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Abstract

The main contribution of this research is that it addresses the issues associated with

traditional information gathering and presents a novel semantic approach method to Web-

based discovery of previously unknown intelligence for effective decision making. It

provides a comprehensive theoretical background to the proposed solution together with a

demonstration of the effectiveness of the method from results of the experiments, showing

how the quality of collected information can be significantly enhanced by previously

unknown information derived from the available known facts.

The quality of decisions made in business and government relates directly to the

quality of the information used to formulate the decision. This information may be retrieved

from an organisation’s knowledge base (Intranet) or from the World Wide Web. The purpose

of this thesis is to investigate the specifics of information gathering from these sources. It has

studied a number of search techniques that rely on statistical and semantic analysis of

unstructured information, and identified benefits and limitations of these techniques. It was

concluded that enterprise search technologies can efficiently manipulate Intranet held

information, but require complex processing of large amount of textual information, which is

not feasible and scalable when applied to the Web.

Based upon the search methods investigations, this thesis introduces a new semantic

Web-based search method that automates the correlation of topic-related content for

discovery of hitherto unknown information from disparate and widely diverse Web-sources.

This method is in contrast to traditional search methods that are constrained to specific or

narrowly defined topics. It addresses the three key aspects of the information: semantic

closeness to search topic, information completeness, and quality. The method is based on

algorithms from Natural Language Processing combined with techniques adapted from

grounded theory and Dempster-Shafer theory to significantly enhance the discovery of topic

related Web-sourced intelligence.

This thesis also describes the development of the new search solution by showing

the integration of the mathematical methods used as well as the development of the working

model. Real-world experiments demonstrate the effectiveness of the model with supporting

performance analysis, showing that the quality of the extracted content is significantly

enhanced comparing to the traditional Web-search approaches.
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Chapter 1

Introduction

1.1. Identifying the Problem

The quality of decisions made in business and government correlates directly to the quality

of the information used to support these decisions (McGilvray, 2010). Much of the information

used for intelligence analysis may, in the future, be harvested from the Web as this is fast becoming

the richest source. This research explored the existing methods of information search and retrieval

from the Web as well as from an organisation’s locally stored knowledge sources. Three criteria

were identified for information that was retrieved by the effective search model – semantic

relevance, quality and completeness. The effectiveness of the existing techniques was analysed

upon these three criteria. The analysis showed that none of the available methods could effectively

retrieve Web information that is semantically relevant to the search topic (that is not just a set of

keywords), or provide a metric to identify how good the new piece of information was. In addition,

all of the explored methods relied on human judgement to decide how well the new information

complemented the already existing knowledge on the search topic. Uncertainty about the amount of

information available may result in either information deficit or overload, both of which, in return,

lead to poor decision making.

This research explored various Web-based search techniques as well as methodologies that

were designed to search across the Intranet held information. Both approaches can rely on statistics

or semantics. Statistical Web-based search systems, such as Google, usually incorporate Latent

Sematic Indexing (Langville & Meye, 2009) for quick identification of textual items with content

similar to the search query. Semantic Web search may involve predefined ontologies (Gruber,

1993) to search across predefined topics or data sources.

As for the Intranet stored knowledge base, relatively smaller amount of non-dynamic

information allow semantic search methods to work effectively within enterprise knowledge. This

knowledge can also be efficiently searched using enterprise search systems based upon either

semantics or statistics. Statistical approaches, such as meaning-based computing (Autonomy, 2008),

rely on frequency analysis of terms that correspond to specific concepts. Semantic approaches,

similarly to the Web-based search, would also involve ontologies to support query answering

against distributed and/or heterogeneous data sources (Stoilos, Grau, & Horroks, 2010).
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However, there has not been identified a Web-wide search method that would combine the

time efficiency of the Web-based search approaches with the semantic accuracy of the Intranet-

based search methods. As originally envisaged by Berners-Lee (2001), the existing Web was

expected to form into a Semantic Web, which encourages the inclusion of semantic content in Web-

pages, making it both human readable and machine readable. However, Semantic Web is still in its

cradle, even though developers have started to publish information using RDF (RDF Working

Group, 2004) making it fit for the Semantic Web. Ontologies and typical queries are often fixed at

application design time (Stoilos, Grau, & Horroks, 2010) and, thus, put restrictions over the

flexibility of the search. Moreover, statistical Intranet-based search technologies require

comprehensive automatic clustering, indexing and (often automatic) tagging of the locally stored

knowledge base information, making it hard to apply to the big data of the Web.

In order to overcome the above issues, there is a need to systematically identify the

semantic relationship between the search topic and the Web-content, and be able to provide

information analysts with a quality measure to judge the importance of found information.

Moreover, it is important to keep track of the information growth rate due to the risk of information

level to become critical and exceed the optimal level, so that it creates the information overload and

may lead to the lower decision quality. Therefore, the aim for the analysts will be to collect as much

relevant information as possible, thus not exceeding the optimal amount of it and, hence, keeping

the decision quality as high as possible.

Information systems are designed to assist human analysts to make judgement of the

complex real world using a significantly reduced amount of available information stored

electronically. Traditional information retrieval often violates the fundamental law associated with

handling complexity – the “Law of Requisite Variety” (Ashby, 1956), which states that only variety

can master variety. Applying the law to the exercise of information retrieval from the Web, if the

retrieval algorithm does not hold enough variety to deal with the scope and complexity of the Web,

its results become attenuated, thus, losing information in the process. In effect, there is a need to

identify a search solution for the Web that can handle the vast variety and quantity of information

involved, and then to filter relevant Web-pages of high quality, at the same time discarding

information that is either irrelevant information noise or too topically remote. However, identifying

semantic boundaries of the search topic is not always an easy exercise for information analysts.

Information seekers may come across the situation when they may not have a developed

idea of what information they are searching for. Without any knowledge of what information is

available for retrieval one is unable to form a suitable query for an information retrieval system.

However, a number of studies have shown that although users may have difficulty expressing
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exactly the information they want, they are able to recognise relevant information when they see it.

According to (Barry and Schamber, 1998), the majority of information retrieval techniques are

based on the presence or absence of keywords in relevant documents. However, the reasons why a

user may select a document as relevant can depend on many more aspects than simply which terms

appear in the document. As indicated by Denos et al. (1997), although users can give explicit

reasons for assessing a document as relevant, information retrieval systems cannot use this

information to improve a search because they lack the flexibility to detect why a user has marked a

document as relevant. This means that traditional keyword search approach leads to missed relevant

information since it is impossible to express the “unknown unknowns” related to the search topic in

a query.

The concept of the “unknown unknowns” was first introduced by Donald Rumsfeld (2002)

in his well-reported speech: “There are known knowns. These are things we know that we know.

There are known unknowns – things that we know we don’t know. But there are also unknown

unknowns. There are things we do not know we don’t know.” Unknown unknowns make a great

impact on quality of decisions as they account for decent limitations and unknown risks, and, hence,

should be identified and considered. They reflect implicit assumptions and cannot be addressed due

to their implicit nature. In other words, when using an information retrieval system, it is impossible

to create a search query that would reflect unknown unknowns because “we do not know we don’t

know”. Thus, decision makers can only rely on their known knowns and known unknowns. And

hitherto there has been no process that can measure whether these are sufficient for a good decision

to be made.

This thesis addresses this issue and relies on the Grounded theory (Martin & Turner, 1986),

(Corbin & Strauss, 2008) that has been successfully used in building a hypothesis (theory) using

interviews. As the amount of information, that would be considered enough to build the evidence

leading to sensible decision making, is unknown at the beginning of the information retrieval, this

research relies on the important characteristic of Grounded theory – it does not require any prior

information to generate theory from data.

In order to address the issue of the quality criteria for the information retrieval system, this

research utilises Dempster-Shafer theory (Shafer, 1976) that is traditionally used to express

uncertain judgements of experts, in this case to measure the quality level associated with gathered

information. No manual processing or pre-defining of data source models of any type are required

for this theory to calculate the information quality score based on the semantic parameter.
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1.2.Research Objective

During the process of decision making one can face uncertainty, unpredictability, or

probabilistic nature of the result that is influenced by a number of factors, both internal and

external. Combining known methods has the potential to reduce uncertainty through the medium of

evidential analysis. The strategy has to be developed that can be used to automatically find and

analyse the collected information in order to improve the decision making and decrease the level of

uncertainty associated with it.

The objective of this research is to develop an algorithm that supports topic related search

for Web-based information and estimates the quality of the extracted content, proving it is

significantly enhanced comparing to the traditional Web-search approaches.

This thesis proposes a new approach that supports Web-wide search of topic related

information utilising the existing methods from natural language processing for filtering relevant

Web-search results, grounded theory to test the completeness of collected evidence and evidential

analysis via Dempster-Shafer theory to test the quality of gathered information. High quality

information will form a topic-focused knowledge base and can then be effectively manipulated by

an enterprise-search engine.

1.3.Research Method

The research method was derived directly from the objective to develop an algorithm that

supports topic related search for Web-based information and estimates the quality of the extracted

content, proving it is significantly enhanced comparing to the traditional Web-search approaches.

The following steps were identified as necessary to meet the objective.

 To investigate the structure of the World Wide Web (the Web).

 To investigate the information gathering process and the ways of information

representation in order to ascertain why richness cannot be accessed via a direct

keyword based search. Considering the decisions have to be made about the real wold

situations, it is important to analyse how information about the real world is stored and

accessed, and what effect the limited access to that information may have on decision

making. Also, this step would involve exploring the ways of representing and

estimating uncertainty on a search topic, as well as how to track the reduction of

uncertainty during information discovery.
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 To investigate how current search engines operate and to establish why they cannot

fulfil a requirement to identify and retrieve information. At this stage, it will be

necessary to explore the methods used for the Web search as well as enterprise search,

and identify their benefits and limitations, especially when targeted at the discovery of

unknown unknowns.

 To investigate research concepts and methods that can be used (or further developed to

be used) with a conventional search engine to enrich information retrieval through the

discovery of unknown unknowns. Such methods would provide:

o an effective approach to formulate a topic-focused collection of the Web content

that is semantically related to the search topic,

o a mechanism for tracking the growth of information and the reduction of

uncertainty during information discovery,

o a quality measurement of the extracted content.

 Develop a search model that will integrate a conventional search engine with concepts

and methods that will undertake the search. This would need to be a working model that

can be tested using the Web.

 Test the model through use cases and undertake analysis of the results. Develop

experiments that would address the efficiency of the model to find the Web content that

is relevant to the defined search topic, as well as to track the discovery rate of unknown

unknowns, and to provide a reliable quality metric that would assess the discovered

information from the richness viewpoint.

1.4.Contribution

The main contribution of this thesis is that it addresses the mentioned search issues and

presents a novel semantic approach method to Web-based discovery of previously unknown

intelligence. It provides a comprehensive theoretical background to the proposed solution together

with a demonstration of the effectiveness of the method from results of the experiments, showing

how the quality of collected information can be significantly enhanced by previously unknown

information derived from the available known facts.

The research objective has been met through the developed algorithm that addresses all

three identified criteria of the effective topic-related Web-wide information search. As such, the

semantic closeness test relies on the combination of statistical and lexical methods from the Natural
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Language Processing. Application of Grounded theory approach allows tracking of the semantic

expansion rate of the growing knowledge base and keep it under control. Finally, the proposed

algorithm introduces a new quality measure to judge the importance of found information based on

its semantic value.

The research objective is addressed through the chapters of the thesis.

1.5. Thesis Structure

1.5.1. Chapter 2

Chapter 2 introduces the nature of information gathering for decision making support and

gives background to the subject. This chapter will specifically address the following research

method steps:

Investigate the structure of the Web.

Investigate the information gathering process and the ways of information

representation in order to ascertain why richness cannot be accessed via a direct

keyword based search.

Analyse how information about the real world is stored and accessed, and what effect

the limited access to that information may have on decision making.

Explore the ways of representing and estimating uncertainty on a search topic, as well

as how to track the reduction of uncertainty during information discovery.

Investigate how current search engines operate and to establish why they cannot fulfil a

requirement to identify and retrieve information.

Explore the methods used for the Web search as well as enterprise search, and identify

their benefits and limitations, especially when targeted at the discovery of unknowns.

As such, it will address the issues associated with the rapidly growing size of the Web, data

verification and data integration. A background is provided to the methods of the traditional

information retrieval in both the Web and Intranet. Two fundamental theories are introduced in this
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chapter – Ashby’s Law of Requisite Variety and Rumsfeld’s philosophy, both of which are

explained in the context of information retrieval. It describes an individual’s knowledge on the topic

from the perspective of varying level of uncertainty and provides detail to the conversion of

“unknowns” into “knowns” during information discovery.

This chapter also demonstrates the research view of the information flow related to the

process of decision making. It is followed by the discussion of current methods of the Web-wide

search of topic related information. Among them are statistical methods such as Latent Semantic

Indexing, and semantic search methods that rely on ontologies. In addition, it looks at the effective

Intranet search methods, which also include semantic approach and statistical methods, such as

meaning-based computing, as well as the developing theory of strongly semantic information,

which focuses on calculating semantic content. This chapter addresses the issues associated with the

above methods of information collection and sharing as well as techniques that have been

previously proposed by other researchers in order to overcome these issues.

By the end of Chapter 2 the proposed solution is approved. It will be shown that in contrast

to the current research, which tends to focus on specifically selected topics, the new solution has no

limitations for Web-sources and is open to perform search and analysis through any Web-page

available to the search engine. The proposed new algorithm may be used to harvest Web-wide data

in accordance with controlled parameters and subsequently transfer this data to a knowledge base

where enterprise search technologies may be applied in the traditional way.

1.5.2. Chapter 3

In Chapter 3 the new algorithm is introduced. It will address the following research step:

Investigate research concepts and methods that can be used (or further developed to be

used) with a conventional search engine to enrich information retrieval through the

discovery of unknown unknowns. Such methods would provide:

o an effective approach to formulate a topic-focused collection of the Web content that

is semantically related to the search topic,

o a mechanism for tracking the growth of information and the reduction of uncertainty

during information discovery,

o a quality measurement of the extracted content.
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This chapter aims to describe the logic behind the proposed approach and will provide on

qualitative rather than quantitative details of each stage of the algorithm. The proposed method

consists of the following steps:

1. Identify target knowledge and search objectives;

2. Perform Web-search;

3. Pre-process Web-pages;

4. Perform semantic distance measurement;

5. Build/enhance evidence;

6. Test the evidence quality;

7. Identify further search direction, if necessary.

Steps 4, 5, and 6 represent three stages of filtering and form the major part of the algorithm

and incorporate the existing methods from Natural Language Processing, Grounded theory and

Dempster-Shafer theory. Thus, for each query, the Natural Language Processing stage filters out

only those pages which are semantically relevant to the search topic. Then, the Grounded theory

part assesses the Web-pages for holding new information without exhausting the search topic.

Lastly, the evidence on the Web-pages is analysed with the Dempster-Shafer theory and its quality

level is calculated. It will be shown that such filtering process permits to significantly reduce the

length of the initial search results list returned by a traditional search engine, bringing the high-

quality documents to the top of the list.

Chapter 3 also describes the fundamental elements required for the proposed algorithm to

work. These are as follows:

 initial knowledge base;

 list of queries for search engine;

 Roget's thesaurus;

 list of stop-words;

 search engine;

 Python libraries and script files.

The logic behind the proposed algorithm is that visualises using a rich picture diagram.

1.5.3. Chapter 4

Following the qualitative description of the algorithm in Chapter 3, a detailed quantitative

overview of each stage of the algorithm is given in Chapter 4. The aim of this chapter is to address

the research step:
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Develop a search model that will integrate a conventional search engine with concepts and

methods that will undertake the search.

It will address the mathematics behind the proposed algorithm. In particular, this chapter

will explain how the initial knowledge base and the collection of extracted texts from the Web-

pages are processed as part of semantic analysis. This involves using a hybrid method detailed in

(Hirst & Mohammad, 2006), which combines the co-occurrence statistics with the information in a

lexical source. At this stage, a text-concept matrix is built for the initial knowledge base and the

Web-page extracted text, followed by the Word-Concept Co-occurrence Matrices and Strength of

Association Matrices. The chapter will develop a formula for measuring semantic closeness of

Web-pages against the initial search topic, using semantic distances between distributional profiles

of concepts in two texts.

Chapter 4 will also describe how the collected information is tested for completeness and

quality. Grounded theory is used to analyse the amount of new information coming from the Web-

pages and to test the completeness of gathered information. This chapter presents mathematics for

calculating cumulative amount of new concepts in Web-pages content if they were to be added to

the initial knowledge base.

As for the quality measurement stage, the mathematical connection between information

retrieval and Dempster-Shafer theory is shown. The fundamental concepts of the theory are put into

the perspective of information retrieval. Among them are the frame of discernment, basic

probability assignment or mass function, and Belief function, which is used as the quality metric of

information in each text from the semantic viewpoint.

By the end of this chapter a clear mathematical model is created, supporting the theory

behind the new algorithm.

1.5.4. Chapter 5

In Chapters 5 the process of building the experimental part of the research is explained.

The aim of this chapter is to further address the following step of the research method:

Develop a search model that will integrate a conventional search engine with concepts and

methods that will undertake the search. This would need to be a working model that can be

tested using the Web.
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The working prototype is implemented using Python. The aim of this chapter is to give an

overview to the model concept and model design, as well as to show how the software was built and

tested.

It provides technical details for the fundamental elements of the algorithm described in

Chapter 3. UML class diagram for the main module of the software and UML sequence diagrams

are presented.

The algorithm presented in this thesis is semi-automated. Chapter 5 gives explanation to

the most important pieces of the Python code in the form of pseudo-code. As such, pseudo-code is

developed for processing of Google results, extracted text pre-processing and semantic closeness

measurement, as well as module with Grounded theory based completeness test and Dempster-

Shafer based quality test software modules.

Full program code is available in the Appendix at the end of this thesis.

Chapter 5 also develops model testing on the example of the search topic “cocaine

smuggling”. The test query “cocaine production and distribution” was chosen to be focused around

the search topic. Precision and recall metrics were used to assess the accuracy of the analysis.

1.5.5. Chapter 6

Chapter 6 provides details of running the experiments, from data collection to model runs.

Following the development of model design and software discussed in the previous chapter, this

chapter specifically addresses the following step of the research method:

Test the model through use cases and undertake analysis of the results. Develop

experiments that would address the efficiency of the model to find the Web content that is

relevant to the defined search topic, as well as to track the discovery rate of unknown

unknowns, and to provide a reliable quality metric that would assess the discovered

information from the richness viewpoint.

The aim of the experiments was to evaluate whether the suggested method significantly

improves the process of decision making by extracting only relevant high quality information from

the Web.

In total, five experiments were run. Experiments were split in two parts. The first part of

the experiments (Experiments 1, 2 and 3) had an objective of assessing the system’s ability to find
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and filter Web-pages given a well-defined initial knowledge base and relevant queries. Two topics

were used – “tobacco industry” and “cocaine smuggling”, queries were chosen to be semantically

focused around the search topic.

The second part of the experiments (Experiments 4 and 5) were aimed at assessing the

ability of the system to identify relevant information of high quality for a search topic, assuming

that the topic understanding is incomplete and poorly defined. Search topics used were “coffee

production” and “tobacco industry”.

The experiment results are illustrated with various graphs showing the following

parameters:

 reduction in Web-pages amount after three stages of filtering;

 distribution of semantic closeness values across five queries;

 cumulative KU conversion rate across five queries;

 quality change for top search results.

The chapter is concluded by the table that details and summarises the results of all five

experiments.

1.5.6. Chapter 7

Chapter 7 discusses how the research objective was addressed throughout the developed

research method. The aim of this chapter is to show that the quality of collected information can be

significantly enhanced with the use of the research-developed algorithm. It will outline key research

assumptions and findings in accordance with the set research method addressing each of the

research method steps and discussing the implications of the research and application of the results

presented in the previous chapters. The key research results are summarised at the end of the

chapter.

1.5.7. Chapter 8

Chapter 8 discusses possible future work that may improve the performance of the

proposed search method. It will explore quality metric of the method and suggest other parameters

that may be considered in order to assess quality of a Web-page as a source of information in

addition to the semantic value of the textual content.
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Web-page content extraction techniques will be discussed that can replace the suggested

AlchemyAPI tool and significantly reduce the time of text extraction form Web-pages. This chapter

will also discuss how the stop-word list adjustment may affect the performance of the search model.

Code optimisation and overall performance of the search model are explored in order for

the created working model to produce results faster with minimised technical requirements.

1.5.8. Chapter 9

Chapter 9 concludes the research and summarises its results.

This thesis introduces a new semantic Web-based search method that automates the

correlation of topic-related content for discovery of hitherto unknown information from disparate

and widely diverse Web-sources. This method is in contrast to traditional search methods that are

constrained to specific or narrowly defined topics. It addresses the three key aspects of the

information one or more of which the existing solutions lack: semantic closeness to search topic,

information completeness, and quality.

In order to meet the research objective, a research method was developed and addressed

throughout the chapters of this thesis.

The research-developed method is based on algorithms from Natural Language Processing

combined with techniques adapted from Grounded theory and Dempster-Shafer theory to

significantly enhance the discovery of topic related Web-sourced intelligence. It also shows that the

new solution overcomes limitations associated with the traditional methods and is open to perform

search and analysis through any Web-page available to the search engine.

The list of references is available at the end of the thesis.
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Chapter 2

Detailed Description of the Problem

2.1 Overview to Chapter

The aim of this chapter is to explore the nature of information gathering for decision

making support at the corporate level within commerce or business, or within the machinery

of government. This chapter will specifically address the following research method steps:

Investigate the structure of the Web.

Investigate the information gathering process and the ways of information

representation in order to ascertain why richness cannot be accessed via a direct

keyword based search. Analyse how information about the real world is stored

and accessed, and what effect the limited access to that information may have on

decision making.

Explore the ways of representing and estimating uncertainty on a search topic, as

well as how to track the reduction of uncertainty during information discovery.

Investigate how current search engines operate and to establish why they cannot

fulfil a requirement to identify and retrieve information. Explore the methods used

for the Web search as well as enterprise search, and identify their benefits and

limitations, especially when targeted at the discovery of unknowns.

The chapter will establish the foundations for the development of the model required

for this research. Accepting that a significant amount of information needed for good decision

making will be drawn from the Web, this source is expected to increase substantially in the

near future. Given that current search engines are not structured to gather increased richness

in information, the true value of the Web information may not be realised. The use of

‘richness’ in this context relates to a topic’s true breadth and depth and not necessarily to
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priorities of search-engine imposed page priorities. This chapter will therefore delve into the

shortfalls of current Web search technology in order to define better the problem that has to

be addressed, and hence focusing on the objective of this research.

The chapter will first focus on information gathering for decision making (section

2.2). This section reiterates the need for current and reliable information to support good

decision making, and then examines Web data to assess how well it can provide current and

reliable information. The section also introduces two key theories which will be used as

underpinning tenets for this research; Ashby’s Law of Requisite Variety, and Donald

Rumsfeld’s philosophy on Known Knowns and Unknowns. Nature of information gathering

and the scope of the web are discussed in section 2.3.

Section 2.4 will investigate current methods for Web-wide search together with the

search within the boundaries of information system for topic related information. The

purpose here will be to identify the weaknesses associated with capturing the richness of

information required. Important mathematics for analysis used in this research will be

identified at this stage.

Section 2.5 will address the issues related to Web-based intelligence gathering where

quality and relevance become important. Further mathematical analysis and measurement

tools are introduced which will be also required for this research.

The chapter provides the necessary background in the body of this research which is

the subject for Chapter 3.

2.2 Information Gathering for Decision Making

2.2.1 The Web as an information source

For individuals with responsibility to be able to formulate good decisions they

require current and reliable information (Eppler, 2006). Otherwise the decision made could

be flawed. The relationship between data and knowledge and the difference between the

terms are important. A good clarification of these terms is given in (Ackoff, 2010). Data

represent a set of bytes, numbers, symbols and objects, collected on a daily basis. Organised

data are information; they are pre-processed and arranged into structures. Knowledge is

integrated information, and includes facts and relationships that have been recognised,

discovered or learned.
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More broadly, information can be defined as organised data, i.e. data with context

added (Michalewicz, 2007). Data can be held in paper form or stored digitally. One of the

aspects of successful decision making is being able to access data from a variety of different

sources and transform these data into information, and then into knowledge. This thesis will

not further clarify the difference between the terms data and information and will use the two

terms interchangeably.

The richest source of digitally stored information is the World Wide Web or “the

Web” (Fensel, et al., 2006). The Web source can be described as omnipotent or pervasive and

grows exponentially in size (The Economist, 2010). It is not only the rapid growth of data

that is causing concern. It has become necessary to develop new information retrieval

methods since only a small amount of data is structured and much of it is scattered

throughout the world. Moreover, the only visible side of the Web is Web-pages. But most of

the information is stored behind – in the invisible Web (Barker, 2004), also the access to

which is either restricted by privilege or it has to be paid for. Section 2.3 will discuss the

structure of the Web and what can be accessed by means of a traditional search engine.

Traditionally decision making have used locally sourced data, i.e. in paper and

digital files or 'owned' databases as a basis for decisions. It is estimated that less than 20% of

created information is structured and stored in databases (Autonomy, 2009). The rest 80% of

digital data in the world is not formally structured and is free format digital content, that is

less easily retrievable and usable. Furthermore, databases do not provide users with

meaningful information since their main purpose is to store data (Hersh, 2008). To achieve an

acceptable degree of integrity the data to be stored is pre-processed to defined structures, but

this acts to remove some of the meaning attributed to the data.

However, as business and government become international, locally held data will

rapidly become a small subset of the data required for good and reliable decisions. These

decisions could embrace commerce, international relations and intelligence. A number of

intelligence analysis shortfalls have failed to prevent atrocities with the course be directly

attributable to decision makers not having current data available. One of such examples could

relate to an accident happened in September 2000 (BBC News, 2000) when the FBI arrested

a man who allegedly carried out one of the most devastating financial frauds seen on the

Internet yet. The incident renews concerns about the accuracy of information distributed via

the Internet. Professional publications are not immune to bad information.

International business is not efficient owing to parochial views being taken rather

than from a global perspective. Good managed decisions rely on the information that is
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the emerging issues and identify possible options for solutions. Effective decisions not only

cost less, but also they lead to fast and better results.

At this point Ashby’s Law of Requisite Variety and Rumsfeld’s Philosophy are

introduced in order to develop base theory for this research.

2.2.2 Ashby’s Law of Requisite Variety

The idea of information retrieval systems often misses the fundamental laws

associated with handling complexity. One of them is Ashby’s Law of Requisite Variety. In

the middle of the 20th century William Ross Ashby formulated the fundamental «Law of

Requisite Variety» in his book «An Introduction to Cybernetics» (Ashby, 1956). In

cybernetics the term variety denotes the total number of distinct degrees of freedom or states

of a system. It was introduced by Ashby to define the count of the total number of states of a

system.

If there is a certain system, it has an internal structure, but there are also external

conditions. A variety of a system is a set of its conditions, possible as a result of influence of

an environment, and action of the internal reasons. And the life of this system is caused by

interaction of a variety of an environment and an internal variety of system.

According to Ashby, the Law of Requisite Variety states that only variety can master

variety, reducing disturbances and promoting harmonious order. When the law is applied to

the Web search exercise, it becomes clear that the retrieval algorithm may not be amplified

enough to deal with the scope and complexity of the Internet, and its results appear to be

attenuated in an ad hoc manner, thus, losing information in the process.

If variety of the environment is smaller than variety of the system, the system starts

to adapt its environment by exporting its variety outside. If variety of the environment is

larger than variety of the system, the system itself needs to be arranged under the advance

growth of complexity of the environment, but this is not always possible. In this case the

system fails or becomes controlled by another system. In order for the system to remain

stable, the number of states of its control mechanism must be greater than or equal to the

number of states in the system being controlled. In other words, the system should

continuously support such level of internal variety which would correspond to variety of the

environment. Only in this case the system is capable of keeping a balance with the

environment.
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To put this further in context for information systems an example is provided. When

an information system is first designed for a business, the variety of the business will equal

the variety of its business environment. As the business environment changes (in the real

world this change could be rapid) the variety of the business environment can rapidly exceed

the variety of the designed information system. Such change would require the information

system to be redesigned in order for it to be able to balance the complexities of the business

and the controlled environment; however, such change cannot normally be achieved rapidly

enough.

Moreover, if the Internet as an information source is considered to be a network with

a floating number of elements, there is no limit to the information that can be held. It will

never match the amount of the information from the real world, where the decisions are made

and where such decisions affect the real world. This research considered the question of

variety during the development of retrieval approach.

2.2.3 Rumsfeld’s philosophy

The former USA secretary of defence Donald Rumsfeld said in his speech

(Rumsfeld, 2002): “There are known knowns. These are things we know that we know. There

are known unknowns – things that we know we don’t know. But there are also unknown

unknowns. There are things we do not know we don’t know.” It is the last one – unknown

unknowns – that is of the highest value. Known unknowns (KU) reflect explicit assumptions

and therefore can be addressed. Unknown unknowns (UU) reflect implicit assumptions and

cannot be addressed due to their implicit nature. When summed up both KU and UU reflect

the uncertainty.

This research assumes, that considering an individual’s current knowledge, any topic

on any subject can be split into KK, KU and UU. The ratio of all three will be different for

different people. The diagram in Figure 2.3 schematically shows how an individual’s

knowledge on a subject can be split into KK, KU and UU.
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the UU pool will be the bigger part of the total knowledge on the subject. In this case, the

uncertainty is much greater that his knowledge.

With discovery of new information (middle pillar), the KK circle grows in size

pushing the uncertainty level down. Moreover, it creates changes in the structure of

uncertainty – with expansion of the KK the amount of KU grows reducing the level of UU.

The right pillar demonstrates the changes that relate to discovery of a significant amount of

new information which makes an individual’s knowledge on the topic close to exhaustion.

The ideal model would correspond to the uncertainty level approaching zero, i.e. all

the UU are discovered and converted to KU and KK. Such conversion of “unknowns” into

“knowns” is the main purpose of information discovery and is one of the major ideas that lie

behind this research.

2.2.4 Conversion from KU into KK

Donald Rumsfeld (2002) defined the terms “known knowns” (KK), “known

unknowns” (KU) and “unknown unknowns” (UU). Effective decision-making requires

trusted, focused and relevant information. We should be comfortable with both KK and KU,

as these are straightforward to find. The problem being that much of the rich information

required for good decisions may be in the category of UU. So the important question to be

asked is how we find the relevant UU to enrich and improve decision-making? In effect there

is a need to identify a search solution that can handle the vast amounts of information

involved and in the very many different format types. Such solution is the subject of this

thesis.

Not all the information from the real world becomes stored. A part of the real-world

representation can be seen as held within the global knowledge base. Noteworthy, this part is

much smaller than the rest of the information left behind. The global knowledge base can

only store information about the events in the real world that are observed by various sensors

(human, technology). The rest of events remain unknown.

Figure 2.5 briefly demonstrates the relationship between the real world and an

individual’s knowledge during the process of information discovery.
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Figure 2.5 – The real world and an individual’s knowledge

In order to make a decision about the real world an individual will have only a

limited access to the information stored in the global knowledge base. That is, for example,

the individual will be able to talk only to people who can be contacted, or browse the

information online that is seen by a search engine. However, the individual will never be able

to get access to all the information since only part of it is replicated. Therefore, the

individual’s knowledge on the topic of the decision is limited to the information found and,

thus, the individual will have to amplify that limited information (according to the law of

requisite variety) and produce new knowledge to make a decision about the real world or

affect the real world. What is important, if the information acquired is of poor quality and

there is still a large part of uncertainty uncovered, the effects on the real world can be serious

and dangerous.

2.3 Nature of Information Gathering

2.3.1 Scope of the Web

The world holds a vast amount of printed and digital information. Information can

be broadly defined as organised data, e.g. data with context added (Michalewicz, 2007).

Quantifying the total amount of information that exists in the world is hard, but it is clear that

it grows exponentially every year (The Economist, 2010). The issue of information
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architecture was raised by (Morville & Rosenfeld, 2006) highlighting the importance of being

able to get the right information fast.

A vast amount of information is a form of virtual representation of real world

situations. It is important to understand that real world is changing all the time, and human

use sensors of various types to gather data and information and store in a global knowledge

base. The Global knowledge base is persistent data, that is the source of information for any

report that is written and any decision is made.

Modern world generates large amount of information in every moment of time. One

part of information remains unknown just because there was no record made about it. The

other part stays in the Global knowledge base, formed of people's memories, printed material,

digital world, etc. While the real world is dynamic and changes all the time, the global

knowledge base is persistent. Obviously, the set of all recorded information is just a reflection

of the real world and contains only a fraction of total information produced.

It is noteworthy that, if the decision has to be made about the event in the real world,

the only information an individual can rely on will be stored in the global knowledge base.

And for this decision to be as good as possible, the individual would have to form up a set of

problem related information of highest quality. So that when the gathered information is

amplified to match it with the real world, according to Ashby’s Law of Requisite Variety,

there are fewer mistakes during the amplification process, hence, the higher chance of correct

decision making.

The rich picture below (Figure 2.6) demonstrates in schematic form the information

flow related to the process of decision making. This thesis will focus on the content of the

World Wide Web, as a part of digital set of the global knowledge base.

When an individual forms a query about the situation observed in the real world or

the Web, the information being used also goes through attenuation, and upon his best

knowledge the individual would create a set of keywords for a search engine that would

potentially reflect the search topic. Moreover, an individual who is going to analyse this data

to write a report to a decision maker will do so based on the data from the global knowledge

base. Section “2.4.2 – Searching the Web” will look at the query and search mechanism at a

more detailed level, while section “2.4.3 – Effective Intranet Search” will explore the

techniques behind searching within the boundaries of a locally held information source.

According to Ashby and his law of requisite variety (Ashby, 1956) it will be

impossible to find the desirable information about the query on the Web, unless it has been

recorded there by a real world observer. Thus, it is more likely to find an information online
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about something that was taken from a published source (book, radio, TV, etc), rather than

something that was observed by somebody in the real world, because the interpretations of

the event can be different or misinterpretation may take place. That is why search on a

complex query often fails – it is quite difficult, even impossible, to predict how information

about a situation was transformed by the publisher, we do not know what we do not know.
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2.4 Information Discovery from the World-Wide Web

2.4.1 Finding information on the Web

Well managed decisions rely on information that is relevant, trustworthy and

complete (English, 2009). Managed wisely, information can be used to unlock new sources of

economic value or provide fresh ideas for scientific research. Information is everywhere and

it grows rapidly every day. The Web has already become the key information source for the

future. Nevertheless, finding useful information is often a frustrating experience. There has

been a need for new effective techniques to perform an intelligent search and discovering

useful information.

Over many years information managers have used database management systems to

search and store vast amount of data, with the idea that these data have some value. However,

it soon became clear that data itself does not have great value (Zailani & Rajagopal, 2007). It

is the ability of an organisation, to wisely analyse the available data in order to add value.

This means a business intelligence system should be able to access data from a variety of

different sources and subsequently transform these data into information, and then into

knowledge. This allows better decision making, and it is not surprising that better business

decisions usually translate into better financial performance.

Despite the fact, that during the last decade IT specialists have put expended

considerable to organise their data into formats prescribed by enterprise resource planning

(ERP) systems (Monk & Wagner, 2009) and various structured databases, more than 80% of

data remains stored in unstructured data files (Autonomy, 2009). This unstructured data could

comprise MS Word or PDF format documents, e-mails, recorded phone calls etc. Database

Management Systems search tools are efficient, if users know what to look for using key

words or phrases. However, such tools are strictly limited to the schemas being used to

structure the data (Beynon-Davies, 2004). It must be emphasised that it is not information

that is normally stored, but data. These data become information only when a user/analyst

interprets the search results.

The traditional approach to the Web search engine, such as Google, is based on

indexing of the Web-content, building the index database, and then searching for the

keywords that match the content of this database. At first sight, it seems convenient and it has
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been working fine in Internet for many years, perhaps giving the illusion that the search

engine is searching for the content you require.

Over the last few years, enterprise (Intranet) search techniques have been developed

(Delgado, et al., 2005). Predominantly they are based on building an 'index database' over the

whole enterprise Intranet. Among the most widely used search systems is a product called

Autonomy (Autonomy, 2009). Autonomy employs Bayesian statistical models, similar to

those used to filter spam, to determine the categories of documents, and then is builds an

index of the text pattern. Smartlogic (Smartlogic, 2001) uses ontologies to turn enterprise

content into a semantic Web. However, there are issues associated with the existing

information discovery methods from both the Web and Intranet. Such issues will be discussed

towards the end of this chapter. First, it is important to understand what lies behind searching

the Web.

2.4.2 Searching the Web

Usually, “the Internet” and “the World Wide Web” (the Web) are considered to be

the same thing. However, they are totally different things and it is important for this research

to understand the difference. The Internet is a global data communications system with its

hardware and software infrastructure providing connectivity between computers to form a

global network. The Web is one of the Internet services, a network of interconnected

documents and other resources, linked by hyperlinks and URLs. A hyperlink is a reference to

data that a user can follow or that is followed automatically. A hyperlink usually points to a

whole document or to a specific element within a document. Hypertext, on the other hand, is

text with hyperlinks. A uniform resource locator (URL aka known as a Web address) is a

specific character string that constitutes a reference to a resource.

