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Abstract

This thesis concerns the design, development, and implementation of ma-
chine learning models for voice separation in two forms of symbolic music
representations: lute tablature and MIDI data. Three modelling approaches
are described: MA1, a note-level classification approach using a neural net-
work, MA2, a chord-level regression approach using a neural network, and
MA3, a chord-level probabilistic approach using a hidden Markov model.
Furthermore, three model extensions are presented: backward processing,
modelling voice and duration simultaneously, and multi-pass processing us-
ing an extended (bidirectional) decision context.

Two datasets are created for model evaluation: a tablature dataset, con-
taining a total of 15 three-voice and four-voice intabulations (lute arrange-
ments of polyphonic vocal works) in a custom-made tablature encoding for-
mat, tab+, as well as in MIDI format, and a Bach dataset, containing the 45
three-voice and four-voice fugues from Johann Sebastian Bach’sDas wohltem-
perirte Clavier (BWV 846–893) in MIDI format. The datasets are made
available publicly, as is the software used to implement the models and the
framework for training and evaluating them.

The models are evaluated on the datasets in four experiments. The first
experiment, where the different modelling approaches are compared, shows
that MA1 is the most effective and efficient approach. The second experiment
shows that the features are effective, and it demonstrates the importance of
the type and amount of context information that is encoded in the feature
vectors. The third experiment, which concerns model extension, shows that
modelling backward and modelling voice and duration simultaneously do
not lead to the hypothesised increase in model performance, but that using
a multi-pass bidirectional model does. In the last experiment, where the
performance of the models is compared with that of existing state-of-the-art
systems for voice separation, it is shown that the models described in this
thesis can compete with these systems.
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Introduction

The representations of music used in the field of music information retrieval
(MIR) can be audio-based or symbol-based. Audio representations include
recorded sound signals, while the symbolic representations comprise any form
of musical notation, text, or any of the “myriad discrete computer encodings”
(Downie, 2003, p. 302) such as the Musical Instrument Digital Interface
(MIDI) format, the Music Encoding Initiative (MEI) format, the MusicXML
format, or the Humdrum **kern format.1 MIR is a genuinely multidisci-
plinary field, combining areas such as information science, musicology, music
theory, music perception and cognition, audio engineering, and computer sci-
ence (Downie, 2003; Byrd and Crawford, 2002; Orio, 2006). Traditionally,
symbolic music representations have been the tools of musicologists, and it is
indeed in the musicological areas of MIR—areas relating to music analysis,
music theory, music perception and cognition—where they are used most.
Although strong in the early years of MIR, the role of symbolic music rep-
resentations has become less significant over time, and the past decade has
seen a clear shift towards signal processing and audio representations. This
shift can be ascribed to the constant development of the internet in conjunc-
tion with the invention of audio encoding formats such as MP3 (MPEG-1
or MPEG-2 Audio Layer III) and their increasing (online) availability (Orio,
2006; Volk et al., 2011). As a result, the audio engineering areas of MIR have
witnessed a considerable growth, while the musicological areas now consti-
tute a clear minority. This shift in focus is one reason why the exploration
of a number of complex problems relating to symbolic music representations
has stagnated.

One of such complex problems is voice separation in symbolic music rep-

1See http://www.music-encoding.org, http://www.musicxml.com, and
http://www.music-cog.ohio-state.edu/Humdrum.
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resentations, the subject of this thesis. Voice separation, simply put, is the
task of identifying individual melodic lines (voices) in a music representation
in which these lines are not directly identifiable (a more formal definition
is given in Section 2.1.3). Voice separation in symbolic music representa-
tions is a research topic that has received relatively little attention hitherto.
Only a handful of systems designed for this task exist. All these systems
have been reported to perform reasonably well, but in all cases room for im-
provement is evident. A possible explanation for the abandonment of some
existing research and the lack of new initiatives may very well be the fact
that voice separation has been recognised as a difficult task even for expert
musicians—let alone for a computer (Orio, 2006). An adequate separation
into constituent voices, however, is an essential precondition for the successful
execution of other complex MIR tasks that can be of direct use for musico-
logical research, such as automatic transcription, pattern retrieval, melody
matching and the detection of concordances (identical pieces occurring in
more than one source), voice-based content analysis, etc. It is thus well
worthwhile revisiting the topic.

In this thesis, the problem of voice separation is tackled using a super-
vised machine learning approach, where models are trained on example data
to learn mappings of notes to voices, and then applied to new data to provide
such mappings. The use of machine learning models to tackle the problem
of voice separation is still relatively novel. Only in two previous studies
have such models been implemented and evaluated; an extended and more
systematic approach, however, has hitherto not been undertaken. In this
thesis, three new modelling approaches are presented, two of which are neu-
ral network-based, while in the third a hidden Markov model is used. The
models are specifically designed for voice separation in lute tablature, or,
more precisely, sixteenth-century lute intabulations, instrumental arrange-
ments of polyphonic vocal works. However, as a sole focus on this highly
specialist symbolic representation would limit their practical applicability
significantly, each model is also implemented in an adapted version, to be
applied to a much more widely used symbolic representation: MIDI data.

1.1 Motivation

Two questions now come to the fore: why the focus on lute tablature, and
why the limitation to sixteenth-century intabulations? The answer to the
first question is that there is a gap in musicological research where music
written in lute tablature is concerned, which can begin to be bridged with
the help of MIR tools. Lute tablature is a Griffschrift : a practical notation
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that merely prescribes the physical actions a lute player must perform in or-
der to produce sound from the instrument. It provides no direct information
about pitch, only limited information about note duration, and, although
it was used to notate at times considerably complex polyphonic music, it
reveals very little information about polyphonic structure. This renders lute
tablature hard to interpret for the majority of musicologists. As a conse-
quence, the corpus of music written in lute tablature, which spans more than
two-and-a-half centuries and contains some 860 individual sources harbouring
invaluable musicological information, has been largely overlooked in musico-
logical research. In order to unlock this corpus for further research, it must
thus be presented in a more familiar format. The traditional musicological
solution is transcription into modern music notation, and such work indeed
has been ongoing—but it is a time-consuming and specialist undertaking.
The situation sketched above is a typical example of an opportunity for in-
terdisciplinary interaction (Neubarth et al., 2011; Honingh et al., 2014): a
musicological problem exists, for which MIR research can provide a solution.
MIR models for voice separation as presented in this thesis, together with
MIR models for key detection, pitch spelling, etc., can be integrated in (inter-
active) systems for automatic transcription of tablature. Such systems, which
enable fast and large-scale transcription, can then provide non-specialists the
tools to overcome problems that previously prevented them from researching
music written in lute tablature.

The second question in fact consists of two parts: why only sixteenth-
century lute music, and why only intabulations? The reason for the focus
on sixteenth-century lute music, or, as it is commonly known, Renaissance
lute music, is mostly a practical one. Limits to the scope of the research
have to be set, and the choice for Renaissance music is motivated by several
factors. These include, but are not limited to, the fact that this subcorpus
is (i) large, as the lute was extremely popular in the sixteenth century,2

(ii) stylistically fairly homogeneous, (iii) mostly highly contrapuntal (that is,
the music consists of different voices sounding simultaneously, each of which
moves independently of the others and has a strong individual character),
and (iv) not complicated by a large number of tuning variants being used, as
is the case for later corpora. The reason for the focus on one particular genre,
sixteenth-century intabulations, is threefold (and explained in more detail in
Section 2.2.2). Apart from the fact that intabulations are representative and
challenging, using them facilitates the process of labelling the data. This can

2To give an impression of the size of the subcorpus: approximately 200 print sources
and a similar number of manuscript sources from the sixteenth century are extant today
(see Brown, 1965 and Ness and Kolczynski, 2001, respectively).
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be achieved relatively quickly, and with minimal need for interpretation, by
using the vocal models as polyphonic blueprints.

The research presented in this thesis connects well to ongoing efforts to-
wards digitisation of lute sources. Since its inception in 1999, the Electronic
Corpus of Lute Music (ECOLM) project has aimed to make lute music avail-
able for research and performance (Lewis et al., 2004). To this end, machine-
readable encodings, tablature renderings thereof, images of original sources,
and different kinds of metadata have been stored in a database that is acces-
sible through the project website.3 Recently, research into the application of
optical music recognition methods to tablature (Dalitz and Karsten, 2005;
Dalitz and Crawford, 2013) has enabled the encoding process, which had
hitherto been manual, to be carried out (semi-)automatically. A large—and
growing—body of encodings is thus available for research and analysis; among
the tools to start tackling this body are models such as the ones presented
in this thesis.

1.2 Aims and objectives

In this thesis, the following two-fold research question is explored:

How can supervised machine learning models be used for voice sep-
aration in polyphonic music in symbolic representations, and which
modelling approaches are the most effective?

This question is considered in terms of a main aim and four objectives. The
main aim underlying the research is to design, implement, and evaluate su-
pervised machine learning models for voice separation in polyphonic music
written in lute tablature and polyphonic music in MIDI format. To this end,
the following objectives are formulated:

Objective 1 To design and implement models.
1.1 To design three different modelling approaches:

MA1 A note-level classification approach using a neural network
model, where notes are classified into classes representing
voices.

MA2 A chord-level regression approach using a neural network
model, where mappings of chords to voices are rated.

MA3 A chord-level probabilistic approach using a discrete hidden

3See http://www.ecolm.org.

http://www.ecolm.org
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Markov model, where the most likely sequence of mappings
of chords to voices is determined.

1.2 To design three model extensions:
X1 Simultaneous voice and duration modelling.
X2 Backward processing.
X3 Multi-pass processing using a bidirectional decision context.

1.3 To define a set of features, numerical representations of properties
of notes or chords in their polyphonic context, relevant to the task
of voice separation.

1.4 To implement the models, the model extensions, the feature ex-
traction algorithms, and the framework for training and evaluating
the models.

Objective 2 To create datasets.
2.1 To create a corpus of sixteenth-century lute intabulations, where

each intabulation is represented as a machine-readable encoding of
the tablature in plain text format and a set of monophonic MIDI
files.

2.2 To create a corpus of music written in (early) modern staff notation
—keyboard fugues by Johann Sebastian Bach—, where each fugue
is represented as a set of monophonic MIDI files.

Objective 3 To evaluate the models.
3.1 To evaluate, on both datasets, the three modelling approaches.
3.2 To evaluate, on both datasets, the relevance of the features.
3.3 To evaluate, on both datasets, the effect of the model extensions.
3.4 To compare the models’ performance with that of existing systems

for voice separation.

As is explained in more detail in Section 1.4, the individual objectives
together with their sub-objectives are addressed in the successive chapters of
this thesis; they thus determine its overall structure.

1.3 Contributions

The key contributions of this thesis to the existing research are:

◮ Three new machine learning models for voice separation in lute
tablature and MIDI data:
◮ A neural network model for classifying notes into classes
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representing voices.
◮ A neural network model for rating mappings of chords to

voices.
◮ A hidden Markov model for determining the most likely

sequence of mappings of chords to voices.
◮ A set of features relevant to the task of voice separation.
◮ The implementation as open source software of the models, the

three model extensions, the feature extraction algorithms, and the
framework for training and evaluating the models.

◮ tab+, an extensible encoding format for rendering lute tablature
machine-readable that supports all lute tablature systems.

◮ Two datasets:
◮ A tablature dataset, consisting of encodings and sets of

monophonic MIDI files.
◮ A Bach dataset, consisting of sets of monophonic MIDI files.

This dataset, which is an adaptation of an existing dataset,
can be used as a standardised benchmark for research into
voice separation in symbolic representations, which is cur-
rently lacking.

Additionally, for each piece in the tablature dataset a transcription
in modern music notation is devised.

◮ Experimental results enabling assessment of the models.

1.4 Thesis overview

Chapter 2 opens with the definition of three key terms in Section 2.1: voice,
polyphonic music, and voice separation. Following that, in Section 2.2,
the musicological background against which the research is carried out is
sketched, where the sixteenth-century lute, its music, and the notational for-
mat of this music and the problems it entails, are introduced. Subsequently,
in Section 2.3, the computational background to the research is given, where
existing research into voice separation in symbolic representations is dis-
cussed.

Chapter 3 describes the methodology followed, and addresses Objective
1. First, in Section 3.1, the three modelling approaches (Objective 1.1),
the model extensions (Objective 1.2) and the feature set (Objective 1.3) are
described. Subsequently, in Section 3.2, the evaluation procedure, the eval-
uation metrics, and the different evaluation modes are explained. Following
that, in Section 3.3, the subject of conflicts and conflict resolution, which is
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specific to MA1, is discussed. The chapter closes with a description of the
implementation details in Section 3.4.

In Chapter 4, which in its entirety addresses Objective 2, the datasets
are described. In Section 4.1, first, the tablature dataset is presented, and
the data formats, the data creation, and the internal representation used
are discussed. Furthermore, a detailed description of the encoding format
devised for this thesis, tab+, is given. In Section 4.2, then, the same is done
for the Bach dataset.

Chapter 5 deals with model evaluation, and thus covers Objective 3.
Sections 5.1 and 5.2, first, describe two preliminary experiments concerning
hyperparameter optimisation. In Experiment 1, described in Section 5.3, the
three modelling approaches are evaluated and compared (Objective 3.1). In
Experiment 2, described in Section 5.4, the relevance of the features is eval-
uated in two sub-experiments (Objective 3.2). In Experiment 3, described
in Section 5.5, the effect of the three model extensions is evaluated in three
sub-experiments (Objective 3.3). In Experiment 4, described in Section 5.6,
a comparison between the performance of a selection of the models presented
in this thesis and the performance of a number of existing voice separation
systems is made (Objective 3.4). Chapter 5 is concluded with a discussion of
a number of overarching issues that stem from limitations of the modelling
approaches, presented in Section 5.7.

In Chapter 6, finally, first a summary of the preceding chapters is given
in Section 6.1. Following this, in Section 6.2 conclusions are presented, and
in Section 6.3, perspectives for future work are outlined.





2

Background and related work

In this chapter, the background to the research presented in this thesis is out-
lined. In Section 2.1, which deals with terminology, a number of important
recurring terms are defined: voice, polyphonic music, and voice separation.
In Section 2.2, then, the musicological background to the research is given.
The sixteenth-century lute is introduced, its notation—lute tablature—and
the problems it entails with respect to the reflection of polyphonic structure
are described, and the rationale behind the focus on intabulations, instru-
mental arrangements of polyphonic vocal works, is explained. In Section 2.3,
lastly, the computational background to the research is provided. The musi-
cological problem described in Section 2.2 is linked to the problem of voice
separation, existing research into voice separation in music in symbolic for-
mats is discussed, and systems for voice separation are compared.

2.1 Terminology

There are three important terms, all of which can be considered to be key
terms in the research carried out in this thesis: voice, polyphonic music, and
voice separation. Before giving any musicological or computational back-
ground, these terms must be defined clearly.

2.1.1 Voice

In the field of musicology, when not referring to the human voice, the term
voice denotes an individual musical line, either sung or played, that “con-
tribute[s] to one or more elements of the music” (Drabkin, 2001, p. 164).
Often-used alternatives are part, or, less frequently, voice part. Cambouropou-
los (2008) acknowledges ambiguity of the term, and distinguishes between (i)

9
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a music-theoretical meaning, where a voice is defined as a “monophonic se-
quence of successive nonoverlapping [sic] musical tones” (p. 78), and (ii) a
perceptual meaning, where it is defined as a “perceptually independent se-
quence of notes or multi-note simultaneities” (p. 78, emphasis mine). The
former meaning corresponds to the musicological definition of the term; in
the latter meaning, where a voice is not necessarily monophonic, it is re-
garded as an equivalent of an auditory stream, a phenomenon described in
the field of music psychology. The term is coined by Bregman and Camp-
bell (1971), who define an auditory stream as “a sequence of auditory events
whose elements are related perceptually to one another, the stream being
segregated perceptually from other co-occurring auditory events” (p. 244).

Throughout this thesis, the term voice is used in its musicological (or
music-theoretical) meaning, denoting a monophonic sequence of notes. Where
a sequence of notes or multi-note simultaneities is intended, the term stream
is preferred.1

2.1.2 Polyphonic music

In MIR research, the term polyphonic music is generally used to denote
any kind of music in which “more sounds are playing at the same time”
(Orio, 2006, p. 10), or, more specific, in which “multiple notes sound at a
time” (Byrd and Crawford, 2002, p. 255). By this definition, many genres
of music—ranging from a Renaissance motet to a twenty-first-century rock
song—may be categorised as polyphonic music.

The definition used in this thesis is somewhat more restricted, and re-
mains closer to the musicological notion of what polyphony is (see, for exam-
ple, Frobenius et al., 2001). Music is considered to be polyphonic if it satisfies
three criteria: (i) it must consist of multiple parts, (ii) the individual parts
must be of equal importance, and (iii) the individual parts must, at least to
some extent, move independently.

2.1.3 Voice separation

Voice separation (also encountered is voice segregation) is defined by Cam-
bouropoulos (2008) as “the task of separating a musical work consisting of
multi-note sonorities into independent constituent voices” (p. 75). Although
a suitable starting point, this definition leaves some room for interpretation.
First, it does not specify what multi-note sonorities are. A multi-note sonor-
ity shall therefore be defined as a multi-note musical event occurring at time

1Additionally, when referring to others’ work, the original terminology is followed.
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t, at least one note of which has an onset time that is equal to t. If all the
notes have an onset time equal to t, the multi-note sonority is said to be
left-aligned. From this definition, then, it follows that there can also exist
single-note sonorities. A single-note sonority shall be defined as a single-note
event occurring at time t, the only note of which has an onset time that is
equal to t. In polyphonic music, single-note sonorities generally constitute
the minority. However, their use, as well as the use of non-left-aligned multi-
note sonorities, increases the rhythmic salience of the individual voices, which
promotes their independence. Second, Cambouropoulos’s definition does not
specify whether the term voice is intended in its music-theoretical or in its
perceptual meaning (see Section 2.1.1).

In this thesis, a slightly elaborated version of Cambouropoulos’s defini-
tion is therefore used. Voice separation is taken to denote:

The task of separating a musical work consisting of single-note and
multi-note sonorities into independent constituent voices, that is, mono-
phonic sequences of successive non-overlapping notes.

2.2 Musicological background: the lute and

its music in the sixteenth century

From its rise in the late fifteenth century to its gradual decline in the second
half of the eighteenth century, the lute remained among the most popular
solo instruments in Western Europe. Played in social settings ranging from
the church to the court to the tavern, throughout all social classes, and
by professionals and amateurs alike, a vast and diverse amount of music
was written for it. The instrument’s historical significance is attested by
over 360 printed and over 500 manuscript sources extant today, containing
approximately 60,000 compositions (Ness and Kolczynski, 2001).

In this thesis, the focus is on sixteenth-century Renaissance lute music.
Figure 2.1 shows a typical Renaissance lute with six courses, that is, string
pairs, and eight frets, pieces of gut string tied around the neck. The vibrating
part of a course can be shortened by pressing a finger against a fret; because
the frets are placed at semitone intervals, stopping a course at the nth fret
thus raises the pitch of the open (that is, unstopped) course by n semitones.
As in Figure 2.1, the lute’s first (that is, highest-sounding) course was gener-
ally single-strung, while the others were doubled, generally tuned in unisons
(second and third courses) and octaves (the remaining courses). The double
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Figure 2.1 A typical Renaissance lute with six courses and eight frets. Image
taken from William Barley, A nevv Booke of Tabliture (London, 15964).

stringing served to brighten the tone of a course, and is reflected neither in
the tablature nor in transcription in modern music notation. The standard
tuning used for the most part of the sixteenth century is the so-called Re-
naissance tuning, where the courses are tuned in perfect fourths with a major
third in the middle. For an instrument as depicted in Figure 2.1, this thus
yields a range of approximately two octaves and a fifth.

2.2.1 Lute tablature

The music in the surviving sources is notated exclusively in lute tablature.
Lute tablature, a practical notation designed by and for lutenists, is a Griff-
schrift that instructs the player where on the fretboard to place the left-hand
fingers and which courses to pluck with the right hand. It was born out of
necessity for a new form of notation when in the late fifteenth century a shift
from playing monophonic music with a plectrum to playing polyphonic music
using the right-hand fingers took place. Throughout the sixteenth century,
various tablature systems were in use simultaneously, conceptually all very
similar to each other. Generally, four main systems are distinguished: on the
one hand there are the so-called French, Italian, and Spanish systems, and
on the other the German system. The former three all make use of a six-line
(or, sometimes, five-line) staff whose lines represent the courses of the lute,
where the lowest line may represent either the lowest-sounding (French and
Spanish tablature) or the highest-sounding (Italian tablature) course. The
frets at which the courses must be stopped are indicated either by means of
letters (French tablature) or numerals (Italian and Spanish tablature), where
a (or 0 ) indicates an open course, b (or 1 ) the first fret, etc. In the German
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system, then, a unique symbol—encountered are letters, numerals, and vari-
ous other symbols—is used for each course-fret combination. In this system,
a staff is therefore not needed. Unlike the other systems, the German tabla-
ture system is not uniform: because the system was originally invented for
the five-course lute, the symbols used to denote the frets on the later-added
sixth course can vary from source to source. In all four systems, rhythm
symbols indicating a minimum duration (more on this below) that applies to
all notes in a chord are placed above the tablature chords. Two practices of
rhythm symbol placement are discerned: in the one, symbols are given for
all tablature chords, while in the other, they are only provided when there is
a change in minimum duration.2 In Figure 2.2, fragments of music notated
in respectively Italian, French, and German lute tablature are shown.3

Although used to notate highly polyphonic music, lute tablature con-
veys no—or at best very limited—information about polyphonic structure,
which was assumed to be filled in by the player. Moreover, as improvisa-
tion and ornamentation were an important part of sixteenth-century perfor-
mance practice, the notation must not be considered prescriptive, but rather
descriptive, to be deviated from at one’s own discretion. Concretely, lute
tablature lacks two notational clues necessary for the visualisation of poly-
phonic structure. First, it does not indicate to which polyphonic voices the
tablature notes belong, and second, it does not indicate individual note du-
rations, but rather gives a minimum duration that applies to all notes in a
chord (and thus enables only the duration of the shortest notes in the chord
to be notated precisely). Notational devices by means of which the former
is achieved in mensural and modern music notation are, for example, stem
direction or placement of the notes on separate staves; notational devices by
means of which the latter is achieved are the use of various note head shapes
or colours, as well as different flaggings of the note stems.

An additional problem with tablature—although one not directly related
to polyphonic structure—concerns pitch, which depends on the tuning of the
lute. Contemporary treatises show that the sixth (lowest-sounding) course
was generally tuned to nominal G or A, although other pitches are mentioned
as well (Wachsmann et al., 2001; Radke, 1963). Additionally, scordatura
tunings deviating from the standard tuning were in use—the lowering of the
sixth course by a whole tone being the most common example. All of this,
however, is generally left unspecified in the tablature.

2Minor variants of the four main tablature systems exist; for more details, the reader
is referred to the existing literature. Suitable starting points are Dart et al. (2001) and
Smith (2002).

3More information on the pieces shown in this figure, as well as in subsequent figures,
is given in Tables 4.1 and 4.2.
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(a) Italian lute tablature. Abondante (15481), ‘Mais mamignone’, opening bars.

(b) French lute tablature. Phalèse (publ.) (15477), ‘Tant que uiuray’ [a4], opening
bars.

(c) German lute tablature. Judenkünig (15232), ‘Elslein liebes Elslein’, opening
bars.

Figure 2.2 Examples of staff-based and staffless lute tablature systems.

As has been acknowledged by researchers from various fields (see, for
example, Charnassé and Stepien, 1986; Griffiths, 2002; Rhodes and Lewis,
2006), its notational conciseness renders tablature difficult to interpret for
non-specialists, which in turn has led to the corpus having been researched
only sparsely. In the words of Griffiths (2002): “[i]t is the alien nature of
the lute’s tablature notation, marvellously practical and comprehensible to
players but seemingly impenetrable to others, that creates a psychological
and mechanical barrier and has inhibited many of even the finest scholars”
(p. 90). In Figure 2.3, a transcription in modern music notation of the
fragment shown in Figure 2.2a is given, which may serve to illustrate how
complex the polyphonic structure of the music notated in this deceivingly
simple-looking format can be.
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Figure 2.3 Transcription in modern music notation of a tablature fragment.
Abondante (15481), ‘Mais mamignone’, opening bars.

2.2.2 Intabulations

The surviving corpus of instrumental sixteenth-century lute music can be
subdivided into three main genres: dances or dance pairs, fantasias and ricer-
cares, and intabulations, that is, instrumental arrangements of polyphonic
vocal pieces. In this thesis, the focus is exclusively on intabulations. This
choice is motivated by three considerations. First, intabulations formed the
predominant lute genre in the sixteenth century (see, for example, Brown,
1965), and thus are highly representative of the contemporary lute practice.
All kinds of vocal pieces, secular and sacred, were arranged for the lute:
chansons, lieder, madrigals, motets, and even complete masses, varying in
number of voices from two to five (and in very rare cases even six), and
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ranging in structure from simple homophony to strict imitative polyphony.
Second, since the densest polyphonic structures in lute music are found in
intabulations, they constitute a challenging subcorpus. Third and most im-
portant, using intabulations facilitates the process of labelling the tablature
data (that is, mapping the individual data points—the tablature notes—to
voices), as the vocal models, whose polyphonic structure is unambiguous, can
be used as polyphonic blueprints. This thus presupposes that intabulations
are close arrangements of their vocal models. Studies of intabulations and
the intabulation process (Ward, 1952; Brown, 1973–1974, 1976; Thibault,
1976; Göllner, 1984) and studies of contemporary treatises on the subject
(Minamino, 1988; Canguilhem, 2001) indeed show that, although often a
significant amount of ornamentation was added, it was generally of great
concern to the intabulator to remain faithful to the vocal model. The pro-
cess of labelling the tablature data and the role of the vocal models therein
is described in further detail in Sections 4.1.1 and 4.1.2.

Although intabulators strove to remain faithful to the vocal models they
arranged, intabulations are generally not literal, verbatim transcriptions of
their vocal counterparts. First, the technical limitations of the instrument
had to be taken into account: often reworkings were necessary because pas-
sages were otherwise not playable. Second, in some cases, intabulators simply
chose to change the original notes. In general, two categories of adaptations
can be discerned, be they by necessity or by choice: changes and simplifica-
tions.4 Among the most common changes are included:

◮ Addition of notes, ornamental or other.
◮ Addition of complete bars or longer sections.
◮ Alteration of notes, in terms of pitch, duration, onset time, or

combinations of these.
◮ Omission of notes.
◮ Omission of complete bars or longer sections.

Furthermore, the following simplifications are encountered:

◮ The representation of unisons by a single note rather than by two
notes of the same pitch. Four examples of this practice can be
found in the fragment shown in Figure 2.3: two in the second half
of bar 3 (notes D4 and E4), and two in the first half of bar 4 (notes

4A more complete overview of such adaptations, most of them due to the technical lim-
itations of the lute, can be found in Minamino (1988), where two categories of reworkings
are discerned: alteration of counterpoint and alteration of rhythm (pp. 89–101).
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D4 and G4). A single note belonging to two voices shall henceforth
be referred to as a single-note unison.

◮ The omission of complete voices. Although a fairly drastic adapta-
tion, it is nevertheless a common one. It is generally a structurally
less important inner voice, such as the altus in a four-voice piece
or one of the tenors in a five-voice piece, that is left out.

2.2.3 Instrumental idiom: three characteristics

In instrumental music, the musical idiom is often determined by the par-
ticular possibilities of the instrument on the one hand, and by its technical
limitations on the other. This is no different in lute music. There are three
characteristics of lute music, all due to instrumental limitations, that deserve
special mention as they have a direct influence on the modelling approaches.
First, unisons are more often than not represented as a single note rather
than as two notes of the same pitch (as discussed in Section 2.2.2). Sec-
ond, although six-note chords are encountered from time to time, lute music
rarely contains more than five consistently independent voices. For practical
reasons, in this thesis it is therefore assumed that the maximum number of
voices possible on the lute is five. Third, as shown by Minamino (1988),
there was a general consensus among intabulators that a note played on the
lute could not be sustained beyond what was called a semibreve, a duration
that corresponds to a modern half note when a reduction of the values by a
factor of two is assumed (as is common practice when transcribing various
forms of early music).

2.3 Computational background: voice

separation

The musicological problem sketched in Section 2.2—how to determine poly-
phonic structure in lute tablature—can be interpreted as a problem of voice
separation. In this section, an overview of existing research into voice sep-
aration in symbolic music representations is presented. Two phases are dis-
cerned: Phase 1 (1980s–1990s), where the research focused on the mod-
elling of perceptual phenomena relating to polyphonic structure and audi-
tory stream segregation, and Phase 2 (2000s–2010s), where various systems
for voice separation were developed. Both the models from Phase 1 and the
systems from Phase 2 are discussed in detail. The section is concluded with
a discussion of two early applications of what can be considered rule-based
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voice separation systems, intended specifically for the automatic transcrip-
tion of German lute tablature. These applications were developed more or
less concurrently with, but independently of, the models developed in Phase
1.

2.3.1 Voice separation, Phase 1: modelling of
perceptual phenomena

In the first phase of research into voice separation (1980s–1990s), the research
focused on the modelling of perceptual phenomena relating to polyphonic
structure and auditory stream segregation, the process of grouping and sepa-
rating components of sound (Bregman and Campbell, 1971; Bregman, 1990).
Different approaches are taken.5

Huron (1989b) focuses on the perceptual independence of individual poly-
phonic voices, and presents a model for measuring pseudo-polyphony in Bach
fugues. The model predicts the number of concurrent streams perceived at a
certain time. A related experiment, focusing on listeners’ ability to identify
correctly the number of simultaneously sounding voices in polyphonic music,
is described in Huron (1989a).

Marsden (1992) applies a rule-based approach to modelling the perception
of voices in polyphonic music, and describes six models that are, again, tested
on Bach fugues. The first two of these models are production systems based
on production rules, mostly related to pitch and the Gestalt principle of good
continuation, a principle that allows established patterns to be continued.
The latter four are competition rule models analogous to neural networks,
where rules compete with each other and the outcome of the competition is
determined by the global functioning of a model through a system of weights.

The perception of apparent motion in music is modelled by Gjerdingen
(1994). The term is borrowed from psychology, and denotes how a succes-
sion of static individual events (such as musical notes) are perceived as a
moving, fluid whole (a melodic line). Gjerdingen uses an adaptation of the
Grossberg-Rudd neural network model (Grossberg and Rudd, 1989), origi-
nally intended to model apparent motion in vision, and applies it to pitch,
resulting in a model able to simulate several musical phenomena of auditory
stream segregation.

McCabe and Denham (1997), lastly, present a two-layer leaky integrator
neuron model of the early stages of auditory stream segregation. The model
segregates acoustic input into a foreground stream and a background stream,

5The overview presented here is by no means exhaustive; it is limited to the studies
cited most frequently in the research conducted in Phase 2.
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and is capable of replicating the results from a number of psychophysical
experiments relating to auditory stream segregation.

2.3.2 Voice separation, Phase 2: voice separation
systems

The first phase of research into voice separation, as discussed above, can
be regarded as a preliminary phase or theoretical background for the sec-
ond phase (2000s–2010s), where systems for voice separation were developed.
Two categories can be discerned: rule-based systems (the majority, discussed
first below) and machine learning systems. The behaviour of rule-based sys-
tems is governed and formally described by a set of pre-defined rules. Machine
learning systems, on the other hand, do not solely rely on knowledge encoded
in them, but instead learn from training data to adapt their behaviour.

A common element that links the systems in both categories together is
that all of them, in one way or another, are based on at least one of two fun-
damental perceptual principles associated with auditory stream segregation.
These two principles are presented by Huron (2001) as the Pitch Proximity
Principle and the Principle of Temporal Continuity. The former dictates that
“[t]he coherence of an auditory stream is maintained by close pitch proximity
in successive tones within the stream” (p. 24), and the latter that “[i]n order
to evoke strong auditory streams, use continuous or recurring rather than
brief or intermittent sound sources” (p. 12). Put differently: the closer two
notes are to one another in terms of pitch or time, respectively, the more
likely they are perceived as belonging to the same voice.

2.3.2.1 Rule-based systems (1)

Cambouropoulos (2000) briefly describes an elementary version of a stream-
ing algorithm that uses path length minimisation. The algorithm, which is
part of a larger system for automatic transcription of MIDI data into modern
music notation, is based on the Gestalt principle of proximity and attempts
to find, after the music is segmented into beats, the shortest streams that
connect all onsets within the beats. It is acknowledged, however, that the
problem is not trivial, and that the algorithm presented can be improved.

Temperley (2001) presents a preference rule system for contrapuntal ana-
lyis. Preference rules are criteria to evaluate a possible analysis; the system
is based on five of such rules. Two of them, the Pitch Proximity Rule and
the White Square Rule, match the Pitch Proximity Principle and the Princi-
ple of Temporal Continuity; the other two prescribe to minimise the number
of voices (New Stream Rule) and to avoid shared notes (Collision Rule).
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The fifth rule, added only following testing, is the Top Voice Rule, which
prescribes to maintain a single voice as the top voice. Numerical scores,
reflecting to which extent the preference rules are satisfied, are assigned
to individual analyses; the analysis that gets the highest score is selected.
Dynamic programming techniques are used to limit the amount of possible
analyses that are to be evaluated. In later work, Temperley (2009) presents
a unified probabilistic model of polyphonic music analysis. This model in-
tegrates three aspects of music analysis—metrical analysis, harmonic analy-
sis, and stream segregation—and captures the complex interactions between
them. The stream segregation analysis process presented can be regarded as
a probabilistic version of the system presented in Temperley (2001).

Chew and Wu (2005) present a contig mapping approach that bears sim-
ilarities to the saturated chord approach adopted by Charnassé and Stepien
(1992) and discussed in Section 2.3.3. In addition to the Pitch Proximity
Principle, a second perceptual principle underlying their approach is defined:
the Stream Crossing Principle, prohibiting voice crossing. Their algorithm
divides the music into segments where a constant number of voices is active,
the contigs (the term is borrowed from computational biology). The max-
imal voice contigs, in which the number of voices that is active equals the
maximum number of voices, act as starting points. The notes they contain
are first assigned to voices, where, following the Stream Crossing Principle,
the lowest note is simply assigned to the lowest voice, etc. The notes in the
maximal voice contigs are then connected to the notes in the neighbouring
(left and right) contigs, where the cost of the connection of two available
notes is determined by their absolute pitch difference (cf. the Pitch Proxim-
ity Principle). After the connections have been established, the neighbouring
contigs are connected to their neighbours, etc. This crystallisation process is
completed when all contigs have been connected. Worth mentioning, lastly,
is that a highly thorough evaluation method, for which three tailor-made
metrics are defined (see also Section 5.6.2), is used to evaluate the algorithm.

A modified version of Chew and Wu’s algorithm is presented by Ishigaki
et al. (2011), who adapt the original algorithm by prioritising the connection
of contigs that share a boundary at which the number of voices increases.
This adaptation is based on the assumption that, in order to stand out, new
voices (or voices re-entering after a period of rest) enter at a substantial
distance from the already active voices (cf. the Pitch Proximity Principle).
The idea is that when two contigs are connected, this distinguishability of
the new voice prevents it from being connected incorrectly to the already
active voices. Thus, in repeated iterations through all contigs, the algorithm
connects adjacent contigs that share a boundary at which the number of
voices increases. In each iteration, the individual contigs grow in size; the
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connecting process is terminated when there are no more contigs to connect.
Madsen and Widmer (2006) present an algorithm for separating voices

in MIDI data that is, according to themselves, highly inspired by Temper-
ley (2001). The algorithm consists of a voice configuration unit and a note
assignment unit. The music is processed in a linear fashion, where voice
assignments are calculated locally, using a small lookahead. For groups of
notes, the voice configuration unit generates well-formed solutions by ensur-
ing that neither too few nor too many voices are available. The notes are then
assigned to voices by the note assignment unit, which evaluates all possible
voice assignments and calculates a preferred solution using a parametrised
cost function. The cost of assigning a note to a voice depends on its pitch
distance to the previous note in that voice (cf. the Pitch Proximity Prin-
ciple); furthermore, costs are assigned to starting or ending a voice, and to
adding a rest, that is, not assigning a note to an available voice.

