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Abstract 

This article investigates the relationship between expected returns and past idiosyncratic 
volatility in commodity futures markets. Measuring the idiosyncratic volatility of 27 
commodity futures contracts with traditional pricing models that fail to account for 
backwardation and contango leads to the puzzling finding that idiosyncratic volatility is 
significantly negatively priced cross-sectionally. However, idiosyncratic volatility is not priced 
when the phases of backwardation and contango are suitably factored in the pricing model. A 
time-series portfolio analysis similarly suggests that failing to recognize the fundamental risk 
associated with the inexorable phases of backwardation and contango leads to overstated 
profitability of the idiosyncratic volatility mimicking portfolios.  
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1. Introduction  

The pricing of commodity futures contracts is informed by the theory of storage of Kaldor 

(1939), Working (1949) and Brennan (1958) and the hedging pressure hypothesis of Keynes 

(1930), Cootner (1960) and Hirshleifer (1988). Various trading strategies that empirically 

validate the predictions from these theories have been shown to generate attractive performance 

by systematically buying backwardated contracts with high roll-yields, scarce supply, net short 

hedgers, net long speculators and good past performance, and  shorting contangoed contracts 

with low roll-yields, abundant supply, net long hedgers, net short speculators and poor past 

performance (Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006; Miffre and Rallis, 2007; 

Gorton et al., 2012; Basu and Miffre, 2013, Szymanowska et al., 2014; Bakshi et al., 2015). 

Additional signals that have been shown to generate significant spreads in commodity futures 

returns are associated with value, liquidity, skewness or total volatility (Gorton et al., 2012; 

Asness et al., 2013; Szymanowska et al., 2014; Fernandez-Perez et al., 2016).  

The contributions of this article are threefold. First, it contributes to the commodity 

pricing literature by testing whether idiosyncratic volatility has information content about future 

returns. At least theoretically, idiosyncratic volatility should matter in a world with trading costs 

and non-marketability of producers claims (Hirshleifer, 1988). Yet, the extant empirical 

implementations of Hirshleifer’s (1988) theoretical model (e.g., Bessembinder, 1992; 

Rouwenhorst and Tang, 2012) do not generally endorse idiosyncratic volatility as a driver of 

commodity futures prices. A potential pitfall of these studies is that, in line with Hirshleifer’s 

(1988) framework, they extract idiosyncratic volatility via the CAPM or a traditional 

multifactor model; thus, they fail to explicitly account for the fundamentals of backwardation 

and contango that have been shown in the last decade to be fundamental to the pricing of 
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commodity futures contracts.1 These findings warrant a reassessment of the evidence on the 

role of idiosyncratic volatility in commodity futures markets using pricing models that 

explicitly account for backwardation and contango (Basu and Miffre, 2013; Bakshi et al., 2015).  

Our second contribution is to replicate in the novel context of commodity futures markets 

the methodology deployed in two-widely cited papers, Ang et al. (2006, 2009), to determine 

whether their findings for US/international stocks extend to other markets.2 Ang et al. (2006, 

2009) provocatively documented that stocks with higher idiosyncratic volatility present 

significantly poorer performance; namely, idiosyncratic volatility of equities is puzzlingly 

negatively priced. Establishing that the same pattern applies to financial markets other than (US 

and international) equities can be seen, following the reasoning of Ang et al. (2009), as 

suggesting that there is an underlying economic source behind the phenomenon. While 

faithfully replicating their methodology, we do find also a significantly negative pricing of 

idiosyncratic volatility in commodity futures markets, however, it vanishes when the 

fundamentals of backwardation and contango are suitable factored in the pricing model.   

Our third contribution relates to exploring the reasons as to why idiosyncratic volatility 

may appear negatively priced in commodity futures markets. Expected idiosyncratic skewness, 

lagged returns and financial distress (Boyer et al., 2010; Huang et al., 2010; Avramov et al., 

                                                                 
1 Hirshleifer (1988) decomposes the commodity futures risk premium into two components: the first one 
depends on the CAPM beta, the second one on the idiosyncratic volatility of the contract and net 
hedging. While Bessembinder (1992) validates the predictions of Hirshleifer’s (1988) model, 
Rouwenhorst and Tang (2012) refute the idea that idiosyncratic volatility conditional on net hedging 
matters to the pricing of commodities.  
2 Theoretically, since idiosyncratic volatility can be diversified away, it is not priced (Sharpe, 1964) or  
there could be a positive link since poorly-diversified agents demand incremental returns for bearing 
idiosyncratic risk (Merton, 1987; Malkiel and Xu, 2002). Empirically, the evidence is inconclusive. 
Some studies support the contention that idiosyncratic volatility does not matter (Fama and McBeth, 
1973; Bali et al., 2005; Bali and Cakici, 2008; Huang et al., 2010; Han and Lesmond, 2011; Fink et al., 
2012). Other articles report evidence in favor of a positive (Malkiel and Xu, 2002; Goyal and Santa-
Clara, 2003; Fu, 2009) or a negative association (Ang et al., 2006, 2009; Guo and Savickas, 2008, 2010; 
Jiang et al., 2009; Chabi-Yo et al., 2011) between idiosyncratic volatility and expected returns. 
Differences in asset pricing model, weighting scheme, methodology, data set and time period have been 
put forward as possible explanations for the diverging evidence. Meanwhile, a parallel literature 
(Campbell et al., 2001; Xu and Malkiel, 2003; Brandt et al., 2010) has studied the time-series behavior 
of stock idiosyncratic volatility. 
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2012) have been adduced as explanations for the puzzling finding of Ang et al. (2006, 2009) 

that idiosyncratic volatility is negatively priced in equity markets.  Whenever pertinent (and 

feasible) we test whether these factors account for the pricing of idiosyncratic volatility in 

commodity futures markets. Our evidence suggests that, rather, the pricing of idiosyncratic 

volatility is an artifact of neglecting the fundamentals of backwardation and contango. This 

finding is not surprising in the light of evidence that suggests that the backwardation/contango 

cycle acts both as a priced risk factor in equity markets and as a leading indicator of future 

economic activity (e.g., Baker and Routledge, 2012; Koijen et al., 2013; Bakshi et al., 2015; 

Fernandez-Perez et al., 2015; Brooks et al., 2016).  

Using both a two-pass Fama and MacBeth (1973) regression framework and a factor 

mimicking portfolio approach, we show that the pricing of idiosyncratic volatility in commodity 

futures markets crucially hinge on the choice of benchmark used to extract the idiosyncratic 

volatility signal. In the context of traditional pricing models that fail to recognize the 

fundamentals of backwardation and contango in commodity futures markets, the results suggest 

that i) idiosyncratic volatility is negatively priced cross-sectionally, and ii) idiosyncratic 

volatility mimicking portfolios that over time buy low idiosyncratic volatility commodities and 

short high idiosyncratic volatility commodities offer sizeable alpha. These results are aligned 

with those reported by Ang et al. (2009) for international equity markets. By contrast, in the 

context of pricing models that acknowledge the backwardation/contango dynamics of 

commodity futures markets, the statistical tests suggest that idiosyncratic volatility is not cross-

sectionally priced, and idiosyncratic volatility mimicking portfolios deliver insignificant alpha. 