Obtaining knowledge, not information, from the Web is a significant issue. Not just

because most of it is hard to reach employing a search engine, but because the information on

the Web-sites is stored in silos – such an approach was supposed to boost the performance of

search engines as it helps to ensure the keyword focus is not diluted. Even so, the desirable

level of information quality brought back by a search engine is questionable, as search

engines look down the silos, not across them. However, the Web is still the richest source of

digitally stored information. According to Cisco, annual global IP traffic will surpass the

zetabyte (1024 exabytes) threshold in 2016 (Cisco, 2014).
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The Web is a distributed repository linked by millions of hyperlinks embedded in

hypertext documents. This metadata makes it possible to efficiently find the most relative

documents. Before proceeding with this discussion it will be helpful to identify the layers of

the Web in order to be able to visualise where data is located.

There Web can be split into three layers: Surface Web, Deep Web and Dark Web as

shown in figure 2.7.

Figure 2.7 – Three layers of the Web

The Surface Web (Shikha, et al., 2009) is a part of the Web that is reachable by a

search engine; it is the smallest portion of the Web. According to Netcraft’s monthly survey,

as of July 2014 there were 975,262,468 active Web sites (Netcraft, 2014). Google has the

largest index base among the search engine fraternity and knows only less than 1% of the

total Web. Deep Web (Raghavan & Garcia-Molina, 2001) refers to a part of the Web, that

traditional search engines cannot "see" or retrieve content from. Google has access to a small

part of the Deep Web (Madhavan, et al., 2008). Dark Web (Chen, 2011) stands for Websites

and secretive networks that sometimes span across the Internet and cannot be accessed

through conventional means. Usually access to the Dark Web is via an anonymity system

such as ‘The Onion Router’ or TOR (Li, et al., 2011).

The rich picture at Figure 2.8 shows a traditional view of information gathering

using a Web-search engine and an enterprise search system.

As has been previously stated, the Web may be considered as a virtual representation

of the real world, consisting of a combination of KK, KU and UU from an individual’s

perspective. When searching for a piece of information an individual relies on the

information known in order to form up a search query. The query is formed based on limited
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information about the real world – resulting from an attenuation process as per Ashby’s Law

of Requisite Variety.

When sent to a Web-search engine, the query string progresses through the chain of

comparison processes returning a list of search results to the user. The next section

“Statistical Methods – Latent Semantic Indexing” provides details on how Web search

engines work using Google as a use case.

Having analysed the Web search results an individual makes a decision on its

relevance to the search topic and, if necessary, the result can be used to populate a locally

held knowledge base (maybe intranet based) with the newly found information. This

knowledge base may contain information from a previously targeted search and hence it is

likely that knowledge on this topic is being enhanced.
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Firstly, the crawler module uses spiders for crawling the Web by giving a spider a

set of URLs to visit. Spiders start on pages addressed through the URL and then follow all the

hyperlinks on those pages to find new pages. Spiders return with new or updated pages which

are temporarily stored in a page repository.

The indexing module takes every page from the page repository and creates a

compressed description of the page by extracting vital descriptors and storing them in

specific indexes. The indexing module pays attention to information in title, any associated

description, anchor texts, hyperlinks, and terms in bold or large font. Specifically:

 Structure index contains valuable information regarding the hyperlink

structure in the search engine. Crawlers sometimes go to the structure index

to find uncrawled pages.

 Special purpose index holds information about images, or pdf that can be

useful for a particular query task.

 Content index stores textual information on the page in a compressed form

using an inverted file structure.

For example:

term 1 (apple) – 2[1, 1, 27], 128[1, 0, 7], 1598 [...]

term 2 (arc) – 2[...], 12587[...]

...

term 15 (juice) – 2[1, 1, 10], 56[...], 128[0, 0, 5], 1025 [...], 30214[...]

...

term m (zoo) – 8[...], 548894522[...]

This means that “term 1” is used in pages 2, 128 and 1598. In the vector [1, 0, 7] “1”

means that term “128” appears once in the title tag of the page 128, “0” means it does not

appear in the description tag of the page, and “7” is the number of times term “128” appears

in the page body. Such a three-dimensional vector is inserted after each page identifier for

every term.

An advantage of an inverted file is that it can be used as a quick look-up table.

However, because the number of “term m” is huge, the file size is huge. Also, there are a

large number of pages that use popular broad terms. Moreover, page identifiers are not the

only descriptors stored for each page. Therefore, indexing process consumes storage and
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needs a clever strategy to keep index database up-to-date. In 2010 Google introduced the

Caffeine index (Grimes, 2010), the image below (figure 2.10) illustrates the logic of how the

old indexing system worked compared to Caffeine.

Figure 2.10 – Google’s Caffeine index

The old index had several layers, some of which were refreshed at a faster rate than

others; the main layer would update every couple of weeks. To refresh a layer of the old

index, the entire Web would have to be analysed causing significant delay for the page to

become searchable. With Caffeine, the Web is analysed in small portions allowing the search

index to update on a continuous basis and on an enormous scale.

When a user submits a query, the query module accesses the indexes in order to

answer the query. At this stage, a search engine compares the keywords in the query string

with the list of terms in the content index and calculates the content score of the pages that

contain the keywords.

For instance, a user entered the query of “apple juice”, assuming that Boolean AND

is used. The query module looks at the inverted list of terms for apple (term 1) and juice

(term 15). The pages that use both query terms are 2 and 128:

term 1 (apple) – 2[1, 1, 27], 128[1, 0, 7]

term 15 (juice) – 2[1, 1, 10], 128[0, 0, 5]

To calculate the content score of a page, one needs to add the values in the three-

dimensional vector for the page and multiply it with the sum values for the same page for

every term.

Thus, the content scores (CS) for the two relevant pages are:

CS(page 2) = (1+1+27) x (1+1+10) = 29 x 12 = 348

CS(page 28) = (1+0+7) x (0+0+5) = 8 x 5 = 40
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The query module is query-dependent. The query module passes the set of relevant

pages to the ranking module. The content score is calculated from the Term Frequency –

Inverted Document Frequency (TF-IDF) matrix (Rajaraman & Ullman, 2011), where

columns represent all the Web pages the crawler knows and rows are all the keywords on

these Web-pages. Cells contain the weight indexes for the respective word in the respective

Web-page.

The general formula for a keyword weight index is:

, , log( )i j i j

i

N
w tf

df
  (2.1)

where tfi,j – the number of occurrences of a word i in a document (Web-page) j,

dfi – the number of Web-pages containing i,

N – total number of documents

It is clear that TF-IDF matrix is extremely large. Google uses stemming,

morphology and synonyms to relate the keywords to the words in documents. The term

stemming (Lovins, 1968) is used in linguistic morphology and information retrieval to

describe the process for reducing inflected (or sometimes derived) words to their stem

(sometimes referred to as their root). Google also uses mathematical transform techniques

and matrix decomposition in particular to manipulate the tables. It is data-driven and also

global in nature, which means this technique is capable of much more robust information

extraction and representation of semantic information than techniques based on statistics.

Latent Semantic Indexing (LSI) (Deerwester, 1988) is an indexing and retrieval

method that uses common linear algebra to identify patterns in the relationships between the

terms and concepts contained in an unstructured collection of text. The method constructs a

weighted term-document matrix, where rows represent terms and columns represent

documents in the collection. The process involves singular value decomposition on the

matrix, and then uses the matrix to identify the concepts contained in the text. A key feature

of LSI is its ability to extract the conceptual content of a body of text by establishing

associations between those terms that occur in similar contexts.

As it uses a strictly mathematical approach, LSI is language independent. This

enables LSI to extract the semantic content of information written in any language without

the use of any dictionaries and thesauri. Moreover, LSI automatically adapts to new and

changing terminology, and its performance is not affected by noise, i.e. spelling mistakes,

unreadable characters, etc.
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The query module is query-dependent. It passes the set of relevant pages to the

ranking module.

The ranking module sorts the set of relevant pages according to some criteria. It

employs the information stored in the structure index of the search engine to calculate the

popularity score. Google uses a PageRank algorithm to order a list of pages and place the

most relevant closer to the top. In contrast to the query module, the ranking module is query

independent, and provides a global ranking of all pages of Google's index which covers over

45 billion Web-pages as of October 2014 (www.worldwidewebsize.com).

PageRank is a solution to a linear equation (Chiang, 2012). According to the

PageRank strategy, “a page is important if it is pointed to by other important pages”. The

PageRank of a page Pi is the sum of the PageRanks of all pages pointing into Pi. It is an

iterative procedure.

The combination of the content score and the PageRank (popularity) score gives an

overall score for each relevant page. The result of the searching process is a list of Web-

pages, organised in a special way. The first line a user will see is the title. That is what is set

in the title of the Web page. Under the title there is a description of the page, called a snippet.

It can come from different places. It can be taken from the meta-description tag. The

description can also be pulled directly from the place within the page. If Google can get

nothing from the page, not even a meta-description tag, it is taken from the Open Directory

Project also known as DMOZ – largest, most comprehensive human-edited directory of the

Web (DMOZ, 2014).

As a result, Google is able to deliver millions of results for many of its queries in a

fraction of a second. However, quantity does not always mean quality. Since the calculation

of the content score involves matching two sets of keywords, the part of the relative quality

information is overlooked (it even may be all the quality information), explained with

different words. Also, as the ranking module of Google's search engine is query-independent,

it does not bring the results that are most relevant to the user, but the pages that other people

decided to link to. Pages with high quality (for example, scientific) information may not be

popular, while popular documents may not be relevant to the search query. This leads to often

unwanted advertising pages come first, moving highly semantically relevant documents to the

bottom of the list.

The big disadvantage of Google’s PageRank algorithm is that it doesn’t give the

results that are most relevant to the search idea, but the ones that enough people consider

worth linking to. High quality (scientific) documents may be overlooked because they are just
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Despite considerable diversity and individual variation in the conduct of

investigation and analysis, there are fundamental common structures and processes. A formal

representation of evidence and evidential relationships provides the obvious benefit of

allowing analysts to query a knowledge base for the evidence on which the conclusions are

based.

There has been an increasing emphasis in recent years in sharing knowledge among

intelligence applications, and ontology of evidence and inferential reasoning can be helpful.

Ontologies (Gruber, 1993) provide shared representations of the entities and relationships

characterising a domain, into which vocabularies of different systems can be mapped so to

provide interoperability among them. Shared formal semantics enables systems with different

internal representations to exchange information, and provides a means to enforce business

rules such as access controls for security.

However, traditional ontologies do not provide a principled means to ensure

semantic consistency with respect to issues of uncertainty related to credibility of sources,

relevance of evidence, and other aspects of the evidential reasoning process (Laskey, Schum,

Costa, & Janssen, 2008). Because uncertainty is a fundamental aspect of evidential reasoning,

this is a serious deficiency.

When faced with the challenge of representing uncertainty in ontology, the natural

tendency is to introduce a means to annotate property values with information regarding their

level of confidence (Costa & Laskey, 2006). Over the past several decades, semantically rich

and computationally efficient formalisms have emerged for representing and reasoning with

probabilistic knowledge (Laskey K. , 2008).

Search engines are very effective at filtering pages that match explicit queries.

Unfortunately, most people find it difficult to express what they, especially if forced to use a

limited vocabulary such as keywords. The result is large lists of search results that contain a

handful of useful pages, defeating the purpose of filtering in the first place. There are two

major approaches to user modelling – based on knowledge and based on users behaviour

(Fischer, 2001). Knowledge-based approaches create static models of users and dynamically

match users to the closest model. Behaviour-based approaches use the user’s behaviour itself

as a model, often using machine-learning techniques to discover useful patterns of behaviour.

Ontology can be used to investigate how domain knowledge can help in the acquisition of

user preferences.

A step forward in customising Web-search has been done with introducing

ontologies in recommender systems. In (Middleton, Shadbolt, & De Roure, 2004) the authors
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explore a novel ontological approach to user profiling within recommender systems, working

on the problem of recommending on-line academic research papers. Two experimental

systems are introduced – Quickstep and Foxtrot. Both systems create user profiles from

unobtrusively monitored behaviour and relevance feedback, representing the profiles in terms

of a research paper topic ontology.

Quickstep (Middleton, De Roure, & Shadbolt, 2001) is a content-based

recommender system that uses ontological inference to improve profiling accuracy and

integrates an external ontology for profile bootstrapping. It monitors user browsing behaviour

via a proxy server, logging each URL browsed during normal work activity. A machine-

learning algorithm classifies browsed URLs overnight, and saves each classified paper in a

central paper store. Explicit feedback and browsed topics form the basis of the interest profile

for each user. The Quickstep recommender system uses a multi-class approach, allowing a

profile in terms of domain concepts (research paper topics) to be built. The multi-class

classification is less accurate than other binary classification systems, but allows class

specific feedback and the use of domain knowledge (via an “is-a” hierarchy) to enhance the

profiling process. Each day a set of recommendations is computed, based on correlations

between user interest profiles and classified paper topics. Any feedback offered on these

recommendations is recorded when the user looks at them. Users can provide new examples

of topics and correct paper classifications where wrong in order to improve the training set

over time.

Foxtrot (Middleton, De Roure, & Shadbolt, 2002) enhances the Quickstep system by

employing the novel idea of visualising user profiles to acquire direct profile feedback.

Foxtrot is an evolution of the Quickstep system with the increased number of supported

interfaces, providing a research paper search interface, profile visualisation and feedback

facility and email notification support. A static research paper ontology with many more

classes is used, along with increased dimensionality reduction to cope with the increase in

classes and hence term dimensions. The profiler takes profile feedback into account allowing

users control over their own profiles. Lastly, a more collaborative recommendation algorithm

is employed, taking into account the profiles of other similar users when deciding what to

recommend.

The reported accuracy of both systems is relatively low, however, in theory it is

possible to improve the accuracy by expanding the ontology the systems rely on. Ontological

user profiles allow inference to be employed, allowing interests to be discovered that were

not directly observed in the user’s behaviour (Spyrou, et al., 2014). Expanding the ontology
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Meaning-based computing (Autonomy, 2008) is based on mathematical and

statistical methods that can handle both structured and unstructured data to form meaningful

information. This technology is used to identify the patterns that naturally occur in text. It can

be achieved by frequency analysis of terms that correspond to specific concepts. By studying

the predominance of one pattern over another, it is possible to calculate the probability that

the content in question deals with a specific subject.

The challenge for the modern enterprise is trying to understand and extract the value

that lies within this vast sea of data. When dealing with the challenge of unstructured

information, it is clear, that plain search does not give desirable results. To maximise the

relevance of information being searched, the processing system should be able to understand

all information that can be automatically processed. This provides users with the ability to

handle and maximise the value of this rich resource. Meaning Based Computing addresses

the full range of information challenges and consequently forms the central requirement of

major enterprise deployments all over the world.

The data sorting company Autonomy solves a problem that many businesses face –

making sense of the masses of data and information in their enterprise systems. It is now a

world leading company specialising in infrastructure software for the enterprise (Ashton,

2009) and which is spearheading the meaning-based computing movement. It works with an

enterprise knowledge base and provides an automatic clustering of its content, avoiding silos

and bringing the advantages of “horizontal search”.

Autonomy’s technology allows processing systems to harness the full richness of

human information, forming a conceptual and contextual understanding of any piece of

electronic data including unstructured information. This conceptual approach is unique to

Autonomy (Vargas, 2008).The company’s core technology IDOL (Intelligent Data Operating

Layer) (Autonomy, 2008), (Autonomy, 2009), provides a platform for the automatic

categorisation, hyper-linking, retrieval and profiling of unstructured information, thereby

enabling the automatic delivery of large volumes of personalised information.

The core engine is based on the mathematical works of Bayes and Shannon. This

technology is used to identify the patterns that naturally occur in text, voice or video files. It

can be achieved by frequency analysis of terms that correspond to specific concepts. By

studying the preponderance of one pattern over another, IDOL understands that there is x%

probability that the content in question deals with a specific subject. After that, the content’s

digital essence is extracted and the unique signature of the concepts is encoded. This enables

a host of operations to be automatically performed on emails, phone conversations, video,
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documents and even people's interests. For better mathematical understanding of how it

works, there is a need to Bayesian theory and Shannon’s information theory. Bayes work

centred on calculating the probabilistic relationships between multiple variables and when

new information is obtained, determining the extent to which these relationships are affected.

Inferences are made taking into account all available information and answering the

question of interest given the particular data set. Firstly, conditional probability (Gut, 2013)

of text patterns is calculated:

( | ) ( )
( | )

( )

P B A P A
P A B

P B
 (2.2)

Where P(A) and P(B) are the probabilities of text units (words, phrases) within the

enterprise knowledge base. P(A│B) is the conditional probability of a text unit A co-

occurring with a text unit B. A good example of this theory at work is Autonomy's agent

profile technology (Autonomy, 2009). Users can create agents to automatically track the

latest information related to their interests, and IDOL determines the relevance of a document

based on the model of the agent.

Shannon's information theory (Ash, 1965), (Yeung, 2008) forms the mathematical

foundation for all digital communications systems. The mathematical theory of information is

based on probability theory and statistics, and measures information with several quantities of

information. One of the most important is entropy (Roulston, 1999). Knowing the

relationships between many variables allows the software to reveal the context of a piece of

unstructured information. Having understood the meaning, Shannon's theory (Shannon, 1948)

is then applied. The entropy of a discrete message space M is a measure of the amount of

uncertainty one has about which message will be chosen. It is defined as the average self-

information of a message m from that message space:

1

( ) ( ) ln ( )
n

i

H x p i p i


  (2.3)

Where x is a document from the enterprise knowledge base, p(i) is the relative

probability of the co-occurring text patterns. The less frequently a unit of communication (for

example a word or phrase) occurs, the more information it conveys. Thus ideas, which are

rarer within the context of communication, tend to be more indicative of its meaning. By
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extensive human support for updates. Growing volumes of unstructured text bring unlimited

new topics that need to be described and constantly introduced. Controlled vocabularies are

also difficult to modify if concepts in a certain topic area change.

In the enterprise search world ontologies are widely used to support query answering

against distributed and/or heterogeneous data sources (Stoilos, Grau, & Horroks, 2010).

Ontologies and typical queries are often fixed at application design time. The Web Ontology

Language OWL (The World Wide Web Consortium (W3C), 2009) is used to access

ontology-based data. Ontology provides the vocabulary used to formulate queries, and a

conceptual model that is used in computing query answers. In a semantic Web setting a

typical scenario would involve the use of OWL ontology to answer queries over datasets:

ontology is used to describe the meaning of the data stored in various sources, and query

answers reflect both the data and the knowledge captured in the ontology.

Efficient management and querying of large amounts of data is a core problem for a

growing range of applications in fields as diverse as business and defence. In order to

facilitate interoperability, such applications often use standard data models and query

languages. In particular, Resource Description Framework (RDF) (RDF Working Group,

2004) provides a standard model for semi-structured data, SPARQL (Prud'hommeaux &

Seaborne, 2008) is a standard query language for RDF, and ontology languages such as OWL

(Horrocks, Patel-Schneider, & van Harmelen, 2003) and OWL 2 (Grau B. H., Motik, Parsia,

Patel-Schneider, & Sattler, 2008) can be used to describe background knowledge about the

application domain. Thus, answering SPARQL queries over RDF data sets structured using

an OWL ontology is a key service in ontology-based information systems.

Some systems are guaranteed to compute all answers for each query, ontology, and

data set (Grau, Motik, Stoilos, & Horroks, 2012). Completeness, however, comes at the cost

of scalability, as answering queries over OWL 2 ontologies is of high computational

complexity. Thus, complete systems often fail to meet the scalability demands of applications

that manage data sets consisting of hundreds of millions or even billions of assertions.

Scalability of query answering can be ensured by restricting the expressive power of the

ontology language to the level that makes provably complete reasoning tractable (Zhou, et al.,

2012).

However, even within a restricted environment, scalability remains one of the

biggest issues for ontology-based search systems. When using an expressive ontology

language such as OWL, computing query answers can be very costly, and in a semantic Web

setting, datasets may be extremely large. For ontology-based applications in order to improve
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scalability, many semantic Web query answering systems give up completeness (Stoilos,

Grau, & Horrocks, 2010). In other words they do not guarantee to return all query answers.

The authors (Grau, Motik, Stoilos, & Horroks, 2012) argue that in order to achieve

scalability of query answering, the developers of Semantic Web applications are often forced

to use incomplete OWL 2 reasoner, which fail to derive all answers for at least one query,

ontology, and data set. The lack of completeness guarantees, however, may be unacceptable

for applications in areas such as health care and defence, where missing answers can

adversely affect the application's functionality. Furthermore, even if an application can

tolerate some level of incompleteness, it is often advantageous to estimate how many and

what kind of answers are being lost.

Thus, in the Semantic Web applications, completeness is often not strictly required

(Stoilos, Grau, & Horrocks, 2010). Consequently, many systems have chosen to give up

completeness. The trade-off between completeness and efficiency is obviously a continuum.

Incomplete systems find some, but not all the answers implied by the ontology and the data.

A major difficulty with incomplete conjunctive queries answering systems, with the ontology

providing the vocabulary used in query, is determining how incomplete they are.

In (Grau, Motik, Stoilos, & Horroks, 2012) a possible solution to check the

completeness of an ontology reasoner was proposed; the authors present a novel logic-based

framework that allows one to check whether a reasoner is complete for a given query and

ontology. The proposed technique allows checking whether the reasoner is guaranteed to

compute all answers to the query with respect to the ontology and an arbitrary data set. Since

ontologies and typical queries are often fixed at application design time, their approach

allows application developers to check whether a reasoner known to be incomplete in general

is actually complete for the kinds of input relevant for the application.

The authors (Grau, Motik, Stoilos, & Horroks, 2012) also present a theoretical and

practical foundation for the design of future ontology-based information systems that

maximise scalability while minimising or even eliminating incompleteness of query answers.

The proposed technique can be used for comparing the effectiveness of two given reasoners

for a given query and ontology over a given data set. This allows application developers to

select the reasoner that provides the highest degree of completeness for the query and the

ontology that is compatible with the application's scalability requirements.

The reasoner is incomplete if there exists at least one query, ontology, and data set

for which the reasoner does not return all answers to the query (Grau & Stoilos, 2011).

However, incomplete reasoners can handle large data sets and they often provide the best
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informational content of it. Thus, false statement contains most of information and this is

semantically wrong.

In (Floridi, 2013) the author describes the idea of the theory as to define semantic-

factual information in terms of data space, as well-formed, meaningful and truthful data. In

other words, the basic idea is that the more accurately a statement corresponds to the way

things actually are, the more informative it is. There are two extremes. First, if a statement is

true and is a tautology (is true in every possible interpretation and every situation supports the

statement. Example: "The sky is blue or it is not the case that the sky is not blue"), it yields

no information. Second, if a statement is false and is a contradiction (no possible situation

supports the statement. Example: "It's raining and it's not raining."), it also yields no

information. Between these two points there are contingently true and contingently false

statements with varying degrees of vacuity and inaccuracy.

In his work (Floridi, 2004), Floridi gives “general definition of information” in terms

of data and meaning as follows. σ is an instance of information, understood as semantic

content, iff:

1) σ consists of one or more data (the stuff of which information is made);

2) the data in σ are well formed (clustered together correctly, according to the rules

(syntax) in the chosen system, code or language);

3) the well-formed data in σ are meaningful (must comply with the meanings

(semantics) of the chosen system, code or language).

Theory of strongly semantic information constrains the probabilistic approach by

requiring first a qualification of the content as truthful. Once the content is so qualified, the

quantity of semantic information in σ is calculated in terms of distance of σ from the

situation/resource w that σ is supposed to model. Total distance is equivalent to a σ true in all

cases (all possible worlds or probability 1), including w and hence minimally informative,

whereas maximum closeness is equivalent to the precise modelling of w at the agreed level of

abstraction.

Let θ refer to the distance between a true σ and w and can be read as “the degree of

support” offered by w to σ. The formula to calculate the degree of informativeness ι(σ) in

relation to the distance θ(σ):

ι(σ) = 1 − θ(σ)2 (2.4)
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Figure 2.11 below shows the graph generated by the equation and includes both

positive and negative values of distance. Distance θ ranges from -1 (contradiction) to +1

(tautology), meaning that the shorter the distance from the 0 point, the closer the statement to

the truth.

Figure 2.11 – Degree of informativeness ι(σ) in relation to the distance θ(σ) 

If an instance of information σ has a very high degree of informativeness ι (very low

distance θ), then it contains a large quantity of semantic information and vice versa. In the

graph, the quantity of semantic information contained in σ relative to ι(σ) is the area under

the curve – the definite integral of the function ι(σ) on the interval [0, 1].

The maximum quantity of semantic information α (the shaded area Figure 2.12) is

carried by an instance of information which is fully accurate, precise and contingent truth,

and whose θ(σ) = 0. Hence:

1

0

( )dx   (2.5)
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Figure 2.12 – Maximum quantity of semantic information

For an instance of information σ that contains some information that is simply

irrelevant or redundant (i.e. “informational waste”) the amount of vacuous information β is

also a function of the distance θ from w:

0

( )dx
    (2.6)

Shaded area in Figure 2.13 below shows the amount of vacuous information β.

Figure 2.13 – Amount of vacuous information β in σ 
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Clearly, the amount of semantic information in is simply the difference between α

(the maximum amount of information that can be carried in principle by σ) and β (the amount

of vacuous information actually carried by σ):

    (2.7)

Shaded area in Figure 2.14 shows the amount of semantic information in σ.

Figure 2.14 – Amount of semantic information γ in σ.

In contrast to the probability approach to the quantity of information, the theory of

strongly semantic information overcomes what is known as Barr-Hillel-Carnap paradox

(Carnap & Bar-Hillel, 1952), which states that a false sentence is highly informative since

there is no value in whether information it carries is true or false. Theory of strongly semantic

information requires first a qualification of the content as truthful. Once the content is so

qualified, the quantity of semantic information in σ is calculated in terms of distance of σ
from the situation/resource w that σ is supposed to model.

However, qualification of the content as truthful means identification and

qualification of all possible states that correspond to the given situation. This makes Floridi’s

approach too theoretical to be applicable to the real world situations.
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2.5 Issues with Web-based Intelligence Gathering

Decision making is a fundamental process of management. The success of a

business largely depends on the effectiveness of the decisions made. During the process of

decision making one can face uncertainty, unpredictability, or probabilistic nature of the

result that is influenced by a number of factors, both internal and external. The quality of

decisions made in business and government correlates directly to the quality of the

information used to formulate the decision (Eppler, 2006). Most of the information used for

intelligence analysis will, in the future, be harvested from the Web as this is becoming the

richest source. Intranet held information (company’s knowledge base) can be efficiently

manipulated by enterprise search systems based upon either semantics such as ontologies, or

meaning-based computing. These technologies imply comprehensive (and often automatic)

indexing and tagging of the Intranet knowledge base textual information. Existing Web, as

originally described in (Berners-Lee, 2001), was expected to evaluate into Semantic Web,

that encourages simply the inclusion of semantic content in Web pages, making it not only

human readable, but also machine readable. However, most of the current Web remains

poorly semantically tagged, making it impossible to apply effective enterprise search methods

to Web-based intelligence information extraction. If the Web is to be used for improving

decision making, then new more effective search methods must be developed in order to

collect and correlate the best information. This new search method may be used to harvest

Web data in accordance with carefully controlled parameters and transferred to the Intranet

knowledge base where upon enterprise search technologies may be then applied in the usual

way.

It should also be noted that an Intranet knowledge base can become too historic and

Web-based knowledge more effectively reflects the current state of the world. Regular

updates to an Intranet knowledge base would make sense but requires time and resources.

Previous sections provided overview to different existing systems and

methodologies used for information discovery from the Web and Intranet. However, none of

the available search methods (i.e. Web-search engines, enterprise-search solutions) can

support Web-wide collection of information that is relevant to the search topic, providing its

high quality and completeness. This is due to various aspects of the search environment, such

as data infrastructure, content organisation, indexing, or ranking of search results. More

importantly, these issues affect the decisions based on the information of poor quality.
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According to (Schum, 2001), all evidence has three major credentials: relevance,

credibility, and inferential force or weight. Relevance concerns the degree to which the

evidence bears upon the hypothesis under consideration. Credibility means the degree to

which the evidence is believable. Inferential force concerns the strength of the relationship

between evidence and hypothesis – the degree to which the evidence sways our belief in the

hypothesis. Approaches for dealing with the weight or strength of evidence include both

qualitative and quantitative aspects of the reasoning process adopted to draw inferences from

it (e.g. probability theory, logical reasoning, etc).

The initial objective of this research was to research and develop a quality measure

that can be assigned to an organisation's decisions that are based in part or whole on the

information that has been derived from the Internet. However, after exploring the problem

and existing solutions further, it was concluded that available approaches lack one or more of

the fundamental metrics for Web-based information extraction: relevance, completeness and

quality.

Effective computerised support for decision makers and intelligence analysts must

support processes of evidential reasoning. This support, as noted by (Laskey, Schum, Costa,

& Janssen, 2008), requires the ability to represent, store, and manipulate evidence,

hypotheses, and arguments, relating evidence to hypotheses. Such representations must be

stored in a computational structure. Such representation can be constructed using the

languages and tools commonly applied in the discipline of ontological engineering.

Traditional search engines (Google, Bing, etc.) have proven their effectiveness in

finding on-line stored information, as well as some of them provide search through locally

stored documents. The performance of a traditional Web-search engine is based on finding

the keywords from its index base that match with a search query string. This approach is fast,

but does not allow finding the documents that share the same idea with the query, that is

expressed in different words. Another issue associated with traditional Web-search engines is

that they present their results ordered by pseudo-relevance, such as dependant on the

popularity of a Web-page. That is why Web-pages with relevant and even high quality

content can be found at the bottom of the search list, or even become overlooked.

Enterprise-search engines (Autonomy, Smartlogic, etc.) are effective when searching

for relevant documents within locally stored knowledge base - Intranet. Such systems are

based upon semantics or statistics, and these technologies require complex processing of

large amounts of text. However, enterprise-search systems cannot be currently applied to

Web-wide collection of information due to various Web-related issues such as lack of
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semantic tagging of Web-content. Effective Intranet search methods are just too complex for

Web application. The finite size of document base makes it possible to perform concept

search to find documents that have the same idea within the context. But there are various

issues that do not allow concept processing of the Web content. First of all, the Web content

is contained mainly in silos, and extremely badly tagged in comparison to the level of tagging

in enterprise knowledge base. More than that, wrong interpretation of meaning of content

may undermine decisions and possible business operations. But the major issue is the amount

of information that needs to be processed. It is just technically impossible to process huge

Web-content and apply the algorithm within a reasonable time period.

Methods reviewed in this chapter allow estimating relevance and completeness of

the search results. But there is currently no metric for measuring the quality of the gathered

information and know how good it is. Selection of data for a decision information gathering

task can be complicated and dangerous (lead to the wrong decision making), as there is no

obvious way of measuring the quality of the information gathered.

In information world and one where internationalism is becoming the norm, decision

makers will rely increasingly on the Web to augment the organisation's database and human

intelligence for both strategic and tactical decisions. For data from the Internet to be used in

these important circumstances the quality of data harvested from the Internet needs to have an

associated quality measure. This quality measure may then be used to assign a quality mark

against the decision made, thus allowing an organisation to judge the integrity of the decision

made.

Hitherto only limited research has been undertaken regarding the quality of

decisions, where the Web provides a significant element of the supporting information. For

example, authors of (Agichtein, Castillo, Donato, A., & Gilad, 2008) discuss quality of user-

generated content. It suggests a comprehensive graph-based model of contributor

relationships and combined it with content- and usage-based features.

The study in (Kopcke, Thor, & Rahm, 2010) addresses the record linkage problem.

Determining whether two different records represent the same real world object is much

harder in the context of data on the Internet. This article adopts a machine learning technique

to semi-automatically determine suitable match strategies with a limited amount of manual

effort of training.

(Gao & Houben, 2010) present an approach that discusses two specific tasks: the

creation of a representation model of trust in Web data for specific data consumers, and the
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support for three strategies to assess the trustworthiness of data that they consume:

vocabulary-based , triple-based and interlinking-based strategies.

(Capiello, Daniel, Matera, & Pautasso, 2010) focuses on assessing the quality of

mashup applications. The research aims to assess the quality of the information a mashup

provides, which requires understanding how the mashup has been developed, what its

components look like, and how quality propagates from basic components to the final

mashup application.

Raiber & KURLand (2013) addressed the task of query-performance prediction for

Web search. They devised a query-performance prediction approach that utilises query-

independent document quality measures. These measures include the probability that the

document is not spam as determined by a spam classifier; its PageRank score (Gomes &

Smith, 2000); and estimates of the “richness” of the language used in the page.

A pertinent work on measuring quality via entropy is presented in (Kao, Lin, Ho, &

Chen, 2002), in which the authors correlate quality of new information with the measured

entropy value of the text on the Web page. The idea of the approach is that terms appearing in

fewer pages carry more information to the user. Terms are extracted from anchor texts.

Shannon's entropy is used to represent the information strength of terms. It is applied

on the term-document matrix to calculate the entropy, which is expressed as:

1
log ,

n

i ii
p p (2.8)

where pi is the probability of event i and n is number of events.

By normalising the weight of a term to be from 0 to1, the entropy of term Ti is:

1
( ) log ,

n

i ij ijj
E T w w  (2.9)

in which wij is the value of normalised term-frequency, wij is an entity in the term-document

matrix and represents the weight of a term in a page:

1

,
ij

ij n

ikk

tf
w

tf
  (2.10)

where tfij is the term frequency of term i in page j.

The entropy value of a term is then normalised to the range [0, 1], the base of the

logarithm is chosen to be the number of pages. E(Ti) then becomes:
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in the form of an ontology that represents background knowledge comprising structured

information extracted from Wikipedia. However, this solution is limited to searches within

the DBpedia data set only.

Further work in the discovery of UUs was undertaken by the TORISHIKI-KAI

project (Torisawa, et al., 2010) which displays all relevant keywords extracted from a large

Web-archive as having a particular semantic relationship to the search topic. Even though

TORISHIKI-KAI summarises a large volume of Web documents, the search system is

designed to suggest relevant UUs under just three semantic categories: troubles, methods and

tools.

Another noteworthy method is the ‘Pattern-based Understanding and Learning

System’ (PULS) which is designed to extract news information from several domains

(Huutunen, Vihavainen, Du, & Yangarber, 2012). Its Web-crawler finds relevant articles

using a keyword-based Web-search. The rule-based information extraction module analyses

the plain text from the news feed and transforms this text into database records. Its

declassifier determines the relevance of the selected events to a particular use. 

This section provided overview to issues associated with current techniques that are

applicable to information gathering form the Web as well as from an internally held

knowledge base. All of the above methods have limitations in terms of information sources or

functionality. There is a need for solution that is open to perform search and analysis through

any Web-page available to the search engine. Modification of existing theories can enable the

information content to be tested and allow harvesting Web-wide data in accordance with

controlled parameters in order to subsequently transfer this data to a knowledge base where

enterprise search technologies may be applied in the traditional way.

In addition, it is important to keep track of the information growth rate due to the

risk of information level to become critical and exceed the optimal level, so that it creates the

information overload and may lead to the lower decision quality. Therefore, the aim for the

analysts will be to collect as much relevant information as possible, thus not exceeding the

optimal amount of it and, hence, keeping the decision quality as high as possible. In order to

overcome the above issues, a new solution has been developed to systematically identify the

semantic relationship between the search topic and the Web-content, and be able to provide

information analysts with a quality measure to judge the importance of found information.

The new algorithm proposed in this research combines the traditional Web-search

approach with semantic analysis in order to overcome the issues associated with both types of

search engines and significantly enhances the collected information from a richness
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viewpoint. The proposed algorithm goes beyond the traditional query search as far as it

identifies topic-related information from the Web using methods from Natural Language

Processing (NLP), as well as sorts the relevant documents by quality of the information

inside, and not by the popularity measure in contrast to traditional search engine.

In summary, the proposed approach relies on evidence-based NLP which may be

considered as comprising three integrated processes that are as a whole iterative. Firstly, the

application of NLP methods to enable the filtering of Web-search results to form a set of

relevant information, thus overcoming the search engine keyword and ranking mechanisms

that limit the use of a search engine approach. Thus, the captured sets of KK, KU and UU are

semantically related and, therefore, relevant to the topic being considered. Secondly, this

captured set is subjected to the application of Grounded Theory where UU are specifically

identified and used to test the completeness of the evidence. Thirdly, the application of the

Evidential Analysis is used to test the quality of gathered information and hence setting a

quality parameter for the efficacy of the eventual decision-making process. The three

processes together are applied iteratively to the Web with an expanding query base using

converted UU in order to identify the best information for the target decision process.

Chapters 3 and 4 will provide details of the proposed approach.

2.6 Summary

This chapter introduced the details of the problem of imperfection of the existing

methods that may be used to support Web-wide collection of information that is relevant to

the search topic, providing its high quality and completeness. Various current methods for

information gathering from the Web and locally stored sources have been analysed and the

associated issues described. Among them there were methods for statistical and semantic

search of relevant information applied to both the Web and the Intranet.