Szeto and Wong (2006) consider streams to be clusters containing events
proximal in the pitch and time dimensions, and model stream segregation
as a clustering problem. Notes are defined as events, vectors consisting of a
start time, an end time, and a pitch. Relations between events are defined as
sequential (meaning that the notes do not overlap) and simultaneous (mean-
ing that they do overlap). Simultaneous events cannot belong to the same
cluster; therefore, relations between clusters are also defined as sequential
and simultaneous. The starting point is an initial clustering in which each
event is a separate cluster. By means of an an agglomerative single-link clus-
tering algorithm, in an iterative process all clusters are combined into larger
clusters until only n simultaneous sequential clusters—the streams—remain.
It must be noted, lastly, that for Szeto and Wong stream segregation is only
a means to an end—as can be deduced form the title of their study. Stream
segregation, it is suggested, should be included as a preprocessing step in sys-
tems for pattern matching in polyphonic music databases, as this is expected
to improve the quality of retrieved patterns.

2.3.2.2 Rule-based systems (2): non-monophonic voices

In all of the studies discussed so far, the term voice is used in its music-
theoretical meaning. Kilian and Hoos (2002) present a stochastic local search
algorithm for calculating an optimal voice separation. In their study, the
term voice is used in its perceptual rather than its music-theoretical meaning.
First, a piece is partitioned into slices of overlapping notes. The slices are
processed iteratively, where the notes in them are assigned to voices. A
stochastic local search algorithm is used to find assignments that minimise a
parametric cost function that assesses the quality of these assignments. This
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cost function is a weighted sum of four terms that penalise, respectively, large
pitch intervals between successive notes in a voice (cf. the Pitch Proximity
Principle), large gaps between successive notes in a voice (cf. the Principle
of Temporal Continuity), large pitch differences within a chord, and overlap
between successive notes in a voice. By weighting these terms differently,
different results can be achieved, where voices can be strictly monophonic
but may also contain multiple notes simultaneously. This is in line with their
aim to be able to create “reasonable and flexible score-notation” rather than
a “correct analysis” (p. 40), or even one that is valid in terms of auditory
stream segregation.

The perceptual concept of a voice as a stream that is not necessarily
monophonic is also fundamental to the Voice Integration/Segregation Algo-
rithm (VISA) presented by Karydis et al. (2007a,b). Two types of percep-
tual principles underly their approach: principles responsible for horizontal
integration (the Pitch Proximity Principle and the Principle of Temporal
Continuity), and principles responsible for vertical integration. Of the latter
kind are defined the Synchronous Note Principle, which is based on Huron’s
Onset Synchrony Principle (Huron, 2001), and which dictates that notes
that have the same onset time and duration tend to be merged into a single
sonority, and the Principle of Tonal Fusion, which is based on Huron’s Tonal
Fusion Principle (Huron, 2001), and which dictates that concurrent notes are
perceptually less independent when they form intervals that promote tonal
fusion. Tonal fusion is the phenomenon where two notes tend to be perceived
as one (Huron, 1991; DeWitt and Crowder, 1987). It is suggested that ver-
tical integration is prior to horizontal integration, and that an algorithm for
voice separation should thus first identify concurrent notes that merge into
single sonorities, and only thereafter, guided by the horizontal integration
principles, break all notes (or sonorities) down into separate streams. This is
reflected in the functioning of VISA. The music is processed in a linear fash-
ion and divided into sweep line sets, sets of notes with the same onset time.
For each sweep line set, it is determined whether to merge notes with the
same onset and duration (synchronous notes) or not. This is done by looking
at the context: if, within a definable window around the sweep line set, the
proportion of synchronous notes exceeds a definable threshold, the context is
assumed to be homophonic, and synchronous notes in the sweep line set are
merged; otherwise, they are not. The sweep line set is thus partitioned into
clusters, where a cluster may consist of a single note or of multiple notes. A
bipartite matching algorithm that minimises a cost function is then used to
match voices to clusters (if the number of detected voices is smaller than the
number of clusters in the sweep line set) or clusters to voices (if the number
of voices is equal or greater).
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Lastly, a revised version of VISA is described in Rafailidis et al. (2009).
The general functioning of the algorithm is left unchanged; revisions have
been made with respect to the enumeration of voices, the partitioning of the
sweep line sets into clusters, and the matching of notes to voices as well as
the cost calculation.

2.3.2.3 Machine learning systems

In addition to the rule-based systems described above, two machine learning
approaches have been tried. Kirlin and Utgoff (2005) present VoiSe, a sys-
tem designed to separate voices in both explicit and implicit polyphony. The
system consists of two components. The first is a same-voice predicate, imple-
mented as a learned decision tree. Based on the examination of a number of
features—5 measurements of pitch distance and 10 rhythmic features, among
which several forms of time distance (cf. the Pitch Proximity Principle and
the Principle of Temporal Continuity)—the predicate determines whether or
not two notes belong to the same voice. It does so for all note pairs within
two types of windows: one based on a maximum number of beats between
the offset of the first note and the onset of the second note of a note pair,
and one based on a maximum number of intervening notes. Per window, one
predicate is learned. The second component is a hard-coded algorithm that
maps notes to voices, and that is applied to a different excerpt of music than
the predicate is trained on. The algorithm moves through the music in a
linear fashion. If a note pair within a similar window as used for training the
predicate satisfies the learned predicate, the notes are mapped to the same
integer; otherwise, they are mapped to different integers.

Jordanous (2008) presents a probabilistic system that learns, based on
pitch only, how likely a note is to occur for a voice, as well as how likely a
transition between two notes is to occur. The system is partly inspired by
the approach taken in Chew and Wu (2005), notably with respect to the way
the music is processed. First, the music is broken down in smaller sections by
searching for marker points, chords in which all voices are present (cf. Chew
and Wu’s maximal voice contigs) and whose pitches are far apart. Second,
windows are defined around the marker points, extending both to the left
and the right; the window around a marker point meets the window around
the next marker point in the middle between the two. Third, starting at the
marker points and working towards their left and right window boundaries,
each note is assigned to a voice using the probabilities learned in the training
to maximise a cost function. The notes to the left of the first marker point
and subsequently those to the right of the last marker point are assigned in
two completing steps.
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2.3.2.4 A priori modelling assumptions

In all except two cases—the system by Kilian and Hoos (2002) and VISA
(Karydis et al., 2007a,b)—voices are assumed to be monophonic. Three more
of such a priori modelling assumptions can be distinguished: (i) voice crossing
is allowed (or not), (ii) voices are allowed to share notes (or not), and (iii)
the number of voices is known at the start of the voice assignment process
(or not). Note that assumptions (i) and (ii) need only be made a priori when
using a rule-based system. When using a machine learning system, they can
be made—but it can also be left to the system to learn whether voice crossing
occurs or whether voices are allowed to share notes.

Based on findings from music psychology showing that crossing streams
are difficult to perceive (Deutsch, 1975; van Noorden, 1975), in most of the
rule-based systems voice crossing is either not allowed or strongly discour-
aged. Only Madsen and Widmer (2006) explicitly allow them, but add that
for their algorithm solutions involving voice crossing are more costly and
therefore not the preferred choice. Voices sharing notes, second, is generally
also discouraged, on the grounds that the unison is the interval that most
promotes tonal fusion (DeWitt and Crowder, 1987; Huron, 1991). Third,
with regard to the number of voices, two approaches are discerned. In the
majority of the systems the number of voices is determined during the pro-
cess. Generally, it is preferred to be kept to a minimum. In the systems by
Chew and Wu (2005) and Jordanous (2008), then, the number of voices is
known at the start of the voice assignment process, as it is determined by the
maximal voice contigs from which the voice assignment process is seeded.

2.3.3 Applications for automatic transcription of lute
tablature

A series of articles published over the course of two decades (Charnassé
and Ducasse, 1971, 1973; Charnassé and Stepien, 1986; Charnassé, 1988;
Charnassé and Stepien, 1991a,b, 1992) report the research conducted by the
Équipe de Recherche sur l’Analyse et Transcription des Tablatures par Or-
dinateur (ERATTO), a research team that was based at the Centre National
de la Recherche Scientifique in Ivry-sur-Seine, France. Despite the use of
the plural tablatures in the team name, the research focused specifically on
automatic transcription of German lute tablature—a choice motivated by
the observation that this tablature style is the most challenging to interpret.
In a summarising article (Charnassé and Stepien, 1992) published around
the time of discontinuation of the team, the authors provide the history of
the project in a nutshell, as well as some of the methods proposed along the
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way. Additionally, two applications of rule-based voice separation systems
(where ad hoc rules are used rather than perceptual principles) intended for
automatic transcription of German lute tablature are described.

The first is a so-called one-pass restructuring exploration that uses sat-
urated chords—chords containing as many notes as there are voices—as an-
chor points. The music is processed in linear fashion (both left-to-right and
right-to-left are tried), in segments delimited by the saturated chords. Us-
ing a self-defined Principle of Continuity dictating that melodic lines in lute
music tend to be composed of small intervals, notes between two framing
saturated chords are connected to the contiguous notes closest in pitch. A
last-assigned note concept is used to improve connections. In this straightfor-
ward approach, a fair number of problematic situations are encountered—for
example, when large pitch distances between contiguous notes or voice cross-
ing (which is said to be mainly due to imitation) lead to what is called
continuity disruption, or, conversely, when multiple acceptable solutions lead
to ambiguity with respect to continuity. Such situations are handled with
additional ad hoc rules and heuristics, and the parametrisation of threshold
values for continuity decisions.

The second system, which again makes use of saturated chords and the
principle of continuity, is a fixed-rules inference system implemented in Pro-
log. It consists of two stages: first, imitative entries or other motifs are
identified and frozen, thus exempting them from any further continuity anal-
ysis. Second, the remaining notes are grouped together in chains based on
the principle of continuity (it is not entirely clear whether the frozen motifs
are included in the chains or whether they are considered separate chains).
Once all notes have been assigned to a chain, ambiguities and complex dis-
ruptions in continuity (which determine the beginnings and endings of the
chains) are resolved. Each chain is connected to a saturated chord or another
chain; production rules are used to determine good connections. Unambigu-
ous cases are resolved first; problematic cases lead to new production rules
and are resolved iteratively.

Although no numerical evaluation is given, it is concluded that the second
system yields “far better” (Charnassé and Stepien, 1992, p. 168) results
than the first. However, it is noted that the system is too dependent on
the concept of saturated chords forming a reliable framework to start from,
and, furthermore, that the results may improve when in addition to the
principle of continuity other rules—pertaining, for example, to harmony or
counterpoint—are modelled as well.





3

Method

In this thesis, the problem of voice separation is tackled using a supervised
machine learning approach: models are trained on example data (pairs of
input and desired output) to learn underlying rules or principles that map
the inputs to the outputs, and then applied to new, unseen data (inputs) to
make output decisions. More concretely, the models presented take as in-
put feature vector representations of musical entities—in this case, notes or
chords—and produce as output voice decisions. Three modelling approaches
are described:

MA1 A note-level classification approach using a neural network model.
MA2 A chord-level regression approach using a neural network model.
MA3 A chord-level probabilistic approach using a discrete hidden

Markov model.

This chapter, which describes the methodology used, is organised as
follows. A fully detailed description of the modelling approaches and the
models, the model extensions—simultaneous voice and duration modelling,
backward processing, and multi-pass processing using a bidirectional deci-
sion context—, and the feature set is given in Section 3.1. In Section 3.2,
the evaluation procedure, the evaluation metrics, and the evaluation modes
are discussed, followed in Section 3.3 by a detailed description of conflicts
occurring in MA1 and their resolution. Section 3.4, finally, gives the imple-
mentation details.

27
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3.1 Modelling

The different modelling approaches entail different learning methods. In
MA1, the data points are notes. Each note is represented as an n-dimensional
feature vector encoding properties of that note in its polyphonic context, with
which is associated a label encoding the voice class (the term is explained in
Section 3.1.2) the note belongs to. The model is trained to classify the data
correctly. In MA2, then, the data points are chords. Each chord is repre-
sented as a set of m n-dimensional feature vectors, each of them encoding
properties of that chord in its polyphonic context under one of m possible
mappings of the chord notes to voices. The model is trained to rate the cor-
rect mappings for the data the highest. In MA3, lastly, the data points are
also chords. Each chord is now represented as an n-dimensional feature vec-
tor encoding the pitches in the chord, with which is associated the mapping
of the chord notes to voices. The model is trained to find the most likely
sequence of mappings for the data.

3.1.1 Learning models

3.1.1.1 Neural networks

Neural networks are adaptive mathematical models that model complex re-
lations between input values and output values. In the research presented in
this thesis, standard three-layer feed-forward neural networks with resilient
backpropagation (Rprop) as the learning algorithm are used. Resilient back-
propagation (Riedmiller and Braun, 1993) is preferred over the standard
backpropagation algorithm (Rumelhart et al., 1986), firstly because it has
been shown to outperform the latter (Schiffmann et al., 1993; Riedmiller and
Braun, 1993; Riedmiller, 1994), and secondly because it does not have any
parameters that must be set (backpropagation requires the setting of a learn-
ing rate and a momentum). Not the classic algorithm, but the later variant
iRprop+ (Igel and Hüsken, 2000, 2003), which shows improvements in terms
of both robustness and convergence speed, is used.1 As the activation func-
tion for the neurons in the hidden layer and the output layer the sigmoid
function is chosen, where, given input z, the activation value of a neuron is
calculated as follows:

sigm(z) =
1

1 + e−z
. (3.1)

1Training with resilient backpropagation (or another backpropagation algorithm) is
susceptible to the flat spot problem (Fahlman, 1989). In the iRprop+ implementation used
(see Section 3.4), the flat spot problem is addressed by default; this is left unchanged.
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Figure 3.1 A three-layer neural network with n input neurons x, k hidden neurons
z, m output neurons y, and two bias neurons b.

Multilayer feed-forward neural networks are universal approximators
(Hornik et al., 1989; Hornik, 1991), meaning that they can represent any
function with arbitrary precision, depending on the number of neurons in
the network. This has the advantage that no assumptions need to be made
about the nature of the function that is modelled. On the other hand, train-
ing a network is a non-convex optimisation problem, which means that there
can be multiple local minima where the gradient descent learning algorithm
can get stuck.

Figure 3.1 gives a schematic representation of a three-layer neural network
as used for the research presented in this thesis. The sizes of the input and
output layer vary per modelling approach, as different feature vectors and
different output representations are used. The size of the hidden layer, then,
is a hyperparameter that is optimised for the various models in a preliminary
experiment (see Section 5.1.1). Both the input and the hidden layer contain
a bias neuron, which receives no inputs and outputs only the value 1.

All neural network models used in this thesis are trained using batch
training, where the network weights are initialised randomly, and the weight
update is performed after each iteration of the learning algorithm over the
complete training set. The number of iterations required for convergence
is determined by checking the voice decision accuracy (see Section 3.2.2)
and the network error every 10 iterations; when a stabilisation in both is



30 STRUCTURING LUTE TABLATURE AND MIDI DATA

Figure 3.2 A hidden Markov model with n hidden states S and observations
O. Horizontal arrows indicate transition probabilities; vertical arrows indicate
observation probabilities.

witnessed, convergence is assumed to be achieved.

3.1.1.2 Hidden Markov models

Hidden Markov models (HMM) are probabilistic models that define probabil-
ity distributions over sequences of observations. A sequence of observations
is generated by a sequence of hidden states, which cannot be observed di-
rectly. The transitions between the hidden states follow a Markov process,
where the probability distribution of a state St depends only on the state(s)
St−n, and not on those before t − n. Knowing the transition probabilities
(the probabilities of transitions between hidden states) and the observation
probabilities (the probabilities of an observation given a hidden state), the
most likely sequence of hidden states can be computed using the Viterbi
algorithm (Viterbi, 1967; Forney, 1973).

Hidden Markov models have proven to be very useful for modelling time
series data (Ghahramani, 2001)—a typical example is their application in
speech and language processing (Rabiner, 1989)—, and are being used in
many areas of MIR. In this thesis, a first-order (n = 1) hidden Markov model
is used. A schematic representation of such a model is given in Figure 3.2.

3.1.2 MA1: a note-level classification approach using
a neural network model

In MA1, an approach on the note level, the task of voice separation is mod-
elled as a multi-class classification problem, where the classes are the voices
the notes can be classified into. Each note in the dataset is represented as
an n-dimensional feature vector encoding properties of that note in its poly-
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phonic context, and with this feature vector is associated a label encoding
the voice class—a number between and including 0 and 4—the note belongs
to. There are thus five voice classes, a number that corresponds to the maxi-
mum number of voices assumed to be possible on the lute (see Section 2.2.3).
The goal is to have a model that, for each note in a piece, takes as input the
feature vector representing that note, and, based on that input, classifies the
note into the correct voice class. To this end, the model is trained so that
given a set of feature vectors, its outputs approximate the set of associated
labels as closely as possible.

The model used in this approach is a three-layer feed-forward neural net-
work model as described in Section 3.1.1.1. It has an output layer containing
five neurons, each of which represents one of the possible voice classes. Be-
cause the sigmoid activation function is used, the individual output neurons
have an activation value ranging between and including 0 and 1. This value
reflects the approximate average activation of the output neuron for a given
input. The model output for a given input is thus a five-dimensional vector
containing the activation values of the output neurons. The label associated
with an input, then, is a five-dimensional binary vector. Each of its elements
again represents one of the voice classes; the position of the 1 determines the
voice class encoded. The voice class decision for a given input is made by
determining the position of the highest activation value in the model output.
If this position corresponds to the position of the 1 in the label associated
with the input, correct classification is achieved. For each given input, the
model is thus trained to activate a certain output neuron more strongly than
the others. Ideally, the network output will be identical to the label; in prac-
tice, however, as observed in the experiments, it is always an approximation
(although often a very close one).

3.1.2.1 Single-note unisons

There is one characteristic of music written in tablature that complicates
the voice class decision slightly: the fact that each note can be a single-
note unison, a note belonging to two voice classes (see Sections 2.2.2 and
2.2.3). A label encoding two voice classes contains the number 1 twice. Thus,
theoretically, given an input encoding a single-note unison, the output of a
well-trained model will contain two high activation values that are close to
each other, and that are notably higher than the other activation values. For
each note in the tablature data, when making the voice class decision both
the highest and the second-highest value in the output are therefore always
considered. The output is assumed to represent a classification into two voice
classes if the second-highest activation value deviates no more than a defined
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percentage, the deviation threshold, from the highest. For all experiments
conducted in this thesis, this deviation threshold is set to 5%. However,
the deviation threshold heuristic is not entirely without problems; this is
discussed in more detail in Section 5.7.3.1.

3.1.2.2 Sigmoid versus softmax activation function

It can be argued that theoretically, it would be more appropriate to use the
softmax (normalised exponential) function as the activation function for the
output layer. With this function, given input zj, the activation value of the
jth neuron in the layer is calculated as follows:

softm(zj) =
ezj

∑K

k=1 e
zk
, (3.2)

where K is the total number of neurons in the layer. With this function, the
activation values of the output neurons will also range between and including
0 and 1, but will now sum to 1. This means that the network output can
be interpreted as a probability distribution, which in the case of a classifica-
tion task with binary vectors—also some sort of probability distributions—as
class labels is a highly convenient interpretation. However, in this thesis the
sigmoid function is preferred over the softmax function, as two observations
speak against the use of the latter. First, the elements of a label do not always
sum to 1 (that is, they cannot always be interpreted as a probability distri-
bution): in the case of single-note unisons, which account for approximately
1.5% of the tablature data, they sum to 2.2 This is likely to cause some loss
in the learning, as the softmax function cannot replicate this. Second, unlike
the sigmoid function, the softmax function cannot be used out-of-the-box for
simultaneous voice and duration modelling, as described in Section 3.1.2.3.

3.1.2.3 Simultaneous voice and duration modelling

The classification approach as described above can easily be adapted to in-
clude the modelling of full note duration, which, like voice information, is
not provided in the tablature but must be inferred. Note duration plays a
significant role in the voice separation process: because each voice is assumed
to be monophonic, the offset time of a note nt determines whether or not the
voice that note is assigned to is available for a following note nt+x. Modelling
voice and duration simultaneously is therefore hypothesised to be beneficial
to model performance.

2The tablature data consists of 11641 notes, 158 of which are single-note unisons.
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The durations are discrete; just like the voices, they can thus be inter-
preted as classes. Moreover, all durations used in tablature notation—the
semibreve ( or ), minim ( or ), semiminim ( or ), fusa ( or ),
and semifusa ( or )—are relative: each duration is the double of the next
smaller duration, and a multiple of the shortest duration encountered, the
semifusa.3 32 duration classes are used, where class 0 represents a semifusa
and class 31 a breve, the double of a semibreve (cf. the voice classes as de-
fined in Section 3.1.2). As discussed in Section 2.2.3, the longest sustainable
duration on the lute was considered to be the semibreve, in which there are
only 16 semifusae. This seems to render duration classes 16–31 superfluous;
however, durations exceeding the semibreve are sometimes justifiable—for
instance when a corona (fermata) is used at an important point of closure in
a piece. A duration class is encoded as a binary vector in a similar fashion
as a voice class; the result now is a 32-dimensional vector.

When modelling voice and duration simultaneously, the goal is to have a
model that, given as input a feature vector representing a note, classifies that
note simultaneously into the correct voice class and into the correct duration
class. The model’s output layer now contains 37 neurons: the first five of
these represent the voice classes, and the others the duration classes. Simi-
larly, the labels are now 37-dimensional; each of them is a concatenation of a
vector encoding a voice class and one encoding a duration class. Again, the
model is trained so that given a set of feature vectors, its outputs approxi-
mate the set of associated labels as closely as possible. The model output is
interpreted as two subvectors; the class decisions are made by determining
the position of the highest activation value(s) in the respective subvectors.

Simultaneous voice and duration modelling is the first model extension
(X1) proposed under Objective 1.2 (see Section 1.2); it is implemented for
MA1 only. It should be noted, lastly, that simultaneous voice and duration
modelling only applies to the tablature dataset—in the Bach dataset, the
notes’ full durations are always given, and thus need not be inferred.

3.1.2.4 Application to unseen data and conflicts

When the trained model is applied to unseen data, it makes the class decisions
for each note successively. The music is processed in linear fashion; chords
are always processed from bottom to top, as they are organised in the internal
representation used (see Sections 4.1.2 and 4.2.2).4 It may now occur that a

3To avoid terminological confusion, in this thesis the American nomenclature (whole
note, half note, etc.) is used when referring to duration in music in non-tablature formats.

4The reason for processing chords bottom-to-top is thus a purely practical one; it may
be worthwhile experimenting with processing them top-to-bottom as well, as in lute music
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voice class decision is made that conflicts with a previous voice class decision,
meaning that two simultaneous or overlapping notes will be assigned to the
same voice. This is a situation that is to be avoided if a voice is assumed to
be monophonic. Conflicts can occur between the decision for a note n in a
chord c and (i) the decision for another (lower) note in c, (ii) the decision for a
sustained previous note, that is, a note in a previous chord whose offset time is
greater than the onset time of n, and (iii) the decision for an interrupting next
note, that is, a note in a next chord whose onset time is less than the offset
time of n. Which conflicts can occur when depends both on the processing
mode (forward or backward; see Section 3.1.5) and on the decision context
(unidirectional or bidirectional; see Section 3.1.6). Conflict resolution is a
topic on its own, which is discussed in detail in Section 3.3.

3.1.2.5 Number of voices

The model used in MA1, which has an output layer of five neurons allocated
to voice classes (and, when modelling voice and duration simultaneously, an
additional 32 allocated to duration classes) can be applied to music with any
number of voices smaller or equal to five (and any number of durations rang-
ing from a semifusa to a breve). Neurons corresponding to non-existing voice
(or duration) classes will never be activated. The actual number of voices
in a dataset is determined prior to the training by finding the largest chord
in the set (where sustained notes, if applicable, are also considered when
determining the size of a chord). This number is needed for the resolution of
certain conflicts; this is discussed in more detail in Section 3.3.1.1.

3.1.2.6 Nomenclature

In this thesis, the model used in MA1 is referred to as N when modelling
only voice, and as N′ when it is extended with X1, that is, when modelling
voice and duration simultaneously.

3.1.3 MA2: a chord-level regression approach using a
neural network model

In MA2, an approach on the chord level, the task of voice separation is mod-
elled as a regression problem, where mappings of chord notes to voices are
rated. Each chord in the dataset is represented as a set of m n-dimensional
feature vectors, each of them encoding properties of that chord in its poly-
phonic context under one ofm possible mappings of the chord notes to voices.

the top voice, which tends to be more ornamented than the others, has some prominence.
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The goal is to have a model that, for each chord in a piece, takes as input the
feature vector set representing that chord, and, based on that input, rates the
correct mapping the highest. This is unlike a standard regression approach,
where desired outputs—which in this case would be ratings—are given. To
this end, the model is trained so that given a set of feature vector sets, for
each feature vector set the vector resulting from the correct mapping gets a
higher network output—in other words, is rated higher—than all the other
vectors in that feature vector set. This technique is called relative training,
and is described in more detail in Section 3.1.3.2.

To suit this modelling approach, the model, again a three-layer feed-
forward neural network model, has an output layer containing only a single
neuron, the comparator neuron. The activation value of this neuron ranges
between and including 0 and 1, and reflects the rating for a mapping.

3.1.3.1 Mappings: enumeration and pruning

For each chord, given the number of notes in the chord and the number of
voices in the dataset, all possible mappings of notes to voices are enumerated.
A mapping is encoded as an n-dimensional vector whose individual elements
represent a voice (where the first element is the top voice) and contain a
discrete value between −1 and n − 1, where −1 indicates that no note is
mapped to the voice, 0 that the first chord note (whose index in the chord
is 0; sustained previous notes are not included) is mapped to the voice, etc.
For reasons explained below, n is set not to the maximum number of voices
possible on the lute (five), but to the highest number of voices encountered
in the datasets used, four. An example of this representation is given in
Figure 3.3. Note that the vectorial representation used enables one note to
be mapped to two voices (see chords 13–15 and 18, which all contain a single-
note unison), but does not enable multiple notes to be mapped to one voice
(in which case the voice is no longer monophonic).

Only mappings that meet the following criteria are enumerated: (i) all
chord notes are mapped to a voice, (ii) each chord note is not mapped to
more than one (Bach dataset) or two (tablature dataset) voices, and (iii) each
chord note is not mapped to a voice already taken by a sustained previous
note (Bach dataset only). Both in order to avoid the method to become
computationally too expensive and to improve the model’s performance, from
the list thus generated all mappings containing more than two voice inversion
pairs are then pruned. A voice inversion pair is an instance of two voices
being inverted within a chord. The first chord of bar 4 in Figure 3.3a, for
example, where the tenor voice (T) lands above both the superius (S) and
the altus (A) after a leap of a fourth, contains two such pairs: TS (= ST)
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(a) Transcription in modern music notation.

10 [ 1, 0, -1, -1] 15 [ 1, 1, 2, 0]

11 [-1, 1, -1, 0] 16 [ 0, -1, -1, -1]

12 [ 0, -1, -1, -1] 17 [ 0, -1, -1, -1]

13 [ 1, 0, -1, 0] 18 [ 1, 0, 1, -1]

14 [ 2, 1, 2, 0] 19 [ 3, 1, 2, 0]

20 [ 0, -1, -1, -1]

21 [ 2, -1, 1, 0]

(b) Mappings for chords 10–21.

Figure 3.3 Vectorial representation of mappings of chord notes to voices. Abon-
dante (15481), ‘Mais mamignone’, bars 3–4 (chords 10–21).

and TA (= AT). When counting voice inversion pairs, sustained previous
notes (if applicable) are included, and unisons are not considered to be voice
inversions. The limit of two is chosen as this is the maximum number of
voice inversion pairs per chord encountered in the datasets.

That the pruning can be very effective in reducing the number of mapping
possibilities is shown in Table 3.1, which gives, both for the tablature dataset
and for the Bach dataset, the number of possibilities for a chord of n notes in
a context of v voices before and after pruning (all numbers provided are for
the case where there are no sustained previous notes). Note that where n is
smaller than v, the number of mapping possibilities is always higher on the
tablature dataset than on the Bach dataset. This is because on the tablature
dataset, up to v − n notes can in this case be mapped to two voices. The
table shows that the effect of the pruning increases as the number of notes



METHOD 37

Table 3.1 Number of mapping possibilities for a chord of n notes in a context
of v voices before and after pruning of mappings containing more than two voice
inversion pairs. Tablature and Bach datasets. B = before pruning, A = after
pruning.

n Tablature dataset Bach dataset
v = 3 v = 4 v = 5 v = 3 v = 4 v = 5
B A B A B A B A B A B A

1 6 6 10 10 15 15 3 3 4 4 5 5
2 12 12 42 40 110 100 6 6 12 12 20 20
3 6 5 60 38 330 161 6 5 24 20 60 50
4 24 9 360 85 24 9 120 45
5 120 14 120 14

in a chord grows, and that it is stronger when there are more voices.

3.1.3.2 Feature vector set generation and relative training

For each mapping in the list of enumerated mappings for a chord, a feature
vector is calculated. In each mapping the chord notes are distributed differ-
ently among the voices; thus, each of them leads to a different polyphonic
embedding of the chord, and therefore results in a different feature vector.
(Exactly how the polyphonic embedding is encoded in the features is de-
scribed in Section 3.1.7.2.) Each feature vector constitutes an element of the
feature vector set that represents the chord; the feature vector that results
from the correct mapping—henceforth referred to as the ground truth feature
vector—is placed as the first element of the set. It must be noted that not
all feature vector sets have the same size, as not all chords have the same
number of mapping possibilities.

For the training, a list of relative training pairs is created from the feature
vector sets representing the training data. A relative training pair is a pair
of feature vectors, the first element of which is always a ground truth feature
vector. For each feature vector set, the first element (the ground truth feature
vector) is paired up with every other element (feature vector), and each thus
created pair is appended to the list of relative training pairs. The entire
process of mapping enumeration and pruning, feature vector set generation,
and creation of the list of relative training pairs is outlined in Figure 3.4.

The list of relative training pairs is used to extract the actual training
data from. The model is trained using a method that is based on relative
ratings, where one item is to be rated higher than another. This method
is similar to the one proposed by Zheng et al. (2007), which, in turn, is a
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01 method enumPruneAndList(training set t) returns list

02 create empty list of RTPs l x

03 for each chord c in t x

04 enumerate and prune mappings x

05 create empty feature vector set F x

06 create empty ground truth feature vector g x

07 for each mapping m for c x

08 calculate feature vector f(c, m) x

09 if m is correct for c x

10 g := f(c, m) x

11 insert f(c, m) at top of F x

12 else x

13 append f(c, m) to F x

14 for each feature vector f != g in F x

15 create RTP (g, f) and append to l x

16 return l x

17 end method x

Figure 3.4 Mapping enumeration and pruning, feature vector set generation, and
creation of the list of relative training pairs. RTP = relative training pair.

generalisation of a method suggested earlier by Braun et al. (1991). The
latter has previously been applied successfully to tackle musical problems
by Weyde and Dalinghaus (2003) and Hörnel (2004). The model is trained
so that for each chord, the ground truth feature vector is rated higher than
any of the other feature vectors for that chord—in other words, so that the
first element of each relative training pair extracted from the feature vector
set representing the chord is rated higher than the second. Thus, in each
training iteration, the list of relative training pairs is presented to the model.
The model then evaluates both elements of each relative training pair; if
the model output (rating) for the first element does not exceed that for
the second by at least margin ε (a suitable value for which is determined
in a preliminary grid search; see Section 5.1.2), the relative training pair
is turned into two training examples, consisting of the respective feature
vectors and their ratings. Because the ground truth feature vector is to be
rated higher, the original ratings are switched and adapted: the ground truth
feature vector gets the higher rating, to which ε is added, while the other
gets the lower, from which ε is subtracted. When all relative training pairs
have been checked, the model is trained with the training set thus created.
The procedure as described is repeated in the next training iterations. In the
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01 method createTrainingEx(list of RTPs l) returns list

02 create empty list of TEs m x

03 for each RTP (g, f) in l x

04 if rating(g) < (rating(f) + epsilon) x

05 append TE (g, rating(f) + epsilon) to mx

06 append TE (f, rating(g) - epsilon) to mx

07 return m x

08 end method x

Figure 3.5 Creation of the list of training examples for each training iteration.
TE = training example.

case when at the beginning of a training iteration all relative training pairs
are rated as desired, the training is fully successful. The process of creating
the training data for each training iteration is outlined in Figure 3.5.

3.1.3.3 Application to unseen data

When applying the trained model to unseen data, a mapping decision is
made for each chord successively. As in MA1, the music is processed in linear
fashion. For each chord, all possible mappings are enumerated and pruned,
and a feature vector set is created. (Note that the ground truth feature
vector now cannot be placed at the top of the set, as the correct mapping
is unknown.) Each feature vector in the set is then rated; the mapping that
goes with the feature vector that receives the highest rating is the mapping
given to the chord.

Lastly, three things must be noted. First, when applying the trained
model to unseen data, due to incorrect mapping decisions for previous chords,
the rare case may arise where the list of enumerated mappings contains only
mappings with more than two voice inversion pairs. This is a situation that
can only occur on the Bach data, where it can be caused by sustained previous
notes mapped to the incorrect voice. Because pruning would now result in an
empty list, in this case all remaining mappings are simply retained. Second,
as opposed to MA1, MA2 is conflict-free. As mentioned in Section 3.1.2.4,
in MA1, conflicts can occur between the voice class decision for a note n

in chord c and (i) the decision for another note in c, (ii) the decision for a
sustained previous note, and (iii) the decision for an interrupting next note.
In MA2, mappings to which (i) applies simply do not occur, as the mapping
representation used does not enable multiple chord notes to be mapped to one
voice. Mappings to which (iii) applies also do not occur, as the model used
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in MA2 is only implemented in forward processing mode (see Section 3.1.5).
Mappings to which (ii) applies, then, are eliminated in the enumeration (as
explained in Section 3.1.3.1). Third, both when training the model and when
applying it to unseen data, the possibility exists that when rating the feature
vectors in a feature vector set representing a chord, the highest rating is re-
ceived by more than one feature vector (the multiple-highest-rating problem).
In this case, rather than opting for a possibly complicated elimination pro-
cedure to determine the most likely candidate, or, alternatively, for random
selection (which has the advantage that it is a straightforward solution, but
which renders mapping decisions cumbersome to reconstruct), the mapping
that goes with the first feature vector in the set that gets this highest rating
is simply selected.

3.1.3.4 Number of voices

Theoretically, unlike the model used in MA1, the model used in MA2 can be
applied to music with any number of voices. However, a maximum number
of voices is nevertheless set. The reason for this is that the size and content
of the feature vector depend on the assumed maximum number of voices. As
is explained in more detail in Section 3.1.7.3, the higher this number is, the
longer the feature vector becomes, and the more unnecessary information it
may contain. In MA2, the maximum number of voices is therefore assumed
not to be the maximum number of voices possible on the lute, but rather
the highest number encountered in the datasets: four. As in MA1, the
actual number of voices in a dataset—which is now needed in the mapping
enumeration—is determined prior to the training by finding the largest chord
in the set.

3.1.3.5 Nomenclature

In this thesis, the model used in MA2 is referred to as C.

3.1.4 MA3: a chord-level probabilistic approach using
a discrete hidden Markov model

In MA3, also an approach on the chord level, the task of voice separation
is modelled as a probability problem, where, given an observation sequence,
a discrete hidden Markov model as described in Section 3.1.1.2 is used to
estimate hidden states. Here, the observations are the chords, and the hidden
states the mappings of chord notes to voices. Each chord c is represented
as an n-dimensional feature vector encoding the pitches (MIDI numbers,
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ordered from low to high) in the chord, where n thus equals the number of
notes in the chord. With this chord is associated a mapping of the chord notes
to voices. Each mapping mt for a given time frame t is an n-dimensional
vector whose individual elements represent a voice and contain a discrete
value between −1 and n−1, where n is equal to the highest number of voices
encountered in the datasets, four (this is the exact same representation as
used in MA2; see Section 3.1.3.1 and Figure 3.3). The goal is to have a model
that finds the most likely sequence of mappings for the data.

To this end, first, a chord dictionary and a mapping dictionary, listing
the set of chords C and the set of mappings M contained in the dataset,
respectively, are created. For each training set used in the cross-validation
procedure (see Section 3.2.1), then, an |M |×|M | transition probability matrix
P (mt+1|mt), denoting the probability of transitioning to mapping mt+1 given
mapping mt, a |C| × |M | observation probability matrix P (ct|mt), denoting
the probability of observing chord ct given mapping mt, and a 1×|M | initial
state matrix P (m0), denoting the probability of a mapping being the initial
state m0, that is, the first mapping of a piece, are created. This is done by
increasing, for each occurrence in the training set of a mapping transition, a
chord-mapping combination, or a mapping as initial state, the corresponding
element in the appropriate matrix by 1, and then normalising each element
by dividing it by the sum N of the matrix row or column (depending on
the layout of the matrix) it is in. The possibility now exists that a mapping
transition, a chord-mapping combination, or a mapping as initial state does
not occur in the training set, resulting in a probability of 0 for it. This is
problematic because on the test set, this mapping transition, chord-mapping
combination, or mapping as initial state will now not be considered: the
model has learned that it never occurs. To avoid such situations, a form of
Laplacian smoothing is applied, where all three matrices are initialised with
1s—in other words, where one extra occurrence of each mapping transition,
chord-mapping combination, or mapping as initial state is assumed.

