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ANALYSISOF REINFORCED CONCRETE COLUMNS SUBJECTED TO

COMBINED AXIAL, FLEXURE, SHEAR AND TORSIONAL LOADS

By T R SMullapudi® and Ashraf Ayoub?

Abstract

This paper describes the implementation of a 3-dimensional concrete constitutive model for
fiber-based analysis of reinforced concrete members subjected to combined loadings including
torsion. The proposed model is formulated to address the interaction between the axial force,
bidirectional shear, biaxial bending, and torsion. The shear mechanism along the beam is
modeled using a Timoshenko beam approach with three dimensional (3-D) frame elements with
arbitrary cross-section geometry. The model considers the 3D equilibrium, compatibility, and
constitutive laws of materials at the section and structural level. The concrete constitutive law
follows the Softened Membrane Model (SMM) with a tangent-stiffness formulation. The
emphasis of the paper is on evaluation of the effect of the different stress states on the global and
local behavior of the member. The ability of the model to assess the ultimate strength, stiffness,
energy dissipation, failure modes under 3-dimensional loading is evaluated by correlation of

analytical results with experimental tests of RC specimens.
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INTRODUCTION

Reinforced concrete (RC) structures are subjected to combinations of actions and
deformations, caused by spatially complex earthquake ground motions, features of structural
configurations and the interaction between input and response characteristics. Combined
loadings can have significant effects on the force and deformation capacity of reinforced
concrete structures, resulting in unexpected large deformations and extensive damage that in turn
influences the performance of structures. In particular, combined bending andalceffiect is
observed in structures such as skewed and horizontally curved bridges, bridges with unequal
spans or column heights, spandrel beams and bridges with outrigger beams. The analytical
modeling of the behavior of structures under bending, shear and axial force interaction has
received considerable attention in recent years. There is however a lack of research studies
regarding the combined behavior of 3D concrete structures.

The first tests on combined shear, bending and torsion were reported by Nylander (1945).
Using only longitudinal steel and disregarding transverse sieehuthor found that the bending
moment reduced the torsional strength. Lessig (1959) derived two possible failure modes and
suggested equations for the torsional strength of the beams. Later most of the experimental work
concentrated on combined loadings focused on the failure modes and the derivation of equations
to define a 3-D interaction surface (Yudin 1962, Gesund and Boston 1964). Elfgren et al. (1974)
derived shear, bending and torsion interaction from the Skew Bending theory; later Ewida and
McMullen (1981) found that the Skew Bending theory’s predictions agreed fairly well with the
available results. Mansur and Paramasivam (1984) tested ten beams with small circular openings
in bending and torsion and found that the torsional strength and stiffness decreased as the

opening size increased. For a small amount of bending moment there is an increase in the
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torsional capacity of the member but for a substantial amount of bending, the ultimate torque
decreases with the increase of bending.

Rahal and Collins (1995a) studied the effect of the thickness of concrete cover on the
behavior of reinforced concrete sections subjected to combined shear and torsion and found that
the increase in thickness of the concrete cover increases the strength of sections, increases the
crack spacing and induces lateral curvatures.

Rahal and Collins (1995b, 2003a) developed a 3-D truss model to analyze members
subjected to combined loading with the help of the Modified Compression Field theory (MCFT).
This model follows the curvature and checks the spalling of the concrete cover subjected to
combined shear and torsional loads. Rahal and Collins (2003b) evaluated the ACI318-02 and
AASHTO-LRFD provisions under combined shear and torsional loads. ACI provisions give very
conservative results with the recommendetatgle between the compression diagonals and the
longitudinal axis of the member. If a lower limit of “3@ngle is used for some cases, un-
conservative results might be possible. Tirasit et al (2005) investigated the performance of ten
reinforced concrete columns under cyclically applied bending and torsional loadings with and
without the effect of a constant axial compression force. Axial compression increases the
torsional strength and angle of cracks but its effect decreases as the rotation increases. The
plastic hinge zone changes with the change of angle of twist to drift ratio; as the torsion
increases, the flexural capacity and drift of the column is reduced. On the other hand, with the
increase of bending moment, torsional resistance and angle of twist reduces significantly. Tirasit
and Kawashima (2008) studied the effect of seismic torsion on the performance of a skewed
bridge and developed the Nonlinear Torsional Hysteretic model. It was found that the torsional

strength reduces the combination of flexure and eccentric impact force due to the lack of bearing
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movement that induces higher torsion in bridge piers. Prakash et al. (2010) tested circular
reinforced concrete columns under cyclic bending and shear, cyclic pure torsion, and various
levels of combined cyclic bending, shear, and torsional loads with an aspect ratio of 3 and 6. It
was found that shear capacity increases with the reduction of the aspect ratio. The displacement
at ultimate shear and rotation at ultimate torque also decreased significantly under combined
loading.

The establishment of nonlinear constitutive models for RC elements under combined loading
and the development of corresponding nonlinear finite element models are essential to predicting
the correct behavior of RC structures. In the past three decades, new constitutive models were
developed in an effort to improve the general performance of the structures and elements. In
these models, the equilibrium equations assume the stresses in the concrete struts and steel bars
to be smeared. Similarly, the strains of steel and concrete are also smeared, and are obtained by
averaging the strains along a steel bar that crosses several cracks. The constitutive laws of
concrete and steel bars were developed through large-scale panel testing, and relate the smeared
stresses to the smeared strains of the element (Belarbi and Hsu, 1994, 1995; Hsu and Zhang,
1996). The first work to develop such constitutive laws is the one by Vecchio and Collins (1981),
who proposed the Compression Field Theory (CFT) to predict the nonlinear behavior of cracked
reinforced concrete membrane elements. The CFT however is unable to take into account the
tension stiffening effect of the concrete. The researchers later improved their model and
developed the Modified Compression Field Theory (Vecchio and Collins 1986), in which the
tension stiffening of concretis accounted for by imposing a concrete tensile stress across the
shear crack. Belarbi and Hsu (1994, 1995), and Pang and Hsu (1995) used a different approach

