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Abstract

In this article, we introduce a novel timeline visualization technique, TimeSets, that helps make sense of com-
plex temporal datasets by showing the set relationships among individual events. TimeSets visually groups
events that share a topic, such as a place or a person, while preserving their temporal order. It dynamically
adjusts the level of detail for each event to suit the amount of information and display estate. Various design
options were explored to address issues such as one event belonging to multiple topics. A controlled experi-
ment was conducted to evaluate its effectiveness by comparing it to the KelpFusion method. The results
showed significant advantage in accuracy and user preference.
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Introduction

A timeline is a sequence of events and is typically

visualized by plotting them along a time axis at the

instant at or interval over which they occur.
1
Timelines

are applied in many domains including personal bio-

graphies,1 analytic provenance,2 medical records,3

music,
4
and historical events.

5
Events in a timeline are

commonly categorized into groups or sets. For exam-

ple, academic publications usually belong to one or

more disciplines; similarly, news articles fall into differ-

ent categories such as politics and sports. Back in

1765, one of the oldest documented timelines pro-

duced by Joseph Priestley6—the Chart of Biography—

already used set visualization. The timeline includes

2000 famous persons from 1200 BC to 1800 AD, and

Priestley classifies them into six categories based on

their most well-known achievement. The timeline is

divided into six horizontal bands, one for each cate-

gory, to visualize the set relations.

Timeline visualizations typically use icons to indi-

cate time-point events
7
and horizontal bars for interval

ones.1 These are usually accompanied by a short line

of text describing the event. To show set relations, the

existing methods either color-code the icons or use

different shapes.
8
The layout algorithm of these meth-

ods usually focuses on avoiding event text overlap

only.7,8 As a result, events in the same set are not

always placed close to each other. This makes it diffi-

cult to follow them chronologically or have an overview

of the distribution of events in a set. Another common

approach is to visually connect events in the same set.9

Such a method can introduce extra edges and cross-

ings, which hamper the readability of the timeline.

There has been considerable work on set relation-

ship visualization, which commonly uses closed con-

tours as in Venn or Euler diagrams. Texture and color

can be used to depict more complex set relations.
10

However, these cannot be applied to the set relation-

ships in timelines because the event position along the

time axis is fixed. Recently, there have been a number

of articles on visualizing the set relationships of data

items with fixed locations. To connect same-set ele-

ments, Bubble Sets
11

draws an iso-contour
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surrounding them, and LineSets
12

uses a Bézier

curve passing through all the elements. KelpFusion

employs both lines and areas to connect elements

and has been shown to have a significant advantage

in readability tasks when compared to Bubble Sets

and LineSets.13 However, directly applying

KelpFusion to timeline set visualization will intro-

duce extra line segments and edge-text crossings that

may reduce readability.

In this article, we propose a novel timeline visuali-

zation, TimeSets, that facilitates making sense of set

relations among events in a timeline. It provides an

overview of set distribution, helps identify the trend of

a set, and makes it possible to compare sets over time.

Figure 1 visualizes the CIA leak case, in which the

identity of CIA operative Valerie Plame was made

public.
14

There are many more events related to

‘‘White House’’ compared to other topics. Among

‘‘Judges, Courts’’ events, those related to ‘‘White

House’’ are more than those related to ‘‘New York

Times,’’ Also, events about ‘‘Wilson’’ only appear at

the beginning of the case, while ‘‘Judges, Courts’’

events appear later.

The design of TimeSets follows two Gestalt princi-

ples of grouping—proximity and uniform connected-

ness.
15 It places related events close together and colors

the set background to connect its events visually. More

specifically, TimeSets:

� Clearly shows the events within a set over time and

their relationships with other sets;
� Dynamically adjusts the level of details of each

event to suit the amount of information and dis-

play estate;

� Uses color gradient backgrounds for events

belonging to multiple sets and curved set outlines

to emphasize its grouping.

To show possible applications of TimeSets, we dis-

cuss a case study with publication data. Also, a con-

trolled experiment was conducted to evaluate its

effectiveness. The results showed that TimeSets

was significantly more accurate than KelpFusion13

(a state-of-the-art set visualization method) and was

the preferred choice by the participants for aesthetics.

Related work

Timeline visualizations

The most common form of timeline visualization uses

a horizontal axis to represent time progressing from

left to right, with events positioned horizontally

according to their timestamps. A well-known example

is LifeLines3—a visualization of personal medical

records. LifeLines uses icons to indicate discrete

events and thick horizontal lines for continuous ones.

Timelines can be integrated into a tree format to rep-

resent changes in a hierarchy over time as in

TimeTree.16 Geographical information can also be

embedded in timelines as in the classic visualization of

Napoleon’s March in Moscow in 1812–1813 by

Charles Joseph Minard.
17

The book by Aigner et al.
18

provides a comprehensive review of timelines and

other time-oriented data visualizations.

Techniques such as aggregation and interaction are

commonly used when there are a large number of

events. LifeLines
3
aggregates events to save display

estate; for example, a series of similar prescriptions can

Figure 1. TimeSets visualization of the CIA leak case.14 The timeline contains events that happened from 2002 to 2007;
each has a timestamp or an interval, a label, and topics such as ‘‘White House.’’ Events are positioned along the
horizontal time axis based on timestamps and vertically grouped by topics. A time-point event is shown with a white
circle to its left and an interval event with a horizontal bar on top showing its timespan. Each topic has a unique color
(see the legend in the bottom-right corner), and events shared by two topics have gradient backgrounds, transitioning
between the colors of the two topics.
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be grouped together. ThemeRiver19 or Streamgraph20

uses a river metaphor to represent aggregated changes

of themes over time in a large document collection.