An unwanted side effect of the smoothing, however, is that impossible
chord-mapping combinations in the observation probability matrix (combi-
nations where the number of notes in the chord and the number of notes
encoded in the mapping are different) now also receive a non-zero probabil-
ity ( 1

N
)—whereas a probability of 0 is actually desired in these cases. This is

corrected by setting all elements in this matrix that represent an impossible
chord-mapping combination back to 0.

The most likely sequence of mappings in the test set, finally, is computed
using the Viterbi algorithm.
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3.1.4.1 Number of voices and conflicts

As is the case with the model used in MA2, the model used in MA3 can be
applied to music with any number of voices. In MA3, however, the maxi-
mum number of voices assumed—which is reflected by the dimension of the
mapping vector—does not restrict the model in any way. The dimension of
the mapping vector is a parameter that can be set to any desired value; as
mentioned in Section 3.1.4, for this thesis it is set to four. Unlike in the other
two modelling approaches, then, in MA3 the actual number of voices in a
dataset is irrelevant and thus needs not be determined.

Furthermore, as in MA1, in MA3 conflicts (see Section 3.1.2.4) can occur
—but only on the Bach dataset, where a note in chord ct may be mapped to
a voice that is actually not available because a sustained previous note in a
chord ct−x is also mapped to it. Because no duration information is used in
the model, in MA3 these conflicts are currently left unresolved.

3.1.4.2 Nomenclature

In this thesis, the model used in MA3 is referred to as H.

3.1.5 Processing modes

The processing mode determines the direction in which a piece is processed.
Two different processing modes can be discerned: forward (fwd), where the
piece is processed from left to right, and backward (bwd), where it is processed
from right to left, starting with the final chord. (As already mentioned
in Section 3.1.2.4, in MA1, irrespective of the processing mode, the chords
themselves are always processed from bottom to top.)

The forward processing mode is the most intuitive, as it corresponds to
the direction in which music unfolds—new notes get their meaning in the
context of what is heard before—and in which the listener experiences it.
The motivation behind the backward processing mode has to do with what
may be called the transparency of the polyphonic structure. In much poly-
phonic music, the polyphonic fabric tends to become texturally saturated
towards the end of a piece, whereas at the beginning, the texture tends to
be thinner (the latter applies especially to pieces written in imitative coun-
terpoint, where the individual voices usually enter successively). A typical
example is given in Figure 3.6.

In the opening bars of a piece, it therefore often becomes clear to which
voice the first notes belong only when one or more other voices enter. To-
wards the end, on the other hand, such problems occur only rarely, as here all
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Figure 3.6 Textural saturation. Pisador (15527), ‘Pleni de la missa misma’,
opening and closing bars.

voices are generally active. The final chord (and to a certain extent the mu-
sic leading up to it) usually provides a very stable point of reference: firstly,
almost without exception all voices are represented here, and secondly, they
tend to be represented in the right order—that is, without crossing one an-
other.5 In backward processing mode, where a model starts processing the
polyphonically most transparent end of a piece—all voices are represented
and do not cross one another—, the risk of starting on the wrong foot, poten-
tially leading to a propagation of wrong decisions, is therefore smaller than
in forward processing mode.

Backward processing is the second model extension (X2) proposed under
Objective 1.2 (see Section 1.2); like the first model extension, it is imple-
mented for MA1 only.

3.1.6 Decision context and double-pass models

The processing mode determines only the direction in which a piece is pro-
cessed; the information on which the class or mapping decision is based
depends on the decision context. The decision context is the polyphonic con-
text within which the feature vector for a note (MA1) or the set of feature
vectors for a chord (MA2) is calculated (the term does not apply to MA3).
Two types are used: a unidirectional and a bidirectional decision context.
As the names suggest, the former extends to only one direction—either left

5This is the case for all pieces in both the tablature dataset and the Bach dataset used
in this thesis.
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Figure 3.7 Unidirectional (extending to the left or right) and bidirectional
(extending to both directions) decision contexts. Abondante (15481), ‘Mais
mamignone’, bars 3–4.

or right—of a note or chord, whereas the latter extends to both directions.
A unidirectional decision context thus only partially embeds a note or chord
polyphonically, whereas a bidirectional one does so completely. The decision
context is bounded by the immediate adjacent notes in all voices; its size,
which depends on the onset time of these notes, therefore varies from chord
to chord. To illustrate, Figure 3.7 shows, for all notes in a chord, the unidi-
rectional decision contexts extending to the left and to the right. Combined,
these form the bidirectional decision context.

For reasons explained below, in this thesis, the unidirectional decision
context extending to the left is only used in forward processing mode, and
the one extending to the right only in backward processing mode. An ap-
proach comparable to one in which a model that uses a unidirectional decision
context extending to the right is used in backward processing mode, is found
in the work of Charnassé and Stepien (1992). They call the processing mode
the scanning direction, and report to encounter fewer problems when scan-
ning the music from right to left. They state that “[a]lthough this seems very
strange, there is some kind of underlying logic to it. Th[e] music is heavily
embellished, and ornaments usually lead into a chord or sustained note. Con-
sequently, as an ornament approaches its resolution chord, it seems to narrow
down its range” (p. 163).

The rationale behind using a bidirectional decision context is the avail-
ability of more comprehensive information on the polyphonic embedding of
a note or chord when the class or mapping decision is made. However, a
model that uses a bidirectional decision context—henceforth referred to as a
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bidirectional model, as opposed to a unidirectional model—cannot be used in
a first pass through the data. This is because in a first pass, when applying
a trained model to unseen data, the polyphonic information—that is, voice
and, if applicable, duration information—available to the model only grows
incrementally with every note or chord that is processed and for which a
class or mapping decision is made (more on this in Section 3.2.4.1). Thus, in
forward processing mode, only polyphonic information to the left of the note
or chord the decision is made for is available, and in backward processing
mode only information to the right. (In short: in a first pass, only infor-
mation in the direction opposite to the processing direction is available.) A
bidirectional model, however, requires the availability of this information in
both directions. The idea is therefore to acquire, in a first pass through the
data, polyphonic information from a unidirectional model, and subsequently
to annotate the data with it. In a second pass, then, a bidirectional model
can be employed. In the calculation of the features that encode a polyphonic
relation of a note with another note, either from the direction identical to the
processing mode or from the direction opposite to it, information acquired in
the first pass is now used. This applies both when the model is trained and
when it is applied to unseen data. The actual, correct polyphonic information
serves exclusively as training targets. (As opposed to in the first-pass model,
where the correct polyphonic information is used in the feature calculation
when the model is trained, but the information provided by the model itself
when it is applied to unseen data (see also Section 3.2.4.1), in the second-pass
model this information thus always comes from the same distribution.6) The
intuition is that the model learns to correct incorrect decisions from the first
pass, or, more precisely, learns to make correct decisions even when given
input based on incorrect polyphonic information. The enhanced decision
context is expected to be beneficial in this process.

Multi-pass processing using a bidirectional decision context is the third
model extension (X3) proposed under Objective 1.2 (see Section 1.2); like
the first two model extensions, it is implemented for MA1 only.

3.1.6.1 Nomenclature

In this thesis, the model used in MA1 is referred to as B when it is extended
with X3, that is, when a bidirectional decision context is used, and the data
is annotated with only voice information, and as B′ when it is extended with

6An alternative approach, where the polyphonic information with which the data is
annotated is updated note for note with the information provided by the second-pass
model when this model is applied to unseen data, brings with it several complications and
is therefore left for future work.
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X3 and the data is annotated with both voice and duration information.

3.1.7 Features

Feature design is an essential aspect of the modelling, as the features must
capture information that is relevant to the task at hand. This section con-
cerns the features used in MA1 and MA2 only; the only feature used in MA3,
pitch, is exactly the same as its counterpart in these modelling approaches.
The features used are taken from the same superset, which contains features
belonging to four different categories. With each successive category, the
scope of the features contained by it widens:

(1) Note-level features, capturing individual properties of a note (for
example, pitch).

(2) Note-chord features, capturing aspects of a note’s position within
a chord (for example, the note’s sequence number in a chord).

(3) Chord-level features, capturing properties shared by all notes in a
chord (for example, their metric position).

(4) Polyphonic embedding features, capturing aspects of the poly-
phonic relation of a note to another note to the left or to the right
(for example, proximity in pitch or time), or of polyphonic rela-
tions within the chord (for example, the number of voice inversion
pairs).

In what follows, the features contained in each category are described in
detail. Most of the features in all categories but the first are used in both
modelling approaches, but some of them are specific to one approach. If this
is the case, it is indicated before the feature description. Features marked
with an asterisk (*), lastly, apply only to the tablature dataset.

3.1.7.1 Feature descriptions, categories (1)–(3)

The following note-level features are defined:

pitch The pitch of the note, expressed as a MIDI number. On the
tablature dataset, the same tuning (G) is assumed for all pieces, so
that each tablature symbol always corresponds to the same pitch.7

7Of course, this does not hold when the standard tuning is used for one piece and
a scordatura tuning for another. The most common scordatura tuning, where only the
lowest-sounding course is altered (see Section 2.2.1) is used in only two pieces in the dataset
(see Table 4.2). The effect of scordatura tunings on this feature can in this case thus be
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course* The course the note is played on. As per convention, the
highest-sounding course is numbered 1 (see Section 2.2).

fret* The position on the fretboard where the course is stopped. An
open course yields a value of 0.

duration The note’s duration. On the tablature dataset, this is the
minimum duration, that is, the duration as indicated in the tab-
lature; on the Bach dataset, where the concepts of minimum and
maximum (see below) note duration as used on the tablature
dataset do not apply, this is the actual, full duration. On the
tablature dataset, durations are measured in breves; on the Bach
dataset, they are measured in whole notes (see also Section 3.1.2.3,
footnote 3).

maxDuration* The note’s duration as determined by the next note on
the same course.

isOrnamentation (MA1) True (1) if the note’s duration is a fusa (or
a sixteenth note on the Bach dataset) or shorter and the only note
in the chord, false (0) if not.

The note-chord features comprise:

indexInChord The index (based on pitch) in the chord. Any sus-
tained previous notes or interrupting next notes (if applicable) are
included.

pitchDistToNoteBelow (MA1) The distance in pitch, measured in
semitones, to the note below in the chord. Any sustained previous
notes or interrupting next notes (if applicable) are included.

pitchDistToNoteAbove (MA1) The distance in pitch, measured in
semitones, to the note above in the chord. Any sustained previous
notes or interrupting next notes (if applicable) are included.

The chord-level features comprise:

chordSize The number of notes in the chord. Any sustained previous
notes or interrupting next notes (if applicable) are included.

metricPosition The note’s metric position in the bar. The metric
position is not relative to the meter used; the metric position for
a note at onset time 0.5, for example, will be 0.5 both in a 2

2 meter
and in a 3

2 meter.
numNotesNextChord (MA1) The number of new notes (that is, notes

said to be minimal.
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that are not sustained from previous chords) in the next chord.
This feature is expected to be of use for the duration class deci-
sion when modelling voice and duration simultaneously in forward
processing mode.

intervals A vector the size of the maximum number of intervals in a
chord (that is, the maximum number of voices −1), encoding the
intervals, measured in semitones, in the chord. Any sustained pre-
vious notes or interrupting next notes (if applicable) are included.
For each interval the chord is short of the maximum number of
intervals, a default value of −1 is added.

3.1.7.2 Feature descriptions, category (4) (polyphonic embedding
features)

The polyphonic embedding features form the largest and most important
category. They comprise:

pitchProx A vector the size of the maximum number of voices, en-
coding for each voice v the proximity in pitch of the note to the
adjacent note in v. If a voice is not in use, the corresponding vec-
tor element is set to the default value −1. If a voice is in use but
there exists no adjacent note (that is, if the note the proximity is
calculated for is the first or final note in a voice), the corresponding
vector element is also set to this default value.

iOProx As above, now encoding for each voice v the proximity in inter-
onset time of the note to the adjacent note in v.

oOProx As above, now encoding for each voice v the proximity in offset-
onset time of the note to the adjacent note in v.

These features require a somewhat more elaborate explanation. Prox-
imity, first, is defined as the inverted distance, where distance in pitch is
measured in semitones, and distance in time in breves (tablature dataset) or
whole notes (Bach dataset). Proximity is favoured over distance as it em-
phasises differences between smaller distances. The position of the adjacent
note in a voice, second, depends on the processing mode used: in forward
processing mode, it is the previous note (the note to the left) in the voice,
while in backward processing mode, it is the next (the note to the right). The
proximities are calculated as follows. Let nt be the note the class decision is
made for (MA1), nv

t the note mapped to voice v under mapping m (MA2),
and nv

t±1 the adjacent note in voice v. Furthermore, let p(n) denote a note’s
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pitch, on(n) its onset time, and off(n) its offset time. For each voice v is
calculated:

◮ The proximity in pitch of nt (or, in MA2, nv
t ) to nv

t±1

pitchProx(v) =
1

|p(nt)− p(nv
t±1)|+ 1

, (3.3)

where values fall in the range (0, 1].
◮ The proximity in inter-onset time of nt (or n

v
t ) to nv

t±1

iOProx(v) =

{

1
(on(nt)−on(nv

t±1
))+1

if on(nv
t±1) < on(nt)

1
(on(nt)−on(nv

t±1
))−1

if on(nv
t±1) > on(nt)

, (3.4)

where values fall in the range (0, 1) if the upper case applies, that
is, if the adjacent note is to the left, and in the range (−1, 0) if
the lower case applies, that is, if the adjacent note is to the right.

◮ The proximity in offset-onset time of nt (or n
v
t ) to nv

t±1

oOProx(v) =

{

1
(on(nt)−off(nv

t±1
))+1

if off(nv
t±1) ≤ on(nt)

1
(on(nt)−off(nv

t±1
))−1

if off(nv
t±1) > on(nt)

(3.5)

if the adjacent note is to the left, where values fall in the range (0,
1] if the upper case applies and in the range (−1, 0) if the lower
applies, and

oOProx(v) =

{

1
(off(nt)−on(nv

t±1
))−1

if off(nt) < on(nv
t±1)

1
(off(nt)−on(nv

t±1
))+1

if off(nt) ≥ on(nv
t±1)

(3.6)

if the adjacent note is to the right, where values fall in the range
(−1, 0) if the upper case applies, and in the range (0, 1] if the lower
applies. It should be noted that on the tablature dataset, the off-
set time is determined by the minimum duration of a note when
modelling only voice, but by the full duration of a note when mod-
elling voice and duration simultaneously. On the Bach dataset, it
is always determined by the full duration.

With respect to the features pitchProx, iOProx, and oOProx, three
things should be noted. As shown above, the proximities have a slightly
different meaning in the different modelling approaches: in MA1, the prox-
imities of nt to the adjacent notes in all voices are calculated, whereas in
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MA2, for each voice v the proximities of nv
t to the adjacent note in v are

calculated. Second, as becomes clear from the above, the size of the decision
context (see Section 3.1.6) for a note or chord, which varies from note to note
and from chord to chord, is determined in the calculation of the proximities.
Third, the proximity features correspond directly to the two perceptual prin-
ciples that most of the existing voice separation systems are based on (see
Section 2.3.2)—the Pitch Proximity Principle and the Principle of Tempo-
ral Continuity (Huron, 2001), which dictate that the closer two notes are to
one another in terms of pitch or time, respectively, the more likely they are
perceived as belonging to the same voice.

Furthermore, the following polyphonic embedding features are used:

adjNoteOnSameCourse* (MA1) A binary vector the size of the max-
imum number of voices, encoding all voices with an adjacent note
on the same course by setting the corresponding vector elements
to 1. If a voice is not in use, the corresponding vector element is
set to 0. This feature is expected to be useful because on the lute
there is often a preference to play, if technically possible, notes
belonging to the same voice on the same course.

voicesOccupied A binary vector the size of the maximum number of
voices, encoding all voices that are already occupied in the chord
by setting the corresponding vector elements to 1. Any sustained
previous notes or interrupting next notes (if applicable) are in-
cluded. If a voice is not in use, the corresponding vector element
is set to 0.

pitchMovements (MA2) A vector the size of the maximum number of
voices, encoding for each voice v the pitch movement (measured
in semitones, + or −) of nv

t with respect to nv
t±1. If a voice is not

in use, the corresponding element in the vector is set to 0. If a
voice is in use but there exists no adjacent note, the corresponding
vector element is also set to 0.

pitchVoiceRelation (MA2) The Pearson product-moment correla-
tion coefficient r, encoding the relation between the chord’s pitch
ordering and voice ordering:

r =
n(
∑n

i=1 PiVi)−
∑

P
∑

V
√

n(
∑n

i=1(Pi)2)− (
∑

P )2
√

n(
∑n

i=1(Vi)2)− (
∑

V )2
, (3.7)

where n is the number of data samples (that is, the number of
pitches, or, as the case may be, voices in the chord), P the set of
pitches in the chord, and V the set of voices in the chord. Any
sustained previous notes (if applicable) are included.



METHOD 51

numVoiceInversionPairs (MA2) The number of voice inversion
pairs in the chord. Any sustained previous notes (if applicable)
are included.

sumDistVoiceInversionPairs (MA2) The distance in pitch (mea-
sured in semitones) between the inverted voices in a voice inversion
pair, summed over all pairs. Any sustained previous notes (if ap-
plicable) are included.

avgDistVoiceInversionPairs (MA2) The distance in pitch (mea-
sured in semitones) between the inverted voices in a voice inversion
pair, averaged over all pairs. Any sustained previous notes (if ap-
plicable) are included.

mapping (MA2) The current mapping m of notes to voices. Including
the mapping is useful as it is possible that two different map-
pings yield the exact same feature vector. By simply including
the mapping—each of which is unique—in the feature vector, this
problem is solved.

3.1.7.3 Organisation in feature vectors

From the superset described above, the feature vectors for both modelling
approaches are constructed. Depending on the approach, the feature vectors
are organised differently. In MA1, they are organised along the main fea-
ture categories as described in Section 3.1.7: note-level features, note-chord
features, chord-level features, and polyphonic embedding features. Table 3.2
shows the feature vector for the unidirectional model, which for the tab-
lature dataset is 41-dimensional, and for the Bach dataset 33-dimensional.
The same features and organisation are used for the bidirectional model—
only now the polyphonic embedding features 16–35 (tablature dataset) or
13–27 (Bach dataset) are calculated in their entirety twice: first for the adja-
cent notes to the left, and then again for the adjacent notes to the right. For
the tablature dataset this yields an additional 20 features, resulting in a 61-
dimensional feature vector; for the Bach dataset, the 15 additional features
result in an 48-dimensional feature vector.

Note that for the tablature dataset, where each note in a chord has the
same minimum duration as given in the tablature, the duration feature
is a chord-level feature. However, for the Bach dataset, where chord notes
can have different durations, it must be a note-level feature. For the latter
dataset, it thus replaces the non-applicable maxDuration feature.

In MA2, the feature vectors are organised slightly differently. The only
note-chord feature that applies here, indexInChord, is added to the note-
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Table 3.2 MA1, feature vector for the unidirectional model: note-level features
(top), note-chord features (upper middle), chord-level features (lower middle), and
polyphonic embedding features (bottom).

Tablature dataset Bach dataset Feature

0 0 pitch

1 course

2 fret

3 maxDuration

1 duration

4 2 isOrnamentation

5 3 indexInChord

6 4 pitchDistToNoteBelow

7 5 pitchDistToNoteAbove

8 6 chordSize

9 duration

10 7 metricPosition

11 8 numNotesNextChord

12–15 9–12 intervals

16–20 adjNoteOnSameCourse

21–25 13–17 pitchProx

26–30 18–22 iOProx

31–35 23–27 oOProx

36–40 28–32 voicesOccupied

level features; the original fourth category, the polyphonic embedding fea-
tures, now forms the third category. The features in the first category are
different for each note in the chord; those in the second category are the
same for each note in the chord but different from chord to chord, and those
in the last category are different for each mapping m that is enumerated
for the chord, as each mapping results in a different polyphonic embedding.
An additional difference with MA1, as already mentioned in Section 3.1.3.4,
concerns the assumed maximum number of voices. The note-specific features
are calculated for each note in the chord, where a default value of −1 is added
for each note the chord is short of its maximum size (which, when a voice
is considered to be monophonic, equals the maximum number of voices). In
order to avoid having unnecessary default values in each feature vector, in
MA2 the maximum number of voices is therefore set to the highest num-
ber of voices in the datasets used—four. As shown in Table 3.3, in MA2 a
54-dimensional feature vector is thus used for the tablature dataset, and a
45-dimensional feature vector for the Bach dataset.

Note that for the tablature dataset, as in the feature vector for MA1, the
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Table 3.3 MA2, feature vector: note-level features (top), chord-level features
(middle), and polyphonic embedding features (bottom).

Tablature dataset Bach dataset Feature

0, 5, 10, 15 0, 3, 6, 9 indexInChord

1, 6, 11, 16 1, 4, 7, 10 pitch

2, 7, 12, 17 course

3, 8, 13, 18 fret

4, 9, 14, 19 maxDuration

2, 5, 8, 11 duration

20 12 chordSize

21 duration

22 13 metricPosition

23–25 14–16 intervals

26–29 17–20 pitchProx

30–33 21–24 iOProx

34–37 25–28 oOProx

38–41 29–32 pitchMovements

42–45 33–36 voicesOccupied

46 37 pitchVoiceRelation

47 38 numVoiceInversionPairs

48 39 sumDistVoiceInversionPairs

49 40 avgDistVoiceInversionPairs

50–53 41–44 mapping

duration feature is a chord-level feature, while for the Bach dataset it is
again a note-level feature.

3.1.7.4 Scaling

The individual feature values can vary considerably. Pitch, for example, is a
discrete feature whose value moves roughly between 30 and 90 in steps of 1,
the various proximities are continuous features whose values move between
−1 and 1, and the binary and boolean features can only take values of 0 and
1. These differences can hinder the learning performance of the model. In
both modelling approaches, each feature f is therefore scaled so that it falls
in the range [0, 1]:

f ′

i =
fi −min(Fi)

max(Fi)−min(Fi)
, (3.8)

where fi is the original value of the feature at index i in the feature vector,
f ′
i the scaled value, and Fi the set of all values at index i over all feature
vectors in the training set. (This approach has the consequence that on the
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test set, scaled values can occasionally exceed the range [0, 1], namely when
fi < min(Fi) or when fi > max(Fi). The excess, however, is typically only
small and therefore not detrimental to model performance.) Features that
have been given a default value are not scaled and retain this default value;
furthermore, when max(fi) and min(fi) are equal (causing division by 0), f ′

i

is set to 0.

3.2 Evaluation

The models are evaluated on the three-voice and four-voice subdatasets sep-
arately, and, irrespective of the modelling approach, always on the note-level.
Evaluation is carried out using cross-validation, where three different eval-
uation metrics are used: accuracy (the main evaluation metric), soundness,
and completeness. Accuracy is a per-note metric; soundness and complete-
ness measure transitions between note pairs.

3.2.1 Cross-validation procedure

Evaluation is carried out using k-fold cross-validation, where a dataset is
divided into k subsets, and a model is trained on the total content of k − 1
subsets and then tested on the remaining subset. This is repeated k times
until all subsets have served as test set once. k is set equal to the number of
pieces in a dataset, making each piece a subset. This procedure is preferred
over a random division into subsets, as samples from the same piece may
contain regularities, possibly even verbatim repetitions. If such samples end
up both in the training and the test set, the results are unrepresentative for
unseen data. By performing piecewise cross-validation, on the other hand,
the results can be used as estimates for results on unseen data of the same
type.

The evaluation metrics, measured on both the training and the test sets,
are averaged over all folds. The per-fold percentages for each evaluation
metric m are weighted by the number of notes (or, for soundness and com-
pleteness, note pairs) in the subset in that fold, so that the average values
over all folds are always per-note (or per-pair) rates:

avg(m) =

∑k

i=1(mi · |Ni|)
∑k

i=1 |Ni|
, (3.9)

where k is the number of folds, and N the set of notes in a subset. The
average is calculated in the same fashion for all evaluation metrics.
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3.2.2 Evaluation metrics

The evaluation metrics used—accuracy, soundness, and completeness—are
defined as follows:

Accuracy Accuracy (acc) measures the percentage of notes that have
been assigned to the correct voice:

acc =
|C|

|N |
· 100, (3.10)

where C is the set of notes assigned to the correct voice in a subset,
andN the set of all notes in that subset. When modelling voice and
duration simultaneously, accuracy is also used to measure the per-
centage of notes that have been assigned to the correct duration.
Therefore, voice accuracy and duration accuracy are discerned.

Soundness Soundness (snd) measures correct transitions between notes.
The term is borrowed from the field of logic and has been redefined
for use in voice separation research by Kirlin and Utgoff (2005).
Let f be an assigned voice and g a correct voice; Kirlin and Utgoff
then consider a pair of adjacent notes (nt, nt+1) in f to be sound
if g(nt) = g(nt+1) holds. Note that, according to the definition, f
and g need not be the same voice. Extending this definition, in
this thesis soundness is taken to be the percentage of sound pairs
in all voices:

snd =
|S|

|P |
· 100, (3.11)

where S is the set of sound pairs in a subset, and P the set of
all pairs in all assigned voices f in that subset. Soundness thus
reflects the percentage of adjacent note pairs whose elements have
been assigned to the same voice and actually belong to the same
voice.

Completeness Completeness (cmp) is a metric complementary to sound-
ness; the term is again borrowed from logic. A pair of adjacent
notes (nt, nt+1) in correct voice g is complete if assigned voice
f(nt) = f(nt+1) holds (Kirlin and Utgoff, 2005). Again, f and
g need not be the same voice. Analogous to soundness, complete-
ness is thus taken to be the percentage of complete pairs in all
voices:

cmp =
|C|

|P |
· 100, (3.12)

where C is the set of complete pairs in a subset, and P the set
of all pairs in all correct voices g in that subset. Completeness
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reflects the percentage of adjacent note pairs whose elements actu-
ally belong to the same voice and have been assigned to the same
voice (or, in other words, the percentage of correct adjacent note
pairs retrieved).

3.2.2.1 Statistical significance

In this thesis, the Wilcoxon signed-rank test (Wilcoxon, 1945) is used to
determine whether the medians of two sets of accuracy measurements are,
statistically speaking, significantly different from each other (a set of ac-
curacy measurements consists of the per-fold accuracy values obtained in
cross-validation). The outcome of the test can be used to validate state-
ments about how these two results compare. The significance criterion is set
to 0.05 (this is one of the standard values); if the test yields a p-value that
is smaller, the difference is considered to be statistically significant.

The three tests used most commonly to test for statistical significance are
the Wilcoxon signed-rank test, the sign test, and the Student’s t-test (Stu-
dent, 1908). The former two are both non-parametric tests, while the latter
assumes the data to be normally distributed. The fact that this assumption
is generally speaking not valid makes the Student’s t-test less attractive. The
Wilcoxon signed-rank test is preferred over the sign test, then, for the simple
reason that it is more powerful.

It must be noted that using a statistical significance test is only one way
of validating statements about results, and that the outcome of such a test
is not to be interpreted too rigidly.

3.2.3 Evaluation of single-note unisons

The evaluation of voice and duration assignments for single-note unisons
needs to be discussed in some more detail. Each note can be a single-note
unison; as is shown in Table 3.4, for each note there are thus nine possible
voice assignment scenarios. Five assignment categories, then, cover all these
scenarios. The most straightforward scenarios are (1) and (7), which always
fall in the correct voice assignment category, and scenarios (2), (4), (6), and
(9), which always fall in the incorrect category. The remaining scenarios (3),
(5), and (8) yield neither fully correct nor fully incorrect voice assignments;
therefore, three additional assignment categories are needed. Scenario (3),
where a note that is a single-note unison has been assigned to only one voice
and that voice is a correct voice, falls in the overlooked category; scenario (8),
where a note that is a single-note unison has been assigned to two voices but
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Table 3.4 Voice assignment scenarios and corresponding voice assignment cate-
gories. AV = assigned voice(s), CV = correct voice(s).

Scenario Voices Description Voice assignment
AV CV category

(1) 1 1 AV is CV correct

(2) AV is not CV incorrect

(3) 1 2 AV is one of CV overlooked

(4) AV is none of CV incorrect

(5) 2 1 one of AV is CV superfluous

(6) none of AV is CV incorrect

(7) 2 2 both AV are CV correct

(8) one of AV is CV half

(9) none of AV are CV incorrect

only one of these is a correct voice, falls in the half category; and scenario (5),
where a note that is not a single-note unison has been assigned to two voices,
one of which is its correct voice, falls into the superfluous category. When
determining the accuracy, such voice assignments count as halves (meaning
that they increase the number of notes assigned to the correct voice only by
0.5).

The evaluation of duration assignments for single-note unisons proceeds
similarly. Although single-note unisons with two different durations do occur,
in their current form the models only classify a note into a single duration
class. This yields three duration assignment categories: correct, where a note
that is either not a single-note unison or a single-note unison with only one
duration has been assigned to the correct duration; overlooked, where a note
that is a single-note unison with two different durations has been assigned
to only one correct duration; and incorrect, which applies in all other cases.
Again, the overlooked duration assignments count as halves.

3.2.4 Evaluation modes and error propagation

The evaluation metrics on the training data are informative about a model’s
capacity to adapt to that data, that is, to learn mappings from inputs to
outputs. The evaluation metrics on the test data, on the other hand, are
informative about a model’s ability to generalise on unseen data, that is,
to perform the task on unseen data. In MA1 and MA2, the models are
evaluated on both the training and the test data, where the evaluation on
the test data differs depending on whether a unidirectional or a bidirectional
model is used. In MA3, the models are only evaluated on the test data.
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3.2.4.1 Evaluation of unidirectional models

A unidirectional model, first, is evaluated on the test data in two different
modes, called test mode and application mode:

Test mode In test mode, the feature vectors for note n or chord c are
calculated using the correct polyphonic information (that is, the
information that is also used as targets in the training) for all notes
or chords processed before n or c.

Application mode In application mode, the feature vectors for n or c
are calculated using the polyphonic information that is generated
by the model for all notes or chords processed before n or c. Two
things should be noted: first, as already mentioned in Section 3.1.6,
the generated information grows incrementally with every note or
chord that is processed and for which a class or mapping decision
is made. Second, the generated information may contain errors.

Application mode corresponds to the real-world situation where the correct
polyphonic information is not available, and where all voice class or map-
ping decisions are based on previous decisions. The metrics in application
mode thus reflect the actual performance of the model on unseen data. Why
then test mode? First, the metrics in test mode, where the correct poly-
phonic information is always encoded in the feature vector, reflect the op-
timal performance of the model on unseen data. Test mode thus serves a
kind of gauging function. Second, the results in test mode are instrumental
in quantifying error propagation. Error propagation is the phenomenon in
which an incorrect voice or duration assignment influences the voice class or
mapping decision for the following notes negatively. In test mode, where the
polyphonic information generated by the model is not used in the feature cal-
culation, and incorrect assignments thus have no further consequence, this
effect is suppressed. In application mode, however, where the polyphonic
information as generated by the model is used in the feature calculation, an
incorrect assignment can set in motion a chain of incorrect assignments.

Error propagation can be quantified by comparing results in test and ap-
plication mode. Suppose, for example, that when a trained model is applied
to a piece consisting of 100 notes, in test mode five of these notes are as-
signed to the wrong voice. This thus yields a voice accuracy of 95%. In
application mode, the same initial misassignments will be made—but be-
cause the polyphonic information generated by the model is now used in
the feature calculation, each misassignment runs the risk of causing further
misassignments. Suppose now that in application mode, each initial misas-
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signment indeed leads to another misassignments. This then leads to a total
of 10 misassignments, which yields a voice accuracy of 90%. The percentage
of misassignments due to error propagation in application mode, or error
propagation percentage, m, is calculated as follows:

m =
accT − accA
100− accA

· 100, (3.13)

where accT and accA are the accuracies in test and application mode, respec-
tively.

3.2.4.2 Evaluation of bidirectional models

A bidirectional model, on the other hand, is only evaluated in a single mode
on the test data. This mode shall henceforth be referred to as (bidirectional)
application mode, but it can be said to be midway between test and (uni-
directional) application mode. As explained in Section 3.1.6, both on the
training and the test data, the feature vectors are now calculated using the
polyphonic information as provided by the first-pass model. Bidirectional
application mode is thus similar to test mode in that it uses pre-existing
polyphonic information in the feature calculation, but it is also similar to
unidirectional application mode in that the results now reflect model per-
formance on unseen data in the real-world situation where the correct poly-
phonic information is not known. Lastly, because when applied to unseen
data, pre-existing polyphonic information—and not information generated
by the model—is used in the feature calculation, the model does not suffer
from error propagation.

3.3 Conflicts

As mentioned in Section 3.1.2.4, when applying a trained model to unseen
data in MA1, it may occur that a voice class decision is made that con-
flicts with a previous voice class decision—meaning that two simultaneous
or overlapping notes (further specification follows below) will be assigned to
the same voice. Such conflicts must be resolved because, first, each voice
is assumed to be monophonic, and second, since the implementation of the
feature calculation is based on this assumption, the calculation of a number
of polyphonic embedding features (see Section 3.1.7.2) becomes problematic
if it is not true.8

8The main issue concerns inconsistencies with respect to which of the two simultaneous
or overlapping notes in a voice is considered when the feature vector for a note that is
processed later is calculated.
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When applying a trained model to unseen data in test mode, however, the
polyphonic information generated by the model is not used in the feature cal-
culation. Conflicting voice class decisions thus have no direct implications:
although voices may be non-monophonic after the voice assignment process
has terminated, the process itself is not influenced by any conflicts. Because
test mode primarily serves a gauging function and the actual outcome is of
lesser importance, in this mode conflicts are not resolved. When applying a
trained model to unseen data in unidirectional application mode, then, where
the polyphonic information generated by the model is used in the feature
calculation and conflicting voice class decisions thus create problems, con-
flicts are resolved during the voice assignment process. Conflict resolution
in unidirectional application mode is described first, in Section 3.3.1. When
applying a trained model to unseen data in bidirectional application mode,
lastly, as in test mode, the polyphonic information generated by the model
is not used in the feature calculation (see Section 3.1.6). However, because
application mode corresponds to the real-world application situation, con-
flicts must be resolved. This is now done after the voice assignment process.
This has the advantage that more context information is available, which
makes conflict resolution decidedly easier, and enables the use of a more
straightforward postprocessing heuristic. Conflict resolution in bidirectional
application mode is described in Section 3.3.2.

Conflicts can occur between the decision for a note n and:

◮ The decision for a preceding note in the same chord.
◮ The decision for a sustained previous note.
◮ The decision for an interrupting next note.

In unidirectional application mode, conflicts with sustained previous notes
are specific to the forward processing mode, while those with interrupting
next notes are specific to the backward processing mode. In bidirectional
application mode, both these conflicts may occur in either processing mode—
but as will become clear in Section 3.3.2, because of the conflict resolution
heuristic used, only those with sustained previous notes are relevant.

In the following Sections 3.3.1 and 3.3.2, a systematic overview of all
conflicts that can occur is presented, and for each conflict the resolution
procedure is described. The conflict resolution procedures used are mostly
pragmatic; although they ensure a musically acceptable outcome, this out-
come is not always optimal. Finding the optimal resolution for a conflict
often requires context information that is not available to the model; ad-
ditionally, it can complicate the resolution procedure greatly (for example,
multiple decisions may have to be remade, and any new conflicts emerging
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in the process resolved). Because conflicts occur only with low frequency
and the effect of conflicts on model performance is thus marginal (see Sec-
tion 5.7.1), a further optimisation of the conflict resolution procedures is left
for future work.

It should be noted, lastly, that a full understanding of the material pre-
sented in Sections 3.3.1 and 3.3.2, both of which provide highly detailed
descriptions of the different conflicts and their (at times fairly complex) res-
olution procedures, is not required for a full understanding of the remainder
of the thesis.

