motion results in a smoothly varying phase lag, as also indicated on
Figure 8 (a) for the approximate range 0.45 < t < 0.65.

From Figure 9 (f) onwards, the bulk flow velocity becomes negative (right to
left), and the reverse mechanism is observed.

Fig. 10 : (left) Instantaneous flow velocity vectors (u, v) represented by arrows
and contours of streamwise velocity u. (right) Path lines of tracer particles in the
corner of the flaps from experiment

1 2 3 4 5 6 7 8 9 10
Filament

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

∆
t/
T

Fig. 11 : Phase difference ratio ∆t/T (T is the oscillating flow cycle). The x-
axis indicates the flap positions in x-direction. The vertical blue line indicates
the channel centre position of x-direction.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 12 : (a-d): Instantaneous flow velocity vectors (u, v) represented by
arrows and color contours of streamwise velocity u; (e-h): Color contours of
instantaneous vorticity. The boundaries between uniform-momentum zones
are shown by red lines.

Under the driving motion of the oscillating flow, the flexible flap motion is thus
significantly influenced by the presence of the vortex, which periodically appears
near to both sides of the coating. Its presence is confirmed via comparison with
experimental observation, as shown in Figure 10.

Also, it appears that the temporal and spatial responses of the flexible flaps are
closely related to their distances from the channel centre position in streamwise
direction. As shown in Figure 11, this relationship is linear, i.e. the phase difference
∆t (∆t = ∆t1 −∆t2) of each flap tip position, normalized by the oscillating flow
cycle T , is proportional to their distance to the channel centre in x-direction. The
lack of symmetry reflects the initialisation of the flow, wherein the flaps are initially
arranged vertically and undergo initial deflection to the right, via a positive bulk
flow velocity.

Figure 12 shows several snapshots of instantaneous velocity field (u, v) and the
corresponding instantaneous vorticity. The coherent vortex observed in Figure 12
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(a-d) is clearly associated to large vorticity regions in Figure 12 (e-h). From Figure
9, it can be seen that the boundaries of the highlighed zones of uniform momentum
pass through the cores of coherent vortices, which suggests an important link
between coherent vortices and uniform-momentum zones, as it is also observed in
the analysis performed in the experimental results of Adrian et al [2000] and Nezu
and Okamoto [2010].

6 Conclusions

The physical mechanisms involved in the two-way interaction between an incom-
pressible oscillating channel flow and a coating made of flexible flaps have been
investigated in the present work. A Navier Stokes solver and a Lattice Boltzmann
solver have been used, and it is found that both methodologies are in principle
good agreement with the results of experiment at the same conditions, for similar
CPU costs. Thus, the incompressible or compressible nature of the solvers does
not play any role in this configuration involving flexible structures immersed in an
unsteady flow.

It is shown that a cyclically generated coherent vortex, occurring alternatively
near the entrance and the exit of the flap row, is the primary cause leading to the
smoothly varying phase difference of adjacent flaps. This coherent vortex genera-
tion cycle is expected to hold in general for the case of a finite array size, since it
depends on entrance and exit effects; i.e. flow impingement on the upstream end
of the array and recirculation on the downstream end. Where flap rows are infinite
in length, such entrance and exit effects are expected to vanish, and interaction
would be driven solely by incoherence in dynamic response of the flexible struc-
tures either by variation in stiffness or near the resonant excitation where phase
relationship is lost.

The observed effect is comparable to the situation of flaps in the aft part of a
cylinder in cross-flow. The flaps interact with the roll-up of the shear layer which
leads to a phase shift in formation of the von Karman vortices. This roll-up starts
along the lateral side-walls of the cylinder and vorticity is then swept along the
row of the flaps in transversal direction towards the inner part of the row, similar
as in the case discussed herein. Therefore the observed travelling wave-type motion
of the flaps in the cylinder wake Favier et al [2009]; Kunze and Bruecker [2012] is
a result of the phase-shift between neighbouring flaps as documented herein.
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as the BAE SYSTEMS Sir Richard Olver Chair in Aeronautical Engineering is
gratefully acknowledged herein. AR acknowledges support from the UK Engineer-
ing and Physical Sciences Research Council under the project UK Consortium on
Mesoscale Engineering Sciences (UKCOMES) (Grant No. EP/L00030X/1).