Each river is a theme, and its width at certain time

points shows the number of documents in that theme.

Common interaction techniques are often used in the

visualization of large timelines to support their explora-

tion, including overview+detail,4 filtering,1 and

details-on-demand.21

Set relations in timelines

According to the Gestalt principles of grouping,

humans naturally perceive objects as a whole rather

than as the sum of their parts.15 Three of the princi-

ples are commonly used to show set relationships

among events: similarity, proximity, and uniform

connectedness.

The principle of similarity states that objects are

perceptually grouped together if they are similar to

each other.15 This principle is extensively applied to

show set relations in timelines by using colors and

shapes. Time indicators as icons (time-point events)
7

and bars (interval events)
22

are colored according to

event set memberships. Different shapes for icons8

and bars3 are also used to distinguish set member-

ships. It is more challenging to represent multiple-set

memberships. LineSets12 uses concentric circles for

icons, where each circle is colored to represent one

set.

According to the proximity principle, objects that

are close together are perceived to be more related

than objects that are spaced further apart.15 In Chart

of Biography,6 people within a category are placed in a

horizontal band, away from people in other categories.

LifeLines
3
splits medical records into different sets,

such as medication and diagnosis, and places them into

vertical stacks, which works well if no two sets overlap.

Storyline visualizations23,24 use curved lines to show

interactions among characters within the movie time-

line. Character lines converge to a bundle if they

appear in the same interaction and diverge when it

ends. Each line can be considered as a set passing

through all its members, and each interaction is a

multi-set event. Thus, this method only works for

interval events.

Elements tend to be grouped together if they are

visually connected.25 Following this uniform connected-

ness principle, SchemaLine
26

draws a rectilinear path

connecting events belonging to a same set together.

Also, tmViewer
9
links related entities with line seg-

ments. Different line colors, thicknesses, and styles

were used to distinguish set relations. This method

can show events with multiple-set memberships by

connecting them with multiple edges. However, extra

edges and crossings may negatively impact the read-

ability of the timeline.

When similarity and proximity are applied together,

the later principle dominates.
10

Moreover, uniform

connectedness is stronger than proximity.25 For exam-

ple, objects with different colors and shapes but

located close together are more likely to be perceived

as a group, and distant objects but with a closed con-

tour surrounding them also provide a strong sense of

grouping. Applying these ideas to visualize set rela-

tions for timelines, methods relying on similarity such

as colored icons22 are less effective than spatial group-

ing methods such as LifeLines.1 And those, in turn,

are less effective than methods using line segments

such as tmViewer.9

Set visualizations

Sets and their relationships can be visualized using

Venn27 or Euler28 diagrams. Simonetto et al.29 pro-

posed a technique to automatically visualize sets that

were previously not possible with Euler diagrams.

However, the complex shapes it produces may reduce

visualization readability. In their controlled study,

Henry Riche and Dwyer30 showed that for complex set

intersections, duplications of shared elements resulted

in a better performance in readability tasks than a

none-duplicated visualization with more complex

shapes.

These methods assume the positions of set elements

are not fixed, which reduces their applicability for geo-

located or timeline events. Techniques without such

constraints include Bubble Sets,11 LineSets,12 and

KelpFusion.13 These methods employ the connected-

ness principle of the Gestalt laws25 by connecting set

elements using extra visual elements. Bubble Sets

draws an iso-contour surrounding elements within a

set. This iso-contour is filled with a semi-transparent

color so that the intersection between sets is shown as

an area of blended color. Collins et al.11 provided an

example of applying Bubble Sets to a timeline, in

which case a force-directed algorithm is used to adjust

the vertical positions of elements while the horizontal

position along the time axis is fixed.

LineSets applies a Bézier curve to connect data

items. The curve follows the shortest path passing

through all elements in the set. Its study showed that

LineSets outperforms Bubble Sets in certain readabil-

ity tasks.
12

KelpFusion, a hybrid technique, uses lines

for data-sparse areas and surfaces for data-dense areas.

The results of an evaluation on readability tasks
13

demonstrated that it outperforms Bubble Sets in both

accuracy and completion time and outperforms

LineSets in completion time. There has been no

reported attempt to apply LineSets or KelpFusion to

Nguyen et al. 3



timeline visualizations. It is expected that crossings

between lines, areas, and the event text may reduce

the timeline readability.

TimeSets visualization

Events

In TimeSets, an event is visualized as a line of text,

showing its label. The visual indicator of event time is a

circle (for a time-point event), or a horizontal bar (for

an interval event). The time circle is shown to the left of

the label, while the time bar is shown above the label.

The time bar is semi-transparent for overlapping inter-

val events, so the intersection part is visually different.

To accommodate a large number of events, labels have

three possible levels of detail:

� Complete: the entire event label is shown.
� Trimmed: only the first few words are shown, fol-

lowed by three dots at the end.
� Aggregated: a few events are combined into a new

one with its label indicating the number of events,

such as ‘‘2 events.’’

The text border of an aggregated event is colored to

make it visually different from non-aggregated events.

Its time bar begins at the starting time of the earliest

event and ends at the finishing time of the latest event

within the aggregate. Figure 2 shows a complete time-

point, a trimmed time-point, an interval, an aggregate

of two events, and two overlapping interval events.

Sets

Design overview. As discussed in the related work,

Gestalt principles of grouping are commonly used to

show set relationships among events, most effectively

uniform connectedness and proximity. Therefore, we

also apply these two principles in our design.

Proximity is achieved by moving same-set events close

together, and coloring the set background makes the

events visually connected.