3.3.1 Conflict resolution in unidirectional application
mode

When applying a trained model to unseen data in unidirectional application
mode, three basic types of conflicts are discerned. Type (i) applies to both the
tablature and the Bach dataset; type (ii) and (iii), which involve single-note
unisons, are specific to the tablature dataset. Where a single-note unison is
concerned in a conflict—be it a type (ii), (iii), or any other conflict as de-
scribed below—, a distinction is made between the primary voice class, that
is, the voice class corresponding to the highest activation value in the model
output, and the secondary voice class, that is, the one corresponding to the
position of the second-highest activation value (see also Section 3.1.2.1). The
three basic conflict types are as follows:

(i) The (primary) voice class under the current decision is equal to the
(primary) voice class under the previous decision (voice or duration
conflict).

(ii) The primary voice class under the current decision is equal to the
secondary voice class under the previous decision (voice or duration
conflict).

(iii) The secondary voice class under the current decision is equal to
the primary or secondary voice class under the previous decision
(voice or duration conflict).

Examples of type (i), (ii), and (iii) conflicts are shown in Figures 3.8–3.10.
For each type, a situation where there is a conflict with the decision for a
preceding chord note, a situation where there is a conflict with the decision
for a sustained previous note, and a situation where there is a conflict with
the decision for an interrupting next note is shown.
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3(A)----

2(A)----

1(T)----

0(B)----

(a) With decision for a
preceding chord note.

5(A)----

2(A)------------

1(T)----4(T)----

0(B)----3(B)----

(b) With decision for a
sustained previous note.

5(A)------------

2(A)----

4(T)----1(T)----

3(B)----0(B)----

(c) With decision for an
interrupting next note.

Figure 3.8 Schematic view of type (i) conflicts in a four-voice piece. Notes in
order of processing; the conflict occurs at the note printed in bold.

3(S)----

2(A,S)--

1(T)----

0(B)----

(a) With decision for a
preceding chord note.

5(S)----

2(A,S)----------

1(T)----4(T)----

0(B)----3(B)----

(b) With decision for a
sustained previous note.

5(S)------------

2(A,S)--

4(T)----1(T)----

3(B)----0(B)----

(c) With decision for an
interrupting next note.

Figure 3.9 Schematic view of type (ii) conflicts in a four-voice piece. Notes in
order of processing; the conflict occurs at the note printed in bold.

3(S,A)--

2(A)----

1(T)----

0(B)----

(a) With decision for a
preceding chord note.

5(S,A)--

2(A)------------

1(T)----4(T)----

0(B)----3(B)----

(b) With decision for a
sustained previous note.

5(S,A)----------

2(A)----

4(T)----1(T)----

3(B)----0(B)----

(c) With decision for an
interrupting next note.

Figure 3.10 Schematic view of type (iii) conflicts in a four-voice piece. Notes in
order of processing; the conflict occurs at the note printed in bold.

Table 3.5 shows how the different types of conflicts are resolved. In the
case where a voice class decision is adapted (type (i) conflicts), the highest
activation value in the model output for the note is set to 0, and the decision
is remade by determining the new highest activation value. In the case where
a voice class decision is reduced (type (ii) and (iii) conflicts), meaning that
a classification into two voice classes is reduced to one into a single voice
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Table 3.5 Conflict resolution per conflict type in unidirectional application mode.
Tablature and Bach datasets. Conflicts with sustained previous notes and inter-
rupting next notes are specific to forward and backward processing mode, respec-
tively; on the tablature dataset, they apply only when modelling voice and duration
simultaneously. n = current note, c = chord note, s = sustained previous note, i
= interrupting next note, VC = voice class decision, DC = duration class decision.

Decision for n Tablature dataset Bach dataset
conflicts with Type (i) Type (ii) Type (iii) Type (i)
decision for

c VC(n) adapted VC(c) reduced VC(n) reduced VC(n) adapted
s DC(s) adapted DC(s) adapted VC(n) reduced VC(n) adapted
i DC(n) adapted DC(n) adapted VC(n) reduced VC(n) adapted

class, the second-highest activation value—to whose position the secondary
voice class corresponds—in the model output for the note is ignored, and the
decision is remade. In the case where a duration class decision is adapted,
lastly, the note’s maximum duration (its onset time subtracted from the onset
time of the next note in the same voice) is determined, and the decision is
remade. A duration class decision adaptation is thus always a reduction of
the duration.

Conflicts are resolved in a fixed, multi-step sequence:

(1) Resolve any type (i) conflicts with decisions for any sustained pre-
vious notes or interrupting next notes (depending on the processing
mode).

(2) Resolve any type (ii) conflicts with decisions for any sustained
previous notes or interrupting next notes.

(3) Resolve any type (i) conflicts with decisions for any lower chord
notes. If such conflicts are encountered, the adapted voice class
decision for the current note may result in new conflicts with deci-
sions for sustained previous or interrupting next notes; thus, steps
(1) to (3) must be repeated until no more conflicts occur.

(4) Resolve any type (ii) conflicts with decisions for any lower chord
notes.

(5) Resolve any type (iii) conflicts with decisions for any sustained
previous, interrupting next, or lower chord notes.

All steps do not always apply; those necessary depend firstly on the dataset,
and secondly, in the case of the tablature data, on whether only voice is
modelled or voice and duration simultaneously.
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4(S)------------

6( )

3(A)------------

1(T)----2(T)----5( )

0(B)--------------------

Figure 3.11 Schematic view of a type (iv) conflict in a four-voice piece. Notes
in order of processing; the conflict occurs at the second note printed in bold but
is resolved at the first. Empty parentheses indicate that a note has not yet been
processed.

6( )------------

5(A)----2(S)

4(T)----1(T)

3(B)----0(B)

Figure 3.12 Schematic view of a type (v) conflict in a four-voice piece. Notes
in order of processing; the conflict occurs at the note printed in bold. Empty
parentheses indicate that a note is currently being processed.

3.3.1.1 Special conflicts: type (iv) and (v) conflicts

Apart from the three basic conflict types, there are two special types of
conflicts, both of which are resolved in an additional last step of the conflict
resolution sequence. They both have to do with the number of voices in
a piece being exceeded. Recall that the number of voices in a dataset is
determined prior to the training by finding the largest chord in the set (see
Section 3.1.2.5).

Type (iv) conflicts, first, only apply to the tablature dataset, and only
occur in forward processing mode when modelling voice and duration simul-
taneously. They can occur to multiple notes simultaneously. After all notes
in a chord ct have been processed, it may be the case that, due to incor-
rect duration class decisions for notes in this chord (and possibly in previous
chords), the next chord ct+1 now contains more notes than there are voices
in the piece. An example of such a situation is shown in Figure 3.11, where
the last chord contains five notes due to incorrect duration class decisions for
any of the notes 0, 3, or 4.

Let n be the total number of notes in ct+1, v be the number of voices in
the piece, and V be the maximum number of voices (five). If v < n ≤ V ,
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this will cause problems when the voice class decisions for the notes in ct+1

are made: the voice classes for the last n−v notes will have to be classes not
in use in the piece. In Figure 3.11, for example, after the voice class decision
for note 5 has been made, for note 6 only the fifth voice class—which is not
in use—remains. If n > V , this even precludes the calculation of a feature
vector for the notes in ct+1, as several features are based on the assumption
that there is a maximum number of voices (see Sections 3.1.7.1 and 3.1.7.2).
Thus, if after the last note in ct has been processed, a type (iv) conflict is
detected in ct+1, a list is made containing all notes with an onset time lower
than that of ct+1 whose offset time exceeds the onset time of ct+1. The notes
in this list are ordered firstly by onset time (lower first), and secondly by
position in the chord (lower first). The duration class decision for the last
n−v notes in this list is then remade by determining their minimum duration.
In the case of Figure 3.11, the duration class decision is thus only remade for
the last note in the list, note 4.

Type (v) conflicts, second, only apply to the Bach dataset, and only occur
in backward processing mode. Technically, a type (v) conflict is a reinstated
type (i) conflict. Let nt be the note the voice class decision is made for in
chord ct. If nt has an offset time that exceeds the onset time of at least one
next chord ct+x, due to type (i) conflicts with incorrectly classified notes in
ct+x or possibly in ct, it may happen that only voice classes not in use in
the piece (or, in the case of a five-voice piece, no voice classes at all) are
left available for nt. An example of such a situation is shown in Figure 3.12,
where because of the misclassification of note 2 to the superius, for note 6
only the fifth voice class—which is not in use in the piece—is left available.

If this situation arises (which is always at the end of the conflict resolution
sequence), rather than going through the complicated process of adapting
class decisions for interrupting next or lower chord notes—which is likely to
result in new conflicts with other previous decisions, which then would have to
be adapted, etc.—the original voice class decision is simply restored. This is
a temporary solution at best; the conflict remains unresolved, meaning that
there is a voice that, at a certain point, contains two simultaneous notes.
The systematic resolution of type (v) conflicts is left for future work, firstly
because of the complications it entails, and secondly, because they occur
fairly rarely and thus do not influence the model performance significantly.
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4(S)----

2(A)----3(T)----

1(T)------------

0(B)------------

Figure 3.13 Schematic view of a type (vi) conflict in a four-voice piece. Notes in
order of processing; the conflict occurs at the note printed in bold.

2(A)----

1(A)----

0(A,T)--

Figure 3.14 Schematic view of type (vii) conflicts in a four-voice piece. Notes in
order of processing; the conflicts occur at the notes printed in bold.

3.3.2 Conflict resolution in bidirectional application
mode

In the conflict resolution heuristic following the application of a trained model
to unseen data in bidirectional application mode, the music is processed from
left to right, chord for chord. To be resolved for each chord c are, firstly,
any conflicts between voice class decisions for notes in c and voice class
decisions for sustained previous notes, and secondly, any conflicts between
voice class decisions for notes within c. These conflicts will henceforth be
referred to as type (vi) and (vii) conflicts, respectively. It must be noted
that processing from left to right is an arbitrary choice: alternatively, the
music could be processed from right to left, in which case type (vi) conflicts
would be conflicts between voice class decisions for notes in c and voice class
decisions for interrupting next notes. Processing from right to left is not
tried, as this is expected to yield similar results as processing from left to
right. Yet another possibility is to take into account conflicts between voice
class decisions for notes within c and voice class decisions for both sustained
previous notes and interrupting next notes simultaneously. Although this
approach is more comprehensive, it also has the strong disadvantage that it
tends to become complicated fairly quickly. It is therefore also not tried.

Type (vii) conflicts can occur on both datasets; type (vi) conflicts only
on the Bach dataset. This is because for the bidirectional model, modelling
voice and duration simultaneously is not implemented—meaning that on
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the tablature dataset sustained previous notes do not exist.9 Both types of
conflicts are resolved in a similar, multi-step process that is repeated until a
chord is conflict-free. In the rare case where a chord contains both conflict
types, all conflicts of type (vi) are resolved first, and subsequently all conflicts
of type (vii).

The conflict resolution process is the simplest in the case of type (vi)
conflicts. An example of such a conflict is given in Figure 3.13.

The steps taken to resolve the type (vi) conflict(s) in chord c are as follows:

(1) List all notes in c whose voice class decision conflicts with that for
the sustained notes; let n0 be the first note in this list.

(2) List all voices that are available (to all chord notes) prior to conflict
resolution; excluded are thus all voices taken up by sustained notes
and all voices taken up by chord notes.

(3) Retrieve the model output for n0 and compare the activation values
for all available voices (as listed in step (2)); reassign n0 to the
available voice that gives the highest activation value.

(4) Repeat from step (1) until all conflicts are resolved.

In the case of type (vii) conflicts, the conflict resolution process is some-
what more involved. An example of multiple type (vii) conflicts within one
chord is given in Figure 3.14, where all notes have been assigned to the same
voice.

The steps taken to resolve the type (vii) conflict(s) in chord c are as fol-
lows:

(1) List all notes in c whose voice class decision conflicts with that for
other notes in c.

(2) List all voices to which more than one chord note has been as-
signed; let v0 be the first voice in this list.

(3) List all voices that are available (to all chord notes) prior to conflict
resolution; excluded are thus all voices taken up by chord notes,
and, on the Bach dataset only, all voices taken up by sustained
notes.

(4) Do:
(a) If one of the chord notes is a single-note unison not involving

9Note that this is unrelated to the fact that duration information acquired from a first-
pass model may be used in the feature calculation. Like the voice information acquired
in the first pass, this duration information serves purely to aid the second-pass model in
learning to make the correct voice class decision. It is not information generated by the
model in bidirectional application mode, and thus cannot cause conflicts there.
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v0 and there are no available voices because of this single-
note unison: retrieve the first chord note that is a single-
note unison not involving v0; reassign the note only to the
primary voice class.

(b) Else if one of the chord notes is a single-note unison involv-
ing v0: retrieve the first chord note that is a single-note
unison involving v0; if the primary voice class for this note
is equal to v0, reassign the note only to the secondary voice
class and vice versa.

(c) Else: retrieve for each chord note listed in (1) that has been
assigned to v0 the model output and compare in each model
output the activation value for each available voice (as listed
in step (3)); reassign the chord note that gives the highest
activation value thus found to the available voice that yields
this value.

(5) Repeat from step (1) until all conflicts are resolved.

Here, conditions (a) and (b) only occur when the model is applied to the
tablature dataset.

A concrete example may serve to illustrate the resolution of type (vii)
conflicts more clearly. Given the two type (vii) conflicts as shown in Fig-
ure 3.14, and assuming that this example is taken from the tablature dataset
(where there are no sustained previous notes, but where notes can be single-
note unisons), step (1) yields a list containing chord notes 0, 1, and 2, step
(2) a list containing the altus, which is thus v0, and step (3) a list containing
the bassus and the superius. Because note 0 is a single-note unison involving
v0, in step (4) condition (b) applies, and note 0 is reassigned to the tenor—
therewith resolving the first type (vii) conflict. Starting from the top again,
step (1) now yields a list containing only notes 1 and 2, step (2) a list con-
taining the altus, which is again v0, and step (3) a list containing the bassus
and the superius. Because none of the chord notes is a single-note unison
anymore, in step (4) condition (c) now applies. The question whether to
reassign note 1 or 2 to one of the available voices, the bassus or the superius,
is solved by determining for each of these notes the model output for each
available voice, and then selecting from the resulting note-voice combinations
(note 1 and the bassus, note 1 and the superius, note 2 and the bassus, and
note 2 and the superius) the one that gives the highest activation value.
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3.4 Implementation details

The models, the model extensions, the feature extraction algorithms, and
the framework for training and evaluating the models are implemented in
Java. For the models used in MA1 and MA2, the neural network implemen-
tation provided by the Encog Machine Learning Framework is used.10 For the
model used in MA3, which is only partially implemented in Java, addition-
ally the Hidden Markov Model Toolbox for Matlab is used.11 Furthermore,
the MUSITECH software infrastructure (Weyde, 2005) is used for the cre-
ation of the internal data representations (see Sections 4.1.2 and 4.2.2). The
remainder of the software is created from scratch.12

The framework takes as input machine-readable encodings of the tabla-
ture in plain text format together with sets of monophonic MIDI files. On
the Bach dataset, it takes as input only sets of monophonic MIDI files (the
content and function of these files is explained in more detail in Chapter 4).
Each of these encodings and MIDI file sets represents one piece in the dataset.
For each fold in the cross-validation procedure, the framework outputs three
plain text files—one when training a model, one when evaluating it in test
mode, and one when evaluating it in application mode—in MA1 and MA2,
and a single plain text file—when evaluating a model in application mode—
in MA3. These files contain, for that fold, the evaluation metrics, detailed
information about the number and type of misassignments, a list giving for
each note the voice it has been assigned to, and a list of conflicts that have
been encountered and resolved (if applicable). Furthermore, when evaluat-
ing a model in application mode, additional material is created. Firstly, in
all three modelling approaches, a so-called Transcription object (more
on this in Sections 4.1.2 and 4.2.2) is created and stored after the voice as-
signment process has ended. This object represents the test set for that
fold—which is always a single piece; see Section 3.2.1—and can be exported
in various formats (such as, for example, MIDI, MEI, or MusicXML), or be
visualised in modern music notation. Secondly, in MA1 and MA2, the poly-
phonic information generated by a model is stored as a list of voice labels
(and, if applicable, duration labels). This is the information used to annotate
the data with when using a bidirectional model.

10See http://www.heatonresearch.com/encog.
11See http://www.cs.ubc.ca/˜murphyk/Software/HMM/hmm.html. I am

grateful to Dr Emmanouil Benetos for providing ready-to-use implementations and run-
ning the experiments with the model used in MA3.

12The code is made available as open source software and can be retrieved from http:

//mirg.city.ac.uk/datasets/rdv/phd_thesis.

http://www.heatonresearch.com/encog
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
http://mirg.city.ac.uk/datasets/rdv/phd_thesis
http://mirg.city.ac.uk/datasets/rdv/phd_thesis




4

Datasets

The models described in the previous chapter are evaluated on two different
datasets, which are the subject of this chapter. The tablature dataset, first,
consists of a total of 15 three-voice and four-voice intabulations by various
well-known sixteenth-century intabulators. Each intabulation is represented
as a machine-readable encoding of the tablature in plain text format, cap-
turing all relevant information contained in the tablature, and a set of mono-
phonic MIDI files, each of which contains the pitch and duration information
for an individual voice. The Bach dataset consists of the 45 three-voice and
four-voice fugues from Das wohltemperirte Clavier (BWV 846–893) by Jo-
hann Sebastian Bach, music written in (early) modern staff notation. Each
fugue is represented only as a set of monophonic MIDI files, each of which
again contains the pitch and duration information for an individual voice.

The tablature dataset is created manually as part of this thesis; it is dis-
cussed in Section 4.1. Special attention is given to the data creation process,
notably to the preceding polyphonic alignment process, where the intabula-
tions are aligned with their vocal models in order to devise transcriptions in
modern music notation that are used to extract the sets of MIDI files from.
Furthermore, the internal data representation is described, and a detailed
specification of the encoding format used to render the tablature machine-
readable, tab+, is given. The Bach dataset is an adaptation of an existing
set. It is discussed in Section 4.2, where the adaptations made are clarified,
and the internal data representation is described.

4.1 The tablature dataset

The tablature dataset consists of 15 intabulations—six for three voices and
nine for four voices, the most common intabulation formats—and comprises

71
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a total of 11641 notes distributed over 6808 chords. All taken from popular
sixteenth-century printed lute books, these intabulations are arrangements
of sacred and secular polyphonic vocal works by renowned composers active
some generations earlier, roughly between 1450 and 1550. The dataset is
aimed to be as heterogeneous as possible, and includes works from different
centres of activity, from different decades, arranging different vocal genres,
and of different polyphonic textures. It is shown in Tables 4.1 and 4.2.

The terminology used to distinguish difference in polyphonic texture re-
quires some additional explanation. A piece is considered to be imitative if
the polyphonic structure is governed by motivic imitation, semi-imitative if
it contains points of imitation but the polyphonic structure is not governed
by imitation, and free if it contains only very few or no points of imitation.
It must be noted that these qualifications, especially the first two, apply
primarily to the vocal models. In the intabulations, the distinction between
imitative and a semi-imitative textures tends to be less pronounced, as tech-
nical problems often complicate maintaining strict motivic imitation.

4.1.1 Formats and data creation

The tablature dataset used for this thesis is created from scratch. Data cre-
ation is a laborious and time-consuming process; for this reason, the dataset
is still relatively small. Each intabulation is represented, first, as a machine-
readable encoding of the tablature in plain text format, which captures all
relevant information contained in the tablature, and second, as a set of mono-
phonic MIDI files, each of which contains the pitch and duration information
for an individual voice. Both the encodings and the MIDI file sets are created
manually. In the case of the encodings, this is done by transcribing facsimile
reproductions of the original tablature books. Details about the encoding
format used are given in Section 4.1.3.1 The MIDI file sets, then, are created
in a two-step process. The first of these steps is the most challenging: using
professional music notation software, a polyphonic transcription in modern
music notation is made of each intabulation. This is done by aligning the
intabulation with its vocal model. The polyphonic alignment process and
the issues it entails are discussed in detail in Section 4.1.1.1. In the second
step, each individual voice in the transcription thus created is exported as a
MIDI file.2

1There exists at least one ready-to-use body of machine-readable encodings of lute
tablature—the one stored in the ECOLM database (see Section 1.1). Further explanation
as to why none of this material is used as a starting point is given in Section 4.1.3.

2The encodings and MIDI file sets, as well as the polyphonic transcriptions can be
retrieved from http://mirg.city.ac.uk/datasets/rdv/phd_thesis.

http://mirg.city.ac.uk/datasets/rdv/phd_thesis


Table 4.1 Tablature dataset, three-voice pieces. Subscript indices following publication years refer to entries in Brown
(1965).

Intabulation Vocal model
Title Source Notes Chords Composer (edition) Genre, texture

‘Disant adiu
madame’

Hans Newsidler, Der ander theil des

Lautenb̊uchs (Nuremberg, 15367)
331 194 Compère

(Finscher, 1972)
chanson,
semi-imitative

‘Meß pensees’ Newsidler, Der ander theil 706 481 Compère
(Finscher, 1972)

chanson,
semi-imitative

‘Pleni de la missa
misma’

Diego Pisador, Libro de mvsica de

vihvela (Salamanca, 15527)
334 208 Josquin (Hudson,

1995)
mass section,
imitative

‘Elslein liebes
Elslein’

Hans Judenkünig, Ain schone

kunstliche vnderweisung (Vienna,
15232)

167 81 Senfl (Geering
and Altwegg,
1962)

lied, free

‘Nun volget
Lalafete’

Hans Newsidler, Das Ander Buch. Ein

New künstlich Lautten Buch

(Nuremberg, 15442)

965 563 Janequin (Merritt
and Lesure, 1965–
1971, vol. I)

chanson, free

‘Tant que uiuray’
[a3]

Pierre Phalèse (publ.), Des Chansons

Reduictz en Tabulature de Lvt, Liure

premier (Leuven, 15477)

246 125 Sermisy (Allaire
and Cazeaux,
1974)

chanson, free

2749 1652



Table 4.2 Tablature dataset, four-voice pieces. Subscript indices following publication years refer to entries in Brown (1965);
in pieces marked with an asterisk (*), the most common scordatura tuning (see Section 2.2.1) is used.

Intabulation Vocal model
Title Source Notes Chords Composer (edition) Genre, texture

‘Absolon fili mi’* Sebastian Ochsenkun, Tabulaturbuch
auff die Lauten (Heidelberg, 15585)

1184 727 Josquin (Sherr,
2002)

motet, imitative

‘In exitu Israel de
Egipto’

Ochsenkun, Tabulaturbuch 1974 1296 Josquin (Jas,
2008)

motet, imitative

‘Qui habitat’ Ochsenkun, Tabulaturbuch 2238 1443 Josquin (Perkins,
2011)

motet, imitative

‘Bramo morir per
non patir piu
morte’

Antonio Rotta, Intabolatvra de lavto,

Libro primo (Venice, 154615)
708 322 Festa/Arcadelt

(Seay, 1978)
madrigal, free

‘Tant que uiuray’
[a4]

Phalèse, Des Chansons 457 228 Sermisy (Allaire
and Cazeaux,
1974)

chanson, free

‘Herr Gott laß
dich erbarmen’*

Ochsenkun, Tabulaturbuch 371 195 Isaac (Wolf, 1907) lied, free

‘Mais
mamignone’

Iulio Abondante, Intabolatvra di

lavtto, Libro secondo (Venice, 15481)
705 316 Janequin (Merritt

and Lesure, 1965–
1971, vol. II)

chanson,
semi-imitative

‘Las on peult’ Pierre Phalèse (publ.), Theatrvm
mvsicvm (Leuven, 156312)

777 395 Janequin (Merritt
and Lesure, 1965–
1971, vol. III)

chanson,
semi-imitative

‘Il nest plaisir’ Iulio Caesaro Barbetta, Il terctio libro

de intavolatvra de livto (Strasbourg,
1582)

478 234 Janequin (Merritt
and Lesure, 1965–
1971, vol. II)

chanson,
semi-imitative

8892 5156
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4.1.1.1 Polyphonic alignment

Conceptually, the polyphonic alignment process is straightforward. The poly-
phonic structure of an intabulation’s vocal model is always unambiguous, as
each voice is notated on a separate staff. The polyphonic alignment process
thus implies tracing the tablature notes in the vocal model and assigning
them to a voice accordingly. When their polyphonic position is known, the
notes’ full duration can then be determined (recall that in the tablature, only
their minimum duration is given). A note’s full duration is determined by
three (interrelated) factors: (i) the onset time of the next note in the same
voice, (ii) the onset time of the next note on the same course, and (iii) a
theoretical maximum duration of a semibreve (see Section 2.2.3). When for
each note both a voice and a duration have been determined, the polyphonic
alignment process is completed.3 For practical reasons, for the polyphonic
alignment process scholarly editions of the vocal models are preferred over
facsimile reproductions of the original sources.4 The editions used are those
listed in Tables 4.1 and 4.2.

In practice, however, the polyphonic alignment process entails some is-
sues. This is because, as already discussed in Section 2.2.2, intabulations
are never literal, verbatim transcriptions of their vocal models: intabulators
always made adaptations in their arrangements. Such adaptations can lead
to ambiguities with regard to which tablature notes correspond to which
notes in the model (if any). A typical example is shown in Figure 4.1. In
this rather faithful arrangement, the majority of the original notes have been
retained verbatim (unmarked in Figure 4.1b; a note is considered to have
been retained verbatim if both its pitch and onset time remain the same),
but, following the list of changes and simplifications as presented in Sec-
tion 2.2.2, 17 notes, most of them ornamental, have been added (marked
white); nine original notes have been altered either in terms of pitch, that is,
replaced by harmonic variants or alternatives, or in terms of onset time, that
is, shifted rhythmically (asterisk-shaped—the four notes to which the latter
applies are all found in bar 2; the tenor note has additionally been altered in
terms of pitch); three original notes have been omitted (parenthesised); and
in two cases two original notes sounding in unison have been replaced by a
single-note unison (bracketed).

With regard to a number of these adaptations, several interpretations are
contrapuntally plausible. This example, straightforward as it may be, thus

3The polyphonic alignment process thus yields the basis of the transcription that is
created. To complete this transcription, decisions on several further matters on which the
tablature not always provides information—key and time signature, pitch spelling, barring,
tuning, etc.—must be made. These decisions are not part of the polyphonic alignment
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(a) Vocal model, edition. Sermisy (Allaire and Cazeaux, 1974), ‘Tant que vivray’,
opening bars.

[S] • ◦ • • • • • | • ◦ ◦ ◦ ∗ • • • | • •[∗]◦ ◦ ◦ • ◦ ◦ ◦ | •
[A] • • • • ◦ ◦ ◦ | • • • • ∗ • • • |[•]∗[•]• • •(•)• • • | •
[T] ∗ • • • • • • | • • • • ∗ • • ◦ |[•]• • • • •(•)• • • | •
[B] • • • • • • • | • • • • ∗ ◦ ◦ ◦ | ∗ ∗ • • • •(•)• • • | •

(b) Intabulation, transcription in modern music notation and schematic overview
of adaptations. Phalèse (publ.) (15477), ‘Tant que uiuray’ [a4], opening bars.

Figure 4.1 Polyphonic alignment ambiguities.

process.
4The polyphonic alignment process is currently carried out manually; (partial) automa-

tion of the process is left for future work.
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Figure 4.2 Sebastian Ochsenkun’s intabulation style. Ochsenkun (15585), ‘Ab-
solon fili mi’, opening bars.

already shows how adaptations can complicate the polyphonic alignment
process by introducing an element of subjectivity to it. It is therefore seldom
possible to speak of the only correct mapping of tablature notes to voices;
nevertheless, a procedure in which the vocal models are used as blueprints
does guarantee a valid mapping.

4.1.1.2 Sebastian Ochsenkun’s Tabulaturbuch auff die Lauten

To alleviate alignment problems as described above, a number of works from
Sebastian Ochsenkun’s Tabulaturbuch auff die Lauten (1558) are included in
the dataset. Ochsenkun, like many other intabulators in German speaking
regions, uses the staffless German tablature system, in which each course-
fret intersection is represented as a unique symbol (see also Section 2.2.1).
What makes him stand out among his contemporaries, however, is the fact
that he organises the tablature symbols horizontally, that is, by voice, in a
consistent manner—note that this is only possible in German tablature—,
which enables him to indicate polyphonic lines.5 An example is given in
Figure 4.2; clearly visible are the successive entries of the superius (bar 1),
altus (bar 3), tenor (bar 4), and bassus (bar 6). Note also the difference with
the example of German tablature in Figure 2.2c, where all tablature symbols
are pushed towards to highest line.

When transcribing Ochsenkun’s intabulations, the first part of the poly-
phonic alignment process—tracing tablature notes in the vocal model and
assigning them to a voice—can thus be bypassed by simply adhering to his

5Several other German intabulators, notably Hans Newsidler, follow a comparable
modus operandi—but without exception, these are much more liberal in their horizon-
tal organisation. The consistency found in Ochsenkun’s intabulations is unique.
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horizontal organisation; only the second part—determining the notes’ full
duration—still has to be executed.

However, a critical note is in order here. The question remains in how
far Ochsenkun’s polyphonic interpretations are representative of the con-
temporary intabulation practice. Although he states in the foreword of the
Tabulaturbuch that he sets “as much of the substance of the song as this in-
strument [that is, the lute] can adopt and comfortably manage” (Ochsenkun,
1558, f. Aiir, translation mine),6 and that he has put together the book “on
the right foundation of the present day’s lute art, with four, five, and six
voices . . . each with its colorations, properly fitted to the lute” (f. Aiiiv,
translation mine),7 he seems to have made some choices that, if not simply
misprints, are remarkable at least, and that sometimes lead to significant
deviations from the vocal model. This has mostly gone unnoticed in the
musicological literature, where there is a general agreement that Ochsenkun
follows the models as faithfully as possible (see, for example, Hong, 1984;
Dorfmüller, 1967, 2001). Regardless of some peculiarities, however, in gen-
eral Ochsenkun’s intabulation style is close to that of his contemporaries,
and his works can therefore safely be included in the dataset.

4.1.2 Internal data representations

The encoding file and the set of MIDI files that represent an intabulation
are processed as follows. From the encoding file, a Tablature object (an
internal representation of the intabulation) is created, and from that a list
of TablatureNote objects is extracted. As its name suggests, each of
the TablatureNote objects corresponds to a tablature note, and con-
tains a number of basic attributes of that note: its pitch, course, fret, onset
time, minimum duration, maximum duration, the sequence number and the
size of the chord it is in, and its sequence number within the chord. The
TablatureNote objects are added to the list in a fixed sequence, where
the object corresponding to the lowest note in the first chord constitutes
the first element of the list, and the one corresponding to the highest note
in the final chord the last (the objects are thus ordered first according to
the onset time, and second according to the pitch of the note they corre-

6Original wording: “souil diß Instrument von der substantz des gesangs annemmen vnd
bequemlich leiden mögen”.

7Original wording: “auff den rechten grund yetziger zeit Lauttenkunst / mit vier / fünf
vnnd sechs stimmen / . . . jeden mit sein Coloribus / artlich auff die Lauten zugericht”.
The six-voice pieces are notated as if they were for five voices.



DATASETS 79

spond to).8 From the set of MIDI files, then, a Transcription object (an
internal representation of the intabulation) is created, from which a list of
voice labels is extracted. This list is ordered in similar fashion as the list of
TablatureNote objects, that is, the label that belongs to the lowest note
in the first chord constitutes the first element, and the one that belongs to
the highest note in the final chord the last. When there are two labels for
a single note—in other words, when this note is a single-note unison—these
labels are combined into a single new label (as described in Section 3.1.2.1).
When there are two successive notes that have the same pitch and the same
onset time, meaning that they form an actual unison, the note on the lower
course is added first. The labelling of the data needed for MA1 is achieved
by mapping each element in the list of TablatureNote objects to each
element in the list of voice labels. The mappings of notes to voices used in
MA2 and MA3, then, are extracted after first mapping the TablatureNote
objects to the voice labels likewise, and subsequently organising the list of
TablatureNote objects into chords—that is, grouping objects together
based on the onset time of the note to which they correspond.

When training a model, the labels are used during the training process
in the feature calculation and as training targets, and after the process to
calculate the evaluation metrics. When evaluating it, in test mode the labels
are used during the evaluation process in the feature calculation and after
the process to calculate the evaluation metrics, while in application mode,
they are only used after the process to calculate the evaluation metrics.

The Transcription object, together with the Tablature object,
serve further use in the feature calculation.

4.1.3 Encoding format

The encoding format used for this thesis, tab+, is custom-made and in-
spired by the TabCode format as described in Crawford (1991), which is the
format used for the encodings stored in the ECOLM database (see also Sec-
tion 1.1).9 The principal difference between the two is that unlike TabCode,
which supports only French, Italian, and Spanish tablature, tab+ also sup-
ports German tablature. Although it is good practice to build on existing
formats, the simpler option to devise a new encoding format is preferred over
the more complicated option of extending TabCode to also include German

8Strictly speaking, the object corresponding to the note on the lowest course in the
chord constitutes the first element, etc. Although it is theoretically possible that a note
on a lower course has a pitch that is higher than that of note on a higher course in the
same chord, this never occurs in the dataset.

9A full description of TabCode can be found at http://www.ecolm.org.

http://www.ecolm.org
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Table 4.3 Encoding, header section: fields.

Field Values Description

AUTHOR the intabulator of the piece
TITLE the title of the piece
SOURCE the source containing the piece
TABSYMBOLSET FrenchTab,

ItalianTab,
SpanishTab,
extensions of
GermanTab

the TabSymbolSet used to encode the
piece

TUNING transpositions of
G and G′

the tuning used for the piece

METER_INFO the meter(s) used in the piece, as well
as the barring per meter

lute tablature. Because of their similarity, however, the conversion of either
format into the other is a relatively simple task. This works two ways: a
conversion of TabCode into tab+ opens up the ECOLM database for fur-
ther research into voice separation in tablature, while a conversion in the
opposite direction enables the inclusion of music in German lute tablature in
the ECOLM database.

4.1.3.1 Content and symbols

tab+ is intended to remain simple, intuitive, and easy to read, and is exten-
sible. Each encoding consists of two main sections: a header and a body. The
header, first, contains general information about the piece that is encoded
and consists of six fields enclosed in curly brackets. The fields are listed in
Table 4.3.

As shown in Table 4.3, the TABSYMBOLSET and TUNING fields can only
take a range of preset values from which one must be selected. These fields
require some additional explanation. A TabSymbolSet, first, is a set of Tab-
Symbols, each of which encodes a position on the fretboard. When encoding
a piece, it is convenient to use a representation that is close to the original
notation. For this reason, separate TabSymbolSets are defined for the letter-
based French tablature system (FrenchTab), for the numeral-based Italian
and Spanish systems (ItalianTab and SpanishTab—these are identical), and
for the three variants of the symbol-based German system used for this the-
sis (Judenkuenig1523, Newsidler1536, and Ochsenkun1558—all of which are
extensions of the GermanTab TabSymbolSet, which covers only the highest
five courses). In the case of the former two TabSymbolSets, each TabSymbol



DATASETS 81

a1 b1 c1 d1 e1 f1 g1 h1 ...
a2 b2 c2 d2 e2 f2 g2 h2 ...
a3 b3 c3 d3 e3 f3 g3 h3 ...
a4 b4 c4 d4 e4 f4 g4 h4 ...
a5 b5 c5 d5 e5 f5 g5 h5 ...
a6 b6 c6 d6 e6 f6 g6 h6 ...

(a) FrenchTab.

01 11 21 31 41 51 61 71 ...
02 12 22 32 42 52 62 72 ...
03 13 23 33 43 53 63 73 ...
04 14 24 34 44 54 64 74 ...
05 15 25 35 45 55 65 75 ...
06 16 26 36 46 56 66 76 ...

(b) ItalianTab.

5 e k p v 9 e- k- ...
4 d i o t 7 d- i- ...
3 c h n s z c- h- ...
2 b g m r y b- g- ...
1 a f l q x a- f- ...
A B C D E F G H ...
+ A B C D E F G ...
+ 2- 3- 4- 5- 6- 7- 8- ...

(c) GermanTab extended to Judenkuenig1523 (third from bottom), Newsidler1536
(second from bottom), and Ochsenkun1558 (bottom).