and developed thRotating-Angle Softened-Truss Model (RA-STM). In this model, the tension
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stiffening effect of concrete was taken into account by assuming a shear stress atvagkthe
direction. Later, the researchers improved their work and developed the Fixed-Angle Softened-
Truss Model (FA-STM) (Pang and Hsu, 1996; Hsu and Zhang, 1997; and Zhang and Hsu, 1998),
which is capable of predicting the concrete contribution to shear resistance by assuming the
cracks to be oriented at a fixed angle. Zhu et al. (2001) derived a rational shear modulus and
developed a simple solution algorithm for the FA-STM. The work was further extended by
developing the Hsu/Zhu Poisson ratios (Zhu and Hsu 2002), which led to the development of the
Softened Membrane Model (SMM), which can accurately predict the entire response of the
specimen, including both the pre and post-peak responses. Recently, Jeng and Hsu (2009)
developed the Softened Membrane Model for Torsion (SMMT) which takes into account the
strain gradient of concrete struts in the shear flow zone with two significant modifications. First,

in the tensile stress-stain relationship of concrete, the initial elastic modulus and strain at peak
stress are increased by 45%; second, the Hsu/Zhu ratio of torsion is taken as 80% of the Hsu/Zhu
ratio for bending-shear (Zhu and Hsu 2002).

Vecchio and Selby (1991) developed a finite element program for 3-D analysis of concrete
structures with an eight node regular hexahedral element. In their constitutive material model
they used the Modified Compression Field Theory. Gregori et al. (2007) analyzed the section of a
concrete column subjected to biaxial bending, bidirectional shear and torsion by subdividing it
into several regions that are subjected to either uniaxial, biaxial, or triaxial state of stress. The
regions subjected to a triaxial state of stress were analyzed following the approach of Vecchio
and Selby (1991).

In this research a generalized 3-D frame element adopting the Softened Membrane Model is

implemented. The model is based on a Timoshenko-type force based formulation. Each element
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is divided into several sections along the length and into several fibers across the cross section.
Coupling between torsion and axial, flexural, and shear behavior is accounted for through
satisfaction of the equilibrium and compatibility conditions along the three dimensions. This was
performed by developing a new algorithm that correctly evaluates the longitudinal and transverse
reinforcement strains compatible with the 3-dimensional cracked concrete behavior. The present
study accomplishes three main tasks: 1) it formulates a force-based frame element to simulate the
combined 3-dimensional loading effect on concrete members with reasonable computational
efficiency, 2) it expands the use of the SMM constitutive model for analysis of RC members
under triaxial states of stresses, 3) it validates the new finite element model by comparing its
predictions with the experimental results of RC columns.

The element was added to the library of the FORTRAN based finite element analysis
program FEAPpv, developed by Taylor (2005). In order to implement the 3-D model into
FEAPpv, a Timoshenko beam element with triaxial constitutive relations is added to the existing
library of the FEAPpv as presented in Figurel. A detailed derivation of the element formulation

is presented in the next sections.

FINITE ELEMENT FORMULATION
The 3-D response is described by defining six degrees of freedom at each section of the

element, which consists of three translatiapsv,,w, and three rotation®,,6, ,0,with the
corresponding forces ,vV ,W and three moment3 ,M ,M,respectively. The general [3-

beam element with rigid body modes is shown in Figure 2(a); and without rigid body modes is
shown in Figure 2(b). Each element is further divided into a number of sections that are

subdivided into fibers. Section deformations and forces are shown in Figure 3 (a) and Figure
6



3(b).
The main strains and corresponding stresses acting at any section can be grouped in vector

forms:

T T

{et=le, 7y 7o) {o}={oy 7, 7.} (L)

where ¢, is the normal strain angt, and y,, are the shear strains. The remaining strain vectors
&,,&, , andy, , are determined by enforcing equilibrium between the concrete and reinforcement,

as will be described later.

The section deformations at the origin of the section, in matrix form, can be written as:

ou, 90, 06, 30, v _, ow,
oX  Ox oX Oox ox ° ox

{st={ec 2, % X« 7o mo}T:{ +9y} 2)

where ¢, is the longitudinal strain at the section centrgidand y, are the curvatures about the
y- and z- coordinate systery, is the angle of twist per unit length, ang,and y,,, are the

generalized shear strains.

The strain vector at any fibes,, is related to the sectional strasnas follow:

(e}={e. 7y 7o} =[Tlls} (3)
where
1 zy O OO
[T]=|0 0 0 -z 1 0, (4)
000y 01

In the present model, a force-based formulation (Spacone et al. 1996) is adopted. The force-
based approach has superior numerical capabilities than standard displacement formulations.

Furthermore, the latter suffers from locking if shear deformations are accounted for. By using the
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force interpolation functiom(x) , the section forces(x) at a sectionx are related to the element

end forcesP by:

S(x) =b(x)P (5)
where
10 0 O 0 O]
0021 % o o
L L
00 O O %—1%
b(x) = . 6
®W=lo1 0 o o o ©)
oo o o =+
L L
0o % -1
i L L ]

To implement the force-based model in a finite element program based on displacement
degrees of freedom, the following equation needs to be solved for incrementally:

KelemenAd = AR (7)

Here, the element stiffness matixF— and the resisting load increment= AP+ F "1,
— L L
Where F =IbT(x) f(x)b(xX) dx is the element flexibility matrix, and :ij(x)rd(x)dx is the
0 0

section residual deformation vector. The process of the state determination of force-based

elements requires an internal element iteration in addition to the Newton-Raphson global

iteration; it is further described by Spacone et al. (1996) and Neuenhofer and Filippou (1997).
Section behavior, as stated earlier, is evaluated through fiber discretization with the

appropriate material constitutive models. The material constitutive models are described next.