 Latent Semantic Indexing – Web-search statistical approach. It is a powerful tool

that extracts the conceptual content of a body of text by establishing associations

between those terms that occur in similar contexts. Its full power cannot be

achieved when used with a short query. When applied to the locally stored data

collection, a full index needs to be built before searching, which is not efficient

with dynamically changing data sources and average machine capability.
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 Google PageRank – sorting algorithm. It places popular Web-pages towards the

top of the search result list. “A page is important if it is pointed to by other

important pages”. It is query independent and doesn’t give the results that are

most relevant to the search idea, but that enough people consider worth linking to.

 Ontologies in recommender systems – semantic Web-search approach. It creates

user profiles from unobtrusively monitored behaviour and relevance feedback. A

collaborative recommendation algorithm can be employed, taking into account

the profiles of other similar users when deciding what to recommend. The

solution is, however, limited to the ontology subject domain and cannot be used

across the entire Web.

 Meaning-based computing – enterprise search statistical approach. This

technology is used to identify patterns that naturally occur in text, voice or video

files. It relies on calculating the probabilistic relationships between multiple

variables and when new information is obtained, determining the extent to which

these relationships are affected. This approach is not feasible when applied to a

much larger set of the Web data.

 Ontology-based information systems – enterprise search semantic approach. It

incorporates the relationships among terms by relying on created data models that

represent sets of concepts within a specific domain. All the knowledge used by

the system is represented in the form of a semantic network, organised on a

conceptual basis. However, most of the current Web remains poorly semantically

tagged, making it impossible to apply effective enterprise search methods to

Web-based intelligence information extraction. In addition, as language changes

rapidly, such systems require extensive human support for updates. Finally,

computing all answers for each query, ontology, and data set comes at the cost of

scalability, thus, not feasibly applicable to the Web.

 Theory of strongly semantic information – calculates the information content of a

message as the amount of uncertainty reduced when the message is received, and

is associated with the elimination of possibilities represented by that message.

This method avoids paradox results produced by probability analysis, when

applied to information that holds false semantic content, or is a false statement.

The advantage of the method is that it is based on truth values rather than

probability distributions – the more accurately a statement corresponds to the way
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things actually are, the more informative it is. However, qualification of the

content as truthful means identification and qualification of all possible states that

correspond to the given situation. This makes the “theory of strongly semantic

information” approach too theoretical to be applicable to the real world situations.

In addition to the issues associated with relevance and completeness, Chapter 2

looked at the limited available research that provides a metric for measuring the quality of

decisions, based on a significant part of information from the Web.

 A graph-based model of author relationships combined with content- and usage-

based features for quality estimation of user-generated content.

 A machine learning technique to determine whether two different records

represent the same real world object.

 A representation model of trust in Web data for specific data consumers.

 A method for query-performance prediction for Web search that utilises query-

independent document quality measures.

 Measuring quality of the data source via measuring entropy value of the text on

the Web page.

This chapter also looked at the recent research projects that address the discovery of

unknown unknowns.

 A user interface ‘DBpedia’ for exploring a large ontology-based data set by

finding connections between different objects, thus, discovering UUs. The

solution is limited to searches within the DBpedia data set only.

 TORISHIKI-KAI system displays all relevant keywords that have some semantic

relationship to the search topic. This system, however, supports only three

semantic categories: troubles, methods and tools.

 “Pattern-based Understanding and Learning System” extract news information

from the selected news domains.

All of the above research tends to focus on specifically selected topics and have

limited functionality.

Thus, there is a need for a new solution that, in contrast to the above methods, has no

limitations for Web-sources and is open to perform search and analysis through any Web-

page available to the search engine. This new search method may be used to harvest Web

data in accordance with carefully controlled parameters and transferred to the Intranet
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knowledge base where upon enterprise search technologies may be then applied in the usual

way.
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Chapter 3

Details of the Proposed Approach

3.1 Overview to Chapter

This chapter will address the following research step:

Investigate research concepts and methods that can be used (or further developed to

be used) with a conventional search engine to enrich information retrieval through

the discovery of unknown unknowns. Such methods would provide:

o an effective approach to formulate a topic-focused collection of the Web

content that is semantically related to the search topic,

o a mechanism for tracking the growth of information and the reduction of

uncertainty during information discovery,

o a quality measurement of the extracted content.

The aim of this chapter is to introduce and develop the algorithm of the new Web

search method to meet the objectives of this thesis. This chapter describes the logic behind

the proposed method and will focus on both qualitative and quantitative details of each stage

of the algorithm. The major part of this chapter will focus on the elements used in the main

processing part of the algorithm. Among them are the existing methods from Natural

Language Processing, Grounded Theory and evidential analysis – each of these individual

methods will be described in detail in order to establish the efficacy of the overall method.

Chapter 2 provided an overview to currently available research methods. Semantic

search methods have been shown to work effectively with enterprise knowledge, but not with

the Internet. This is due to the numerous obstacles the technology faces, such as higher cost

of the software and lack of computational power and storage capacity in comparison with

traditional keyword search. Grounded theory has been successfully used in building a

hypothesis using interviews, while evidential analysis is effective in investigating the
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algorithm will rely on a traditional search engine. Google was chosen for its ability to access

a large part of the Web. Moreover, this search engine is not limited to a selected range of

Web-sources, in contrast to some of the existing sematic search solutions. The use of LSI will

allow getting large amount of responses fast; however, the resulting search list will contain

many false positives due to the keyword search picking up content where the selected search

terms are present, but not necessarily express the ideas similar to those in the search topic.

The search topic needs to be defined in textual format to provide enough context for

application of a semantic method that will compare ideas behind the search topic and content

derived from the Web. This means, that there will be a need in an effective method of

extracting of the main content of a Web page in order to benefit from application of a

semantic method to calculate semantic closeness score as quantitative measure for

assessment. This approach will overcome limitations associated with the traditional keyword-

based search as it will filter out the irrelevant Web-pages (which are only mechanically

responsive to the search terms) and leave those results that share similar ideas with the search

topic. At the same time, this approach will provide a scalable solution that is flexible enough

to adapt to the dynamically changing Web environment and handle the potentially large

amount of information to process.

The search topic expresses the KKs and will be defined as an initial knowledge base,

which is treated as a benchmark for semantic relatedness of the content. In addition to the

initial knowledge base, search objectives need to be defined – they will reflect the direction

of the search and represent the KUs on the search topic.

In order for the search method to comply with Ashby’s Law of Requisite Variety,

the completeness aspect needs to be addressed. According to the Law, the variety of the

system must at least match the variety of the environment it controls. As such, relevant Web-

pages will be added to the existing knowledge base, thus, enriching the available knowledge

on the topic and enhancing the basis for the effective decision making. It is important to keep

the size of the knowledge base within the boundaries of the necessary level of completeness

in order to avoid the information overload or deficit, thus, supporting the decision quality at

its highest. Thus, there is a need for a parameter that would reflect the growth rate for the size

of the knowledge base and indicate when the search topic is close to exhaustion, or needs

further expansion. In other words, this parameter would assess the developing knowledge

base from the richness viewpoint. It will show whether there is a need for further Web-search

to discover more unknown unknowns, or that further searching will not add any valuable

information that will enhance the effectiveness of the decision making.



Cha

Chap

prop

avai

high

is

qu

filt

of

sing

and

3.2.3

inv

exp

qu

Chapter

Chapt

proposed

availa

igh

is a ne

qualit

filtering

of the

single

and run

3.2.3

involv

expan

qualit

pter 3

apter

proposed

available

h qualit

a need

ality of

tering

the searc

gle “s

and run

3.2.3

olved.

expand

ality has

T

ter 2,

osed so

able f

qualit

need

ty of new

In

ing pr

searc

e “sear

un ass

Log

The

ed. T

d or

ty has

The

2, exi

osed solut

e for

ality i

need to

of new

In or

proces

arch,

“search

assessm

Logic

The

The

or ref

has been

he qual

2, exist

solution

or a t

y infor

to dev

new inf

order

ocess

ch, proces

“search qu

essmen

ogic for

he fol

he pr

1.

2.

3.

4.

5.

6.

7.

refined

been

qualit

existing

ution al

a tradi

nform

develop

infor

der to

ocess wi

proces

quer

ssment

for th

follow

prop

Iden

Per

Pre

Per

Bui

Test

Iden

ined

been reach.

ality of

sting m

on alrea

radition

ormati

elop

nformat

er to accom

will need

ocessi

query”

ent for

or the n

lowing

oposed

Identi

Perform

Pre-proces

Perform

Build/

Test t

Identi

ned the

reach.

y of the

g metho

lready

itional

ation

op a

rmation

accom

ill nee

ssing

y” ite

for it

he new

ing

osed me

ntify

rform

proce

rform

ild/enha

st the

ntify

the que

each.

f the

methods

ady ove

onal We

on wi

a qua

ation

accommod

need to

essing of

iteration

for its se

new algo

g diagra

osed metho

fy target

rform W

process

rform sema

uild/enhan

the evi

fy fur

query;

he disc

ethods

dy over

al We

will nee

qualit

on the

accommod

need to be

of its

ration

ts sem

algo

diagram

etho

target

Web-

process W

semant

enhance

eviden

furthe

query;

discov

ds rel

overcom

eb-sear

ll nee

lity met

the sem

odate

to be

its resu

ion, eac

semant

algorit

agram

ethod con

get kn

-sear

Web

antic

ce evi

dence

urther sear

y; thi

scover

rely

ercomes

sear

need t

y met

semant

ate the

be iter

resul

, each

antic,

gorithm

am at

d con

know

search;

eb-pag

antic di

eviden

dence qu

r sear

this r

overed

ely on

comes t

search

d to f

metric

semanti

the l

iterati

esults w

each W

ic, com

thm

at Fi

consist

owledg

search;

pages;

distance

evidence

quali

search

s repr

red info

on lim

es this

rch en

to form

tric tha

antic vie

he large

rative.

lts will

Web

comple

Figure

sists o

wledge

ages;

istance

ence;

uality;

search dir

represe

inform

lim

his lim

engine.

orm a

that

c view

arge v

ve. If

ill corr

eb-page

mplete

gure

ts of the

dge an

nce me

ity;

direc

represents

information

limited

limit

gine.

form a topic

at relies

iewpoin

e volum

If a

will corres

page

letene

igure 3.1

f the

and se

ance meas

direction,

ents an

mation

ited s

itation

ne. How

topic

relies

point

olum

a sing

correspo

page nee

eness

3.1 pr

he fol

d sear

easur

ection,

s an i

ation al

select

tation

How

opic-focu

elies on

int.

umes

single

espond

needs

eness and

present

follow

search

easurem

on, if

an iter

also

lected

on as

owever

focu

on sem

es of

ngle se

espond to

needs to

and qu

present

lowing

search ob

remen

if nece

terative

also nee

ected

as it i

ever,

ocused

on sem

of inf

search

d to a

ds to be

and qual

esents a

ing 7

object

ent;

necessar

ative

needs

ed sets

it is aim

er, as

used kn

semanti

infor

arch

to a sing

to be pro

quality

ts a s

7 ste

bjective

ecessary

ive proc

eds to

sets

s aim

as stat

knowl

antic

ormatio

ch query

single

e proce

lity sc

a schem

steps:

ctives;

ssary.

proce

ds to be

sets of

aimed

stated

knowledg

antic par

ation

query

ngle it

proces

scores.

chemat

eps:

ves;

y. Her

ocess

Det

be ad

of inf

ed at sear

ated in

owledg

param

ation to

ery co

e iterat

ocessed

scores.

hematic

Here

ocess un

Details

be addr

informat

at sear

in the

edge ba

paramet

to pr

correspo

eration

sed to

es.

atic ov

ere it

until

ils of t

addresse

nformat

search

the r

e base

ameter

process,

rrespo

ation.

to get

over

it may

til a cal

of the P

dressed.

mation

searching

he resear

base. T

eters and

process,

espond

on. Sim

get i

overvie

may

a calc

he Propos

sed. As

tion

ing ac

researc

. Ther

and

cess, t

onds to

Similar

get its ex

rview

ay be

calculat

Proposed

. As

n sourc

g across

earch

Therefo

nd ass

ss, the

s to a

ilarly,

ts extrac

ew of

be nec

culated

sed Ap

s cov

sources.

across

ch ob

erefor

sses

e sear

o a di

arly, w

extrac

of the

neces

ated l

Approa

covered

rces.

oss all

objec

efore, t

esses

search

direct

y, withi

racted

the st

necessar

ed level

proach

ered

es. The

all dat

jective,

e, the

ses the

arch an

direction

ithin

ted text

he steps

sary

evel o

oach

75

ed in

The

data

tive,

there

s the

and

ection

hin a

text

steps

sary to

evel of

in

he

data

ve,

re

he

d

on

a

ext

eps

to

of



Chapter 3 Details of the Proposed Approach

76

Figure 3.1 – Logic for the research developed algorithm

The overall search algorithm is iterative and can be split in two stages – preparation

and search. The next two sections will explain the logic behind each of the algorithm steps in

detail.

3.3 Preparation Stage

During the preparation stage, the search problem (or target information) has to be

identified by analysis. Initial target knowledge and search objectives are identified manually

by analysts and presented in an unstructured text format. This prepared text reflects the

search topic and is used further in the algorithm as an initial set of KK (known knowns) and

KU (known unknowns) – Rumsfeld’s philosophy is being introduced here. A search query is

compiled and a traditional search engine (such as Google) is then used to create a list of Web-

search results.
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Figure 3.4 – Example of noise objects on a Web-page

Hitherto, there have been a number of research projects conducted on eliminating

noisy information from Web-pages (Zhou, Xiong, & Liu, 2009), (Adam, Bouras, &

Poulopoulos, 2009), (Hu & Zhao, 2010), (Fu, Meng, Xia, & Yu, 2010), (Yi, Liu, & Li, 2009).

This research employs Python library AlchemyAPI (www.alchemyapi.com) as it is a widely

used powerful tool for accurate extraction of the main content from Web-pages ignoring

menus, side bars, etc.

During the preparation stage, it is also important to remove stop-words (e.g. articles,

prepositions, pronouns, etc.) that are frequent present in the natural language but hold very

little semantic content – see Table 3.1.
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Full text (stop-words highlighted) Text with stop-words removed

Noise means any unwanted sound. Noise is not
necessarily random. Sounds, particularly loud
ones, that disturb people or make it difficult to
hear wanted sounds, are noise. For example,
conversations of other peoplemay be called
noise by people not involved in any of them;

any unwanted sound such as domesticated dogs
barking, neighbours playing loud music, portable
mechanical saws, road traffic sounds, or a distant
aircraft in quiet countryside, is called noise.

Noise means unwanted sound Noise necessarily
random Sounds particularly loud disturb people
difficult hear wanted sounds noise example
conversations people called noise people
involved unwanted sound domesticated dogs
barking neighbours playing loud music portable
mechanical saws road traffic sounds distant
aircraft quiet countryside called noise

Table 3.1 – Example of stop word removal

There are several stop-word extraction techniques traditionally used in NLP

applications. Below are the stop-word removal techniques which are considered classic and

are widely used in various NLP tasks.

The most widely used stop-word list was proposed in (van Rijsbergen, 1979) where

the author suggests a classic list of 250 stop-words in English. In (Luhn, 1958) the author

defined a threshold below or above which a word could be labelled as a stop-word to

determine the set of significant words in his document collection. In (Fox, 1990) the author

formed a stop-word list of 421 words derived from the Brown corpus of 1,014,000 words

drawn from a broad range of literature in English. SMART (SMART, 1974) is another

example of a stop-word list used to remove common words.

Although, a stop-word list is usually domain dependent, the one formulated by Van

Rijsbergen (which is also often used as a test baseline) is used for the purpose of this

research.

Both – the initial knowledge base and the Web-pages returned by Google the search

engine – need to be pre-processed with the above methods so that the textual content within

both is clean and ready for the main part processing steps.

3.4 Search – Main Part

The main part (or search) may be considered as a combination of three integrated

processes. Firstly, the application of NLP methods to enable the filtering of Web-search

results to form a set of KK, KU and UU that are semantically related (close to the meaning of
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Hitherto, there have been a number of knowledge-based measures that estimate

semantic distance between words or concepts. These measures can be classified in two

classes:

 Lexical resource based measures (Mihalcea, et al., 2006), those that rely on the

structure of a knowledge source, such as WordNet;

 Distributional measures (Firth, 1957), those that rely on the distributional

hypothesis, which states that two words are semantically close if they tend to

occur in similar contexts.

The following two sections summarise the traditional lexical resource based

measures and the distributional measures of semantic distance between words and concepts.

3.4.1.1 Lexical resource based measures

The most popular lexical source is WordNet (Fellbaum, 1998), used for various NLP

tasks. WordNet is a lexical database of the English language. It consists of English Words,

grouped into nodes (synsets) that represent concepts. Each synset is composed of a general

definition and a set of synonymous words that share a particular concept. The synsets are

connected by various semantic relations (such as hyponymy, meronymy, etc.).

An extensive survey of the various WordNet based measures is presented in

(Mohammad & Hirst, 2006). The authors compared the measures, obtained with the use of

WordNet, with human judgment on selected word pairs. The following section provides a

brief summary of the major WordNet based measures of semantic distance.

1) Hirst-St-Onge

Nodes in a network may be connected by different kinds of lexical relations such as

hyponymy, meronymy, and so on. The idea behind Hirst-St-Onge measure of semantic

relatedness (Hirst & St-Onge, 1998) is that two concepts are semantically close, if their

WordNet synsets are connected by a path that is not too long and that “does not change

direction too often”. If the starting point is a particular node c1 and a path to c2 lies via a

particular relation (e.g. hyponymy), to a certain extent the concepts reached will be

semantically related to c1. However, if during the path, edges belonging to different relations

are met (other than hyponymy), very soon words that are unrelated may be reached.

The strength of the semantic relationship is given by the formula:
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1 2( , ) ,rel c c C PathLength k d    (3.1)

where d is the number of changes of direction in the path, and C and k are constants; if no

such path exists, rel(c1,c2) is zero and the synsets are deemed unrelated.

2) Leacock-Chodorow

Leacock-Chodorow measure of similarity (Leacock & Chodorow, 1998) relies on

the length of the shortest path between two WordNet synsets. In their approach only one

relation type (hyponymy) is considered and the path length formula is modified to reflect the

fact that edges lower down in the is-a hierarchy correspond to smaller semantic distance than

the ones higher up.

The strength of the semantic relationship is given by the formula:

1 2
1 2

( , )
( , ) log ,

2

len c c
sim c c

D
  (3.2)

where len(c1,c2) is the smallest number of WordNet links between the target concepts c1 and

c2. The path length is scaled by the overall depth D of the taxonomy.

3) Resnik

Resnik approach (Resnik, 1995) suggests a combination of corpus statistics with

WordNet. The idea behind the method is that the more general the lowest super-ordinate (lso)

of the target nodes c1 and c2 is, the larger the semantic distance between the concepts, while

the more general lso indicates the larger semantic distance between the nodes c1 and c2. This

specificity is measured by the formula for information content (IC):

1 2 1 2

1 2 1 2

( , ) ( ( , ))

( , ) log ( ( , )),

sim c c IC lso c c

sim c c p lso c c


  (3.3)

where lso(c1,c2) is the lowest super-ordinate of the target concepts c1 and c2 in WordNet.

Note, that the lower the lso, the lower the probability of occurrence of the lso and the

concepts subsumed by it, and, hence, the higher its information content. In (Mohammad &

Hirst, 2006) the authors mention that, as per Resnik’s formula, given a particular lowest

super-ordinate, the exact positions of the target nodes below it in the hierarchy do not have
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any effect on the semantic similarity. Intuitively, one would expect that word pairs closer to

the lso are more semantically similar than those that are distant.

4) Jiang–Conrath

Jiang–Conrath proposed a measurement of semantic distance, the inverse of

similarity (Jiang & Conrath, 1997). The measurement uses the conditional probability of

presence of an instance of a child synset given an instance of a parent synset. The information

content of the two nodes plays a significant part, as well as that of their most specific sub-

sumer. The similarity is measured with the formula:

1 2

1 2 1 2

1
( , ) ,

( ) ( ) 2 ( ( , ))
sim c c

IC c IC c IC lso c c
    (3.4)

where IC(c) is the information content denoted by IC(ci) = log(p(c1)); and lso(c1,c2) is the

lowest super-ordinate of the target concepts c1 and c2 in WordNet.

3.4.1.2 Distributional measures

Distributional measures (Lee, 1999) provide metrics based on models of

distributional similarity learned from large text collections (text corpora). Corpus based

measures of distributional distance rely simply on text and can give the distance between any

two words that occur at least a few times. Below is a brief summary of the major

distributional measures of semantic distance. All of them follow the same two steps: (1)

create distributional profiles, and (2) calculate the distance between two distributional

profiles.

1) Cosine

The Cosine method (van Rijsbergen, 1979) is one of the earliest and most widely

used distributional measures. This measure calculates the cosine of the angle between the

distributional vectors of the two words w1 and w2. Figure (3.5) is a representation of a word w

in the co-occurrence vector space. Values wx, wy, and wz are its strengths of association with

words x, y, and z, respectively. Figure (3.6) shows spatial distributional distance between

target words w1 and w2.
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1 2

1 2 1 2

( ) ( )

( , ) | ( | ) ( | ) |,
w C w C w

MD w w P w w P w w
 

  (3.6)

where P(w│wi) is the conditional probability of the co-occurring words given the target

words, and is used as a measure of the strength of association.

Euclidean Distance measure (Lee, 1999) uses the root mean square of the difference

in strength of association and is given by the formula:

1 2

2

1 2 1 2

( ) ( )

( , ) ( ( | ) ( | )) ,
w C w C w

ED w w P w w P w w
 

  (3.7)

where P(w│wi) is the conditional probability of the co-occurring words given the target

words, and is used as a measure of the strength of association.

Both Manhattan Distance and Euclidean Distance give scores in the range between 0

(synonymous) and infinity (distant/unrelated words).

3) Kullback-Leibler divergence

The relative entropy D(p||q) of the given two probability mass functions p(x) and

q(x) is:

( )
( ) ( ) log

( )x X

p x
D p q p x

q x
 for ( ) 0q x  (3.8)

Intuitively, if p(x) is the accurate probability mass function corresponding to a

random variable X, then D(p||q) is the information lost when approximating p(x) by q(x). In

other words, D(p||q) is indicative of how different the two distributions are. Relative entropy

is also called the Kullback-Leibler divergence (Kullback, 1997).

In (Mohammad, 2008) the author suggests using two probability mass functions

P(w│w1) and P(w│w2), and calculates their relative entropy D(p||q) as a measure of

distributional distance, indicating how different the two distributions are:

1
1 2 1 2 1

2

( | )
( , ) ( ) ( | )log

( | )w V

P w w
KLD w w D d d P w w

P w w  for 2( | ) 0P w w 

1 2

1
1 2 1( ) ( )

2

( | )
( , ) ( | )log ,

( | )w C w C w

P w w
KLD w w P w w

P w w  (3.9)
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where V is the vocabulary (all the words found in a corpus) and C(wi) is the set of words co-

occurring (within a certain window) with the word wi. P(w│wi) is the conditional probability

of the co-occurring words given the target words wi, and is used as a measure of the strength

of association.

It should be noted that the Kullback-Leibler distance is not symmetric, that is, the

distance from w1 to w2 is not necessarily, and even not likely, the same as the distance from

w2 to w1. The resulting distributional measure ranges from 0 (synonymous) to infinity

(unrelated).

4) α-skew divergence 

The α-skew divergence (Lee, 2001) is a slight modification of the Kullback-Leibler

divergence:

1 2

1
1 2 1( ) ( )

2 1

( | )
( , ) ( | )log ,

( | ) (1 ) ( | )w C w C w

P w w
ASD w w P w w

P w w P w w     (3.10)

where α is a constant usually set to 0.99. P(w│wi) is the conditional probability of the co-

occurring words given the target words wi, and is used as a measure of the strength of

association.

Analysis performed in (Lee, 2001) shows that α-skew divergence performs better 

than Kullback-Leibler divergence in estimating word co-occurrence probabilities. The

resulting distributional measure ranges from 0 (synonymous) to infinity (unrelated).

5) Jensen-Shannon divergence

Jensen-Shannon divergence is another relative entropy-based measure (Dagan, Lee,

& Pereira, 1994):

1 2 1 1 2 2 1 2

1 1
( , ) ( ) ( )

2 2
JSD w w D d d d D d d d

              (3.11)

 1 2

1
1 2 1

( ) ( )
1 2

( | )
( , ) ( | ) log

1
( | ) ( | )

2
w C w C w

P w w
JSD w w P w w

P w w P w w 
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2

2

1 2

( | )
( | ) log

1
( | ) ( | )

2

P w w
P w w

P w w P w w

     
(3.12)

Jensen-Shannon divergence is the sum of the Kullback-Leibler divergence between

each of the individual co-occurrence distributions d1 and d2 of the target words w1 and w2

with the average distribution ((d1+d2)/2).

While the Kullback-Leibler distance is not symmetric, Jensen-Shannon divergence

overcomes the symmetry problem. It also avoids the problem of zero denominators and,

therefore, is always well defined.

The resulting distributional measure ranges from 0 (synonymous) to infinity

(unrelated).

3.4.1.3 Issues with traditional measures

When used on their own, both lexical-resource-based and distributional measures of

word-distance have significant limitations described in detail in (Mohammad & Hirst, 2006).

Among the lexical-resource-based methods, Resnik formula contradicts the intuitive

fact that that word pairs closer to the lowest super-ordinate are more semantically similar than

those that are distant. Leacock-Chodorow measure of similarity is limited only to the is-a

type of relation between the WordNet nodes. Generally, for distance oriented measures

computed on WordNet semantic network, as compared by (Budanitsky & Hirst, 2006), the

Jiang-Conrath measure has the highest correlation (0.850) with the Miller and Charles list of

30 noun pairs (Miller & Charle, 1991) to which human judges had assigned similarity

measures, and performs better than all other measures considered in a spelling correction

task.

Overall, despite the fact that WordNet-based measures accurately estimate semantic

similarity between nouns, their estimation of semantic relatedness especially in pairs other

than noun–noun is extremely poor.

As for the distributional word-distance measures, the detailed survey in (Mohammad

& Hirst, 2006) the authors concluded that Cosine method is the most accurate to estimate

distributional distance between two concepts. It has the highest level of correlation with

human rated word pairs of automatic rankings (Rubenstein & Goodenough, 1965).
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However, distributional measures are expected to perform poorly in the face of word

sense ambiguity if not enough context is present. Moreover, there is a data-sparseness

problem associated with distributional measures, as they consider only the words that appear

in the text, while ideally all the words in the vocabulary should be considered.

Finally, both WordNet-based and distributional measures require significant

computational power to store and process extremely large matrices of size N × N, where N is

the size of the vocabulary.

Therefore, none of the above methods meet the requirement of the new solution to

provide effective way of measuring semantic similarity between two texts.

3.4.1.4 Hybrid solution – distributional measurement of concept-distance

For the purpose of this research, a hybrid approach proposed in (Mohammad, 2008)

was chosen. It combines the co-occurrence statistics of a distributional approach with the

information in a lexical resource, and employs a distributional measure of concept-distance

by calculating the distance between the distributional profiles of concepts rather than words.

The distributional profile of a concept is the strength of association between it and each of the

words that co-occur with it. The closer the distributional profiles of two concepts, the smaller

is their semantic distance.

For the lexical resource (Mohammad, 2008) used published Macquarie Thesaurus

concepts. This is a Roget-style thesaurus that, in contrast to any WordNet-style fine grained 

sense resources, classifies all English words into 1044 categories. The use of thesaurus

categories as concepts allows pre-computing of all concept distance values required in a

form of concept-concept distance matrix of size only 1044×1044 (about 0.01% the size of the

matrix required by traditional lexical resource based and distributional measures). Another

big advantage of the hybrid approach over the distributional measures is that the distance

between two concepts (categories) is calculated from the occurrences of all the words listed

under those categories. Considering all the advantages of the hybrid method by Mohammad

(2008) it was chosen to best suit the task of this research. Next section will describe the

algorithm of distributional measurement of concept-distance.
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3.4.1.5 Algorithm of distributional measurement of concept-distance

The algorithm of the distributional measurement of distance between two concepts

by (Mohammad, 2008) can be schematically represented as in the Figure 3.7 below.

Briefly, the algorithm can be described as follows. First, the text is parsed for the

thesaurus categories and for each word co-occurring with the target word within a chosen text

window its corresponding category is recoded. The aim of this step is to build a word-

category co-occurrence matrix where the element mij corresponds to the number of times the

word wi was close to any words belonging to the category cj within the chosen text window.

This matrix allows performing bootstrapping and word-sense disambiguation.

Then a contingency table is created for each matrix element in order to calculate

distributional profiles of concepts – vectors with coordinates corresponding to either point

mutual information (PMI) (Ward Church & Hanks, 1990) or conditional probability values.

By applying the chosen distributional measure (see 3.3.1.2 – Distributional

measures) the distributional distance between two target concepts can be calculated. Chapter

4 provides more details to the mathematics of the algorithm of measurement of concept

distance using distributional profiles of concepts.

Figure 3.7 – Measurement of distance between distributional profiles of concepts
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The attraction for this theory over other formal techniques discussed in Chapter 2 is

that it allows calculation of the quality score without any manual processing or pre-defining

of data source models of any type, which makes Dempster-Shafer theory a powerful and

coherent way of measuring information quality based on the semantic metric.

The qualitative relation between a piece of evidence and a hypothesis corresponds to

a cause-consequence chain. A piece of evidence implies a hypothesis or a set of hypotheses,

respectively. Dempster-Shafer theory requires that all hypotheses are unique, not overlapping

and mutually exclusive. The strength of an evidence-hypothesis assignment is quantified by a

statement of a data source, which in our case is a single Web-page.

A measure of strength of an evidence-hypothesis assignment is quantified by a

statement of a data source (a single Web-page) and for this research it is propagated from the

results of the semantic distance measure for each Web search result. After the semantic

distance measurement stage, each Web-page’s extracted text can be seen as a representation

of thesaurus categories with Boolean values corresponding to whether the text includes any

words from the category or not. In this research, the set of 1044 Thesaurus categories and all

their possible combinations is a frame of discernment, or a power set. Thus, each text as a

combination of Thesaurus categories is a member of the power set. Mass function for a text,

as a proportion of all evidence that supports the text, is taken as a normalised value of the

NLP analysis result – this will comply with the requirement of Dempster-Shafer theory for all

mass functions to sum up to “1”. The quality of information in each Web-page correlates with

the Belief value for the corresponding text and reflects the amount of evidence one has for

each Web-page.

Based on the obtained quality values for each Web-page text, the filtered search

engine result list is reordered starting from those Web-pages with highest quality from

semantic view point. These documents can be then transferred to a company's Intranet, where

methods adapted to process finite set of documents would further analyse this new pool of

information.

Details on mathematics for Dempster-Shafer approach to measuring quality are

discussed in Chapter 4 of this thesis.
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 List of queries for search engine – queries reflect the known unknowns about the

search topic and define the direction of search.

 Roget's thesaurus – thesaurus of English words where all words associated with

1044 categories based on the meanings. Such categories represent different

semantic concepts and each English word can be associated with more than one

concept. The thesaurus is stored in a separate text file.

 List of stop-words – words that are used frequently in the language, e.g. articles,

pronouns etc. List of stop-words is stored as a separate text file.

 Search engine – this research extensively uses Google search as holds the largest

index of the Web. For this research it is not an issue to be overly inclusive during

the first stages of the algorithm.

 Python libraries and script files – the proposed algorithm is evaluated with a

semi-automated system realised with Python language.

The main module is the core module of the system and pre-processes the texts

(knowledge base and Web-pages extracted text), calculates semantic distance between them,

and calculates the KK conversion rate. Other modules are used to prepare the thesaurus text

file and transform it to a collection of words/phrases with corresponding categories indexes,

prepare text files (knowledge base and Web-pages extracted text) for further processing and

analysis, calculate distribution profiles of concepts. For main content extraction from Web-

pages ignoring side bars, menus etc. the AlchemyAPI library is used. In addition, NLTK

library is extensively used as a powerful tool for processing raw text. Further information on

the model software is provided in Chapter 5.

Firstly, all knowledge available on the search topic is collected, written in natural

English language and recorded as a single text file. This forms up the initial knowledge base

for the search. The list of associated queries for the search topic expansion is kept aside and

each query is fed into the search engine separately. The above procedures are done manually

and each query is associated with a single iteration of the overall search and analysis process.

Then, the knowledge base text is prepared for further analysis. Stop-words are

removed in accordance with the pre-set stop-word list. Instances of words inside the text that

relate to any of the 1,044 categories in the thesaurus form the Text-Concept Matrix (TCM).

Based on the TCM, the Word-Concept Co-occurrence Matrix (WCCM) is built. Finally,

using the contingency table to each unique word and category the Strength of Association

(SOA) matrix is created, where each cell value is calculated as conditional probability p(w|c)
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that a word w co-occurs with a concept c within the text window of ±5 words according to the

contingency table.

Next, the search results for each query are processed and prepared to be fed into the

system. For each Google results page, its source file is exported as a text file. The source

code files are then merged into one so that the resulting file contains the html source code for

all Google search results pages for the iteration. Next, a Python script is used to parse this

text file and extract the html links to the Web-pages. Even though this technique of is manual

and time consuming, it is the only possible universal way of scraping Google search results

for the links to Web-pages due to the frequent changes in Google search system. The

resulting text file contains a list of all html links to the Web-pages selected by Google in

return to the query for the current iteration. The html links follow the same order as they

would appear in the search engine results list.

After that, the resulting text file with the search results is fed into the system where

the complex processing and analysis is done. Starting from the first line and moving down the

list, each link to the Web-page is attempted to be opened, and if successfully done, the main

content of the Web-page is extracted with the use of AlchemyAPI tool

(www.alchemyapi.com). Then, the extracted text is pre-processed in the same way as the

knowledge base (see above). Once the SOA matrix is created, everything is ready for the first

part of the analysis – Natural Language Processing (NLP).

The NLP part calculates the semantic distance between two texts – the initial

knowledge base and the extracted text for the Web-page currently processed. In the end, for

each Web-page, the resulting semantic score is compared to the chosen threshold and only

relevant texts (with semantic score above the threshold) will be passed through to the next

stage of the algorithm. The NLP part starts with creation of an augmented list of unique

words in both the knowledge base and the extracted text. This is done as a part of calculation

of the Distributional Profiles (DP) of concepts – vectors that consist of SOA’s between words

and concept for a given text. The augmented list of unique words ensures the DP vectors for

both texts are of the same dimension. Then, the similarity between each of the concepts in

the two texts is calculated as Cosine of the angle between the two vectors. The results are

recorded in a form of a matrix with dimension [1,044 x 1,044]. Having obtained concept-to-

concept similarity values, the final semantic distance between the knowledge base and the

Web-page can be calculated using the formula specially adapted for this research. The

resulting value for the semantic score is between “0” and “1”. The closer the semantic score

value to “1”, the closer the texts are in their meaning. If the extracted text of a Web-page text
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is semantically close to the knowledge base by at least “0.85” (threshold), then this text is

passed on to the next stage of the algorithm – the Grounded Theory analysis.

The Grounded Theory analyses the amount of new information coming in with the

new text. In this research it is assumed that the topic is semantically exhausted if no new

information can be added, of if new information does not significantly enhance the

knowledge on the topic. In order to check this, the set of unique words in the initial

knowledge base is considered as the set of KK, while the set of unique words within the

extracted text of the Web-page is treated as KU and UU. The two sets are compared and

those words that are not in the KK set are considered to be converted to KK and are added to

the KK list. The next Web-page extracted text will be then compared against the updated list

of KK. Once the number of the new words is recorded, the extracted text is passed onto the

final stage of the algorithm – Evidential Analysis.

The Dempster-Shafer part calculates the quality of information that the Web-page

contains. The approach to quality measurement is based on the semantic criteria and is

realised with Dempster-Shafer method of judgement. The quality of information in each

Web-page correlates with the Belief value for the corresponding extracted text and reflects

the amount of evidence one has for each text directly. Based on the obtained quality values

for each Web-page, the filtered search results list is reordered starting from the Web-pages of

the higher quality from semantic view point.

The overall algorithm is presented in the Figure 3.9 below. The combination of the

values for relevance, completeness, and quality of the resulting knowledge base after each

iteration will help to determine the progress of the search.
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3.6 Summary

This thesis proposes a new approach that supports Web-based search of topic related

information utilising the existing methods. In contrast to the currently available research

methods, which tend to focus on specifically selected topics and information sources, this

research presents a novel semantic approach method to Web-based discovery of previously

unknown intelligence. The solution presented in chapter has no limitations for Web-sources

and is open to perform search and analysis through any Web-page available to the search

engine.