Because the horizontal position of each event is

decided by its timestamp, spatial grouping is achieved

through vertical positioning. The sets are stacked ver-

tically, and each set is further divided into a maximum

of three horizontal layers: a top and a bottom layer for

events shared with the set above and below, respec-

tively (if they exist), and a middle layer for other events

in the set. There are maximal 2n� 1 layers in a total

for n sets of events. Figure 3 shows the layering for

three sets.

Shared events between two non-neighboring sets

can reside in one set and connect to the other set using

visual links such as curves
12

and areas.
13

Figure 4(a)

shows a possible method of connecting the shared

events (red squares) using edges and linking them to

the yellow set to indicate that they also belong to that

set. The alternative approach is to duplicate them in

both sets. In Figure 4(b), red squares are duplicated in

both the blue and yellow sets. Duplication consumes

more display space and could make viewers confuse

when seeing same events multiple times. However,

duplication allows all events of a same set being placed

close together, which provides a compact visualization

and easy comparison. Also, the study by Henry Riche

Figure 3. Layering for three sets S1, S2, and S3. L2 consists
of events shared by S1 and S2, and L4 consists of events
shared by S2 and S3. Those shared events are red circles.

Figure 2. Visual representations of complete and
trimmed time-point events, interval, aggregated, and
overlapping events.

Figure 4. Visualizing shared events (red squares)
between two non-neighboring sets. (a) Visual links
connect shared events from one set to another set. (b)
Shared events are duplicated in both sets.

4 Information Visualization



and Dwyer
30

shows that complex set intersection

shapes reduce readability compared to item duplica-

tion. Aiming for a clear visualization, we decided to

duplicate events that belong to non-neighboring sets.

Confused duplication and scalability will be addressed

later using interaction and layout algorithm, respec-

tively. In subsequent sections, we discuss the detail of

the set visualization algorithm, which consists of two

main steps: the generation of set shapes and then their

coloring.

Shape generation. This algorithm takes as input a list

of bounding boxes of the set’s events and generates a

closed curve containing all these rectangles. The sizes

and positions of the bounding boxes are decided by

the layout algorithm described in the next section. A

rectilinear shape can be generated using the scan-line

algorithm,31 as shown in Figure 5(a). The number of

bends along the line is often used to assess the aes-

thetics and legibility of visualizations.23 Even though

the generated shape provides the minimal data-ink

ratio,32 a large number of line bends may reduce its

legibility.

To reduce the number of line bends, the top and

the bottom sides of the set outline are flattened. The

left and right sides are kept unchanged because they

indicate the event timespan. On either side, the path

can be ‘‘jagged’’ if two events start or end close to each

other. Those close vertical segments are combined to

reduce line bends if their horizontal gap is smaller than

a threshold. This trades off time accuracy for outline

smoothness and can be controlled by the user. Figure

5(b) shows the result of this simplification.

To reduce the degree of line bends, the algorithm con-

verts vertical segments into diagonal ones wherever possi-

ble, such as e2 and e3 in Figure 6(a). Smoother lines are

easier to follow;33 thus the algorithm further converts

diagonal segments into Bézier curves and replaces right

corners with quadrant arcs as in Figure 6(b).

Coloring. Each set is filled with a color selected from

Qualitative Set 2 of ColorBrewer34 to make them easily

distinguishable. Two color filling options are consid-

ered: only the time circle or the entire event label. Our

design follows uniform connectedness principle requir-

ing visual connection among same-set events. When

they are visually connected and only their time circles

are filled, additional edges may reduce the readability.

KelpFusion
13

follows this approach using lines and

areas to connect time circles reducing its readability as

in Figure 14(b). In the second option, filling the entire

label may produce a false impression about the event’s

time range. We choose this option and lessen the effect

by coloring the gap between events as in Figure 14(a).

It also helps increase the sense of grouping compared

to filling only the time circles.

The standard coloring method for set intersections

is color blending as commonly used for Venn dia-

grams.
10

Color for each set is half-transparent, and

alpha blending is applied to produce the new color for

the intersection. However, the result may be irrelevant

to the two inputs and confused as the color for a new

set. For instance, in Figure 3, the yellow color of layer

L2 is not naturally considered as the common between

light yellow of set S1 and light green of set S2.

To address this issue, we fill the intersection with a

linear color gradient changing between the two set col-

ors as in Figure 7(a). While the gradient provides a

smooth transition, it becomes difficult to recognize the

two ends of the intersection. For example, it is not

clear from Figure 7(a) that the background of the

event Rove’s 4th grand jury appearance (second row top

down) is pure yellow or it has a mix of green as well.

To solve this problem, multiple color transitions are

used instead of a single transition. For instance, in

Figure 7(b), the color transitions between green and

yellow are repeated multiple times so that both colors

are clearly shown in every row of the intersection, and

there is no significant difference in color perception

among these rows.

Multiple-set events’ visualization. With the vertical

layering of sets as discussed above, three sets cannot

be placed closed to each other; therefore, it is

Figure 5. Rectilinear shape generation. (a) The rectilinear
shape, generated by a scan-line algorithm. (b) The
simplified shape by flattening and removing jags (red
eclipse).

Figure 6. Shape smoothening by reducing the degree of
line bends. (a) Vertical segments e2 and e3 are converted
to diagonal ones (dashed lines). (b) Right corners are
replaced by quadrants. e2 and e3 are smoothened by
Bézier curves.
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impossible to visualize intersections among three sets

or more. This is also a challenging problem with many

state-of-the-art methods.
35

To address this issue, simi-

lar to non-neighboring sets, we replicate events for

each set they belong to so that all events in a same set

stay close together providing a compact visualization

and easy comparison. To provide full set memberships

of events, one method is drawing edges to connect all

replicates of the same event together. However, this

may produce a cluttered visualization with many edge

crossings. Another method is to color-code the event

according to its set memberships. One approach is to

color the event’s time icon preceding its label using

either multiple circles (Figure 8(a)) or concentric rings

(Figure 8(b)). The former requires more horizontal

space, while the latter needs more vertical space.