CONCRETE CONSTITUTIVE MODEL
There exist six stressdsr,, }and corresponding straifs,, } acting on any concrete fiber;
however, the current formulation considers only three stsegs} and straing ¢} components,

while the other three stress and strain components are derived by considering the equilibrium

conditions. The different stress and strain vectors are defined as follow:

{0-3D} = {O_x O-y Gz Z-xy 7’-yz sz}T ! {SSD } = {gx gy gz 7xy j/yz yxz}T ’ (8)
{o}= I:O'X Ty Tu ]T , {e} = [gx & Y ]T 9)
{ou )= I:O'y o, Tﬂ]T : {en} = [gy g, 7yZ]T (10)

The unknown stress componernds, should equal zero to satisfy the internal equilibrium

between the reinforcing steel and concrete, which will result in evaluation of the corresponding
three unknown strain valueg, . Since the constragal condition is nonlinear, determination of
the corresponding strains requires an iterative solution.

The proposed model extends the 2-D SMM to describe the material response of 3-D regions.
The modified constitutive relations follow a 3-D stress space formulation and differ from those
originally proposed in 2-D formulations (Mullapudi 2010, Mullapudi and Ayoub, 2010).

Concrete straing,, are used to calculate the principal strains, or Eigen values; and principal

strain directions, or Eigen vectors; with the help of the Jacobi method.

Eigen vectors, or direction cosines, are derived from the applied stregseshich are

represented witfie, |



[a]=|m m, m, (11)

The calculated principal strains, ¢,, £, are sorted in such a way that>¢, > ¢,, the

corresponding stresses;, o,, o, are calculated using the biaxial constitutive relations

explained in later sections.

The rotation matrix needed to rotate the stress and strain vectors from thexgiamlstem

to the applied principal stress direction syste@+3with an angle o[al] IS:

| Il2 ml2 nl |{nl mlnl nlll
I m;  n I, mp, nJ,
|2 m? n2 I m n
[R(O!l)] — 3 3 3 Jn?, 3n3 3"3 (12)

2Il|2 anmZ 2’]1r]2 Ilr‘nZ—Fl{nl mp2+ m;‘l nlléi_ nJl
2|2|3 2T‘I2rn3 2’]2n3 |Jn3+|{n2 m{]3+ m3nZ nJéi_ nijzi
_2I3‘Il z’ngnl 2‘]3nl Ifarnl+|{n3 m3nl+ m1n3 ngf_ nJ§

In a fiber-based element formulation, the process of the state determination at the fiber level

requires the calculation of the fiber stress{esX o, O, T, T, rXZ]Tfrom the strain

statd &, £, £, ¥y 7y yXZJT. Because the SMM has been implemented in a Timoshenko-

type beam element, the values £f y,, andy,, are typically known, while the lateral straimg

and ¢, values must be evaluated from the equilibrium conditions.

EVALUATION OF LATERAL STRAIN

The equilibrium equations needed to evaluate the stresses ythecoordinate system

T . . .
[ax o, O, T, T, rxz} as a function of the principal stresses resisted by concrete
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(o5 o o 1, T rfz]T and reinforcing bar stresseg, f,,and f,, along thex, y, andz

directions respectively are:

T_ -1 Cc Cc Cc Cc Cc Cc T
{O‘x o, 0, T, T, TXZ} —[R(al)] {01 g, 05 T5, To Tl}

N (13)
+H{pofo Pofy P 0 0 0O

c

T . . .
where {af O, O35 Ty, Tos rlg} is the local concrete stress vectPR] is the rotation

matrix and[R]’lz[R]T and p,,, p,, andp,, are the smeared steel ratio in the directior, gfand

z respectively.

Transverse strains are internal variables determined by imposing equilibrium on each fiber
between concrete and steel stirrups. Stirrup strains are not known in advance, and because of the
non-linear behavior of the concrete and steel materials, an iterative procedure is needey to satisf
the equilibrium in the y and z directions, following the flow chart in FigurEhé. second of the

equilibrium equations in (13) is used to evaluate the lateral straim fiber i; taking into
consideration that the value ef equals zero:
of'm; + 03 my+ oy me+r2mmar r2mmg 22 mmy pyy, =0 (14)
Eqg. (14) can also be written as:
o A, +0A,=0 (15)
The third of the equilibrium equations in (13) is used to evaluate the lateral stiaifiber

i ; taking into consideration that the valuesgfequals zero:

C,i 22 c,i 2 ci 2 ci ci ci i
oy'm+oy'ns oy ng+r2nnst % 2n g2 npy o, £,=C (16)

Eq. (16) can also be written as
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O A, +O A =0 (17)

Heres., and o., are the concrete stresses in the transvgrard z direction of fiberi
respectively;o., and o, are the steel stresses in the transversed z direction of fibe i
respectively; Aly and A, are the area of concrete inand z direction within the spacing

(Figure 5; ALY and A, are the steel reinforcement, cross sectional areasaind z direction

within the spacind; p., o, are the ratios of steel to concrete area inyttaad z direction of

fiberi , andf/,, f, are the transverse steel bar stresses which are eqm;@l ando. .

sy
An iterative procedure is needed to determine the lateral straiand ¢, that will also

satisfy the equations demonstrated in Figure 4 because of the nonlinear behavior of the concrete

and steel. An initial value for, ande, is assumed at each fiber, and the iterations proceed until

Egs. (14 and 16) are internally satisfied.

STRAINSIN CIRCULAR SECTIONS

Circular cross sections are typically divided into a number of sectors along the
circumferential direction (Figure 6).