Figure 4.3 TabSymbolSets. The diagrams visualise the fretboard, where the rows
are the courses and the columns the frets. The double vertical line indicates the
nut at the beginning of the fretboard.

consist of two characters, indicating a fret and a course, respectively, while in
the case of the latter three, each TabSymbol attempts to replicate the orig-
inal tablature symbol. The five TabSymbolSets that are defined are shown
in Figure 4.3.
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The tuning that is selected, then, determines the pitch that is associated
with each tablature symbol. Although the tuning is generally not specified in
the tablature, in the case of intabulations the intended tuning (or, at least, an
appropriate tuning) can be deduced from the vocal models. Two tunings are
defined: the standard Renaissance tuning (see Section 2.2) with the lowest
course tuned to nominal G, and the most common scordatura variant of it,
denoted in Table 4.3 as G′, where the sixth course is lowered by a whole tone
(see Section 2.2.1). Both these tunings can be transposed up and down as
needed, and thus cover all pieces in the tablature dataset.

The body, second, is a string of characters, which, separately or com-
bined, form symbols. Two types of symbols can be discerned: punctuation
symbols, which have no counterpart in the original tablature and serve encod-
ing parsing purposes, and musical symbols, which always have a counterpart
in the tablature. To the latter belong (i) the TabSymbols in the different
TabSymbolSets defined (see Figure 4.3), (ii), a set of rhythm symbols, (iii) a
set of mensuration signs, and (iv) a set of barline variants. The punctuation
symbols and the musical symbols are listed in Table 4.4.

Both the rhythm symbols and the mensuration signs require some ad-
ditional explanation. Each rhythm symbol can be modified into its dotted
counterpart by simply adding an asterisk (mi*, fu*, etc.). The duration
of the corona can vary and is parametrised by the number in its encod-
ing, indicating the duration in semibreves. Again, an asterisk can be added
(co1*, for example, yields a corona with a duration of a dotted semibreve).
Furthermore, a dash can be placed after a rhythm symbol to indicate that
it is connected to the next rhythm symbol by means of a horizontal beam
(fu-, sf-, etc.).10 For each mensuration sign, then, a default placement on
the third staff line from the top is assumed, but its vertical position can be
parametrised by adding a number, indicating the staff line, to its encoding.
Individual mensuration signs are often merged into compound mensuration
signs (for example, C3 or O3); these can be encoded by simply juxtaposing
two mensuration signs (MC3.M34, MO3.M34).

The five TabSymbolSets and two transposable tunings that are defined,
as well as the sets of rhythm symbols, mensuration signs, and barlines, suffice
for the tablature dataset used in this thesis. For future work with different
datasets, if needed, additional TabSymbolSets and tunings can always be
defined, and the sets of musical symbols can always be extended. Further
possible extensions may concern, for example, the inclusion of fingering or
ornamentation signs.

10Specifying beaming is not necessary for successful parsing of the encoding; this option
is included for future visualisation purposes.
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Table 4.4 Encoding, body section: punctuation symbols and musical symbols.

(a) Punctuation symbols.

Symbol Encoding Description

symbol separator . demarcates a musical symbol
event separator > demarcates a vertical event
system break
indicator

/ indicates a system break

end break
indicator

// indicates the end of a piece

comment
indicators

{ and } demarcate an inserted comment

(b) Musical symbols: rhythm symbols (top), mensuration signs (middle), and
barlines (bottom).

Symbol Encoding Description

semibreve sb

minim mi

semiminim sm

fusa fu

semifusa sf

corona co1, co1*, co2,
etc.

dot * dot of addition
beam - beam connecting two rhythm symbols

C MC

cut C McC

3 M3

O MO

single |

single repeat |: and :|, :|:
double ||

double repeat ||: and :||,
:||:

4.1.3.2 Encoding principles

The tablature is interpreted as a sequence of vertical events separated by bar-
lines. Three types of events are distinguished: (i) mensuration sign events,
each of which consists of a (compound) mensuration sign, (ii) chord events,
each of which consists of one or more tablature symbols, possibly—but not
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(a) Tablature.

{AUTHOR:PHALESE, Pierre (publ.)} x

{TITLE:Tant que uiuray [a4]} x

{SOURCE:Des Chansons Reduictz en Tabulature de Lvt, Liure

premier (1547_7), f. Giiˆv} x

{TABSYMBOLSET:FrenchTab} x

{TUNING:G} x

{METER_INFO:2/2 (1-4)} x

McC3.>. x

{bar 1}mi*.a4.a3.d2.f1.>. x

sm.h1.>. x

mi.a4.a3.d2.f1.>. x

fu-.c4.b3.a2.d1.>.fu-.c2.>.fu-.d2.>.fu.a1.>.|. x

{bar 2}sm-.a4.d3.d2.c1.>.sm-.a1.>.sm-.c1.>.sm.d1.>. x

sm-.a4.d3.d2.c1.>.sm-.c4.>.sm-.e4.>.sm.g4.a2.>.|. x

{bar 3}mi.h4.h3.a1.>. x

mi.e4.d3.d2.f1.>. x

fu-.c4.a2.a1.>.fu-.d2.>.fu-.a1.>.fu.c1.>. x

fu-.e1.>.fu-.f1.>.fu-.c1.>.fu.e1.>.|. x

{bar 4}sm.a5.d3.c2.f1.>.{bar 4 cut off}// x

(b) tab+ encoding.

Figure 4.4 tab+ encoding of a tablature fragment. Phalèse (publ.) (15477),
‘Tant que uiuray’ [a4], opening bars.

necessarily—with a rhythm symbol placed above,11 and (iii) rest events, each
of which consists of a rhythm symbol only. Each event is encoded as a se-
quence of one or more musical symbols, where the symbols are separated
from one another by means of symbol separators. The events themselves,
then, are separated by means of event separators. Comments placed within
comment indicators can be inserted at any point before the end break indi-

11In the parsing of the encoding, each chord that has no rhythm symbol is automatically
assigned the duration that goes with the rhythm symbol encountered last.
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cator, and hard returns can be used to organise the encoding visually as to
increase legibility. Lastly, to ensure that no parsing errors occur, the follow-
ing encoding rules must be followed:

Encoding rule 1 The encoding cannot contain space characters other
than those occurring within comment indicators.

Encoding rule 2 A chord event must be encoded in a fixed sequence:
any rhythm symbol must be encoded first, followed by the lowest-
course tablature symbol, the second-lowest-course tablature sym-
bol, etc.

Encoding rule 3 Mensuration sign events, chord events, and rest events
must always be succeeded by an event separator.

Encoding rule 4 Barline events must never be succeeded by an event
separator.

Encoding rule 5 The encoding must end with an end break indicator.

An example of a piece (the fragment in French tablature also shown in
Figure 4.1b) encoded in tab+, with some comments concerning barring in-
serted and hard returns placed at convenient points to increase legibility, is
given in Figure 4.4. Note that the mensuration sign is interpreted as a 2

2 me-
ter, meaning that a semibreve corresponds to a half note (see Section 2.2.3).

4.2 The Bach dataset

The Bach dataset consists of the 26 three-voice and the 19 four-voice fugues
contained in books I and II of Johann Sebastian Bach’s Das wohltemperirte
Clavier (BWV 846–893), and comprises a total of 50135 notes distributed
over 29787 chords. It is shown in Tables 4.5 and 4.6.

4.2.1 Format and data adaptations

The Bach dataset is retrieved from the MuseData repository of the Center
for Computer Assisted Research in the Humanities (CCARH) in the form of
MIDI files.12 In order for the data to be compatible with the system, three
kinds of adaptations are made to the original files. First, each MIDI file, in its
original form representing a complete fugue, is separated into a set of MIDI
files, each containing the pitch and duration information for an individual
voice. This is a very straightforward task, as in the original MIDI files the
information for each voice is stored in a separate channel. Second, in order

12See http://www.musedata.org and http://www.ccarh.org.

http://www.musedata.org
http://www.ccarh.org


Table 4.5 Bach dataset, three-voice pieces.

Fugue BWV Book Notes Chords

2 in c minor 847 I 747 408
3 in C♯ major 848 I 1432 851
6 in d minor 851 I 835 549
7 in E♭ major 852 I 953 614
8 in d♯ minor 853 I 1478 816
9 in E major 854 I 733 438
11 in F major 856 I 850 574
13 in F♯ major 858 I 911 574
15 in G major 860 I 1779 1071
19 in A major 864 I 1206 702
21 in B♭ major 866 I 952 527
1 in C major 870 II 1066 667
3 in C♯ major 872 II 774 535
4 in c♯ minor 873 II 1381 865
6 in d minor 875 II 805 502
10 in e minor 879 II 1446 1006
11 in F major 880 II 963 597
12 in f minor 881 II 1126 675
13 in F♯ major 882 II 1408 919
14 in f♯ minor 883 II 1478 928
15 in G major 884 II 763 522
18 in g♯ minor 887 II 1630 993
19 in A major 888 II 760 455
20 in a minor 889 II 857 695
21 in B♭ major 890 II 960 554
24 in b minor 893 II 1051 653

28344 17690

Table 4.6 Bach dataset, four-voice pieces.

Fugue BWV Book Notes Chords

1 in C major 846 I 736 400
5 in D major 850 I 789 474
12 in f minor 857 I 1456 892
14 in f♯ minor 859 I 860 482
16 in g minor 861 I 878 517
17 in A♭ major 862 I 918 551
18 in g♯ minor 863 I 804 404
20 in a minor 865 I 2402 1201
23 in B major 868 I 897 526
24 in b minor 869 I 1817 1120
2 in c minor 871 II 663 385
5 in D major 874 II 896 415
7 in E♭ major 876 II 707 365
8 in d♯ minor 877 II 1049 551
9 in E major 878 II 784 399
16 in g minor 885 II 1665 890
17 in A♭ major 886 II 1353 775
22 in b♭ minor 891 II 1761 928
23 in B major 892 II 1356 822

21791 12097
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Figure 4.5 In-voice chords. Bach, Das wohltemperirte Clavier, book I, Fugue 2 in
c minor (BWV 847), closing bars. Example reprinted with permission of CCARH.

Figure 4.6 Added extra voice. Bach, Das wohltemperirte Clavier, book II, Fugue
17 in A♭ major (BWV 886), closing bars. Example reprinted with permission of
CCARH.

to comply with the definition of voice as a monophonic sequence of notes as
used in this thesis, any simultaneous MIDI notes—that is, notes that have the
same onset and offset time—within the separated MIDI files are reduced to
single notes. Such in-voice chords, which are witnessed in a number of fugues,
usually occur at the end of the piece and result in enhanced chords that have
an embellishing function: they serve to give a sense of finality. An example is
given in Figure 4.5, where at least one in-voice chord is encountered in each
voice.

Third, some fugues contain temporarily added extra voices, which also
serve an embellishment end. An example of this is shown in Figure 4.6, where
such an extra voice, descending chromatically from A♭3 (not in the figure)
to E♭3, is placed between the bassus and the tenor (note also the enhanced
final chord). In order not to exceed the nominal number of voices in a fugue,
these added voices are removed wherever they are encountered.

A total of 206 notes are thus removed from the original data. It must be
stressed, lastly, that neither of the adaptations as described above impose
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serious inflictions on the polyphonic structure of the fugues.13

4.2.2 Internal data representations

Each set of MIDI files that represents a fugue is processed in a similar way
as a set representing an intabulation. From this set, a Transcription

object (an internal representation of the fugue) is created, from which then
a list of Note objects and a list of voice labels are extracted. Each Note

object correspond to a note, and contains the same basic attributes as a
TablatureNote object (apart from course and fret). The Note objects
are added to the list in the same manner as the TablatureNote objects,
that is, the object corresponding to the lowest note in the first chord first,
etc. When there are two successive notes that have the same pitch and the
same onset time, meaning that they form a unison, the note with the longer
duration is added first; if they have the same duration, the one in the lower
voice is added first. Because the Note objects and the voice labels stem
directly from the same Transcription object, the labelling required for
MA1 is already provided. Similar to as described in Section 4.1.2, then,
the mappings of notes to voices used in MA2 and MA3 are extracted after
organising the list of Note objects into chords. The use of the labels is
identical to as described in Section 4.1.2.

Again, too, the Transcription object serves further use in the feature
calculation.

13The MIDI file sets, as well as a list of all notes that are removed from the original data,
can be retrieved from http://mirg.city.ac.uk/datasets/rdv/phd_thesis.

http://mirg.city.ac.uk/datasets/rdv/phd_thesis


5

Experimental results and discussion

In this chapter, the results from experiments conducted with the various
models described in Chapter 3 on the two datasets described in Chapter 4
are presented and discussed. A total of six experiments are conducted, the
first two of which are preliminary experiments concerning model optimisa-
tion. In the first of these, which is described and discussed in Section 5.1
and applies to the neural network models used in MA1 and MA2, three
hyperparameters—the hidden layer size, the regularisation parameter λ, and
the margin ε—are optimised. In the second preliminary experiment, which
is described and discussed in Section 5.2 and applies to the hidden Markov
model used in MA3, the configuration of the transition probability matrix,
the observation probability matrix, and the initial state matrix types is op-
timised.

The four main experiments, then, are described and discussed in Sec-
tions 5.3, 5.4, 5.5, and 5.6, respectively. In Experiment 1, the three mod-
elling approaches—the note-level classification approach (MA1), the chord-
level regression approach (MA2), and the chord-level probabilistic approach
(MA3)—are evaluated and compared. In Experiment 2, the relevance of the
features is evaluated in two sub-experiments. In Experiment 3, which consists
of three sub-experiments, the effect of the three model extensions—backward
processing, simultaneous voice and duration modelling, and multi-pass pro-
cessing using a bidirectional decision context—is evaluated. In Experiment
4, lastly, the performance of the models is compared with the performance
of existing voice separation systems.

Finally, in Section 5.7, a number of overarching issues encountered
throughout the experiments conducted are described: conflicts and conflict
resolution, error propagation, and the handling of three complex musical
phenomena: single-note unisons, voice crossing, and imitation.

89



90 STRUCTURING LUTE TABLATURE AND MIDI DATA

5.1 Neural network models and

hyperparameter optimisation

The first preliminary experiment applies to the neural network models used in
MA1 and MA2, and concerns hyperparameter optimisation. For both these
models, two hyperparameters are optimised in a cross-validated grid search:
the size of the hidden layer and the regularisation parameter λ. Furthermore,
for the model used in MA2, an additional third parameter is optimised: the
margin ε.

5.1.1 Hidden layer size and regularisation

Both the number of hidden neurons and the amount of regularisation applied
in the training influence the complexity of a model. A model that is too com-
plex learns random noise in the training data and is thus prone to overfitting
(has high variance), meaning that it adapts well to the training data but
generalises poorly on new data. A model that is not complex enough, on the
other hand, fails to learn relevant relations between input and outputs, and
is prone to underfitting (has high bias): it adapts poorly to the training data
and also generalises poorly on new data.

The optimal hidden layer size depends on several interrelated factors, such
as the size of the input and output layers, the complexity of the function that
must be learned, the training algorithm used, the type of activation function
used, etc. Generally, a too small hidden layer tends to lead to underfitting,
and a too large hidden layer to overfitting (see Geman et al., 1992, for a
discussion on the influence of the hidden layer size on the bias/variance trade-
off). Finding the optimal size, however, is a well-known problem (Baum and
Haussler, 1989; Lawrence et al., 1996; Huang and Huang, 1991; Elisseeff and
Paugam-Moisy, 1997). Although several rules of thumb are encountered in
the literature—stating, for example, that the size of the hidden layer should
be between that of the input layer and that of the output layer, or that it
should never be more than twice the size of the input layer—, in this thesis
this problem is approached empirically. Thus, for the models used in MA1
six different hidden layer sizes are tried, measuring respectively 1/8, 1/4, 1/2, 1,
2, and 4 times the size of the input layer (excluding the bias neuron; numbers
are rounded half up). For the model used in MA2, only the first five of these
hidden layer sizes are tried.

Another measure to prevent overfitting is to use some form of regulari-
sation when training a model, that is, to reduce the weights in the weight
matrix by a certain amount in the weight update. For all models, L2 regu-
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larisation (or weight decay) is used, where larger weights are penalised more
than smaller, and each weight θ in the weight matrix is reduced as follows:

θ′ = θ − (λ · θ), (5.1)

where θ and θ′ are the weight values before and after regularisation, respec-
tively, and λ is the regularisation parameter, a constant that controls the
degree of regularisation. 10 different values of λ are tried: 0.1, 0.03, 0.01,
0.003, ..., 1 · 10−5, and 0.0 (or no regularisation).

The six, or, as the case may be, five different hidden layer sizes together
with the 10 values for λ yield a grid of 60 (50) possible combinations of
these two parameters. Each model is then trained and evaluated with every
parameter combination. Moreover, because the model architecture differs
depending on the dataset a model is applied to, each model is trained and
evaluated both on the tablature dataset and on the Bach dataset (with the
exception of the model variant for modelling voice and duration simultane-
ously, as used in MA1). This is done on the two four-voice subdatasets only;
the complete results are given in Tables A.1–A.10 in the Appendix. The
combination giving the highest accuracy in application mode is then selected
as the optimal combination.1 The optimal combinations are shown in Tables
5.1 and 5.2. As in the remainder of this thesis, values in parentheses fol-
lowing accuracy values indicate standard deviations over all folds.2 Recall,
furthermore, that the models used in MA1 are referred to as N (modelling
only voice) and N′ (modelling voice and duration simultaneously), and the
one used in MA2 as C.

Looking at Tables A.1–A.6, the following general observations can be
made with regard to the models used in MA1. First, when moving diago-
nally through the grids for the N model (see Tables A.1 and A.3), starting
in the upper left corner with the combination of the smallest hidden layer
and the largest λ value, model performance initially improves, but gradu-
ally stabilises. This stabilisation is confirmed by the fact that the highest
accuracy value is generally not statistically different from most of the values
given by parameter combinations in the lower right corner of the grid (see
Tables A.2 and A.4). Thus, as the hidden layer size increases and the amount
of regularisation applied decreases, the model tends to become less and less
sensitive to change in these parameters. This effect is the strongest—that is,

1By tracking stabilisation in both the voice decision accuracy and the network error
(see Section 3.1.1.1), in this experiment it is also determined that for the models used in
MA1 400 iterations are required for convergence, and for that used in MA2 600.

2All numerical experimental results presented in this thesis are truncated after two
(evaluation metric and standard deviation values) or four (p-values) places, and not
rounded. Others’ results are always copied verbatim.
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Table 5.1 Hyperparameter optimisation, N, N′, and C models: optimal hidden
layer size and λ value. Tablature dataset, four-voice pieces. HL = hidden layer
size, IL = input layer size.

Model HL λ Training Test Application
acc acc acc

N 1 · IL 0.001 92.97
(0.29)

92.04
(2.46)

79.63
(5.96)

N′ 1/2 · IL 3 · 10−5 97.36
(0.18)

96.61
(1.85)

70.47
(8.13)

C 1/4 · IL 0.001 84.02
(1.78)

80.85
(6.17)

75.26
(6.90)

Table 5.2 Hyperparameter optimisation, N and C models: optimal hidden layer
size and λ value. Bach dataset, four-voice pieces. HL = hidden layer size, IL =
input layer size.

Model HL λ Training Test Application
acc acc acc

N 1 · IL 1 · 10−5 98.04
(0.06)

97.57
(0.85)

80.70
(7.50)

C 1/4 · IL 3 · 10−5 96.95
(0.22)

96.86
(1.06)

79.56
(6.80)

the stabilisation takes place the earliest—in application mode, and the least
strong in training mode. The results for the N′ model (see Tables A.5 and
A.6), however, show a different picture. Here, after a similar stabilisation
halfway through the grid, the accuracies clearly decrease again (in training
and test mode this decrease is statistically significant) as the hidden layer
size further increases—indicating that larger hidden layers are in fact detri-
mental to the model performance. Generally speaking, for the models used
in MA1, neither a clear underfitting effect (which should be the strongest
for parameter combinations in the upper left corner of the grid) nor a clear
overfitting effect (which should be the strongest for combinations in the lower
right corner) are witnessed.

The picture for the C model (see Tables A.7–A.10) is roughly the same as
that for the N model: accuracies increase when moving diagonally through
the grids, and stabilise approximately halfway; a clear underfitting effect is
not witnessed. The similarity ends, however, when the largest hidden layer
size is reached. While the accuracies in training and test mode keep increasing
when moving from the next-to-largest to the largest hidden layer size, those
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in application mode drop—in the case when the model is applied to the
tablature dataset dramatically. This is a clear sign of overfitting, which can
be explained as follows. Tracking the mapping decision during the training
reveals that when the hidden layer size is too large, the relative training
becomes problematic in that the highest rating is very frequently given to
more than one feature vector in the feature vector set representing a chord
(the multiple-highest-rating problem; see Section 3.1.3.3).3 As explained in
Section 3.1.3.3, in such cases the mapping is selected that goes with the first
feature vector in the set that gets the highest rating. This means that if
the ground truth feature vector—which is always placed as the first element
of the set—is among the feature vectors receiving the highest rating, the
correct mapping is selected—even though the model has not actually learned
that it is the correct mapping (it gives the same highest rating to other
feature vectors as well). Although this increases training accuracy, it is very
likely to result in bad generalisation capacity. The current solution to the
multiple-highest-rating problem is thus clearly only a stop-gap measure that
suffices as long as this problem does not occur too often; a more elegant
solution is left for future work. It must be mentioned, lastly, that with the
parameter combinations selected as the optimal combinations for the C model
(see Tables 5.1 and 5.2), the multiple-highest-rating problem never occurs.4

5.1.2 Margin

In MA2 there is a third parameter that is optimised: the margin ε, which
serves an important role in the relative training procedure (see Section 3.1.3.2).
However, in this modelling approach, where for each chord mappings must
be enumerated and sets of voice assignments must be generated and subse-
quently rated, an exhaustive grid search over the space of three parameters
would be computationally very expensive. In the case of the C model, the
grid search over the hidden layer size and λ is therefore performed with ε

= 0.05, a value that has proven to give good results on the four-voice Bach
subdataset in an earlier study (Weyde and de Valk, 2016). In order to test
the effect of different ε values, eight additional values are tried, all in com-
bination with the optimal hidden layer size and λ value as determined in
the grid search. This is again done on the two four-voice subdatasets only.

3The multiple-highest-rating problem is not specific to the largest hidden layer size
and also occurs when the three smaller hidden layer sizes, and, notably, the next-to-
largest hidden layer size, are used. Moreover, on the tablature dataset the model is more
susceptible to it. However, as Tables A.7–A.10 show, only when the largest hidden layer
size is used the problem results in overfitting.

4This is also true when the C model is applied to the three-voice subdatasets.
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Table 5.3 Hyperparameter optimisation, C model: effect of different ε values.
Tablature dataset, four-voice pieces. The asterisk (*) indicates that the multiple-
highest-rating problem occurs for that value.

ε Training Test Application
acc acc acc

0.5* 88.39 (1.74) 87.48 (5.47) 75.80 (11.30)
0.16* 88.81 (4.01) 86.27 (6.88) 74.18 (9.90)
0.05 84.02 (1.78) 80.85 (6.17) 75.26 (6.90)
0.016 79.70 (3.36) 76.79 (8.28) 69.18 (10.39)
0.005 72.01 (4.44) 68.84 (9.47) 66.94 (8.71)
1.6 · 10−3 67.95 (3.48) 65.57 (8.12) 63.60 (9.15)
5 · 10−4 66.17 (3.85) 66.59 (8.55) 63.84 (7.89)
1.6 · 10−4* 66.48 (2.27) 68.11 (10.69) 63.20 (11.42)
0.0 67.52 (3.57) 66.93 (9.14) 62.40 (9.63)

Table 5.4 Hyperparameter optimisation, C model: effect of different ε values.
Bach dataset, four-voice pieces. The asterisk (*) indicates that the multiple-
highest-rating problem occurs for that value.

ε Training Test Application
acc acc acc

0.5* 97.82 (0.78) 97.70 (1.41) 53.04 (18.12)
0.16* 97.01 (0.18) 96.66 (1.36) 77.17 (9.87)
0.05 96.95 (0.22) 96.86 (1.06) 79.56 (6.80)
0.016 96.55 (0.53) 96.25 (1.17) 76.69 (9.04)
0.005 95.34 (1.62) 94.95 (2.30) 75.67 (9.04)
1.6 · 10−3* 94.11 (1.32) 94.03 (2.52) 71.08 (8.23)
5 · 10−4* 91.67 (1.91) 91.48 (3.23) 69.30 (7.13)
1.6 · 10−4* 91.27 (2.20) 90.80 (3.17) 68.90 (10.62)
0.0* 89.71 (3.62) 90.35 (4.52) 70.01 (8.27)

The results are shown in Tables 5.3 and 5.4. As in the remainder of this
thesis, the best results are printed in bold. The ε values giving the highest
accuracy in application mode are the ones selected; values with which the
multiple-highest-rating problem as described above occurs are not taken into
account. The tables show that the initial choice of ε = 0.05 indeed is a good
one for the C model.

In all experiments in the remainder of this thesis, the optimal hyperpa-
rameter settings for the different models as shown in Tables 5.1 and 5.2 and
Tables 5.3 and 5.4 will be used.
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Table 5.5 Matrix configuration opti-
misation, H model: effect of different
configurations of matrix types. Tab-
lature dataset, four-voice (top) and
three-voice (bottom) pieces.

Configuration Application
acc

(1) 74.35 (6.86)
(2) 74.35 (6.86)
(3) 75.17 (7.92)
(4) 75.19 (7.91)
(1) 85.70 (8.54)
(2) 85.70 (8.54)
(3) 82.57 (10.88)
(4) 82.57 (10.88)

Table 5.6 Matrix configuration opti-
misation, H model: effect of different
configurations of matrix types. Bach
dataset, four-voice (top) and three-
voice (bottom) pieces.

Configuration Application
acc

(1) 67.96 (4.89)
(2) 67.97 (4.89)
(3) 66.89 (4.98)
(4) 66.87 (5.01)
(1) 80.44 (4.03)
(2) 80.44 (4.04)
(3) 79.69 (4.12)
(4) 79.70 (4.09)

5.2 Hidden Markov model and matrix

configuration optimisation

The second preliminary experiment applies to the hidden Markov model used
in MA3, the H model. In what may be called an optimisation process, for this
model four different configurations of transition probability matrix (TPM),
observation probability matrix (OPM), and initial state matrix (ISM) types
are explored, where a matrix is said to be data-extracted when the proba-
bilities it contains are extracted from the data as described in Section 3.1.4,
and uniform when the probabilities it contains are all equal:

(1) A data-extracted OPM, a uniform TPM, and a uniform ISM.
(2) A data-extracted OPM, a uniform TPM, and a data-extracted

ISM.
(3) A data-extracted OPM, a data-extracted TPM, and a uniform

ISM.
(4) A data-extracted OPM, a data-extracted TPM, and a data-

extracted ISM.

This is done on both datasets; the results are shown in Tables 5.5 and 5.6.
Note that there is only one set of accuracies; these correspond to the neural
network models’ accuracies in application mode.

The tables show that the influence of the type of ISM used is negligible
(compare the results for configuration (1) versus those for configuration (2)
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Table 5.7 Experiment 1: modelling approaches. Tablature dataset, four-voice
(top) and three-voice (bottom) pieces.

(a) Results in training, test, and application mode.

Model Training Test Application
acc snd cmp acc snd cmp acc snd cmp

N 92.97
(0.29)

89.06 87.45 92.04
(2.46)

88.08 86.52 79.63
(5.96)

87.44 86.28

C 84.02
(1.78)

83.50 78.18 80.85
(6.17)

83.39 77.46 75.26
(6.90)

84.29 78.95

H 74.35
(6.86)

77.95 72.16

N 96.57
(0.29)

94.66 93.33 93.68
(2.75)

90.89 89.60 87.01
(7.03)

90.40 90.43

C 90.78
(1.09)

88.85 86.98 89.59
(6.02)

90.66 88.51 84.75
(7.93)

90.30 89.63

H 85.70
(8.54)

88.43 84.56

(b) p-values for pairwise comparison of accuracies in
training, test, and application mode.

Model Training Test Application
C H C H C H

N 0.0039 0.0039 0.0078 0.0039

C 0.2500
N 0.0312 0.1562 0.0937 0.6875
C 0.6875

(c) Runtimes.

Model Run-
time

N 448
C 3454
N 84
C 308

and the results for configuration (3) versus those for configuration (4)), but
that the influence of the type of TPM used is not (compare the results for
configurations (1) and (2) versus those for configurations (3) and (4)): on
three out of the four subdatasets, clearly better results are achieved using
a uniform TPM, while on the remaining subdataset (the four-voice tabla-
ture subdataset), better results are achieved using a data-extracted TPM.
Given this outcome, it is decided to select configuration (2), where a data-
extracted OPM, a uniform TPM, and a data-extracted ISM are used, for the
experiments in the remainder of this thesis.
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Table 5.8 Experiment 1: modelling approaches. Bach dataset, four-voice (top)
and three-voice (bottom) pieces.

(a) Results in training, test, and application mode.

Model Training Test Application
acc snd cmp acc snd cmp acc snd cmp

N 98.04
(0.06)

96.40 96.56 97.57
(0.85)

95.86 96.02 80.70
(7.50)

93.91 93.81

C 96.95
(0.22)

94.54 94.30 96.86
(1.06)

94.79 94.60 79.56
(6.80)

94.48 94.40

H 67.97
(4.89)

74.35 66.99

N 98.86
(0.06)

97.95 98.06 98.62
(0.95)

97.68 97.91 92.49
(5.03)

97.19 97.13

C 97.91
(0.36)

96.79 96.49 97.87
(1.29)

96.95 96.68 90.02
(5.17)

96.68 96.49

H 80.44
(4.04)

83.45 80.45

(b) p-values for pairwise comparison of accuracies in
training, test, and application mode.

Model Training Test Application
C H C H C H

N 0.0001 0.0001 0.6794 0.0001

C 0.0001

N 0.0001 0.0001 0.0024 0.0001

C 0.0001

(c) Runtimes.

Model Run-
time

N 2045
C 4466
N 3946
C 3804

5.3 Experiment 1: modelling approaches

In this first experiment, the three main models—the note-level neural net-
work model, N (MA1); the chord-level neural network model, C (MA2); and
the chord-level hidden Markov model, H (MA3)—are compared. The com-
parison is done separately on the three-voice and four-voice tablature sub-
datasets and the three-voice and four-voice Bach subdatasets. As explained
in Section 3.2.4, the evaluation metrics in training mode are informative
about a model’s capacity to adapt to the training data, while those in test
and application mode are informative about its capacity to generalise on un-
seen data. The metrics in test mode reflect its optimal performance on unseen
data, and those in application mode its actual performance on unseen data.
The results for all models on both datasets are shown in Tables 5.7a and
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5.8a.5 As in the remainder of this thesis, p-values for pairwise comparison
of models’ accuracies in training, test, and application mode are given in a
separate table directly below the results table (in this case, Tables 5.7b and
5.8b). p-values < 0.05 (which indicate statistical significance) are printed
in italics; p-values < 0.0001 are not further specified. Lastly, runtimes (in
seconds)—the runtime is the time it takes for a model to be both trained
and evaluated—for the N and C models are shown in Tables 5.7c and 5.8c.6

Focusing on model performance, the results shown in Tables 5.7 and 5.8
can be summarised as follows:

◮ The N model yields the highest accuracy values in all modes, where
the difference is generally the largest on the tablature dataset. In
training mode, its accuracy values are statistically significantly
better than those for the other two models in all four cases, in test
mode, they are statistically significantly better than those for the
C and H models in respectively three and four out of the four cases,
and in application mode in respectively two and three out of the
four cases. The N model also always yields the highest soundness
and completeness values in training and test mode; in application
mode, it yields higher values than those for the C and H models
in respectively three and four out of the four cases.

◮ In terms of accuracy, the C model yields either much higher or
similar (and not statistically significantly different) values than the
H model. The data type seems to play a role with respect to the
partial high performance of the H model; this is discussed below.
In terms of soundness and completeness, the C model always yields
higher values than the H model.

◮ The H model generally yields the lowest values, both in terms of
accuracy, but especially in terms of soundness and completeness.

Furthermore, it is noticed that:

5Previous results with slightly different versions of the N model and the H model on
the four-voice tablature subdataset and on two smaller three-voice and four-voice Bach
subdatasets are published in de Valk et al. (2013), with another slightly different version
of the N model on the same three-voice and four-voice tablature subdatasets in de Valk
and Weyde (2015), and with four different versions of the C model on the four-voice Bach
subdataset in Weyde and de Valk (2016).

6All experiments are run on an HP ENVY 15 Notebook PC with an Intel Core i5-
4210U dual-core processor and 8 GB RAM. Because of its combined implementation (see
Section 3.4, footnote 11), runtimes for the H model are not calculated.
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◮ The accuracies decrease in increasingly larger steps when moving
from training to test to application mode. While the difference
between values in training and test mode tends to be small, that
between values in test and application mode is large to very large.
Correspondingly, the standard deviation of the accuracy grows in
increasingly larger steps, starting with a generally very small value
in training mode. Overall, the standard deviation values are the
lowest for the N model (clearly so in training and test mode), and
the highest for the C model.

◮ Soundness and completeness values, on the other hand, remain
much more stable when moving from training to test to application
mode.

◮ Runtimes are generally lower for the N model; the difference is
more pronounced on the tablature dataset.

From these observations, the following can be concluded. Overall, the
N model performs best, is the most stable, and is the most efficient. In
comparison to the other models, this model performs notably well on the
tablature dataset. It is followed by the C model, and, at some distance, the
H model. The higher standard deviations in all three modes for the C model
show that this model is the most unstable. The generally large differences
between accuracies in test and application mode, witnessed for both the N
and C models, indicate that in application mode, errors tend to propagate.
However, the differences between soundness and completeness (evaluation
metrics measuring transitions between notes) in test mode on the one hand
and application mode on the other, which are only small, suggest that notes
are often assigned to the incorrect voice in groups. Although strictly speaking
incorrect (as reflected by the lower accuracy), such assignments are often
musically acceptable—that is, both contrapuntally correct and consistent
with contemporary musical style. An example of this is given in Section 5.7.2,
where the subject of error propagation is discussed in more detail. The
smaller differences in runtimes on the Bach dataset, lastly, can be explained
by the fact that on this dataset, sustained previous notes reduce the mapping
possibilities for the chords (see Section 3.1.3.1). This can then reduce the
size of the training set created in each training iteration (see Section 3.1.3.2),
and can thus speed up the training considerably.

Taking into account that the datasets differ with respect to two main
parameters—textural density, (that is, number of voices), and data type
(that is, Renaissance lute music written in tablature or Baroque keyboard
music written in (early) modern staff notation), the following is noticed:
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◮ All three models perform better on the three-voice subdatasets.
The differences are generally less pronounced in training and test
mode (especially on the Bach dataset), but very well noticeable in
application mode.

◮ In all modes, the N and C models perform better—at times even
considerably—on the Bach dataset than on the tablature dataset
(with the possible exception, perhaps, of the N model applied
to the four-voice subdataset, where the accuracies in application
mode are similar). The performance difference is the most striking
in the case of the C model, especially in training and test mode.
Conversely, however, the H model always performs considerably
better on the tablature dataset than on the Bach dataset.

The first observation, regarding textural density, indicates that the task
of voice separation becomes more complicated as the number of voices grows.
With respect to the second observation, it is hypothesised, firstly, that the
better performance of the N and C models on the Bach dataset is related
to the more comprehensive information on note duration available in this
dataset, where the full note durations are given (and used in the feature cal-
culation), and where note overlap thus occurs. In the case of the C model,
a direct (and observable) reason for the better performance on this dataset
is the fact that, as already mentioned above in the context of runtime dif-
ferences, sustained previous notes reduce the mapping possibilities for the
chords (see Section 3.1.3.1). This is clearly beneficial to the learning. In
the case of the N model, then, it is more difficult to pinpoint exactly how
the more comprehensive duration information relates to the better perfor-
mance. The encoding in the feature vectors of note overlap, which implies
the unavailability of the voices that the notes causing the overlap (that is,
sustained previous notes in forward and interrupting next notes in backward
processing mode) belong to, is presumed to play a role here. (Of course, this
would apply also in the case of the C model.)

Secondly, the reason why the H model, which makes use of pitch informa-
tion only, performs better on the tablature dataset than on the Bach dataset
is hypothesised to be related to the greater uniformity in mode (key) in the
former dataset. Because not all modes fit the instrument well, in the tabla-
ture dataset—and in lute music in general—only a select number of modes
are used. In the Bach dataset, on the other hand, all 24 keys are used. This,
and the fact that this dataset is larger, leads to a much greater diversity
of chords, and increases the risk of encountering a chord in a test set that
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only seldom, or even never, occurs in the complementary training set.7 This
complicates the correct mapping decision for that chord. A possible solution
to this issue would be to transpose, in a preprocessing step, all pieces in
the dataset to the same key, or to represent each chord as a feature vector
encoding relative rather than absolute pitches. It is worth noting, lastly,
that on the tablature dataset the accuracy values for the relatively simple H
model are similar to those for the much more complicated C model (on the
three-voice subdataset they are even higher—although the difference is not
statistically significant).