Another approach is to color the background of the

event’s label. Color gradient is used for a smooth color

transition as in Figure 8(c). This visual encoding is

consistent with the use of color gradient to show two-

set intersections. However, a timeline with many long-

label events may produce a too colorful and distracted

visualization. Also, limited label height may hamper

the detection of color transition. To solve these prob-

lems, color is transitioned from left to right and only

run through a first few characters of the event label.

Figure 5 shows this technique in a visualization with

200 events.

For interval events, only the label background

method can work because it does not have time circles,

which can be added but at the cost of extra display

space. Time bars can be used to show set memberships

by dividing into multiple horizontal parts, each color

for one set. However, this could be mis-interpreted as

an event having different set membership in each part

of its timespan.

Interaction

Interactive features are implemented to support time-

line exploration. Details-on-demand provides related

information without information overload. Mouse-

over an event reveals its starting/ending time and com-

plete label. When none of the multiple-set visualiza-

tion techniques proposed above is used to statically

display the full set memberships of an event, it is possi-

ble to use interaction to reveal that information. When

an event is hovered, all its replicates are highlighted,

thus allows detecting all sets it belongs to. This

method prevents adding an extra ink to the visualiza-

tion; however, it requires users to discover the set

information manually.

TimeSets provides interactive set filtering and time

range navigation (zooming and panning). Clicking on

a set in the legend (bottom-right corner in Figure 1)

toggles its visibility. Time range zooming is performed

using the mouse-wheel and the panning is controlled

by dragging. Users can also interactively modify set

ordering by changing the order in the legend through

drag-and-drop. A smooth animated transition is pro-

vided for all the interactions to help users maintain

their mental map.36 A demonstration of these interac-

tive features can be found in the supplemental video.

Figure 7. Color gradient technique to encode set memberships. The gradient area shows three shared events
between two sets. (a) Intersection shown as a single color gradient. (b) Intersection shown as multiple color
gradients.

Figure 8. Multiple-set events’ visualization. Event 1 is
single set. Event 2 is double set. Event 3 is triple set.

6 Information Visualization



TimeSets layout

The layout algorithm, determining the positions of sets

and events within them, consists of four steps. First,

the vertical ordering of sets is computed to ensure that

two sets that share events are next to each other wher-

ever possible. Then, sets are further divided into layers,

and events are assigned to them according to their

memberships. After that, the position and length of

each event are computed, within the given display

space. Finally, layers are compacted to remove any

gaps between them, before layer sizes are adjusted to

allow for a consistent level of detail across all sets.

Sets ordering

The set ordering algorithm aims to maximize the num-

ber of events shared by neighboring sets. This can be

mapped to a graph path problem. Given a list of sets

S= fs1, s2, . . . , sng, an undirected graph G=(V ,E) is

created with each vertex vi representing a set si 2 S.

Two vertices vi and vj are connected if si and sj share

an event. The weight of edge eij is the number of events

shared by si and sj . Finding a set order with the maxi-

mum number of events shared by neighboring sets is

equivalent to finding a path with the maximum weight

connecting all vertices in G. This longest path problem

is known to be Non-deterministic Polynomial-time

hard (NP-hard), but the number of sets we plan to

support is limited by the number of colors that human

can easily distinguish when they are shown together.

Therefore, we decided on a brute force approach to

find the optimal solution.

Layer layout

This algorithm positions all the events within a layer.

Its inputs are as follows:

� The events belonging to the layer with their label

and time;
� The maximum width and height of the layer.

The outputs are event locations within the con-

strained display area, optimizing for the following

criteria:

Completeness, which measures how much event label is

visible. More specifically, the completeness ratio is

defined as u=(a � Ecj j+b � Etj j)= Ej j, where Ecj j is the
number of complete events, Etj j is the number of

trimmed events, and Ej j is the number of all events.

a and b are the coefficients to indicate how strongly a

complete event and a trimmed event contribute to the

overall content richness of the layer. We practically set

a= 1 and b= 0:5.
Traceability, which measures how easy it is to follow

the events chronologically. Events happened close in

time should have small changes in their row levels to

facilitate the tracing of them. More specifically, the

traceability ratio is defined as g=(
P Ej j

i= 1 ( li+ 1 � lij j))=
( Ej j � 1), where Ej j is the number of all events within

the layer and li is the row level of event ei.

The horizontal position of an event is fixed by its

time. The layout algorithm decides on which row to

position an event and the level of detail for its label.

Completeness algorithm. Starting with an empty layer,

the algorithm inserts events chronologically. An event

is placed in the lowest possible row where it does not

overlap with any other events. If such a row does not

exist, one of the earlier events is trimmed to make

space for it. Among these events, the one with the least

trimming is selected. However, if the label space is too

short for a single word after trimming, the event will

be combined with the current event to form a new

aggregated event titled ‘‘2 events.’’ Aggregated events

cannot be trimmed; thus a new event overlapping with

them should also be aggregated. For example, a new

event that overlaps with a 2 events aggregated event

will be aggregated, resulting in a ‘‘3 events’’ aggregated

event. The completeness algorithm maximizes the

number of complete events Ecj j and trimmed events

Etj j, thus yielding a maximum completeness. This

algorithm is not optimized for traceability because an

event is placed in the lowest possible row disregarding

the row level of its preceding event.