Title Suppressed Due to Excessive Length 17

References

Adrian R, Meinhart C, Tomkins C (2000) Vortex organization in the outer region of the
turbulent boundary layer. Journal of Fluid Mechanics 422:1–54

Bhatnagar P, Gross E, Krook M (1954) A model for collision processes in gases. i: small
amplitude processes in charged and neutral one-component system. Physical Review 94:511–
525

Chandrasekaran V, Cain A, Nishida T, Cattafesta L, Sheplak M (2005) Dynamic calibration
technique for thermal shear-stress sensors with mean flow. Experiments in Fluids 39:56–65

Chorin AJ (1968) Numerical solution of Navier-Stokes equations. Mathematics of Computation
22(104):745–762

Favier J, Dauptain A, Basso D, Bottaro A (2009) Passive separation control using a self-
adaptive hairy coating. Journal of Fluid Mechanics 627:451–483

Favier J, Revell A, Pinelli A (2013) A lattice boltzmann-immersed boundary method to simu-
late the fluid interaction with moving and slender flexible objects. Journal of Computational
Physics 261:145–161

Favier J, Revell A, Pinelli A (2015) Numerical study of flapping filaments in a uniform fluid
flow. Journal of Fluids and Structures 53:26–35

Finnigan JJ, Mulhearn PJ (1978a) Modelling waving crops in a wind tunnel. Boundary-Layer
Meteorology 14:253–277

Finnigan JJ, Mulhearn PJ (1978b) A simple mathematical model of airflow in waving plant
canopies. Boundary-Layer Meteorology 14:415–431

Guo Z, Zheng C, Shi B (2002) forcing term lbm. Physical review letters E 65(4)
Harlow FH, Welch E (1965) Numerical calculation of time-dependent viscous incompressible

flow of fluid with free surface. Physics of Fluids 8(12):2182–2189
Huang WX, Shin SJ, Sung HJ (2007) Simulation of flexible filaments in a uniform flow by the

immersed boundary method. Journal of Computational Physics 226(2):2206–2228
van Kan J (1986) A second-order accurate pressure correction scheme for viscous incompress-

ible flow. SIAM Journal on Scientific and Statistical Computing 7(3):870–891
Kim J, Moin P (1985) Application of a fractional-step method to incompressible navier-stokes

equations. Journal of Computational Physics 59(2):308–323
Kunze S, Bruecker C (2012) Control of vortex shedding on a circular cylinder using self-

adaptive hairy-flaps. Comptes Rendus Mcanique 340(1):41–56
Nepf HM (2012) Flow and transport in regions with aquatic vegetation. Annual Review of

Fluid Mechanics 44:123–142
Nezu I, Okamoto T (2010) The effect of coherent waving motion on turbulence structure in

flexible vegetated open channel flows. River Flow pp 429–436
O’Connor J, Revell A, Mandal P, Day P (2016) Application of a lattice boltzmann-immersed

boundary method for fluid-filament dynamics and flow sensing. Journal of Biomechanics
49(11):2143–2151

Peskin CS (1972) Flow patterns around heart valves: A numerical method. Journal of Com-
putational Physics 10(2):252–271

Peskin CS (2002) The immersed boundary method. Acta Numerica 11:1–39
Pinelli A, Naqavi I, Piomelli U, Favier J (2010) Immersed-boundary methods for general

finite-difference and finite-volume Navier–Stokes solvers. Journal of Computational Physics
229(24):9073–9091

Py C, Langre E, Moulia B, Hemon P (2005) Measurement of wind-induced motion of crop
canopiesfrom digital video images. Agricultural and Forest Meteorology 130:223–236

Py C, Langre E, Moulia B (2006) A frequency lock-in mechanism in the interaction between
wind and crop canopies. Journal of Fluid Mechanics 568:425–449

Qian Y, DHumieres D, Lallemand P (1992) Lattice bgk models for navier–stokes equation.
Europhysics Letters 17(6):479–484

Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of
particulate flows. Journal of Computational Physics 209(2):448–476