5.3.1 Conclusion

Considering the above, in the remainder of this thesis the focus will be on
MA1, the note-level classification approach. The decision to drop MA2,
the chord-level regression approach, and MA3, the chord-level probabilistic
approach, is mostly a practical one and stems from the boundaries that
must be set when deciding on the scope of the thesis; it is not to say that
these approaches are not worth further investigation. MA2 already yields
good results, especially on the Bach dataset, but has the disadvantage that
it is computationally more expensive (training times can be prolonged by
up to a factor of approximately eight); MA3, which in its current form is
rather straightforward, is expected to yield better results when extended. It
is therefore envisaged that these lines of research will be revisited in future
work.

5.4 Experiment 2: features

In this experiment, which consists of two sub-experiments, the validity of
the features is explored. In Experiment 2.1, the performance of the N model
is measured when increasingly more context information is encoded in the
feature vectors; in Experiment 2.2, the effect of the inclusion of tablature
information in the feature vector is investigated.

5.4.1 Experiment 2.1: context information

The first sub-experiment serves to demonstrate the effect of an increase of
context information encoded in the feature vectors. The model is trained

7The chord dictionaries for the three-voice and four-voice tablature subdatasets contain
190 and 482 unique chords, respectively; those for the three-voice and four-voice Bach
subdatasets 2004 and 2471 unique chords.
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Table 5.9 Experiment 2.1: features, context information. Tablature dataset,
four-voice pieces. FV = feature vector.

(a) Results in training, test, and application mode.

FV Training Test Application
acc snd cmp acc snd cmp acc snd cmp

A 69.65
(0.54)

71.70 82.53 68.27
(4.58)

71.41 82.05 67.52
(10.58)

76.29 75.77

B 79.57
(0.60)

83.76 81.16 78.24
(5.18)

82.72 80.72 78.22
(5.45)

82.86 80.52

C 80.24
(0.61)

84.39 82.66 78.73
(5.56)

83.44 81.74 78.87
(5.70)

83.71 81.69

D 92.97
(0.29)

89.06 87.45 92.04
(2.46)

88.08 86.52 79.63
(5.96)

87.44 86.28

(b) p-values for pairwise comparison of accuracies in training, test, and application
mode.

FV Training Test Application
B C D B C D B C D

A 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039

B 0.0039 0.0039 0.4257 0.0039 0.3007 0.1289
C 0.0039 0.0039 0.1640

and evaluated using four different feature vectors, which are constructed
along the lines of the four categories as described in Section 3.1.7. Feature
vector A thus contains only the note-level features (that is, 5 features on the
tablature dataset or 3 features on the Bach dataset); in feature vector B (8 or
6 features, respectively), the note-chord features are added; in feature vector
C (16 or 13 features, respectively), the chord-level features are added; and
in feature vector D (41 or 33 features, respectively), lastly, the polyphonic
embedding features are added. (Feature vector D is thus equal to the full
feature vector as used in all other experiments in this thesis.) The context
information encoded thus increases from highly local (feature vector A), via
two intermediate stages (feature vectors B and C), to more global (feature
vector D).

The experiment is conducted on the two four-voice subdatasets only. Fur-
thermore, in order to guarantee that differences in performance are solely due
to different inputs, in this experiment a model with the same, fixed hidden
layer size is used for each feature vector. The hidden layer size decided upon
is the one determined to be optimal when feature vector D is used (see Tables
5.1 and 5.2), which contains thus either 41 (tablature dataset) or 33 (Bach
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Table 5.10 Experiment 2.1: features, context information. Bach dataset, four-
voice pieces. FV = feature vector.

(a) Results in training, test, and application mode.

FV Training Test Application
acc snd cmp acc snd cmp acc snd cmp

A 66.79
(0.21)

70.98 76.99 65.94
(4.15)

71.03 76.79 65.58
(9.49)

83.22 78.97

B 83.17
(0.26)

90.80 87.12 82.04
(4.72)

90.91 86.86 78.55
(4.76)

90.35 85.53

C 84.68
(0.24)

91.52 87.53 83.51
(4.07)

91.56 87.19 81.42
(3.79)

91.96 87.39

D 98.04
(0.06)

96.40 96.56 97.57
(0.85)

95.86 96.02 80.70
(7.50)

93.91 93.81

(b) p-values for pairwise comparison of accuracies in training, test, and application
mode.

FV Training Test Application
B C D B C D B C D

A 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

B 0.0001 0.0001 0.0007 0.0001 0.0001 0.1336
C 0.0001 0.0001 0.8287

dataset) neurons. The results for Experiment 2.1 are shown in Tables 5.9
and 5.10.

With regard to the accuracies in training and test mode, two considerable
increases are observed: when moving from feature vector A to feature vector
B (where information on a note’s position in a chord is added), and when
moving from feature vector C to feature vector D (where information on a
note’s polyphonic embedding is added). A small increase is also witnessed
when moving from feature vector B to feature vector C (where information on
chord-level properties is added); in test mode, however, this increase is only
statistically significant on the Bach dataset. Soundness and completeness fol-
low a pattern similar to that seen in the accuracies. Looking at the accuracies
in application mode, then, a different picture arises. While a notable (and
statistically significant) increase in accuracy is still witnessed when moving
from feature vector A to feature vector B, the difference when moving from
feature vector B to feature vector C is only statistically significant on the
Bach dataset, and the difference when moving from feature vector C to fea-
ture vector D never. Soundness and completeness, however, as in training
and in test mode, keep increasing when moving from one feature vector to
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Table 5.11 Experiment 2.2: features, tablature information. Tablature dataset,
four-voice (top) and three-voice (bottom) pieces. The asterisk (*) indicates that
the tablature features are excluded from the feature vector. FV = feature vector.

(a) Results in training, test, and application mode.

FV Training Test Application
acc snd cmp acc snd cmp acc snd cmp

D 92.97
(0.29)

89.06 87.45 92.04
(2.46)

88.08 86.52 79.63
(5.96)

87.44 86.28

D* 91.99
(0.28)

87.73 86.30 91.03
(3.44)

86.84 85.53 77.64
(7.08)

86.23 85.70

D 96.57
(0.29)

94.66 93.33 93.68
(2.75)

90.89 89.60 87.01
(7.03)

90.40 90.43

D* 95.65
(0.31)

93.21 91.96 92.19
(3.80)

90.54 88.73 84.84
(9.47)

89.78 89.05

(b) p-values for pairwise comparison of accuracies in training, test, and application
mode.

FV Training Test Application
D* D* D*

D 0.0039 0.1289 0.0976

D 0.0312 0.3125 0.8437

the next.

5.4.2 Experiment 2.2: tablature information

In the second sub-experiment, the effect of the inclusion of tablature infor-
mation in the feature vector is investigated. The model is therefore trained
and evaluated using a version of feature vector D from which all tablature
features—that is, the features that encode information that can only be de-
duced from the tablature (and that relate to properties of the instrument):
course, fret, maxDuration, and adjNoteOnSameCourse—have been
removed. The results are then compared with those yielded by the model
that uses the complete feature vector. It should be noted that by remov-
ing all tablature features, the feature vector for use on the tablature dataset
becomes essentially the same as the one for use on the Bach dataset. The
only difference is the position of the duration feature, which in case of the
tablature dataset is a chord-level feature, whereas in case of the Bach dataset
it is a note-level feature.

This experiment is done on both tablature subdatasets. As in Experiment
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2.1, a model with the same, fixed hidden layer size (the one determined to
be optimal for the full feature vector, containing 41 neurons) is used for both
feature vectors. The results are shown in Table 5.11.

As the table shows, in all modes the model performs better on both
subdatasets when the tablature features are included in the feature vector—
but the accuracy differences are only statistically significant in training mode.

5.4.3 Conclusion

The following can be concluded. The features are clearly effective: using
the smallest feature vector A, containing five features in the case of the
tablature dataset and only three in the case of the Bach dataset, already
yields accuracies between 65–70% in all modes. Using the largest feature
vector D yields good (application mode) to very good accuracies (training
and test mode). As clearly shown by the improvement in all evaluation met-
ric values in training mode, an increase in context information encoded in
the feature vectors leads to an increasingly better adaptation to the data.
Especially the note-chord features (added in feature vector B) and the poly-
phonic embedding features (added in feature vector D), both of which cause
a sizeable performance boost when added to the feature vector, turn out to
be highly valuable. As shown by the increasing accuracies in test mode and
the increasing soundness and completeness in test and application mode, the
availability of more context information also seems to lead to an increasingly
better generalisation on new data. The latter, however, is contradicted by a
stabilisation in accuracy in application mode. Considering the results in test
mode, this is believed to be due to error propagation.

On the tablature dataset, the inclusion of tablature features in the feature
vector leads to slightly better results, but the accuracy difference is only
statistically significant in training mode. It is therefore hypothesised that,
although its inclusion leads to a better adaptation to the data, the tablature
information as currently encoded in the features does not convey significant
information about polyphonic structure.

5.5 Experiment 3: model extensions

In this experiment, the basic N model as hitherto used—that is, the model
that processes the music from left to right, models only voice, and makes use
of a unidirectional decision context—is extended in three manners (X1–3)
in order to investigate how these extensions affect model performance. This
yields three sub-experiments, each of them dedicated to an extension. In



106 STRUCTURING LUTE TABLATURE AND MIDI DATA

Table 5.12 Experiment 3.1: model extensions, backward processing (X2). Tab-
lature dataset, four-voice (top) and three-voice (bottom) pieces. PM = processing
mode.

(a) Results in training, test, and application mode.

PM Training Test Application
acc snd cmp acc snd cmp acc snd cmp

fwd 92.97
(0.29)

89.06 87.45 92.04
(2.46)

88.08 86.52 79.63
(5.96)

87.44 86.28

bwd 93.99
(0.27)

90.35 88.93 92.50
(4.01)

88.29 86.73 78.62
(6.95)

87.17 86.88

fwd 96.57
(0.29)

94.66 93.33 93.68
(2.75)

90.89 89.60 87.01
(7.03)

90.40 90.43

bwd 97.10
(0.28)

95.54 94.19 94.88
(2.24)

92.47 90.97 88.61
(6.09)

91.75 91.15

(b) p-values for pairwise comparison of accuracies in training, test, and application
mode.

PM Training Test Application
bwd bwd bwd

fwd 0.0039 0.7343 0.4257

fwd 0.0312 0.0625 0.2187

Section 3.1.5 it is argued that modelling backward, where the music is pro-
cessed starting at the polyphonically most transparent end, might be a more
promising approach for voice separation than modelling forward. Thus, in
Experiment 3.1, in addition to the forward processing mode, a backward pro-
cessing mode (X2) is tried. In Section 3.1.2.3 it is argued that, because note
duration plays a significant role in the voice separation process, additionally
modelling duration may be beneficial to model performance. In Experiment
3.2, which applies to the tablature dataset only, instead of modelling only
voice, modelling voice and duration simultaneously (X1) is therefore tested.8

In Section 3.1.6, lastly, it is argued that the availability of more comprehen-
sive information on the polyphonic embedding of a note or chord when the
class decision is made can improve model performance. In Experiment 3.3,
lastly, multi-pass processing using a bidirectional decision context (X3) is
thus tried.

8For previous experiments with processing modes and modelling voice and duration
simultaneously, see de Valk and Weyde (2015). In this study, a slightly different variant
of the N model is used, which is applied to the two tablature subdatasets only.
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Table 5.13 Experiment 3.1: model extensions, backward processing (X2). Bach
dataset, four-voice (top) and three-voice (bottom) pieces. PM = processing mode.

(a) Results in training, test, and application mode.

PM Training Test Application
acc snd cmp acc snd cmp acc snd cmp

fwd 98.04
(0.06)

96.40 96.56 97.57
(0.85)

95.86 96.02 80.70
(7.50)

93.91 93.81

bwd 97.90
(0.10)

96.43 96.44 97.00
(2.06)

95.48 95.29 81.32
(7.32)

94.12 93.46

fwd 98.86
(0.06)

97.95 98.06 98.62
(0.95)

97.68 97.91 92.49
(5.03)

97.19 97.13

bwd 98.81
(0.08)

97.93 98.02 98.48
(1.23)

97.64 97.68 93.33
(4.20)

97.01 96.85

(b) p-values for pairwise comparison of accuracies in training, test, and application
mode.

PM Training Test Application
bwd bwd bwd

fwd 0.0001 0.1133 0.6507

fwd 0.0029 0.8028 0.1650

5.5.1 Experiment 3.1: backward processing (X2)

In the first sub-experiment, the effect of the processing mode on the model
performance is investigated. The model is trained and evaluated in backward
processing mode, where the music is processed from right to left, starting with
the final chord (see Section 3.1.5). This is done on both datasets; the results
are then compared with those yielded by the basic forward-processing model
as hitherto used. The results are shown in Tables 5.12 and 5.13.

The tables show that in training and test mode, on the tablature dataset
all evaluation metric values are slightly higher in backward processing mode,
whereas on the Bach dataset, they are either similar in both modes or slightly
higher in forward processing mode. The accuracy differences, however, are
always only statistically significant in training mode. In application mode,
the results show more variation—but the accuracy differences are never sta-
tistically significant. The processing mode thus only has a statistically sig-
nificantly positive effect on the learning, where a backward processing mode
is beneficial on the tablature dataset, and a forward processing mode on the
Bach dataset.
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Table 5.14 Experiment 3.2: model extensions, simultaneous voice and duration
modelling (X1), forward processing mode. Tablature dataset, four-voice (top) and
three-voice (bottom) pieces.

(a) Results in training, test, and application mode. Values below the dashed line
apply to duration.

Model Training Test Application
acc snd cmp acc snd cmp acc snd cmp

N 92.97
(0.29)

89.06 87.45 92.04
(2.46)

88.08 86.52 79.63
(5.96)

87.44 86.28

N′ 97.36
(0.18)

96.38 94.27 96.61
(1.85)

95.49 93.47 70.47
(8.13)

77.25 71.36

71.55
(1.67)

68.58
(6.61)

72.33
(7.84)

N 96.57
(0.29)

94.66 93.33 93.68
(2.75)

90.89 89.60 87.01
(7.03)

90.40 90.43

N′ 98.57
(0.15)

98.12 96.63 96.90
(1.83)

95.61 94.67 75.35
(10.30)

77.78 75.65

75.07
(2.42)

70.58
(4.04)

71.78
(3.24)

(b) p-values for pairwise comparison of accuracies in training, test, and application
mode.

Model Training Test Application
N′ N′ N′

N 0.0039 0.0039 0.0078

N 0.0312 0.0312 0.0312

5.5.2 Experiment 3.2: simultaneous voice and
duration modelling (X1)

In the second sub-experiment the effect of modelling voice and duration si-
multaneously (see Section 3.1.2.3) on the model performance is investigated.
Two aspects are considered: the effect of additionally modelling duration
on the voice assignment performance, and the effect of the processing mode
on the duration assignment performance. For this sub-experiment, which
applies to the tablature dataset only, the N′ model is used. This model is
trained and evaluated on the two subdatasets, both in forward and in back-
ward processing mode. The results are then compared with those yielded by
the basic forward-processing and backward-processing N models and to each
other. At this point it should be noted that, as already mentioned in Sec-



EXPERIMENTAL RESULTS AND DISCUSSION 109

Table 5.15 Experiment 3.2: model extensions, simultaneous voice and duration
modelling (X1), backward processing mode. Tablature dataset, four-voice (top)
and three-voice (bottom) pieces.

(a) Results in training, test, and application mode. Values below the dashed line
apply to duration.

Model Training Test Application
acc snd cmp acc snd cmp acc snd cmp

N 93.99
(0.27)

90.35 88.93 92.50
(4.01)

88.29 86.73 78.62
(6.95)

87.17 86.88

N′ 93.14
(0.30)

89.01 87.57 91.65
(4.91)

87.10 85.58 77.71
(7.89)

86.93 85.84

80.10
(1.68)

76.37
(6.87)

84.75
(6.47)

N 97.10
(0.28)

95.54 94.19 94.88
(2.24)

92.47 90.97 88.61
(6.09)

91.75 91.15

N′ 96.38
(0.40)

94.39 92.93 94.32
(2.80)

92.07 90.72 88.35
(7.55)

91.74 90.50

86.59
(2.04)

81.59
(3.21)

87.28
(4.71)

(b) p-values for pairwise comparison of accuracies in training, test, and application
mode.

Model Training Test Application
N′ N′ N′

N 0.0039 0.0390 0.4960

N 0.0312 0.4375 0.4375

tion 3.2.2, for the N′ model, there are two types of accuracy: voice accuracy
and duration accuracy. The latter is calculated in the exact same way as
the former, and measures the percentage of notes that have been assigned to
the correct duration. (See also Section 3.2.3 for issues with the evaluation of
voice and duration assignments for single-note unisons.) The results for the
second sub-experiment are shown in Tables 5.14 and 5.15.

With regard to the effect of additionally modelling duration on the voice
assignment performance, the following is observed. In forward processing
mode, when both voice and duration are modelled all evaluation metric values
in training and test mode are clearly higher than when only voice is modelled,
but those in application mode, conversely, are much lower. Accuracy differ-
ences are statistically significant in all modes. In backward processing mode,
then, when both voice and duration are modelled all evaluation metric values



110 STRUCTURING LUTE TABLATURE AND MIDI DATA

in all modes are consistently slightly lower than when only voice is modelled,
but here the differences are much smaller than in forward processing mode.
Moreover, the accuracy differences are only always statistically significant
in training mode. Thus, in forward processing mode additionally modelling
duration has a statistically significantly positive effect on the learning, but
a statistically significantly negative effect on the generalisation (at least in a
real-world application). In backward processing mode, almost the opposite
is witnessed: the effect on the learning is statistically significantly negative,
while that on the generalisation is negligible.

A possible explanation for these results is as follows. Let n be the note the
voice class decision is made for (and the decision context be unidirectional—
that is, extending to the left in forward and to the right in backward process-
ing mode). In forward processing mode modelling voice and duration simul-
taneously, not only the voices to which the notes to the left of n belong are
known, but also their full durations. It is hypothesised that this additional
duration information facilitates the voice class decision for n. This is because
information relating to notes whose offset time exceeds the onset time of n,
and, more importantly, the voices these notes belong to, is now encoded in
the feature vector (see Section 3.1.7.2). Among other things, this provides
the model information about which voices are unavailable for n because they
are still occupied (recall that each voice is assumed to be monophonic). This
would explain why in forward processing mode modelling voice and duration
simultaneously yields better results than modelling only voice (the exception
being the results in application mode; this is discussed shortly). It would also
explain why in backward processing mode, where duration information to the
left of n is never available, modelling voice and duration simultaneously and
modelling only voice yield much more similar results. (It does not explain,
however, why in backward processing mode modelling voice and duration
simultaneously actually consistently yields a slightly worse voice assignment
performance than modelling only voice. It is hypothesised that this has to do
with the more complex model that is used when modelling voice and dura-
tion simultaneously.) The results in application mode in forward processing
mode, however, do not fit this picture. Here, all evaluation metric values are
considerably lower when modelling voice and duration simultaneously than
when modelling only voice. It must be noted at this point that the duration
accuracy in forward processing mode is consistently relatively low (an expla-
nation for this is given below)—on average between 25–30% of the notes get
assigned to the wrong duration. In application mode, then, it is the duration
information provided by the model (and not the correct duration informa-
tion, as in training and test mode) that is used in the feature calculation. It
is hypothesised that when this information is partly incorrect, as is the case
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in application mode, this has a strong negative effect on the voice assignment
performance.

With regard to the effect of the processing mode on the duration assign-
ment performance, then, it is observed, first, that the duration accuracies are
consistently much higher in backward processing mode than in forward pro-
cessing mode. Backward processing thus yields better results than forward
processing, both with respect to learning and generalisation. Second, it is
observed that both in forward and in backward processing mode, the dura-
tion accuracies in test mode are lower than those in training mode, which is
to be expected, but that those in application mode are always higher than
those in test mode (and in three out of four cases even higher than those in
training mode).

The first observation can be explained as follows. Let n be the note the
duration class decision is made for (and the decision context be unidirec-
tional). In backward processing mode, the voices to which the notes to the
right of n belong are known. It is now hypothesised that having available
this information facilitates the duration class decision for n. As explained
in Section 4.1.1.1, the duration of n is determined by three (interrelated)
factors: (i) the onset time of the next note in the same voice, (ii) the onset
time of the next note on the same course, and (iii) a theoretical maximum
duration of a semibreve. The third factor can be left out of consideration
here—the theoretical maximum duration is ingrained in the target labels,
meaning that notes are unlikely to be assigned to durations longer than this
value (see also Section 3.1.2.3). The second factor, the onset time of the next
note on the same course, determines the note-level feature maxDuration.
Because this onset time is known in both forward and backward processing
mode, maxDuration will thus have the same value in both. The first and
most significant factor, the onset time of the next note in the same voice,
however, is only known in backward processing mode, where, together with
the onset times of the next notes in the other voices, it is encoded in the
feature vector (in the iOProx features, see Section 3.1.7.2). This provides
the model information about the maximum duration of n: if n is assigned
to voice v, its offset time cannot exceed the onset time of the next note in
v. The availability of this important additional information is thought to
explain the better duration assignment performance in backward processing
mode.

The second observation—that in both processing modes the duration ac-
curacies are always higher in application mode than in test mode (and in
three out of four cases also in training mode)—has to do with adaptations
made because of conflicts encountered in application mode. Let n be the
note the voice and duration class decisions are made for. As explained in
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Section 3.3.1, in forward processing mode the duration of a sustained previ-
ous note is shortened to its maximum duration if n is assigned to the same
voice as this sustained previous note. In backward processing mode, con-
versely, the duration of n itself is shortened to its maximum duration if it is
assigned to the same voice as an interrupting next note. In both processing
modes, such adaptations can lead to a considerable increase in accuracy. (The
opposite phenomenon, where, due to a conflict, notes initially assigned to the
correct duration are reassigned to the incorrect duration, also occurs—but
far less often.)

5.5.3 Experiment 3.3: multi-pass processing using a
bidirectional decision context (X3)

In the third sub-experiment, the effect of using a bidirectional decision con-
text is investigated. As explained in Section 3.1.6, when using a bidirectional
model, not only the polyphonic relation of the note the voice class decision
is made for with notes opposite to the processing direction is encoded in the
feature vector, but also the polyphonic relation with notes in the processing
direction. This leads to a more comprehensive polyphonic embedding. As
also explained in Section 3.1.6, a bidirectional model therefore cannot be
used in a first pass through the data, as necessary information (to be precise,
polyphonic information in the processing direction) is lacking. Thus, the
data must first be annotated with polyphonic information acquired from a
(unidirectional) first-pass model. This information is then used in the calcu-
lation of the features, both when training and when testing the model; the
actual, correct polyphonic information is used exclusively as training targets.

In this sub-experiment, the polyphonic information yielded by the ap-
propriate best-performing first-pass model is used to annotate the data with.
Experiments are carried out annotating the data only with voice information,
in which case information generated by the best-performing N model is used
for the annotation, and (on the tablature dataset only) annotating it with
both voice and duration information, in which case the information generated
by the best-performing N′ model is used. In the former case, the four-voice
tablature subdataset is thus annotated with voice information generated by
the N model in forward processing mode, and the three-voice tablature sub-
dataset as well as both Bach subdatasets with voice information generated
by the N model in backward processing mode (see Tables 5.12 and 5.13). In
the latter case, both tablature subdatasets are annotated with voice and du-
ration information generated by the N′ model in backward processing mode
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Table 5.16 Experiment 3.3: model extensions, multi-pass processing using a bidi-
rectional decision context (X3). Tablature dataset, four-voice (top) and three-voice
(bottom) pieces.

(a) Results in training and application mode.

Model Training Application
acc snd cmp acc snd cmp

N (fwd) 92.97
(0.29)

89.06 87.45 79.63
(5.96)

87.44 86.28

B 84.04
(0.88)

86.98 84.25 80.56
(5.58)

86.00 82.57

B′ 84.98
(0.72)

86.95 84.30 80.93
(6.98)

86.30 82.74

N (bwd) 97.10
(0.28)

95.54 94.19 88.61
(6.09)

91.75 91.15

B 93.60
(1.22)

93.73 92.49 88.77
(6.10)

90.63 88.11

B′ 93.79
(1.22)

93.85 92.59 89.79
(6.52)

91.91 89.52

(b) p-values for pairwise comparison of accuracies in training and application
mode.

Model Training Application
B B′ B B′

N (fwd) 0.0039 0.0039 0.1289 0.3593
B 0.0039 0.9101

N (bwd) 0.0312 0.0312 0.8437 0.0937
B 0.1562 0.0625

(see Tables 5.14 and 5.15).9

After the data annotation, in a second pass through the data the bidirec-
tional model is trained and evaluated on both datasets. Because in the case
of a bidirectional model the processing mode has no relevance—both in for-
ward and in backward processing mode the exact same information is used in
the feature calculation, leading to the exact same results—this is done only

9Note that the voice accuracy is slightly lower for the N′ model than for the N model
(although the difference is not statistically significant). An alternative approach would be
to annotate the data with the voice information generated by the model with the highest
voice accuracy, and the duration information generated by the model with the highest du-
ration accuracy. One reason for not implementing this approach is that it is more involved;
another, more important, reason is that the voice information and duration information
generated by the first-pass model are not independent (as discussed in Section 5.5.2).



114 STRUCTURING LUTE TABLATURE AND MIDI DATA

Table 5.17 Experiment 3.3: model extensions, multi-pass processing using a bidi-
rectional decision context (X3). Bach dataset, four-voice (top) and three-voice
(bottom) pieces.

(a) Results in training and application mode.

Model Training Application
acc snd cmp acc snd cmp

N (bwd) 97.90
(0.10)

96.43 96.44 81.32
(7.32)

94.12 93.46

B 87.82
(0.41)

92.40 89.81 81.94
(5.94)

93.95 90.50

N (bwd) 98.81
(0.08)

97.93 98.02 93.33
(4.20)

97.01 96.85

B 95.22
(0.15)

96.82 95.72 94.33
(3.06)

97.36 96.03

(b) p-values for pairwise comparison of accuracies in training and application
mode.

Model Training Application
B B

N (bwd) 0.0001 0.7982

N (bwd) 0.0001 0.0110

in forward processing mode. For each dataset, the results are then compared
with those yielded by the overall best-performing unidirectional model for
that dataset. On the tablature dataset, where the bidirectional model yields
two sets of results per subdataset (one for when the data is annotated with
only voice information, and one for when it is annotated with both voice and
duration information), these are also compared with one another. The re-
sults are shown in Tables 5.16 and 5.17. Recall that the bidirectional model
is referred to as B when the data is annotated with only voice information,
and as B′ when it is annotated with both voice and duration information.
With regard to Experiment 3.3 two things must be noted. First, because the
effect of the values of the hyperparameters hidden layer size and λ is minimal
on the performance of the N model from a certain point on (see Section 5.1.1
and Tables A.1–A.4 in the Appendix), for the bidirectional model, which is
not very different from the N model in terms of architecture, these hyper-
parameters are not optimised. Instead, the same values as decided upon for
the N model are used (see Tables 5.1 and 5.2). Second, modelling voice and
duration simultaneously is not implemented for the bidirectional model.

The tables show that in training mode, the bidirectional model always
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yields lower values for all evaluation metrics than the unidirectional model,
where the accuracy differences are always statistically significant. This ob-
servation can be explained by the fact that, as opposed to the unidirectional
model, the bidirectional model takes as input features encoding partly incor-
rect polyphonic information. This makes learning the mappings from inputs
to outputs more difficult; the model does not seem to benefit from the en-
hanced decision context here. However, despite its poorer capacity to adapt
to the data, in application mode the bidirectional model always yields higher
accuracies than the unidirectional model (although the difference is only
statistically significant on the three-voice Bach subdataset). This apparent
contradiction—a statistically significantly worse adaptation to the training
data, but nevertheless a similar, if not better, generalisation on new data—
seems to give a first indication that having a larger decision context is indeed
beneficial to model performance. Interestingly, however, the bidirectional
model’s higher accuracy values in application mode are not complemented
with the expected higher soundness and completeness values—as in training
mode, these are generally lower for this model. A clear explanation for this
remains to be found.

Table 5.16 also shows that on the tablature dataset, the B′ model gener-
ally yields higher values for all evaluation metrics than the B model, both in
training and in application mode. The differences, however, are mostly small
to very small, and the accuracy differences only statistically significant on
the four-voice subdataset in training mode. Regardless, additionally anno-
tating the data with duration information thus has a positive effect on model
performance.

Naturally, the performance of the bidirectional model depends on the
correctness of the polyphonic information the data is annotated with. The
voice information used to obtain the results shown in Tables 5.16 and 5.17 is,
on average, roughly 80% (four-voice subdatasets) to 90% (three-voice sub-
datasets) correct; the duration information roughly 85% correct. As can be
seen in Tables 5.16 and 5.17, for the bidirectional model this yields voice
accuracy values that are slightly higher, but in the same order of magni-
tude. An interesting question now is how the correctness of the polyphonic
information that the data is annotated with for the second pass influences
the bidirectional model’s performance. As a proof of concept, the model is
thus trained and evaluated on data annotated with the correct voice and
duration information. Its performance is then compared with that of the
best-performing unidirectional model in test mode, where the features are
also calculated using the correct polyphonic information.10 These results are

10The situation is not entirely similar to unidirectional test mode, as in the latter,
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Table 5.18 Experiment 3.3: model extensions, multi-pass processing using a bidi-
rectional decision context (X3), use of correct polyphonic information for data
annotation. Tablature dataset, four-voice (top) and three-voice (bottom) pieces.
The asterisk (*) indicates that the data is annotated with the correct polyphonic
information.

(a) Results in training and test mode.

Model Training Test
acc snd cmp acc snd cmp

N (fwd) 92.97
(0.29)

89.06 87.45 92.04
(2.46)

88.08 86.52

B* 95.34
(0.31)

92.65 91.12 94.36
(3.12)

91.49 89.49

B′* 98.05
(0.11)

97.46 95.50 97.42
(1.17)

96.79 94.41

N (bwd) 97.10
(0.28)

95.54 94.19 94.88
(2.24)

92.47 90.97

B* 97.75
(0.27)

96.58 95.28 95.58
(1.99)

93.16 91.77

B′* 99.23
(0.18)

99.30 97.80 97.96
(1.28)

97.29 95.83

(b) p-values for pairwise comparison of accuracies in training and test mode.

Model Training Test
B* B′* B* B′*

N (fwd) 0.0039 0.0039 0.0039 0.0039

B* 0.0039 0.0039

N (bwd) 0.0312 0.0312 0.0312 0.0312

B* 0.0312 0.0312

shown in Tables 5.18 and 5.19.
As becomes clear from Tables 5.18 and 5.19, when the data is annotated

with the correct polyphonic information, both in training and in test mode
the B model always outperforms the N model. Moreover, on the tablature
dataset the B′ model now also outperforms the B model. The differences are
generally considerable, in some cases even large (up to 5–10 percentage points
on the four-voice tablature subdataset); moreover, accuracy differences are
always statistically significant.

The following general conclusion can now be drawn. A bidirectional
model is better equipped to perform the task of voice separation; this ap-

conflicts between voice class decisions are not resolved.
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Table 5.19 Experiment 3.3: model extensions, multi-pass processing using a bidi-
rectional decision context (X3), use of correct polyphonic information for data
annotation. Bach dataset, four-voice (top) and three-voice (bottom) pieces. The
asterisk (*) indicates that the data is annotated with the correct polyphonic in-
formation.

(a) Results in training and test mode.

Model Training Test
acc snd cmp acc snd cmp

N (bwd) 97.90
(0.10)

96.43 96.44 97.00
(2.06)

95.48 95.29

B* 99.36
(0.06)

98.77 98.80 99.11
(1.01)

98.56 98.48

N (bwd) 98.81
(0.08)

97.93 98.02 98.48
(1.23)

97.64 97.68

B* 99.47
(0.04)

98.99 99.10 99.50
(0.75)

99.13 99.14

(b) p-values for pairwise comparison of accuracies in training and test mode.

Model Training Test
B* B*

N (bwd) 0.0001 0.0001

N (bwd) 0.0001 0.0001

plies both to its capacity to learn and its capacity to generalise. Its actual,
real-world performance, however, depends to a fair extent on the correctness
of the polyphonic information that is used to annotate the data with. Re-
sults on the tablature dataset, lastly, show that annotating the data with
both voice and duration information has a positive effect on the bidirectional
model’s performance.

5.5.4 Conclusion

With respect to the model extensions, the following can be concluded. Ex-
periment 3.1 shows that when modelling only voice, the processing mode
only has a statistically significantly positive effect on the learning, where a
backward processing mode is indeed beneficial on the tablature dataset, but
a forward processing mode on the Bach dataset.

Experiment 3.2 shows that, in terms of voice assignment performance, in
forward processing mode additionally modelling duration has a statistically
significantly positive effect on the learning, but a statistically significantly
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negative effect on the generalisation. In backward processing mode, on the
other hand, almost the opposite situation is witnessed—the difference being
that the effect on the generalisation is now negligible. In forward process-
ing mode, additionally modelling duration can thus be beneficial to the voice
assignment performance—but under the condition that the duration informa-
tion used does not contain too many errors (which is hypothesised to explain
the poor generalisation when voice and duration is modelled simultaneously).
In backward processing mode, where the duration information is not used in
the feature calculation, additionally modelling duration is never beneficial
to the voice assignment performance. Experiment 3.2 also shows that, in
terms of duration assignment performance, backward processing yields bet-
ter results than forward processing, both with respect to the learning and
the generalisation. This is hypothesised to be due to the voice information
that is used in the feature calculation.

Experiment 3.3, lastly, shows that a bidirectional model is better equipped
to perform the task of voice separation than a unidirectional model. Its
actual, real-world performance, however, depends on the correctness of the
polyphonic information that is used to annotate the data with. Furthermore,
this sub-experiment shows that on the tablature dataset, annotating the data
with both voice and duration information is beneficial to model performance.

5.6 Experiment 4: comparison with existing

voice separation systems

In this final experiment, the performance of the N and B models is com-
pared with that of each of the existing systems for voice separation for which
quantitative results have been documented. These include five of the rule-
based systems: the contig mapping approach presented by Chew and Wu
(2005), which is modified by Ishigaki et al. (2011), the algorithm by Madsen
and Widmer (2006), and the two successive versions of the Voice Integra-
tion/Segregation Algorithm (VISA) by Karydis et al. (2007a,b) and Rafai-
lidis et al. (2009), respectively. Moreover, they include both machine learning
systems: the learned-predicate-based VoiSe by Kirlin and Utgoff (2005), and
the probabilistic system by Jordanous (2008). A full discussion of these (and
more) systems is presented in Section 2.3.2.

The approach taken is to train and evaluate, using the different evaluation
metrics proposed, the N and B models on the different datasets used. An
alternative and more strict approach would be to evaluate existing or newly
created implementations of the various systems on the tablature and Bach
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datasets used in this thesis; this approach, however, is not followed for the
simple reason that it would be a much too laborious and time-consuming
process.

In order for pairwise comparisons between systems as performed in this
section to be fair, it is imperative, first, that per pair the same dataset is
used for the evaluation, and second, that the same evaluation metrics are
used. Both, however, are not without problems.

5.6.1 Datasets

As is shown in Table 5.21, six out of seven of the systems are evaluated on
one or more different configurations of pieces taken from the same superset
of 78 keyboard pieces by Johann Sebastian Bach, containing the 48 two-voice
to five-voice fugues from books I and II of Das Wohltemperirte Clavier, the
15 two-voice inventions (BWV 772–786), and the 15 three-voice inventions
(BWV 787–801). The smallest configurations consist of a single piece; the
largest consists of all 78 pieces. VoiSe, the system by Kirlin and Utgoff, is
trained and evaluated on four excerpts from yet another Bach composition:
the chaconne from the second violin partita (BWV 1004). These excerpts are
specifically selected for their study, where texture and style form the main
selection criteria. In all, two data formats are used: MIDI and **kern.

Three main problems now arise, the first of which concerns the provenance
(and availability) of the data. The documentation shows that the respective
datasets are retrieved from at least four resources, but since not all authors
specify this, there might be more.11 The second problem concerns possible
inconsistencies due to any adaptations of the data. Only Chew and Wu
address adaptations in some detail; they discuss quantisation as well as the
treatment of chords containing more notes than there are voices in a piece
(cf. Section 4.2.1 on in-voice chords and temporarily added extra voices).
The third problem concerns possible inconsistencies deriving from manual
annotation of the data, which in the case of unstructured datasets (more on
this below) is necessary.