Traceability algorithm. To improve traceability, this

algorithm inserts a new event at the same row as its

previous event. If there is an overlap, the previous

event is trimmed to make space. The trim ratio of an

event is defined as the ratio of the remaining text

length to its original length. An event can only be

trimmed if the resulting trim ratio is greater than a

minimum threshold tmin, where 04tmin41. This value

determines how much completeness can be traded for

traceability. If the resulting trim ratio is smaller than

tmin, the event moves up or down to find a suitable

row, up to rmax rows on both sides. This value decides

how far an event can be, in terms of row level differ-

ence, from the previous event, which essentially trades

traceability for completeness. If no suitable row can be

found within the 6rmax rows, the new event comes

back to the level of its proceeding event, which is then

trimmed or aggregated with the new event as in the

Nguyen et al. 7



completeness algorithm. Figure 9 shows an example

of these two algorithms used to layout seven events.

Both layer layout algorithms run in linear time in

terms of the number of events, because during the

event insertion, the completeness algorithm checks up

to a constant value—the layer height, and the trace-

ability algorithm checks at most (23rmax+ 1) rows.

Compacting

The aforementioned layer layout needs a maximum

number of rows it can use as an input. Initially, it is

assigned proportionally to the number of events within

each layer. After the layout of each layer is indepen-

dently computed, some may be moved to fill the new

space that appears between layers. This includes mov-

ing two layers closer if there is a gap in between, or

moving a layer into a newly created space if its set does

not share events with any other sets. Figure 10 shows

an example of compacting. The freed space is assigned

to the layer with the lowest completeness ratio u.

Then, layouts of all layers are recomputed and com-

pacted again. The process repeats until no more space

can be saved.

Balancing

This last step ensures that all the layers have similar

levels of detail, that is, it minimizes the variance of

completeness, (
Pn

i= 1 (ui �
�u)

2
)=n, where n is the num-

ber of layers and �u is the mean of completeness ratio u.

A brute force approach tests all possible combinations

of layer height hi such that
Pn

i= 1 hi =H for a mini-

mum variance. However, the number of combinations

is an exponential of n. Instead, we used a heuristic

algorithm that relies on the fact that completeness ratio

increases with layer height because there is more space

to display labels. The algorithm reduces the complete-

ness ratio variance by iteratively taking a row from the

layer with the largest ratio and giving it to the layer

with the smallest one, until the variance no longer

decreases. Figure 11 shows an example of balancing.

Scalability

Aggregation allows TimeSets to handle a large number

of events. However, the visual encoding of aggregated

events is imperfect: ‘‘2 events’’ and ‘‘100 events’’ are

visually represented in the same way with rectangular

border. Four options are considered to address this

issue and illustrated in Figure 12. First, the width of

the bounding rectangle can be scaled to indicate the

number of events (Figure 12(b)). However, the visual

difference could be subtle and difficult to attract atten-

tion from an overview. The second option is to plot

each individual event as a dot when it happens

(Figure 12(c)). This also provides a temporal distribu-

tion of events rather than just the quantity. When

events happen at close or exactly the same time, dots

are overlapped, and it is more difficult to see the pat-

tern. Another approach is to color-code the back-

ground of the bounding rectangle using luminance or

intensity (Figure 12(b)). However, when many aggre-

gated events are displayed, their backgrounds could

interfere with the set colors. Last is to scale the font

size of the label according to the number of events

(Figure 12(e)). Currently, each event is completely

placed in one single row with uniform height. Scaling

the height of aggregated events needs to revise the lay-

out algorithm. All these methods have their strength

and limitation, thus deciding the best one is challen-

ging and out of scope for this article. We leave the

implementation and evaluation of these methods as

future work.

The existing layout is suitable for a small timeline

with a few hundreds of events or a detailed view where

individual events are of high importance. Figure 13

shows 225 publications within 15 years. TimeSets

relies on color to distinguish sets; therefore, it is con-

strained by the number of colors that human can dif-

ferentiate at the same time, which is about 12,

according to Munzner’s37 book.

Case study

TimeSets can be applied to domains requiring the

understanding of temporal events including history,

movies, publications, and so on. Figure 1 shows a

timeline of the CIA leak case14 covering both time-

point and interval events happening from 2002 to

2007. In this section, we choose another domain, aca-

demic publications, to demonstrate TimeSets. A sub-

set of 200 publications with the most citations is

extracted from the IEEE InfoVis articles.38 Each pub-

lication is assigned one or many concepts such as net-

work or evaluation. We use concept as the set attribute

to group publications. Figure 5 shows the visualization

of this dataset. No aggregation is needed when

Figure 9. Two layout algorithms. Each rectangle is the
bounding box of an event with its label (a)
Completeness algorithm: u ¼ 1; g ¼ 5=3: (b)
Traceability algorithm
(tmin ¼ 0:5; rmax ¼ 1Þ : u ¼ 6=7;g ¼ 2=3.
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producing the layout; only complete and trimmed

labels are displayed in the visualization.

TimeSets can show distribution of categorical data

over time as in ThemeRiver.19 A quick glance at the

visualization brings us a surprise. There is much void

space on the left as opposed to a very dense area on

the right indicating that there are many more highly

cited articles published in the last 10 years of the data-

set than in the first 10 years. This trend also holds for

individual concepts. Each colored band starts with a

single row and increases its height toward the end of

the timeline. This observation is in contrast to the

common thought: articles published in a longer time

would have more citations. One possible explanation

is that the IEEE InfoVis conference accepts more arti-

cles over time—in the dataset, there are 18 articles in

1995 while 37 articles in 2013. Another reason could

be that publications in the last 10 years are really of

high quality.