This chapter provided a comprehensive theoretical background to the proposed

solution and discussed the details of its qualitative aspects. To summarise, the proposed

algorithm suggests three stages of filtering. For each query, the natural language processing

stage filters only those pages that are semantically relevant to the search topic. Then, the

grounded theory part assesses the filtered Web-pages for holding new information and checks

if this information exhausts the search topic. Lastly, the evidence on the Web-pages is

analysed with Dempster-Shafer theory and its quality level is calculated as Belied function.

Such filtering process permits to significantly reduce the length of the initial search results

list returned by a traditional search engine, bringing the high-quality documents to the top of

the list. The quality of collected information can be significantly enhanced by previously

unknown information derived from the available known facts. This new information will

expand the existing knowledge and form a knowledge base and can then be effectively

manipulated by enterprise-search engine.
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Chapter 4

Developing the Mathematics for the Search Algorithm

4.1 Overview to Chapter

The aim of this chapter is to address the research step:

Develop a search model that will integrate a conventional search engine with

concepts and methods that will undertake the search

Following the overview description given and Chapter 3 of the algorithm being

developed for the Web Search, this chapter provides detail on the mathematics in each stage

of the algorithm. Particularly the chapter will further develop the ideas on how semantic

closeness (section 4.3) of a Web-page’s content is assessed against the initial search topic –

this idea is at the heart of the algorithm. Furthermore, the chapter will develop mathematics

for application of grounded theory (section 4.4) to measure completeness of the collected

information. Moreover, it explains how this information is tested for quality using Dempster-

Shafer theory (section 4.5). However, to ensure that the algorithm is set in the correct context

it is important that some points from Chapter 2 are revisited as preparation (section 4.2). It is

also necessary to focus on how a decision is made for iteration (section 4.6). By the end of

this chapter a comprehensive description of all mathematics used for the foundation of the

search model (algorithm) and hence the description of the algorithm will be complete and

ready for a computing software representation to de developed (Chapter 5). Proof of used

mathematics is attached in Appendix 6.

4.2 Preparation Discussion

Recalling from Chapter 2, the traditional approach to Web-search is based on

indexing of the Web content, i.e. building an index database, and then searching for the

keywords that match the content of this database. However, this strategy will not easily
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support intelligence information acquisition. The Google search engine (the most commonly

used) is able to find several millions of Web-pages and display up to 1000 results for a

particular search in a fraction of a second, but these pages are not necessarily semantically

related to the search topic. Even though Google currently has the best duplicate content

filtering technology (Pugh & Henzinger, 2001) and (Gomes & Smith, 2000), it cannot analyse

the meaning of the texts to eliminate semantically repeated documents, quantity does not

always mean quality.

The keyword matching search technique essentially misses important information,

while ranking strategy may place irrelevant search results at the top of the list. What should

also be borne in mind is that the keyword being used reflects what the author has in mind and

not necessarily what is required by the intelligence search, resulting in possible relevant

information being missed.

A recently suggested approach to overcome this information problem is “concept

search”, i.e. analysis of unstructured (plain) text for information that is conceptually similar to

the information provided in a search query; ideas expressed in the retrieved information are

relevant to the ideas in the text of the search query. Concept search is widely used in

enterprise-search and data management systems, such as Autonomy (Autonomy, 2009), that

operate with the finite knowledge base, making it possible to “understand” the meaning of the

short query by extracting the meaning of the documents that are currently opened on an

analyst’s PC desktop. Regardless of the effectiveness of such methods in the Intranet

environment, Web scale far exceeds the amount of information that these methods can process

reasonably in a realistic time frame.

This research model employs an existing search engine – Google. The aim is to

build not only accurate, but also complete evidence; the search engine should not skip a Web

source because it is not in its index base. It is more prudent to filter unrelated text at a later

stage. For each query (manually created) the search results list is semi-automatically

processed and prepared to be fed into the system.

The initial knowledge base and search objectives are identified manually and

presented in unstructured text format. Clearly, the Web contains a vast amount of valuable

information. However, in practice, due to the complicated and flexible layout, the main

content of a Web-page is usually surrounded by noisy information (such as menu, header,

advertisement, etc.). Therefore, extracting the main text of a Web-page is a critical processing

task, if relevant information is to be identified.
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The initial knowledge base and the collection of extracted texts from Web-search

results are pre-processed as part of semantic analysis. Each Web-page from the list is

accessed and run through AlchemyAPI tool in order to eliminate noise and extract main

textual content. Once the text has been extracted, stop-words are removed (in accordance

with the selected stop-word list) leaving a “clean” collection of Web-page’s terms as an input

for the next pre-processing step. For the next stage of the algorithm – semantic closeness

measurement – this research uses a hybrid method detailed in (Hirst & Mohammad, 2006)

that combines the co-occurrence statistics with the information in a lexical source. For the

lexical source this research uses Roget’s Thesaurus (www.roget.org) that, in contrast to

traditionally used WordNet (Fellbaum, 1998), classifies all English words into 1044

categories. Words within the text correspond to concepts, or meaning categories, in the

thesaurus. The Text-Concept Matrix (TCM) is then built. Rows of this matrix are associated

with the unique words within the text, i.e. duplicates or the word order is not considered in

this case. The columns represent 1044 concepts of the thesaurus – see Figure 4.1.

1 2 1044

1 11 12 1

2 21 22 2

1 2 1044

...

...

...

... ... ... ... ...

...

j

j

n i i n

c c c

uw m m m

uw m m m

uw m m m

Figure 4.1 – Example of the Text-Concept Matrix

Thus, the TCM is of dimension [nu x 1044], where nu is the amount of unique words

within the text. TCM values mij are either “1” indicating that the word is associated with the

concept in the thesaurus, or “0” in the other case.

4.3 Semantic Closeness Measurement

Based on the TCM (Figure 4.1), a Word-Category Co-occurrence Matrix (WCCM)

is built and populated with co-occurrence counts from the text (Figure 4.2). Rows of this

matrix are associated with the words as they appear in the text. In order to build the WCCM,

the text should be parsed for the words that are positioned within the text window of ±5



Chapter 4 Developing the Mathematics for the Search Algorithm

104

words to the target word. It is created having word types ‘w’ as one dimension and thesaurus

categories ‘c’ in the other. The WCCM is of the type:

1 2

1 11 12 1

2 21 22 2

1 2

... ...

... ...

... ...

... ... ... ... ... ...

... ...

... ... ... ... ... ...

j

j

j

i i i i j

c c c

w m m m

w m m m

w m m m

Figure 4.2 – Word-Category Co-occurrence Matrix (WCCM)

A matrix cell mij, corresponding to word wi and concept cj, is populated with the

number of times wi co-occurs with any word listed under concept cj in the thesaurus within a

text window of ±5 words. Thus, for each word in the text 5 words to the left and 5 words to

the right from this target word are remembered.

The values for these neighbouring 10 words are then found in the TCM and their

TCM rows are summed up and added as the row which corresponds to the target word. The

resulting matrix is of the size [N x 1044], where N is the number of all words in the texts

excluding stop-words. Each value cij corresponds to a number of times a word i co-occurred

with any word listed under the category j within the text window of ±5 words.

A contingency table (Figure 4.3) is then generated for every word w and category c

via merging the cells for all other words and categories and adding up their frequencies.

wc w

c

c c

w n n

w n n


 




Figure 4.3 – Contingency Table

Finally, a conditional probability will yield the values for the strength of association

between the target concept and co-occurring words in form of distributional profile of a

concept:

( )
( | )

( )
wc

c

nP w c
P w c

P c n
  . (4.1)
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For example, consider the word STAR appearing in two texts. In text_1 it co-occurs

within a text window with words belonging to thesaurus categories “space”, “light”,

“constellation” and “hydrogen”. In text_2 it is positioned next to words from categories

“famous”, “movie”, “rich” and “fan”.

Below are example distributional profiles of two senses of the word STAR

(Mohammad, 2008) :

CELESTIAL BODY: space 0.36, light 0.27, constellation 0.11, hydrogen 0.07, ...

CELEBRITY: famous 0.24, movie 0.14, rich 0.14, fan 0.10, ...

In this example, the distributional profiles of concepts technically represent vectors of the

size 1044, i.e. containing values that correspond to all 1044 thesaurus categories, as shown in

Table 4.1.

Text

Concepts

Thesaurus Categories

…

co
n
st
el
la
ti
o
n

fa
m
o
u
s

fa
n

h
yd
ro
g
en

li
g
h
t

m
o
vi
e

ri
ch

sp
a
ce …

CELESTIAL

BODY
… 0.11 0 0 0.07 0.27 0 0 0.36 …

CELEBRITY … 0 0.24 0.10 0 0 0.14 0.14 0 …

Table 4.1 - Example distributional profiles

The Strength of Association matrix is then created (figure 4.4), where each entry is

calculated as conditional probability p(w|c) that a word w co-occurs with a concept c within

the text window of ±5 words as from the contingency table.
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w

Figure 4.4 – Strength of Association Matrix

Based on the detailed survey of semantic distance measures in (Hirst & Mohammad,

2006), this research uses the adapted Cosine method to estimate distributional distance

between two concepts. The choice of the Cosine concept distance measurement (with

conditional probability as the strength of association in distributional profiles of concepts)

was made based on the highest level of correlation with human rated word pairs of automatic

rankings (Rubenstein & Goodenough, 1965). The Cosine distributional distance measure is

denoted by:

1 2

1 2

1 2( ) ( )

1 2
2 2

1 2( ) ( )

( ( | ) ( | ))
( , ) ,

( ( | ) ( ( | )

w C c C c

w C c w C c

P w c P w c
Cos c c

P w c P w c

 

 

 


  (4.2)

where
1 2

( ) ( )w C c C c  is the set of words that co-occur with concepts 1c and 2c within a

text window of ±5 words in both texts. Thus, the formula for 1 2( , )Cos c c measures semantic

distance between each concept in each text, and treats the distributional profiles of concepts

as vectors of the size equal to the number of all unique words in both texts. 1( | )P w c and

2( | )P w c are conditional probabilities of a word w co-occurring with any word listed under the

category c in the thesaurus. Conditional probabilities are used as strengths of association

between each word and each concept in both texts, and are taken from the distributional

profiles of concepts. The value for the cosine in this case lies between 0 and 1, indicating

semantic remoteness of two concepts when the value approaches 0 and semantic closeness

when the value is close to 1.

The use of thesaurus categories as concepts allows pre-computing of all concept

distance values required in a form of concept-concept distance matrix of a size much smaller

than word-word distance matrix.

Having obtained the concept distances, the algorithm then calculates semantic

closeness score between the initial knowledge base text and the extracted text of the Web-
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page. The formula for measuring similarity between texts, proposed by (Corley & Mihalcea,

2005) was adapted for this research.

The original method measured semantic similarity of texts by exploiting the

information that can be drawn from the similarity of the component words. First, for each

word w in the text T1 the word in the text T2 that has the highest semantic similarity

(maxSim(w; T2)) is identified, according to the word-to-word similarity measure. Next, the

same process is applied to determine the most similar word in text T1 in relation to the words

in texts T2. The word similarities are then weighted with the corresponding word specificity,

summed up, and the resulting similarity scores are combined using a simple average.

In contrast to the original approach, this research adapts the method by introducing

concept-to-concept instead of word-to-word distance for measuring semantic similarity

between two texts.

By applying the formula (4.2) the Cosine distributional distance values 1 2( , )Cos c c

are calculated between all concepts in two texts, forming the Cosine matrix of the size

[1044x1044], the values represent semantic distances between the concepts (figure 4.5):

1 2 2 2 1044 2

1 1 1 1 1 2 1 1 2 2 1 1 1044 2

2 1 2 1 1 2

1044 1 1044 1 1 2 1044 1 1044 2

( ) ( ) ... ( )

( ) ( ( ), ( )) ( ( ), ( )) ... ( ( ), ( ))

( ) ( ( ), ( )) ... ... ...

... ... ... ... ...

( ) ( ( ), ( )) .... ... ( ( ), ( ))

c T c T c T

c T Cos c T c T Cos c T c T Cos c T c T

c T Cos c T c T

c T Cos c T c T Cos c T c T

Figure 4.5 – Cosine matrix for two texts

Given a measure for semantic distance between each of the concepts in both texts, it

is possible to define the semantic similarity of two texts.

First, for each concept 1( )ic T in the text T1 the concept
2( )jc T in the text T2 is

identified that has the highest semantic similarity
1 2( ( ), ( ))i jCos c T c T , which will be denoted

as 2max ( , )Sim c T . The concept similarities are then weighted with the corresponding concept

inverted document frequency ( )idf c , that has the value of 1 if the concept c is used in both

texts, and 0.5, if the concept is used only in one of the two texts. This allows calculating a

metric that combines semantic similarity of concepts in text T1 with respect to concepts in

text T2:
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Applying semantic similarity of concepts in text T2 with respect to concepts in T1:
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The similarity between two texts T1 and T2 is therefore determined using the

following function:
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To summarise, for each concept c in the initial knowledge base text T1 the concept in

the Web-page text T2 is identified that has the highest semantic similarity 2max ( , )Sim c T ,

according to the concept-to-concept similarity 1 2( , )Cos c c described above. Next, the same

process is applied to determine 1max ( , )Sim c T for the most semantically close concepts in T2

compared to the concepts in T1. The concept similarities are then weighted with the

corresponding concept inverted document frequency ( )idf c . Finally, concept similarities are

summed up, and the resulting scores are combined using an average.

The semantic closeness 1 2( , )sim T T has value between 0 and 1; the closer the value is

to 1, the closer the texts are in their meaning. If the Web-page text is semantically close to the

initial knowledge base text by at least 85% threshold, then the Web-page text is passed on to

the next stage of the algorithm – the Grounded theory analysis.

4.4 Completeness Measurement

At this stage the Web-pages that were selected during the previous stage are tested

for completeness – value they would add if they were to be added to the initial knowledge

base. The information search process is independent of the search environment and comprises

the same actions. On any topic these actions involve a comparison of content of the

information source with information that is already known (KK and KU) and discovery of
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UU, i.e. a comparison of currently known knowledge with new information retrieved (see

Chapter 2 for details). The more matches observed, the more reliable and trustworthy the

source of information becomes. The combination of KU and UU represents the uncertainty

on the topic. Information discovery changes the level of uncertainty and its composition in an

individual's knowledge by converting unknown information into known information.

Following the first iteration of the algorithm, newly collected evidence will partially consist

of the text that is similar to the contents of the initial knowledge base, while the major part of

the new evidence will be new concepts.

The volume of information that would be considered enough to build the evidence

leading to sensible decision making is unknown. However, for the purpose of this research it

is assumed that the topic is exhausted if no new information can be added, or if new

information does not significantly enhance the knowledge known on the topic. Grounded

theory (Martin & Turner, 1986), (Corbin & Strauss, 2008) has been successfully used for

building a hypothesis (theory) using interviews. Grounded theory is a systematic

methodology from the social sciences involving the generation of intelligence evidence from

data. An important characteristic of grounded theory is that it does not use any prior

information, and that it builds theory only based on information that is obtained throughout

the research, making it suitable in the context of evidence building with very limited prior

information.

This stage of the algorithm employs grounded theory to analyse the amount of new

information coming from the Web-pages and to test the completeness of gathered

information. Only the information from the initial knowledge base is classified as known. It is

also assumed that the search topic is complete when new search does not add any new

information.

Every Web-page that is considered relevant at the previous stage of the algorithm is

compared to the knowledge base and analysed for the amount of new concepts within the text

of this Web-page. Grounded theory is an integral part in the proposed approach to identify the

set of UU in newly gathered information through comparison of the conversion rate of KU

and UU (new concepts) into KK (evidence). Total knowledge on a topic Ktotal is the collection

of all three sets. It is the sum of initial knowledge base concepts KK0, initial search objective

concepts KU0, while ‘unknown unknowns’ UU0 are undefined:

  0 0 0K 0 KK KU UU .total    (4.6)
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Following each iteration, newly identified concepts are added to the initial knowledge base,

thus expanding the evidence:

   K K 1 KU ,total total ii i   (4.7)

where KU represent new concepts on each iteration, and KU(i–1) ≠ KU(i). A change in KU

represents the conversion rate δ(KU) of new concepts in evidence and is defined as:

( 1)( ) KU KU .i iKU   (4.8)

If δ(KU) > 0, then there are still possible concepts that can be identified for evidence

expansion. If δ(KU) < 0, then no new information is being identified and one can assume that

the topic is tending to exhaustion. Conversion rate δ(KU) is used to analyse the change in

new concepts after each iteration. The comparison is done for the cumulative amount of new

concepts calculated for previously checked Web-pages' content added to the initial knowledge

base. In conjunction with quality test (next stage), conversion rate provides a basis for the

decision of acceptance of the Web-page content. When | δ(KU) | ≈ 0 and the conversion 

function converges to a number, it indicates that the search topic is exhausted. Having

identified the effect of the information from the Web-page on the completeness of the initial

knowledge base, quality of the Web-page is then tested.

4.5 Quality Measurement

Evidential analysis is fundamental to the practice of intelligence analysis and

requires the ability to represent, store, and manipulate evidence. This research applies

evidential analysis to estimate the quality of collected information, hence, setting a quality

parameter for the efficacy of the eventual decision-making. Dempster-Shafer theory of

evidence (Dempster, 1968), (Shafer, 1976) has been chosen for a well-understood, formal

framework for judging the evidence under uncertainty. The mathematical connection between

information retrieval and Dempster-Shafer theory was suggested by Van Rijsbergen (1992).

Dempster-Shafer theory (DS) is utilised for measurement of the quality level associated with

gathered information. The quality is measured considering semantic closeness values only.

However, there is an option to expand the scope of the quality metric and broaden its

parameters by including some Web-site statistics, as proposed in (Danilova & Stupples,
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2012). The total quality score for each Web-page is calculated as a Belief function; the higher

the value of Belief for a Web-page, the higher its quality value and the higher the Web-page

will be ranked in the final list of results. Next, the main concepts of DS theory are described

as presented by Shafer (1976) and related with the context of Web-based discovery of

unknowns.

4.5.1 Frame of discernment

In the Dempster-Shafer theory propositions are represented as subsets of a given set.

The hypotheses (in context – texts as combination of concepts) represent all the possible

states of the system considered. It is required that all hypotheses are elements (singletons) of

the frame of discernment, which is given by the finite universal set U. The set of all subsets

of U is its power set 2U. A subset of those 2U sets may consist of a single hypothesis or a

conjunction of hypotheses. Moreover, it is required that all hypotheses are unique, not over-

lapping and mutually exclusive.

If the value of some quantity is u, and the set of its possible values is U, then the set

U is called a frame of discernment. “The value of u is in A” is a proposition for some A U.

The proposition A = {a} for a U constitutes a basic proposition “the value of u is a“. Thus,

each text can be represented as a set of Thesaurus categories, where each element is a

Boolean value corresponding to whether the text includes any words from the category.

Hence, the set of 1044 Thesaurus categories and all their possible combinations is a universal

set U = {c1, ... , c1044}. Each Web-page text as a combination of Thesaurus categories is a

member of the power set 2U= {Ø, {text_1}, {text_2}, {text_3}, ..., U}.

4.5.2 Basic probability assignment

In order to express the uncertainty of propositions, Beliefs can be assigned to them.

The Beliefs are usually computed using a basic probability assignment (bpa) or mass function

m: 2U → [0,1]. It has two properties: the mass of the empty set is zero, and the masses of the 

remaining members of the power set add up to a total of 1:

( ) 0m   and ( ) 1
A U

m A  . (4.9)
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Mass function m(A) expresses the proportion of all relevant and available evidence

that supports the claim that the actual state belongs to A but to no particular subset of A. The

value of m(A) pertains only to the set A and makes no additional claims about any subsets of

A, each of which have, by definition, their own mass. If there is positive evidence for the

value of u being in A then m(A) > 0, and A is called a focal element. No Belief can ever be

assigned to a false proposition. The focal elements and the associated bpa define a body of

evidence. The mass function for a text, as a proportion of all evidence that supports the text,

is a normalised value of the NLP analysis result according to 1 2( , )sim T T . The calculated

semantic distance has a value between 0 and 1, and the total evidence is scaled to fall

between 0 and 1 in order to satisfy the definition of bpa.

4.5.3 Belief function

Given a body of evidence with m, the total Belief can be computed provided by that

body of evidence for a proposition. This is done with a Belief function Bel: 2U→ [0, 1] 

defined upon m. Probability values are assigned to sets of possibilities and Belief in a

hypothesis is constituted by the sum of the masses of all sets enclosed by it:

( ) ( )
B A

Bel A m B . (4.10)

Bel(A) is the total Belief committed to A, i.e. the m(A) itself plus the mass attached

to all subsets of A. Bel(A) is then the total positive effect the body of evidence has on the

value of u being in A. The quality of information in each text is associated with the value of

the Belief function for corresponding texts and reflects the amount of evidence supporting

each text directly. Each text can be seen as a combination of Thesaurus concepts. For

example, the Belief in the text_1 as a set of concepts {c1 U c2} is the sum of its own basic

assignment with those of all of its subsets. Thus, if text_1 = {c1, c2}, text_2 = {c1} and

text_3 = {c2}, the Belief function of the text_1 is:

( _1) ( _3) ( _2) ( _1)Bel text m text m text m text   . (4.11)
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If Table 4.2 below showed the distribution of concepts and the corresponding

semantic similarity scores 1 2( , )sim T T , the example mass functions would represent the

normalised values of 1 2( , )sim T T :

Text
Thesaurus Categories

1 2( , )sim T T m(text)
C_1 C_2 C_3 … C_1044

Text_1 x x x 0.30 0.11

Text_2 x 0.50 0.19

Text_3 x x 0.85 0.31

Text_4 x x 0.40 0.15

Text_5 x x 0.65 0.24

Table 4.2 – Example set of texts as input for calculation of Belief function

Therefore, from the formula (4.11) the Belief value for Text_1 ( _1)Bel Text can be

calculated as:

( _1) ( _1) ( _2) ( _5)Bel Text m Text m Text m Text  
( _1) 0.11 0.19 0.24 0.54Bel Text    

The value “0.54” represents the quality of the Text_1 form semantic viewpoint.

Based on the results of tests for completeness and quality, a decision is made on

whether to iterate or stop.

4.6 Decision on the Next Iteration

The Web-pages with the highest quality from semantic view point are placed at the

top of the list. The Web-pages with a quality value of 10% and higher that have passed

through the grounded theory test will be suggested for transferring to the organisation's

knowledge base. And those Web-pages with quality value over 85% will be considered as
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“high quality” information. At this stage, the list of Web-pages suggested by the search

engine is significantly reduced. It contains only Web-pages that have passed all three main

filtering stages of the algorithm. The pages are highly relevant to the subject of the initial

knowledge base. They contain new information that will expand the knowledge on the search

topic, and will be ordered based on the quality of collected evidence rather than popularity.

The decision on whether to iterate or stop is based on evidence tests for completeness and

quality. Table 4.3 shows all possible combinations of results from the grounded theory test

and the evidence quality test.

Conversion rate, δ(KU) Quality Action

Positive Positive Continue (expand query)

Positive Negative Stop searching

Negative Positive Continue (expand query)

Negative Negative Stop (change formulation)

Table 4.3 – Possible combinations of outcome and decision on the next iteration

Thus, the decision on the next iteration depends on the amount of the discovered and

converted UU coming into the knowledge base as well as the change in quality of knowledge

base, if new information is to be added. The overall process is iterative and applied to the

Web. The discovered unknowns are used as a basis for new query expansion in order to

identify the best information for the target decision process.

4.7 Summary

The new approach for the search algorithm proposed in this thesis, employs the

combination of existent Natural Language Processing techniques, grounded theory and

Dempster-Shafer theory to automatically extract unknown unknowns from Web-based textual

content and enrich the knowledge base with relevant and high quality information. This

chapter addressed quantitative details of each stage of the proposed algorithm and provided

mathematical background of the methods employed.
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Regarding the Natural Language Processing part of the proposed search algorithm

this chapter has developed mathematics for the following parameters:

 a Text-Concept matrix (TCM);

 a Word-Category Co-occurrence Matrix (WCCM);

 a distributional profile of a concept;

 a Strength of Association matrix (SOA);

 a Cosine concept distance measurement ( 1 2( , )Cos c c );

 a semantic similarity score between two texts ( 1 2( , )sim T T ).

The following mathematics was developed on the application of Grounded Theory

for completeness assessment of the gathered information:

 the total knowledge on a topic (Ktotal );

 the conversion rate of unknowns ( ( )KU ).

As part of evidential analysis, Dempster-Shafer theory was adapted for the quality

measurement of the gathered information from semantic view point. Mathematics for the

following parameters was developed for this stage:

 a power set (2U);

 a basic probability assignment or a mass function (m(A));

 a Belief function ( ( )Bel A ).

Therefore, mathematics behind the semantic analysis explained how to select Web-

pages that are relevant to the initial knowledge base content. This research uses a hybrid

approach that combines the co-occurrence statistics with the information in Roget’s

Thesaurus. The distributional measure of concept-distance is calculated as distance between

the distributional profiles of concepts – strength of association between a target concept and

each of the words in its context. Having obtained the concept distances between the initial

knowledge base text and the extracted text of the Web-page, the algorithm then calculates

semantic closeness score for the two texts.

Every Web-page that is considered relevant at the previous stage of the algorithm is

compared to the knowledge base and analysed for the amount of new concepts within the text
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of this Web-page. Grounded theory is used to test the completeness of the knowledge base –

for each iteration a conversion rate is used to analyse the change in new concepts. Once the

effect of the information from the Web-page on the completeness of the initial knowledge

base is identified, quality of the Web-page is then tested.

Dempster-Shafer theory is used to estimate the quality of Web-pages content which

is correlated with value of Belief function. The Web-pages with a quality value of 10% and

higher that have passed through the grounded theory test will be suggested for transferring to

the organisation's knowledge base. And those Web-pages with quality value over 85% will be

considered as “high quality” information.

The combination of results from completeness and quality tests is compared against

the table of possible outcomes for these two stages. The decision on the next iteration

depends on the amount of new concepts coming into the knowledge base as well as the

change in its quality, if new information is to be added.
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Chapter 5

Building of the Working Model

5.1 Overview to Chapter

The aim of this chapter is to explain in detail the development of a working

computer model which will be used to test the search algorithm on a number of real life

examples (the testing is the subject of Chapter 6). This chapter will address the following step

of the research method:

Develop a search model that will integrate a conventional search engine with concepts

and methods (the algorithm) that will undertake the search. This would need to be a

working model that can be tested using the Web.

Recall the overall algorithm concept presented at the end of Chapter 3 (Figure 5.1):

Figure 5.1 – Schematic Representation of the Search Model
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The chapter is structured to provide a description of the model concept (section 5.2);

detail of the model design (section 5.3); a system’s design to facilitate the description of the

software modules (section 5.4); and the full model software development (section 5.4).

Section 5.4 is divided into Web-search and processing of Google results (section 5.4.1), pre-

processing of Web-search results and semantic closeness measurement (section 5.4.2),

Grounded Theory module (section 5.4.3) and the Dempster-Shafer module (section 5.4.4).

The working prototype was implemented using programming language Python. Full

program code is available in the Appendix 4.

5.2 Model concept

Chapter 3 introduced the key elements of the proposed research algorithm. This

section will describe key parts of the working model that will test the algorithm. The

fundamental elements required for the algorithm to work are listed below.

 Initial knowledge base. This contains all information currently available for

analysts on the selected search topic and summarised in the form of unstructured

text, i.e. natural language. The size of the text file may vary and depends solely

on the amount of knowledge on the search topic. Initial knowledge base is created

via manual analysis and is recorded in a separate text files.

 List of queries for the search engine (Google is being used for this research).

Search queries reflect the known unknowns about the search topic and define the

search direction. Similarly to the initial knowledge base, queries are manually

identified. Each query is run through the Google search and corresponds to a

single iteration, i.e. a single complete system run.

 Roget's Thesaurus – thesaurus of English words where all words are categorised

into 1,044 groups based on the word meaning. Such categories represent different

semantic concepts and each English word can be associated with multiple

concepts. The thesaurus is stored in a separate text file; the file size is 2.4MB.

The thesaurus text file lists English words with the corresponding categories in

both textual and numerical format. Below is an example fragment (Figure 5.2) of

the thesaurus file:
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modules pre-process the thesaurus file, transforming it into a collection of

words/phrases with the corresponding categories indexes. They are also used for

evaluation of the Dempster-Shafer quality analysis, as well as calculation of

distribution profiles of concepts.

The choice of Python to model software development was driven by its simplicity

along with excellent functionality for processing linguistic data. It can be downloaded from

http://www.python.org) and installers are available for all platforms. Python is an object-

oriented computer language that permits data and algorithms to be encapsulated within

software modules which can be re-used easily. Python is a dynamic language and permits the

easy addition of attributes to objects, and dynamic typing of variables, facilitating rapid

development. Python comes with an extensive standard library, including components for

textual processing, numerical processing, and Web connectivity (used for this research).

A significant part of the developed software was realised with Natural Language

Toolkit (NLTK) – a leading platform for building Python programs to work with human

language data (www.nltk.org). As described in (Bird, et al., 2009) NLTK provides basic

classes for representing data relevant to natural language processing; standard interfaces for

performing tasks such as part-of-speech tagging, syntactic parsing, and text classification;

and standard implementations for each task which can be combined to solve complex

problems. Python AlchemyAPI library (www.alchemyapi.com) is used for extraction of the

main textual content from Web-pages (ignoring side bars, menus etc.).

The following sections will provide further detail on the model design (section 5.3)

and the software (section 5.4).

5.3 Model design

Recalling the logic of the developed search method from Chapter 3 (Figure 3.1), and

combining it with the mathematical parameters developed in Chapter 4, the detailed

schematic of the working model will be as presented in Figure 5.3. This model schematic

contains the research algorithm.
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The main module software elements are developed using the Unified modelling Language

(UML); the class diagram is shown at Figure 5.4.

Figure 5.4 –UML class diagram for the main module

The UML sequence diagrams below show how system objects interact with each

other in a given scenario. Figure 5.5 shows the UML diagram of the Main Module, figures

5.6 and 5.7 display UML diagrams for the Grounded Theory Module and Dempster-Shafer

Module respectively.

Full size UML diagrams are attached in the Appendix 3 at the end of this thesis.
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Figure 5.5 – UML diagram of the Main Module
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Figure 5.6 – UML diagram of the Grounded Theory Module

Figure 5.7 – UML diagram of the Dempster Shafer Module
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5.4 Model software

The model was implemented using Python 3.2 programming language with MS

Excel 2010 providing for the statistical analysis and visualisation of results.

5.4.1 Web-Search and processing of Google results

The first part of the algorithm is semi-automated owing to the difficulty of scraping

of Google results since their algorithm and the source code is constantly being changed.

Thus, for each query processed by Google, the source code for each of the returned results

page was opened and stored in a same single text file. Then, the URL’s were automatically

extracted using the algorithm below.

Input: Google results source code “Google_results.txt”,

1 open and read file “Google_results.txt”;

2 split text using space as a delimiter;

3 initialise an array of URL’s as results_list;

4 for URL in results_list

5 if URL starts with 'href='

6 if it contains 'Webcache.google' OR '.google.'

7 remove URL;

8 results_list += URL;

9 write results_list to “results_file.txt”:

Output: “results_file.txt”

The resulting list of URL’s to the query responsive Web-pages was stored as a text

file and used an input in the next stage of the algorithm.
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5.4.2 Pre-Processing and semantic closeness measurement

Next, the extracted text is set for the initial knowledge base. The identified Web-

Pages are attempted to open and, if successful, the extracted text is set and processed for a

Web-page following the results_list in the “results_file.txt”. The semantic closeness score is

then calculated between the knowledge base extracted text and each of the Web-pages

returned by Google. NLTK and AlchemyAPI Python libraries are used in this stage.

The algorithm below demonstrates the logic behind calculating semantic distance

between the initial knowledge base text and each Web-page text within a single iteration.

Input: knowledge base “KB.txt”,

Web-search results “WP_list.txt”,

list of stop-words “stopwords.txt”,

Roget's thesaurus “thesaurus.txt”,

AlchemyAPI,

NLTK

1 extract list of words and categories from “thesaurus.txt”;

2 extract words from “KB.txt” using NLTK and exclude stop-words;

3 compute KB TCM;

4 compute KB WCCM;

5 compute KB SOA matrix;

6 initialise empty “results.csv”;

7 for link in “WP_list.txt”:

8 WP = open and read link using AlchemyAPI;

9 if cannot open link then

10 text_similarity = 0;

11 write link in 1st column and text_similarity in 2nd column of “results.csv”;

12 else

13 extract words fromWP using NLTK and remove stop-words;
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14 compute WP TCM;

15 compute WP WCCM;

16 compute WP SOA matrix;

17 compute DP of concepts for KB;

18 compute DP of concepts for WP;

19 compute a matrix with Cos values between each element from KB DP and WP DP;

20 compute TF vector with term frequencies values for each of 1044 concepts;

21 compute text_similarity as semantic distance;

22 write link in the 1st column and text_similarity in 2nd column of “results.csv”;

Output: “results.csv”

At this stage, before writing the text_similarity results to “results.csv”, the initial

knowledge base may be expanded with Web-pages extracted text, if the text_similarity value

for the two texts is greater than the chosen threshold of 0.85.

The output is a comma-separated value file containing the list of links to Web-Pages

with their corresponding semantic closeness scores.

To explain further, below are the details of the functions used in the above

algorithm.

1 extract list of words and categories from “thesaurus.txt”;

Roget’s Thesaurus file is read and recorded into array, which is then used as a look-up table

to identify corresponding categories for used English words.

Input: Roget's thesaurus “thesaurus.txt”,

NLTK

1 open and read file “thesaurus.txt”;

2 initialise thesaurus_array

3 initialise categories_buffer
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4 for line in “thesaurus.txt”:

5 append current thesaurus_array word with the corresponding categories_buffer;

6 if not line contains category reference

7 add line to thesaurus_array

8 empty categories_buffer

9 else

10 store category number in the categories_buffer

Output: thesaurus_array

2 extract words from “KB.txt” using NLTK and exclude stop-words;

First, the list of stop-words is processed into array. Next, the initial knowledge base is

opened, text is extracted and single words are stored in array, removing the stop-words.

Input: list of stop-words “stopwords.txt”,

initial knowledge base text “KB.txt”,

NLTK

1 extract_text from “stopwords.txt” and write to stopwords array

2 extract_text from “KB.txt” and write to KB_words array

3 initialise array KB_content

4 for word in KB_words

5 if not word in stopwords

6 append KB_content with word

Output: stopwords, KB_content

***

extract_text (file)

1 open and read file “file.txt”;
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2 tokenise text with NLTK

3 record text tokens into array text

Return text

Initial Knowledge base text (KB_content) is then prepared for further processing.

Please refer to Chapter 4 for full details on the mathematics behind.

3 compute KB TCM;

The Text-Concept Matrix (TCM) is built, the matrix is of the dimension [nu x 1044], where nu

is the amount of unique words within the text. TCM values are either “1” indicating that the

word is associated with the concept in the thesaurus, or “0” in the other case.

Input: initial knowledge base text KB_content

NLTK

1 build_TCM for KB_content

Output: KB_TCM

***

build_TCM(text_content, thesaurus_array)

1 UW = number of unique words in text_content;

2 initialise zero TCMmatrix [1044 x UW];

3 for word in text_content

4 if word is in thesaurus_array

5 get list of corresponding categories numbers

6 increment TCM[word, category] by “1”

Return TCM
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4 compute KB WCCM;

Based on the TCM, a Word-Category Co-occurrence Matrix (WCCM) is built. A matrix cell

mij, corresponding to word wi and concept cj, is populated with the number of times wi co-

occurs with any word listed under concept cj in the thesaurus within a text window of ±5

words. Ad discussed in Chapter 4, the matrix is of the type:

1 2

1 11 12 1

2 21 22 2

1 2

... ...

... ...

... ...

... ... ... ... ... ...

... ...

... ... ... ... ... ...

j

j

j

i i i i j

c c c

w m m m

w m m m

w m m m

Input: Text-Concept Matrix KB_TCM

NLTK

1 build_WCCM for KB_TCM

Output: KB_WCCM

***

build_WCCM(TCM)

1 initialise zeroWCCMmatrix [TCM_rows x 1044];

2 for word in TCM[word] #matrix row

3 for (i=word-5) to (word+5)

4 if not i== word

5 WCCM[word]+= TCM[word] # sum up all rows within text window of ±5 words

ReturnWCCM

Thus, for every word in the text, values for its neighbouring 10 words within the text window

are found in the TCM. The corresponding TCM rows are added up and the resulting row is

added to the new matrix WCCM. The resulting matrix is of the size [N x 1044], where N is
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the number of all words in the texts excluding stop-words. Each value Cij corresponds to a

number of times a word i co-occurred with any word listed under the category j within the

text window of ±5 words.

5 compute KB SOA matrix;

The next step is creation of the SOA matrix which elements correspond to values of

conditional probabilities of a word w co-occurs with other words associated with a concept c.

SOA matrix can be seen as a collection of distributional profiles of concepts for a given text.