This outcome agrees with the theoretical wisdom that idiosyncratic volatility of financial assets 

can be diversified away and hence, it is not priced. The conclusions are robust to the inclusion 

in the various pricing models of factors such as expected idiosyncratic skewness or past returns 

that have been shown to explain the puzzling negative pricing of idiosyncratic volatility in 
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equity markets. The negative pricing of idiosyncratic volatility of commodity futures measured 

with traditional benchmarks is not an artifact of neglecting illiquidity risk either. Altogether the 

evidence suggests that idiosyncratic volatility measured with traditional pricing models proxies 

for a missing risk factor that relates to the inexorable phases of backwardation and contango. 

The remainder of the paper is structured as follows. Section 2 presents the two-pass Fama 

and MacBeth (1973) and factor-mimicking portfolio approaches. Section 3 describes the 

commodity futures data and motivates the two types of benchmarks used to extract the 

idiosyncratic volatility signal. Section 4 discusses the findings before concluding in Section 5. 

 

2. Methodology 

To study the relationship between idiosyncratic volatility and expected returns in commodity 

futures markets, we deploy two approaches: first, the two-pass Fama and MacBeth (1973) 

regression framework typically known as “cross-sectional tests”; second, a time-series factor 

mimicking portfolio approach. Since our goal is to assess the impact of the choice of benchmark 

on the inferred relationship, we deploy both approaches using different benchmarks. 

2.1. Cross-sectional tests  

Our first tests are based on Ang et al.’s (2009) methodology to analyze the relation between 

equity returns and lagged idiosyncratic volatility. Theirs is, in fact, a close version of the two-

pass Fama and MacBeth (1973) methodology. In our exposition, bold font denotes vectors. At 

the first stage, for each commodity 𝑖𝑖 = 1,2, … ,𝑁𝑁 in the sample we estimate the following time-

series regression sequentially using windows that comprise 𝐷𝐷 daily observations  

𝑟𝑟𝑖𝑖,𝑑𝑑 = 𝛼𝛼𝑖𝑖 + 𝜷𝜷𝑖𝑖′𝒇𝒇𝑑𝑑 + 𝜀𝜀𝑖𝑖,𝑑𝑑 ,   𝑑𝑑 = 1, … ,𝐷𝐷 days    (1) 

where 𝑟𝑟𝑖𝑖,𝑑𝑑 is the excess return of the ith commodity on day 𝑑𝑑; the 𝐾𝐾 × 1 regressor vector 𝒇𝒇𝑑𝑑 

gathers the 𝐾𝐾 factor risk premia associated with the chosen benchmark on day d; 𝜀𝜀𝑖𝑖,𝑑𝑑 is an 
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innovation and (𝛼𝛼𝑖𝑖,𝜷𝜷𝑖𝑖′)′ is the unknown parameter vector estimated sequentially by OLS using 

as sample the 𝐷𝐷 days spanned by the corresponding window (or ranking period of length 𝑅𝑅 in 

months). Accordingly, we measure the idiosyncratic volatility of each commodity at the end of 

month t, which we denote 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑖𝑖,[𝑡𝑡−𝑅𝑅:𝑡𝑡], as the standard deviation of the residuals of regression 

(1) estimated using the daily data comprised within months 𝑡𝑡 − 𝑅𝑅 to 𝑡𝑡 for 𝑅𝑅 = {1, 3, 6, 12}.  

At the second stage, on each month 𝑡𝑡 + 1 in the sample period we estimate the following 

cross-section regression by OLS using data on all 𝑁𝑁 sampled commodities  

 𝑟𝑟𝑖𝑖,𝑡𝑡+1 = 𝜆𝜆0,𝑡𝑡+1 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡+1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑖𝑖,[𝑡𝑡−𝑅𝑅:𝑡𝑡] + 𝝀𝝀𝑡𝑡+1′ 𝜷𝜷�𝑖𝑖,𝑡𝑡+1 + 𝜐𝜐𝑖𝑖,𝑡𝑡+1 , 𝑖𝑖 = 1,2, … . .𝑁𝑁 (2)  

where 𝑟𝑟𝑖𝑖,𝑡𝑡+1 is the month 𝑡𝑡 + 1 excess return of the ith commodity; 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑖𝑖,[𝑡𝑡−𝑅𝑅:𝑡𝑡] is the past 

idiosyncratic volatility of the ith commodity measured at stage one; 𝜷𝜷�𝑖𝑖,𝑡𝑡+1 are the betas 

contemporaneous to the dependent variable which are obtained by OLS estimation of equation 

(1) using the daily observations within month 𝑡𝑡 + 1; and 𝜐𝜐𝑖𝑖,𝑡𝑡+1 is an innovation. At this second 

step we thus obtain a sequence of monthly (𝐾𝐾 + 1) × 1 vectors of prices of risk, 

(𝜆̂𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝑡𝑡+1,𝝀𝝀�𝑡𝑡+1′ )′, for each ranking period 𝑅𝑅 of choice. The relevant risk price vector estimate, 

is the average of all the sequential cross-section estimates, (𝜆̂𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝝀𝝀�′)′, and we similarly 

construct the corresponding cross-section average adjusted-R2. As it is standard in a two-pass 

Fama and McBeth (1973) asset pricing approach such as this, the significance t-statistics for 

(𝜆̂𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝝀𝝀�′)′,  are computed using Shanken’s (1992) error-in-variables consistent standard errors. 

 

2.2. Time-series tests  

The time-series tests are based on a factor mimicking portfolio construction approach. 

Following also the methodology deployed by Ang et al. (2006, 2009) in the context of stocks, 

at each month end 𝑡𝑡, we sort commodities into quintiles based on their idiosyncratic volatility, 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑖𝑖,[𝑡𝑡−𝑅𝑅:𝑡𝑡], measured as the standard deviation of the residuals of regression (1) estimated with 
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the daily observations in the window from month 𝑡𝑡 − 𝑅𝑅 to 𝑡𝑡. We then construct an idiosyncratic 

volatility mimicking portfolio that buys the quintile with the lowest 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑖𝑖,[𝑡𝑡−𝑅𝑅:𝑡𝑡] and shorts the 

quintile with the highest 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝑖𝑖,[𝑡𝑡−𝑅𝑅:𝑡𝑡]. We hold the long-short portfolio for one month, at which 

time the same process is repeated to obtain a new idiosyncratic volatility portfolio.  

As is standard in the commodity pricing literature (e.g., Erb and Harvey, 2006), the 

portfolio constituents are equally-weighted with end-of-month rebalancing. The positions are 

fully-collateralized which amounts to setting the excess return of the long-short portfolio equal 

to half that of the long portfolio minus half that of the short portfolio.   