https://www.researchgate.net/publication/227259250_Dynamic_Calibration_Technique_for_Thermal_Shear-Stress_Sensors_with_Mean_Flow?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/227259250_Dynamic_Calibration_Technique_for_Thermal_Shear-Stress_Sensors_with_Mean_Flow?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/202232973_A_Model_for_Collision_Processes_in_Gases_I_Small_Amplitude_Processes_in_Charged_and_Neutral_One-Component_Systems?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/202232973_A_Model_for_Collision_Processes_in_Gases_I_Small_Amplitude_Processes_in_Charged_and_Neutral_One-Component_Systems?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/202232973_A_Model_for_Collision_Processes_in_Gases_I_Small_Amplitude_Processes_in_Charged_and_Neutral_One-Component_Systems?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/232003960_Passive_separation_control_using_a_self-adaptive_hairy_coating?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/232003960_Passive_separation_control_using_a_self-adaptive_hairy_coating?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/223549996_Simulation_of_flexible_filaments_in_a_uniform_flow_by_the_immersed_boundary_method?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/223549996_Simulation_of_flexible_filaments_in_a_uniform_flow_by_the_immersed_boundary_method?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/287148671_Application_of_a_Lattice_Boltzmann-Immersed_Boundary_Method_for_Fluid-Filament_Dynamics_and_Flow_Sensing?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/287148671_Application_of_a_Lattice_Boltzmann-Immersed_Boundary_Method_for_Fluid-Filament_Dynamics_and_Flow_Sensing?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/287148671_Application_of_a_Lattice_Boltzmann-Immersed_Boundary_Method_for_Fluid-Filament_Dynamics_and_Flow_Sensing?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222301124_Measurement_of_wind-induced_motion_of_crop_canopies_from_digital_video_images?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222301124_Measurement_of_wind-induced_motion_of_crop_canopies_from_digital_video_images?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/202232905_Lattice_BGK_Models_for_the_Navier-Stokes_Equations?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/202232905_Lattice_BGK_Models_for_the_Navier-Stokes_Equations?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/51997172_Vortex_organization_in_the_outer_region_of_the_turbulent_boundary_layer?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/51997172_Vortex_organization_in_the_outer_region_of_the_turbulent_boundary_layer?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/259841643_A_Lattice_Boltzmann-Immersed_Boundary_method_to_simulate_the_fluid_interaction_with_moving_and_slender_flexible_objects?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/259841643_A_Lattice_Boltzmann-Immersed_Boundary_method_to_simulate_the_fluid_interaction_with_moving_and_slender_flexible_objects?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/259841643_A_Lattice_Boltzmann-Immersed_Boundary_method_to_simulate_the_fluid_interaction_with_moving_and_slender_flexible_objects?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/234082422_Control_of_vortex_shedding_on_a_circular_cylinder_using_self-adaptive_hairy-flaps?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/234082422_Control_of_vortex_shedding_on_a_circular_cylinder_using_self-adaptive_hairy-flaps?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222512003_Flow_patterns_around_heart_valves_A_numerical_method?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222512003_Flow_patterns_around_heart_valves_A_numerical_method?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222298105_An_immersed_boundary_method_with_direct_forcing_for_the_simulation_of_particulate_flows?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222298105_An_immersed_boundary_method_with_direct_forcing_for_the_simulation_of_particulate_flows?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/303076834_Numerical_solution_of_the_Navier-Stokes_equation?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/303076834_Numerical_solution_of_the_Navier-Stokes_equation?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/227049748_Modeling_waving_crops_in_a_wind_tunnel?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/227049748_Modeling_waving_crops_in_a_wind_tunnel?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222444482_Application_of_a_frational-step_method_to_incompressible_Navier-Stokes_equations?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222444482_Application_of_a_frational-step_method_to_incompressible_Navier-Stokes_equations?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/51992522_Numerical_Calculation_of_Time-Dependent_Viscous_Incompressible_Flow_of_Fluid_With_Free_Surface?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/51992522_Numerical_Calculation_of_Time-Dependent_Viscous_Incompressible_Flow_of_Fluid_With_Free_Surface?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/269777106_Numerical_study_of_flapping_filaments_in_a_uniform_fluid_flow?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/269777106_Numerical_study_of_flapping_filaments_in_a_uniform_fluid_flow?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/226628577_A_simple_mathematical_model_of_airflow_in_waving_plant_canopies?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/226628577_A_simple_mathematical_model_of_airflow_in_waving_plant_canopies?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/234146126_Flow_and_Transport_in_Regions_with_Aquatic_Vegetation?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/234146126_Flow_and_Transport_in_Regions_with_Aquatic_Vegetation?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/243771948_A_Second-Order_Accurate_Pressure-Correction_Scheme_for_Viscous_Incompressible_Flow?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/243771948_A_Second-Order_Accurate_Pressure-Correction_Scheme_for_Viscous_Incompressible_Flow?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222897765_Immersed-boundary_methods_for_general_finite-difference_and_finite-volume_Navier-Stokes_solvers?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222897765_Immersed-boundary_methods_for_general_finite-difference_and_finite-volume_Navier-Stokes_solvers?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/222897765_Immersed-boundary_methods_for_general_finite-difference_and_finite-volume_Navier-Stokes_solvers?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/232004041_A_frequency_lock-in_mechanism_in_the_interaction_between_wind_and_crop_canopies?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/232004041_A_frequency_lock-in_mechanism_in_the_interaction_between_wind_and_crop_canopies?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/238176431_Turbulence_structure_and_coherent_motion_in_vegetated_open-channel_flows?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==
https://www.researchgate.net/publication/238176431_Turbulence_structure_and_coherent_motion_in_vegetated_open-channel_flows?el=1_x_8&enrichId=rgreq-4436bcaec7fea04984c79172dcc36abd-XXX&enrichSource=Y292ZXJQYWdlOzMwNzYxMjcxNDtBUzo0MjY1MTIxNTIzMDU2NjRAMTQ3ODY5OTgyOTIxNQ==