Input: KB_WCCM

NLTK

1 KB_merge_WCCM =merge_WCCM_values for KB_WCCM

2 build_ SOA_matrix for KB_merge_WCCM

Output: KB_SOA_matrix

***

merge_WCCM_values (WCCM, UW)

1 initialise zeromerge_WCCMmatrix [UW x 1044]; # UW – number of unique words

2 for word inWCCM #matrix row

3 add_WCCM = add up all rows forWCCM[word]

4 merge_WCCM [word] = add_WCCM[word] # sum up all rows for the same word

Returnmerge_WCCM

build_SOA_matrix (merge_WCCM, UW)

1 initialise zero SOAmatrix [UW x 1044];

2 for row inmerge_WCCM #for all matrix rows

3 for col in row #for all column elements in the row

4 if col == 0
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5 SOA[row, col] = 0

6 else

# SOA as conditional probability p(w|c)

7 SOA[row, col] =merge_WCCM[row, col] / sum(merge_WCCM[ : , col])

Return SOA

6 initialize empty “results.csv”;

The results will be recorded in the “results.csv” file from the array “results” in the format

[URL, Semantic closeness value] for each URL in the list of search engine results, following

the logic below.

7 for link in “WP_list.txt”:

8 WP = open and read link using AlchemyAPI;

…

13 extract words fromWP using NLTK and remove stop-words;

14 compute WP TCM;

15 compute WP WCCM;

16 compute WP SOA matrix;

At this stage the system will attempt to open Web-pages from the list of search engine results

and, if it successfully gets extracted text, it will follow the same logic as with processing of

the initial knowledge base text.

Input:Web-search results “WP_list.txt”,

list of stop-words “stopwords.txt”,

Roget's thesaurus “thesaurus.txt”,

Empty results file “results.csv”

AlchemyAPI,

NLTK
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1 open and read file “WP_list.txt”;

2 extract URL’s from “WP_list.txt” using NLTK;

3 initialise arrayWP_content;

4 for URL in “WP_list”:

5 try:

6 wp_text = Get_URL_Text(URL) using AlchemyAPI;

7 except:

8 results[URL] = [0,0]

9 write results[URL] to “results.csv”

# similarly to processing of KB_content

10 WP_content = pre_process_wp_text(wp_text) # remove stop-words and prefix

11 WP_TCM = build_TCM forWP_content

12 WP_WCCM = build_WCCM forWP_TCM

13 WP_merge_WCCM =merge_WCCM_values forWP_WCCM

14 WP_SOA = build_ SOA_matrix for KB_merge_WCCM

Output:WP_SOA

17 compute DP of concepts for KB;

18 compute DP of concepts for WP;

Distributional profiles of concepts are computed for concepts of the initial knowledge base

and the Web-page extracted text currently being processed.

Input: KB_SOA, WP_SOA

1 common_unique_words = augmented array of KB_unique_words andWP_unique_words;

2 len_DP = length of common_unique_words;
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3 DP_KB = create_DP(common_unique_words, len_DP, KB_unique_words, KB_SOA)

4 DP_WP = create_DP(common_unique_words, len_DP, WP_unique_words, WP_SOA)

Output: DP_KB, DP_WP

***

create_DP(common_unique_words, len_DP, unique_words, SOA)

1 initialise zero DPmatrix [len_DP x 1044];

2 for word in common_unique_words

3 if word in unique_words # if the word is present in the current text

4 DP[word] += SOA[word] # add the entire SOA row for co-occurred words

5 SOA[row, col] = 0

Return DP

19 compute a matrix with Cos values between each element from KB DP and WP DP;

At this stage, semantic closeness is calculated between every concept in the initial knowledge

base and every concept in the Web-page’s extracted text.

Input: DP_KB, DP_WP

1 cosDP = cosDP(DP_KB, DP_WP) #build matrix of Cosines between DPs of concepts

Output: cosDP

***

cosDP (DP_KB, DP_WP)

1 initialise zero cosDP matrix [1044 x 1044];

2 DP_WP_T = DP_WP transposed; # Transpose both DP matrices for further processing

3 DP_KB_T = DP_KB transposed;

4 initialise zero cosDP matrix [1044 x 1044];

5 initialise zero cosDP matrix [1044 x 1044];

6 forWP_row in DP_WP_T
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7 for KB_row in KB_WP_T

8 # fill matrix with Cosine values between concept vectors

9 cosDP[WP_row, KB_row] = cosine_distance(WP_row, KB_row)

Return: cosDP

cosine_distance(u, v)

# Cosine of the angle between vectors v and u. This is equal to Cos = uv / |u||v|
1 cd = dot_product(u, v) / (sqrt (dot_product (u, u)) * sqrt (dot_product (v, v)))

Return: cd

20 compute TF vector with term frequencies values for each of 1044 concepts;

Function that creates a vector with a term frequency value for each of the 1044 concepts. It

will be used as a weighting parameter when calculating the final semantic closeness score.

Input: KB_TCM, WP_TCM

1 idf = idf_matrix(WP_TCM, KB_TCM) # create idf values matrix [1044 x 1044]

2 KB_tf_vector = fill_tf_vector(KB_merge_WCCM))

3WP_tf_vector = fill_tf_vector(WP_merge_WCCM))

4 tf_vector = KB_tf_vector +WP_tf_vector

Output: tf_vector

***

fill_tf_vector(merge_WCCM)

1merge_WCCM_T = merge_WCCM transposed; # to be able to add values for concept by

row

2 initialise empty array tf_vector;

3 for i in 1044:

4 concept_sum = sum(merge_WCCM_T [ i ] )

5 tf_vector += concept_sum
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Return: tf_vector

21 compute text_similarity as semantic distance;

Next function calculates semantic closeness value. As was explained in Chapter 4, the

similarity between two texts T1 and T2 is determined using the following function:

1 2

1 2

2 1{ } { }

1 2

{ } { }

(max ( , ) ( )) (max ( , ) ( ))1
( , )

2 ( ) ( )

c T c T

c T c T

Sim c T idf c Sim c T idf c
sim T T

idf c idf c

 
 

      
   .

Input: tf_vector, cosDP

1 text_sim = text_similarity(tf_vector, cosDP)

Output: text_sim

***

text_similarity(tf_vector, cosDP)

1 left_num = 0; # left numerator – WP concepts to KB concepts

2 right_num = 0; # right numerator – KB concepts to WP concepts

3 tf_sum = 0; #denominator

# calculating left part of the equation – WP concepts to KB concepts

4 for row in cosDP

5 left_num += row.max() * tf_vector[row]; # numerator

6 tf_sum += tf_vector[row]; # denominator

7 wp_to_kb = left_num / tf_sum;

# calculating right part of the equation – KB concepts to WP concepts

4 for row in cosDP_T # transposed cosDP matrix

5 right_num += row.max() * tf_vector[row] # numerator

6 tf_sum += tf_vector[row] # denominator

7 kb_to_wp = right_num / tf_sum
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# TOTAL similarity score between two texts

8 text_sim = (wp_to_kb + kb_to_wp)/2 # as per the formula

Return: text_sim

22 write link in the 1st column and text_similarity in 2nd column of “results.csv”;

This file will be then used to analyse the results for quality. There is one more column to be

written in the “results.csv” – the amount of discovered UU and KU. Next paragraph will

explain how the Grounded Theory module is implemented.

5.4.3 Grounded Theory module

Having obtained semantic similarity values, the Grounded Theory based

completeness test is then run to identify previously unknown data and calculate the

conversion rate of KUs.

It is assumed, that the initial knowledge base is the only information known on the

search topic. Thus, it is treated as the collection of KKs. Within a single iteration, every new

Web-page extracted text that has the semantic closeness score over 0.85 is analysed for the

amount of new concepts, compared to the KK collection.

As discussed in Chapter 4, following each iteration, newly identified concepts are

added to the initial knowledge base, thus expanding the evidence:

   K K 1 KU ,total total ii i  

where KU represent new concepts on each iteration, and KU(i–1) ≠ KU(i). A change in KU

represents the conversion rate δ(KU) of new concepts in evidence and is defined as:

( 1)( ) KU KU .i iKU  
The KU conversion rate is evaluated using the following algorithm:
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Input: kb_content, results_list

1 KK = UW_kb_content; # list of Known Knowns – unique words in KB text

2 initialise and open “GT_unique_words.csv”; # global list of unique concepts

3 initialise and open “GT_results.csv”; # current list of unique concepts

4 cum_KU = 0; # cumulative amount of KUs for KU conversion rate

5 for URL in results_list

6 calculate semantic similarity text_sim;

7 if text_sim > 0.85

8 for UW in UW_wp_content # unique words in the Web-pages extracted text

9 if UW not in KK

10 KK += UW; # add current word to the list of KKs

11 cum_KU +=1;

12 write [URL, text_sim, cum_KU] to “GT_results.csv”; # GT results for current query

13 write KK to “GT_unique_words.csv” # global list of KKs

Output: “GT_results.csv”, “GT_unique_words.csv”

5.4.4 Dempster-Shafer module

The final stage is the quality test of the discovered information using the Dempster-

Shafer theory. The total quality score for each Web-page is calculated as a Belief function;

the higher the value of Belief for a Web-page, the higher its quality value and the higher the

Web-page will be ranked in the final list of results.

The algorithm below demonstrates the logic behind calculating the Quality score for

a search result. Two “csv” files are required for input:

 True/False values for concept appearance in the documents;

 Matrix of mass functions for each source of evidence.
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Input: “TCM.csv”, # True/False values for concept appearance

“NLP_results.csv” # matrix of mass functions

1 open and read “TCM.csv” into TCM_data;

2 open and read “NLP_results.csv” into NLP_data;

# calculate Belief function

3 norm_NLP_data = normalise(NLP_data); # mass functions

4 subsets = find_subsets(TCM_data); # returns groups of subsets of every row

5 belief_NLP = belief(subsets, norm_NLP_data);

7 DS_results = [belief_NLP];

8 write results DS_results to “DS_results.csv”

Output: “DS_results.csv”

To explain further, below are the details of the functions used in the above

algorithm.

1 open and read “TCM.csv” into TCM_data;

2 open and read “NLP_results.csv” into NLP_data;

The first file corresponds to the Text Concept Matrix of the size [N x 1044], where columns

correspond to 1044 categories in Roget’s Thesaurus, and N rows represent URL’s of Web-

pages that successfully passed the semantic closeness test. If a thesaurus concept c is used in

the extracted text n, the corresponding value TCM[n,c] = 1, otherwise 0. The second file

contains a list of the semantic closeness values (text_sim) for the successful Web-pages

within a single iteration.



Chapter 5 Building of the Working Model

140

3 norm_NLP_data = normalise(NLP_data); # mass functions

The mass function for a text, as a proportion of all evidence that supports the text, is a

normalised value of the NLP analysis result according to 1 2( , )sim T T . Recalling from Chapter

4, the calculated semantic distance has a value between 0 and 1, and the total evidence is

scaled to fall between 0 and 1 in order to satisfy the definition of bpa:

( ) 0m   and ( ) 1
A U

m A  .

4 subsets = find_subsets(TCM_data); # returns groups of subsets of every row

This function checks if any of the vectors in TCM is a subset of another TCM vector. It

creates a list of the type [TCM URL index, subset index, subset index, …] and returns groups

of subsets of every vector within the same “TCM.csv”.

find_subsets(array)

1 initialise zero array subsets;

2 array_copy = array;

3 for row in array

4 subset_rows[row] = all subsets of row in array_copy;

5 subsets[row] += subset_rows[row]

Return subsets

Having obtained the list of all subsets, belief function can be then calculated.

5 belief_NLP = belief(subsets, norm_NLP_data);

The quality of information in each text is associated with the value of the Belief function for

corresponding texts and reflects the amount of evidence supporting each text directly. Each

text can be seen as a combination of Thesaurus concepts. Following from Chapter 4, the
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probability values are assigned to sets of possibilities and Belief in a hypothesis is constituted

by the sum of the masses of all sets enclosed by it:

( ) ( )
B A

Bel A m B .

belief(subsets,NLP_data)

1 initialise empty array belief;

2 for row in subsets # row is of the type [TCM index, subset_1 index, subset_2 index, …]

3 bel = 0;

4 for index in row

# add up “text_sim” values for the current text and all its TCM subsets

5 bel += NLP_data[index];

6 belief += bel

Return belief

Results are then written to the csv file “DS_results.csv”.

Based on the results of tests for completeness in “GT_results.csv” and the quality

test results in “DS_results.csv”, a decision is made on whether to iterate or stop.

5.5 Summary

This chapter provided a comprehensive overview to the model design and software.

Fundamental elements required for the algorithm to work were discussed. Model design was

described with UML class diagram for the main module and described the structure of the

system by showing the system's classes, their attributes, methods, and the relationships

among objects. The UML sequence diagrams for all three modules of software showed how

the system objects interact with each other in time and using a given scenario.

Pseudo-code was used to describe key pieces of code corresponding to all stages of

the algorithm. As such, description was provided to Web-Search and processing of Google

results, pre-processing of extracted text and semantic closeness measurement stage,
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Grounded theory based completeness measurement, as well as measurement of quality score

for semantic related content.



143

Chapter 6

Experiments

6.1 Overview to Chapter

Following the development of model design and software discussed in the previous

chapter, this chapter specifically addresses the following step of the research method:

Test the model through use cases and undertake analysis of the results. Develop

experiments that would address the efficiency of the model to find the Web content that

is relevant to the defined search topic, as well as to track the discovery rate of unknown

unknowns, and to provide a reliable quality metric that would assess the discovered

information from the richness viewpoint.

This chapter provides ‘use case’ specifications and associated data collection

(section 6.2), model testing to assess the efficacy of the research-developed algorithm

(section 6.3), experimental runs against use cases together with analysis (section 6.4), and

consolidation of results (section 6.5)

The aim of the experiments is to evaluate whether the research method significantly

improves the process of decision making by extracting only relevant high quality information

from the Web. The evaluation experiments cover a predefined set of chosen test topics with

corresponding lists of queries.

Recalling the objective of this research is to develop an algorithm that facilitates

topic related search for Web-based information and estimates the quality of the extracted

content, proving it is significantly enhanced comparing to the traditional Web-search

approaches. Experiments are planned and conducted in order to provide assessment of the

built system addressing each aspect of the research objective assuming varying level of

competency in the search topic.

The first part of the experiments was aimed at assessing how well the system can

find topic-related quality information from the Web when the topic is well understood and

well defined. The second part of the experiments was aimed at assessing the ability of the
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system to identify relevant information of high quality assuming that the topic understanding

is incomplete and the queries were partially irrelevant to the search topic. Both parts use the

same knowledge base for each iteration of the model, and the knowledge base that is

appended every time if a successful (relevant) extracted text is identified.

For each experiment the conversion rate of unknowns was taken as a parameter for

identifying when the iterating should stop. The cumulative sum of discovered unknowns was

analysed and, if the next iteration has a little conversion rate, it is assumed that the topic is

close to be exhausted and new iteration on the same topic will not significantly enhance the

knowledge base.

Five experiments have been devised for this research and described in section 6.4:

 Experiment 1 and 2 – Same well-defined knowledge base (6.4.1 and 6.4.2)

 Experiment 3 – Appended well-defined knowledge base (6.4.3)

 Experiment 4 – Same poorly-defined knowledge base (6.4.4)

 Experiment 5 – Appended poorly-defined knowledge base (6.4.5)

The experiment results are illustrated with various graphs and tables.

6.2 Use-case Specifications and Data Collection

The experimental part covers three chosen test topics with corresponding lists of

queries. A working prototype was created and implemented using Python (see Chapter 5 for

details). The experimental element of this research is semi-automated – the initial knowledge

base and the corresponding list of queries for a search engine are manually defined. In

addition, some algorithm stages are manually processed.

Two options were considered while developing experiments to test the performance

of the working model:

 within a single iteration, content of each new Web-page is compared separately

against the same knowledge base initiated at the outset;

 the initial knowledge base is appended by the Web-page extracted text if it was

considered relevant after the Natural Language Processing stage, thus, the next

Web-page content is compared against the extended knowledge base.

For the purpose of this research, three search topics were chosen – “tobacco

industry” (full text length 308 words), “cocaine smuggling” (full text length 477 words), and
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“coffee production” (full text length 3,068 words). Initial knowledge bases were created via

manual analysis and are recorded in form of unstructured text in separate text files. Full text

of the three initial knowledge bases can be found in the Appendix at the end of this thesis.

Experiments are split in two parts. The first part of each experiment (Experiments 1,

2 and 3) has the objective of assessing the system’s ability to find and filter Web-pages given

a well-defined initial knowledge base and relevant queries. Two topics were used – “tobacco

industry” and “cocaine smuggling”, queries were chosen to be semantically focused around

the search topic.

The second part of the experiment (Experiments 4 and 5) is with assessing the ability

of the system to identify relevant information of high quality for a search topic, assuming that

the topic understanding is incomplete and poorly defined. Search topics used ware “coffee

production” and “tobacco industry”.

For the topic “tobacco industry” the corresponding list of queries consisted of Q1

“tobacco industry competition”, Q2 “tobacco criminal”, Q3 “tobacco financial market”, Q4

“tobacco smoking statistics”, Q5 “tobacco investment opportunities”.

The queries for the search topic “cocaine smuggling” are Q1 “cocaine production

and distribution”, Q2 “cocaine trafficking UK”, Q3 “cocaine smuggling UK”, Q4 “cocaine

cartels”, Q5 “Mexican drug cartels”.

For the topic “coffee production” the corresponding set of associated queries

included Q1 “coffee industry”, Q2 “coffee criminal” and Q3 “coffee financial market”.

In the second part of the experiments, when “coffee production” is the topic of the

initial knowledge base (Experiment 4), queries used are associated with “tobacco industry”

search topic“. On the other hand, queries associated with “coffee production” search topic

were used in conjunction with “tobacco industry” initial knowledge base (Experiment 5). In

other words, the chosen queries were semantically remote from the search topic.

Initial knowledge base for the search topics “tobacco industry”, “cocaine

smuggling” and “coffee production” are attached in the Appendix 1.

Following the algorithm, the Web-search step was performed and the above queries

for the three search topics were run through the Google search engine. Table 6.1 summarises

Google search results on those queries (as of August 2013).
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Query
Google

Search Results

Search topic – “tobacco industry”

“tobacco industry competition” 715

“tobacco criminal” 413

“tobacco financial market” 455

“tobacco smoking statistics” 855

“tobacco investment opportunities” 127

Total 2,565

Search topic – “cocaine smuggling”

“cocaine production and distribution” 552

“cocaine trafficking UK” 631

“cocaine smuggling UK” 555

“cocaine cartels” 739

“Mexican drug cartels” 426

Total 2,903

Search topic – “coffee production”

“coffee industry” 347

“coffee criminal” 261

“coffee financial market” 580

Total 1,188

Table 6.1 - Google search results (as of August 2013)

Thus, for each query processed by Google, the source code for each of the returned

results page was opened and stored in a same single text file. The URL’s were automatically

extracted using the algorithm described in Chapter 5, Section 5.4.1. The collected list of

responsive Web-pages for each query is an input for the next step of the algorithm (see

Chapter 5, Section 5.4.2) where the main textual content is extracted and pre-processed.

6.3 Model Testing

Model testing was performed by comparing results of small logical parts of code

with the manually evaluated results of calculations and analysis. Testing was done using a

knowledge base “cocaine smuggling” (see Appendix 1 for full text). The working model was

set up to compare textual content of each new Web-page separately against the same



Chapter 6 Experiments

147

knowledge base initiated, i.e. not appending the existing knowledge base with successful

texts.

The query “cocaine production and distribution” was chosen to be focused around

the search topic. Out of 552 Google results (see Table 6.1) a 10% random sample was chosen

from the list of URLs returned by the search engine on the query. Thus, a sample of 55 Web-

pages were randomly chosen and manually reviewed, identifying the textual content of the

Web-pages as either “Relevant” or “Not Relevant”. The same sample of 55 Web-pages was

processed using the new algorithm. The manual human coding results were then compared

against the results of the working model.

As has been stated in Chapter 3, Section 3.5, the algorithm considers any extracted

text as “Relevant” if its semantic closeness score is over 0.85. Table 6.2 demonstrates the

coding results for the random sample of Web-pages responsive to the test search query.

Sample

Web-Pages
System Coding Human Coding Same Coding Errors

55
Relevant – 45

Not Relevant – 10

Relevant – 32

Not Relevant – 23
30

False Positives – 15

False Negatives – 2

Table 6.2 – Random sample relevance coding results

The full list of testing results is available in the Appendix 5 at the end of this thesis.

Precision and recall metrics were used to assess the accuracy of the analysis. The

results below summarises the testing results.

{TruePositives} 30
Precision 67%

{TruePositives} {FalsePositives} 30 15
    (6.1)

{TruePositives} 30
Recall 93%

{TruePositives} {FalseNegatives} 30 2
    (6.2)

Thus, in the selected random sample of Web-Pages, the system was able to identify

93% of the relevant content recognised by manual analysis. Precision rate is lower and is

estimated as 67%. This is due to the Web-pages that contain large amount of textual content,

only some of which is topic-related, however it was picked up by the system as Relevant. In
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this case, human relevance tagging would be considering the Web-Page to be rather

irrelevant.

6.4 Model Runs

6.4.1 Experiment 1 – Same well-defined knowledge base

To assess the system’s ability to find and filter Web-pages given a well-defined

initial knowledge base and relevant queries, two experiments were run. The search topics

were “tobacco industry” and “cocaine smuggling”. These experiments are aimed to test the

performance of the system when each new Web-page content is compared against the same

knowledge base initiated at the beginning.

In the first experiment the topic of the initial knowledge base is “tobacco industry”

and the chosen queries were Q1 “tobacco industry competition”, Q2 “tobacco criminal”, Q3

“tobacco financial market”, Q4 “tobacco smoking statistics”, Q5 “tobacco investment

opportunities”. The chosen queries are semantically focused around the search topic.

This experiment resulted in the significant reduction of information provided by

Google search across all five queries. Q1 had 715 results in the search results list, 572 of

them were considered relevant and 68 were classified as good quality Web-pages with 3

“high-quality” pages. The search results list for Q2 had 413 Web-pages, 345 pages were

selected after the Semantic Closeness stage, 19 pages contained quality information with 5

pages considered as “high-quality”. Q3 had 455 links to Web-pages in the search engine list,

248 were relevant, 18 were considered as containing quality information and no Web-pages

were identified as containing “high-quality” content. The list for Q4 consisted of 855 links,

650 of them were selected after the Semantic Closeness stage, 57 were considered as quality

information with 8 Web-pages being recognised as “high-quality”. Q5 had 127 Web-pages in

the search engine list, 93 passed through the semantic relevance test, 31 of them were

considered to be quality information with only 1 page classified as “high quality”.

Figure 6.1. shows reduction in Web-pages amount after three stages of filtering is

shown in, distribution of semantic closeness values across five queries is shown in figure 6.2.



ChaChapter

Figure

Figure

pter 6

Figure

Figure

gure 6.1

gure 6.2

6.1

re 6.2

6.1 –Red

6.2 – D

Reduct

Dist

educti

istribu

ction

ributi

on in

bution

in Web

ion of

Web-

of sem

-pages

seman

pages

antic

ges amo

ntic clo

amount

close

ount

closene

nt aft

seness

after

ss val

er thr

value

three

ues acr

ree stage

s acro

stages

cross

ages of

ss five

of fil

five qu

filteri

ve quer

ltering

queries

tering (E

ies (E

(Expe

(Expe

xperim

xperim

Exp

eriment

eriment

xperim

iment

ment

eriment

1

ent 1)

ent 1)

ents

149

1)

1)



Cha

exp

acr

wer

wi

pag

W

acr

fun

exh

ext

tow

Figu

Goo

sug

po

Chapter

experi

cross

were

with

pages

Web

across

function

exhau

extract

towards

Figur

Google

sugge

positi

pter 6

experim

cross the

were rec

th appro

pages is

Web-page

ross five

function

exhaust

extract mo

Fi

ards

gure 6.4

ogle

suggested

sitioned

U

iment

the

recog

approx

is a r

G

pages

oss five

ion do

st the

act mor

Figu

Thi

ards the

re 6.4

gle list

sted

ioned

Using

ent resul

five

ecognised

approxim

a resul

Grou

pages exp

ive qu

does

the sear

ore i

igure

This

the t

6.4 displ

list w

ed by

ed do

sing the

ent resul

five qu

nised

oximat

esult

round

expa

quer

es no

search

ore infor

gure 6.3

his exp

he top

displa

st was

by the

docum

ng the

esulted

ve quer

sed as

mately

sult of

nded

expand

queries

not t

search

nform

6.3 –

exper

op of

splays

as est

the syst

cument

he sam

esulted in

queries.

as rel

ately 0.7

of close

ed theo

nds t

ies. A

t tend

ch top

ormati

– Cum

experim

of the

ys qual

as esti

syste

ents

same

d in the

ries. Ou

relevan

y 0.7%

close

theory

s the

Analy

end to

topic.

ation.

Cumul

xperiment

the fina

ualit

stimate

ystem

nts of

e initi

in the

. Out

relevant

.7%

se sem

theory

the se

nalysin

tend to con

ic. Thus

ation.

Cumulativ

ent res

the final

ality

timated

ystem ha

of 78%.

initial

he sign

ut of

evant to

% as

seman

y anal

search

nalysing

conver

Thus,

ulative

ent resul

inal li

ty chan

ated as

had an

78%.

tial kn

signif

of tot

t to the

as “hi

antic

analysi

arch

ysing the

conver

hus, ther

ative K

esulted

nal list

change

as 5

d an

%.

al know

gnificant

total

the sear

“high

antic di

analysis

ch top

g the

vert, m

s, ther

ve KU

esulted in

st of

change f

as 5%

an aver

owledg

ficant

otal of

he sear

“high-qu

distance

ysis exp

topic.

he KU

t, mean

here i

U con

in the

of resul

ge for

5%, w

avera

wledge

ant re

of 2,56

search

qualit

istance

explor

pic. Fi

KU co

meaning

e is a

conver

the

results

for top

, while

erage

dge bas

reductio

565

rch topic

uality”

nce betw

plores

Figur

conve

aning

s a nee

nversion

e notab

ults com

top se

hile

ge qu

dge base

duction

65 W

topic,

ity”

e betwee

res how

Figure

onvers

ing that

need

version

notab

compa

search

while the

quality

base for

ction

Web

opic, 8%

y” Web

between

es how

re 6.3

version

that t

need to

sion rat

able i

compar

search r

the t

ality of

for the

on of

eb-pag

c, 8%

Web-

een t

how w

6.3 di

version

hat the

to iter

rate acr

able impr

pared

ch resul

he top

ty of

or the se

of inf

pages

8% iden

-pag

en the

well

displ

on rat

he five

iterat

ate across

mprov

pared to

esults

op of

of 28%

he sear

informat

pages sug

identi

pages

he sear

ell the

splays

rate t

five

erate f

across

provem

to th

ults. T

of t

28% w

search

formatio

pages sugge

entified

ges. Th

searc

l the

plays

te throu

itera

te furthe

oss five

veme

to the

The

f the

% with

rch topi

mation

uggeste

ified to

The

search top

he inform

ys cumu

througho

iteration

urther

five qu

ent in

he Goog

he ave

he high

with the

topic

mation pr

gested

ed to con

he hi

h topi

inform

umul

oughou

ations

her app

ve quer

nt in qu

Googl

averag

high

h the

opic “t

prov

sted by

o con

high

opic and

ormat

ulati

ghout

ons do

applyi

queries

n qual

oogle

average

ghest

he aver

“tob

provided

by the

contai

gh pr

c and

ation

ulative

out the

s done

applying

eries (

quality

gle PageR

age qu

est po

avera

obacco

ided

the sear

tain qu

propo

and the

ation f

ive K

the sear

done w

ying di

es (Experi

ality of

PageR

quali

posi

average

acco i

ded by

he sear

n qual

oport

the ch

from

KU

search

ne were

ng diff

Experi

of the

ageRank

ality

position

ge qu

acco indus

by Goo

search

quality

ortion

chose

from

U conv

earch

ere not

differe

perim

f the

ank

ity at th

itioned

quality

industry

Google

rch engi

lity info

ion of

chosen

the

convers

ch proc

e not

erent

eriment

the page

k order

at the

ned W

ality

Exp

ustry”

oogle

engin

infor

of r

osen qu

he ext

conversi

proces

not eno

ent qu

ent 1)

pages

order

the top

Web

ty of

xperim

ry” in

gle sear

engine,

nformat

of releva

querie

extract

version

ocess,

enough

queri

ent 1)

es pl

der resul

top of

eb-pag

of high

eriment

1

in thi

searc

e, 75%

ormation

eleva

eries.

extracted

on rat

ocess, K

enough

eries

placed

result

op of the

pag

highes

ents

150

this

earch

75%

mation

evant

es.

acted

rate

KU

gh to

es to

aced

esults.

of the

pages

ghest

his

h

%

on

nt

ed

ate

U

to

to

aced

the

es

est



Cha

algo

reor

and

6.4

per

per

kn

inf

and

inf

Goo

qu

55

“coc

inf

Chapter

algorit

reorder

and the

6.4.2

perform

perform

knowle

informa

and di

informa

Google

qualit

555

“cocai

informa

pter 6

orithm

rdered

and the

6.4.2

perform

perform

owledge

ormatio

and distri

ormatio

ogle

ality info

5 Web

ocaine

ormatio

The

ithm

dered l

he dep

Exp

D

ormanc

ormanc

ledge

ormation

To

distribu

ormation

gle list

ty infor

eb-pag

aine c

ormation

The

and

ed list

depth

Experi

During

ance of

ance of

edge base

ation pr

To exp

ribution

ation w

list, 51

nform

pag

cart

ation w

he resul

and ha

list of

th of

xperim

uring

e of the

e of

base

on prov

expl

bution”,

on with

st, 514

ormati

pages,

artels”

on with

result

had

of resul

of the

men

ng the

of the

of the

base ini

provided

explain

on”, 47

ith 21

514 of

ation

es, 44

els” had

ith 6

Figu

esulting

d We

resul

the se

ent 2

the seco

the sys

the sys

initiat

ided

ain fur

”, 472

21 “hi

of the

ion wi

440

s” had

6 pages

Figure

ing list

Web-

sults.

search

t 2 –

e seco

system

system

itiated

ed by

further

72 of

1 “high

them

with

0 were

had 739

pages

ure 6.4

list of

-pages

ults. This

arch

Same

second

system

stem

ated at

by Goog

rther,

of the

“high

em wer

with 2 “hig

were

739

ges con

6.4 –

st of

pages

This

ch resul

Same

second exp

em sho

em when

ed at t

Googl

her, ther

them

gh-qu

were

2 “high

ere releva

739 W

ages consi

– Q

of Web

es fro

his ind

results

ame wel

nd exp

showe

when

at the

oogle s

there

hem wer

qualit

ere rel

“high-

releva

Web

consider

Qual

Web-

from

indicat

esults li

well-

experi

wed si

hen each

he be

gle sear

here w

were

ality”

relevan

-qual

evant

eb-pag

sidered

uality

-pag

m the

ndicate

s list.

-def

eriment

d sim

each

beginn

search

were

ere con

ty” pa

elevan

qualit

nt and

pages

dered as

lity change

pages

the mi

ates no

ist.

defin

iment

similar

ach new

ginning

arch ac

ere 552

consid

pages

vant at

ality”

and 11

ages,

ed as “h

change

es did

e middle

s no

fined

nt usin

ilar res

new

ginning,

across

552 Go

nsidere

ges.

t at the

y” pag

d 11

, 598

s “high

ange

did not

iddle

o correl

fined kn

using

r results

w Web

inning, and

across all

2 Googl

idered

ges. Q2

t the

pages.

1 pages

598

“high

ge for

d not

ddle and

correl

know

using t

esults.

Web-

, and

oss all

Googl

dered rel

Q2 “c

he NL

pages. T

pages

8 of

gh-qu

for top

not fol

and end

relation

nowled

the

esults. A

-page

and it

all five

oogle se

relev

“cocai

NLP

es. The

es wer

of them

qualit

top sear

follow

and end

ation

ledge

he se

s. Agai

page

it resul

five qu

e sear

elevant

ocain

P stag

he list

were

them

ality”.

op sear

ollow

end of

on exi

ge base

search

gain,

ge cont

result

ve quer

search

ant, 9

ocaine t

stage,

list for

ere cl

em w

ty”. Q

search

w the

of Goo

exists

base

arch

Again, this

content

sulted

ueries

rch res

t, 95

e traffi

age, 30

st for Q3

classi

were

. Q5

ch res

the orde

Google

ists b

ase

h topic

this exp

ntent

ted in

ries.

results

5 We

trafficki

, 30 we

or Q3

assified

ere rele

5 “Mex

result

order

oogle

betw

topic

s exper

ent is co

in the

esults f

eb-

ficking

30 wer

3 “coc

ified

relevan

“Mexi

esults (

der o

gle lis

etwee

ic “coc

experim

is com

the si

ts for

-pag

cking

ere r

“coca

ed as

elevan

exican

(Exp

der of the

list cl

een t

“cocai

eriment

compar

he sign

r Q1

pages

ng UK

e recog

“cocaine

as qual

evant and

xican dr

Exper

the

t clos

n the

“cocaine

ent i

pared

signif

Q1 “cocai

es rec

UK”

ecogni

ine sm

qualit

t and

can drug

xperim

he Goo

closer t

he W

aine sm

ent is ai

pared agai

gnificant

“cocai

recog

” had

ecognised

smug

ality i

and 53

drug car

riment

Google

er to t

Web

e smug

s aim

d agai

ficant

cocaine

ognise

had 631

ised as

mugglin

ty infor

53

g cartel

ent 1)

ogle

to the

eb-page

smuggli

imed

gainst

cant redu

aine pro

nised

had 631

d as

ggling

inform

3 were

artels”

Exp

ent 1)

gle PageR

he top

page

uggling

ed to

against the

reduct

ne prod

sed as

631 resul

as cont

ing U

ormati

were

els” ha

xperim

PageR

top of

page qu

gling”

to test

nst the sam

eduction

product

as qu

resul

contai

UK”

mation

ere qu

s” had

eriment

1

ageRan

of the

quali

ng” the

test the

he sam

ction of

oduction

quali

esults

ntainin

K” ha

ion. Q

quali

had 42

ents

151

ank

of the

ality

the

test the

same

on of

uction

ality

ts in

ning

had

. Q4

ality

426

he

ty

he

he

e

of

on

ty

in

g

d

4

ty

6



Chapter 6 Experiments

152

Web-pages, 353 of them were relevant and were quality information with 5 pages considered

as “high-quality”. Figure 6.5 demonstrates distribution of semantic closeness values across

five queries for this experiment.

Figure 6.5 – Distribution of semantic closeness values across five queries (Experiment 2)

Thus, out of 2,903 Web-pages suggested by Google across all four queries 82%

were recognised as relevant, 7% were identified to contain quality information with 1% as

“high-quality” Web-pages. The increased proportion of the relevant pages can be explained

as a result of close semantic distance between the search topic and the queries.
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Grounded theory analysis provides evidence on how well the information from the

extracted Web-pages expands the search topic (Figure 6.6).

Figure 6.6 – Cumulative KU conversion rate across five queries (Experiment 2)

Analysing the KU conversion rate throughout the five iterations the cumulative KU

function becomes close to convergence after about ¾ of the processed Web-pages. This can

indicate that the information obtained with the chosen queries spans the search topic well and

new Web-pages will not add a significant amount of new information.

Figure 6.7 shows reduction in Web-pages amount after three stages of filtering.

Figure 6.7 – Reduction in Web-pages amount after three stages of filtering (Experiment 2)
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Figure 6.8 – Quality change for top search results (Experiment 2)

The quality of the top rated pages after the five iterations has improved compared to

the Google PageRank order results (Figure 6.8).

The average quality at the top of the list increased from 4% to 28%, with the average

quality of highest positioned Web-pages of 77%. Noteworthy, the resulting list of Web-pages

did not follow the order of Google PageRank and had Web-pages from the middle and end of

Google list closer to the top of the reordered list of results. This indicates no correlation exists

between the Web-page quality and the depth of the search results list.

6.4.3 Experiment 3 – Appended well-defined knowledge base

This experiment used the search topic “tobacco industry”, but this time the initial

knowledge base was appended with extracted text of the semantically close Web-pages. This

experiment also resulted in the notable reduction of information provided by Google search

across all five queries. Out of 715 results displayed by Google for Q1 “tobacco industry

competition”, 560 were selected after the Semantic Closeness stage and 66 results passed the

final quality check test, 5 of which were considered as “high quality”. Q2 “tobacco criminal”

returned 413 Google results, 343 of which were passed through after the NLP stage and 20

passed the quality test, only 5 were considered as “high quality”. Q3 “tobacco financial

market” had 455 Web-pages, 125 were further selected as relevant, 17 were considered as

quality information with none of the Web-pages identified as “high-quality”. Q4 “tobacco

smoking statistics” had 855 Google search results, 99 were selected after the semantic

filtering stage, 7 were considered as quality information with 2 Web-pages containing “high-

quality” information. Q5 “tobacco investment opportunities” had 127 links to Web-pages, 93
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“high-quality” pages. Q2 “tobacco criminal” had 413 Web-pages, 332 pages were relevant,

19 pages passed the quality test and 7 pages were rated as “high-quality”. Out of 455 results

for Q3 “tobacco stock market” 248 were relevant with 16 pages were above the quality

threshold and no Web-pages of high quality. Q4 “tobacco smoking statistics” had 855 results,

651 of them were relevant, 64 contained quality information with 16 Web-pages being “high-

quality”. Q5 “tobacco investment opportunities” had 127 results in the SE list, 90 were

relevant, only 4 were considered as quality information.