 

3. Data on commodity futures and factor risk premia 

Aside from describing the commodity futures data, this section motivates the choice of 

benchmarks used to extract idiosyncratic volatility, explains the methodology employed to 

construct the long-short commodity benchmarks and presents statistics of their performance. 

The data are obtained from Datastream International, Kenneth French’s web library and 

Bloomberg. Our analysis begins on January 3, 1989, as dictated by the first daily observation 

available for the excess returns on Barclays’ bond index, and ends on December 31, 2013. 

3.1. Commodity futures data 

Our data comprise daily settlement futures prices on 27 commodities from distinct sectors: 12 

agricultural (cocoa, coffee C, corn, cotton n°2, frozen concentrated orange juice, oats, rough 

rice, soybean meal, soybean oil, soybeans, sugar n° 11, wheat), 5 energy (electricity, gasoline, 

heating oil n° 2, light sweet crude oil, natural gas), 4 livestock (feeder cattle, frozen pork bellies, 

lean hogs, live cattle), 5 metal (copper, gold, palladium, platinum, silver), and random length 

lumber. In order to mitigate illiquidity problems, commodity futures returns are constructed by 

holding the nearest-to-maturity contract up to one month before maturity and then rolling to the 
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2nd nearest contract. In addition, using Amihud et al.’s (1997) approach we further test in 

Section 4 whether the pricing of idiosyncratic volatility is driven by illiquidity. 

3.2. Traditional and long-short commodity benchmarks  

The article studies the influence of the choice of benchmark on the relationship between 

idiosyncratic volatility and expected returns in commodity futures markets. Accordingly, we 

employ two types of benchmarks. The first set of benchmarks is inspired by the traditional asset 

pricing literature (“traditional” benchmarks, hereafter). The second set of benchmarks emanates 

from the commodity pricing literature (“long-short” commodity benchmarks, hereafter) and 

accordingly, the pricing models include factors meant to capture the fundamentals of 

backwardation and contango; as such, they are better suited at pricing commodity futures and 

thus, at extracting the idiosyncratic volatility signal.  

The traditional benchmarks follow the spirit of Hirshleifer (1988) who ascribes a role to 

idiosyncratic volatility in commodity futures markets using an augmented version of the CAPM 

of Sharpe (1964). We follow his lead by framing our discussion within the traditional asset 

pricing literature, beginning the analysis with a simple commodity-based market model which 

we subsequently augment with stylized factors emanating from the traditional asset pricing 

literature. The traditional  benchmarks employ as factor risk premia the excess return on the 

Standard and Poor’s Goldman Sachs Commodity Index (S&P-GSCI) alone or in combination 

with the excess value-weighted return of all CRSP US firms listed on the NYSE, AMEX, or 

NASDAQ (Rm-Rf), the excess returns on the Barclays U.S. Aggregate Bond Index (Barclays), 

the size premium (small-minus-big or SMB), the value premium  (high-minus-low or HML) or 

the excess returns on an equity momentum portfolio (up-minus-down or UMD). 

Motivated by the theories of storage and hedging pressure, the second set of “long-short” 

commodity benchmarks incorporate risk premia designed to capture the fundamentals of 

backwardation and contango. The price of commodity futures in backwardation is expected to 
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rise as maturity approaches; backwardation typically occurs when the term structure of 

commodity futures prices is downward-sloping and roll-yield3 is positive, when hedgers are net 

short and speculators are net long or when past performance is good. Vice versa, the commodity 

futures price in contango is expected to drop so all the above signals are reversed. Accordingly, 

we construct the following three long-short commodity risk premia. The term structure (TS) 

portfolio buys the 20% of contracts with the most downward-sloping term structures or highest 

roll-yields and shorts the 20% of contracts with the most upward-sloping term structures or 

lowest roll-yields (see, e.g., Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006). The 

hedging pressure (HP) portfolio buys the 20% of contracts for which hedgers are the shortest 

and speculators the longest4 and sells the 20% of contracts for which hedgers are the longest 

and speculators the shortest (Basu and Miffre, 2013).5 Finally, the momentum (Mom) portfolio, 

buys the 20% of contracts with the best past performance and sells the 20% of contracts with 

the worst past performance (Miffre and Rallis, 2007). The ranking period over which the three 

signals are averaged is 12 months, and the holding period is 1 month throughout.6 As with the 

idiosyncratic volatility portfolio, the constituents of the TS, HP and Mom portfolios are equally-

weighted with end-of-month rebalancing7 and the positions are fully-collateralized.   

                                                                 
3 Roll-yield at time t is the differential logarithmic price at t of the front and second-nearest contracts. 
4 Large traders report to the CFTC whether they are hedgers or speculators and whether they are long or 
short. Using the CFTC reports we calculate two hedging pressure measures − that of speculators and 
that of hedgers − where each is defined as the fraction of long positions relative to long and short 
positions. A low hedgers’ hedging pressure indicates net short hedging and a high speculators’ hedging 
pressure hits toward net long speculation; both are treated as signs of backwardation. Contango is 
signaled by high hedgers’ hedging pressure and low speculators’ hedging pressure.  
5 While extant studies use the positions of large hedgers (e.g., de Roon et al., 2000) or large speculators 
(e.g., Carter et al., 1983; Bessembinder, 1992), we consider both (as Basu and Miffre, 2013) to account 
for the influence of small traders. Thus, we use a double-sorting according to hedgers' hedging pressure 
with the 50th quantile as breakpoint, and then speculators' hedging pressure using the 40th quantile. 
6 A long ranking period of 12 months is pertinent for the TS, HP and Mom commodity risk premia in 
order to accommodate the fact that inventory levels are slow to replenish or deplete, making it unlikely 
for futures markets to switch more frequently between backwardation and contango. 
7 Daily returns for the long and short commodity portfolios are obtained by re-balancing the portfolio’s weights 
to 1/𝑁𝑁 on the 1st trading day of each month and by letting the weights evolve naturally until the last day of the 
month, that is, 𝑤𝑤𝑖𝑖,𝑡𝑡 = 𝑤𝑤𝑖𝑖,𝑡𝑡−1 ∙ �1 + 𝑟𝑟𝑖𝑖,𝑡𝑡−1� where 𝑟𝑟𝑖𝑖,𝑡𝑡 is the day t return of the ith commodity and 𝑤𝑤𝑖𝑖,𝑡𝑡 is its 
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3.3. Summary statistics for the factor risk premia 

Table 1 summarizes the performance of the various factor risk premia. Panel A focuses on the 

risk premia that emanate from the traditional asset pricing literature and Panel B on the long-

short commodity risk premia. The Sharpe ratios of the long-short commodity portfolios range 

from 0.41 to 0.51 with an average at 0.46, whereas that of the long-only S&P-GSCI merely 

stands at 0.02. This reinforces the well-documented fact that investors benefit from taking long 

positions in backwardated markets and short positions in contangoed markets.  