TimeSets cannot show all intersections among sets;

however, its layout maximizes the number of shared

elements between two neighboring sets. As a result,

the visible intersections usually have the most elements

among all intersection. In the visualization, the most

notable gradient area is the intersection between yellow

and purple sets implying that there are many excellent

articles focusing on both evaluation and interaction.

Another observation at the top of the visualization with

three concepts—networking, clustering, and overview—

with clustering is in between the other two. This is

expected because clustering techniques are important

in visualizing large networks or getting the overview of

a large dataset.

In this figure, TimeSets uses the color gradient

method to show full memberships of multi-set ele-

ments. For instance, inside the pink band, there are

quite a few small blue gradients for network papers,

there are quite a few small blue gradients graph papers.

This is sensible because of the closeness between these

two concepts and they may often appear together in an

article. Another interesting observation is at the bot-

tom band—hierarchy. The last article ‘‘Flow Mapping

and Multivariate Visualization .’’ includes five

concepts: hierarchy (blue background) and interaction,

graph, overview, and network (small gradients).

Evaluation

Method

We considered timeline visualizations that apply the

two most powerful Gestalt principles of grouping to

include in the evaluation. For proximity principle, as

discussed in the related work, LifeLines
1
cannot show

multi-set events, and storyline visualizations
24

only

work for interval multi-set events. For uniform connect-

edness principle, methods that connect all events

belonging to the same set together without using a

designated layout to reduce edge crossings such as

tmViewer
9
produce a cluttered visualization. To the

best of our knowledge, there is no existing visualiza-

tion that is designed to show multi-set relations and

temporal information of events together. Therefore,

rather than evaluating both the layout and the set

visualization technique of TimeSets, we decided to

focus only on the second one. We compared TimeSets

with a set visualization technique that can apply on

top of an existing timeline. We chose KelpFusion

because among similar techniques, it has been shown

to have the best performance in readability tasks in

both accuracy and completion time.13 We acknowl-

edged that KelpFusion was not specifically designed

to work with timelines. However, KelpFusion can

work with any given layouts, and it is the best choice

for this evaluation. We conducted a controlled experi-

ment to compare TimeSets and KelpFusion. It fol-

lowed a within-subject design; and accuracy, time, and

user preference were collected.

Datasets. We used generated data for the experiment

to remove the possibility that participants might be dis-

tracted by their existing knowledge of scenarios. Only

time-point events are used because KelpFusion needs

a set of points as its input. The complexity of dataset

was controlled by two parameters: the number of sets

and the average number of events per set. Overall, half

of the events were part of more than one set; this is the

Figure 10. Layer compacting example. (a) Before
compacting. (b) After compacting.

Figure 11. Layer balancing example. (a) Before balancing:
ugreen ¼ 0:25; uyellow ¼ 1. (b) After balancing:
ugreen ¼ uyellow ¼ 0:5.
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same ratio as in the CIA Leak case dataset. The details

of the four levels of complexity used in the experiment

are shown in Table 1.

We introduce three approaches to visualize intersec-

tions between more than two sets; however, evaluating

all of them would triple the number of trials and make

the experiment too long. We plan a separate experi-

ment to study which method is the most effective as

our future work. In this experiment, we only tested

two-set intersections and simple white circles are used

for events’ time indicators.

Images of this dataset using the KelpFusion method

were generously provided by the method’s author. To

avoid bias, our method also used static images instead

of interactive visualizations. Colors for both methods

were Qualitative Set 2 of ColorBrewer.34 KelpFusion

does not have its own layout; therefore, our layout

algorithm was used for both settings. Only one algo-

rithm is used to prevent adding another factor to the

experiment, which doubles the number of trials for

participants. The traceability algorithm was chosen

because reading comprehension is not required for the

tasks. Figure 14 shows example images used in the

experiment.

Tasks. We followed the task design in the KelpFusion

technique evaluation,
13

including estimation and pre-

cise comparison of set sizes and counting the number

of elements in a set. Two time-related tasks were

added to evaluate the temporal aspect of the visualiza-

tion. Therefore, there are five tasks in total. We con-

sidered three categories of set readability tasks,

relating to the set itself, the intersection of two sets, and

the difference between two sets. However, it was

impractical to include all 5 3 3 task types in the

experiment. Therefore, we decided to use two tasks

for the set, two tasks for the intersection, and one task

for the difference. Tasks together with examples are

listed in Table 2. Each participant would complete a

total of 40 questions.

We use general questions to help preserve the exter-

nal validity of the experiment. It is straightforward to

convert them into context-sensitive questions. For

example, the last task in the context of news media can

be written as ‘‘what is the trend of news articles related

to both science and fashion during the last 3 years?’’

We chose to use multiple-choice answers to reduce the

completion time, thus to allow the within-subject com-

parison to finish in a reasonable time. This reduces

the possible effect of boredom or fatigue as confound-

ing factors. It also removes the requirement to con-

sider the typing speed of subjects when evaluating

time taken to complete tasks.

Participants and apparatus. Thirty students (23 males

and 7 females) voluntarily participated in the experi-

ment. They came from various backgrounds including

computing, law, and psychology. One participant was

less than 19 years, 16 participants were aged between

19 and 25 years, 12 were aged between 26 and

39 years, and one was aged between 40 and 60 years.

All participants reported that they can distinguish all

colors used in the experiment. Participants completed

the experiment using a 23-in monitor with a resolution

of 1920 3 1080.

Procedure. The study lasted approximately 45 min

and consisted of two sessions (one for each visualiza-

tion technique), followed by a questionnaire. At the

beginning of each session, the visualization technique

was explained, and participants were shown how to

answer each question type using that method. This

was followed by five practice questions to familiarize

participants with the tasks and the experiment inter-

face. Solutions and explanations were given for these

practice questions to help them understand better.