The reduction in the amount of pages after the model run is shown in the Figure 6.13

below.

Figure 6.13 – Reduction in Web-pages amount after three stages of filtering (Experiment 4)

The distribution of semantic closeness results across five queries is shown in Figure

6.14 below.
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Figure 6.16 – Quality change for top search results (Experiment 4)

The relatively high proportion of the relevant pages can be explained as a small level

of semantic remoteness between the topics, i.e. “coffee” and “tobacco” have a lot in common,

but have different meanings. The reordered search results list did not follow the PageRank

order.

6.4.5 Experiment 5 – Appended poorly-defined knowledge base

The last experiment was evaluated with the idea of poorly defined search topic. For

this experiment search queries for the “coffee production” topic were used to find relevant

information for the “tobacco production” knowledge base, which was appended with the

relevant Web-pages extracted text, meaning that the next page content will be compared

against the expanded knowledge base.

The algorithm output was as follows. Q1 “coffee industry” returned 347 results, 292

were considered relevant, 56 of them contained quality information with 20 pages identified

as “high-quality”. Q2 “coffee criminal” had 261 results in the search engine list, 177 were

relevant after the semantic closeness test, 23 contained quality information with 2 “high-

quality” pages. Q3 “coffee financial market” returned 580 search engine results, 347 were

identified as relevant, 35 pages passed the quality test with 4 pages identified as containing

“high-quality” information.

Distribution of semantic closeness values across three queries is shown in Figure

6.17.
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Similarly to the previous experiment, the relatively high proportion of the relevant

pages can be explained as a small level of semantic remoteness between the topics, i.e.

“coffee” and “tobacco” have a lot in common. Again, the newly processed results list did not

follow the PageRank order.

6.5 Final results

The results of the experiments are summarised in the table 6.3 below.
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Search Engine Results, #

sim(T1,T2),

#

( > 0.85)

Quality Test

Results, #

Top Results Average Quality, %

Search Engine System

> 0.50 > 0.10 > 0.50 > 0.10 > 0.50 > 0.10

Experiment 1 – Same well-defined knowledge base “tobacco industry”

tobacco industry competition 715 572 3 68 0.02 0.04 0.67 0.24

tobacco criminal 413 345 5 19 0.14 0.04 0.88 0.45

tobacco financial market 455 248 0 18 - 0.02 - 0.15

tobacco smoking statistics 855 650 8 57 0.03 0.05 0.84 0.32

tobacco investment opportunities 127 101 1 31 0.02 0.03 0.74 0.22

75% 0.66% 8%

Experiment 2 – Same well-defined knowledge base “cocaine smuggling”
cocaine production and
distribution

552 472 21 95 0.03 0.08 0.77 0.36

cocaine trafficking UK 631 514 2 30 0.03 0.02 0.91 0.29

cocaine smuggling UK 555 440 0 11 - 0.02 - 0.18

cocaine cartels 739 598 6 53 0.12 0.06 0.64 0.29

Mexican drug cartels 426 353 5 19 0.14 0.06 0.8 0.41

82% 1.17% 7.2%

Experiment 3 – Appended well-defined knowledge base “tobacco industry”

tobacco industry competition 715 560 5 66 0.01 0.04 0.66 0.24

tobacco criminal 413 343 5 20 0.14 0.06 0.8 0.41

tobacco financial market 455 125 0 17 - 0.03 - 0.16

tobacco smoking statistics 855 99 2 7 0.09 0.03 0.93 0.48

tobacco investment opportunities 127 93 0 2 - 0.02 - 0.21

48% 0.47% 4%

Experiment 4 – Same poorly-defined knowledge base “coffee production”

tobacco industry competition 715 558 4 62 0.02 0.04 0.67 0.23

tobacco criminal 413 332 7 19 0.1 0.04 0.79 0.44

tobacco financial market 455 248 0 16 - 0.02 - 0.15

tobacco smoking statistics 855 651 16 64 0.07 0.04 0.78 0.36

tobacco investment opportunities 127 90 0 4 - 0.02 - 0.26

73% 1.05% 6%

Experiment 5 – Appended poorly-defined knowledge base “tobacco industry”

coffee industry 347 292 20 56 0.11 0.09 0.81 0.47

coffee criminal 261 177 2 23 0.02 0.01 0.79 0.23

coffee financial market 580 347 4 35 0.02 0.03 0.73 0.24

69% 2.19% 10%

Table 6.3 – Summary of the experiment results
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6.6 Summary

This chapter provided modelling results from testing together with results from five

experiments that have been conducted for the purpose of this research.

During the model testing and exercising the research-developed algorithm, the

system generated results were compared with human manual analysis results. A random

sample of Google search results was manually reviewed and assigned with either Relevant or

Not Relevant tag. The testing results showed that system can recognise relevant content with

precision 67% and recall 93%.

Five experiments were run using three search topics. The experiments had an

objective of assessing the system’s performance on finding topic-related information of high

quality from the Web.

Two cases have been considered. First part of the experiments used search topics

which were well defined with the corresponding queries focused around the initial knowledge

base.

The second part of the experiments considered testing the system’s performance

when the topic understanding was incomplete and, thus, the chosen queries were remote from

the search topic defined in the initial knowledge base text.

For all three search topics the conversion rate of KUs was taken as a parameter for

identifying when the iterating should stop. The cumulative sum of knew words was analysed

and, if little new information was added to the KB, it was assumed that the topic was close to

be exhausted and new iterations on the same topic would not significantly enhance the KB

from the semantic viewpoint.

Results of the experiments were summarised in a table and illustrated with various

graphs. The graphs included distribution of semantic closeness values across all queries,

cumulative KU conversion rate across all queries, reduction in Web-pages amount after all

stages of filtering, and quality change for search results placed at the top of the list.

Chapter 7 discusses the results of the above experiments and the overall findings of

this research.
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Chapter 7

Discussion

7.1 Overview to Chapter

This chapter explores how the research objective was addressed throughout the

developed research method. The aim of this chapter is to show that the quality of collected

information can be significantly enhanced with the use of the research-developed algorithm.

Section 7.2 will outline key research assumptions and findings in accordance with

the set research method, Section 7.3 will summarise the key results.

7.2 Research Overview and Implications

Recall the research objective:

To develop an algorithm that supports topic related search for Web-based

information and estimates the quality of the extracted content, proving it is

significantly enhanced comparing to the traditional Web-search approaches.

In order to meet the research objective, a research method was developed. The

following sections will address the research method steps, and discuss the implications of the

research and application of the results presented in the previous chapters.

7.2.1. Research Step 1

Investigate the structure of the Web

This research sees the Web as the richest source of digitally stored information.

Selection of current, relevant and trustworthy data for a decision information gathering task

(English, 2009) can be complicated, since it is getting harder to find relevant information of

high value and are no quality control procedures for information uploaded. Web data remains
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duplicated and highly contradictory. As section 2.2.1 discussed, a rapid expansion of

available Web data implies an important issue associated with evaluating trust in the

published sources.

There Web can be split into three layers: Surface Web, Deep Web and Dark Web as

shown in figure 2.7. Traditional search engines can access the Surface Web and a small part

of the Deep Web. Dark Web cannot be accessed through conventional means.

With all the richness of the Web as an information source, the overall structure of

the Web does not allow enough freedom for obtaining knowledge. The information on the

Web-sites is stored in silos. Search engine optimisation (SEO) of the Web-pages content puts

further focus on the keywords and treats the Web content as bag of words, rather than ideas

with context, making discovery of unknowns an issue.

7.2.2. Research Step 2

Investigate the information gathering process and the ways of information

representation in order to ascertain why richness cannot be accessed via a direct

keyword based search. Analyse how information about the real world is stored

and accessed, and what effect the limited access to that information may have on

decision making.

The rich picture 2.6 presented a view on the information flow related to the process

of decision making. Section 2.3 assumed the parallel existence of two major information

sources – the Real World and the Global Knowledge Base. If a decision has to be made about

a situation in the dynamically changing Real World, the only information source available to

analysts is the information stored in the persistent Global Knowledge Base. Limited access to

information similarly to the information overload will result in lower quality of decision

making, as shown in figure 2.2.

According to Ashby’s Law of Requisite Variety (discussed in section 2.2.2), tools

that are used for information gathering need to provide enough amplification for the variety

of the extracted information to be as close to the variety of the Real World situation as

possible for the most accurate decision. However, traditional keyword search approach does

not comply with this law. The search on a complex query often fails – it is quite difficult,

even impossible, to predict how information about a situation was transformed by the
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publisher before it got stored on the Web. Thus, there is a need for a different approach that

overcomes this limitation associated with keyword matching technique.

7.2.3. Research Step 3

Explore the ways of representing and estimating uncertainty on a search topic, as

well as how to track the reduction of uncertainty during information discovery.

Rumsfeld’s philosophy was introduced in Section 2.2.3. Based on his concepts of

known knowns (KKs), known unknowns (KUs) and unknown unknowns (UUs), it was

assumed that any topic on any subject can be split into KK, KU and UU parts with the

constant total knowledge size and changing proportion of the KK, KU and UU parts. The

amount of uncertainty is unique for every individual and resides in the KK and KU parts.

Uncertainty depends on the depths of an individual’s knowledge on the subject.

This research assumes that the proportion of uncertainty on a topic changes with

information discovery due to KUs and UUs being converted into KKs. Such conversion of

“unknowns” into “knowns” is the main purpose of information discovery and is one of the

major ideas that lie behind this research. The conversion rate is seen as a method of tracking

the reduction of uncertainty during information discovery, addressing the issue of keeping the

level of information within the boundaries for effective decision support.

7.2.4. Research Step 4

Investigate how current search engines operate and to establish why they cannot

fulfil a requirement to identify and retrieve information. Explore the methods used

for the Web search as well as enterprise search, and identify their benefits and

limitations, especially when targeted at the discovery of unknowns.

This research explored the techniques that are widely used for searching the Web

content (section 2.4.2) as well as enterprise search solutions (section 2.4.3).

Latent Semantic Indexing (on example of Google search engine) is seen as an

effective Web solution that provides fast results on short queries. As it involves matching two

sets of keywords, not only irrelevant information gets responsive to the search query, but also

part of the relative information is often overlooked, if explained with different words.
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However Google constantly improve their search mechanism by introducing elements of the

semantic search, such as synonyms. PageRank algorithm is seen as a quality measure that is

based on the popularity of a Web-page. Keyword matching search technique paired up with

the query-independent PageRank algorithm results in the chaotic mixture of relevant and

irrelevant Web-content, ignoring the important relevance aspect.

Ontologies solve this relevance issue as they provide shared representations of the

entities and relationships characterising a search topic domain. These shared vocabularies can

be used to observe and record Web users’ behaviour to help in articulating what they want to

search for in the future. The scope of the web does not allow ontologies to be applicable for a

broad Web search as they are usually limited to a selected set of search topics or information

resources. In the enterprise search world ontologies are widely used to support query

answering against distributed and/or heterogeneous data sources. The main limitation is that

ontologies and typical queries are often fixed at application design time, raising a concern

over the completeness of the extracted information, or in other words how well the

information spans the search topic.

Meaning-based computing (on example of Autonomy solution) is seen as an

effective statistical approach to enterprise search. The scope of an enterprise knowledge base

allows sophisticated mathematical algorithms to sort and tag the content within it and return

results quickly. Such complex approach was concluded to be not feasible when applied to the

Web due to high computational complexity.

This research also explored Theory of strongly semantic information (Floridi, 2004)

– solution that is aimed at addressing the completeness issue of information and focused on

calculating semantic content based on the truth values as opposed to the traditional

probabilistic approach. The approach does not accept contradictory or false content as

informative and allows more accurate qualification of the content. However, qualification of

the content as truthful means identification and qualification of all possible states that

correspond to the given situation. This makes Floridi’s approach too theoretical to be

applicable to the real world situations.

The above methods allow estimating relevance and completeness of the search

results. Only limited research has been carried out with regards to measuring the quality of

the gathered information and all of such methods (reviewed in chapter 2) have limitations in

terms of information sources or functionality.

Thus, after exploring the problem and existing solutions further, it was concluded

that available approaches lack one or more of the fundamental metrics for Web-based
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information extraction: relevance, completeness and quality. Modification of existing theories

can enable the information content to be tested and allow harvesting Web-wide data in

accordance with these three controlled parameters in order to subsequently transfer this data

to a knowledge base where enterprise search technologies may be applied in the traditional

way to enhance decision making support.

7.2.5. Research Step 5

Investigate research concepts and methods that can be used (or further developed to

be used) with a conventional search engine to enrich information retrieval through

the discovery of unknown unknowns.

1) Relevance Aspect

Due to the discovered need to systematically identify the semantic relationship

between the search topic and the Web-content, the research step 7 looks at the methods that

would provide “an effective approach to formulate a topic-focused collection of the Web

content that is semantically related to the search topic”.

Part of this research has investigated the ability of a traditional search engine to find

relevant information based on the keywords match technique (section 2.4.2). In order to

address the issue of semantic relevance, the proposed search model relies on the Google

search engine as it able to access a large part of the Web. The search results are evaluated

against a search topic that is defined in form of unstructured text.

A combination of existing approaches that use both, statistical and semantic

methods, to analysing texts for semantic relatedness was chosen to address the relevance

aspect of the new search algorithm. First, the method by Hirst & Mohammad (2006) is

applied to calculate concept-to-concept similarity. This measure is then applied to the

technique proposed by Corley & Mihalcea (2005), replacing the word-to-word similarity in

their original formula with concept-to-concept similarity values in order to calculate the

semantic similarity of two texts. Such technique allows filtering of Google search results by

removing false positives.

2) Completeness Aspect

Next, addressing the completeness aspect of the Web-based information extraction,

the step 7) of the research method looked at the techniques that would provide “a mechanism
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for tracking the growth of information and the reduction of uncertainty during information

discovery”.

Grounded theory has been chosen to test the completeness of gathered information.

Relying on the idea that in the beginning only the information within the predefined initial

knowledge base is considered as known ensures the collected knowledge is objective and can

be explicitly defined, while grounded theory provides a systematic approach to building

evidence on the chosen search topic. Web pages that passed the semantic closeness filter will

mainly consist of new concepts compared to the initial knowledge base. These new concepts

are considered as converted to KU and KK. Such conversion rate provides a mechanism for

tracking the growth of information together with reduction of the associated uncertainty.

3) Quality Aspect

Finally, addressing the quality aspect for the Web-based information extraction, the

step 7) of the research method required investigation of the techniques that would provide “a

quality measurement of the extracted content”.

When the traditional search engine presents its search results, they are ordered in

accordance with some Web-page quality criteria. The PageRank algorithm by Google is not

query driven and, thus, orders search results based on the Web-page popularity metric, which

often does not align with the semantic value of the content.

To overcome this issue, this research suggests using Dempster-Shafer theory for

estimating quality of Web-page content from semantic viewpoint, hence, setting a quality

parameter for the efficacy of the eventual decision-making. The total quality score for each

Web-page is calculated as a Belief function, based on which the final list of results is

reordered bringing web-pages of higher quality to the top of the list.

7.2.6. Research Step 6

Develop a search model that will integrate a conventional search engine with

concepts and methods (the algorithm) that will undertake the search. This would

need to be a working model that can be tested using the Web.

Chapter 3 proposed a new search model (figure 5.3) that combines the benefits of

statistical and semantic approaches to information search in order to return results that are

semantically close to the selected search topic. It follows with completeness and quality test



Chapter 7 Discussion

173

to ensure the gathered relevant information is within the boundaries for the high quality

decision making, as shown in Figure 3.8. Thus, the proposed solution overcomes the

limitations associated with methods described in Chapter 2 and addresses all three aspects of

the effective search model. The mathematics for the proposed solution was developed in

Chapter 4.

Figure 5.3 – A detailed schematic of the working model

The overall process is iterative and applied to the Web, using Google search engine

as an extraction mechanism. A single iteration corresponds to a single search query.

Application of Dempster-Shafer theory for analysis of the results within provides a quality

parameter that, in contrast to the PageRank algorithm, orders the filtered (relevant) Web-

pages in accordance with their semantic value and strength of support by the other relevant

Web-pages. This approach brings the potentially overlooked Web-pages closer to top of the

search results list, enhancing the discovery of unknown information. The discovered

unknowns are used as a basis for new query expansion in order to identify the best

information for the target decision process.

7.2.7. Research Step 7

Test the model through use cases and undertake analysis of the results. Develop

experiments that would address the efficiency of the model to find the Web content

that is relevant to the defined search topic, as well as to track the discovery rate of
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unknown unknowns, and to provide a reliable quality metric that would assess the

discovered information from the richness viewpoint.

This section will also discuss the results of the five conducted experiments (see Chapter 6)

also addressing the three fundamental aspects of Web-based information gathering:

relevance, completeness and quality.

1) Relevance aspect

From the relevance perspective, clearly, the better knowledge the analyst has on the

search topic, the greater chance there is that the selected keywords formulate the query that

will more accurately describe the topic. Moreover, one may apply “advanced search” option

and use Boolean operators to improve search results. For the purpose of this research the

“advanced search” option was not used.

The use of the Google keyword search was expected to result in search list that

contained many false positives. Nevertheless, the experiments showed (see table 6.3) that the

major part of the search results (approximately 70%) was still considered relevant to the

search topic with relatively high semantic closeness value of 0.85-1.0. The experiments

revealed that approximately 30% of the Web-pages in the results list have little or no

relevance to the search topic, proving that keyword search brings back nearly a third of Web-

pages that contain terms from the query but discuss a completely different subject.

Thus, up to almost one third of the search results may turn out to be irrelevant to the

search topic and the experiments have shown that some of these irrelevant Web-pages are

placed at the top of the results list.

Figure 7.1 shows an example how the top of the search results list got changed after

applying the proposed quality metric (on example of the Experiment 2 Q1 – see Chapter 6,

Section 6.4.2).



Cha

was

W

po

mov

base.

W

sear

abo

of

rel

likel

sign

place

test

in

Sect

test

Chapter

was f

Web

positi

moved

base.

Web

search

above

of Goo

releva

likely

signifi

place

test re

in the

Section

test re

pter 7

Figure

was found

Web-page

sition

ved to

base.

Web-page

arch eng

above exa

Google

evant

ely to

nificant

ced ac

t results

the eye

ction

t results

Figure

O

ound

pages,

ion 39

ed to p

St

pages

ch eng

ve exam

oogle

evant hi

to r

ficantl

d acro

In

esults

he eyes

on 6.4

esults

gure 7.1

Out

nd as

pages, the

39, w

to posi

Studi

pages ar

engine

exampl

gle sear

high

o rem

cantly

across

In add

sults may

eyes of

6.4.2)

sults for

re 7.1

ut of

as de

es, the

, whi

position

udies

are r

ine (H

ple sh

search

gh qu

emain

ly enh

ss the

addit

may h

of the

.2). F

for Q

7.1 – E

of 95

deep

he high

hile

osition

ies sho

e releva

(Hoch

ple show

search

quali

ain i

enhances

the lon

addition

ay hel

of the

.2). Figu

or Q1 and

Exam

95 resul

ep as

highest

hile the

on 77

show

eleva

ochst

shown

ch resul

ality

n ign

ances

long

ion, the

help to

he sear

igure

1 and

xample

results

as the

hest Pa

the low

77in

ow that

vant,

chstotter

wn in

results

ty W

gnored.

ces info

ng list

, the

p to und

search

ure 7.2

nd Q4.

mple

esults wit

the 546

ghest Page

lowest

77in the

that

evant, only

chstotter

in Fig

ults

Web

ignored.

inform

list of

the analys

to unders

rch eng

7.2 prov

Q4.

ple of

ts wit

he 546

ageR

owest

the list

hat when

only

ter &

Figur

s list

eb-pag

ed. The

nformat

st of sear

analysi

underst

engi

7.2 prov

of top

ith t

546th

ageRank

est PageR

list of

when

ly a r

& Lew

gure 7.1

list. T

pages

The

ormati

of sear

alysis

derstand

engine.

provides

top qu

h the

resul

ank scor

PageR

st of W

hen anal

a rare

Lewand

ure 7.1

This

pages pl

he prop

mation

search

ysis of

stand ho

ine. C

ovides

qual

he qu

esult

ank scor

ageRank

of Web

analysi

are us

ewand

7.1 on

his m

place

proposed

on ret

ch resul

of val

and how

ne. Con

des visu

uality

qualit

ult in

scored

Rank

Web-

nalysing

user

andowski

only

is mea

laced

opose

retriev

results.

values

how wel

onside

visualis

ity sea

ality sc

in the

red Web

nk score

-page

ysing

er goe

owski

ly 16

eans

ed towar

sed s

trieval

ults.

lues of

well

sider

ualise

search

ality scor

the Goo

Web

score

ages

ysing the

goes

ski, 200

16 res

ns that

towards

d soluti

val thro

sults.

lues of the

ell the

er the

alises com

search r

score

Goo

eb-pag

scored W

es sug

the “s

es be

ski, 2009

resul

that

ards

solution

eval throu

of the pr

the cor

the resul

ses com

ch resul

score over

oogle

page

d We

suggest

he “sear

beyon

2009),

esults w

hat usi

ards the

ution

hrough

he prob

he corr

resul

compar

esults

over 10

gle se

page (pl

eb-pag

suggested

“search

ond t

09), (Wai

ts wer

using

the en

on use

ough t

probabi

correspo

esults

parison

ults reshu

er 10%

search

(placed

-pag

gested

earch eng

d the

, (Wai

were or

using the

he end

used

gh the

obabili

spond

esults of

parison

reshuff

10%,

arch

laced

page (p

ed to

h engin

the fir

(Wai-Ti

were origi

the

end of

sed wit

the disc

bility

ponding

of the

son ana

shuffle

%, the

ch list.

ed 7th

e (plac

to be

ngine”

first

Ting

originall

he tradi

of the

with

disco

ity dens

ding

the Ex

analy

ffle for

the rel

list. A

th in

laced

be trans

ine” r

st 100

ing L

ginally

tradit

the l

ith a

scover

densit

ng quer

he Exp

analysis

e for E

relevan

. Am

in th

aced 5

transf

ne” resul

100 sni

Leun

nally po

adition

he lon

a tradi

very

sity f

query

xperi

sis of

or Exp

elevan

mong

the G

aced 546

ansferr

esults

snipp

eung,

y posi

ional

long se

tradi

very of

y fun

ery ref

eriment

of the

xper

evant qu

ong the

e Goo

46th

ferred

ults and

snippet

eung, et

position

al key

g sear

adition

of un

unction

reflect

ment

the s

eriment

t qual

the

oogl

in t

red to

and

ppets pr

g, et al

tioned

keyw

search

tional

unkn

ction

eflects

ent 1

he sem

riment

ality

he sel

gle lis

in the

to th

nd dec

ts pres

t al., 20

ned in

eyword

rch resul

nal se

nknown

on in

cts the

1 (se

semanti

ent 2

lity inf

selecte

e list)

the Goo

the kno

deciding

resent

al., 2008)

d in the

ord se

resul

search

own

in the

the sea

(see Ch

antic

Di

2 (Q1)

infor

ected

ist) m

Googl

e kno

deciding

esented

2008).

the t

d sear

esults

search

n unkn

the rel

search

see Chap

antic clo

Discussi

(Q1)

nformat

ed qu

moved

oogle

knowl

ding w

esented by

08). In

he top

search

esults list

ch eng

unknow

relevan

earch t

hapter

closenes

scussion

1

nformation

quali

oved

gle list)

wledg

which

by the

. In the

top 10

search th

list ar

engine

knowns

elevanc

ch top

hapter

osenes

ussion

175

ation

ality

ed to

list)

edge

hich

the

the

100

the

st are

engine

owns

evance

topic

er 6,

eness

on

ty

to

st)

e

ch

he

he

0

e

are

ne

ns

e

ic

6,

eness



Cha

mat

aft

back

dir

scor

fill

that

exp

the

ini

W

sho

aver

4 ho

Chapter

match

after

back

directio

score.

fill up

that

expan

the que

initial

Web

should

avera

4 hours

pter 7

tches

er the

back a broa

ection

ore. Pr

l up the

go

expansion.

queries

tial se

Web-page

should tak

average

ours

Figu

The

ches the

the W

a broa

Ther

ection of

e. Preci

the gap

go bey

sion.

queries

al searc

2)

If

pages

d take

ge 2,5

urs and

Figure

The

the sear

Web

broader

Ther

of t

recise

he gap

beyon

on. Thi

eries for

search t

2) Com

If an

pages to

ake app

2,500

and 10

gure 7.2

he nar

he sear

b-sea

der sp

herefor

of the

ecise qu

gaps i

beyond

This

form

ch top

Com

an anal

to op

ake appr

00 res

10 m

re 7.2

narrow

search

search.

der spect

efore,

he W

quer

s in the

d the

his is t

ormed

topic.

omplet

analys

open

approx

resul

10 minu

7.2 – S

narrower

search top

search.

spectru

ore, the

Web

queries

n the

the m

is the

ed on

ic.

pletenes

analyst

en an

oxim

esults

inutes

Seman

wer bel

topic

ch. A

ectrum

the

eb-sea

ies that

he know

meanin

the case

on tha

teness

yst view

and

imately

lts acros

utes just

Semantic

ower bell

topic m

A wide

m of

e propo

search

that

know

eaning

case

on that

ess A

view

d furthe

ately

across

s just

antic

bell cu

more

wider

of inf

propose

search b

hat are

owledg

eaning of

case wher

hat li

s Aspec

ews on

further

ely five

oss fi

ust to

antic closen

l curve

ore acc

der bel

informat

oposed

ch by

are the

ledge

ng of t

where

limit

spect

s only

ther ex

five m

five

to loo

closen

curve

accur

der bell

ormat

osed sea

y anal

them

edge on

of the

here the

mited

spect

only sni

her expl

ive minu

ve qu

look t

oseness

ve cor

ccurat

bell cu

mation

sear

analysi

hemsel

on the

he sear

the ini

ted inf

y snipp

explore,

inutes

queries

k throu

ness s

corres

urately

curve

tion and

search

alysing

selves

the sub

search

e initi

inform

snippets

lore, th

nutes to

eries it

through

ess scores

rrespond

ely than

rve (que

and

ch m

sing a

lves hig

e subjec

search top

nitial

formatio

pets

e, the

s to rev

es it wou

ough the

cores

rresponding

than

(query

and expan

method

ng a visu

es highly

subject

h topic

ial know

mation

ppets in

he testin

o review

it would

h the

es for

nding

han Q4.

query

expand

ethod

visual

highly

ect wi

topic

knowl

ation ca

in the

testing

eview

ould

the sni

for Ex

ing t

Q4. Q

ery Q4)

ands

hod m

visual r

hly se

withou

ic wil

owledg

on can

the sear

sting par

eview on

ld take

snipp

Exper

to

4. Quer

Q4) i

ands the

makes

sual repr

semant

ithout

will unvei

ledge

can be

searc

ng par

one

take t

snippets

xperim

o Q1

uery

4) indi

the sear

akes

represent

manti

out exp

ll unvei

edge on

be ver

search

part of

one res

ake the

ets w

eriment

Q1 ind

ery Q1

indica

e searc

es it

resenta

antically

expand

unveil

on the

e very

ch res

rt of the

results

the use

withou

ent 2

indica

Q1 res

icates

arch

it poss

entation

cally

panding

eil possi

the topi

ery rem

results

f the ex

ults pag

user ap

ithout

ent 2 resul

ndicat

1 resul

cates tha

ch top

possib

esentation

ly close

anding

possi

he topic

y rem

esults l

he exp

s pag

user app

hout op

resul

cates

esults

that t

topic.

ssible

on of

close

ng it.

ssible

opic is

emote

s list

experi

page of

approx

openi

esults of

es that

esults in

hat the

ic.

le to

of the

ose to

it. On

ble di

c is lim

ote sem

ist bef

eriment

e of 50

roxim

ening

esults of Q

that

in m

the cho

to adj

the sem

to the

On the

direct

limit

sem

befor

ments

of 50 sn

oximatel

ening the

of Q1

hat the

more

chose

adjust

he sem

the se

the con

direction

ited

semant

before cho

ents has

50 snipp

ately

the W

Q1 and

the cho

ore re

hosen

djust

semant

e searc

he contr

ctions

ted an

ntica

re choo

s has

snippets

tely 250

e Web

and Q

chosen

releva

en que

st the

antic

earch

contras

ons of

and, as

tically

choosing

as show

ppets.

250 mi

eb-pag

Di

and Q4

chosen

levan

query

the scop

antic closen

ch top

trast,

of th

d, as a

cally fr

osing

shown

ets. Thus,

0 minu

pag

Discussi

4

sen qu

evant pag

ery br

scop

closen

topic

ast, quer

the t

as a resul

from

osing w

wn that

Thus,

inutes

pages.

scussion

1

quer

t page

bring

cope or

osene

ic wi

queries

e top

resul

om the

which

that

hus, for

nutes o

.

ussion

176

query

pages

ings

e or

oseness

will

eries

opic

esult,

the

hich

hat it

hus, for

es or

ery

es

s

or

ss

ill

es

ic

esult,

he

ch

it

or

or



Cha

con

(C

These

W

wel

W

im

high

a l

pag

wou

The

am

cou

Fi

just

Chapter

conduc

(Chapar

These

Web

well a

Web

importa

high

a linea

page,

would

The fol

amount

counts.

Figur

just ove

pter 7

conducted

hapar

ese eye

Web-page

well as con

Web-page

portant

h chance

inear

page, N

uld be

e follow

ount

counts.

Figure

t over

A

ducted

haparro

hese eye-

page

as con

N

page

rtant pi

chance

O

near cor

Nielse

d be a

follow

nt of

re 7.3

Fr

over 10

As f

ed that

ro et

-tra

page most

content

Nielse

page and

ant piece

chance that

Obvi

correl

ielsen

be able

lowing

of text

3 –

From

er 100

s for

that

et al.,

tracki

most

tent t

ielsen

and thi

piece

ce that

bviou

correlati

sen N

ble to

ing char

text user

Niel

om the

100 wor

or the

hat exp

al., 20

cking

ost user

ent that

sen N

and this

ece of

hat thi

ously,

elation

Norm

e to read

ng char

ext user

Nielsen

the

words

the con

explor

., 2004

ng stud

users

hat fit

Norm

his nu

of inf

this i

sly, user

on bet

orman

read

chart

users

elsen N

he char

ords, and

e conten

plore

004),

studies

users tend

fits an

orman

number

inform

is inform

, user

betwe

an Gro

ead, if

chart (Figu

users could

en Norm

chart,

and

ontent

re rea

4), (Nie

dies on

tend t

s an F

an Gro

mber

informatio

inform

users tend

tween

man Group

if they

(Figure

could

Norm

rt, only

nd for

tent on

readi

Niel

es on

end to con

an F-shap

Grou

ber decr

mation

ormati

s tend

een the

roup

f they

gure

ould read

orman

only

for the

ent on

eading

ielsen

on the

o con

shap

roup

decre

ation is

ation

end to

the W

oup est

hey spe

re 7.3

read

an Gr

ly hal

or the av

on eac

ing hab

elsen N

the re

concent

shaped

oup (20

decreased

on is pl

on wi

to spe

he Web

estim

spent

3) by

read du

Group:

half

the aver

each

habi

sen Nor

readi

centra

ed pat

(2008

ased

s place

will no

spend

Web-

estimated

spent thei

) by

during

oup:

half the

average

each of

abits

Norman

ading

centrate

pattern

008)

ased the

laced

ill not

end mo

-page

ated

t their

by Nie

uring

p: A ma

the info

erage W

of the

habits of

rman

ing habi

te on

ttern,

) revea

the mor

ed towar

ot be

nd more

page wo

ed the

eir enti

Nielse

g an

maxim

inform

e Web

the

of W

an Grou

habits

on th

attern, suc

evealed

more

towards

be notic

ore tim

e word

the hy

heir entire

Nielsen

an avera

axim

informatio

eb-pag

he Web

Web

Grou

habits of

the co

such

evealed

ore tex

owards

noticed

e time

ord

hypo

entire t

sen Nor

average

aximum

mation

pag

Web-

eb us

oup,

s of W

he cont

such as h

ed that

e text

ards the

ticed

me on

ord cou

hypothet

e tim

Norm

average

um am

ation

page con

-pag

user

p, 2006

of Web

content

as headi

that peo

ext ther

the bo

ced by

on p

count

thetical

ime on

orman

age visi

amou

is usu

e cont

pages,

users

2006)

eb use

ent w

headin

hat peo

there

he bott

by the

pages

nt and

hetical

e on r

an G

visit

amount

s usu

containi

ges, a

rs whe

06), (

users

t which

adings

people

ere is

bottom

the user

ages wi

and av

cal max

on rea

Group

isit to

unt of

usually

taining

, a num

when

, (Niels

sers reve

hich is

ngs foll

ple only

is on

tom of

e user

es with

d avera

maxim

readin

roup

to W

t of text

ally rea

ing 474

num

hen scann

Nielsen

s reveal

ch is pl

follow

only

on the

of a

user.

ith m

average

aximum

eading w

oup (20

Web

text us

read

ng 474

number

scann

elsen

evealed

s placed

ollowed

only read

the pag

of a lon

h mor

average t

mum

g whi

(2008

eb pag

ext user

ead on

474 wor

ber of

canning

sen Nor

evealed t

placed

owed by

read

he pag

long

ore inf

age tim

um nu

hile

2008)

pages

users

only

words

ber of st

canning

Norm

ed that

ced tow

ed by par

ead 28%

page,

ong do

e inform

ime user

number

hile visi

) sho

pages w

ers read

only on

ords (Lev

of stud

ng the

orman

hat when

towar

by par

28%

e, meani

docum

nform

e user

mber

visiting

shows

with

read on

on tho

ds (Lev

studies

the W

an Gro

t when

wards

paragra

% of

meani

ocument

ormation

users sp

ber of

siting

ows the

ith diff

ad on av

those

Leverin

dies ha

e We

Group

hen skim

wards to

agrap

of the

aning

ment,

ation.

users spend

of wor

ng a Web

s the

differe

n avera

se pag

vering

Di

es hav

eb

roup,

skim

to the

phs.

the text

eaning that

ent, ther

on. Bas

spend

words

a Web

he maxi

fferen

average

se pag

ing &

Discussi

have

b con

p, 20

kimmi

the lef

hs.

text

that

there

. Based

spend on

ords user

eb-

maxim

ferent w

average vi

pages

& Cut

scussion

1

e bee

content

2008

ming

left a

ext on

hat if an

here is

ased o

on thi

ds user

pag

aximum

t wor

ge visi

es wi

Cutler

ussion

177

been

tent

08).

ng a

eft as

on a

if an

is a

ed on

this

users

page.

um

ord

visit

with

Cutler,

n

ent

.

a

as

a

an

a

n

his

users

e.

um

ord

er,



Chapter 7 Discussion

178

2006) the users will read about 30% of the text on it. According to (Chaparro et al., 2004), if

the average reading speed is 200 words per minute, it would take 42 seconds for an individual

to read 30% of an average 474 word Web page, or to skim three average Web-pages in just

over two minutes.

In contrast to the above, the proposed solution in this research overcomes the human

factor. Keeping track of the discovered unknowns and their conversion rate by means of

Grounded Theory provides a control mechanism for the gathered information expansion. The

search method is also developed to analyse the full amount of textual content despite its

length, layout or reading age. Taking the example of average 2,500 Web-pages across five

queries it would require 1,777 minutes or almost 30 hours to skim only one third of the total

content. Considering the unlikely scenario when the user looks through the entirety of the

textual content for the example (i.e. 2,500 Web-pages x 474 words = 1,185,000words), it

would take 5,925 minutes or nearly 100 hours to look through all the Web-pages for the

above example of five queries. While the proposed solution is able to process the same

amount of information in approximately 5 hours, which is 20 times faster comparing to the

human processing. If the system's code gets optimised, the processing time can be

significantly reduced.

3) Quality Aspect

This research refutes the idea that the more popular a Web-page is the more relevant

content it contains. In case of the PageRank algorithm, the quality reduction does not always

correlate with the depth of search. In only one experiment (Experiment 2) the quality of pages

content was decreasing along with the position in the list of search results. This may be the

result of a very close semantic distance of the query and the initial knowledge base. In all

other experiments there was no correlation between the quality value and the depth of search

engine results list.

In addition to the Figure 7.1, the graph below (Figure 7.4) shows an example of how

the top quality search results were reordered after the quality stage of the algorithm for

Experiment 1 Query 1 (see Chapter 6, Section 6.4.1).
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 Ashby’s Law of Requisite Variety requires tools that are used for information

gathering to provide enough amplification for the variety of the extracted

information. Traditional keyword search approach does not comply with this law.

 Limited access to information similarly to the information overload will result in

lower quality of decision making.

 Rumsfeld’s philosophy on known knowns, known unknowns and unknown

unknowns provides framework for representing uncertainty in total knowledge on

a topic.