As discussed in Section 4.2.1, the Bach dataset used throughout this
thesis, containing all three-voice and four-voice fugues, is retrieved from the
MuseData repository. All data that is lacking for the current experiment—
the inventions and the two-voice and five-voice fugues—is retrieved from there

11These resources are the MuseData repository at http://www.musedata.org

(Chew and Wu, fugues; Madsen and Widmer, fugues); The Midi Archive at http:

//archive.cs.uu.nl/pub/MIDI (Chew and Wu, inventions); the Johann Sebastian
Bach Midi Page at http://www.bachcentral.com (Madsen and Widmer, inventions);
and KernScores at http://kern.humdrum.org (Rafailidis et al.; Jordanous).

http://www.musedata.org
http://archive.cs.uu.nl/pub/MIDI
http://archive.cs.uu.nl/pub/MIDI
http://www.bachcentral.com
http://kern.humdrum.org
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as well. As already described in Section 4.2.1, three kinds of adaptation
are made to the three-voice and four-voice fugues: the separation of the
original MIDI files into sets of MIDI files, the reduction of in-voice chords,
and the removal of temporarily added extra voices. These adaptations apply
to the remaining data as well, where it must be noted that in the case of
the three-voice inventions, the separation of the original MIDI files into sets
of MIDI files is slightly more involved, as in this data all information is
always stored in a single channel. The separation is therefore carried out
manually, where the interpretation as given in the Neue Bach-Ausgabe Urtext
edition (von Dadelsen, 1970) is followed.12 Furthermore, the original data
for both the two-voice and the three-voice inventions occasionally requires
some quantisation: because of liberties in performance or rounding errors,
sometimes overlapping MIDI notes occur within a voice. In such cases, the
left note is simply shortened so that its offset time is equal to the onset time
of the right note.

The MuseData repository does not contain the second violin partita as
used by Kirlin and Utgoff. Although this work is available in MIDI format
elsewhere, no attempts are made to replicate their highly customised dataset.
A comparison with Kirlin and Utgoff’s system, which is further complicated
by their detailed evaluation method, is therefore omitted.13

5.6.2 Evaluation metrics

In the evaluation of the systems described above, three evaluation metrics
that have not yet been introduced are used: average voice consistency, pre-
cision, and recall. They are defined as follows:

Average voice consistency Average voice consistency (AVC), a met-
ric devised by Chew and Wu (2005), measures, “on average, the
proportion of notes from the same voice that have been assigned
. . . to the same voice” (p. 15). First, the voice consistency (VC)
for voice v is calculated as follows:

VC(v) =
100

|S(v)|
max
u∈V

{|n ∈ S(v) : vN(n) = u|}, (5.2)

12An issue arising during this separation process is that, unlike in the two-voice inven-
tions data and the fugues data, in the three-voice inventions data unisons are not always
represented as two MIDI notes, but sometimes as only one. This issue, which leads to
small voice interruptions after the separation, is left unresolved.

13All datasets used for Experiment 4 can be retrieved from http://mirg.city.ac.

uk/datasets/rdv/phd_thesis.

http://mirg.city.ac.uk/datasets/rdv/phd_thesis
http://mirg.city.ac.uk/datasets/rdv/phd_thesis
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where S(v) is the set of notes assigned to v, V is the set of all voice
indices, and vN(n) is the correct voice for note n. The AVC, then,
is the average voice consistency over all voices:

AVC =
1

|V |

∑

v∈V

VC(v). (5.3)

Precision Precision (prc) is taken to be the percentage of notes that have
been assigned to a voice and that indeed belong to that voice:

prc =
|C|

|C|+ |I|
· 100, (5.4)

where C and I are the sets of notes assigned correctly and incor-
rectly to the voice, respectively.

Recall Recall (rcl), a metric complementary to precision, reflects the
percentage of notes in a voice that have been successfully assigned
to it:

rcl =
|C|

|C|+ |R|
· 100, (5.5)

where C again is the set of notes assigned correctly to the voice,
and R the set of remaining notes that also belong to it, but have
not been assigned to it.

Two problems now arise. First, the definitions of precision and recall as
given above are derived from the textual descriptions provided by Jordanous.
These in turn agree with the definitions for these metrics as commonly used
in the field of information retrieval—where precision is defined as the pro-
portion of retrieved instances that are relevant, and recall as the proportion
of relevant instances that are retrieved. Karydis et al. also use a precision
metric, but—and this is the actual problem—in neither of their studies a
definition or description is provided. It is therefore assumed that in their
studies the term is also used in its conventional meaning.

Second, the definitions as given in Equations 5.4 and 5.5 are per-voice
definitions. The same applies to the definitions of soundness and complete-
ness as given in Kirlin and Utgoff, metrics also used by Madsen and Widmer.
An extension of these definitions to all voices can be achieved in two man-
ners: the per-voice numbers can either be averaged, or they can be summed
and then divided by the total number of notes (or, in the case of soundness
and completeness, note pairs) in all voices. For this thesis, the latter ap-
proach is adopted (see Section 3.2.2).14 The problem now is that only in the

14C, I, and R in Equations 5.4 and 5.5 thus simply denote the sets over all voices. Note
that precision and recall will now always be equal not only to each other, but also to
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work of Jordanous it is clarified how the definitions are extended to all voices
(she opts for the averaging approach); Karydis et al., Kirlin and Utgoff, and
Madsen and Widmer do not address this. As a consequence, strictly speak-
ing Jordanous’s implementations of precision and recall are incompatible
with the implementations used in this thesis; the same possibly also applies
to Karydis et al.’s implementation of precision, and Madsen and Widmer’s
implementations of soundness and completeness. However, because the dif-
ferent implementations produce outcomes that are generally only marginally
different, this incompatibility is taken for granted.

5.6.3 Results and conclusion

The N and B models are trained and evaluated separately on six subsets of
the 78 Bach keyboard pieces, based both on composition type and number
of voices: the two-voice and three-voice inventions, and the two-voice, three-
voice, four-voice, and five-voice fugues. In the case of the N model, this
is done both in forward and in backward processing mode. On the two-
voice fugues subset, which only consists of a single piece, the piecewise cross-
validation procedure that is adopted (see Section 3.2.1) poses a problem.
This is solved by splitting this fugue into two, effectively creating two pieces
out of it and thus enabling two-fold cross-validation. The number of pieces in
the five-voice fugues subset (two) is doubled in the same manner, which in the
case of this more challenging subset is done purely to have more folds in cross-
validation.15 The polyphonic information generated by the best-performing
unidirectional model is used for the data annotation necessary for training
and evaluating the bidirectional model. Table 5.20 gives an overview of the
results on all six subsets.

The performance of all three models in application mode on the 12 differ-
ent datasets used is then compared with the performance of the other systems
on these datasets. Each of the datasets used is either (i) equal to one of the
six voice-based and composition-based subsets (datasets (1), (2), (11), and
(12)), or (ii) a combination of two or more of these subsets (datasets (3) and
(4)), or (iii) a single piece from one of these subsets (datasets (5)–(10)). In

accuracy as defined in Section 3.2.2. This is because each note that belongs to I has an
equivalent in R; therefore, |C|+ |I| = |C|+ |R| = |N | (where N is the set of all notes).

15The two-voice Fugue 10 in e minor (BWV 855) and the five-voice Fugue 4 in c♯ minor
(BWV 849) and Fugue 22 in b♭ minor (BWV 867) (all from book I) consist of 42, 115,
and 75 bars, respectively, and are split at the beginning of bars 22, 58, and 38. Note that
an undesired side effect of creating two pieces out of one is that it increases the risk of
identical samples ending up in both the training and the test set (see Section 3.2.1). This
is tolerated in these particular cases.



Table 5.20 Experiment 4: comparison with existing voice separation systems, model performance on the six inventions and
fugues subsets.

Subset Model Training Test Application
acc snd cmp AVC acc snd cmp AVC acc snd cmp AVC

Inventions N (fwd) 98.89 (0.10) 97.95 97.99 98.82 98.34 (1.16) 97.40 97.37 98.23 93.28 (2.97) 96.16 96.15 92.97
(3vv) N (bwd) 99.10 (0.08) 98.34 98.37 99.05 98.20 (1.01) 97.26 97.24 98.09 95.28 (4.25) 96.88 96.73 95.07

B 97.13 (0.29) 97.34 96.72 96.99 94.78 (4.61) 97.20 96.44 94.52

Inventions N (fwd) 99.85 (0.05) 99.72 99.71 99.85 99.63 (0.47) 99.32 99.32 99.62 98.76 (1.49) 99.15 99.17 98.76
(2vv) N (bwd) 99.88 (0.04) 99.77 99.77 99.88 99.51 (0.50) 99.27 99.16 99.50 99.24 (1.01) 99.18 99.12 99.23

B 99.62 (0.07) 99.51 99.49 99.62 98.90 (1.03) 98.96 98.94 98.89

Fugues N (fwd) 99.69 (0.19) 99.40 99.40 99.69 90.12 (7.15) 88.57 88.61 90.31 63.63 (9.92) 87.11 86.33 69.48
(5vv) N (bwd) 99.91 (0.08) 99.83 99.83 99.92 90.75 (2.84) 87.93 89.73 90.61 68.25 (10.07)85.21 83.56 70.73

B 95.15 (1.11) 92.78 92.47 95.19 62.09 (4.81) 85.40 79.03 64.09

Fugues N (fwd) 98.04 (0.06) 96.40 96.56 98.04 97.57 (0.85) 95.86 96.02 97.54 80.70 (7.50) 93.91 93.81 81.20
(4vv) N (bwd) 97.90 (0.10) 96.43 96.44 97.91 97.00 (2.06) 95.48 95.29 96.93 81.32 (7.32) 94.12 93.46 81.39

B 87.82 (0.41) 92.40 89.81 87.78 81.94 (5.94) 93.95 90.50 81.78

Fugues N (fwd) 98.86 (0.06) 97.95 98.06 98.83 98.62 (0.95) 97.68 97.91 98.55 92.49 (5.03) 97.19 97.13 92.30
(3vv) N (bwd) 98.81 (0.08) 97.93 98.02 98.78 98.48 (1.23) 97.64 97.68 98.44 93.33 (4.20) 97.01 96.85 93.21

B 95.22 (0.15) 96.82 95.72 95.13 94.33 (3.06) 97.36 96.03 94.15

Fugues N (fwd) 100.00 (0.00)100.00100.00100.0099.38 (0.17) 99.13 99.13 99.36 96.54 (4.19) 99.13 99.13 96.76
(2vv) N (bwd) 100.00 (0.00)100.00100.00100.0099.38 (0.17) 98.88 98.75 99.37 99.38 (0.17) 98.88 98.75 99.37

B 100.00 (0.00)100.00100.00100.00 99.50 (0.00) 99.25 99.25 99.49
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case (ii), the results given for the N and B models are the results averaged
over the individual subsets as described in Section 3.2.1. In case (iii), the
results given for the N and B models are the results for the respective folds
where the piece in question serves as test set (and where the models are thus
trained on the remaining pieces in the subset). In those cases where mul-
tiple experiments yielding different outcomes are conducted (Ishigaki et al.;
Madsen and Widmer), the best results reported are used for the comparison.

It must be noted, lastly, that the comparison with the system by Madsen
and Widmer is complicated by two factors. First, since Madsen and Widmer
(2006) only state to have evaluated their system “mainly on the 15 two and
15 three part inventions . . . as well as the 48 fugues from the Well Tempered
Clavier” (p. 58), it does not become clear whether their system is evaluated
on the full dataset, on parts of it, or both. Second, they state to use soundness
and completeness “as suggested by Kirlin [and Utgoff]” (p. 58) as evaluation
metrics, but following the textual definitions they give, compared to Kirlin
and Utgoff they seem to have switched the meanings of these metrics. The
fact that the completeness values reported are consistently much lower than
the soundness values further indicates implementation differences.

The results for this experiment are shown in Table 5.21. The table shows
that the models generally perform as well as, and often better than, the
systems. Apart from two exceptions, each system is always outperformed
by at least two of the three models on at least half of the datasets it is
evaluated on. The exceptions are the system by Ishigaki et al. and Madsen
and Widmer: the former is only outperformed (by all three models) on one of
the three datasets it is evaluated on; the latter is only outperformed (again
by all three models) in terms of completeness. Where a model does not
outperform a system on a dataset, its performance is generally close, or at
least comparable, to that of the system. It is worth noting, finally, that
the system by Jordanous, which is the only machine learning system in the
comparison, is outperformed by all models on all datasets.

5.7 Overarching issues

There are three overarching issues, encountered throughout the experiments
conducted in this chapter, that require further discussion: (i) conflicts and
conflict resolution, (ii) error propagation, and (iii) the handling of three com-
plex musical phenomena: single-note unisons, voice crossing, and imitation.
The issue of conflicts and conflict resolution is specific to MA1, while the issue
of error propagation applies to both MA1 (unidirectional model only) and
MA2, approaches in which voice class or mapping decisions are made succes-



Table 5.21 Experiment 4: comparison with existing voice separation systems, pairwise comparisons. Results for the N
and B models are results in application mode. EM = evaluation metric, CW05 = Chew and Wu (2005), I11 = Ishigaki
et al. (2011), MW06 = Madsen and Widmer (2006), K07 = Karydis et al. (2007a,b), R09 = Rafailidis et al. (2009), J08 =
Jordanous (2008).

Dataset EM Model System
N (fwd) N (bwd) B CW05 I11 MW06 K07 R09 J08

(1) Inventions (3vv) AVC 92.97 95.07 94.52 93.35 95.27
(2) Inventions (2vv) AVC 98.76 99.23 98.89 99.29 98.73
(3) Fugues (2–5vv) AVC 86.91 87.57 87.97 84.39 89.21

(4) Inventions (2–3vv) and snd 96.08 96.11 96.22 97.58
fugues (2–5vv) cmp 96.00 95.78 94.39 71.58

(5) Invention 1 in C major prc 100.00 99.58 99.37 99.34
(BWV 772) (2vv) acc 100.00 99.58 99.37 99.00
(6) Invention 13 in a minor prc 99.64 99.29 98.58 96.45
(BWV 784) (2vv) acc 99.64 99.29 98.58 96.00
(7) Fugue 1 in C major prc 84.51 89.53 85.05 92.38
(BWV 846) (4vv) acc 84.51 89.53 85.05 92.00
(8) Fugue 14 in f♯ minor prc 85.93 87.44 77.09 95.56
(BWV 859) (4vv) acc 85.93 87.44 77.09 93.00
(9) Fugue 7 in E♭ major prc 89.29 94.12 97.58 97.52
(BWV 852) (3vv) acc 89.29 94.12 97.58 91.00
(10) Fugue 11 in F major prc 94.94 95.05 96.00 87.31
(BWV 856) (3vv) acc 94.94 95.05 96.00 94.00

(11) Fugues (4vv) prc 80.70 81.32 81.94 75.07
rcl 80.70 81.32 81.94 75.23

(12) Fugues (3vv) prc 92.49 93.33 94.33 88.63
rcl 92.49 93.33 94.33 88.34
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Table 5.22 Conflict numbers and conflict percentage c for the N, N′, B, and B′

models. Tablature and Bach datasets, four-voice pieces. PM = processing mode,
TC = total number of conflicts, CC = number of conflicts resolved correctly.

Model PM Exper- Tablature dataset Bach dataset
iment TC CC c TC CC c

N fwd 1 15 4 0.16 85 1 0.39
bwd 3.1 7 1 0.07 166 44 0.76

N′ fwd 3.2 41 8 0.46
bwd 3.2 18 8.5 0.20

B (fwd) 3.3 53 41 0.59 777 347 3.56
B′ (fwd) 3.3 65 39.5 0.73

sively (rather than simultaneously), using previously generated information.
The third issue, the handling of complex musical phenomena, applies to all
three modelling approaches, and has to do with the amount of contextual
(and precursory) information that is available to a model.

5.7.1 Conflicts and conflict resolution

An issue that concerns only MA1 is conflicting voice class decisions in appli-
cation mode. As described in Section 3.3, conflicts may occur either during
(unidirectional model) or after (bidirectional model) the voice assignment
process. In both cases they must be resolved. To illustrate how often con-
flicts occur and to which extent they can thus affect model performance, the
following is done. For each model used in MA1 all conflicts encountered when
the model is applied to the four-voice tablature subdataset and to the four-
voice Bach subdataset are counted.16 (The three-voice subdatasets are not
investigated separately, as results are expected to be similar.) The number
found is then compared with the total number of voice class decisions for
the subdataset (which is equal to its total number of notes), and the conflict
percentage, c, is calculated. Furthermore, to be able to assess the success
of the two conflict resolution approaches—the online approach used for the
unidirectional model and the postprocessing approach used for the bidirec-
tional model (see Sections 3.3.1 and 3.3.2, respectively)—for each conflict
it is verified whether it is resolved correctly or incorrectly. The results are

16In the case of the N′ model, this is done only for the conflicts where a note’s voice class

is adapted; conflicts where its duration class is adapted are not taken into consideration as
they do not affect model performance in terms of voice assignment. The latter occur far
more often than the former: in forward processing mode, a total of 759 of such conflicts
are counted, and in backward processing mode a total of 1339.
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Table 5.23 Error propagation percentage m for the N, N′, and C models. Tabla-
ture and Bach datasets, four-voice pieces. PM = processing mode.

Model PM Exper- Tablature dataset Bach dataset
iment Test Application Test Application

acc acc m acc acc m

N fwd 1 92.04 79.63 60.95 97.57 80.70 87.44
bwd 3.1 92.50 78.62 64.93 97.00 81.32 83.95

N′ fwd 3.2 96.61 70.47 88.53
bwd 3.2 91.65 77.71 62.55

C (fwd) 1 80.85 75.26 22.60 96.86 79.56 84.63

shown in Table 5.22; references to the relevant experiments are also given.
The presence of the half values in the table can be accounted for by conflicts
involving single-note unisons, which may be resolved only half correctly (cf.
the evaluation of single-note unisons as described in Section 3.2.3).

With respect to the occurrence of conflicts it is observed, first, that the
conflict percentage is always very low: only in one out of nine cases the
1% boundary is exceeded. Second, it is observed that for the N and B
models, the conflict percentage is always higher on the Bach dataset. This
can be explained by the fact that on this dataset, in addition to conflicts with
decisions for lower chord notes, conflicts with decisions for sustained previous
notes or interrupting next notes can now occur (on the tablature dataset
this is not so when modelling only voice). Third, it is observed that the
unidirectional models yield lower conflict percentages than the bidirectional
models. With respect to the success of the two conflict resolution approaches,
the table shows that this is generally low for the unidirectional models, and
acceptable to good for the bidirectional models. In the end, however, the
absolute number of conflicts resolved incorrectly is generally lower for the
unidirectional models.

5.7.2 Error propagation

A recurring issue in MA1 and MA2 is error propagation, the phenomenon
encountered in application mode in which an incorrect voice or duration
assignment influences the voice class or mapping decision for the following
notes negatively (see Section 3.2.4.1). Error propagation can occur using
the N model, the N′ model, as well as the C model, but not using the B
model (see Section 3.2.4.2). As explained in Section 3.2.4.1, the percentage of
misassignments due to error propagation, m, can be calculated. To illustrate
to which extent error propagation affects model performance in the current
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(1) 19 20 22 24 39 40 41 42 43 44 45 47 53 65

71 73 92 93 94 95 96 124 130 150 151 153 155 170 171

172 173 174 175 176 177 178 179 181 187 199 205 207 212 214

215 216 217 218 219 228 229 230 237 299 300 307 x

Figure 5.1 Error propagation, N (fwd) model: indices of notes assigned to an in-
correct voice. Ochsenkun (15585), ‘Herr Gott laß dich erbarmen’. Indices returned
both in test and application mode are printed in regular type, indices returned ex-
clusively in application mode are printed in bold, and indices returned exclusively
in test mode are placed in parentheses.

implementations, the percentages are calculated for the N and N′ models,
both in forward and in backward processing mode, as well as for the C
model. This is done on the four-voice subdatasets only (the results on the
three-voice subdatasets are again expected to be similar). The results are
shown in Table 5.23; the corresponding accuracies in test and application
mode, as well as references to the relevant experiments, are also given.

As the table shows, error propagation generally accounts for 60–65% of
the misassignments on the tablature dataset, and even for approximately 85%
of the misassignments on the Bach dataset. The two outliers on the tablature
dataset, the value for the N′ model in forward processing mode and the value
for the C model, are due to the relatively low accuracies in application and
test mode, respectively, that these models yield. An explanation for the
forward-processing N′ model’s low accuracy in application mode is given in
Section 5.5.2; an explanation for the C model’s low accuracy in test mode is
that it simply does not generalise very well—even when provided the correct
polyphonic information (cf. the high test accuracies for all the other models
on both datasets).

A concrete example can give some further insights. Figure 5.1 lists the
indices of the notes assigned to an incorrect voice when the trained forward-
processing N model is applied to a four-voice intabulation containing 371
notes (the example is taken from Experiment 1). Indices returned both in
test and in application mode are printed in regular type, and indices re-
turned exclusively in application mode are printed in bold. Indices returned
exclusively in test mode, lastly, are placed in parentheses. (The absence in
application mode of an index returned in test mode, which seems counter-
intuitive, is due either to a correctly resolved conflict—the note has initially
been assigned incorrectly as well, but because of a conflict it has been re-
assigned correctly—or to the use of different polyphonic information now
resulting in the correct voice class decision.)
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[S] 204 --- 208 210 213 --- --- --- --- --- --- | 223

[A] 203 205 207 --- 212 214 215 216 217 218 219 | 222

[T] 202 --- --- --- --- --- --- --- --- --- --- | 221

[B] 201 --- 206 209 211 --- --- --- --- --- --- | 220

(a) Correct transcription and voice assignments.

[S] 204 --- 208 210 213 --- --- --- --- --- --- | 223

[A] 203 --- --- --- --- --- --- --- --- --- --- | 222

[T] 202 205 207 --- 212 214 215 216 217 218 219 | 221

[B] 201 --- 206 209 211 --- --- --- --- --- --- | 220

(b) Voice assignments given by the model.

Figure 5.2 Error propagation group, N (fwd) model. Ochsenkun (15585), ‘Herr
Gott laß dich erbarmen’, bars 14–15 (note indices 201–223).

The figure shows how single incorrect assignments shattered across the
piece propagate, thus forming small groups—in this example varying in size
from two to nine—of incorrect assignments. What the figure does not show is
that the notes in these groups tend to be misassigned to the same incorrect
voice. This often yields musically acceptable results. The last group in
Figure 5.1, starting at index 205 and ending at index 219, is a prototypical
example. Figure 5.2 shows both the correct voice assignments for the notes
at indices 201–223 (which correspond to bar 14 and the first chord in bar
15), as well as the voice assignments given by the model.

As Figure 5.2 shows, the notes at indices 205, 207, 212, and 214–219 all
belong to the altus, but have been misassigned by the model to the tenor.
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Although strictly speaking incorrect, this assignment is musically accept-
able. The latter is reflected by the evaluation metrics measuring transitions
between note pairs, soundness and completeness: while the accuracy of this
complete fragment is only 23−9

23
· 100 = 60.86%, soundness and completeness

both measure 17
19

· 100 = 89.47%.

5.7.3 Complex musical phenomena

A recurring issue in all three modelling approaches is the handling of complex
musical phenomena, three of which are discussed here: single-note unisons,
voice crossing, and imitation.

5.7.3.1 Single-note unisons

Single-note unisons, that is, single notes belonging to two voices (see Sec-
tion 2.2.2), are fairly common in the tablature dataset. The four-voice tabla-
ture subdataset, which contains a total of 8892 notes, counts 129 single-note
unisons; the three-voice subdataset, which contains 2749 notes, counts 29 of
them. Single-note unisons thus constitute approximately 1.5% of the tabla-
ture data.17 As discussed in Section 3.2.3, in addition to the voice assignment
categories correct and incorrect, for each note that is a single-note unison
there are two further voice assignment categories: the overlooked category
(the note has been assigned to only one voice and that voice is a correct
voice) and the half category (the note has been assigned to two voices but
only one of these is a correct voice). Table 5.24 shows, for all models in all
modelling approaches, the spread of single-note unison assignments over the
various voice assignment categories when the models are applied to the four-
voice tablature subdataset in application mode; references to the relevant
experiments are given.

The table shows that in all modelling approaches, single-note unisons
are rarely assigned fully correctly. A positive outlier is the H model used
in MA3, but even in this case the number of fully correct assignments re-
mains low. On the other hand, single-note unisons are also only relatively
rarely assigned fully incorrectly. Rather, in all modelling approaches, the
overwhelming majority of assignments fall in the overlooked category.

The table also brings to light an undesired side effect of the deviation
threshold heuristic as used in MA1, which enables a classification into two
voice classes (see Section 3.1.2.1). Not only is this heuristic alone not suf-

17Actual unisons, that is, two notes with the same pitch and the same onset time, on
the other hand, are much more rare: only six of these are counted, all in the four-voice
subdataset.
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Table 5.24 Spread of single-note unison assignments for all models in application
mode. Tablature dataset, four-voice pieces. PM = processing mode, C = correct, I
= incorrect, O = overlooked, H = half, S = superfluous voice assignment category.

Model PM Exper- Voice assignment category
iment C I O H S

N fwd 1 4 14 110 1 52
bwd 3.1 5 10 114 0 41

N′ fwd 3.2 2 17 110 0 35
bwd 3.2 0 8 120 1 32

B (fwd) 3.3 6 11 112 0 104
B′ (fwd) 3.3 2 9 117 1 103
C (fwd) 1 0 14 115 0 3
H (fwd) 1 16 18 95 0 27

ficient to model single-note unisons, but it can also result in notes that are
not single-note unisons being assigned to two voices. If in such a case nei-
ther of these voices is the note’s correct voice, the assignment falls in the
incorrect category, but if one of them is, it falls in the superfluous category.
As the table shows, superfluous voice assignments are especially prevalent
in the bidirectional model (in fact, they occur almost as often as overlooked
voice assignments). A possible explanation for this is the fact that in this
model the activation values for the individual output neurons tend to vary
less. In the other two modelling approaches, especially in MA2, superfluous
voice assignments are witnessed far less often.

5.7.3.2 Voice crossing and imitation

A quantification of model performance with respect to instances of voice
crossing and motivic imitation, which is not as straightforward as a quan-
tification of single-note unison assignments, is not carried out. An informal
inspection of the models’ output, however, shows that in the current model
implementations both these musical phenomena are generally highly prob-
lematic. Figure 5.3 shows an example of a fragment containing both imitation
(the tenor motif starting on E4 in bar 1 is imitated a fifth higher by the su-
perius in bar 2) and voice crossing (bar 3; note that the voice crossing serves
to preserve the tenor motif.) That these phenomena are problematic is cor-
roborated by the performance of all models in all modelling approaches on
this fragment: firstly, the voice crossing is always reversed, and secondly, the
tenor motif up to bar 3 is never kept intact (that is, is never recognised as a
single entity or motif).

One reason for the models’ incapacity to handle voice crossing—and, for
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Figure 5.3 Imitation necessitating voice crossing. Phalèse (publ.) (156312), ‘Las
on peult’, opening bars.

that matter, single-note unisons—correctly is hypothesised to be the limited
(contextual) information that is available when the voice class or mapping
decision is made. Two model adaptations are therefore expected to be help-
ful here: (i) the implementation of a larger decision context, and (ii) the
inclusion of information about melodic trajectory. In addition to these two
adaptations, an educated approach to recognition of imitative entries in a
piece, lastly, requires stored knowledge of its melodic content (motifs etc.)
to be available to a model.
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5.7.4 Conclusion

Three overarching issues, all of them originating from limitations of the mod-
elling approaches, are discussed: conflicts and conflict resolution, error prop-
agation, and the handling of complex musical phenomena. The following
conclusions can be drawn.

Given the overall low conflict percentages, the effect of conflicts on model
performance in MA1 is marginal at best. The fact itself that relatively few
conflicts occur corroborates earlier observations that the models in MA1 learn
well. Furthermore, despite its low success rate, an online conflict resolution
approach as used for the unidirectional models still seems to be preferable
to a postprocessing conflict resolution approach as used for the bidirectional
models.

Large differences in accuracy between results in test and application mode
in MA1 and MA2 can be explained by error propagation occurring in appli-
cation mode. A representative example shows, however, that the notes in
error propagation groups tend to be misassigned to the same incorrect voice.
This is indeed reflected by the soundness and completeness values in ap-
plication mode, which generally remain much closer to the soundness and
completeness values in test mode. It can therefore be concluded that despite
the lower accuracy values encountered in application mode, with soundness
and completeness values generally ranging between 85–95%, the voice sepa-
ration performed by the various models proposed is in most cases musically
acceptable.

With respect to complex musical phenomena, lastly, it is concluded, first,
that in all modelling approaches, single-note unisons tend to be assigned to
only one voice, where that voice is a correct voice (overlooked voice assign-
ments). In all modelling approaches single-note unisons are thus hard to
learn. Furthermore, as a results of the deviation threshold heuristic, in MA1
notes that are not single-note unisons are frequently incorrectly assigned to a
second voice (superfluous voice assignments). The handling of voice crossing
and imitation, second, is highly problematic in the current model implemen-
tations in all modelling approaches. This is hypothesised to be due to the
lack of contextual information available to the models. Two model adapta-
tions, which are also expected to aid in the handling of single-note unisons,
are proposed: to implement a larger decision context, and to include infor-
mation about melodic trajectory. In addition to these adaptations, making
stored knowledge of the melodic content of a piece available to the model is
expected to aid in the recognition of imitative entries.





6

Summary and conclusions

The main aim of this thesis is defined in Chapter 1 as the design, imple-
mentation, and evaluation of supervised machine learning models for voice
separation in polyphonic music written in lute tablature and polyphonic mu-
sic in MIDI format. This aim follows from the two-fold research question
formulated in the same chapter, namely how supervised machine learning
models can be used for voice separation in polyphonic music in symbolic rep-
resentations, and which modelling approaches are the most effective. To meet
the aim, three main objectives, each consisting of a number of sub-objectives,
are formulated: Objective 1, to design and implement models; Objective 2,
to create datasets; and Objective 3, to evaluate the models. In this final
chapter, the research question is answered, and conclusions are drawn by
readdressing individual objectives. This is done in Section 6.2. First, in Sec-
tion 6.1, a summary of the research described in the preceding chapters is
given. In Section 6.3, lastly, perspectives for future work are discussed.

6.1 Summary

Chapter 2 sets out the background against which the research is carried out.
After three important key terms—voice, polyphonic music, and voice sep-
aration—are defined unambiguously, first the musicological background
is outlined. The sixteenth-century lute, its music, and the notational for-
mat of this music are introduced. The four main sixteenth-century lute
tablature systems are described briefly, where special attention is paid to
the limitations in terms of visualising the music’s polyphonic structure that
this notation entails. Furthermore, the principal reason for including only
intabulations—instrumental arrangements of polyphonic vocal works—in the
dataset is given: they facilitate the process of labelling the data.

135
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In the second part of Chapter 2, the computational background to
the research is sketched. Two phases of research into voice separation are
discerned. In the first phase (1980s–1990s), the focus was on the modelling of
perceptual phenomena relating to polyphonic structure and auditory stream
segregation. In the second phase (2000s–2010s), the development of systems
for voice separation is witnessed. A total of 10 state-of-the-art systems are de-
scribed in detail. The majority of these is rule-based, while two use machine
learning techniques; in all systems the task of voice separation is approached
differently. A common factor that links all systems together is that they are
all based on at least one of two fundamental principles associated with audi-
tory streaming: the Pitch Proximity Principle and the Principle of Temporal
Continuity. Chapter 2 ends with the description of two early applications of
rule-based voice separation systems intended for automatic transcription of
German lute tablature. These systems, which were developed in the course
of the 1980s, represent the sole efforts of research into automated analysis
and transcription of lute tablature hitherto.

In Chapter 3, the methodology followed is described. A large part of this
chapter deals with Objective 1, to design and implement models. First, the
three main modelling approaches are introduced (Objective 1.1). In MA1
and MA2, standard three-layer feed-forward neural networks with resilient
backpropagation as the learning algorithm and the sigmoid function as the
activation function are used. MA1, which yields the N model, first, is a
note-level classification approach. The task of voice separation is modelled
as a multi-class classification problem, where the classes are the voices the
notes can be classified into. The model learns the decision per note, where
a greedy approach is followed within which no combinations of decisions are
considered. This leads to a small state space when the decision must be
made, which makes the approach computationally cheap. A disadvantage of
the approach is that when the model is applied to unseen data, conflicting
decisions—which require a conflict resolution tactic—can occur. In addition
to modelling only voice, the N model can be extended to modelling voice and
duration simultaneously. This is the first model extension (X1, proposed un-
der Objective 1.2), and yields the N′ model. MA2, which yields the C model,
second, is a chord-level regression approach. The task of voice separation is
modelled as a regression problem, where mappings of chord notes to voices
are rated. For each chord, all mappings of notes to voices are enumerated,
and, using a relative training technique, the model is trained to rate the
correct mapping the highest. This modelling approach, in which all possi-
ble combinations of note-level decisions are considered, leads to a large state
space when the decision must be made and is therefore computationally ex-
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pensive. An advantage of the approach, however, is that conflicting decisions
when the model is applied to unseen data—as encountered in MA1—cannot
occur. MA3, which yields the H model, lastly, is a chord-level probabilistic
approach. The task of voice separation is modelled as a probability problem,
where, given an observation sequence (a sequence of chords), a discrete hid-
den Markov model is used to estimate hidden states (mappings of notes to
voices). Compared to MA1 and MA2, this approach is more straightforward
in the sense that only pitch information is used in the feature vectors that
represent the chords.

The processing mode determines the direction in which the music is
processed. Two modes are discerned: forward and backward processing.
The latter is only implemented for MA1, and constitutes the second model
extension (X2, proposed under Objective 1.2).

The decision context is the polyphonic context within which the feature
vectors are calculated. Two types are discerned: a unidirectional decision
context, which extends to only one direction of a chord, and a bidirectional
decision context, which extends to both directions. Using a bidirectional de-
cision context is only implemented for MA1; it constitutes the third model
extension (X3, proposed under Objective 1.2), and yields the B model. In
its feature calculation, a bidirectional model requires the availability of poly-
phonic information in both directions of the note the voice class decision
is made for. It can therefore only be applied in a second pass through the
data, that is, after the data has been annotated with polyphonic information
generated in a first pass.

The features that make up the feature vectors used in MA1 and MA2, re-
spectively, stem from the same feature superset. This superset is designed for
this thesis (Objective 1.3), and contains features belonging to four different
categories. Note-level features capture individual properties of a note, note-
chord features capture aspects of a note’s position within a chord, chord-level
features capture properties shared by all notes in a chord, and polyphonic
embedding features capture aspects of the polyphonic relation of a note to
other another note.

Evaluation is carried out using k-fold cross-validation, where k is set
equal to the number of pieces in a dataset, and each complete piece serves
as test set once. Three evaluation metrics are proposed: accuracy, mea-
suring the percentage of notes that have been assigned to the correct voice,
and soundness and completeness, both measuring correct transitions between
notes. On unseen data, unidirectional models are evaluated in two different
modes: test mode, where the feature vectors are calculated using the correct
polyphonic information, and application mode, where they are calculated us-
ing the polyphonic information generated by the model. Results in test mode
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are indicative of a model’s optimal performance on unseen data; results in
application mode reflect its actual, real-world performance on unseen data.
Unlike in test mode, in application mode errors can propagate; the error
propagation percentage can be quantified from the results in both modes.
Bidirectional models are only evaluated in application mode; because pre-
existing polyphonic information is used in the feature calculation, incorrect
assignments cannot propagate.

A problem that is specific to MA1 is the occurrence of voice class decision
conflicts when a trained model is applied to unseen data. A voice class
decision conflicts with a previous voice class decision when it leads to two
simultaneous or overlapping notes being assigned to the same voice. This
is to be avoided, as voices are assumed to be monophonic, and the feature
calculation becomes problematic if this is not so. Conflicts are only resolved
in application mode; this is always done in a fixed sequence. In unidirectional
application mode, where the polyphonic information generated by the model
is used for the feature generation, conflicts must be resolved during the voice
assignment process. In bidirectional application mode, where this is not the
case, they are resolved in a postprocessing conflict resolution heuristic.