We used two question sets with comparable diffi-

culty and counterbalanced the order of the visualiza-

tion techniques as well as the order of question sets to

Figure 12. Different visual representations of the number
of events in an aggregate. (a) No encoding. (b) Scale with
the width of the bounding rectangle. (c) Each dot is an event
at when it happens. (d) Color code the background of the
bounding rectangle. (e) Scale with the font size of the label.
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reduce learning effects. We fixed the order of task

types and the order of difficulty in each type from sim-

ple to complex. For each task, the question and all the

answer options were displayed without the visualiza-

tion. Once participants finished reading, they clicked a

button to reveal the figure, when the timing started.

This is to reduce the effect of individual differences in

reading and comprehension speed on the measured

time.

Hypotheses

H1: TimeSets will have higher accuracy and shorter

completion time for all tasks compared to KelpFusion.

The colored set background in TimeSets can have a

stronger sense of grouping than the line connection in

KelpFusion, which may make the set-related tasks eas-

ier. Also, shared events are visually grouped in

TimeSets, separating from the non-shared ones. This

may help its performance in tasks related to shared

events.

H2: TimeSets will require less time for the

SetOverview task than KelpFusion, but will be less

accurate. The color background in TimeSets makes it

easier to recognize a group. However, the set size is

not a precise indicator of event number because it is

also affected by the label lengths and the gap between

events.

H3: TimeSets will outperform KelpFusion in time

and accuracy on both IntersectionCompare and

IntersectionPattern tasks. In TimeSets, shared events

are visually grouped in its own layer, whereas in

Table 1. Data set statistics.

Complexity # Sets # Events # Intersections

Level 1 3 30 15
Level 2 3 45 23
Level 3 5 50 25
Level 4 5 75 38

Figure 13. TimeSets visualization of 200 publications with the most citations in the IEEE InfoVis conference from 1995 to
2013. Concepts are used to group publications and only eight concepts appearing most in those publications are shown
(see the legend in the top left corner).
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KelpFusion, they are mixed with non-shared events,

which may affect its performance for tasks involving

share events.

H4: TimeSets will outperform KelpFusion in the

DifferenceCount task. Similar to the last hypothesis,

in TimeSets, events not belonging to neighboring sets

Figure 14. Example images used in the experiment.
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have their own layer with a unique background color,

whereas in KelpFusion such events are mixed with the

shared events. This can make this task easier with

TimeSets.

H5: KelpFusion will outperform TimeSets in the

SetBiggestYear task. When looking at elements in each

year, connected lines in KelpFusion make it easier to

count, compared to TimeSets.

For user preference, we hypothesized that

H6: Participants will be more confident with TimeSets

because it provides better visual support, especially in

intersection and difference tasks.

H7: TimeSets will be more aesthetically pleasing than

KelpFusion with smooth curves and smooth color

changes compared to straight lines and plain colors.

H8: TimeSets will be less cluttered than KelpFusion

because it uses simple shapes, while KelpFusion uses

a combination of lines and areas.

H9: TimeSets will provide a stronger sense of group-

ing than KelpFusion because it colors the entire back-

ground of the set.

Results

We used a repeated-measure analysis of variance

(RM-ANOVA) to analyze the task accuracy and com-

pletion time. Accuracy is measured as the percentage

of correct answers. The logarithm of completion time

is used to normalize its skewed distribution.

Accuracy. Figure 15(a) shows the mean accuracy. The

RM-ANOVA test revealed a significant main effect of

visualization technique (F(1, 29)= 4:99, p\ 0:05),
showing that accuracy was significantly higher with

TimeSets. There was also a significant main effect of

task type (F(4, 116)= 8:89, p\ 0:00001). No signifi-

cant effect of the visualization 3 task interaction was

found (F(4, 116)= 1:85, p= 0:12). Paired t-tests

were conducted to investigate the performance

difference for each task. A significant effect was found

in three tasks: IntersectionCompare (p\ 0:05),

DifferenceCount (p\ 0:01), and IntersectionPattern

(p\ 0:05), indicating TimeSets was significantly more

accurate than KelpFusion in them. Only task

DifferenceCount still had a significant effect with cor-

rected p-value for multiple tests using Bonferroni

correction.

Time. Figure 15(b) shows the mean completion time.

The RM-ANOVA test revealed no significant

main effect of visualization technique (F(1, 29)=

0:05, p= 0:82), indicating that the completion time

for TimeSets (M= 23:87,SD= 9:18) and

KelpFusion (M= 23:72,SD= 11:38) was not signifi-
cantly different. There was a significant main effect of

task type (F(4, 116)= 23:80, p\ 10�12). The visuali-

zation 3 task interaction was also significant

(F(4, 116)= 3:23, p\ 0:05), indicating that difference

in completion time due to visualization technique was

significantly different across tasks. To further investi-

gate this, a paired t-test for each task was conducted.

Significant effects were found in DifferenceCount

(p\ 0:01), indicating TimeSets is significantly faster

in this task, and SetBiggestYear (p\ 0:01), indicating
KelpFusion is significantly faster in this task. Both

tasks still had a significant effect with corrected p-value

for multiple tests using Bonferroni correction.

User preference. Participants were asked to rate both

methods using a Likert scale 1 (worst) to 5 (best) after

they completed all the tasks. Four questions were

asked for each visualization technique:

� How confident were they in answering the

questions?
� How aesthetically pleasing were the visualizations?
� How cluttered were the visualizations?
� How strong was the sense of grouping?

Figure 16 shows the summary of user ratings.

Fisher’s exact tests found significant effects in all ques-

tions: Confidence (p\ 0:01), Aesthetically Pleasing

(p\ 0:01), Not Cluttered (p\ 0:01), and Sense of

Table 2. Tasks used in our experiment.