 A combination of keyword search and query-independent sorting algorithm

contradicts the importance of relevance aspect in information search.

 Existing information gathering approaches lack one or more of the fundamental

metrics for Web-based information extraction: relevance, completeness and

quality. The proposed solution overcomes the limitations associated with these

approaches and addresses all three metrics of the effective search model.

 Combination of statistical and semantic approaches resulted in the effective

method to formulate a topic-focused collection of the Web content that is

semantically related to the search topic.

 Conversion of “unknowns” into “knowns” is seen as a method of tracking the

reduction of uncertainty during information discovery. Paired with Grounded

Theory it provides a completeness metric for keeping the level of information

within the boundaries for effective decision support

 Dempster Shafer theory provides a quality metric (Belief function) for valuating

of discovered information that can be addressed from semantic view point.

 Results of the experiment proved the ineffectiveness of the traditional search

engine to support effective decision making with up to one third of the search

results turned out to be irrelevant to the search topic, with irrelevant Web-pages

are often placed at the top of the results list and, in contrast, relevant quality

pages positioned in the depth of the search results list.

 Relevance score probability density function indicates how well the

corresponding query reflects the search topic in the eyes of the search engine

allowing to adjust the scope or direction of the Web-search
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The role of the human factor in finding relevant information is crucial. The proposed

search method is developed to analyse the full amount of textual content despite its length,

layout or reading age. It is also 20 times faster when comparing to the human processing.



182

Chapter 8

Future Research

8.1 Overview to Chapter

This chapter discusses possible future work that may improve the performance of the

proposed search method. Section 8.2 will focus on the quality metric of the method and

suggest other parameters that may be considered in order to assess quality of a Web page as a

source of information in addition to the semantic value of the textual content. In section 8.3

Web-page content extraction techniques will be discussed that can replace the suggested

AlchemyAPI tool and significantly reduce the time of text extraction form Web-pages.

Section 8.4 will discuss how the stop-word list adjustment may affect the performance of the

search model. Code optimisation and overall performance of the search model are discussed

in the Section 8.5. Section 8.6 summarises this chapter.

8.2 Other Parameters for Quality Metric

This research used Dempster-Shafer Belief function as a quality metric that relies on

the semantic closeness score obtained in the earlier stage on the search algorithm.

Research by (Zhu & Gauch, 2000) suggests an approach to calculate quality of a

Web site on a per-topic basis by using six metrics. The following metrics are used: currency,

availability, information-to-noise ratio, authority, popularity and cohesiveness. Currency is

measured as the time stamp of the last modification of the document. Availability is

calculated as the number of broken links on a page divided by the total numbers of links it

contains. Information-to-noise ratio is computed as the total length of the tokens after pre-

processing divided by the size of the document. Popularity score can be gained from the

number of links pointing to a Web-page. Cohesiveness was determined by how closely

related the major topics in the Web-page were. Authority of a Web-page can be measured

with the equation (8.1), using age of domain ( domainage ), number of links from other Web-
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sites that point to the entire domain ( linksN ) and size of the Web-site that relates to the amount

of quality information on the Web-site ( websitesize ):

10log ( )domain links websiteAuthority age N size   (8.1)

The necessary Web-site statistics can be found with an available Web-site analysis

tool.

Having obtained the metrics measurements, the quality of the site can be then

determined by its information quality using the following equation:

( )i i s i s i s i s i s i s iG W a T b A c I d R e P f C                  (8.2)

where iW , iT , iA , iI , iR and iP are the means of information quantity, currency, availability,

information-to-noise ratio, authority, and popularity of site i across topics relevant to the

query. iC is the cohesiveness of site I; sa , sb , sc , sd  , se and sf  are the weights of each

quality metric.

The Web-page quality metric can be further developed by considering some of the

Web-site parameters that would allow assessing the Web-page as a source of information in

addition to the semantic closeness score.

8.3 Accurate Web-page Content Extraction

This research relies on the AlchemyAPI tool to extract main textual content from the

Web-pages. Experiments have shown that the majority of the running time is devoted to the

text extraction part of the search algorithm. Moreover, the model testing resulted in the lower

precision score (67%) for identifying content which is semantically relevant to the search

topic. Additional techniques may need to be considered that would still provide accurate text

extraction form Web-pages, but significantly reduce the extraction time.

The traditional approach to extracting meaningful text from a Web-page is based on

deconstructing the HTML page to its Document Object Model (DOM) (Marini, 2002), as

shown in figure 8.1.
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Figure 8.1 – Example Document Object Model of a Web page

An effective solution to consider in future research is based on deconstructing the

HTML page to its DOM to detect and eliminate noise information from Web-pages was

proposed by (Adam, Bouras, & Poulopoulos, 2009). Authors apply a set of algorithms in

order to clean and correct the HTML code, locate and characterise each node of the DOM

model and finally store the text from the nodes that are characterised as “useful” text nodes.

Based on the deconstructed HTML page only paragraph “useful” texts will be extracted and

processed.

Another Web-page “cleaning” technique proposed in (Yi, Liu, & Li, 2003) focuses

on the commercial Web-sites and is based on the observation that in a typical Web site, Web

pages tend to follow some fixed layouts or presentation styles as most pages are generated

automatically. Those parts of a page whose layouts and actual contents (i.e., texts, images,

links, etc) also appear in many other pages in the site are more likely to be noises, and those

parts of a page whose layouts or actual contents are quite different from other pages are

usually the main contents of the page. In their paper the authors first introduce style tree

structure to capture the common layouts (or presentation styles) and the actual contents of the

pages in a Web site. An information based measure is proposed to determine which parts of

the style tree indicate noises and which parts of the style tree contain the main contents of the

pages in the Web site. To clean a new page from the same site, the method simply maps the

page to the style tree of the site. According to the mapping, the noisy parts are then detected

and deleted.
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The approach that may be also considered is presented in (Zhou, Xiong, & Liu,

2009); the authors claim that compared with existing DOM based approaches, the proposed

solution is simple and fast with satisfied accuracy. Their solution is based on a practical

observation that the main text of a Web page usually occupies the centre of the Web page

with multiple adjacent, relatively long text paragraphs, especially for Web pages of news,

articles, blogs, etc. When all pieces of visible text in a Web page are extracted, they are

organised in paragraphs that are often located in the middle of the paragraph list with longer

length.

8.4 Stop-Word List Adjustment

After the text is extracted, it is still loaded with so-called meaning-free parts of

speech, or stop-words. Stop-word cannot characterise the text; and in the automatic

identification of stop-word, the computer programs cannot tell whether one word

characterises the text intelligently.

The search model proposed in this thesis uses on a common list of stop-words for

any search topic. Future research may look at the changes (if any) in the efficiency and

accuracy of the semantic test after the stop-words are reviewed and adjusted based on the

search topic.

8.5 Code Optimisation

In the previous chapter it was estimated that the proposed solution is able to perform

information gathering task 20 times faster comparing to the human processing. Semi-

automated model was developed in Chapter 5 and uses manual processing combined with

Python scripts and MS Excel statistical analysis and visualisation of results. If the algorithm’s

code gets optimised to provide more efficient use of the computing resources, the processing

time can be significantly reduced.

8.6 Summary

This chapter discussed possible future work that may improve the performance and

accuracy of the solution proposed in this research.
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As such, the quality metric can be further developed by including additional Web-

page parameters, such as currency, availability, information-to-noise ratio, authority,

popularity and cohesiveness. Such combination would allow assessing the Web-page as a

source of information in addition to the semantic closeness score.

Following the experiments, the text extraction from the Web-pages used the majority

of the processing time. Also, the model testing resulted in the lower precision score (67%) for

identifying content which is relevant to the defined search topic. This chapter discussed

additional techniques to consider that would still provide accurate text extraction form Web-

pages, but significantly reduce the extraction time. Among them were deconstructing the

HTML page to its Document Object Model, mapping Web-pages to the Web-site style tree,

or visual analysis of a Web pages text.

This chapter also suggested further exploration on how the adjustment of the stop-

word list depending on the search topic may affect the performance of the search model.

Finally, more efficient use of the computing resources via code optimisation may

significantly reduce the processing time.
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Chapter 9

Conclusions and Summary

The main contribution of this research is that it addresses the issues associated with

traditional information gathering and presents a novel semantic approach method to Web-

based discovery of previously unknown intelligence for effective decision making. It

provides a comprehensive theoretical background to the proposed solution together with a

demonstration of the effectiveness of the method from results of the experiments, showing

how the quality of collected information can be significantly enhanced by previously

unknown information derived from the available known facts.

The objective of this research was:

To develop an algorithm that supports topic related search for Web-based

information and estimates the quality of the extracted content, proving it is

significantly enhanced comparing to the traditional Web-search approaches.

This thesis introduced a new semantic Web-based search method that automates the

correlation of topic-related content for discovery of hitherto unknown information from

disparate and widely diverse Web-sources. This method is in contrast to traditional search

methods that are constrained to specific or narrowly defined topics. It addresses the three key

aspects of the information: semantic closeness to search topic, information completeness, and

quality. The method is based on algorithms from Natural Language Processing combined

with techniques adapted from grounded theory and Dempster-Shafer theory to significantly

enhance the discovery of topic related Web-sourced intelligence.

In order to meet the research objective, a research method was developed and

addressed throughout the chapters of this thesis.

In Chapter 2 the nature of information gathering process was analysed and issues

associated with current Web-based search methods were identified. It was concluded that

Web-content is ill structured, time related and substantially contradictory. Traditional Web

search engines index Web-pages on keywords and present results ordered by in order of

popularity and not by relevance. It also provided overview to the existing methods that

overcome the issues associated with relevance, completeness and quality aspects of the
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returned search results. This chapter also introduced some fundamental theories, such as

Ashby’s law of requisite variety and Rumsfeld’s philosophy, that are usually ignored in the

existing search methodologies. The proposed solution has been introduced and proven to

have no limitations for Web-sources and open to perform search and analysis through any

Web-page available to the search engine.

A comprehensive theoretical background for the novel search method was developed

in Chapter 3. Three stages of filtering were suggested to narrow down and reorganise a search

engine results. During the first stage the natural language processing methods filter only those

pages that are semantically relevant to the search topic. The grounded theory part is the

second stage that assesses the filtered Web-pages for holding new information and checks if

this information exhausts the search topic. Lastly, the evidence on the Web-pages is analysed

with Dempster-Shafer theory and its quality level is calculated as Belied function. The overall

algorithm of the search model was presented at the end of this chapter.

The theoretical background is followed by the quantitative details for each stage of

the algorithm in Chapter 4. A precise mathematical model has been created, supporting the

theory behind the new algorithm. Mathematics of the semantic analysis explained how to

select Web-pages that are relevant to the initial knowledge base content. Grounded theory is

then used to identify the effect of the new information on the completeness of the initial

knowledge base – for each iteration a conversion rate of “known unknowns” is used to

analyse the change in new concepts. Main concepts of Dempster-Shafer theory were related

to the context of Web-based discovery of unknowns.

Model design and software were addressed in Chapter 5. UML diagrams were

developed to show the interaction between the objects. Pseudo-code was used to describe key

pieces of code corresponding to all stages of the algorithm. Description was provided to all

stages of the model: Web-Search and processing of Google results, pre-processing of

extracted text and semantic closeness measurement stage, Grounded theory based

completeness measurement, as well as measurement of quality score for semantic related

content. Model testing was performed to assess how system generated results are compared

with human manual analysis results. A random sample of Google search results was manually

reviewed and assigned with either Relevant or Not Relevant tag. The testing results showed

that system can recognise relevant content with precision 67% and recall 93%.

Chapter 6 described five experiments that had been chosen for the purpose of this

research. First part of the experiments used search topics which were well defined with the

corresponding queries focused around the initial knowledge base. The second part of the
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experiments considered testing the system’s performance when the topic understanding was

incomplete and, thus, the chosen queries were remote from the search topic defined in the

initial knowledge base text. A set of experiments carried out with different queries has proven

that within the list of search engine results there is a large portion of Web-pages containing

high-quality previously unknown information which would have not been identified using

traditional methods. The experiment results were illustrated with various graphs and tables.

Results of this research were discussed in Chapter 7. It outlined key research

assumptions and findings in accordance with the set research method, and provided research

conclusions at the end of the chapter.

Possible future work in Chapter 8 suggested exploring techniques that would

enhance the proposed quality metric, as well as accuracy of the semantic closeness score

measurement to improve the precision score of the search model. It also suggested code

optimisation for more efficient use of the computing resources, and other possible methods

for the extraction of textual content on a Web-page in order to reduce the processing time.

This research has shown that in contrast to the current research, which tends to focus

on specifically selected topics and have limited functionality, the new solution has no

limitations for Web-sources and is open to perform search and analysis through any Web-

page available to the search engine. The proposed new search method may be used to harvest

Web-wide data in accordance with controlled parameters and subsequently transfer this data

to a knowledge base where enterprise search technologies may be applied in the traditional

way, providing rich and controlled information basis for future decision making.

Two papers have been produced relating to the research carried out on the topic of

Web-based discovery of information for decision support:

 Danilova, N., & Stupples, D. (2012). Application of Natural Language

Processing to Web-based Intelligence Information Acquisition. EISIC2012

Proceedings. Odense, Denmark: IEEE Computer Society.

 Danilova, N., & Stupples, D. (2013). Semantic Approach to Web-based Discovery

of Unknowns to Enhance Intelligence Gathering. International Journal of

Information Retrieval, 3(1), pp. 24-42.
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Appendix 1 – Initial Knowledge Base Text

Search topic “tobacco industry”

The tobacco industry comprises those persons and companies engaged in the growth, preparation for

sale, shipment, advertisement, and distribution of tobacco and tobacco-related products. It is a global

industry; tobacco can grow in any warm, moist environment, which means it can be farmed on all

continents except Antarctica.

Tobacco is a commodity product similar in economic terms to foodstuffs in that the price is set by the

fact that crop yields vary depending on local weather conditions. The price varies by specific species

grown, the total quantity on the market ready for sale, the area where it was grown, the health of the

plants, and other characteristics individual to product quality. Laws around the world now often have

some restrictions on smoking but, still 5.5 trillion cigarettes are smoked each year. Taxes are often

heavily imposed on tobacco.

The tobacco industry generally refers to the companies involved in the manufacture of cigarettes,

cigars, snuff and chewing and pipe tobacco. The largest tobacco company in the world by volume is

China National Tobacco Co. Following extensive merger activity in the 1990s and 2000s,

international markets are dominated by five firms: Philip Morris International, British American

Tobacco, Japan Tobacco, Altria, and Imperial Tobacco.

The tobacco industry in the United States has suffered greatly since the mid-1990s, when it was

successfully sued by several U.S. states. The suits claimed that tobacco causes cancer, that companies

in the industry knew this, and that they deliberately understated the significance of their findings,

contributing to the illness and death of many citizens in those states.

Lawsuits against the tobacco industry are primarily restricted to the United States due to differences

in legal systems in other countries. Many businesses class ongoing lawsuits as a cost of doing

business in the US and feel their revenue will be only marginally affected by the activities.
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Search topic “cocaine smuggling”

Colombia is Cocaine’s Main Producer

Cocaine is produced from the leaves of the coca plant (Erythoxylon coca). The plant grows almost

exclusively in northern and western South America. Colombia is now the main producer of illegal

cocaine with Peru, Bolivia, and Chile providing significant amounts of the drug. The coca plant

grows best in the mountain and jungle areas of these countries.

Small cocaine brick and press

Small laboratories are scattered throughout the coca growing areas of South America. The hand

picked coca leaves are soaked in gasoline and other chemicals to extract the coca base from the

leaves in industrial-sized drums. Then the base is poured into brick molds. The water is pressed out,

leaving a hard, easy-to-handle brick containing about 50 percent cocaine. The bricks are sent to

collection points where they are shipped to markets in the U.S. and other countries.

Colombians Control the Trade

Drug cartels based in Colombia control almost all cocaine trafficking. They process coca from Peru,

Bolivia, and Colombia. Various cocaine trafficking organizations then ship it to all corners of the

globe.

Cocaine Processing Labs

In these remote areas, processing laboratories are set up to extract the coca from the leaves and then

convert the coca into cocaine. There are two types of processing labs: pozo pit labs that use acidic

solutions, and the more common lab that uses metal drums and gasoline.

Step One

Cocaine is typically processed in jungle labs by first soaking leaves in gasoline inside metal drums.

Step Two

Gasoline containing cocaine alkaloid is drained from metal drums and filtered into a barrel with

diluted acid. The gasoline will be removed from the acid layer and sodium bicarbonate or ammonia

will be added to the solution to make cocaine base.

Step Three

Cocaine base is filtered through a cloth.

Step Four

The remaining substance is dried, resulting in a purer form of cocaine base.

Step Five

Cocaine base is dissolved in a solvent such as ethyl acetate, acetone, or ether and then heated in a hot

water bath called a “bańo maria.” Another solvent such as methyl ethyl ketone is added to the boiling 
liquid along with concentrated hydrochloric acid which results in the crystallization of cocaine

hydrochloride.
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Step Six

Excess solvents are removed from the cocaine hydrochloride, first by hand, and then using a

hydraulic press.

Step Seven

Solvents are finally removed using microwave ovens creating the basis for powder cocaine.

Step Eight

Cocaine base, commonly called “crack,” is typically made by dissolving cocaine hydrochloride in a

mixture of water and baking soda. The solution is boiled until the cocaine forms an oily substance

that drops out of the solution and settles at the bottom of the container.

Step Nine

Excess water, sodium chloride, and other impurities can be removed after cooling the oil to a rock-

like substance. The resulting product is crack cocaine.
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Search topic “coffee production”

Coffee production is the industrial process of converting the raw fruit of the coffee plant into the

finished coffee. The cherry has the fruit or pulp removed leaving the seed or bean which is then dried.

While all green coffee is processed, the method that is used varies and can have a significant effect on

the flavor of roasted and brewed coffee.

A coffee plant usually starts to produce flowers 3&#x2013;4 years after it is planted,[1] and it is from

these flowers that the fruits of the plant (commonly known as coffee cherries) appear, with the first

useful harvest possible around 5 years after planting. The cherries ripen around eight months after

the emergence of the flower, by changing color from green to red, and it is at this time that they

should be harvested.[2] In most coffee-growing countries, there is one major harvest a year; though

in countries like Colombia, where there are two flowerings a year, there is a main and secondary

crop.[3]

In most countries, the coffee crop is picked by hand, a labor-intensive and difficult process, though in

places like Brazil, where the landscape is relatively flat and the coffee fields immense, the process has

been mechanized.[3] Whether picked by hand or by machine, all coffee is harvested in one of two

ways:

Strip Picked: The entire crop is harvested at one time. This can either be done by machine or by

hand. In either case, all of the cherries are stripped off the branch at one time.

Selectively Picked: Only the ripe cherries are harvested and they are picked individually by hand.

Pickers rotate among the trees every 8&#x2013;10 days, choosing only the cherries which are at the

peak of ripeness. Because this kind of harvest is labor intensive, and thus more costly, it is used

primarily to harvest the finer arabica beans.[3]

The laborers who pick coffee by hand receive payment by the basketful. As of 2003, payment per

basket is between US$2.00 to $10 with the overwhelming majority of the laborers receiving payment

at the lower end. An experienced coffee picker can collect up to 6-7 baskets a day. Depending on the

grower, coffee pickers are sometimes specifically instructed to not pick green coffee berries since the

seeds in the berries are not fully formed or mature. This discernment typically only occurs with

growers who harvest for higher end/specialty coffee where the pickers are paid better for their labor.

Mixes of green and red berries, or just green berries, are used to produce cheaper mass consumer

coffee beans, which are characterized by a displeasingly bitter/astringent flavor and a sharp odor.

Red berries, with their higher aromatic oil and lower organic acid content, are more fragrant,

smooth, and mellow. As such, coffee picking is one of the most important stages in coffee production.

In the wet process, the fruit covering the seeds/beans is removed before they are dried. Coffee

processed by the wet method is called wet processed or washed coffee.[4] The wet method requires

the use of specific equipment and substantial quantities of water.

The coffee cherries are sorted by immersion in water.Bad or unripe fruit will float and the good ripe

fruit will sink. The skin of the cherry and some of the pulp is removed by pressing the fruit by machine

in water through a screen. The bean will still have a significant amount of the pulp clinging to it that

needs to be removed. This is done either by the classic ferment-and-wash method or a newer

procedure variously called machine-assisted wet processing, aquapulping or mechanical

demucilaging:



Appendix 1 – Initial Knowledge Base Text

202

In the ferment-and-wash method of wet processing, the remainder of the pulp is removed by breaking

down the cellulose by fermenting the beans with microbes and then washing them with large amounts

of water. Fermentation can be done with extra water or, in "Dry Fermentation", in the fruit's own

juices only.

The fermentation process has to be carefully monitored to ensure that the coffee doesn't acquire

undesirable, sour flavors. For most coffees, mucilage removal through fermentation takes between 24

and 36 hours, depending on the temperature, thickness of the mucilage layer and concentration of the

enzymes. The end of the fermentation is assessed by feel, as the parchment surrounding the beans

loses its slimy texture and acquires a rougher "pebbly" feel. When the fermentation is complete, the

coffee is thoroughly washed with clean water in tanks or in special washing machines.[5]

In machine-assisted wet processing, fermentation is not used to separate the bean from the remainder

of the pulp; rather, this is done through mechanical scrubbing. This process can cut down on water

use and pollution since ferment and wash water stinks. In addition, removing mucilage by machine is

easier and more predictable than removing it by fermenting and washing. However, by eliminating

the fermentation step and prematurely separating fruit and bean, mechanical demucilaging can

remove an important tool that mill operators have of influencing coffee flavor. Furthermore, the

ecological criticism of the ferment-and-wash method increasingly has become moot, since a

combination of low-water equipment plus settling tanks allows conscientious mill operators to carry

out fermentation with limited pollution.[4]

Any wet processing of coffee produces coffee wastewater which can be a pollutant.[6] Ecologically

sensitive farms reprocess the wastewater along with the shell and mucilage as compost to be used in

soil fertilization programs. The amount of water used in processing can vary, but most often is used in

a 1 to 1 ratio.

After the pulp has been removed what is left is the bean surrounded by two additional layers, the

silver skin and the parchment. The beans must be dried to a water content of about 10% before they

are stable. Coffee beans can be dried in the sun or by machine but in most cases it is dried in the sun

to 12-13% moisture and brought down to 10% by machine. Drying entirely by machine is normally

only done where space is at a premium or the humidity is too high for the beans to dry before

mildewing.

When dried in the sun coffee is most often spread out in rows on large patios where it needs to be

raked every six hours to promote even drying and prevent the growth of mildew. Some coffee is dried

on large raised tables where the coffee is turned by hand. Drying coffee this way has the advantage of

allowing air to circulate better around the beans promoting more even drying but increases cost and

labor significantly.

After the drying process (in the sun and/or through machines), the parchment skin or pergamino is

thoroughly dry and crumbly, and easily removed in the Hulling process. Coffee occasionally is sold

and shipped in parchment or en pergamino, but most often a machine called a huller is used to crunch

off the parchment skin before the beans are shipped.[4]

Dry process

Dry process, also known as unwashed or natural coffee, is the oldest method of processing coffee.

The entire cherry after harvest is first cleaned and then placed in the sun to dry on tables or in thin

layers on patios:[5]
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The harvested cherries are usually sorted and cleaned, to separate the unripe, overripe and damaged

cherries and to remove dirt, soil, twigs and leaves. This can be done by winnowing, which is

commonly done by hand, using a large sieve. Any unwanted cherries or other material not winnowed

away can be picked out from the top of the sieve. The ripe cherries can also be separated by flotation

in washing channels close to the drying areas.

The coffee cherries are spread out in the sun, either on large concrete or brick patios or on matting

raised to waist height on trestles. As the cherries dry, they are raked or turned by hand to ensure even

drying and prevent mildew. It may take up to 4 weeks before the cherries are dried to the optimum

moisture content, depending on the weather conditions. On larger plantations, machine-drying is

sometimes used to speed up the process after the coffee has been pre-dried in the sun for a few days.

The drying operation is the most important stage of the process, since it affects the final quality of the

green coffee. A coffee that has been overdried will become brittle and produce too many broken beans

during hulling (broken beans are considered defective beans). Coffee that has not been dried

sufficiently will be too moist and prone to rapid deterioration caused by the attack of fungi and

bacteria.

The dried cherries are stored in bulk in special silos until they are sent to the mill where hulling,

sorting, grading and bagging take place. All the outer layers of the dried cherry are removed in one

step by the hulling machine.

The dry method is used for about 90% of the Arabica coffee produced in Brazil, most of the coffees

produced in Ethiopia, Haiti and Paraguay, as well as for some Arabicas produced in India and

Ecuador. Almost all Robustas are processed by this method. It is not practical in very rainy regions,

where the humidity of the atmosphere is too high or where it rains frequently during harvesting.[5]

Semi dry process

Semi dry is a hybrid process used in Indonesia and Brazil. In Indonesia, the process is also called

"wet hulled", "semi-washed" or "Giling Basah". Literally translated from Indonesian, Giling Basah

means "wet grinding".[7] This process is said to reduce acidity and increase body.[8]

Most small-scale farmers in Sumatra, Sulawesi, Flores and Papua use the giling basah process. In

this process, farmers remove the outer skin from the cherries mechanically, using locally built pulping

machines. The coffee beans, still coated with mucilage, are then stored for up to a day. Following this

waiting period, the mucilage is washed off and the parchment coffee is partially dried in the sun

before sale at 30% to 35% moisture content.[8]

Milling

Structure of coffee berry and beans: 1: center cut 2:bean (endosperm) 3: silver skin (testa,

epidermis), 4: parchment (hull, endocarp) 5: pectin layer 6: pulp (mesocarp) 7: outer skin (pericarp,

exocarp)

The final steps in coffee processing involve removing the last layers of dry skin and remaining fruit

residue from the now dry coffee, and cleaning and sorting it. These steps are often called dry milling

to distinguish them from the steps that take place before drying, which collectively are called wet

milling.[3] [4]

Hulling
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The first step in dry milling is the removal of what is left of the fruit from the bean, whether it is the

crumbly parchment skin of wet-processed coffee,the parchment skin and dried mucilage of semi-dry-

processed coffee, or the entire dry, leathery fruit covering of the dry-processed coffee. Hulling is done

with the help of machines, which can range from simple millstones to sophisticated machines that

gently whack at the coffee.[3]

Polishing

This is an optional process in which any silver skin that remains on the beans after hulling is

removed in a polishing machine.[3] This is done to improve the appearance of green coffee beans and

eliminate a byproduct of roasting called chaff. It is described by some to be detrimental to the taste by

raising the temperature of the bean through friction which changes the chemical makeup of the bean.

Cleaning and sorting

Most fine coffee goes through a battery of machines that sort the coffee by density of bean and by

bean size, all the while removing sticks, rocks, nails, and miscellaneous debris that may have become

mixed with the coffee during drying. First machines blow the beans into the air; those that fall into

bins closest to the air source are heaviest and biggest; the lightest (and likely defective) beans plus

chaff are blown in the farthest bin. Other machines shake the beans through a series of sieves, sorting

them by size. Finally, a machine called a gravity separator shakes the sized beans on a tilted table, so

that the heaviest, densest and best vibrate to one side of the pulsating table, and the lightest to the

other.[4] [9]

The final step in the cleaning and sorting procedure is called color sorting, or separating defective

beans from sound beans on the basis of color rather than density or size. Color sorting is the trickiest

and perhaps most important of all the steps in sorting and cleaning. With most high-quality coffees

color sorting is done in the simplest possible way: by hand. Teams of workers pick discolored and

other defective beans from the sounds beans. The very best coffees may be hand-cleaned twice

(double picked) or even three times (triple picked). Coffee that has been cleaned by hand is usually

called European preparation; most specialty coffees have been cleaned and sorted in this way.[4]

Color sorting can also be done by machines. Streams of beans fall rapidly, one at a time, past

sensors that are set according to parameters that identify defective beans by value (dark to light) or

by color. A tiny, decisive puff of compressed air pops each defective bean out of the stream of sound

beans the instant the machine detects an anomaly. However, these machines are currently not used

widely in the coffee industry for two reasons. First, the capital investment to install these delicate

machines and the technical support to maintain them is daunting. Second, sorting coffee by hand

supplies much-needed work for the small rural communities that often cluster around coffee mills.

Nevertheless, computerized color sorters are essential to coffee industries in regions with relatively

high standards of living and high wage demands.[4]

Grading

Grading is the process of categorizing coffee beans on the basis of various criteria such as size of the

bean, where and at what altitude it was grown, how it was prepared and picked, and how good it

tastes, or its cup quality. Coffees also may be graded by the number of imperfections (defective and

broken beans, pebbles, sticks, etc.) per sample. For the finest coffees, origin of the beans (farm or

estate, region, cooperative) is especially important. Growers of premium estate or cooperative coffees

may impose a level of quality control that goes well beyond conventionally defined grading criteria,
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because they want their coffee to command the higher price that goes with recognition and consistent

quality.

All coffee, when it was introduced in Europe, came from the port of Mocha in what is now modern

day Yemen. To import the beans to Europe the coffee was on boats for a long sea voyage around the

Horn of Africa. This long journey and the exposure to the sea air changed the coffee's flavor. Later,

coffee spread to India and Indonesia but still required a long sea voyage. Once the Suez Canal was

opened the travel time to Europe was greatly reduced and coffee whose flavor had not changed due to

a long sea voyage began arriving. To some degree, this fresher coffee was rejected because

Europeans had developed a taste for the changes that were brought on by the long sea

voyage.[citation needed] To meet this desire, some coffee was aged in large open-sided warehouses

at port for six or more months in an attempt to simulate the effects of a long sea voyage before it was

shipped to Europe.

Although it is still widely debated, certain types of green coffee are believed to improve with age;

especially those that are valued for their low acidity, such as coffees from Indonesia or India. Several

of these coffee producers sell coffee beans that have been aged for as long as 3 years, with some as

long as 8 years. However, most coffee experts agree that a green coffee peaks in flavor and freshness

within one year of harvest, because over-aged coffee beans will lose much of their essential oil

content.

Decaffeination is the process of extracting caffeine from green coffee beans prior to roasting. The

most common decaffeination process used in the United States is supercritical carbon dioxide (CO2)

extraction. In this process, moistened green coffee beans are contacted with large quantities of

supercritical CO2 (CO2 maintained at a pressure of about 4,000 pounds force per square inch (28

MPa) and temperatures between 90 and 100 &#xB0;C (194&#xA0;and 212&#xA0;&#xB0;F)), which

removes about 97% of the caffeine from the beans. The caffeine is then recovered from the CO2,

typically using an activated carbon adsorption system.

Another commonly used method is solvent extraction, typically using oil (extracted from roasted

coffee) or ethyl acetate as a solvent. In this process, solvent is added to moistened green coffee beans

to extract most of the caffeine from the beans. After the beans are removed from the solvent, they are

steam-stripped to remove any residual solvent. The caffeine is then recovered from the solvent, and

the solvent is re-used. The Swiss Water Process is also used for decaffeination. Decaffeinated coffee

beans have a residual caffeine content of about 0.1% on a dry basis. Not all facilities have

decaffeination operations, and decaffeinated green coffee beans are purchased by many facilities that

produce decaffeinated coffee.

Green coffee is usually transported in jute bags. While green coffee may be usable for several years, it

is vulnerable to quality degradation based on how it is stored. Jute bags are extremely porous,

exposing the coffee to whatever elements it is surrounded by. Coffee that is poorly stored may develop

a bURLap-like taste known as "bagginess", and its positive qualities may fade.[10]

In recent years, the specialty coffee market has begun to utilize enhanced storage method. A gas

barrier liner to jute bags, is sometimes used to preserve the quality of green coffee.[11] Less

frequently, green coffee is stored in vacuum packaging; while vacuum packs further reduce the ability

of green coffee to interact with oxygen at atmospheric moisture, it is a significantly more expensive

storage option.[12]

Roasting
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Main article: Coffee roasting

See also: Home roasting coffee

Although not considered part of the processing pipeline proper, nearly all coffee sold to consumers

throughout the world is sold as roasted coffee in general one of four degrees of roasting: light,

medium, medium-dark, and dark.[13] Consumers can also elect to buy unroasted coffee to be roasted

at home.
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Appendix 2 – Stop Word List

a both hasn't make out there're were

about but have makes over there's weren't

above by haven't many overall there've what

according can he maybe own thereafter what'll

across can't he'd me per thereby what's

actually cannot he'll meantime perhaps therefore what've

adj caption he's meanwhile rather therein whatever

after co hence might recent thereupon when

afterwards company her million recently these whence

again corp here miss same they whenever

against corporation here's more seem they'd where

all could hereafter moreover seemed they'll where's

almost couldn't hereby most seeming they're whereafter

alone did herein mostly seems they've whereas

along didn't hereupon mr seven thirty whereby

already do hers mrs seventy this wherein

also does herself much several those whereupon

although doesn't him must she though wherever

always don't himself my she'd thousand whether

among down his myself she'll three which

amongst during how namely she's through while

an each however neither should throughout whither

and eg hundred never shouldn't thru who

another eight i nevertheless since thus who'd

any eighty i'd next six to who'll

anyhow either i'll nine sixty together who's

anyone else i'm ninety so too whoever

anything elsewhere i've no some toward whole

anywhere end ie nobody somehow towards whom

are ending if none someone trillion whomever

aren't enough in nonetheless something twenty whose

around etc inc noone sometime two why

as even indeed nor sometimes under will

at ever instead not somewhere unless with

be every into nothing still unlike within

became everyone is now stop unlikely without

because everything isn't nowhere such until won't

become everywhere it of taking up would

becomes except it's off ten upon wouldn't

becoming few its often than us yeah
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been fifty itself on that used yes

before first last once that'll using yet

beforehand five later one that's very you

begin for latter one's that've via you'd

beginning former latterly only the ve you'll

behind formerly least onto their was you're

being forty less or them wasn't you've

below found let other themselves we your

beside four let's others then we'd yours

besides from like otherwise thence we'll yourself

between further likely our there we're yourselves

beyond had ltd ours there'd we've

billion has made ourselves there'll well
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Appendix 3 – UML Diagrams
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Dempster-Shafer Module

Set(NLP_results.csv)

Dempster_Shafer

Set(TCM.csv)

Main

DS_results.csv
Create()

subsets = find_subsets(TCM_data)

Write [belief_NLP]

belief_NLP = belief(subsets, norm_NLP_data)

norm_NLP_data = normalise(NLP_data)

read “TCM.csv” into TCM_data

read “NLP_results.csv” into NLP_data
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Appendix 4 – Python code

process_Google_results.py

path = '/home/natalia/Dropbox/newcode/MyCopy/links_cocaine/raw_it4_cocaine_cartels.txt'

txt_file = open(path)

txt = txt_file.read()

txt_file.close()

s_txt = txt.split(' ')

href_txt = [l for l in s_txt if l.startswith('href=')]

href_txt_1 = [l[6:-1] for l in href_txt if 'Webcache.google' not in l]

#href_txt_2 = [l for l in href_txt_1 if 'Webcache.google' not in l]

results_list = []

for line in href_txt_1:

if line.startswith('http://'):

if ('.google.') not in line:

results_list += [line+'\n']

results_file = open('/home/natalia/Dropbox/newcode/MyCopy/it4_cocaine_cartels.txt', 'a') #

in append mode

for res in results_list:

results_file.write(res)

results_file.close()
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Main_NLP_module.py

'''

CHECK BEFORE RUN:

- all links are from the correct derictories

- kb_link path

- wp_link path

- tcm_file_name creates the file with the right name

- results_file_name creates the file with the right name

'''

from __future__ import division

import nltk, re, pprint, numpy, time

import URLlib2

from URLlib2 import URLopen

from nltk.corpus import stopwords

from collections import defaultdict

from functools import partial

from numpy import *

import phd_roget_open, phd_open_text_file, phd_NLP

import AlchemyAPI

import csv

start_time = time.time()

'''

############## DS Currency (Time Stamp) evaluation ############

>>> URL = "http://www.city.ac.uk"

>>> req = URLlib2.Request(URL)

>>> URL_handle = URLlib2.URLopen(req)

>>> headers = URL_handle.info()

>>> etag = headers.getheader("ETag")

>>> last_modified = headers.getheader("Last-Modified")

>>> last_modified

'''

# GET STOPWORDS

sw_link = '/home/natalia/Dropbox/newcode/MyCopy/stopwords.txt' # stopwords file path

sw_text = phd_open_text_file.extract_text(sw_link) # get stopwords tokens

stopwords = set([words for words in sw_text]) # get final list of stopwords

####################################################################
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concept_number = 1044 # concepts in Roget's thesaurus

####################################################################

"""

path = ['C:/Python27/Lib/site-packages/heads/head'] # Roget's thesaurus file path

heads = phd_roget_open.roget_open(path, concept_number, stopwords) # open thesaurus

txt file and transform into list

# [['word', 'index1', 'index2', ..., 'indexN'], ['word', 'index1', '..'], ...]

"""

#Path to Roget's Thesaurus txt file

path = '/home/natalia/Dropbox/newcode/MyCopy/roget_copy.txt'

heads = phd_roget_open.roget_open(path)