Uni-axial stress-strain relationships of circular hoops are not availablexiy-arcoordinate
system. Because of this difficulty they are determined along the tangential direction of the stirrup
x’-y’-z’ coordinate system and then later converted toxtlgez coordinate system. In each
section, thec -y -z’ coordinate system is derived by choosing the afigdach that the ’ axis is
perpendicular to the transverse reinforcement alignment. The strain valuexig-#heordinate
system is converted to the-y -z’ co-ordinate system with the help of the transformation matrix

12



1 0 0
[A] =10 co¥ -sinf (18)
0 sind cosO

Accordingly, the strain perpendicular to the transverse reinforcement cross se'yctien
calculated as:
éy = gycosz(ﬁl) - }/yzsin(ZG') +&,s5in’(0 ) (29)
Having obtained the uni-axial stress and stiffness values in’théz’ coordinate system,

these values are converted to ¥z coordinate system to satisfy equilibrium. The transverse

steel reinforcement stress in thedirection becomegyzf;posz(e' ); the transverse steel

reinforcement stress in thedirection becomes,, = f;sinz(e' ), and the shear stress contribution

of the steel is neglected.

With similar transformations, the transverse steel reinforcement stiffness yaditextion

becomes Esyzljycosz ¢ ), the transverse steel reinforcement stiffness in zkdirection

becomes,,=Dsin” ¢ ), and the shear stiffness contribution of the steel is neglected.

EVALUATION OF CONCRETE STRESS

The typical concrete stress-strain curves are derived from uni-axial tests, so the biaxial strains
in thex-y-z direction [sx & & Ve Vw yxz]T need to be converted to equivalent uni-axial

strains in thel-2-3direction[z; &, &, », 7, 7, to calculate the concrete stresses.

The biaxial principal strains are then evaluated as:
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T T
{‘91 €y, &3 V1o Vo3 713} :[R(a)]{é‘x €y €,V 7Ty 7x} (20)
Biaxial principal strains are needed to evaluate the equivalent uni-axial strains. The
equivalent uni-axial strains are derived from the biaxial strains with the help of the suggested

Poisson’s Ratio of cracked concrete for SMM, also called the Hsu/Zhu ratios
{4y m, m, w, w, ) (Zhu and Hsu 2002). From the range ¢f=1to3 and
k=1to 3 u, isthe ratio of the resulting tensile strain increment in the pringipdirection to
the source compressive strain increment in the prindipalirection; x4, is the ratio of the

resulting compressive strain increment in the principadirection to the tensile source strain
increment in the principalj -direction. The following equations were suggedtgdleng and

Hsu (2009) based on comparisons of test data:

Uy =152 £4> ey (22)
g =0, (23)

wherez; is defined as the strain in the reinforcement that yields first,sgnid the yield strain
of reinforcing steel.

After cracking, Hsu/Zhu ratig,, lies outside the typical range of 0 to 0.5 for Poisson’s Ratio
of continuous materials; before cracking Hsu/Zhu ratie-0.2, and after cracking Hsu/Zhu
ratioy,, =0, indicating the tensile strain has no effect on the compressive strain.

The equivalent uni-axial strains are derived from the biaxial principal strains with Hsu/Zhu
ratios {u, w, w, w, H, ., as:
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{51 &, 53}1—:[#]{51 &; gs}T’ (24)

where [,U]: —Hy 1 —py (25)
“Hz —Ha 1

The equivalent uni-axial strain in the longitudinal reinforcement alongcta@ection with

the effect of Hsu/Zhu ratio is given by:

Eu=Ell +E) 5+ AL sy Rl sy B (26)

The equivalent uni-axial strain in the transverse reinforcement along-thisction with the
effect of Hsu/Zhu ratio is given by:

&, = &M, +E,M+E MG+  2MMsty ,2MMgy 2 myr (27)

The equivalent uni-axial strain in the transverse reinforcement along-theection with the

effect of Hsu/Zhu ratio is given by:
&y, = BN 8N+ EQG Y 20NGHy 2N NGy 12NN (28)
The equivalent uni-axial longitudinal steel stregstransverse steel stressgs, and f_, are
calculated from the equivalent uni-axial steel reinforcement s&#ging,, , and g, through a

smeared stress-strain relationships of mild steel bars embedded in concrete and subjected to uni-

axial strains (Belarbi and Hsu 1994; 1995).

The current equivalent uni-axial straifjs &,, and g, are individually used to calculate the

concrete stresseg, o,, and o; in the principal direction of the uni-axial concrete material
stress-strain relationship.

The concrete uni-axial model describes the cyclic uni-axial constitutive relationships of

cracked concrete in compression and tension and follows the modified Kent and Park model
15



(Park et al. 1982). The smeared stress-strain relationships of mild steel bars embedded in
concrete and subjected to uni-axial strains developed by Belarbi and Hsu (1994; 1995) was used
in the analysis. Steel stresses are averaged along the steel bar traversing several cracks and the
resulting smeared steel stress at first yielteduced compared to the local yield stress of a bare

bar at the cracks.

CONCRETE TRIAXIAL CONSTITUTIVE RELATIONS

The constitutive equations depend on the strain state and the region of the cross section. The
principal strainsg;, ¢,, and g;are found from the global strains using the Jacobi method, and the
equivalent uni-axial strairg, €,, and &; are derived based on the Hsu/Zhu ratio (Jeng and Hsu,
2009). The local concrete material stiffnds derived based on Young’s Modulus and the
Hsu/Zhu ratio. The global stiffness in Cartesian direction is calculated by transforming the local
stiffness to the global direction. The global stiffnesg, in andyz directions are condensed in the
element formulation and, during this process, the stresses in axial, flexure, and shear directions
becomes coupled.