[Insert Table 1 around here] 

Table 2 presents the pairwise correlations (and significance p-values) for the various 

factor risk premia considered in our analysis. The correlations are low, ranging from -0.26 to 

0.37, suggesting that multicollinearity is not an issue. The pairwise correlations between the 

TS, HP and Mom portfolio returns are positive, ranging from 0.21 to 0.37, in line with the fact 

that the three risk premia act as proxies for the fundamentals of backwardation and contango. 

[Insert Table 2 around here] 

 
4. Empirical Results 

This section presents the results of our investigation of the pricing of idiosyncratic volatility in 

commodity futures markets using the two methodologies described in the previous section. 

4.1. Cross-sectional results 

Table 3 reports the prices of risk estimates, significance t-statistics and adjusted-R2 obtained 

with traditional benchmarks (Panel A) and long-short commodity benchmarks (Panel B). There 

is a stark contrast in the inferences we can make on the pricing of idiosyncratic volatility using 

one versus another type of benchmark. Consistent with the analysis of Ang et al. (2006, 2009) 

                                                                 
weight which is standardized to 𝑤𝑤𝑖𝑖,𝑡𝑡∗  daily so that ∑ 𝑤𝑤𝑖𝑖,𝑡𝑡∗𝑁𝑁

𝑖𝑖=1 = 1. The monthly risk premia is the sum of the 
log daily returns. 
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for equities, idiosyncratic volatility is priced cross-sectionally and commands a significantly 

negative risk premium in commodity futures markets when measured using traditional 

benchmarks (Panel A). However, in the context of pricing models that factor in the 

backwardation/contango cycle (Panel B), idiosyncratic volatility is not priced in commodity 

futures markets. This result indicates that idiosyncratic volatility proxies for a risk that relates 

to the inexorable backwardation/contango cycle. This result aligns well with the fundamental 

tenet that idiosyncratic volatility can be diversified away and hence, it is not priced. As Table 

3 illustrates, the findings are robust across different specifications for each type of benchmark. 

The estimated price of idiosyncratic volatility is on average -0.3865 in Panel A and -0.1717 in 

Panel B, and the discrepancy is statistically significant (t-statistic of -9.79).8  

[Insert Table 3 around here] 

As possible explanations of this puzzling negative relationship in equity markets, the 

literature has suggested that it may be an artefact of neglecting expected idiosyncratic skewness 

(Boyer et al., 2010), lagged returns (Huang et al., 2010) and firm financial distress (Avramov 

et al., 2012) as factors explaining the cross-section of returns. Following this lead, we test 

whether the fundamentals of backwardation and contango still have a role to play in explaining 

the similar idiosyncratic volatility “puzzle” in commodity futures markets after factoring in the 

one-month lagged commodity excess return or the expected idiosyncratic skewness in equation 

(2). Following Szymanowska et al. (2014), we consider the liquidity measure of Amihud et al. 

(1997) as another explanatory variable for the cross-section of commodity futures returns. 

Appendix A gives details on the construction of these variables.  

Table 4 shows the estimated price of idiosyncratic volatility obtained from these 

augmented models. It is noticeable that the results are for the most part robust. After factoring 

                                                                 
8 We also considered a third type of benchmark that includes those (traditional or long-short commodity) 
factor risk premia that are significant at the 5% level according to the estimation results shown in Table 
3; namely, SMB, UMD, HP and Mom. The price of idiosyncratic volatility is insignificant with this 
benchmark. Detailed results are available from the authors upon request. 
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in these additional control variables, idiosyncratic volatility is still generally negatively priced 

at the 5% level or better with respect to the traditional benchmarks (Panel A).  

[Insert Table 4 around here]  

When the long-short commodity benchmarks are adopted instead, the price of idiosyncratic 

volatility is almost always undistinguishable from zero at the 5% level (Panel B). Overall, the 

price of idiosyncratic volatility drops from an average of -0.39 in Table 4, Panel A to -0.18 in 

Table 4, Panel B. Additionally, we confirm that commodities with lower levels of liquidity and 

lower expected idiosyncratic skewness tend to earn more (Boyer et al., 2010; Szymanowska et 

al., 2014). Unlike Huang et al. (2010) in the context of equities, we do not identify a one-month 

return reversal in commodity futures markets. 

4.2.Idiosyncratic volatility mimicking portfolios 

Table 5 summarizes the performance of idiosyncratic volatility strategies based on traditional 

benchmarks in Panel A and on long-short commodity benchmarks in Panel B (using the same 

specifications as in Table 3, for comparison). We report conventional performance statistics for 

the idiosyncratic volatility portfolios obtained using various ranking periods (𝑅𝑅 = 1, 3, 6,

12 months) and for the combination of them as an equally-weighted (EW) idiosyncratic 

volatility portfolio. The significance t-statistics shown are based on Newey and West (1987) 

heteroskedasticity and autocorrelation consistent standard errors. 

[Insert Table 5 around here] 

The idiosyncratic volatility strategies built upon the traditional benchmarks earn on 

average 3.94% a year; the vast majority (90%) of these strategies generates individually 

significantly positive mean excess returns at the 10% significance level or better (Panel A).9 In 

                                                                 
9 In line with the findings in Ang et al. (2009) for international equities, the performance of long-short 
idiosyncratic volatility portfolios of commodity futures is more largely driven by the underperformance 
of high idiosyncratic volatility commodities (-5.66% per year) than by the outperformance of low 
idiosyncratic volatility commodities (2.21% per year). 
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sharp contrast, the idiosyncratic volatility strategies built upon long-short commodity 

benchmarks earn on average a substantially smaller 1.18% a year, and none of them generate 

significantly positive mean excess returns (Panel B). Thus, the use of unsuitable (i.e., 

traditional) benchmarks exaggerates the profitability of idiosyncratic volatility strategies vis-à-

vis the more suitable (long-short) commodity benchmarks by an average return of 2.76% a year 

which is economically and statistically significant (t-statistic of 14.03).  

Turning our attention to risk-adjusted performance measures, it is noticeable that the 

Sharpe ratios of idiosyncratic volatility portfolios based on traditional benchmarks appear also 

inflated (averaging 0.38 in Panel A) versus the counterpart portfolios based instead on long-

short commodity benchmarks (averaging 0.12 in Panel B). Table 5 also reports the alpha of the 

idiosyncratic volatility strategies obtained as the intercept estimate of a regression of one-month 

holding period returns of the long-short portfolios on the corresponding factor risk premia. The 

alphas inferred from traditional benchmarks (Panel A) are positive and often significant at the 

10% level or better, averaging 3.87% a year. Those obtained with long-short commodity 

benchmarks (Panel B) are zero statistically in all cases, averaging merely 0.86% a year. The 

3% difference in average abnormal returns across panels is statistically significant at the 1% 

level (t-statistic of 16.50). Thus, the alphas confirm that the abnormal performance of 

idiosyncratic volatility portfolios is exaggerated when traditional benchmarks are used. 