Task Example

SetOverview Roughly estimate which set has more events: A or B (please do NOT count the number
of events)?

IntersectionCompare Which set pair shares more events: A and B or C and D (please count the number of events)?
DifferenceCount How many events are there that belong to set A but not its neighboring sets?
SetBiggestYear In which year does set A have the most events?
IntersectionPattern During 2002–2004, what is the change pattern in the number of events shared by set A and B?
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Grouping (p\ 0:0001), indicating users preferred

TimeSets to KelpFusion in those aspects.

Discussion

The results show that overall, TimeSets is more accu-

rate than KelpFusion, but there is no significant differ-

ence in completion time. This partly agrees with

hypothesis H1.

There was no significant effect of visualization tech-

nique on accuracy or completion time for the

SetOverview task, which disagrees with hypothesis H2.

The average accuracy of both methods is low, relatively

to the other tasks in the experiment. Possible causes

for TimeSets are discussed earlier in the hypothesis

statement, and the edge length in KelpFusion, which

is a prominent visual feature, is possibly not a good size

indicator, either.

The results also show that for intersection tasks,

TimeSets has higher accuracy than KelpFusion; how-

ever, their completion time performances are not sig-

nificantly different. This partly confirms hypothesis

H3. Shared events in TimeSets are highlighted by

color gradient, and participants are less likely to mis-

count them, resulting in higher accuracy. In

KelpFusion, shared events are horizontally aligned,

because it shares the same layout as TimeSets. We

observed that some participants tried to trace shared

events this way, which is prone to missing events, thus

similar speed but lower accuracy.

Hypothesis H4, about the DifferenceCount task, is

supported by the results. Events that belong to a single

set are clearly shown in TimeSets as a region with a

single color background. This helps improve perfor-

mance in both accuracy and completion time.

The results show that KelpFusion has faster com-

pletion time than TimeSets for the SetBiggestYear

task, but there is no significant difference in accuracy.

This partly agrees with hypothesis H5. The vertical

lines used to denote year boundaries in this task may

have helped, by splitting the visual area into columns.

To solve the task, participants count the number of

events in each column and pick the highest one. A

KelpFusion visualization is quite similar to a network,

and edges connecting events within each column can

make counting easier. This may explain why partici-

pants counted faster with KelpFusion, but had the

same accuracy as with TimeSets.

To visualize sets, Bubble Sets11 uses a similar meta-

phor as TimeSets—filling the area of same-set events

with a unique color. However, KelpFusion outper-

forms Bubble Sets,13 while TimeSets outperforms

KelpFusion in solving similar tasks. One possible

explanation is that the irregular shapes generated using

iso-contours in Bubble Sets make set memberships

difficult to perceive. Also, the layout in TimeSets

groups same-set events together, which allows partici-

pants to count or estimate easier. Another reason

could be that the color gradient in TimeSets may be

more effective than color blending in Bubble Sets for

visualizing shared events.

The participants preferred TimeSets in all four

questions: confidence, aesthetics, readability, and

sense of grouping. This supports hypotheses H6, H7,

H8, and H9. Half of the participants (15 of 30) were

more confident with TimeSets. Some of them com-

mented that its set background made it easier to

count events, especially for the intersections. Only 4

participants thought that they were more confident

with KelpFusion (the other 11 thought they were at

the same level of confidence). One said ‘‘I can follow

the links when counting, so I’m less likely to miss

any.’’ Interestingly, three of these four participants

actually had better accuracy with TimeSets. Half of

the participants (15 of 30) thought that TimeSets

was more aesthetically pleasing than KelpFusion.

Some of them said that they liked the curved bound-

aries and the smooth changing of colors. Only three

participants favored KelpFusion. One of them com-

mented that with TimeSets, his eyes were tired after

looking at large areas with bright colors for a long

Figure 15. Mean accuracy and completion time of each
tasks. Error bars show standard error. Significant effects
are denoted by *. (a) Mean accuracy (in percentage). (b)
Mean completion time (in seconds).
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time. More than half of the participants (17 of 30)

rated TimeSets as less cluttered than KelpFusion.

One said ‘‘TimeSets is more organized. I know event

labels aren’t important, but they seem easier to read.’’

Three quarters of the participants (22 of 30) agreed

that TimeSets provided a stronger sense of grouping

than KelpFusion. Many of them commented that

KelpFusion figures looked more like a network than

a group.

Conclusion and future work

In this article, we introduced the TimeSets method to

visualize set relationships among events in a timeline.

Following the proximity and uniform connectedness

principles of grouping, TimeSets groups temporal

events vertically with colored backgrounds according to

their set memberships. Events shared by two sets are

visualized using layers with a color gradient back-

ground. TimeSets also dynamically adjusts the event

labels between three levels of detail to scale with the

number of events. The amount of event labels dis-

played can be traded for ease of following events chron-

ologically using the traceability layout algorithm. The

results from the controlled experiment comparing

TimeSets to KelpFusion showed that overall, TimeSets

was significantly more accurate and the participants

preferred TimeSets for aesthetics and readability.

Currently, duplicated events can only be discovered

when mouse hovering. We are investigating a better

visual hint without making the visualization too much

cluttered. A formal evaluation is needed to study

which technique for multi-set memberships, that is,

multiple/concentric circles and multi-colored label

background, is the most effective. To improve the

visual representation of aggregated events, we will

explore and evaluate approaches mentioned in the dis-

cussion of the scalability of the layout. Also, we will

address the issues identified in the user evaluation,

such as the set area not being a reliable indicator of

event number and the irritation from bright set colors

after a long viewing period.
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