The values of the concrete uni-axial strains in principal directions 1, 2, and 3 have eight
conditions, and the strength in one direction is affected by the strain state in the other directions
following the procedure proposed by Vecchio and Selby (1991). The uni-axial strains are sorted

in ascending order such tl@t- &, > £,. The values of concrete compressive strengthin
direction one and concrete compressive stremgthin direction three are derived as described

below, while the concrete compressive strengfhin direction two can be found ia similar

way by applying the corresponding relations between the 1 and 2 directions.
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For the case in which the equivalent uni-axial strain of congrt@rincipal direction one is
in tension, and the equivalent uni-axial st&gimn principal direction three is in compression, the
uni-axial concrete stress; in direction one is calculated frofp and is not a function of the
perpendicular concrete strain The compressive strength in principal direction three,

howeverg; will soften because of the tension in the orthogonal direction. Jeng and Hsu (2009)

derived a softening equation in the tension-compression region, which is implemented in the
current model, and is based on panel tesi;mgroposed by Hsu and Zhu (2002). The equation

for the compressive strength and strain reduction faft@s given by:

a;
28 oo L (29)
ﬂ/fc (MPa) J1+ 400 32
where, a,, =0.5tan’ (ﬂJ (30)
&~ ¢3

The ultimate stress in the orthogonal direction’i§ at softened straime, when ¢ is the
softening coefficienty,, is the deviation angle in degrees; is lateral tensile straing, is
concrete strain at peak compressive strenigthand ¢ f_ is the softened concrete compressive
strength. If the equivalent uni-axial strain of concggtan principal direction one is in
compression, and the equivalent uni-axial straim principal direction three is in tension, the

same softening equations apply to the compressive strength in direction one.

If the strainse, and &, are both in tensiong; and o; are functions only of the orthogonal

concrete straing, and &, respectively.
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If the strainse; and &, are both in compressiothe Vecchio’s (1992) simplified version of
Kupfer et al. (1969) biaxial compression strength equation is adopted, as described in details in

Mullapudi and Ayoub (2010).

FIBER STATE DETERMINATION

With the equivalent uni-axial strains, the stiffness valifesEs, and E; are determined

from a material uni-axial stress-strain diagram. The material constitutive equation is:

{Ufzs} = [Dlo ]C {5123} or (31)
{af oy o i, T, riz}T =[DJ e €5 65 Vo Vs ¥V b 5 (32)
Whereas{ofzs} is the local concrete stress vectfy, } is the local principal strain vector, and
[Dlo]c is the local uni-axial concrete material secant stiffness matrix in the principal direction,
[Dpr] is the uni-axial concrete material stiffness matrix in the normal principal directions which

can be calculated as:

1 —thy —His Ei 0 0

Dy ]=|—#s 1 —uy| |0 E; 0]and, (33)
My My 1 0 0 Ej
'D,@1) D, (L2 D, L3 0 0 0 |
D,(21) D, (2,2) D, (2,3) 0 0 0
D,(31) D, (32 D, (33 0 0 0
ol -0
. 0 0 o 7% 0 0 (34)
[Dlo] = & —&
0 0 0 o 279 0
&y —&;
0 0 0 0 o &%
L & —¢&3 |
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The concrete orthotropic stiffness matrix in the globgtz direction [D, | is evaluated

through the rotation matrii :

c -1 c
[Dy | =[R(e)] "[D,] [R@)] (35)
The local uni-axial reinforcement material stiffness matrix in the direction of reinforcement

is given by:

Sz

sx — sy — —
[Dgl:' :pstsx’ I:DgI] :psyEsy and I:DgI] :pszEsz’ (36)
where [ D, ["is the longitudinal steel global stifiness matrpD, |” is the transverse steel

global stiffness matrix along thgaxis, [Dgl]sz is the transverse steel global stiffness matrix
along thez-axis, p,, is the smeared area of the longitudinal steel in fibep,, is the smeared

area of the transverse steel in yhdirection, p,, is the smeared area of the transverse steel in the

z-direction, andkE and E_, are the uni-axial steel stiffnesses evaluated from the respective

SX ! Esy !
steel model along the longitudinal and transverse directions respectively.

The stiffness matrix including concrete and transverse steel terms is evaluated from the

concrete stiﬁnesg DQ,T, and the transverse steel stiﬁn%ﬁgl}sy, [Dgl}sz as

[Dgl ]c+sw sz: I:Dgl } C+|:Dg| ] Sy+|:Dg| ] s:’ (37)

The total global stiffness matrix is non-symmetric since the off-diagonal values are affected by
the Hsu/Zhu Poisson’s Ratio, which depend on the stress state.
Finally, a new process for determination of the sectional and elemental stiffness matrices

derived from fiber discretization is proposed in the next section.
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Section and Element Stiffness and For ce Evaluation

The stress and strain in the global coordinate system are as
T C+SY+ Sz T
{O-cx O-y o-z Txy z-yz sz} :[Dgl:| {gx gy gz 7/xy 7/yz j/xz} ! (38)
where theo,, is the longitudinal stress in a concrete fibgr,and o, are the total transverse

fiber stress in they and z directions due to the concrete and stegl; r,,, andr,, are the total

vz
fiber shear stresses.

The proposed fiber beam element follows the plane section hypothesis and onky kgvaend
xzdegrees of freedom at the section level. The sectional degree of freedom term corrgspondin
to the transverse strain W-directione, , transverse strain iz -directiong,, and shear straip,,

and corresponding stiffness and stresses are condensed out from the section stiffness matrix and

load vector following the procedure described by Mullapudi and Ayoub (2010).

The fiber strains are derived from the section strains as:

&, 1 zy 0 0O

]
Ywt=|0 0 0 =z 1 0{g, 2, 2 X Vwo Vol (39)
v loooy 01

y 0 O
0 -z 10 (40)
0 0 1
The contribution of concrete to the section stiffness is:
[(KSection) c] = Z([T ]T [Izil] [T]) Ab( ’ (41)

where A, is the area of the concrete fiber in the longitudinal directionkand the condensed
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section stiffness matrix.