Unreported statistics suggest that the return distribution of the long-short idiosyncratic 

volatility portfolios departs from normality. Bearing this finding in mind, Table 5 reports 

performance measures that consider moments of the return distribution beyond the first two: 

modified Sharpe ratio and Omega ratio. Altogether these measures do not alter our main 

conclusion: the performance of idiosyncratic volatility portfolios is substantially lower when 

suitable (long-short) commodity benchmarks are used to extract the idiosyncratic volatility 

signal as shown in Panel B, than when unsuitable (traditional) benchmarks are used instead as 
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shown in Panel A. Results available from the authors demonstrate that the lower performance 

measures obtained in Panel B stem both from lower returns and higher tail risks. 

The contrasting findings revealed in the analyses summarized in Table 5, Panels A 

(traditional benchmarks) and B (long-short commodity benchmarks) lead us naturally to 

conclude that adopting an unsuitable asset pricing model will lead to the “illusion” of 

profitability from selling high idiosyncratic volatility portfolios and buying low idiosyncratic 

volatility portfolios. Two biases are compounded in the former analysis. First, the volatility 

signal derived from traditional benchmarks is not truly idiosyncratic because it contains a 

neglected systematic risk component related to the cycle of backwardation and contango present 

in commodity futures markets. Second, the alpha is subsequently improperly estimated by 

resorting to the same (unsuitable) traditional benchmark. The abnormal profits of idiosyncratic 

volatility strategies for commodity futures vanish when the benchmark for the extraction of the 

idiosyncratic volatility and performance evaluation is an asset pricing model that factors in the 

inexorable backwardation/contango cycle. Overall, our findings re-affirm the relevance of 

adopting an appropriate pricing model in order to make reliable inference. 

Table 6 reports a set of additional tests conducted to establish the robustness of the time-

series results (shown in Table 5). In these tests, we augment the various benchmarks with 

alternative risk factors based on expected idiosyncratic skewness, past returns or liquidity levels 

(Appendix A details the construction of these factors). It turns out that the inclusion of these 

alternative risk factors does not challenge our main findings. To illustrate, the annualized alphas 

obtained with the augmented traditional benchmarks stand on average at 3.92% in Panel A; 

those obtained with the augmented long-short commodity benchmarks average a much lower 

1.13% in Panel B. While 85% of the alphas are positive and statistically significant at the 10% 

level or better in Panel A, none is significant in Panel B.  

[Insert Table 6 around here]  
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5. Conclusions  

The commodity pricing literature documents that commodity futures risk premia depend on 

considerations relating to inventory levels, roll-yields, hedging pressure, past performance, total 

volatility, skewness or liquidity. This article considers idiosyncratic volatility as another 

potential signal of expected commodity futures returns. Theoretically, the presence of trading 

costs and the non-marketability of producers’ claims suggest that idiosyncratic volatility should 

be priced (Hirshleifer, 1988). Empirically, however, the evidence to date is not clear-cut 

(Bessembinder, 1992; Rouwenhorst and Tang, 2012). A pitfall of the extant empirical studies 

is that they employ pricing models that fail to recognize the fundamentals of backwardation and 

contango. This calls for a reassessment of the evidence on the pricing of idiosyncratic volatility 

using both traditional and long-short commodity pricing models.  

Using a similar methodology as that employed by Ang et al. (2006, 2009) to analyze the 

pricing of idiosyncratic volatility in equity markets, we establish that inferences on the relation 

between idiosyncratic volatility and expected commodity futures returns crucially hinge on the 

asset pricing model used to measure the idiosyncratic volatility signal. When the asset pricing 

model fails to recognize the backwardation and contango dynamics, idiosyncratic volatility 

seemingly commands a puzzling negative risk premium and, relatedly, mimicking portfolios 

that systematically buy low idiosyncratic volatility commodities and short high idiosyncratic 

volatility commodities offer sizeable abnormal returns. Prima facie these results extend those 

of Ang et al. (2009) from international equity markets to commodity futures markets. However, 

if the methodology of Ang et al. (2009) is instead deployed using suitable benchmarks that 

incorporate the commodity risk premia related to the backwardation versus contango 

fundamentals, then idiosyncratic volatility is not priced cross-sectionally and the abnormal 

performance of long-short idiosyncratic volatility mimicking portfolios vanishes. These 

conclusions are unchallenged when illiquidity is considered as a risk factor. They are also robust 



16 
 

to the inclusion in the various pricing models of “missing” factors such as expected 

idiosyncratic skewness or past returns that have been shown to rationalize the puzzling negative 

pricing of idiosyncratic volatility in equity markets.  

Finding that idiosyncratic volatility is not priced in the context of suitable benchmarks 

aligns well with the notion that investors ought not to be rewarded for taking a risk that can be 

diversified away. Our study shows that the negatively priced idiosyncratic volatility extracted 

from unsuitable (traditional) benchmarks is an artifact of neglecting the inexorable phases of 

backwardation and contango of commodity futures markets. As a byproduct, our findings 

support the recent literature that underscores the information content of backwardation and 

contango not only as regards the pricing of commodities (Basu and Miffre, 2013;  

Szymanowska et al., 2014;  Bakshi et al., 2015) but also as leading indicator of economic 

activity (Baker and Routledge, 2012; Bakshi et al. 2015; Fernandez-Perez et al., 2015). 
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Table 1. Descriptive statistics for the factor risk premia. 

The table presents summary statistics for traditional risk premia (Panel A) and long-short 
commodity risk premia (Panel B) sampled at daily frequency from January 3, 1989 to December 
31, 2013. Conventional significance t-ratios are reported in parentheses. Sharpe ratios are 
annualized mean excess returns (Mean) divided by annualized standard deviations (StDev). 
S&P-GSCI stands for the excess returns of the thus named long-only commodity index, Rm-Rf 
for the excess value-weighted returns of U.S. CRSP firms, Barclays for the excess returns on 
the Barclays U.S. Aggregate Bond Index, SMB and HML are the size premium and value 
premium of Fama and French (1993), UMD is the momentum returns of Carhart (1997), TS, 
HP and Mom stands for the excess returns of long-short portfolios based on term structure, 
hedging pressure and momentum signals, respectively.  

 

 

 

  

StDev Sharpe ratio

Panel A: Traditional risk premia 
S&P-GSCI 0.0042 (0.10) 0.2122 0.0198
Rm-Rf 0.0754 (2.07) 0.1783 0.4228
Barclays 0.0373 (4.69) 0.0389 0.9597
SMB 0.0110 (0.60) 0.0894 0.1229
HML 0.0283 (1.52) 0.0908 0.3117
UMD 0.0836 (3.02) 0.1353 0.6179

Panel B: Long-short commodity risk premia
TS 0.0418 (2.02) 0.1009 0.4140
HP 0.0448 (2.29) 0.0955 0.4694
Mom 0.0601 (2.48) 0.1186 0.5069

Mean
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Table 2. Correlations among the factor risk premia. 