The models, the model extensions, the feature extraction algorithms, and
the framework for training and evaluating the models are implemented in
Java (Objective 1.4). For the sake of reproducible research, the code is made
available as open source software.1

Chapter 4 is dedicated to Objective 2, to create datasets. Two datasets are
created: a tablature dataset (Objective 2.1), containing six three-voice and
nine four-voice intabulations, and a Bach dataset (Objective 2.2), contain-
ing the 26 three-voice and the 19 four-voice fugues from Das wohltemperirte
Clavier. The tablature dataset is created from scratch. Each intabulation
is represented as a machine-readable encoding of the tablature and a set of
monophonic MIDI files containing the correct voice information; each fugue
only as a set of monophonic MIDI files. The encodings and MIDI file sets
that together constitute the tablature dataset are created manually. In the
case of the encodings, this is done by transcribing facsimile reproductions
of the tablature. The encoding format used, tab+, is a customised format
developed for this thesis that supports all tablature systems. In the case of
the MIDI file sets, it is done by first devising polyphonic transcriptions in
modern music notation using professional music notation software, and then
exporting the individual voices as separate MIDI files. The transcriptions are

1The code can be retrieved from http://mirg.city.ac.uk/datasets/rdv/

phd_thesis.

http://mirg.city.ac.uk/datasets/rdv/phd_thesis
http://mirg.city.ac.uk/datasets/rdv/phd_thesis
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devised by polyphonically aligning the intabulations and their vocal models,
whose polyphonic structure is always unambiguous.

The Bach dataset is an adaptation of an existing MIDI dataset. The
adaptations made, apart from the separation of the original files into sets of
MIDI files, concern the removal of in-voice chords (as to ensure that each
voice is monophonic) and temporarily added extra voices (as not to exceed
the nominal number of voices).2

Chapter 5, lastly, is dedicated to Objective 3, to evaluate the models. A total
of six experiments are conducted. The first two are preliminary experi-
ments concerning model optimisation. In the first preliminary experiment,
which applies only to the neural network models used in MA1 and MA2, three
hyperparameters are optimised: the hidden layer size, the regularisation pa-
rameter λ, and the margin ε. In the second preliminary experiment, which
applies only to the hidden Markov model used in MA3, the configuration of
the three model matrices is optimised.

In Experiment 1, the models used in the three modelling approaches
are evaluated (Objective 3.1). MA1 is found to be both the most effective
and the most efficient; therefore, only the N model is used for the remaining
experiments.

In Experiment 2, the relevance of the features is evaluated (Objective
3.2). Two sub-experiments are conducted, the first of which concerns the
effect of the amount of context information encoded in the feature vector on
model performance (Experiment 2.1), and the second the effect of tablature
information being included (Experiment 2.2). It is found, first, that more
context information leads to increasingly better model performance (where
especially the inclusion of information on polyphonic embedding is shown to
be effective), and second, that the effect of including tablature information
in the feature vector is positive but small.

In Experiment 3, the three model extensions are evaluated (Objec-
tive 3.3) in three sub-experiments, where the effect of backward processing
(Experiment 3.1), the effect of simultaneously modelling voice and duration
(Experiment 3.2), and the effect of using a bidirectional decision context in
a second pass through the data (Experiment 3.3) on model performance are
investigated. The effect of backward processing is found to be negligible, and
the effect of simultaneously modelling voice and duration is found to be pos-
itive only in forward processing mode, and only in combination with a high

2The encodings and MIDI file sets that constitute the tablature dataset, as well as
the polyphonic transcriptions, and the MIDI file sets that constitute the Bach dataset, as
well as a list of all notes that are removed from the original data, can be retrieved from
http://mirg.city.ac.uk/datasets/rdv/phd_thesis.

http://mirg.city.ac.uk/datasets/rdv/phd_thesis
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duration assignment performance. The effect of using a bidirectional decision
context, lastly, is found to be positive but small, and strongly dependent on
the correctness of the polyphonic information the data is annotated with in
the second pass.

In Experiment 4, lastly, the performance in application mode of the two
unidirectional N models as well as the bidirectional N model is compared with
the performance of a number of existing voice separation systems (Objective
3.4). The experiment shows that most of the systems are outperformed by
at least two of the three models on at least half of the datasets they are
evaluated on.3

Chapter 5 is concluded with a discussion of three overarching issues,
all originating from limitations of the modelling approaches, encountered
throughout the experiments. The issue of conflicts and conflict resolution,
firstly, applies only to MA1, and is a direct result of the greedy approach
followed. The issue of error propagation, secondly, applies to both MA1 and
MA2, and has to do with the fact that voice class or mapping decisions are
made successively, using previously generated information. The handling of
three complex musical phenomena—single-note unisons, voice crossing, and
imitation—, thirdly, applies to all modelling approaches, and has to do with
the amount of contextual and precursory information that is available to the
models.

6.2 Conclusions

In this thesis it is shown that machine learning models can be used for voice
separation in polyphonic music in symbolic representations by:

◮ Designing different extensible modelling approaches, in each of
which the problem is cast differently and in which different learning
models are used.

◮ Defining a set of features relevant to the task.
◮ Implementing the models, the model extensions, the feature ex-

traction algorithms, and the framework for training and evaluating
the models.

◮ Creating datasets to evaluate the models on.

The conclusions drawn are given below.

3All datasets used for this experiment can be retrieved from http://mirg.city.

ac.uk/datasets/rdv/phd_thesis.

http://mirg.city.ac.uk/datasets/rdv/phd_thesis
http://mirg.city.ac.uk/datasets/rdv/phd_thesis
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With regard to themodelling approaches, first, the following is concluded.
MA1, the note-level classification approach, is both the most effective and
the most efficient modelling approach. It is shown that the N model (as
used in MA1) always performs better than the C model (as used in MA2) in
both training and test mode, and that it always performs better than both
the C model and the H model (as used in MA3) in application mode. The
performance is found to be always statistically significantly better in training
mode, and in most cases in test and application mode.4 Although in appli-
cation mode the N model is susceptible to conflicting voice class decisions,
it is shown that the conflict percentages are very low, and that the effect of
conflicts on model performance is marginal. Furthermore, in MA1 a good
trade-off between computational cost (which is always low) and overall model
performance is achieved.

The latter is not the case for MA2, the chord-level regression approach.
Although this approach is conceptually more sound because a larger state
space is explored when the mapping decision is made, this comes at a compu-
tational cost that is not balanced by a better performance. Unless significant
performance improvement can be achieved, this renders MA2 less attractive.

In application mode, the N and C models both suffer from error propa-
gation, where the error propagation percentage can increase up to approxi-
mately 90%. It is shown that while error propagation can affect model accu-
racy significantly, it has much less influence on model performance in terms
of soundness and completeness. The overall high soundness and complete-
ness values in application mode indicate that the voice separation performed,
even if less accurate, is always at least musically acceptable.

MA3, the chord-level probabilistic approach, lastly, yields a fairly straight-
forward model that performs similarly to the C model at best. Although the
H model has the advantage that it is not affected by error propagation, in
its current implementation it does not meet the performance standards set
by the N and C models.

With regard to the feature set, second, the following conclusions are drawn.
The results yielded in both MA1 and MA2 demonstrate that the feature set
defined is effective. The importance of the amount and type of context infor-
mation available when the voice class decision is made is shown, where the
inclusion of the polyphonic embedding features is found to be particularly
effective for the task of correct voice separation. Furthermore, it is shown

4A model performance is said to be statistically significantly better than another here
if all three evaluation metrics—accuracy, soundness, and completeness—are higher, and if
the difference in accuracy is statistically significant.
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that the tablature information currently encoded in the feature vector does
not convey important information about polyphonic structure.

Third, with regard to the three model extensions implemented for MA1,
the following is concluded. The effect of using a backward processing mode
on model performance is shown to be statistically significantly positive only
on the tablature dataset in training mode. It is found to be statistically
significantly negative on the Bach dataset in training mode, and not statis-
tically significant on both datasets in test and application mode. Modelling
backward thus cannot be said to be beneficial to voice separation, as hypoth-
esised.

In forward processing mode, the effect of additionally modelling duration
on model performance is shown to be statistically significantly positive in
both training and test mode, but statistically significantly negative in appli-
cation mode. In backward processing mode, conversely, the effect is found
to be statistically significantly negative in training and test mode, and negli-
gible in application mode. As hypothesised, additionally modelling duration
thus can be said to be beneficial to voice separation—but only in forward
processing mode, and only if the duration assignment performance is of a
certain quality. The duration assignment performance itself is shown to be
statistically significantly better (in all modes) in backward processing mode.

The effect of using a bidirectional decision context on model performance
is shown to be statistically significantly negative on both the tablature and
the Bach dataset in training mode, but positive—although not in all cases
statistically significantly—on both datasets in application mode. When the
data is annotated with the correct polyphonic information (rather than the
information generated in a first pass through it), the effect is shown to be
statistically significantly positive on both datasets in both training and in
test mode. Annotating the tablature dataset with both voice and duration
information is shown always to have a positive effect on model performance
compared to annotating it with only voice information, but only when the
correct information is used the effect is shown to be always statistically sig-
nificant. As hypothesised, a bidirectional model can thus be said to be better
equipped for the task of voice separation than a unidirectional model; how-
ever, its real-world performance depends strongly on the correctness of the
polyphonic information the data is annotated with.

Fourth, in the evaluation of the models on the different datasets it is shown
that all three models perform better (in training, test, and application mode)
on the three-voice subdatasets, and that the N and C models perform better
(in all modes) on the Bach dataset, while the H model performs better on the
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tablature dataset. Furthermore, it is established that all three models have
difficulty handling complex musical phenomena such as single-note unisons,
voice crossing, and imitation. A comparison of the performance in applica-
tion mode of the two unidirectional N models as well as the bidirectional N
model with that of a number of existing systems for voice separation, lastly,
shows that these models can compete seriously with state-of-the-art systems.

6.3 Future work

The above conclusions show that machine learning models have good po-
tential for performing the task of voice separation in symbolic music rep-
resentations. The models presented perform slightly better than or similar
to existing state-of-the-art systems for voice separation. On two-voice and
three-voice datasets, accuracy values higher than 85% are always achieved,
and accuracy values above 90% are common. When the number of voices
exceeds three, however, accuracy values tend to stagnate around 80%. Com-
parable results are reported for the existing systems. As in many MIR tasks,
a difficult-to-surpass glass ceiling—an optimal performance that is lower than
that of a human performing the same task—thus seems to have been reached
(Sturm, 2014). The advantage of a machine learning approach (as opposed
to a rule-based approach) as presented in this thesis, however, is that it is
flexible and easily extensible. The following perspectives for future work may
lead the way into passing the glass ceiling.

Both the classification approach MA1 and the regression approach MA2
may benefit, first, from the inclusion of different features, encoding, for ex-
ample, more advanced instrumental (tablature dataset only), structural, har-
monic, or melodic information. Additionally, in MA2, a more optimal solu-
tion may have to be found for the default features that must be included in
the feature vector to ensure an uniform feature vector dimension. Another
angle is to try automatic feature extraction, that is, to learn features using
deep networks instead of designing them. Second, increasing the decision
context further—that is, considering more than one previous or next note
in each voice—is expected to improve model performance, especially where
complex musical phenomena such as single-note unisons and voice crossing
are concerned. An interesting question here is how to model this in terms
of feature design. Third, it would be interesting to experiment also in MA1
with a larger window within which possible combinations of individual voice
class decisions are evaluated. This decision window is larger by default in
MA2; here, however, a further extension is more problematic, as the size of
the state space when the decision must be made grows exponentially with
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the length of the decision window. Approaches that explore the state space
in a dynamic and adaptive way may thus be preferred over exhaustive search
here. Fourth, with regard to the bidirectional model used in MA1, it may
be worthwhile experimenting with additional passes through the data, where
in each new pass the data is annotated with the polyphonic information
generated in the most recent pass. Such a bootstrapping approach might
progressively improve model performance. Fifth, the inclusion of melodic
trajectory information in the models is expected to be beneficial to model
performance, especially with respect to the handling of complex musical phe-
nomena such as single-note unisons, voice crossing, and imitation. A suitable
starting point would be to include trained melody prediction models as fea-
tures. Such models could, but need not necessarily, be trained on the same
dataset. The rate of correct identification of imitations and voice crossing—
which often go hand in hand—is expected to increase further when (stored)
knowledge of the themes and motifs used in a dataset is available to a model.

The probabilistic approach MA3, lastly, in its current implementation is
fairly straightforward. Worthwhile experimenting with are, for example, hid-
den Markov models that use more appropriate or more extended vectorial
representations of the observations, as well as (or possibly in combination
with) higher-order hidden Markov models. Another possibility is to look
into factorial hidden Markov models, where the observations are again the
chords, represented as some feature vector, but where the state space consists
of multiple chains, each of which represents a voice.

The work presented in this thesis shows how MIR research can provide a
solution for a long-existing musicological problem. With the implementation
of the different models for voice separation, first steps towards a system for
automatic transcription of lute tablature into modern music notation have
been achieved. Such a system is hoped to spark new research into lute music.
From a larger perspective, it is hoped that this thesis will revive interest in
research into voice separation in symbolic music representations. There are
still many possible paths to pursue.
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Charnassé, H., and Stepien, B. (1991a). Computer and musicology: Auto-
matic transcription of 16th century music: German lute tablatures. In
H. Best, E. Mochmann, and M. Thaller (eds.), Computers in the human-
ities and the social sciences: Achievements of the 1980s, prospects for the
1990s (pp. 75–83). Munich: Saur.
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Table A.1 Hyperparameter optimisation, N model: hidden layer size and λ, accuracies for all combinations in training
(top), test (middle), and application (bottom) mode. Tablature dataset, four-voice pieces. HL = hidden layer size, IL =
input layer size.

HL λ
0.1 0.03 0.01 0.003 0.001 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5 0.0

1/8 · IL 86.63 89.89 91.44 92.20 92.31 91.78 92.42 92.29 92.25 92.37
1/4 · IL 86.70 89.77 91.22 92.39 92.86 92.96 92.94 92.95 93.01 93.00
1/2 · IL 86.32 89.41 91.23 92.46 92.88 93.17 93.19 93.23 93.28 93.19
1 · IL 86.07 89.30 91.20 92.49 92.97 93.22 93.39 93.36 93.40 93.32
2 · IL 86.24 89.31 91.24 92.38 93.15 93.29 93.38 93.38 93.19 93.35
4 · IL 86.24 89.47 91.17 92.44 93.00 93.17 93.32 93.24 93.29 93.34
1/8 · IL 85.85 89.13 90.58 91.12 91.24 90.78 91.27 91.12 90.65 91.22
1/4 · IL 85.82 89.22 90.28 91.08 91.79 91.38 91.69 91.62 91.48 91.73
1/2 · IL 85.63 88.88 90.51 91.34 91.54 91.91 92.07 91.95 91.69 91.87
1 · IL 85.29 88.39 90.54 91.21 92.04 91.45 91.69 92.04 91.94 91.50
2 · IL 85.23 88.87 90.79 91.14 91.59 91.54 91.82 91.70 91.90 91.97
4 · IL 85.19 88.48 90.35 90.99 91.49 91.33 91.93 91.67 91.61 91.59
1/8 · IL 55.51 68.76 76.84 74.49 76.75 77.17 77.72 77.29 76.68 76.06
1/4 · IL 54.70 69.13 75.85 76.89 76.60 76.69 77.78 75.74 77.27 76.28
1/2 · IL 56.57 68.71 73.77 76.64 77.80 78.68 76.35 78.15 78.36 78.89
1 · IL 52.78 68.40 75.72 77.74 79.63 78.25 79.18 78.46 79.42 78.74
2 · IL 60.21 68.28 75.47 76.92 78.04 78.49 77.86 78.66 78.63 77.89
4 · IL 54.66 69.19 74.69 77.77 78.55 78.00 79.39 78.12 78.00 78.67



Table A.2 Hyperparameter optimisation, N model: hidden layer size and λ, p-values for pairwise comparison of the highest
accuracy value with all other values in training (top), test (middle), and application (bottom) mode. Tablature dataset,
four-voice pieces. HL = hidden layer size, IL = input layer size.

HL λ
0.1 0.03 0.01 0.003 0.001 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5 0.0

1/8 · IL 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039
1/4 · IL 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0195 0.0039 0.0039 0.0039
1/2 · IL 0.0039 0.0039 0.0039 0.0039 0.0039 0.0976 0.0195 0.0742 0.1640 0.0546
1 · IL 0.0039 0.0039 0.0039 0.0039 0.0078 0.0976 0.9101 0.3593 0.4960
2 · IL 0.0039 0.0039 0.0039 0.0039 0.0390 0.4257 0.9101 1.0000 0.0195 0.6523
4 · IL 0.0039 0.0039 0.0039 0.0039 0.0117 0.0742 0.7343 0.1640 0.2031 0.3593
1/8 · IL 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0078 0.0039 0.0039 0.0117
1/4 · IL 0.0039 0.0039 0.0039 0.0039 0.1289 0.0117 0.0195 0.3007 0.0390 0.2031
1/2 · IL 0.0039 0.0039 0.0039 0.0273 0.0546 0.4257 0.4257 0.1640 0.5703
1 · IL 0.0039 0.0039 0.0039 0.0039 0.6523 0.2031 0.6523 0.6523 0.6523 0.0976
2 · IL 0.0039 0.0039 0.0078 0.0078 0.0546 0.0390 0.0195 0.4257 0.2500 1.0000
4 · IL 0.0039 0.0039 0.0039 0.0039 0.0117 0.0546 0.8203 0.1640 0.0976 0.1640
1/8 · IL 0.0039 0.0039 0.0039 0.0273 0.0742 0.0742 0.1640 0.4257 0.0078 0.0976
1/4 · IL 0.0039 0.0039 0.0039 0.0195 0.4960 0.0390 0.2031 0.3593 0.3007 0.4257
1/2 · IL 0.0039 0.0039 0.0039 0.0546 0.3007 0.7343 0.4960 0.1289 0.9101 1.0000
1 · IL 0.0039 0.0039 0.0742 0.1289 0.2031 1.0000 1.0000 1.0000 1.0000
2 · IL 0.0039 0.0039 0.0976 0.0039 0.2031 0.3593 0.3007 0.4960 0.3007 0.8203
4 · IL 0.0039 0.0039 0.0039 0.0546 0.0273 0.1640 0.9101 0.0976 0.4257 0.2031



Table A.3 Hyperparameter optimisation, N model: hidden layer size and λ, accuracies for all combinations in training
(top), test (middle), and application (bottom) mode. Bach dataset, four-voice pieces. HL = hidden layer size, IL = input
layer size.

HL λ
0.1 0.03 0.01 0.003 0.001 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5 0.0

1/8 · IL 93.33 95.98 96.66 97.00 96.62 96.50 96.77 96.81 96.79 96.42
1/4 · IL 93.78 95.94 96.90 97.56 97.77 97.81 97.82 97.75 97.82 97.78
1/2 · IL 93.60 95.78 96.96 97.67 97.84 97.92 97.94 97.91 97.94 97.95
1 · IL 93.61 95.76 96.98 97.68 97.89 97.96 98.03 98.02 98.04 98.01
2 · IL 92.90 95.69 96.98 97.71 97.94 97.99 98.03 98.04 98.04 98.06
4 · IL 93.20 95.77 96.97 97.73 97.94 97.99 98.03 98.06 98.04 98.06
1/8 · IL 93.18 95.75 96.29 96.61 96.20 96.03 96.42 96.81 96.28 96.38
1/4 · IL 93.67 95.85 96.70 97.26 97.44 97.56 97.54 97.41 97.48 97.31
1/2 · IL 93.46 95.53 96.69 97.42 97.44 97.53 97.58 97.48 97.51 97.57
1 · IL 93.25 95.51 96.84 97.37 97.59 97.56 97.64 97.60 97.57 97.70
2 · IL 92.39 95.47 96.70 97.42 97.55 97.63 97.53 97.62 97.66 97.62
4 · IL 92.86 95.68 96.72 97.42 97.58 97.52 97.62 97.60 97.53 97.59
1/8 · IL 69.89 71.58 74.96 75.96 73.22 76.01 75.30 76.54 74.27 74.23
1/4 · IL 70.33 70.86 77.17 77.41 77.36 78.70 77.67 79.23 77.18 77.61
1/2 · IL 70.05 68.81 74.50 78.40 77.13 79.27 77.88 78.62 78.07 78.60
1 · IL 67.70 69.23 74.40 78.37 78.74 78.38 78.55 79.76 80.70 79.63
2 · IL 68.39 70.68 75.79 80.42 78.83 80.16 79.70 78.70 78.42 79.74
4 · IL 65.82 68.66 74.73 78.28 79.77 79.68 78.22 79.09 80.42 79.95



Table A.4 Hyperparameter optimisation, N model: hidden layer size and λ, p-values for pairwise comparison of the highest
accuracy value with all other values in training (top), test (middle), and application (bottom) mode. Bach dataset, four-voice
pieces. HL = hidden layer size, IL = input layer size.

HL λ
0.1 0.03 0.01 0.003 0.001 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5 0.0

1/8 · IL 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
1/4 · IL 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
1/2 · IL 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003 0.0001 0.0001 0.0001

1 · IL 0.0001 0.0001 0.0001 0.0001 0.0001 0.0004 0.1956 0.1133 0.2412 0.0728
2 · IL 0.0001 0.0001 0.0001 0.0001 0.0001 0.0123 0.2579 0.1818 0.4653
4 · IL 0.0001 0.0001 0.0001 0.0001 0.0001 0.0028 0.4180 0.8287 0.3524 0.8905
1/8 · IL 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001 0.0001 0.0009 0.0001 0.0001
1/4 · IL 0.0001 0.0001 0.0001 0.0002 0.0024 0.2412 0.0728 0.0053 0.0798 0.0001
1/2 · IL 0.0001 0.0001 0.0001 0.0159 0.0053 0.1446 0.1956 0.0028 0.3954 0.0159

1 · IL 0.0001 0.0001 0.0001 0.0004 0.3954 0.1687 0.3124 0.4413 0.0545
2 · IL 0.0001 0.0001 0.0001 0.0289 0.2412 0.0493 0.1564 0.8905 0.4899 0.2253
4 · IL 0.0001 0.0001 0.0001 0.0039 0.4413 0.1041 0.7982 0.6507 0.0323 0.5152
1/8 · IL 0.0001 0.0003 0.0094 0.0180 0.0016 0.0545 0.0289 0.0545 0.0071 0.0033
1/4 · IL 0.0001 0.0003 0.0602 0.3320 0.0874 0.4899 0.0798 0.6225 0.1564 0.0323
1/2 · IL 0.0001 0.0001 0.0006 0.1687 0.0360 0.3736 0.0602 0.2412 0.0323 0.2935
1 · IL 0.0001 0.0001 0.0108 0.2935 0.2935 0.0493 0.0545 0.8287 0.5152
2 · IL 0.0001 0.0003 0.0014 0.5948 0.2935 0.6225 0.6507 0.2935 0.0955 0.3736
4 · IL 0.0001 0.0001 0.0014 0.0798 0.9843 0.5412 0.2935 0.6507 1.0000 0.7680



Table A.5 Hyperparameter optimisation, N′ model: hidden layer size and λ, accuracies for all combinations in training
(top), test (middle), and application (bottom) mode. Tablature dataset, four-voice pieces. HL = hidden layer size, IL =
input layer size.

HL λ
0.1 0.03 0.01 0.003 0.001 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5 0.0

1/8 · IL 91.68 95.33 94.05 91.94 91.89 91.69 89.27 91.79 92.90 91.66
1/4 · IL 92.75 95.46 96.64 96.82 96.09 96.38 96.24 95.73 96.72 96.44
1/2 · IL 92.46 95.34 96.73 97.18 97.32 97.33 97.33 97.36 97.37 97.33
1 · IL 91.90 94.94 96.64 97.10 97.30 97.26 97.28 97.27 97.38 97.32
2 · IL 92.14 94.86 96.42 96.94 97.03 97.13 97.12 97.22 97.10 97.06
4 · IL 92.58 94.85 96.29 96.81 96.96 97.02 96.98 97.02 97.02 96.99
1/8 · IL 90.68 94.71 93.56 90.56 91.93 90.25 89.86 90.50 90.18 90.66
1/4 · IL 91.54 94.34 96.11 95.96 95.15 95.00 95.37 94.64 95.90 95.37
1/2 · IL 91.77 94.80 96.13 96.53 96.42 96.68 96.55 96.61 96.59 96.54
1 · IL 90.26 94.33 96.09 96.46 96.54 96.50 96.41 96.67 96.46 96.24
2 · IL 91.76 94.45 95.74 96.28 96.33 96.44 96.33 96.30 96.13 96.00
4 · IL 91.76 94.23 95.65 96.15 96.13 95.93 96.16 96.24 96.09 96.06
1/8 · IL 62.68 65.71 64.81 63.34 62.25 62.79 57.18 61.05 63.34 63.72
1/4 · IL 63.39 66.52 67.82 68.40 66.41 67.00 66.58 66.25 68.83 65.63
1/2 · IL 62.91 68.33 68.42 68.57 69.03 69.48 69.57 70.47 69.77 69.88
1 · IL 61.80 67.82 68.09 68.07 68.49 67.64 68.99 69.18 69.41 68.56
2 · IL 62.57 64.94 67.45 69.91 67.93 67.36 68.84 65.94 67.48 67.54
4 · IL 64.17 66.48 68.02 67.01 67.49 67.08 68.20 66.62 68.34 66.97



Table A.6 Hyperparameter optimisation, N′ model: hidden layer size and λ, p-values for pairwise comparison of the highest
accuracy value with all other values in training (top), test (middle), and application (bottom) mode. Tablature dataset,
four-voice pieces. HL = hidden layer size, IL = input layer size.

HL λ
0.1 0.03 0.01 0.003 0.001 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5 0.0

1/8 · IL 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039
1/4 · IL 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039
1/2 · IL 0.0039 0.0039 0.0039 0.0039 0.3007 0.3593 0.8203 0.6523 0.9101 0.3593
1 · IL 0.0039 0.0039 0.0039 0.0039 0.0195 0.0742 0.0390 0.0976 0.3007
2 · IL 0.0039 0.0039 0.0039 0.0039 0.0039 0.0117 0.0078 0.0546 0.0039 0.0039

4 · IL 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039
1/8 · IL 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039
1/4 · IL 0.0039 0.0039 0.0117 0.0117 0.0039 0.0039 0.0078 0.0039 0.0039 0.0039
1/2 · IL 0.0039 0.0039 0.0039 0.1640 0.0195 0.2500 0.1640 0.2500 0.1640
1 · IL 0.0039 0.0039 0.0078 0.0273 0.2031 0.0742 0.1289 0.2500 0.0976 0.0039

2 · IL 0.0039 0.0039 0.0039 0.0976 0.0546 0.1640 0.0195 0.0390 0.0078 0.0039

4 · IL 0.0039 0.0039 0.0078 0.0039 0.0078 0.0039 0.0039 0.0390 0.0117 0.0117
1/8 · IL 0.0039 0.0039 0.0039 0.0039 0.0078 0.0546 0.0078 0.0546 0.0039 0.0078
1/4 · IL 0.0039 0.0195 0.1640 0.2500 0.0742 0.1289 0.0976 0.0390 0.1640 0.0390
1/2 · IL 0.0039 0.0742 0.4960 0.5703 0.5703 0.7343 0.4960 1.0000 0.5703
1 · IL 0.0039 0.1289 0.2031 0.2031 0.2500 0.1289 0.6523 0.3593 0.4257 0.1640
2 · IL 0.0039 0.0078 0.2500 0.7343 0.1640 0.0273 0.5703 0.0390 0.0976 0.1640
4 · IL 0.0078 0.0078 0.2500 0.0390 0.0546 0.0195 0.2031 0.4960 0.0976 0.0742



Table A.7 Hyperparameter optimisation, C model: hidden layer size and λ, accuracies for all combinations in training
(top), test (middle), and application (bottom) mode. Tablature dataset, four-voice pieces. HL = hidden layer size, IL =
input layer size.

HL λ
0.1 0.03 0.01 0.003 0.001 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5 0.0

1/8 · IL 61.50 70.88 78.38 82.30 83.79 85.74 83.01 84.45 83.37 84.82
1/4 · IL 62.33 73.31 78.48 82.36 84.02 83.32 82.05 84.19 85.41 85.39
1/2 · IL 64.02 71.76 78.38 81.50 82.79 84.62 83.01 85.04 83.75 83.89
1 · IL 64.41 72.63 76.56 81.30 82.70 83.09 82.34 84.19 84.18 83.05
2 · IL 64.85 71.62 77.63 88.19 81.35 92.03 92.76 88.06 92.38 90.83
1/8 · IL 61.98 67.33 76.14 81.08 82.20 84.32 83.94 81.48 80.43 82.68
1/4 · IL 62.76 72.08 78.40 82.32 80.85 82.74 81.90 83.45 84.94 83.50
1/2 · IL 63.55 72.05 76.83 80.92 82.42 82.50 81.91 82.91 83.44 82.11
1 · IL 64.94 68.40 76.72 78.01 80.60 81.08 82.18 81.86 79.72 81.66
2 · IL 63.08 71.24 75.23 91.80 83.56 92.48 88.90 88.72 91.58 93.49
1/8 · IL 63.28 67.62 70.46 72.98 74.26 73.88 72.94 75.10 74.35 74.97
1/4 · IL 64.65 68.66 70.77 70.72 75.26 73.10 75.09 72.91 74.41 73.22
1/2 · IL 65.90 67.98 70.04 71.91 72.91 71.89 73.71 71.85 73.11 72.85
1 · IL 65.22 67.39 68.65 67.60 71.80 70.32 71.70 71.32 67.76 68.56
2 · IL 64.36 66.00 61.71 42.32 59.39 34.58 33.96 48.86 36.43 30.20



Table A.8 Hyperparameter optimisation, C model: hidden layer size and λ, p-values for pairwise comparison of the highest
accuracy value with all other values in training (top), test (middle), and application (bottom) mode. Tablature dataset,
four-voice pieces. HL = hidden layer size, IL = input layer size.

HL λ
0.1 0.03 0.01 0.003 0.001 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5 0.0

1/8 · IL 0.0039 0.0039 0.0078 0.0390 0.0742 0.2500 0.1640 0.0976 0.2031
1/4 · IL 0.0039 0.0039 0.0039 0.0117 0.2500 0.0976 0.0039 0.0390 0.6523 0.4257
1/2 · IL 0.0039 0.0039 0.0039 0.0039 0.0195 0.2031 0.0078 0.4257 0.2500 0.1289
1 · IL 0.0039 0.0039 0.0039 0.0078 0.0546 0.0390 0.0273 0.1289 0.3007 0.0390

2 · IL 0.0039 0.0039 0.0742 0.5703 0.0546 0.0546 0.0117 0.2500 0.0390 0.0195
1/8 · IL 0.0078 0.0195 0.0546 0.0390 0.4960 0.9101 0.1289 1.0000 0.3593 0.4257
1/4 · IL 0.0078 0.0039 0.0273 0.0742 0.0976 0.4257 0.0390 0.0546 0.9101
1/2 · IL 0.0078 0.0078 0.0078 0.0117 0.1289 0.0546 0.0117 0.4257 0.5703 0.0546
1 · IL 0.0039 0.0039 0.0195 0.0742 0.0390 0.0039 0.0390 0.0976 0.0117 0.0273

2 · IL 0.0078 0.0039 0.0976 0.2500 0.6523 0.0742 0.0078 0.3007 0.0546 0.0273
1/8 · IL 0.0195 0.0546 0.3007 0.4257 1.0000 0.9101 0.2500 0.7343 0.9101 0.6523
1/4 · IL 0.0195 0.0078 0.3007 0.1289 0.5703 0.4257 0.1289 0.3007 0.3007
1/2 · IL 0.0390 0.0273 0.0546 0.0195 0.4257 0.0390 0.3007 0.2500 1.0000 0.1289
1 · IL 0.0078 0.0117 0.0039 0.0546 0.2031 0.0039 0.0390 0.0546 0.0117 0.0742
2 · IL 0.0078 0.0117 0.0117 0.0195 0.0195 0.0078 0.0039 0.0195 0.0039 0.0039



Table A.9 Hyperparameter optimisation, C model: hidden layer size and λ, accuracies for all combinations in training
(top), test (middle), and application (bottom) mode. Bach dataset, four-voice pieces. HL = hidden layer size, IL = input
layer size.

HL λ
0.1 0.03 0.01 0.003 0.001 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5 0.0

1/8 · IL 95.90 96.69 96.78 96.86 96.82 96.82 96.92 96.96 96.91 96.87
1/4 · IL 95.64 96.66 96.73 96.67 96.76 96.71 96.65 96.95 96.66 96.80
1/2 · IL 95.49 96.29 96.45 96.48 96.56 96.64 96.54 96.54 96.63 96.60
1 · IL 95.37 96.34 96.33 96.35 96.48 96.51 96.38 96.53 96.46 96.49
2 · IL 95.01 96.00 96.28 96.67 97.10 96.21 96.44 96.76 96.78 96.74
1/8 · IL 95.84 96.63 96.52 96.72 96.72 96.81 96.83 96.76 96.63 96.70
1/4 · IL 95.59 96.19 96.54 96.66 96.67 96.65 96.41 96.86 96.55 96.69
1/2 · IL 95.23 96.52 96.23 96.24 96.18 96.44 96.27 96.52 96.37 96.41
1 · IL 95.18 96.07 96.29 96.25 96.16 96.24 96.23 96.40 96.27 96.14
2 · IL 94.56 96.06 96.16 96.47 96.91 95.88 96.15 97.22 96.20 96.37
1/8 · IL 73.13 76.88 75.31 75.81 75.37 74.65 78.27 77.33 76.31 77.16
1/4 · IL 74.12 74.37 75.93 76.20 79.21 76.22 75.38 79.56 77.39 76.71
1/2 · IL 73.89 77.08 77.16 76.87 75.36 78.61 75.44 79.48 76.41 76.99
1 · IL 73.79 74.87 73.44 76.15 77.47 77.60 77.38 78.22 75.55 78.57
2 · IL 74.81 72.23 75.06 63.79 65.62 79.47 68.21 60.22 67.19 68.48



Table A.10 Hyperparameter optimisation, C model: hidden layer size and λ, p-values for pairwise comparison of the highest
accuracy value with all other values in training (top), test (middle), and application (bottom) mode. Bach dataset, four-voice
pieces. HL = hidden layer size, IL = input layer size.

HL λ
0.1 0.03 0.01 0.003 0.001 3 · 10−4 1 · 10−4 3 · 10−5 1 · 10−5 0.0

1/8 · IL 0.0033 0.4899 0.7380 0.9529 0.7085 0.8595 0.6507 0.9529 0.8595 0.7085
1/4 · IL 0.0001 0.4899 0.4653 0.3736 0.7380 0.4899 0.4653 1.0000 0.2935 0.9843
1/2 · IL 0.0001 0.0493 0.1446 0.1231 0.2101 0.3320 0.1231 0.1818 0.4413 0.3954
1 · IL 0.0001 0.0602 0.0602 0.0204 0.0798 0.1231 0.0874 0.2253 0.1818 0.2935
2 · IL 0.0001 0.0082 0.0545 0.3954 0.0323 0.0493 0.9217 0.7085 0.3524
1/8 · IL 0.0033 0.2253 0.2753 0.6794 0.6794 0.8595 0.9843 0.5948 0.4653 0.5412
1/4 · IL 0.0053 0.3124 0.3736 0.2412 0.5152 0.6794 0.0728 0.8595 0.2412 0.4180
1/2 · IL 0.0014 0.4180 0.0401 0.0545 0.1133 0.1133 0.1133 0.2253 0.2412 0.0545
1 · IL 0.0004 0.0662 0.0728 0.0123 0.0108 0.0602 0.0445 0.3736 0.1133 0.0071

2 · IL 0.0001 0.0108 0.0798 0.1564 0.9217 0.0020 0.1818 0.0493 0.2253
1/8 · IL 0.0053 0.0602 0.0258 0.1818 0.1446 0.0071 0.7380 0.2579 0.0289 0.1041
1/4 · IL 0.0016 0.0401 0.2753 0.0545 0.7380 0.1956 0.0662 0.5152 0.1446
1/2 · IL 0.0006 0.8595 0.5412 0.1687 0.0159 0.4180 0.1336 0.7085 0.2579 0.1041
1 · IL 0.0204 0.0955 0.0360 0.0094 0.1133 0.5152 0.3524 0.3736 0.1041 0.2253
2 · IL 0.0009 0.0053 0.2935 0.0123 0.0159 0.6507 0.0258 0.0053 0.0053 0.0002
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