The sectional stiffness due to the longitudinal reinforcement is:

[(KSection) sx] = Z([T ]T [D gl:rx [T]) Asy (42)
The sectional forces due to the concrete fiber are:
{(FSection) c} = Z([T]T {G ﬁber}c)Acx (43)
The sectional forces due to the longitudinal steel fiber are:
1zy 0 00 o,
{( FSection)sx} = Z 000-z10 0 A§x (44)
O 00 y 01 0

The total stiffness of the section is derived from the sum of concrete and steel siffness
[KSection] ZZ(K Sectior) C+Z(K Sectit)1 a (45)
1 1

wherenc and ns are the number of concrete and longitudinal steel fibers in a section.
The total force of the section is the sum of concrete and steel forces in their respective

directions:

nc ns

{ I:Section} = Z ( FSectio) c+ Z ( F Sectic)m ¢ (46)

1 1

ANALYSISOF COLUMNS SUBJECTED TO COMBINED LOADS

The 3-D fiber beam elemeistused for the analysis of a combination of axial, shear, flexure,
and torsion-loaded columns tested by Prakash et al. (2010). The experimental study was
conducted at Missouri S&T to evaluate the behavior of reinforced concrete circular bridge

columns (Figure 7) under combined flexure, axial, shear, and torsion loadings. The columns are
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tested with two aspect ratios (height (H) to diameter (D)) with H/D=3 and 6, and two spiral
reinforcement ratios of 0.73 percent and 1.32 percent respectively.

The actual test specimen has a diameter of 609.6 mm (24 inches 266/i6 mm (144
inches) long from the top of the footing to the centerline of the applied load for the column with
an aspect ratio of 6, and is 1828.8 mm (72 inches) long from the top of the footing to the
centerline of the applied load for the column with an aspect ratio of 3. A 63.5 mm (2.5-inch) hole
in the center of the column cross section was used to run seven high-strength steel strands that
are stressed to appiyr axial load of 7% of the concrete capacity (Figure 7(a)). The lateraldoad i
applied at the top of the column using two hydraulic actuatoesdisplacement-control mode.

The reinforcement consisted of 12 No. 8 longitudinal bars, and No. 3 spiral transverse
reinforcement spaced at 69.9 mm (2.75 in.) for the columns with an aspect ratio of 6, and No. 4
spiral transverse reinforcement spaced at 69.9 mm (2.75 in.) for the columns with an aspect ratio
of 3. The reinforcement details with different aspect ratios are given in Table 1.

The column section is subdivided into 36 fibers and modeled with only one element along
the length. A Gauss-Labatto integration scheme with five integration points is used in the
analysis. These numbers of sections and fibers proved to be sufficient to reach a converged
solution. The columns boundary condition is assumed as fixed at the bottom and free at the top
(Figure 7(c)). All of the columns are analyzed with a displacement-control strategy pyna@pl
constant axial force (7% of the concrete capacity) at the top of the column with an appropriate
time variant lateral displacement and twist at the top free end of the column.

The input data of the model consists of the frame geometry and boundary conditions,
external loads or imposed displacements, number of sections and fibers, longitudinal and

transverse reinforcement area, basic material properties (elastic modulus, yield stress and

22



hardening ratio for steel; compressive strength, strain at compressive strength, post-peak
compression slope and tension stiffening slope for concrete), as well as time step increments. No
additional data is needed.

Column H/D(6)-T/M(0.2) was tested with an applied torsion to uniaxial moment (T/M) ratio
of 0.2, and an aspect ratio (H/Df 6. The column’s reinforcement ratio, concrete compressive
strength and peak capacities are given in Table 2. Analysis of the column wastedndiicg
the proposed 3D fiber beam-column element under cyclic load (Figure 8). Flexural fasicks
appeared near the bottom of the column and their angle became more inclined at increasing
heights above the top of the footing. The appearance of the cracks increased with an increase in
applied loading. The longitudinal bars yielded at about 38 inches from the base of the column.

The model failed by yielding of the longitudinal and transverse reinforcement followed by
core degradation. Figure 8 shows the comparison of the column performance with a similar
column tested under pure uniaxial bending, as well as the analytical results using the proposed
model. The analytical load-displacement curve matched well with the experiment. Because of the
moderate amount of induced torsion, the bending strength and stiffness were reduced slightly
Figure 9 shows the longitudinal steel strain history at 432 mm (17 inches) above the foundation.
The longitudinal strain increased with the increase of the lateral load acting on the column. The
experimental strain gauge readings matched well with the analytical results and the model
captured the yielding of the reinforcement rather well.

Another column H/D(6)-T/M(0.4) is analyzed under cyclic load with an applied torsion to
moment (T/M) ratio of 0.4. The aspect ratio H/D of the column is 6. The c&uinforcement
ratio, concrete compressive strength and peak capacities are given in Table 2. The column model

reached the peak shear of 183.8 kN (41.3 kips) at a displacement of 196.0 mm (7.7 in) (Figure
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10). For this column, both the longitudinal and transverse reinforcement yielded at same time.
Because of the higher T/M ratio, damage did not only occur at the bottom of the column, but also
along its entire length.

The ultimate load and peak displacement values are fairly matched with the experimental
results as shown in Figure 10. There are some differences between the experimental and
analytical results specifically with respect to the unloading stiffness and energy dissipation. This
is due to the fact that the uniaxial concrete model of Park et al. (1982) assumes a linear
unloading stiffness. The analytical results of the peak load and corresponding displacement
values are compared to the experimental results in Table 3 for both, columns H/D(6)-T/M(0.2)
and H/D(6)-T/M(0.4).