The table reports the pairwise Pearson correlations for all factors risk premia sampled at daily 
frequency from January 3, 1989 to December 31, 2013. Significance p-values are reported in 
parentheses. S&P-GSCI stands for the excess returns of the thus-named long-only commodity 
index, Rm-Rf for the excess value-weighted returns of all U.S. CRSP firms, Barclays for the 
excess returns on the Barclays U.S. Aggregate Bond Index, SMB and HML are the size 
premium and value premium of Fama and French (1993), UMD is the momentum returns of 
Carhart (1997), TS, HP and Mom stands for the excess returns of long-short portfolios based 
on term structure, hedging pressure and momentum signals, respectively. 

 
 
  

S&P-GSCI Rm-Rf Barclays SMB HML UMD TS HP

Rm-Rf 0.139
(0.000)

Barclays -0.106 -0.077
(0.000) (0.000)

SMB 0.052 -0.026 -0.124
(0.000) (0.045) (0.000)

HML 0.120 -0.163 -0.019 -0.116
(0.000) (0.000) (0.132) (0.000)

UMD -0.044 -0.231 0.121 0.066 -0.258
(0.001) (0.000) (0.000) (0.000) (0.000)

TS 0.209 0.018 -0.014 -0.017 0.030 -0.014
(0.000) (0.165) (0.293) (0.178) (0.018) (0.287)

HP -0.059 0.008 0.022 0.025 -0.010 0.032 0.210
(0.000) (0.539) (0.093) (0.050) (0.422) (0.014) (0.000)

Mom 0.247 -0.041 -0.009 0.012 0.027 0.122 0.372 0.302
(0.000) (0.002) (0.491) (0.364) (0.036) (0.000) (0.000) (0.000)

Traditional risk premia
Long-short commodity 

risk premia
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Table 3. Cross-sectional pricing of idiosyncratic volatility. 

The table reports the prices of risk estimates obtained with the two-pass regression approach 
described in Section 2.1 of the paper. Shanken (1992) adjusted t-statistics are reported in 
parentheses. Bold denotes significance at the 5% or 1% levels. The entry labeled IVol reports 
the price of idiosyncratic volatility, while S&P-GSCI, Rm-Rf, Barclays, SMB, HML, UMD, 
TS, HP and Mom refer to the prices of risk associated with the excess returns of the thus-named 
long-only commodity index, the value-weighted portfolio of U.S. CRSP firms, Barclays U.S. 
Aggregate Bond Index, size, value and momentum equity portfolios, and long-short commodity 
portfolios based on term structure, hedging pressure and momentum signals, respectively. The 
sample period is January 3, 1989 to December 31, 2013. 

 
  

Model (A) (B) (C) (D) (1) (2) (3) (4)

Constant 0.0050 0.0042 0.0041 0.0036 0.0017 0.0016 0.0026 0.0023
 (3.36) (2.72) (2.40) (1.95) (1.03) (1.00) (2.03) (1.55)

IVol -0.3829 -0.4021 -0.4278 -0.3331 -0.1882 -0.1530 -0.1597 -0.1859
(-3.86) (-3.75) (-3.60) (-2.47) (-1.45) (-1.32) (-1.75) (-1.76)

S&P-GSCI 0.0012 0.0018 0.0024 0.0011
(0.73) (1.07) (1.26) (0.58)

Rm-Rf 0.0026 0.0023 0.0028
(1.34) (1.02) (1.16)

Barclays -0.0004 -0.0007 -0.0007
(-0.81) (-1.12) (-1.13)

SMB 0.0037 0.0039
(3.15) (3.12)

HML 0.0012 0.00117
(0.95) (0.90)

UMD -0.0050
(-2.54)

TS 0.0000
(0.06)

HP 0.0024 0.0022 0.0019
(3.41) (3.13) (3.32)

Mom 0.0020 0.0016 0.0008
(2.01) (1.62) (0.91)

Adjusted-R 2 12% 21% 27% 31% 23% 18% 11% 13%

Long-short commodity 
Panel BPanel A

Traditional benchmarks
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Table 4. Robustness of the cross-sectional analysis. 
 
The table reports OLS estimates of the cross-section regression, equation (2), augmented with 
some alternative factors. Shanken (1992) adjusted t-statistics are reported in parentheses. Bold 
denotes significance at the 5% or 1% levels. Rows labeled IVol, E(iSK), ri,t and Liquid report 
the prices of risk associated with idiosyncratic volatility and additional factors: expected 
idiosyncratic skewness (Panel I), lagged return (Panel II) and liquidity (Panel III), respectively. 
Traditional benchmarks (A) to (D) and long-short commodity benchmarks (1) to (4) are as 
shown in Table 3. The sample period is January 3, 1989 to December 31, 2013. 

   

Model (A) (B) (C) (D) (1) (2) (3) (4)

Panel I: Boyer et al. (2010)
IVol -0.3525 -0.3820 -0.3732 -0.2776 -0.1665 -0.1473 -0.1588 -0.1903

(-3.34) (-3.23) (-2.85) (-1.93) (-1.20) (-1.14) (-1.30) (-1.66)
E(iSK ) -0.0035 -0.0066 -0.0071 -0.0057 -0.0083 -0.0072 -0.0057 -0.0018

(-1.29) (-2.16) (-1.87) (-1.45) (-2.22) (-2.18) (-1.85) (-0.66)

Panel II: Huang et al. (2010)
IVol -0.4082 -0.3878 -0.4074 -0.3323 -0.2546 -0.1490 -0.1071 -0.1467

(-4.00) (-3.37) (-3.31) (-2.53) (-1.90) (-1.23) (-0.92) (-1.37)
r i,t 0.0211 0.0175 0.0196 0.0199 0.0037 0.0062 0.0176 0.0217

(2.13) (1.66) (1.75) (1.72) (0.34) (0.58) (1.65) (2.25)

Panel III: Amihud et al. (1997)
IVol -0.4237 -0.4452 -0.5022 -0.3894 -0.2346 -0.2012 -0.2123 -0.2339

(-4.17) (-4.03) (-4.21) (-2.84) (-1.75) (-1.65) (-1.81) (-2.13)
Liquid -0.0016 -0.0015 -0.0015 -0.0013 -0.0013 -0.0014 -0.0014 -0.0014

(-3.12) (-2.74) (-2.52) (-2.23) (-2.51) (-2.63) (-2.62) (-3.04)

Panel A Panel B
Traditional benchmarks Long-short commodity benchmarks
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Table 5. Performance of long-short idiosyncratic volatility portfolios. 
 