# GET KNOWLEDGE BASE

kb_link = '/home/natalia/Dropbox/newcode/MyCopy/KB_cocaine_production.txt' # initial

knowledge base file path

kb_text = phd_open_text_file.extract_text(kb_link) # get KB text tokens

kb_words = tuple([w.lower() for w in kb_text if w.isalpha()]) # all in lower case, get rid of

digits and spec symbols

kb_content = tuple([w for w in kb_words if w not in stopwords and len(w)>2]) # add to

content if not in stopwords and >2 letters

zero_idf = numpy.zeros(concept_number) # inverted document frequency of concepts

(categories)

#--------------------------------------------------------------------------------------

# PREPAPRE KB content for further processing (outside the loop)

#--------------------------------------------------------------------------------------

class Text_Params:

def __init__(self, content):

self.content = content

self.sorted_content = sorted(set(self.content)) # unique KB words in alphabetical order

self.words_number=len(self.content) # ... for both texts

self.text_concept_matrix = phd_NLP.build_word_concept_matrix(self.sorted_content,

concept_number, heads)

self.dup_matrix = phd_NLP.find_duplicates(self.content, self.sorted_content)

self.WCCM = phd_NLP.build_WCCM(self.dup_matrix, self.text_concept_matrix,

self.words_number, concept_number)

self.unique_words = len(self.sorted_content)

self.merge_WCCM = phd_NLP.merge_WCCM_values(self.content, self.sorted_content,

concept_number, self.WCCM)

self.SOA = phd_NLP.SOA_matrix(self.unique_words, concept_number,

self.merge_WCCM)

self.TCM = self.text_concept_matrix.T # ... transpose for further processing
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self.norm_vector = zero_idf # for detecting which concepts are present in the text

class Measure_Similarity:

def __init__(self, DP_wp, DP_kb):

self.DP_wp = DP_wp

self.DP_kb = DP_kb

def cosDP(self):

'''matrix of Cosines between distrib profiles of concepts'''

self.cosDP = numpy.array(numpy.zeros((concept_number, concept_number))) # matrix

of Cosines between distrib profiles of concepts

self.DP_wp_T = self.DP_wp.T # Transpose both DP matrices for further processing

self.DP_kb_T = self.DP_kb.T

_wp_concept_index = -1 # -1 to start with the first vector

for wp in self.DP_wp_T: # for every row (vector) in Web-page content distrib profile

matrix

_wp_concept_index += 1 # add 1 -> start with the first row

_kb_concept_index = -1 # same, -1 to start with the first vector

for kb in self.DP_kb_T: # for every row (vector) in KB distrib profile matrix

_kb_concept_index += 1 # same, # add 1 -> start with the first row

self.cosDP[_wp_concept_index,_kb_concept_index] =

phd_NLP.cosine_distance(wp,kb) #fill matrix with Cos distances between concept vectors

self.cosDP[numpy.isnan(self.cosDP)] = 0 # replace Not-A-Number (NaN) values with

zeros

return self.cosDP

def pre_process_wp_text(wp_text):

'''cleans Web-text from stopwords and AlchemyAPI prefix'''

raw = nltk.clean_html(wp_text)

tokens = nltk.word_tokenize(raw)

wp_text = nltk.Text(tokens)

wp_text = wp_text[30:]

wp_words = [w.lower() for w in wp_text if w.isalpha()]

wp_content = [w for w in wp_words if w not in stopwords and len(w)>2]

return wp_content

def fill_tf_vector(merge_WCCM):

'''creates a vector with TF values for each of 1044 concepts'''

merge_WCCM_T = merge_WCCM.T # transpose to be able to add all values for each

concept by row

tf_vector = []
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for i in xrange(0,concept_number):

concept_sum = sum(merge_WCCM_T[i])

tf_vector.append(concept_sum)

return tf_vector

def text_similarity(tf_vector, cosDP):

'''calculates similarity between two texts, uses TF for weighting concepts'''

left_num = 0 # left numerator - Web-page text concepts to KB

right_num = 0 # right numerator - KB concepts to Web-page text

# calculating left part of equation (candidate text concepts to KB)

i=-1

tf_sum = 0 #denominator

for v in cosDP:

i += 1

left_num += v.max() * tf_vector[i] # numerator

tf_sum += tf_vector[i] # denominator

wp_to_kb = left_num/tf_sum # left part of equation: Web-page similarity with respect to

KB

cosDP_T = cosDP.T # transpose, DP vectors for concepts in KB with resp. to page text

# calculating right part of equation (KB concepts to candidate text)

i=-1 # -1 to start with the first vector

tf_sum = 0

for v in cosDP_T:

i += 1 # start with the first vector

right_num += v.max() * tf_vector[i] # numerator

tf_sum += tf_vector[i] # denominator

kb_to_wp = right_num/tf_sum # right part of equation: KB similarity with respect to

Web-page

text_sim = (wp_to_kb + kb_to_wp)/2 # TOTAL SIMILARITY between two texts

return text_sim

KB = Text_Params(kb_content) # Knowledge Base

KK = KB.content # Known Knowns - for GT part

#-------------------------------------------------------------------------

# Extract Web-page content

######## CREATE ALCHEMY_API OBJECT + LOAD KEY #########

# Create an AlchemyAPI object. #

alchemyObj = AlchemyAPI.AlchemyAPI() #

#

# Load the API key from disk. #

alchemyObj.loadAPIKey("api_key.txt") #
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#########################################################

#==== CHANGE THE LIST OF LINKS HERE

===================================

#wp_link =

"/home/natalia/Dropbox/newcode/MyCopy/it1_list_cocaine_production_and_distribution.txt"

#wp_link = "/home/natalia/Dropbox/newcode/MyCopy/it2_list_cocaine_trafficking_uk.txt"

#wp_link = "/home/natalia/Dropbox/newcode/MyCopy/it3_list_cocaine_smuggling_uk.txt"

wp_link = "/home/natalia/Dropbox/newcode/MyCopy/it4_list_cocaine_cartels.txt"

#=================================================================

=====

lines = tuple(line.strip() for line in open(wp_link))

results = []

#############################

tcm_file_name = "cocaine_sameKB_TCM_test_it4.csv" # Pre DS csv file with 1/0 values

for concepts usage

fl = open(tcm_file_name, 'wb')

TCM_file = csv.writer(fl)

#############################

#############################

results_file_name = "cocaine_sameKB_results_it4.csv" # Pre DS csv file with 1/0 values for

concepts usage

res_fl = open(results_file_name, 'wb')

results_file = csv.writer(res_fl)

#############################

for line in lines:

try:

wp_text = alchemyObj.URLGetText(line)

except:

try:

wp_text =alchemyObj.HTMLGetText(line, "http://www.test.com/")

except:

wp_text = 'Could not open URL'

results = [line, '0', '0']

results_file.writerow(results)

#results += [wp_text]

if wp_text != 'Could not open URL':
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wp_text = wp_text[340:]

if len(wp_text)!=0:

wp_content = pre_process_wp_text(wp_text)

WP = Text_Params(wp_content)

if len(WP.text_concept_matrix) != 0:

#if WP.TCM!=[]: # avoid zero-size array, i.e. unknown words to thesaurus

####### PRE DS - CREATE SCV WITH 1/0 VALUES ##################

###### (1 - CONCEPT USED, 0 - CONCEPT NOT USED) #############

tcm = WP.text_concept_matrix

summ = numpy.array(tcm[0])

for tcm_line in tcm[1:]:

tcm_line = numpy.array(tcm_line)

summ += tcm_line

sum_i = -1

for value in summ:

sum_i += 1

if value !=0:

summ[sum_i] = 1

TCM_file.writerow(summ)

############ NLP ANALYSIS #####################################

###############################################################

#_________________________________________________________________

# Create Distributional Profiles of concepts

merge_words = [] # augment two lists of unique words

for row in WP.sorted_content:

merge_words += [row]

for row in KB.sorted_content:

merge_words += [row]

# set DP in alphabetical order, exclude duplications

# len_DP - total amount of unique words for both texts

# equals to the length of list of distributional profiles

merge_words = sorted(set(merge_words))

len_DP = len(sorted(set(merge_words)))

# initialise matrices for Distributional Profiles of Concepts for both texts

DP_wp = phd_NLP.create_DP(len_DP, concept_number, merge_words,

WP.sorted_content, WP.SOA)

DP_kb = phd_NLP.create_DP(len_DP, concept_number, merge_words,

KB.sorted_content, KB.SOA)
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#Measure similarity between concepts

cos_matrix = Measure_Similarity(DP_wp, DP_kb)

cosDP = cos_matrix.cosDP() #build matrix of distrib profiles of concepts

# Fill IDF values for concepts in idf matrix

# idf = fill_idf_matrix(WP.TCM, KB.TCM)

KB_tf_vector = array(fill_tf_vector(KB.merge_WCCM))

WP_tf_vector = array(fill_tf_vector(WP.merge_WCCM))

tf_vector = KB_tf_vector + WP_tf_vector

#Calculate text similarity between KB and WP

text_sim = text_similarity(tf_vector, cosDP)

#~~~~~~~ Texts are ADDED to the KB~~~~~~~~~~~~~~

#if text_sim > 0.85: # if semantically close, add text to the Knowledge

Base

# kb_content += tuple(WP.content) # ...so that the next text would be compared

to the extended KB

# KB.content += tuple(WP.content)

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# ~~~~~~~Text are NOT ADDED to the KB ~~~~~~~~~~~~~~~~~

if text_sim > 0.85:

KU_new = set([words for words in WP.sorted_content if words not in KK])

KU_amount = len(KU_new)

#KK += tuple(WP.content)

###kb_content += tuple(WP.content)

#KB.content += tuple(WP.content)

#KK = KB.content

else:

KU_amount = 0

############# GROUNDED THEORY ANALYSIS ##################

#KU_new = set([words for words in WP.sorted_content if words not in KK])

#KU_amount = len(KU_new)

#KK += tuple(KU_new) # see KK rewrittten below KK = KB.content

#str_KU_amount = str(KU_amount)

#########################################################
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#print (line + ' ' + str(text_sim) + ' ' + str(KU_amount) + '\n')

#run_time = (time.time() - start_time)

#print (run_time)

#results_file.write(line + ' ' + str(text_sim) + ' ' + str(KU_amount) + '\n')

#KB = Text_Params(kb_content) # Rewrite Knowledge Base

#KK = KB.content # Known Knowns - for GT part

results = [line, text_sim, KU_amount]

results_file.writerow(results)

fl.close() # PRE DS csv file close

res_fl.close() # close results file

#results_file.close()

run_time = (time.time() - start_time)

print (run_time)
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Grounded_Theory.py

'''

Input links file: COPY two columns (links and Closeness) from the results+graphs file

in a txt file (two columns will be tab delimited)

CHECK input KB file path + output csv file name

'''

import AlchemyAPI, nltk, numpy, csv

import URLlib2

from URLlib2 import URLopen

import phd_open_text_file

from nltk.corpus import stopwords

###########################################################################

#

# Link to KB

kb_link = '/home/natalia/Dropbox/newcode/MyCopy/KB_cocaine_production.txt' # initial

knowledge base file path

#

# path to txt doc with links+NLP

path =

"/home/natalia/Dropbox/newcode/MyCopy/PHD_results/Same_KB_cocaine/GT/cocaine_lin

ks_NLP.txt"

# Where the results will be stored

GT_results_file_name = "GT_cocaine_SameKB_results.csv" # GT csv file with new KK

amount

#

# Where the unique words will be stored

GT_unique_words =

open('/home/natalia/Dropbox/newcode/MyCopy/GT_cocaine_SameKB_unique_words.txt',

'a')

#

###########################################################################

# GET STOPWORDS

sw_link = '/home/natalia/Dropbox/newcode/MyCopy/stopwords.txt' # stopwords file path

sw_text = phd_open_text_file.extract_text(sw_link) # get stopwords tokens

stopwords = set([words for words in sw_text]) # get final list of stopwords
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# (- !!! - CHECK - !!! -) GET KNOWLEDGE BASE

#kb_link = '/home/natalia/Dropbox/newcode/MyCopy/KB_tobacco_industry.txt' # initial

knowledge base file path

kb_text = phd_open_text_file.extract_text(kb_link) # get KB text tokens

kb_words = [w.lower() for w in kb_text if w.isalpha()] # all in lower case, get rid of digits

and spec symbols

kb_content = [w for w in kb_words if w not in stopwords and len(w)>2] # add to content if

not in stopwords and >2 letters

class Text_Params:

def __init__(self, content):

self.content = content

self.sorted_content = sorted(set(content)) # unique KB words in alphabetical order

#self.words_number=len(self.content) # ... for both texts

#self.unique_words = len(self.sorted_content)

def pre_process_wp_text(wp_text):

'''cleans Web-text from stopwords and AlchemyAPI prefix'''

raw = nltk.clean_html(wp_text)

tokens = nltk.word_tokenize(raw)

wp_text = nltk.Text(tokens)

wp_text = wp_text[30:]

wp_words = [w.lower() for w in wp_text if w.isalpha()]

wp_content = [w for w in wp_words if w not in stopwords and len(w)>2]

return wp_content

#find those with closeness > 0.85 and calculate KU amount

###########################################################################

KB = Text_Params(kb_content) # Knowledge Base

#----- SWITCH THAT FOR THE FIRST USE -----------------

#-----------------------------------------------------

KK = KB.content # Known Knowns - for GT part

#KK_txt = open('/home/natalia/Dropbox/newcode/MyCopy/cocaine_GT_unique_words.txt',

'r')

#raw_KK = KK_txt.read()

#KK = raw_KK.split()

#KK_txt.close()

#-------------------------------------------------------------------------
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# Extract Web-page content

######## CREATE ALCHEMY_API OBJECT + LOAD KEY #########

# Create an AlchemyAPI object. #

alchemyObj = AlchemyAPI.AlchemyAPI() #

#

# Load the API key from disk. #

alchemyObj.loadAPIKey("api_key.txt") #

#########################################################

#read txt file with ALL(!!!) links and corresponding NLP results

#path =

"/home/natalia/Dropbox/newcode/MyCopy/PHD_results/Cumulative_KB_results_tobacco_to

bacco/GT/tobacco_AddKB_links_NLP.txt"

fl = open(path)

lines = fl.read()

split_lines = lines.splitlines()

my_lines = []

links = []

NLP = []

for line in split_lines: # !!!!! R E M O V E [:20]

link,closeness = line.strip().split("\t")

links.append(link) # list of Google results (links)

NLP.append(closeness) # corresponding list of NLP values

fl.close()

# there are now two lists: links and corresponding NLP results

#lines = [line.strip() for line in open(wp_link)]

results = []

#############################

#GT_results_file_name = "GT_tobacco_AddKB_TT_results.csv" # GT csv file with new

KK amount

GT_res_fl = open(GT_results_file_name, 'a')

GT_results_file = csv.writer(GT_res_fl)

#############################

#this is where we're going to add all unique words throughout iterations

#GT_unique_words =

open('/home/natalia/Dropbox/newcode/MyCopy/GT_tobacco_AddKB_TT_unique_words.txt'

, 'a')
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cum_KU = 0

'''

for link in links[:5]:

try:

wp_text = alchemyObj.URLGetText(line)

except:

try:

wp_text =alchemyObj.HTMLGetText(line, "http://www.test.com/")

except:

wp_text = 'Could not open URL'

if wp_text != 'Could not open URL':

wp_text = wp_text[340:]

if len(wp_text)!=0:

wp_content = pre_process_wp_text(wp_text)

WP = Text_Params(wp_content)

if len(WP.content) != 0:

############# GROUNDED THEORY ANALYSIS ##################

#KK = KB.content

KU_new = set([words for words in WP.sorted_content if words not in KK])

KU_amount = len(KU_new) # amount of new words in this text

cum_KU += KU_amount # Calculate cumulative summ of KU

for KU in KU_new:

KK += [KU] # Add new words to the list of unique words for all the texts

GT_results = [str(link), KU_amount, cum_KU]

GT_results_file.writerow(GT_results)

#########################################################

'''

NLP_ind = -1 # index of NLP_result and corresponding WP link

for NLP_result in NLP: # calculate new KU for all links texts

NLP_ind +=1

if float(NLP_result) > 0.85: # consider ALL links with semantic closeness > 85%

line = links[NLP_ind]

try:

wp_text = alchemyObj.URLGetText(line)

except:

try:

wp_text =alchemyObj.HTMLGetText(line, "http://www.test.com/")

except:

wp_text = 'Could not open URL'

#results = [links[NLP_ind], '0']

#GT_results_file.writerow(results)

#results += [wp_text]
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if wp_text != 'Could not open URL':

wp_text = wp_text[340:]

if len(wp_text)!=0:

wp_content = pre_process_wp_text(wp_text)

WP = Text_Params(wp_content)

if len(WP.content) != 0:

############# GROUNDED THEORY ANALYSIS ##################

#KK = KB.content

KU_new = set([words for words in WP.sorted_content if words not in KK])

KU_amount = len(KU_new) # amount of new words in this text

cum_KU += KU_amount # Calculate cumulative summ of KU

for KU in KU_new:

KK += [KU] # Add new words to the list of unique words for all the texts

GT_results = [line, KU_amount, cum_KU]

GT_results_file.writerow(GT_results)

#########################################################

#print line, NLP_result, KU_amount

for item in KK:

GT_unique_words.write(item+' ')

GT_unique_words.close()

GT_res_fl.close()
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Dempster_Shafer_Module.py

'''

DS module. Calculates Belief and Plausibility. Requires csv files:

1. Matrix of True/False values for concept usage (columns) in the documents (rows)

2. Matrix of mass functions(rows) for each source of evidence(columns)

'''

import csv

import numpy

def csv_to_array(csv_file_path):

'''reads from csv into array of rows'''

csv_file = open(csv_file_path, 'rb')

data = csv.reader(csv_file, delimiter = ',')

array = []

##################################

for row in data:

array += [row]

array = tuple(array)

csv_file.close()

return array # [-1] when last row in TCM.csv is not complete

def check_subset(set_A, set_B):

'''checks if set_B is a subset of set_A. Sets are 1044 each with True values corresponding

to the concepts used'''

result = True

if len(set_A) != len(set_B):

raise 'Sets must be of the same length!'

for i in xrange(0,len(set_A)):

if set_B[i] == '1':

if set_A[i] == '0':

result = False

break

return result

def find_subsets(array):

'''creates a list of [row index, ind, ind...] returns groups of subsets of every row within the

same array of rows'''

array_copy = array # create copy of the array for iteration

r = -1 # index will start from 0

subsets = []

for arr in array:

r += 1
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group = [r] # row index - 1st element in a group of values [row index, ind,ind...]

rr = -1 # index will start from 0

for arr1 in array_copy:

rr += 1

if r != rr: # do not compare same rows

if check_subset(arr, arr1) == True:

group.append(rr)

subsets += [group]

return subsets

def normalise(array, column):

'''normalisation of array values for a column (with given index)'''

norm_data = []

data = [el[column] for el in array] # take first elements (NLP results) as Source_1 evidence

summ = sum(data)

for i in data:

j = i/summ

norm_data += [j]

return norm_data

def belief(subsets, mass_data):

'''calculates DS Belief for each document for the mass function corresponding to source of

evidence - attr_data[column]'''

belief = [] # for one source of evidence

for subset in subsets: # calculate Bel for each doc in array of subsets (i.e.for each row)

bel = 0

for s in subset:

bel += mass_data[s]#[column] # source of evidence

belief += [bel]

return belief

def find_intersections(array):

'''finds indecex of intersecting BOOL rows '''

intersection = []

arr_i = -1 # row index

#array = concept_data

for arr in array:

array_copy = list(array) # create a renewable copy to iterate in it

arr_i += 1 # increase row index

group = [arr_i] # for each row remember row index and add intersection rows to it later

gr = [] #list of indexes of intersecting rows to be added to [group]

el_i = -1 # element index

for el in arr: # iterate over row elements
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el_i +=1 # increase element index

if el == 'TRUE':

copy_i = -1 # same/copy_array row index

for arr1 in array_copy:

copy_i += 1

if arr_i != copy_i: # do not compare row to itself

if arr1[el_i] == el:

gr.append(copy_i)

group += set(gr)

intersection += [group]

return intersection

def plausibility(intersections, mass_data):

'''calculates DS Plausibility for each document for the mass function corresponding to

source of evidence - attr_data[column]'''

plausibility = [] # for one source of evidence

for inter in intersections: # calculate Bel for each doc in array of subsets (i.e.for each row)

pl = 0

for s in inter:

pl += mass_data[s]#[column] # source of evidence

plausibility += [pl]

return plausibility

###########################################################################

####

path = 'iteration1_TCM_test.csv' # csv with True/False data on concepts used within the text

concept_data = csv_to_array(path) # read data to array (tuple)

subsets = find_subsets(concept_data)

path = 'iteration1_results_test_justnumbers.csv' # csv with NLP and other quality metrics of

the texts for DS

attr_data_str = csv_to_array(path) # read data to array (tuple)

attr_data = []

for a in attr_data_str[:265]: # convert all values to floats

el = [float(i) for i in a]

attr_data += [el]

norm_NLP_data = normalise(attr_data, 0)

belief_NLP = belief(subsets,norm_NLP_data)

intersections = find_intersections(concept_data)

plausibility_NLP = plausibility(intersections, norm_NLP_data)
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#plausibility_NLP = plausibility_NLP_1[:265]

DS_results = numpy.array([belief_NLP]+[plausibility_NLP]).T

DS_file_name = "DS_results_test.csv"

fl = open(DS_file_name, 'wb')

DS_file = csv.writer(fl)

#for row in DS_results:

# DS_file.writerow(row)

DS_file.writerows(DS_results)

fl.close()
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Appendix 5 – Model Testing Results

# URL text_sim
System

Coding

Human

Coding
Error

1

http://www.culturalsurvival.org/publication

s/cultural-survival-quarterly/bolivia/south-

american-cocaine-production

0.977 Relevant Relevant

2
http://www.erowid.org/archive/rhodium/ch

emistry/cocaine.illicit.production.html
0.972 Relevant Relevant

3
http://www.umsl.edu/~rkeel/180/drug_ind

ustry.htm
0.973 Relevant Relevant

4
http://www1.american.edu/ted/ice/cocaine

.htm
0.973 Relevant Relevant

5
http://www.justice.gov/archive/ndic/pubs0

7/796/cocaine.htm
0.973 Relevant Relevant

6
http://www.ncjrs.gov/App/publications/Abs

tract.aspx?id=169970
0.880 Relevant Relevant

7
http://www.justice.gov/archive/ndic/pubs1

/1017/index.htm
0.956 Relevant Relevant

8

http://williamwarelaw.com/areas-of-

practice/drug-crimes/cocaine-distribution-

charges/

0.969 Relevant Relevant

9

http://www.newjerseycriminallawattorney.

com/CM/DrugCrimes/PracticeAreaDescripti

ons53.asp

0.978 Relevant Not Relevant
False

Positive

1

0

http://evolutionofdruguse.wordpress.com/a

lcohol/cocaine/
0.971 Relevant Relevant

1

1

http://www.h-

net.org/reviews/showrev.php?id=25701
0.977 Relevant Relevant

1

2

http://www.unodc.org/unodc/en/data-and-

analysis/bulletin/bulletin_1950-01-

01_4_page005.html

0.973 Relevant Relevant

1

3

http://www.drugs-

forum.com/forum/showthread.php?t=1394

18

0.974 Relevant Relevant

1

4

http://www.inchem.org/documents/pims/pl

ant/erythrox.htm
0.973 Relevant Not Relevant

False

Positive

1

5

http://www.npr.org/templates/story/story.

php?storyId=126978142
0.971 Relevant Not Relevant

False

Positive

1

6

http://law.justia.com/codes/louisiana/2006

/48/98881.html
0.922 Relevant Relevant

1

7

http://www.narconon.org/drug-

information/methamphetamine-

history.html

0.976 Relevant Not Relevant
False

Positive

1

8

http://www.tni.org/briefing/revolutionary-

armed-forces-colombia-farc-and-illicit-drug-

trade

0.972 Relevant Relevant

1

9

http://www.livesaymyers.com/criminal-

lawyers/drug-charges/distribution/
0.974 Relevant Not Relevant

False

Positive
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2

0

http://en.wikipedia.org/wiki/Domestic_poli

cy_of_Evo_Morales
0.972 Relevant Relevant

2

1

http://www.vice.com/en_uk/vice-

news/sisa-cocaine-of-the-poor-part-1
0.973 Relevant Not Relevant

False

Positive

2

2

http://www.ncbi.nlm.nih.gov/pmc/articles/

PMC1975811/
0.972 Relevant Relevant

2

3

http://www.drugfreeworld.org/drugfacts/cr

ystalmeth/history-of-

methamphetamine.html

0.968 Relevant Not Relevant
False

Positive

2

4

http://www.the-american-

interest.com/article.cfm?piece=1316
0.972 Relevant Not Relevant

False

Positive

2

5

http://uatests.com/drug-

information/cocaine.php
0.968 Relevant Relevant

2

6

http://ellblog.com/government-not-

required-to-produce-esi-in-manner-

requested-by-defendants-in-cocaine-

distribution-conspiracy-case/

0.973 Relevant Relevant

2

7
http://english.nkradio.org/news/290 0.913 Relevant Relevant

2

8

http://www.mytripjournal.com/travel-

542493-cocoa-museum-cocaine-production-

wealthy-chew-corporations-distribution

0.957 Relevant Relevant

2

9

http://www.nytimes.com/1994/02/20/worl

d/colombians-press-for-the-legalization-of-

cocaine.html

0.960 Relevant Relevant

3

0

http://www.barnesandnoble.com/s/978124

4794559
0.965 Relevant Not Relevant

False

Positive

3

1

http://aibrraiokd.blogdetik.com/cocaine-

consumers-handbook-book-downloads/
0.972 Relevant Relevant

3

2

http://www.questia.com/library/1G1-

135391435/failed-plan-after-five-years-and-

billions-of-u-s

0.905 Relevant Not Relevant
False

Positive

3

3

http://correctionspageone.blogspot.com/20

10/03/getting-even-on-crack-vs-

powder.html

0.971 Relevant Relevant

3

4

http://www.mushroomgeeks.com/forum/sh

owthread.php?t=26459
0.953 Relevant Not Relevant

False

Positive

3

5

http://www.hebert-

law.com/index.php/prohibited-acts-

schedule-ii-penalties-r-s-40-967.html

0.955 Relevant Not Relevant
False

Positive

3

6

http://vspages.com/cocaine-vs-caffeine-2-

2900/
0.977 Relevant Relevant

3

7

http://bookverdict.com/details.xqy?uri=Pro

duct-9971189.xml
0.937 Relevant Not Relevant

False

Positive

3

8

http://www.fox47.com/newsroom/top_stor

ies/videos/road-trippin-new-glarus-

brewery-continues-its-climb-6256.shtml

0.978 Relevant Not Relevant
False

Positive

3

9

http://factsanddetails.com/world.php?itemi

d=1223&amp;catid=54&amp;subcatid=348
0.974 Relevant Not Relevant

False

Positive

4

0

http://uk.ask.com/beauty/Crack-Cocaine-

Manufacture
0.955 Relevant Relevant

4

1

http://anxiety-pills.com/dea-drug-

information-cocaine
0.971 Relevant Relevant
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4

2

http://www.onlinedrugspills.com/cocaine-

production-how-to
0.971 Relevant Relevant

4

3

http://www.experiencefestival.com/cocaine

_-_africa
0.975 Relevant Relevant

4

4

http://en.goldenmap.com/Cocaine_Cowboy

s
0.976 Relevant Relevant

4

5

http://www.directessays.com/essays/Colom

bia/Cocaine.html
0.908 Relevant Relevant

4

6

http://www.uncorneredmarket.com/2009/1

2/cocaine-bolivian-jungle/
0.644 Not Relevant Relevant

False

Negative

4

7

http://www.ftlucianolaw.com/blog/marijua

na-criminal-attorney-in-hackensack--

hackensack----bolivia-cuts-coca-leaf-

production.cfm

0.722 Not Relevant Not Relevant

4

8

http://www.pbs.org/thebotanyofdesire/alte

ring-consciousness.php
0.642 Not Relevant Not Relevant

4

9
http://www.jstor.org/stable/2780533 0.761 Not Relevant Not Relevant

5

0

http://www.cablegatesearch.net/cable.php

?id=07TORONTO90
0.793 Not Relevant Not Relevant

5

1

http://www.studyblue.com/notes/note/n/c

hapter-13/deck/7959
0.719 Not Relevant Not Relevant

5

2
http://www.ibtimes.com/ 0.799 Not Relevant Not Relevant

5

3

http://news.silobreaker.com/fort-

mcmurray-man-charged-after-cocaine-cash-

seized-5_2266811707932278847

0.808 Not Relevant Not Relevant

5

4

http://www.mightystudents.com/tag/coca%

20leaf%20cocaine%20production
0.795 Not Relevant Relevant

False

Negative

5

5

http://www.yatedo.com/s/movie%3A(Cocai

ne+Angel)
0.781 Not Relevant Not Relevant
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Appendix 6 – Proof of Mathematics

The material in this Appendix aims to provide further mathematical background to the

proposed semantic closeness measurement, described in detail in Section 4.3. As

explained in Chapter 4 of this thesis, this research uses a hybrid method detailed in

(Hirst & Mohammad, 2006) that combines the co-occurrence statistics with the

information in a lexical source (this research uses Roget’s Thesaurus).

The Distributional Hypothesis in linguistics is derived from the semantic theory of language
usage, i.e. words that are used and occur in the same contexts tend to share similar meanings
(Firth 1957; Harris 1968). When applied to word senses (instead of words), then the
hypothesis states that words when used in different senses tend to keep different “company"
(co-occurring words). Hirst & Mohammad (2006) proposed the creation of distributional
profiles (DPs) of word senses or concepts, rather than those of words. The closer the
distributional profiles of two concepts, the smaller is their semantic distance.

Determining distributional profiles of concepts requires information about which words co-
occur with which concepts. Below is a way to estimate distributional profiles of concepts
from raw text, using a published thesaurus, as described by Hirst & Mohammad.

First, word–category co-occurrence matrix (WCCM) is created having word types w as one
dimension and thesaurus categories c as another:

1 2

1 11 12 1

2 21 22 2

1 2

... ...

... ...

... ...

... ... ... ... ... ...

... ...

... ... ... ... ... ...

j

j

j

i i i i j

c c c

w m m m

w m m m

w m m m

The matrix is populated with co-occurrence counts from a large corpus. A particular cell mij,
corresponding to word wi and category or concept cj , is populated with the number of times
wi co-occurs (in a window of ±5 words) with any word that has cj as one of its senses (i.e., wi

co-occurs with any word listed under concept cj in the thesaurus).

The choice of ±5 words as window size is somewhat arbitrary and hinges on the intuition that
words close to a target word are more indicative of its semantic properties than those more
distant. Church and Hanks (1990), in their seminal work on word–word co-occurrence
association, also use a window size of ±5 words and argue that this size is large enough to
capture many verb–argument dependencies and yet small enough that adjacency information
is not diluted too much.

A contingency table for any particular word w and category c can be easily generated from
the WCCM by collapsing cells for all other words and categories into one and summing up
their frequencies:
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wc w

c

c c

w n n

w n n


 




The application of a suitable statistic, such as pointwise mutual information or conditional
probability, will then yield the strength of co-occurrence association between the word and
the category. Below are example distributional profiles of two senses of STAR:

CELESTIAL BODY: space 0.36, light 0.27, constellation 0.11, hydrogen 0.07, . . .
CELEBRITY: famous 0.24, movie 0.14, rich 0.14, fan 0.10, . . .

Once created, any of the many measures of vector distance can be used to estimate the
distance between the DPs of two target concepts.

Based on the detailed survey of semantic distance measures in (Hirst & Mohammad,

2006), the algorithm proposed in this thesis uses the adapted Cosine method to estimate

distributional distance between two concepts. Cosine similarity is an accepted measure

of similarity between two vectors that measures the Cosine of the angle between them.

Given two vectors of attributes, A and B, the Cosine similarity Cos(Ѳ) is calculated

using a dot product and magnitude:

1

2 2

1 1

( )

( ) ( )

n

i i

i

n n

i i

i i

A B
A B

Cos
A B

A B

 

 

 



  . (A6-1)

In essence, vectors A and B are Distributional Profiles (DPs). The attributes of each of

the vector are strength of association (SOA) values as per the DP. For example, applying
the above formula, here is how Cosine is traditionally used to estimate distributional distance
between two words using their DPs:

1 2

1 2

1 2(w ) (w )

1 2
2 2

1 2(w ) (w )

( ( | w ) ( | w ))
(w ,w ) ,

( ( | w ) ( ( | w )

w C C

w C w C

P w P w
Cos

P w P w

 

 

 


  (A6-2)

C(w) is the set of words that co-occur (within a certain text window) with the word w in a
corpus. The conditional probabilities in the formula are taken from the distributional profiles
of words. Replacing word co-occurrence with word-concept co-occurrence in (A6-2), the
Cosine distributional distance measure for two concepts c1 and c2 is, therefore, denoted by:

1 2

1 2

1 2( ) ( )

1 2
2 2

1 2( ) ( )

( ( | ) ( | ))
( , ) ,

( ( | ) ( ( | )

w C c C c

w C c w C c

P w c P w c
Cos c c

P w c P w c

 

 

 


  (A6-3)

C(x) is now the set of words that co-occur with concept x within a pre-determined text
window. The conditional probabilities in the formula are taken from the distributional
profiles of concepts. If the distance between two words is required, and their intended senses
are not known, then the distance between all relevant sense pairs is determined and the
minimum is chosen.
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The algorithm proposed in this thesis creates a matrix populated with Cosine values for

each pair of Thesaurus concepts between two texts:

1 2 2 2 1044 2

1 1 1 1 1 2 1 1 2 2 1 1 1044 2

2 1 2 1 1 2

1044 1 1044 1 1 2 1044 1 1044 2

c (T ) c (T ) ... c (T )

c (T ) Cos(c (T ),c (T )) Cos(c (T ),c (T )) ... Cos(c (T ),c (T ))

c (T ) Cos(c (T ),c (T )) ... ... ...

... ... ... ... ...

c (T ) Cos(c (T ),c (T )) .... ... Cos(c (T ),c (T ))

As explained in Chapter 4 of this thesis, such Cosine values are then used as input to the

formula by Corley & Mihalcea (2005), which has been specifically adapted for this

research. The original authors’ approach attempts to model the semantic similarity of texts as
a function of the semantic similarity of the component words by combining metrics of word-
to-word similarity and language models into a formula that is a potentially good indicator of
the semantic similarity of the two input texts, when based on distributional information
learned from large corpora.

While word frequency does not always constitute a good measure of word importance, the
distribution of words across an entire collection can be a good indicator of the specificity of
the words. Terms that occur in a few documents with high frequency contain a greater
amount of discriminatory ability, while terms that occur in numerous documents across a
collection with a high frequency have inherently less meaning to a document. Following on
that, Corley & Mihalcea (2005) determine the specificity of a word using the inverse
document frequency which is defined as:

( ) ,total

w

N
idf w

N
 (A6-4)

where Ntotal is the total number of documents in the corpus, and Nw is the total number of
documents that include the word w. Provided a measure of semantic similarity between
words, and an indication of the word specificity idf(w), they can be combined into a measure
of text semantic similarity, by pairing up those words that are found to be most similar to
each other, and weighting their similarity with the corresponding specificity score.

In the original method, for a given pair of texts, sets of nouns, verbs, adjectives, and adverbs
are defined in one text with determined pairs of similar words sets across the other text. For
example, for each noun belonging to one of the text segments, the noun in the other text
segment is identified that has the highest semantic similarity (maxSim). The similarity
between the input text segments Ti and Tj is then determined using a scoring function that
combines the word-to-word similarities and the word specificity:

{ }

{ }

(max ( ) ( ))
( , )

( )

k type

i

k

k ktype w W

i j T

kw Ti

Sim w idf w
sim T T

idf w
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This score, which has a value between 0 and 1, is a measure of the directional similarity, in
this case computed with respect to Ti. The scores from both directions can be then combined
into a bidirectional similarity using an average function:

1
( , ) ( , ) ( , )

2 i ji j i j T i j Tsim T T sim T T sim T T  . (A6-6)

Specifically for this research, the formula (A6-5) has been adjusted replacing word-to-

word similarity with concept-to-concept similarity, previously obtained using

distributional profiles of concepts, in order to improve semantic properties of the

search. From the matrix of Cosine values (see above), for each concept ci(T1) in the text

T1 the concept cj(T2) in the text T2 is identified that has the highest semantic similarity

Cos(ci(T1), cj(T2)), which will be denoted as max Sim(c, T2). Similarly, for each concept

cj(T2) in the text T2, the concept with the highest semantic similarity is identified in the

text T1. This allows calculating a metric that combines semantic similarity of concepts in

text T1 with respect to concepts in text T2. Substituting words references with concepts

in (A6-5) and applying this to the formula (A6-6), semantic similarity score becomes:

1 2

1 2

2 1{ } { }

1 2

{ } { }

(max ( , ) ( )) (max ( , ) ( ))1
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