Column H/D(3)-T/M(0.2) with low aspect ratio H/D of 3 is analyzed with the propodad 3-
element. This column was designed to be shear sensitive, and was tested under monotonic load
with an applied torsion to moment (T/M) ratio of OI&e column’s reinforcement ratio, concrete
compressive strength and peak capacities are given in Table 2. The column model reached the
peak shear at a displacement of 50.8 mm (2 in) (Figure 11). The peak torsional moment in the
analysis was reached at a twisting angle of 0.85 deg. (Figure 12). Befdnengette peak
strength, the longitudinal steel at the bottom of the column yielded first followed by the bottom
spiral reinforcement. From Figures 11 and 12, it is evident that the analytical results matched
well with the experiment.

Column H/D(3)-T/M(0.4) with low aspect ratio H/D of 3 and high torsional moment
characterized with T/M ratio of 0.4 was analyzed with the proposed elefffentolumn’s
reinforcement ratio, concrete compressive strength and peak capacities are given in Table 2. The

column model reached the peak shear at 61 mm (2.4 in) €EiglurThe peak torsional moment
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in analysis was reached at a twisting angle of 3.2 deg (Figure 14). Before reaehiegk load,
the longitudinal reinforcement yielded first followed by the transverse reinforcement. Similar to
the previous columns, the analytical results including the cracking, yielding, peak and ultimate

loads and corresponding displacements matched well with the experimental results.

SUMMARY AND CONCLUSIONS

This work represents a finite element model for the analysis of reinforced concrete structures
subjected to combined loading including torsion. A force-based Timoshenko-type 3-D beam
element with SMM constitutive model was developed to analyze reinforced concrete structures
with the incorporation of mechanisms of shear deformation and strength. Transverse strains due
to torsion and shear were evaluated with the development of an iterative process at the fiber
level, and condensed out at the section level. Circular hoop reinforcement stresses and stiffnesses
were calculated based upon angular segmentation. Triaxial constitutive relations based on strain
state were developed for 3-dimensional modeling of concrete fibers. The fiber state
determination along with the formulation of stiffness and resisting loads were presented.

Correlation studies with available experimental test data were conducted in order to
investigate the validity of the model. These studies confirmed the accuracy of the model in
representing both global and local parameters as well as the proper failure mode. It was also
concluded that the increase of bending moments reduces the torsional moment required to cause
yielding of the transverse and longitudinal reinforcement. With the increase of the T/M ratio, the
torsional stiffness degrades rapidly as compared to the flexural stiffness, and the ultimate twist is
reduced. A reduction in aspect ratio reduces the displacement and twist at the ultimate resisting

load, resulting in a predominantly shear failure mode.
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NOTATIONS

{u0 Vo W, 6, 6, QZ}T
le, & & 7y Ty Vel

{‘91 &y &3 Vi Vo 713}T

.
{O'X o, O, T, T, sz}

(si={es 2%, % Z 7wo Tro)

direction of applied principal tensile stres

global coordinate of RC element

local coordinate of RC element for circul:

Cross section

angle for circular cross section

transpose matrix

frame displacements in global system

global strain vector

biaxial principal strains in thel-2-3

direction

global total stress vector

section deformations

section forces

available strains
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b(x)

K Secnon( X)

r

f(x)

available stresses

transformation matrix

force interpolation function

section deformations ax'—y' coordinate

system

strain and stress perpendicular to

stirrup cross section

transformation matrix for circular cros

section

element end forces

element deformation

section stiffness matrix

residual section deformation

residual of sectional deformation

element residual deformation vector

section flexibility
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il

[Ri)]

sx? sy’ sz

psx’ psy’ psz

.
Cc Cc Cc C C C
{0'1 O, 03 Ty Ty T 13}

sx? P sy? Ysz

'%iy’AEiz

element flexibility matrix without rigid

body modes

angle between the (x-y-z) coordine

system and (1-2-3) coordinate system

rotating matrix

Reinforcing bar stresses along they and

z directions respectively

Smeared steel ratio in the directionxpfy

and z directions respectively

local concrete stress vector

1- 2— 3direction

concrete stress ix, y and z directions

respectively of fibeli

steel stress inx, y and z directions

respectively of fibei

Area of concrete between the spacing
the stirrups in they and z direction

respectively of fibei
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&y’ ASiz

A
R
& & &)

Eq1E 1 E

sx?1%sy?¥sz

arl

Kcl1 KcZ ' KC3

glp 182p ’ g3p

area of steel between the spacing of
stirrups in the y and z direction

respectively of fiber i

area of the concrete fiber in thelirection.

Hsu/Zhu ratios

equivalent uni-axial strains

equivalent uniaxial strain in th
reinforcement inx, y and z directions

respectively

Softened coefficient of concrete

compression

Deviation angle between the applied str

anglea, ard the rotating anglé,

uni-axial concrete compressive strength

biaxial strength magnification factors 1r,

2-, 3-directions respectively

ultimate strain in1-, 2-, 3- directions

respectively
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O1p1 Oaps Oap = ultimate stresses inl-, 2-, 3- directions

respectively

[D ] = uni-axial concrete material stiffness mat
pr

at normall-, 2-, 3-directions

[D ]C = local uni-axial concrete material sece
lo

stiffness matrix in the principal direction

[D ]C = concrete orthotropic stiffness matrix in t
gl

globalx-y-z direction

steel global stiffness matrices y and z

[0y ]".[Pu]"[Py )"

directions respectively

[ ]HSWSZ =  Stiffness matrix including concrete ai
gl

transverse steel terms

Ef Ef, ES =  concrete uni-axial stiffnesses in, 2-, 3-

directions respectively

E.. Esy, E,, =  uni-axial steel stiffnesses along tkeaxis,
y-axis and z-axis respectively.
[k ] =  condensed fiber stiffness
fiber
{ o } = condensed concrete fiber stresses
fier § .
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[(Ksection =  Contribution of concrete to the secti

stiffness

[(K secion) o4 =  sectional stiffness due to the longitudir

reinforcement

{(Fsecton) of =  Sectional forces due to the concrete fibe!
Sectio C
{(F on) } =  Sectional forces due to the longitudir
Section/ gx
steel fiber
[KS . ] = total stiffness of the section
ection,
F._ = total force of the section
Section
{FEI } = element force vector
ement
K = element stiffness matrix
Element,