The table reports the mean excess return, Sharpe ratio, alpha, modified Sharpe ratio and Omega 
ratio of long-short portfolios that exploit idiosyncratic volatility signals. The figures reported 
in parentheses are robust Newey-West t-statistics. Sharpe ratios are calculated as annualized 
mean excess returns (Mean) divided by annualized standard deviations. The alpha is modelled 
as the intercept of a regression of the daily idiosyncratic volatility excess returns on the factor 
risk premia. Unlike the standard Sharpe ratio, the modified Sharpe ratio uses as denominator a 
modified Value-at-Risk measure that incorporates an adjustment for skewness and excess 
kurtosis. The Omega ratio is calculated as the ratio of cumulative gains over cumulative losses. 
Idiosyncratic volatility is defined, and performance is gauged, according to traditional risk 
premia in Panel A and long-short commodity risk premia in Panel B. The ranking period (in 
months) used to model idiosyncratic volatility is denoted R, the holding period is one month 
throughout. S&P-GSCI stands for the excess returns of the thus-named long-only commodity 
index, Rm-Rf for the excess value-weighted returns of all U.S. CRSP firms, Barclays for the 
excess returns on the Barclays U.S. Aggregate Bond Index, SMB and HML are the size 
premium and value premium of Fama and French (1993), UMD is the momentum returns of 
Carhart (1997), TS, HP and Mom stands for the excess returns of long-short portfolios based 
on term structure, hedging pressure and momentum signals, respectively. The sample covers 
the period from February 03, 1989 to December 31, 2013. 
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Table 5. Performance of long-short idiosyncratic volatility portfolios.   (Cont.) 
 

 

Portfolios
Sharpe 

ratio
Modified 

Sharpe ratio
Omega 

ratio
Sharpe 

ratio
Modified 

Sharpe ratio
Omega 

ratio

(A): S&P-GSCI (1) TS, HP, Mom
R  = 1 0.0432 (2.01) 0.4069 0.0429 (2.01) 0.1260 1.0686 0.0226 (1.12) 0.2309 0.0196 (0.98) 0.0656 1.0389
R  = 3 0.0388 (1.78) 0.3684 0.0385 (1.78) 0.1122 1.0615 0.0202 (0.98) 0.2036 0.0165 (0.80) 0.0595 1.0339
R  = 6 0.0365 (1.67) 0.3453 0.0361 (1.67) 0.1086 1.0577 0.0172 (0.80) 0.1719 0.0139 (0.65) 0.0413 1.0288
R  = 12 0.0440 (2.04) 0.4133 0.0435 (2.05) 0.1327 1.0693 0.0117 (0.55) 0.1150 0.0063 (0.30) 0.0168 1.0193
EW 0.0406 (2.03) 0.4163 0.0402 (2.03) 0.1336 1.0699 0.0179 (0.95) 0.2003 0.0141 (0.75) 0.0462 1.0337

(B): S&P-GSCI, Rm-Rf, Barclays (2) HP, Mom
R  = 1 0.0404 (1.89) 0.3823 0.0372 (1.76) 0.1181 1.0646 0.0167 (0.81) 0.1650 0.0138 (0.67) 0.0472 1.0277
R  = 3 0.0369 (1.68) 0.3495 0.0344 (1.58) 0.1063 1.0583 0.0096 (0.45) 0.0920 0.0058 (0.27) 0.0259 1.0154
R  = 6 0.0420 (1.91) 0.3965 0.0413 (1.90) 0.1248 1.0665 0.0153 (0.69) 0.1432 0.0108 (0.49) 0.0226 1.0243
R  = 12 0.0398 (1.80) 0.3722 0.0395 (1.81) 0.1195 1.0622 -0.0029 (-0.14) -0.0279 -0.0075 (-0.35) -0.0043 0.9953
EW 0.0403 (2.02) 0.4133 0.0382 (1.94) 0.1324 1.0693 0.0097 (0.49) 0.1024 0.0057 (0.29) 0.0218 1.0172

(C): S&P-GSCI, Rm-Rf, Barclays, SMB, HML (3) HP
R  = 1 0.0425 (1.97) 0.4021 0.0402 (1.86) 0.1243 1.0677 0.0270 (1.22) 0.2503 0.0202 (0.92) 0.0592 1.0428
R  = 3 0.0404 (1.85) 0.3838 0.0389 (1.79) 0.1164 1.0642 0.0089 (0.39) 0.0798 0.0006 (0.03) 0.0132 1.0137
R  = 6 0.0405 (1.82) 0.3803 0.0405 (1.84) 0.1167 1.0640 0.0182 (0.79) 0.1642 0.0104 (0.46) 0.0277 1.0279
R  = 12 0.0399 (1.80) 0.3731 0.0403 (1.84) 0.1194 1.0624 0.0075 (0.33) 0.0679 -0.0007 (-0.03) 0.0114 1.0115
EW 0.0415 (2.08) 0.4267 0.0403 (2.03) 0.1362 1.0717 0.0154 (0.73) 0.1515 0.0076 (0.37) 0.0245 1.0259

(D): S&P-GSCI, Rm-Rf, Barclays, SMB, HML, UMD (4) Mom
R  = 1 0.0278 (1.30) 0.2640 0.0258 (1.21) 0.0825 1.0437 0.0131 (0.62) 0.1271 0.0159 (0.76) 0.0361 1.0212
R  = 3 0.0358 (1.63) 0.3372 0.0358 (1.64) 0.1021 1.0562 0.0038 (0.17) 0.0356 0.0065 (0.29) 0.0101 1.0059
R  = 6 0.0400 (1.79) 0.3754 0.0412 (1.86) 0.1155 1.0632 0.0012 (0.05) 0.0115 0.0051 (0.23) 0.0028 1.0019
R  = 12 0.0395 (1.78) 0.3689 0.0417 (1.90) 0.1181 1.0616 -0.0013 (-0.06) -0.0130 0.0007 (0.03) -0.0039 0.9979
EW 0.0369 (1.84) 0.3779 0.0368 (1.85) 0.1205 1.0632 0.0042 (0.21) 0.0446 0.0070 (0.36) 0.0123 1.0074

Panel A Panel B
Long-short commodity benchmarksTraditional benchmarks

Mean Alpha Mean Alpha
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Table 6. Robustness of the time-series results  
 
The table reports the annualized alphas modelled as the intercept of a regression of idiosyncratic 
volatility excess returns on the factor risk premia. It tests the robustness of the time-series results 
to the inclusion in the pricing equation of long-short portfolios based on expected idiosyncratic 
skewness (Panel I), lagged return (Panel II) or liquidity (Panel III). Models (A)-(D) and (1)-(4) 
are as specified in Table 5. The figures reported in parentheses are robust Newey-West t-
statistics. The ranking period (in months) used to model idiosyncratic volatility is denoted R, 
the holding period is one month throughout. The sample covers the period from February 03, 
1989 to December 31, 2013. 
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Table 6. Robustness of the time-series results.  (Cont.) 
 

 

 

Model

Panel I: Boyer et al. (2010)
R  = 1 0.0424 (1.91) 0.0450 (2.04) 0.0424 (1.88) 0.0216 (1.00) 0.0205 (1.03) 0.0119 (0.59) 0.0267 (1.23) 0.0122 (0.58)
R  = 3 0.0361 (1.59) 0.0375 (1.64) 0.0405 (1.78) 0.0332 (1.48) 0.0193 (0.94) 0.0051 (0.24) 0.0119 (0.53) 0.0011 (0.05)
R  = 6 0.0379 (1.66) 0.0419 (1.83) 0.0397 (1.71) 0.0364 (1.60) 0.0197 (0.94) 0.0155 (0.73) 0.0279 (1.26) 0.0027 (0.12)
R  = 12 0.0443 (1.98) 0.0474 (2.09) 0.0450 (1.97) 0.0429 (1.91) 0.0057 (0.28) -0.0079 (-0.38) 0.0102 (0.48) -0.0029 (-0.14)
EW 0.0402 (1.93) 0.0429 (2.06) 0.0419 (1.99) 0.0335 (1.64) 0.0163 (0.89) 0.0062 (0.33) 0.0192 (0.96) 0.0033 (0.17)

Panel II: Huang et al. (2010)
R  = 1 0.0431 (2.01) 0.0374 (1.76) 0.0405 (1.88) 0.0258 (1.21) 0.0199 (0.99) 0.0137 (0.67) 0.0201 (0.91) 0.0163 (0.77)
R  = 3 0.0392 (1.80) 0.0348 (1.59) 0.0396 (1.82) 0.0364 (1.65) 0.0167 (0.81) 0.0062 (0.29) 0.0010 (0.05) 0.0075 (0.34)
R  = 6 0.0366 (1.69) 0.0414 (1.90) 0.0405 (1.84) 0.0413 (1.86) 0.0142 (0.66) 0.0106 (0.48) 0.0102 (0.45) 0.0054 (0.24)
R  = 12 0.0441 (2.07) 0.0408 (1.87) 0.0416 (1.90) 0.0431 (1.96) 0.0068 (0.32) -0.0071 (-0.33) -0.0008 (-0.03) 0.0008 (0.04)
EW 0.0407 (2.05) 0.0388 (1.96) 0.0409 (2.05) 0.0374 (1.88) 0.0144 (0.77) 0.0059 (0.30) 0.0076 (0.37) 0.0075 (0.38)

Panel III: Amihud et al. (1997)
R  = 1 0.0427 (2.00) 0.0372 (1.76) 0.0401 (1.86) 0.0258 (1.21) 0.0230 (1.19) 0.0182 (0.92) 0.0278 (1.33) 0.0182 (0.90)
R  = 3 0.0386 (1.78) 0.0345 (1.59) 0.0390 (1.80) 0.0359 (1.64) 0.0199 (1.01) 0.0105 (0.51) 0.0085 (0.40) 0.0088 (0.42)
R  = 6 0.0364 (1.69) 0.0416 (1.91) 0.0407 (1.85) 0.0415 (1.87) 0.0182 (0.89) 0.0167 (0.81) 0.0194 (0.92) 0.0079 (0.38)
R  = 12 0.0438 (2.07) 0.0398 (1.83) 0.0406 (1.86) 0.0421 (1.92) 0.0113 (0.57) -0.0012 (-0.06) 0.0093 (0.45) 0.0035 (0.18)
EW 0.0404 (2.04) 0.0384 (1.95) 0.0405 (2.04) 0.0370 (1.87) 0.0181 (1.02) 0.0110 (0.60) 0.0162 (0.85) 0.0096 (0.52)

(1) (2) (3) (4)
Panel A: Traditional benchmarks Panel B: Long-short commodity benchmarks

(A) (B) (C) (D)
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Appendix A. Measuring expected idiosyncratic skewness and liquidity 

This appendix details the construction of the additional independent variables considered to 

establish the robustness of the baseline cross-sectional and time-series results.  

Idiosyncratic skewness, denoted 𝑖𝑖𝑖𝑖𝑖𝑖 hereafter, is measured in the spirit of Boyer et al. (2010) 

as the skewness of the residuals from a time-series regression of the commodity futures returns 

on the risk factors postulated by the (traditional or long-short commodity) benchmark of choice; 

i.e., the residuals of different specifications of Equation (1).  

Expected idiosyncratic skewness, denoted 𝐸𝐸𝑡𝑡(𝑖𝑖𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+𝑅𝑅) hereafter, is obtained in a two-stage 

approach. First, we estimate cross-sectional regressions at the end of each month 𝑡𝑡  

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑅𝑅 + 𝛽𝛽2𝑡𝑡𝒁𝒁𝑖𝑖𝑖𝑖−𝑅𝑅 + 𝜐𝜐𝑖𝑖𝑖𝑖  

where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑅𝑅) with ranking period R = 1, 3, 6 or 12 months is measured as indicated 

above using daily data within the months [𝑡𝑡 − 𝑅𝑅; 𝑡𝑡]  ([𝑡𝑡 − 2𝑅𝑅; 𝑡𝑡 − 𝑅𝑅]); 𝒁𝒁𝑖𝑖𝑖𝑖−𝑅𝑅 is a vector of 

commodity-specific controls that originate in the commodity pricing literature: roll yield, past 

performance, speculators’ hedging pressure and hedgers’ hedging pressure averaged over the 

period [𝑡𝑡 − 2𝑅𝑅; 𝑡𝑡 − 𝑅𝑅]. Using the estimated parameters and measures 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑍𝑍𝑖𝑖𝑖𝑖, we 

construct at time 𝑡𝑡 an estimate of each commodity’s expected idiosyncratic skewness for the 

subsequent R months; namely, 𝐸𝐸𝑡𝑡(𝑖𝑖𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+𝑅𝑅) = 𝛽̂𝛽0𝑡𝑡 + 𝛽̂𝛽1𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽̂𝛽2𝑡𝑡𝑍𝑍𝑖𝑖𝑖𝑖.  

Following Szymanowska et al. (2014), we measure daily liquidity using the Amihud et 

al. (1997)’s definition as the average ratio of a given contract dollar-volume to the absolute 

return of that contract; the average is computed over the same R months of daily data used to 

extract the idiosyncratic volatility signal. The thus-obtained expected idiosyncratic skewness 

and liquidity measures are included as additional factors in the benchmark, equation (2), so as 

to re-assess the pricing of idiosyncratic volatility. The results are reported in Table 4. 

To test the robustness of the time-series evidence, we form long-short portfolios based 

on either past one-month return, expected idiosyncratic skewness or Amihud et al. (1997) 

liquidity measure. Following Huang et al. (2010), the mimicking portfolio for past one-month 

return buys (shorts) the commodity with best (worst) past one-month performance. Following 

Boyer et al. (2010), the mimicking portfolio for expected idiosyncratic skewness buys (sells) 

the quintile with the most negative (positive) value of 𝐸𝐸𝑡𝑡(𝑖𝑖𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+12). Following Szymanowska 

et al. (2014), the liquidity risk premium buys (sells) the most illiquid (liquid) quintile over the 



30 
 

past 12 months. All long-short portfolios are held for one month on a fully-collateralized basis. 

The corresponding excess returns of these sequentially-formed long-short portfolios are 

included as additional factors in the benchmark of choice to re-assess the risk-adjusted 

performance of the idiosyncratic volatility portfolios. The results are reported in Table 6. 
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