36



Table 1. Missouri S&T Columns Reinforcement Details

Nominal Reinforcement Size (Celumns with Nominal Reinforcement Size
H/D=6) (Columns with H/D=3)
Material
Property #3 (Spiral) #4 #8 #4 #8
(Spiral) (Longitudinal (Spiral) (Longitudinal
Reinforcement) Reinforcement)
Modulus of 226GPa 219GPa 206GPa 226GPa 206GPa
Elasticity (32780Ksi) | (317g3ksi) |  (29878Ksi) | (32780Ksi) |  (29878Ksi)
Yield Stress s 541 MPa 490 MPa 525 MPa 546 MPa
(0.20% Offset | MPa(76.1Ksi) | (75 5y (71.0Ksi) (76.1Ksi) (79.1Ksi)
Method)
675 MPa 693 MPa 702 MPa 675 MPa 702 MPa
Peak Stress
(97.9Ksi) (100.5Ksi) (101.8Ksi) (97.9Ksi) (100.5Ksi)
Table 2. Column Details and Peak Capacities
. L Concrete Peak
Spiral L ongitudinal . .
. . Compressive | Peak Shear | Torsional
Column Name |Reinforcement | Reinforcement
Ratio Ratio Strength | Force (kN) | Moment
(MPa) (KN-m)
H/D(6)-T/M(0.2) 0.73% 2.10% 41.2 214.0 155.7
H/D(6)-T/M(0.4) 0.73% 2.10% 41.2 183.8 204 (
H/D(3)-T/M(0.2) 1.32% 2.10% 28.7 448.2 159.]
H/D(3)-T/M(0.4) 1.32% 2.10% 26.8 378.0 260.9

Table 3. Load-displacement values for H/D=6, T/M =0.2 and H/D=6, T/M =0.4

H/D=6, T/M =0.2 H/D=6, T/M =0.4
Shear
Displacement, | Shear Force, | Displacement, Force, KN
mm (in) KN (kip) mm (in) (kip)
Analysis 221 (8.7) 214 (48.1) 196 (7.7) 183.8 (41.3)
Experiment 221.5(8.7) 208 (46.8) 210.4 (8.3) 193.2 (43.8)
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FIGURE CAPTIONS

Figure 1. Implementation of 3-D Model into FEAPpv
Figure 2. Displacements and Forces (a) with Rigid Body Modes (b) without Rigid Body
Modes

Figure 3. (a) Section Displacements (b) Section Forces

Figure 4. Iterative Procedure to Find Required 3-D Strains

Figure 5. 3-D Fiber Element Formulation

Figure 6. Circular Cross Section Transformation

Figure 7. Bridge schematic view (a) Bridge column test setup (b) Bridge column section
Figure 8. Cyclic load-displacement curve of column H/D(6)-T/M(0.2)

Figure 9. Longitudinal strain history at Gauge 1 location of column H/D(6)-T/M(0.2)
Figure 10. Cyclic load-displacement curve of column H/D(6)-T/M(0.4)

Figure 11. Monotonic load-displacement curve of column H/D(3)-T/M(0.4)

Figure 12. Monotonic torquivist curve of column H/D(3)-T/M(0.4)

Figure 13. Monotonic load-displacement curve of column H/D(3)-T/M(0.4)

Figure 14. Monotonic torque-twist curve of column H/D(3)-T/M(0.4)
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Find the available strains, y,,7,, on each fiber

¥
Assume transverse stra.'ug

)’

Assume transverse strain

v

Assume shear strainﬂ

v

Assume principal stress directifa, |
V)
Calculate uniaxial principal strains, ¢,,£,

v

Determine fiber uniaxial stres$,o;,o05, Young’s modulus

E, EZ, ESbased on current uniaxial principal strai

v

Calculate fiber local stiffness matriz,, and global stiffness matrip

v

Calculate fiber stresses in global reference sy‘?‘d@qger

¥
Calculate[e, ™" from {5}
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Shear stress No

TVZ| zo
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Calculate section stiffnes{sz{]section and section forceps]

Section

’

Calculate element stiffnegg ] and element resisting forcgs]
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Figure 4. Iterative Procedure to Find Required 3-D Strains
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Figure 6. Circular Cross Section Transformation

41



(@) (b) (©)

/—Srong Wwall | oad Cell
Hydralic Jack.
b
Bl €]

Two Hydraullc/

° Actuators
Steel Strands
(Inside Column)

Test Unil\

/ Shell Region

Core Region

Transverse
Reinforcement

™ Longitudinal
Reinforcement

Support Block:

/T Anchor:

Strong Floor

N

610 mm Dia.

Figure 7. Bridge schematic view (a) Bridge column test setup (b) Bridge column section (c)
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Figure 8. Cyclic load-displacement curve of column H/D(6)-T/M(0.2)
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Figure 9. Longitudinal strain history at Gauge 1 location of column H/D(6)-T/M(0.2)
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Figure 10. Cyclic load-displacement curve of column H/D(6)-T/M(0.4)
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Figure 11. Monotonic load-displacement curve of column H/D(3)-T/M(0.2
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Figure 12. Monotonic torque-twist curve of column H/D(3)-T/MJ0.2
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Figure 13. Monotonic load-displacement curve of column H/D(3)-T/M(0.4)
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Figure 14. Monotonic torque-twist curve of column H/D(3)-T/M(0.4)
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